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ABSTRACT

This report presents four loss detection schemes for special nuclear
material (SNM) accounting at a typical uranium recovery facility. We
conceptually define a detector and discuss loss detector performance
evaluation criteria. The loss detection schemes are evaluated for ,a
hypothetical SNM loss scenario. The schemes presented are (1) material
balance accounting (MBA), where single measurements are made of incoming and

outgoing SNM; (2) MBA, augmented by additional measurements (i.e., multiple
instruments) made on chemical processes with'n the plant; (3) augmented MbA,
with the measurement instruments improved by multiple independent reading; and

(4) a detector based on a parameterized model of the chemical process. The
results of our analysis show that better process models and improved accuracy
measurements can greatly enhance the performance of an SNM diversion detector
Detector performance was evaluated for an 8-hour batch processing time.

v
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Chapter 1

INTRODUCTION

The safeguarding of special nuclear material (SNM) continues to be of

vital importance to the nation. The attractiveness of weapons grade SNM to

terrorist organizations presents a grave danger to the general public..

Unfortunately, existing methods of material balance accounting' (MBA) in

nuclear fuel reprocessing plants may be inadequate for timely detection of the

loss of significant amounts of SWM, therefore, it is necessary to investigate

alternative methods.,

This report presents some simple signal processing techniques that can
:-

enhance the probability of detecting a loss of SNM. A model facility is used

as an example of a nuclear fuel reprocessing plant in which to characterize

our loss detection schemes.
Signal processing techniques involve the monitoring of process variables

~

inside thc chemical plant and the analysis of data using a process model. MBA

is an example of a simple signal processing technique, viz., SNM' input and
1

output are compared. Statistical techniques are used to determine if SNM

diversion has occurred. In an MBA scheme, the chemical process dynamics

inside a plant are not modeled.
,

We are presenting detection schemes that utilize more process information j

than traditional MBA. Figure 1.1 shows a " staircase" of models that can be

; used in a loss detection heme. In this report, we. discuss two improved-

accuracy input / output (MBA) medels and one parameter model. These. correspond

f to the first two levels of process models in the staircase. We then develop

three detection schemes and characterize their performance, in comparison to

the MBA scheme, in a hypothetical diversion scer.ario for the model f acility.
,

h Future work will cover the reduced order and true process models, the third

and fourth levels of process modeling.

|
The improved accuracy MBA and parameter models offer improved detection-

! performance over simple MBA schemes in the sense that. probability of detecting

an SNM loss is increased. The higher level models have an additional advantage

! of timeliness because they are dynamic process models coupled with on-line

monitors.
,

t

1
i

.- .- . . . - - . _. -.. - . .-- . . . .
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FIG. 1.1. Classes of process models.

Chapter 2 of this report discusses the general properties of a detector,
def.ines some terms, and int.roduces performance evaluation criteria. Chapter 3

gives a brief description of a model uranium recovery plant that is used in a
hypothetical SNM diversion scenario.

In Chapter 4, four detection schemes are evaluated for the~ hypothetical

scenario. Each succeeding scheme presented has a better process model or uses
more accurate measurements than the previous scheme, and there'Jr of fers

improved performance, as shown in the report. The four schemes presented
include the following: (1) material balance accounting (MBA), where single

measurements are made of incoming and outgoing SNM; (2) MBA, augmented by
,

additional measurements (i.e., multiple inst.ruments) made on chemical

processes t.ithin the plant; (3) augmented MBA, with the measurement
instruments improved by multiple independent readings; and (4) a detector
based on a parameterized model of the chemical process.

In the hypothetical scenario discussed in the Jeport, if 1 kg of SNM is
stolen, the MBA scheme can only hope to detect the loss with a probability of

,

2

. - .



. -

,

0.2 (this is assuming a f alse alarm probability of 0.05) . The multiple

instrument, multiple measurement, and parameter model schemes have detection

probabilities of 0.4, 0.97, and 0.99, respectively (also assuming a f alse
alarm probability of 0.05). These results are derived in-detail in the report

and are valid for an 8-hour batch processing time period. Therefore, we can

conclude that better process models and improved accuracy measurements can

greatly enhance the performance of an SNM diversion detector.
A summary of results is presented in Chapter 5. Chapter 6 gives some

suggestions for future work.

.

I

3
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,

Chapter 2
,

DETECTORS
.

The detection schemes described in this report all fit within the realm

of binary hypothesis testing. This chapter decines binary hypothesis testing,

and it describes how to characterize the performance of a binary detector.

Appendix A gives a mathematical review of detection theory since this chapter

gives only a brief presentation of basic concepts,, Section 2.2 describes how,

in terms of hardware, a detector would be put on-line at a nuclear processing

facility.

4 2.1 PROPERTIES OF DETECTORS

4

A binary detector uses all the information available to it to make a

choice between two possible outcomes or " hypotheses," hence the term " binary

hypnthesis test." The two hypotheses in our case are (1) H t all the SNMo
is accounted for; and (2) H: some SNM is missing. As a general rule, they

more accurate the information given, the better the detector performs. How do

we quantify performance? What makes one detector better than another? We,

define three important measures of detector performance: probability of

detection, probability of false alarm, and time to detection.

The probability of detection is a measure of how likely it is that an

alarm will trigger when a diversion occurs. We would like this probability to

be in the 0.95 to 1 range, but in designing a detector for maximum detection
*

probability, the false alarm rate must be kept low. ' False alarm probability

is a measure of how often the alarm is triggered when in fact no diversion
.

occurred. In a practical diversion detection scheme, false alarm probability

is usually constrained to about 0.05 (5 percent) . The solution to the problem

of maximizing probability of detection under a false alarm probability

constraint is the so-called " likelihood ratio" detector (Appendix A). -The

detectors described in this report are all likelihood ratio detectors.

Another important quality of a detector is timeliness. Time to detection

is the (average) time lag from diversion to detection. For the detectors

*
The terms rate and probability are interchangeable here. To be precise,

the rate is the probability divided by the sampling interval. The sampling

interval here is the batch process time, 8 hours.

!

4
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described in this report, the time lag can be anywhere from 0 to 8 hours

because the accounting does not take place until af ter an 8-hour long batch

process. A timely detector would be an on-line detector that monitors a

chemical processing unit during the batch process and warns of the diversion

most nearly after the event as possible.

Let us return to the criterion of probability of detection. We have

fixed the false alarm probability at a certain value. We now discuss what

factors contribute to an increased probability of detection.

The probability of detecting SNM loss is a function of the signal-to-

noise ratio (SNR), as shown in Fig. 2.1. The signal is the amount of lost

SNM, and the noise is our uncertainty (standard deviation) in the total amount

of SNM lost.

The SNR performance curve can prove useful to an NRC regulator /assesssor.
,

^

For example, suppose the total plant uncertainty is characterized by the
standard deviation 0 , then for a given loss (signal) of material, S, the

1

detection probability is fixed, say Py (Fig. 2.1). If the regulator

I I
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o
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,

I

o I

> I

E I

3 p, i
_______

i I.o
e j '
n- 1

I l
, i I
i I |

i
i 1

S/o3 S/o2-

Signal to-noise ratio

FIG. 2.1. Probability of detection vs signal-to-noise ratio.

*
This function is derived mathematically in Appendix A.

5
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required a h!.gher detection probability for the same loss, S, then the plant

uncertainty must decrease; 1.e., 02<01 2>P. If is impractical,frP
2

then the regulator knows that P is not realistic. Other similar scenarios
2

could be imagined. Thus, the performance curve, along with cost information to

indicate the feasibility of reducing c t I'* 9* ' improved measurements) ,y 2

will prove to be a powerful " nomogram" for the NRC.

In Chapter 4, we evaluate the performance of detectors by plotting pcints

on the performance evaluation curve for each example detection scheme.

2.2 DETECTOR IMPLEMENTATION AT A PROCESSING PLANT

We have conceptually described how to characterize a diversion detector.

Let us now explain physically what a detector may look like when implemented
at a nuclear fuel reprocessing plant.

The detector system complexity depends on the complexity of the process
model in the scheme (Fig. 1.1). A material balance accounting system may
simply be an accountant with pencil and paper; however, the more complicated
models require a computer to perform the required calculations reliably. A

fully automated system would use a minicomputer (or microprocessor)

electronically interfaced to the measurement instruments. Many instruments

used in reprocessing plants already have interfaces built in, such as the

Ruska-Taylor pressure sensors, which have an electrical output sional. The

computer provides all the computations necessary to make a decisjon. The

output is merely a "yes" or a "no," plus perhaps an estimate of how much

material was stolen (loss estimate) and from what par t of the plant the riielt

occurred (localization estimate).

.

6
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Chapter 3

MODEL URANIUM PROCESSING FACILITY

we wish to evaluate signal processing techniques for SNM loss detection
for a model nuclear material recovery facility. To do this we first describe

the operation of the model facility and then explain the techniques for
measuring the amount of SNM present at various processing stages within that
facility. We next perform an error analysis for the measurement schemes, and
we investigate the sources of normal, in-process, SNM loss. The results of
the error and loss analysis are used in Chapter 4 to characterize loss
detector performance at the model plant.

3.1 PIANT OPERATION

The purpose of the model plant is to extract and purify uranium from fuel
rods. Figure 3.1 outlines the process. As fuel rods enter the plant, they
are ground up and dissolved in nitric acid. Pulse columns extract the uranium

3solution and the resulting 6 kg/m uranium nitrate is stored in tanks. These

tanks feed solution to the concentrator unit where the solution density is

3 3increased from 6 kg/m to 100 kg/m . The concentrate is stored in a tank
until ready for precipitation. The precipitator is used to convert the

concentrated solution to solid form.
The concentrator /precipitator section has four chemical units of interest.

(Fig. 3.2): (1) storage tanks for low-concentration uranium nitrate solution,
(2) a concentrator unit, (3) a storage tank for high-concentration uranium

Dissolution
Fuel - D.:ssolved Extraction 'fuel rods ~ columnsrods nitric acid

-

Filtering
Uran.iu m Concentration / Ammon.ium Uranium
nitrate precipitation diuranate __

drying
oxidepyrohydrolysis

FIG. 3.1. Uranium purification process.

7
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Uran:um Ammonium
- nitrate- -

Storage
' 9'Concentrator Precipitator -diuranate- - ~

tank tanksolution cakes
-

FIG. 3.2. Concentration / precipitation stages,

nitrate solution, and (4) a precipitator unit. Volumes and batch process

times for each unit are summarized in Table 3.1..

Let us first discuss the concentrator and precipitator units in more

detail since we are concerned with measurements on the processes in these

units.

3.1.1 Concentrator Unit

The concentrator is shown in Fig. 3.3. At the start of a batch process,

it is filled with about 0.05 m of 6 kg/m uranium nitrate solution. The

solution is heated by steam in a reboiler.

Nitric acid evaporates, thus increasing the solution concentration. The
3liquid level is held constant by a continuous incoming stream of 6 kg/m

solution from the ferd tank. The concentration continuously increases until

(about 7 hours later) the concentration has reached 100 kg/m . At this

time, the feed is shut off, and the batch of 100 kg/m solution is pumped

into overhead storage tanks. During a 16-hour, 2-shif t period, two batches of

SNM can be processed through the concentrator.

TABLE 3.1. Volumes and batch process times for model

plant processing units.

Vblume, Batch processing
3Stage m time, hr

1. Tanks 0.7

2. Concentrator 0.05 7

3. Tank 0.17

4. Precipitator 0.02 1

8
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_ _ . - - .
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E

'

Vapor and gas

n>
Vapor sepstator

F 7 Wash solution'

|g
'

(intermittent)-

Bubbler

BoilerAir Vapor
_i space O

, 1
...

Steam
o <

Vent
~

: Liquid -,

space

,s. Feed

m_
Product ''

' '

Condensate

/

Drin q
(normally

closed)

_li i

FIG. 3.3. Concentrator unit.
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3.1.2 Precipitator Unit

Figure 3.4 shows the precipitator unit. The precipitator is smaller in

3volume than the concentrator, handling only about 0.02 m of liquid at a

time. Air and aaunonia gas are bubbled through the precipitator full of the

3100 kg/m uranium nitrate solution. The reaction forms solid ammonium
diuranate. At the end of 1-hour-long run, the precipitant is filtered-out and

the remaining liquid discarded. The precipitant is a wet." cake," containing a

high percentage of water, that is later dried and calcined to result in the

final product, powdered uranium.

We now direct attention to the plant operating procedure and the

techniques for determining the amount of SNM in various stages of the process.

Air N x Amonia gas

h h h Storage tanks
M I K || U

:: :: ::
S/S duct Exhaust ductj j j

o | - -- H ood
~ '

Filter
|| N

~
- - - - - Filter

_ _

- -

e
_ _

o
g_ -

>
[ [ L12 in. solid concrete block nli

"~-~

- .
_ J,A_-

:: :: - ::--
_

_ _ x
_ _ - Gas metering manifold- -

- -

f s f Floor elevation
Concrete block divider wall / \ 4 liter buchner flask and filter

Amonium diuranate precipitation hood

F1G. 3.4. Precipitator unit.

.
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3.1.3 Plant Operating Procedure

To keep our investigation simple, we assume that the low-concentration

liquid storage tanks are full before the concentrator runs are started.

Precipitation is not started until all the concentrator runs are completed and

stored in the high-concentration liquid storage tank. In this manner we have

an easy way ** keeping track of all the SNM during the batch ,nrocessing.

3.1.4 Measuring SNM Content

In this section, we discuss methods of determining SNM content at four

points in the concentration /precipitator process: (1) in the low-concentration
uranyl-nitrate storage tanks; (2) in the SNM mass fed to the concentrator

during a batch process; (3) in the SNM mass drained from the concentrator

after batch process completion; and (4) in the cakes resultant from

precipitation runs.

We have assumed that the storage tanks are filled before concentrator

batch runs are performed; therefore, the volume of the tank determines the

total amount of solution present and is easily calculated from its dimensions.

In our model, that volume, V, is 0.7 m3 (ref er to Table 3.1) . We further
assume that there is some knowledge or the SNM concentration of the solution

in the tank. In our model, that concentration, c, is 6 kg of SNM per cubic

meter of solution. Thus, we can deduce the mass, M, of SNM in the storage

tank:

M = cv (3.1)

where

c = solution concentration (kg SNM/m solution), and

V = tank volume (m ).

In a second SNM mass measurement scheme, we use an existing instrument, a
set of pressure gauges connected to bubbler tubes attached to the' concentrator

unit. Figure 3.5 shows the arrangement. The bubblers are useful for measuring

two items: solution concentration (SNM density) and the ligrid level inside

the concentrator.

11
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| .0
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< J
FIG. 3.5. Pressure gauge attachment to the concentrator unit.

Three bubbler tubes extend into the concentrator. Two tubes extend into
the liquid space and one into the vapor space above the liquid.

The air pressure inside a particular . bubbler tube is kept at equilibrium

with the liquid (or -vapor) pressure at the tube opening in the concentrator.

Pressure gauges, G and G , measure air pressure differential between the
2

tubes. Gauge G readsy

(3.2)Py = g pld

where

9 is pressure (nt/m ),
7

g is the gravity constant (9.8 nt/kg),

p is the density of the liquid (kg/m ), and

l is the bubbler tube height differential (m).
d

12
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Since g and ld are known and we measure pi, we can compute the liquid
density:

P1
0=gi '

d

Now Gauge G2 reads

P2 * 9 012 (3.4)

{ where 1 is the level of the l' quid with respect to the bottom bubbler
2

'
tube. Therefore,

P2
1 (3. 5)= - - .

2 pg

Substituting Eq. (3.3) into the above gives

P
2

1
2 " ~5.' 1

(3.6).
d

To deduce the volume of liquid in the tank we need an accurate measurement of

the " heel" space, that is, the liquid space below the lowest bubbler tube.

Let us assume this has been previously measured to be y . S the total
h

volume of liquid in the concentrator is

P
2V=V +7-Ia (3.7),

d
1 1

where a is cross-sectional area.
We can use the measurement of liquid density to deduce the concentration

! of SNM in the liquid. The concentration is approximately given by
'

I

[ c=p-p, (3. S)

,

13

. , _ - . _ ~ . -- - . _ . - -



..

4

where 0 is the density of the nitric acid solvent, i.e., the liquid
3

density if no SNM were present. The approximation is valid in the range of

concentrations we are interested in. For total SNM mass, multiply

concentration by solution volume:

fP P \y 2
I ''IM=| -p h+P d*/(g 1d 1

s

where

M = SNM mass in concentrator (kg),

Py = reading from pressure gauge Gy (nt/m ),
P2 = reading f rom pressure gauge G2 (nt/m ),
p = density of the nitric acid solvent (kg/m ),s
g = gravity constant (9.8 nt/kg),

ld = distance between bubbler tubes in the liquid space of the
concentrator (m),

,

3 andh = v lume of the liquid space below the lowest bubbler tube (m ),V

a = cross-sectional area of the concentrator above the lowest bubbler
tube (m ).

To measure the amount of SNM in the concentrator at the end of a batch run, we

use the pressure readings P and P and Eq. (3.9).y 2

We can also use the pressure gauges to help us determine the amount of
SNM that enters the concentrator during the run (t.his may dif fer from the SNM

mass in the concentrator at the end of the run because diversion may occur

during processing). Initially, the concentrator is filled with low-

concentration uranyl nitrate solution. At that time, we use Gauge G toy
deduce the concentration of the solution stored in the tanks. Combining

Eqs. (3.3) and (3.8) gives

Py
c= -p (3.10)

gl s
d

If we have some knowledge of the flow rate, f, of solution from the tanks

into the concentrator (we will assume this is constant) and time, t, for the

concentrator run (we assume that an accurate clock is available), we can

compute the total SNM that flows into the concentrator:

d

14
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(p )g

- p*)|
M = cft = 1 ft (3.11)

\9 d

where

solution concentration (kg SNM/m solution),c =

flow rate (m /sec),f =

time (sec),t a

pressure reading from Gauge G (nt/m ),P ey y
gravity constant (9.8 nt/kg),g =

ld = distance between bubbler tubes (m), and
p, = density of nitric acid solvent (kg/m ).
Our last SNM measurement scheme is the weighing of precipitant cakes.

These cakes (ammonium diuranate) have a certain percentage of water and

contaminants, so if we subtract the known amount of non-SNM weight we car.
deduce the amount of SNM present:

M=M (1-b) (3.12)cakes

where

b = fraction of contaminants and water by weight.

We have now explained four methods of ascertaining SNM mass in the

processing plant. We have computations for SNM in the storage tanks (3.1),

SNM entering the concentrator (3.11), SNM leaving the concentrator (3.9) s and

Sm in the precipitant cakes (3.12) .

3.2 ERROR AND IDSS ANALYSIS

We now consider the sources of SNM accounting uncertainty. We start by

discussing sources of normal material loss within the plant (in-process

losses). Then we analyze the sources of error introduced by the SNM

measurement techniques explained in Section 3.1.4.

3.2.1 Normal Sources of Material Ioss

Each chemical processing column,-tank, and associated pipes and valves

will be a source of Sm loss that is not necessarily a hostile diversion. For

15
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example, some uranium may deposit onto the walls of a storage tank or there

may be a small concentration in the liquid discarded fro.s the precipitator
column.

Experience may show that some certain average loss is to be expected, and
,

hence can be accounted for in the final material balance. There is always

some random variation around this average loss, so random loss must be

included in the system model.

We assume that SNM loss uncertainties are relatively small compared to

measurement errors. The assumed uncertainties for four types of loss at the

model plant are shown in Table 3.2. The total loss uncertainty reflects the<

combination of all the random loss sources.

TABLE 3.2. Sources of in-process SNM loss.

Percentage Equivalent SNM

uncertainty, mass uncertainty,
.

Source % kg
,

Tank deposit 1 0.05

Vapor 3 0.15

Leakage 1 0.05

Discard 3 0.15

Total 4 0.2

3.2.2 Sources of Measurement Error

*

We now perform an error analysis for'each of the example

SNM-measurement methods described in Section 3.1.4. The analysis will

determine how measurement errors reflect in the uncertainty of SNM' mass. We

intend to use the results of the measurement error analysis in characterizing

SNM loss detection schemes in Section 3.1.4.
Consider Eq. (3.1) for computing the mass, M, of SNM in the storage tanks:

M = cv (3.13 )

*

See Appendix C for a mathematical derivation of the linear error analysis
technique.

16
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There is always some error in our guess of SNM concentration, c, and

calculation of tank volume, V. Let us reflect that error in terms of the

error in computing SNM mass:

AM = (Ac) V + c (AV) (3.14 )

In our development, it is more convenient to express these errors as

fractions of their full-scale value:

AM = cv + cv (3.15)

or, since cv = M by Eq. (3.13),

AM = M + (3.16)-

We now compute the variance of AM as

2 (g2,g=M (3,l7)T

where

2=E{AM}intheS_torageTank
ST

}
* =E

e, - RW1
In our model plant, we are assuming a = 0.1, 0 = 0.1 (i .e. , the

concentration and volume are determined with 10 percent uncertainty), and
M = 5 kg. Therefore,

(5 kg) ((0.1) + (0.1)=
ST

U = 0.71 kg (3.18).
ST

17



_ _ _ - - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - . _ _ _ _ .

The subscript ST indicates that we are talking about the variance of the SNM

mass in the storage tanks.

The SNM mass being fed to the concentrator during a batch run is given by

Eq. (3.11). Consider errors in the pressure reading, P , the flow rate, f,
1

and time, t

( Ap ) /p ) af At1 1
AM = | l Ift+ -- M+ -- M (3.19). .

1 I(P1j (9 d/

Now, the mass of the nitric acid in the tank is given by

~P
-

t
ft (3.20)M = .

s 91
_ c.

Since SNM is present in the solution at 6 kg-SNM/m -solution and the
solution density is roughly 1000 kg/m (the density of water) we can say

,

M = aM (3.21)s

where

n= = 167 (kg-solution /kg-SNM), and
6

M = mass of SNM.

So, substituting into Eq. (3.19) gives

aM+(fS)M+(f1)M
I

(3.22)AM= | ,p

We can see from Eq. (3.22) that SNM mass uncertainties are more sensitive
4

to pressure-reading error than flow rate or time errors, because of the

factor, n.

4
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Computing the variance,

c =M o +Of+o (3.23)

where

=E{AM}FedtotheC_oncentrator0

AP[| '
[2

a =E' I a
PP ,( yj,

= -{(Phe

4 --{(ef
Notice ' %t we have lumped the a term into o . We assume that the pressurep
gauge is as urate enough so that o = 0.1. We further assume og = 0.1 andp
a = 0.01. Using these values in Eq. (3.23) gives

= 5 kg[(0.1) !+ (0.1) + (0.01)og

O = .71 kg (3.24)g

We have completed error analyses for the measurement of (1) SNM mass in

the storage tanks and (2) Sm mass fed to the concentrator. We now perform an
error analysis on Eq. (3.9), which is the expression for SNM mass removed f rom

the concentrator after a batch run. We consider errors in the two pressure
readings, P and P . An argument similar to the one presented in Eqs. (3.19)y 2

! through (3.23) is used, and after some tedious manipulations, the result is

o aM o +o (3.25)

'19
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%

where
4

=E(AMfRemovedfromtheConcentrator,
RC

(a - 8) 2 |( b P ) '
'

a'g
g

|=E ,

l ( '1 / ,

a =E' 82| 22
| - ,

2 ('2 / ,
3

4

a = M /M '-

s
.

S = M,/M ,4

M, = mass of solution in the concentrator (kg),

M, = mass of SNM above the lowest bubbler tube (kg), and

M = mass of SNM in the concentrator (kg).

!

We assume U = 0.1 and o = 0.1 .p p

Therefore,

'(0.1) 2 + (0.1) 2 - 1/2 -o = 5 kg
, _RC

i -
!

= 0.71 kg (3.26)
4

| Our final measurement is weighing the precipitant cakes The major.
i

source of error here is the lack of knowledge concerning the percentage of

j water'and contaminants in the cakes.

' AM'= - M ab (3.27)akes

' so

G .=M 0 (3.28)

.

'
20
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where

=E{AM}WeightoftheCakesc

'

(M
2 #* ** Abg =E'
b M

2We assume = 0.3 (i.e., very little is known about the contaminate andb
water concentration in tne cakes).

,

DWC = (5 kg) (0.3)
= 1.5 kg (3.29)

1

Thus concludes oir analysis of the four measurement schemes introduced in

Section 3.1.4. A aummary of our assumed measurement (or guess) uncertainties

appears in Table 3.3. We now proceed to characterizing SNM loss detection-

schemes.

TABLE 3.3. Assumed accuracy of measurements (percentage of full scale).

Assumed
!

percentage Equivalent SNM

uncertainty, mass uncertainty,

Measurement % kg
i

Tank volume 10 0.5

Solution density 10 0.5

| Time 1 0.05

Flow rate 10 0.5

Solution level 10 0.5

Weight of precipitant 30 1.5

I

I

I

l

t

i
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Chapter 4

DETEC'IOR PERFORMANCE AT THE MODEL FACILITY

We wish to evaluate the performance of some simple signal processing

techniques for detecting SNM diversion. In Chapter 3, we described an example

uranium processing *acility and stated the assumptions made concerning plant

operation. We now present detector performance evaluatien for (1) material

balance accounting (MBA), (2) MBA augmented by additional instrumentation on

the process units, (3) augmented MBA with multiple, redundant measurements,
and (4) diversion detection using a parameterized model of the chemical

process.

Detectors are constructed typically of a signal processing algorithm

(e.g., averaging) and a decision criteria (e.g., threshold exceeded). (See

Fig. 4.1.) The signal processing algorithm is primarily used to obtain or

enhance the incoming signal in noise. Once the signals of interest are

estimated, a decision function is formed and tested against the decision

criteria. MBA is basically a detection technique in which some signal

processing could be employed in the form of increasing measurement instrument

precision. In MBA the decision functions take different forms (e.g.,
'

CUMSUM) and so do the associated decision functions (e.g . , V-MASK) .

4.1 MATERIAL BALANCE ACCOUNTING

In an MBA scheme for the total f acility, the amount of incoming raw

material is measured and assayed for uranium content. At the end of

processing, the resultant outgoing uranium is weighed, and a check is made to

see if the output equals the input.

lLoss detector
i I

I I

!Noisy I Signal _ Decision Decision Decision
data processor function criteria j

-

I
i

I
I

__. ________J

FIG. 4.1. Typical loss detector.
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Let us introduce a hypothetical MBA scheme only around the concentrator /
'

precipitator section (Fig. 4.2). The amount of incoming SM to the

concentrator /precipitator section is the anount of SNM in the filled, low-
i-
' concentration storage tanks. Our uncertainty in the volume of this tank and

the density of the solution reflects our uncertainty in the amount of incoming
SNM according to Eq. (3.17). Assume that the only measurement of . outgoing SNM

is the welghing of the wet precipitant cakes. The 6.otal error in this
accounting is the combination of the input and output measurement errors plus
the error associated with natural sources of SNM loss, such as deposit on the

inside walls of pipes and tanks.

O *UST + U +0 I4*1)
A

where

0 = MBA loss uncertainty,

c = uncertainty of SNM mass in the storage tanks,
ST

o = uncertainty SNM mass in precipitant cakes, and
a = in-process loss uncertainty (0.2 kg) .

Refer to Eqs. (3.17) and (3.28). We are using a tank volume measurement

! (10 percent error), a solution density measurement (10 percent error), and a
weight of precipitant measurement (30 percent error) . In addition, all fout

of the sources of in-process loss listed in Table 3.3 are present in the MBA

scheme.

Diversion
|

_.

Nuclear fuel
j Uranium reprocessing plant Ammonium _
| nitrate

_

(concentration /prectpitator diuranate
i section)
|

|
| Measure: Measure:

Volume Weight
Density

FIG. 4.2. Material balance accounting scheme.
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From Eqs. (3.18) and (3.29),

[(0.71)2 + (1.5)2 + (0.2)2"1/2
*

o =
gg3 ,

= 1.67 kg. (4.2)

To calculate the probability that the MBA scheme will detect a loss of

1 kg of SNM, we first Olculate the signal-to-noise ratio (CNR):

SNR = S/o (4.3)

where

S = 1 kg.

Therefore, SNR = 1 kg/1.67 k' = 0.6.
*

We now refer to the dett ; tor performance evaluation curve (Fig. 4.3)

to determine the probability of detection we can expect with a signal-to-noise

ratio of 0.6. Fct the curve shown, we have a fixed probability of false alarm

of 0.05. We read that the probability of detecticn using the MBA scheme is
'

O.2.
~

'

We have concluded our discussion of the MBA loss detection scheme. We
now proceed to the signal processing techniques.

4.2 IMPROVED ACCOUNTING USING SIGNAL PROCESSING
^

d

We have explained the material balance accounting techniqu4 in terms of

the concentrator /precipitator section of our model plant. We new introduce ','

three simple signal processing techniques. The first is.a multiple-instrument

scheme, where process measurements from inside the system a're added,to the ''

~

input /catput measurements. The second method uses the same instt,uments as in y
'

~ ~~ '

the multiple-instrument scheme, but it improves the measutoment accuracy by ' 4
. , ,-

calibrating the instruments and taking multiple independent measurements.
'" s a

Calibration reduces the systematic measurement error, the e,rro,r that i,n ' ' " ,-

consistent from measurement to measurement. Multiple m[aizurehnts' reduce
%

' ' *
, v+

-, ., , ._

'This curve is derived mathematically in Appendix A.'"\ ' L' -2 'w
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4.2.1 Multiple Instrument Method

We discuss a signal processing method that utilizes the pressure

measurements from_the concentrator in addition to the input and output

measurements used in MBA. For the sake of discussion, consider a particular

scenario: 1 kg of SNM is stolen from the concentrator unit during a batch

process (Fig. 4.4).

An estimate of the SNM loss is formed by averaging the measurements of

SNM input to the concentrator and subtracting the average of measurements of

SNM output from the concentrator:

' ~ n -

I4*4)Mggg = MIN - OUT

We apply Eq. (B-14) to form the minimum variance estimates of M andIN

OUT*

-1
[M k\! \ST 1 1a

* + ! (4.5)M IN 2 2 2 2

k ST FC fST FC /

[ bC \! \-1WC 1 1^

+ l' + I (4.6)M

OUT " |k RC
2 2 2 2

WC fRC WC

Diversion

F-------- ------------- 7
I I

Tanks Precipitator I H * " "te- Uranium 1 - Tank
*

Concentrator ~--

nitrate j -
--

l diurana

|
|
I

|

L___________.__________]
Measure: Measure: Measure: Measure:

Volume Flow rate Density Weight
Density Time Level

Density

FIG. 4.4. Improved accuracy in material balance accounting.
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where

M = measured SNM mass in s_torage tanks,g

M measured SNM mass fed to the _ concentrator,
FC

( = measured SNM mass removed from the c_oncentrator, and

( = measured SNM mass in the precipitant cakes determined by _ weighing
the cakes.

Using Eq. (B-16), we see that the SNM loss variance is computed by

1\~1\~ +1
l2 1 +' +OMI " 2 2 l 2 2

*
I

ST FC) k RC WC/
O

where

O = uncertainty in SNM accounting associated with the M_ultiple
MI

Instrument scheme.

Substituting for each a in Eq. (4.7), using Eqs. (3.18), (3.24), (3.26) , and
(3.29), results in

= 0.79 kg (4.8)
MI

Figure 4.5 shows that our multiple-instrument method is a modified
material balance accounting. Improvement over simple MBA is possible because

two separate measurements are taken to estimate SNM entering the concentrator
and two measurements to estimate SNM leaving the concentrator.

For a diversion of 1 kg, the signal-to-noise ratio is

1.27 (4.9)SNR = = (1 kg)/(0.79 kg) o
g

MI

Figure 4.6 shows where the multiple-instrument scheme lies on the detector
evaluation curve. With a SNR of 1.27, the probability of detection is 0.4.
In other words, the additional measurements have doubled the detection

probability over the simple MBA scheme. |

27
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Parameter
model

detector

Decision

FIG. 4.5. Parameter model diversion detection scheme.

4.2.2 Multiple Measurement Method

We can improve -instrument accuracy through redundant measurements.
Assume the same scenario and instrument setup as for the multiple-instrument

method.- We now '.ake many independent readings (say ten) from each. instrument-

and average them. We can expect the signal-to-noise ratio to increase by a
factor of 3.162 (the square root of ten) over the multiple-instrument (single
measurement) scheme because the noise standard deviation is reduced by this
factor when we average the measurements. Thus, the SNR for the multiple

measurement scheme is 1.27 x 3.162 = 4.02. Note from Fig. 4.6 that the

probability of detection has increased from 0.4 to 0.97, a substantial-
improvement.

4.2.3 Parameter Modeling

A different approach to diversion detection is to model the chemical
process as a f unction of time and, f rom' taking measurements periodically,
determine if the data fit the model. A mismatch indicates diversion. Their
values can describe a straight line, exponential or other function.
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I FIG. 4.6. Detector performance evaluation (P = 0.05).p

I

For our example, we have chosen to represent the solution density in he
: concen*rator unit with a 11near parametric model. The differential pressure
f
! gauge provides us with direct measurements of concentration via Eq. (3.10),

which is repeated-below:

,
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Py
c= -c (4.10)gl sd

concentration increases linearly with time during a concentrator run

3because 6 kg/m solution continues to flow into the concentrator to offset

the loss of liquid due to evaporation. Thus, the volume of solution remains

constant.while SNM continues to pour in at the rate r = fe where f is the.o
3

flow rate (m /hr) and c is the SNM concentration of the input streamo
3(6 kg SNM/m solution). So we have

C(t) =c + (4.11)

where

c = initial concentration (6 kg SNM/m ),o
r = SNM mass input flow rate (kg/hr),

3V = volume of concentrator (m ), and

t = time since star t of batch run.

We use several measurements of concentration [using Eq. (4.10)] during
the batch run as data to estimate the parameter, r/V. Let us denote this

parameter as 6, the time derivative of the concentration of SNM in the
3concentrator. In our model plant, to increase concentration from 6 kg/m

to 100 kg/m during a 7-hour batch run, the nominal value of 5 is about
313.5 kg/m hr. If 6 deviates from the nominal value, then diversion can be

presumed.

The estimator for 5 is called a straight-line-fit algorithm. Smith
provides an excellent derivation of the straight-line-fit algorithm. We

present here the resulting variance in the estimate of 5:

0 = c (4.12)
WT)

where

o = variance of the r/V parameter estimate,

c = variance in the periodic measurements of solution concentration,
c
T = total batch run time (7 hr), and

n = number of-periodic mea 9urements of concentration during the batch
run.

30

- -- _ _ _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ - _ _ _ _ _ _ - _ _ _ _ _ _ - _ _ _



--. . - , _. . - . ..

a

.

- Let us assume that we are measuring solution density in the ' concentrator
1

using an improved accuracy scheme. That is, we have calibrated the pressure
,

' meter and we take multiple independent readings to reduce random error. Ten
independent readings at one point in time will reduce the solution density

,

error variance by a factor of ten, so we have

(0.5 kg) /10 (4.13)c =
>

-

The 0.5 kg Slet mass uncertainty is *. - to the inaccuracy of ascertaining
i solution density with a single pressure reading (Table 3.3) . . We perform this ;

improved-accuracy measurement once' every half-hour during the 7-hour batch
process, for a total of n = 15 measurements. . Therefore, the variance in the

i estimate of the density rate, c, is

(15)(7 hr)2 (0.5 kg) /10
o =

.

)- or

,

c = 0.02~kg/hr (4.14)

The signal, S, is the diversion of 1 kg of SNM over a period of 7 hours:
;

S = 1 kg/7 hr = 0.14 kg/hr (4.15)

Thus the signal-to-noise ratio is:

[ SNR = S/c = 7.0 (4.16)
.

i

The -straight-line-fit algorithm offers a signal-to-noise ratio of
7.0 for a 1-kg diversion. From the graph in Fig. 4.6, we 'can see that the

| probability of detection is very close to 1.

I
f

!
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Chapter 5

SUMMARY'

Using the concentrator /precipitator section of a model scrap uranium
processing plant as an example, we have characterized. four SNM diversion

detection schemes. Each subsequent detector scheme described in this report
offers a succeedingly greater signal-to-noise ratio and thus .a better

probability of detection. Table 5.1 summarizes these results. The maximum
'

time to detection corresponds to the batch processing time of 8 hours.
' A large increase in detection' probability occurs when the multiple

- measurements scheme is used. The parameter model and the dynamic models

(in future work) will almost certainly detect a dive rsion of 1 kg of SNM.

1

TABIE 5.1. Detector performance."'

Probability

Signal- to- of loss

Scheme noise ratio detection

MBA a0. 6 0.2

Multi-
Instrument 1.27 0.4
Multi-
Measurement 4.0 0.97

) Parameter
Model 7.0 0.99

.

.

" Diversion is 1 kg from a 5-kg batch process.4

P = Probability of false alarm = 0.05.p
T = Time to detection = 8. hours (batch process time) .D

t

t

[
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Chapter 6

FUTURE WORK

The logical extension to this report is the investigation of some on-line
process monitors that utilize dynamic models for each of the chemical units.
These on-line detectors will utilize a signal processing algorithm (e.g.,

Kalman filter) to process the incoming measurements. The chemical processes,
themselves, will be modeled by multistate differential equations.

As vas mentioned earlier, on-line detection offers the distinct advantage

of providing a timely detection of diversion. It can provide estimates of

chemical process parameters that are not or cannot be measured directly and
this can lead to a quick localization of the loss. We also expect the on-line
monitors to be sensitive to a wide range of adversary actions that otherwise

might have gone undetected in MBA schemes.
Additional contents of a future report will be a cost-benefit tradeoff

analysis. Simple signal processing may offer a great increase in benefits at
a low cost; however, the increase in benefits of more complex schemes will
need to be carefully weighted against cost f actors.

|

\

|

l

!

i
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GLOSSARY

Probability Density is a function of a continuous random variable, X. The

random variable may assume a value between x and x + Ax with probability

i P (x) Ax (Ax is assumed to be very small). P (x) is called the Probability

Density Function (PDF) for the random variable (RV), X.

Gaussian is the characteristic probability density function of most types of
random noise. The value.of the noise may vary over a wide range. The
probability density over that range is a " bell" or " normal" curve:

P (x) exp - (x - m ) o=

' x 3

* Mean is the average value (also called expected value) for a random variable.
Mathematically,

'

m

F
=E(x}= xPm X* *

J--

Variance is the average squared deviation from the mean of random variable

=

=E{(x-m) }= (x - m ) P (x) dx0x x x x
-=

The variance can be considered the " spread" of possible values for X or the
" width" of the probability density function.

,

Standard deviation is the square root of the variance. It is also called

uncer tainty.

34
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Appendix A

DETECTION THEORY OVERVIEW

Detection is the process of deciding between two (or more) alternatives

using whatever information is available. In the specific application to

nuclear safeguards, the alternatives, hereaf ter called hypotheses, are (1) the
situation is normal, the nuclear material is accounted for; and (2) the
situation is abnormal, some material has been lost.

In this appendix, we discuss the binary hypothesis (two alternative)
detector, define some terms, and introduce detector performance measures. We

then describe the signal processing role in detection schemes. With this-

background, we derive an evaluation curve to explain how detector performance
is related to the quality of the signal processing.

We assume that a set of measurements, z, is available and we wish to

decide between two hypotheses:

#: z=v

(A-1)
H: z = hx + v

z is the n-vector of measurements (i.e., a set of n separate measurements), v
is an n-vector of measurement errors (random noise), x is a scalar quantity
'(for our example, x represents the amount of lost SNM in a diversion

scenario) , and h is an n-vector linearly relating the signal, x, to the set

of measurements, z.

Let us $efine a few terms associated with detectors. Probability of

detection (P ) is the probability that the detector will choose H when
D y

R is, in fact, correct. Probability of f alse alarm (P ) is thep

probability that the detector will choose H incorrectly;i.e.,whenHyisy
the true case.

We have n measurements. The set of all possible measurements will

therefore span an n-dimensional space. The n-space is divided into two

regions: R , associated with hypothesis zero, and R , associated withy
hypothesis one (Fig. A-1). The detector's task is to determine which region z

lies in.
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FIG. A-1. Decision regions.

To design the detector, we specify the regions that satisfy the following

condition: the probability of detection is maximized while the probability of
false alarm is constrained to scne chosen, low, value.

The detection and false alarm probabilities are

D" P(2 | R ) dz_ (A-2)P 1,

#
1

p (z. | H ) dz (A-3)P =p
#

1

where p(z_|H ) is the joint probability density function ; PDF) of they
measurement vector, z, in the case where H is true, and p(z|H ) is the PDFy

for z_ when H is true. The integrals represent multidimensional integration
g

over regiren R . We choose the region, R , which maximizes P ' " *
y y D

F
Y, where y is some (chosen) constant. The solution to this| keeping P <

design problem is to choose a border between the two regions, R and R ,

j- such that the likeli_ hood ratio is a constant: .

P (zT|# I1
L= =A (A-4)

P (z_9|H )
;

'and R .g represents the locus of points defining the border between R
A is a factor dependent on y, which is the upper limit on the False Alarm

e
Andrew P. Sage and James L. Melsa, Estimation Theory With Applications to

Comunications and Control (McGraw Hill Book Company, Inc., New York), 1971.
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probability. We must adjust A until Pp = y. (Note that we have had to hit
the bound of our constraint, Pp _ y, in order to maximize P . e reason

D

for this is that Eqs. (A-2) and (A-3) are integrations over the same region,

and both probabilities increase monotonically with the. size of that

integration region).

We mentioned that the detector must determine which region z lies in.

The detector performs a likelihood ratio test. .In region R , the likelihoody

ratio is always greater than A; in region R , the ratio is always less than A:
2

p (z_|K ) '>A: z c R , choose Hy *y
L= p (z|R ) <A: z c R , choose H

For example, consider the special' case where the PDFs are Gaussian:

T -1
{-1/2z zf- (A-5)p (z|N ) R= exp/2 Rhp

exp - f-1/2 - (z - h_x)
~

(z_-h_x)f (A-6)p (Z_|H ) R*
1 n/2|R |l/2

where
y

R=Efv[f
The likelihood ratio is

I- 7,exp{-1/2(g-hxfR -h_xJ.

expf-1/2gR~ gf
i

'

-h-Ih_x - xh R'1 g+QR h
T -1= exp -1/2

i

h_)~IT~l g - 1/2 x - '(A-7)([ R~= exp x (h R~ h) hR

Constraining L to be constant ~on_the border between R and R constrains-y

the term in brackets in Eq.-(A-7) _to be constant, so, by this requirement, g
describes a "hyperplane" in z space:

1 -

1
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-1([ R' h_) h R" g - 1/2 x = C (A-8)

where C is the constant

C = In(A) - x ([ R" h)~

If z li s to one side of the hyperplane defined by Eq. (A-8)- (in the

region containing z_ = 0) the detector chooses N . On the other side of theo
hyperplane, the detector chooses H .y

Now let us discuss the application of signal processing to a detection

scheme. By signal processing we imply that the set of measurements, z, will

be " processed" to form another number, say $(z), which alone is sufficient for
deciding the region in which z lies.

Let us define $ so that the hypothesis test is
<

H: $(z) =i
(A-9)

H: $(z_) =x+x

where x is the true amount of SNM stolen and x is a random error.

To show that this hypothesis test is identical to the previous hypothesis

test, Eq. (A-1), we must show that the associated likelihood ratios are

identical for any given set of measurements, z_.

We choose x(k) to be the minimum variance estimate (Appendix B) of x,

given the measurements, z_:

T ~l -1 T -1$(z) (h R h) h R z, (A-10)=

| We now assume the special case, once again, where z_ has a Gaussian PDF
under either hypothesis. $(z) in (A-10) can be shown to also have a Gaussian

**
PDF. Therefore, i (defined to be 2 under N , and E-x under H ) has ay

; Gaussian PDF. In Appendix B, we show that i has the variance

=([R- h) (A-ll)E{E} O

..
Athanasios Papoulis, Probability, Random Variables, and Stochastic

Processes (McGraw-Hill Book Company, Inc. , New York), 1965.

39

k



-

Now we form the likelihood ratio

p ($ (z_) |H)
7

" p (x (z_) |H)
g

exp {-1/2 ($ - x) /c}
* 4

exp{-1/2 $/c]}

I = exp {x c- ($ - 1/2 x) } (A-12)

Equation (A-12) is identical to (A-7) when we make the substitutions of (A-10)
and (A-ll), therefore, the hypothesis test is the same using either the full
set of measurements, z, or the sufficient statistic, $.

What we have shown is that we can break up the detection process into two
steps: first, the signal processing where E(z) is computed, then the
hypothesis test on $. The advantage is that now, after signal processing, the
likelihood ratio is simpler to compute (for a given amount of stolen material, x)
because the PDFs are functions of a single variable, S, instead of n variables,
z (Fig. A-2). Also, we find it much easier to compute PD "" F* #*'

they were multidimensional integrations (A-2) and (A-3), now they are single
integrals:

,

f ~ n
p (x |H) dxP

D "J
y (A-13)

*T

m

=f p ($ | H ) dSP (A-14)p
J
*T

where x is chosen such that Pp = y (xTT is called the detection threshold).

P(S|N I P( lH )O 1

p g \P
|

0 X XT

k

FIG. A-2. Probability density functions for x.
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We also find that the hypothesis test is greatly simplified. Instead of

using the likelihood ratio test, we can simply decide if 2 is greater or less
than x , .the detection threshold:

T

if E > x hoose H
T

if E < x hoose H
T

Let us now characterize the detection scheme we have designed. The

probability of detection is commonly used as one measure of performance for
e aussian_ case:detector schemes. Consider the equation for PD(-

m

exPf-1/2 (E - x) /c fdxP *

D J xO

*T

We introduce a change of variables:

a = (E - x)/o

We now have

' m

P * ~D" J
(x -x) /cT

P * * ~ *T x*

D

2where erf or error function is defined as

1 2A g exp -{- 1/2 a } da. (A-16)erf (y) =

O

Note that the probability of detection depends upon x , the chosenT
threshold, and x, the amount of material stolen in a diversion scenario.

Another measure of detector performance is the false alarm probability,
P. Using Eq. (A-14) with a Gaussian PDF,p

i
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exp{-1/22/c}dE. (A-17)P =
p

*T

Once again we introduce a change of variables:

8 = x/ox

so that

p .

exp(-1/2S}dS. (A-18)P =

x

Using the above definition of error function, we have

= 0. 5 + er f (- xga ) . (A-19)Pp

Note that probability of false alarm also depends upon the chosen threshold, x * T
By comparing Eq. (A-19) with Eq. (A-15), we can conclude that the probability
of f alse alarm is equal to the probability of " detecting" a loss of zero

. material. This is to be expected because, when x = 0, the PDFs for. hypothesis
one- and hypothesis zero coincide. For the purposes of this report, we are not

concerned with the case where x (an amount of stolen material) is less'than
zero.

For our example, we chose a detection threshold, x , such that P = 0.05.
T p

In this case,

x = 1.6 O (A-20)T g.

Substituting Eq. (A-20) into Eq. (A-15),,

P = 0.5 + erf x/0 - 1. ( W2D
~

D , x

The function in Eq. (A-21) is plotted in Fig. A-3. We call the factor,

x/O the signal-to-noise ratio (SNR). Note that the " noise," a , is the,

.
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FIG. A-3. Probability of loss detection versus signal-to-noise ratio

(P = 0.05).p

Standard deviation of the error in estimating the " signal," x. In other words,

the noise, and thereby the detector performance, in terms of P ' * ID

dependent on the quality of the signal processing algorithm. The plot in

Fig. A-3 can be considered a detector performance evaluation curve. The

better detectors have a higher probability of detection; therefore, their

signal processing schemes must have an inherently higher signal-to-noise ratio.
SNR is a key f actor in designing a signal processing / detection system.

1

!
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Appendix B

CALCULATION OF A MINIMUM VARIANCE ESTIMATE.

|-
'

When many measurements of various degrees of. accuracy are available . for
estimating a single parameter, the minimum variance technique provides the
"best" solution. The "best" solution is the estimate, which, on the average,

has the least-squared deviation f rom .the true parameter's value. The problem
is to minimize:

1-

J = E { (x - x) } (B-1)
3 where x is the parameter

x is the estimate.

Each measurement of the parameter is corrupted by some additive error:

z =x+c (B-2)-g g

(i = 1,..., n; n equals the total number of measurements).

; The errors are Gaussian random variables:
i

1
"

- E c =-0- -

{c
E =c (B-3)

In vector notation, Eq. (B-2) can be written as,

|

:
'

z=Hx+c (B-4)

i
' where

.g . . . .g .

z_ = ,H= ,c= .,

- - ;, z
.n. ,1, ..n.

1

1

1

44
,

~ , ,- na ,, - ,-,-..--.., --,. ,, - - , , , . _ - _ , . <, . . , . . - . . , . . , - , - - . , . - -



~ The most convenient form for an estimate of x is some linear combination of
the measurements:

n

x= _kz = Kz .(B-5)g

.i=1

where K = { k,...k ] and a constraint on the estimate is -that it bey n
unbiased, i.e.,

E (x - x) =0
.

or

E($) =x. .(B-6)

where E( *) denotes statistical expected value.

E(Kz) =x

E(KHx + KC) =x
.

KHx = x

which implies

KH = I (B-7)

To reflect the above constraint in the minimization of Eq. (B-1), we will use

the Lagrange multiplier technique:

.

J = E f (x - $) f + A (I - KH) . (B-8)

J is to be minimized with respect to a choice of K and A, so

i

!

!

!

|
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4

=0

and

BJ
g=0 (B-9)

are required

J = E { {x - Kz_) }'+A(I-KH)

=E{{x-KHx-KC) }+A(I-KH)-

.; J=x - 2KHx + KHH K x + KRK + A (I - - KH) (B-10a)

where R = E c_ c_ (B-10b)
; . .

= c
.

.

*
2g

. n.

Now

3J
g = I - KU = 0 (B-lla)g

and

= -2Hx + 2HH K x + 2RK - AH = 0 . (B-llb)'

Solving Eq. (B-llb) for K (and using the fact that KH = 1),

I

K= .AH R~ (B-12)

To determine A, we substitute Eq. (B-12) into Eq. (B-lla) :

AH R~ H=0I =

fA=(HR H) "
~

46
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So Eq. (B-12) becomes

K = ( H R" H) " H R" (B-13)
.

Substitute for H and.R" in Eq. (B-13) using Eqs. (B-4) and (B-10b):

I "0"y
~ ~ ' ~1 'o-2

- - -2
}

$ = Kz = [1.. 1] ! [1.. 1] !* *

. .

U
. . . . . 1 . . ".

n

{ *i o g
i=1-

x= (B-14)

0
i=1<

Equation (B-14) shows that in order to estimate x, the measurements, z , mustg
2be inverse-weighted by their respective accuracies, 0 , and added together.

The result is then normalized by the sum of the weights.-

I The accuracy of the estimate is usually of interest, so we shall compute-

= E f [S - E($)] |0

or

= E(;2) - [E(x)] 22
i 0

*
(
I

=E{{KHx-KC) }-x'~

since KH = I

=E{(x-KC) }-xO

0 = KRK
e

where R = E [c c ] .

.
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~ Substituting Eq. (B-13) into the above gives
.

= (H R~ H)~ H R ~ H (H R H)~RR' o
.e

~). (B-15)-=(HR~ H

Substituting for H and R gives

(B-16)0 -=
e n

[- !c
t

i=1

As an example of how the minimum variance estimate is related to the

conunon notion of averaging, consider the ' case when all the measurement

accuracies are the same:

og=c- i = 1,...,n

I Equation (B-11) becomes

n n

[z/2 [.z ng
" c i=1- ,1 [x= =
n "- n i=1 zi '

1/ 2b C 2g
i=1

which is the coanon " average."
Equation (B-16), for the variance, becomes

2
2 1 1 0

I U
e n n/ 2 n

[ 1/g2
i=1

|

which is also well known as the fact that variance decreases proportional to n,.

the number of measurements taken.

i

a
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Appendix C

LINEARIZATION TECHNIQUE FOR ERROR ANALYSIS

Many quantities of interest in a'aystem may be a function of several

uncertain parameters, x :g

A
y: = f (x , x ' * * * ' * IEI"

y 2 n

'
The uncertainty in y due to uncertainty in x would most easily be.

| computed if f were a linear function of x, however, there are many important
applications for error analysis where f is highly nonlinear. In these cases,

f can be approximated as a linear function in a small region about a nominal

point, x.g
Assuming f (x) is well-behaved in the vicinity of x , f can be expandedg

in a Taylor series:

y0+OY * I IE0+ EI
.

!

Of
0 b 8x Ax= f (x ) + o

a=1

n n 2

+ *
3 8x a *8g

a=1 6-1

n n n 3

+3 23 )] 23 8x x Bx a I~I* *S *y -

g
a=1 S=1 y=1

+ ...

I

Equation (C-1) can be made linear in Ax = ( Ax , a=1, . . . ,n) if'it is

assumed Ax is small enough that terms on the order of Ax Axg area a
insignificant. Then,

n

y0+ Y (*0 8x a
+ *

a=1 a

49
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i

t

and since y0 " II*0 *I

n
Ay = { Ax (C-2)

g a
Q=1 Q

Example

-I
y = ap in p

Aa+fApAy =
P

= (p inp0I^

~

+ (-a p'O Inp +apo 0 ) Ap0 o
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