RESPONSIBLE SECTION
SERIAL NUMBER
PLANT (UNIT)
PAGE $10 F$
REVISION PAGES
ATTACHMENT PAGES
APPENDIX PAGES
TOTAL PAGES
BLDG/SYS/COMP NPR DATE/CTP DATE
QUALITY SOFTWARE USED

FRA
C2-517-1073-RE

CY
11

11
\qquad
$-$
$13{ }^{\circ}$
147
SG/E08

CAFTA 2.2C

TITLE: Evaluation on Existing Versus Proposed ABT Transfer Scheme on MCC 5 Reliability

METHOD OF REVIEW: TA ACCORDANCE WITH NEO 5 Ob, REV 6

Reviewed By:
(Print/Signature)
Date:
 4/27/74

Approved By:

(Privisignature)
Date:

QA CATEGORY 1

REVISION
RESPONSIBLE SECTION SERIAL NUMBER
PLANT (UNIT) / SYSTEM
PAGE 1 OF
BACKUP COMPLETE DATE SENT TO NPRF
QUALITY SOFTWARE USED

TITLE: Evaluation of Existing Versus Proposed ABT Transfer Sememe's On MCL-S Reliability

METHOD OF REVIEW:

Reason For Revision: N/A

Prepared By:
(Print/Signature)

Date:

Reviewed By: (Prinu/Signature)

Date:

$$
\text { FoFL } 0 \text { cIETEK, Pul o fetid }
$$

$$
10 / 5 / 73
$$

Approved By: (Print/Signature)

Date:
Domain A. Dues, Deme Co An ere
$10 / 6 / 83$

\qquad
\qquad
Comments:

Calculation Identifying Number \qquad C2-517-1073-RE
Revision \qquad

1. Preparation
1.1 Section 6.1.2
1.2 Section 6.1.3
1.3 Section 6.1.4
1.4 Section 6.4.6
2. Verification
2.1 Sec on 6.2 .2 .1
2.2 Sec ion 6.2 .2 .2
2.3 se ion 6.2 .2 .3
2.4 Section 6.2 .2 .4
2.5 Section 6.2 .2 .5
2.6 Section 6.2 .2 .6
2.7 Section 6.2 .2 .7
2.8 Section 6.2 .2 .8
2.9 Section 5.2 .2 .9
2.10 Section 6.2 .2 .10
2.11 Section 6.2 .2 .11
2.12 Section 6.2 .2 .15
3. Approval
$\begin{array}{lll}3.1 & \text { Section } & 6.3 .1 \\ 3.2 & \text { Section } & 6.3 .2 \\ 3.3 & \text { Section } & 6.3 .3 \\ 3.4 & \text { Section } & 6.3 .4 \\ 3.5 & \text { Section } & 6.3 .5 \\ 3.6 & \text { Section } & 6.3 .6\end{array}$
4. Non-QA Applications
4.1 Section 5.4 waived
4.2 Section 6.1 .4 .7 waived
4.3 Section 6.2 waived

Initial \& Date

Initial \& Date

The following changes were made for this revision:

1) Incorporated CCN-1
2) Incorporated random failures associated with MCC 5 that are independent of the DG conditional starting.
\qquad Evaluation of Eristing Vereus Proposed ABT BY \qquad J.K. Rothert DATE \qquad Tranafor Schemss on MCC-5 Reliabllity CHKD. BY Y.O. Cietek DATE \qquad $4 / 12 / 94$
\qquad CALC. NO. $\mathrm{C} 2-517-1073-\mathrm{RE}$ RKV. \qquad
\qquad SEEET NO. \qquad 5 OF \qquad 11 Table of Contents
1.0 Purpose .
2.0 Results .
3.0 Description of Design Change 6
4.0 Methodology .
5.0 References .
Appendix A (Fault Trees) .

A1
Appendix B (Basic Events) . B1
Appendix C (Cutsets) C1
Appendix D (References) . D1
subject Evaluation of Existing Versus Propose ABT
Transfer Schemes on MCC-5 Reliability
\qquad

BY J.K. Rothert DATE
04/12/94 CHKD. BY Y, O. Cletek DATE 4/12/94 CALL. NO. $\mathrm{C} 2-517-1073-\mathrm{RE}$ street No. \qquad 6 REV. \qquad OF \qquad

1.0 Purpose

The purpose of this analysis is to evaluate proposed design changes to the MCC-5 automatic bus transfer (ABT) 9C/11C scheme reliability. Recent failures of the ABT during testing (Reference 1) prompted this need to identify a more reliable $A B T$ design for MCC-5.

2.0 Results

The proposed design was determined to have a significant impact upon increasing $A B T$ 9C/11C reliability. This results in increased reliability of MCC-5 over the existing transfer scheme for loss of offsite power events. Previously MCC-5 reliability was dominated by $A B T$ reclosure and transfer failures which resulted in a failure probability of $M C C-5$ to supply power of $5.9 E-2$.

The redesign decreases MCC-5 failure probability to supply power to 6.4E-3 primarily due to decreased dependence on the ABT. With this design, the dominant contributor to MCC-5 failure probability is the DGS, as expected. The failure of the DGs should be the limiting factor for $M C C-5$ reliability and ensuring the optimum design of the ABT for loss of offsite power events.

Both cases model conditional probabilities of one DG starting before the other. MCC-5 failure probability is sensitive to variations in these conditional probabilities for the existing $A B T$ transfer design scheme. The MCC-5 failure probability is not sensitive to variations in these conditional probabilities for the proposed design.

3.0 Description of Design Change

A detailed description of the proposed versus the existing design is provided in Appendix D (Reference 3).

The primary features of the proposed design are as follows:
9 C will remain closed upon a loss of offsite power where previously it would open and then reclose (elimination of relay $62-5 B$ and associated control logic). The ABT will then either remain on Bus $1-5$ or transfer to Bus 1-6 depending on which bus becomes energizer available first.

The preferred power solirce selector switch has been

```
SUBJECT Evaluation of Exieting Versus Proposed ABT BY B_K. Rothert DATg 04/08/94
    Transfor Schemes on MCC-5 Reliab111ty
```

BY J.K. Rothert DATE 04/08/94 CHKD. BY P.O. Cietek DATR it /oz. F CALL. NO. $\underline{C 2-517-1073-R E} \mathrm{REV}, \frac{1}{1}$ SHEET NO. \qquad of II
eliminated. Thus, transfers to an available non-preferred power source back to the preferred source, when it becomes available, no longer occur.

Fast transfers have been eliminated which could result in residual voltages remaining on the respective buses which could fail the ABT. All transfers for the proposed design have a 1 second delay for the $62-5 A$ relay and a .75 second delay for the $62-6 A$ relay.

4.0 Modeling and Assumptions

Two fault trees were developed for the purposes of this analysis. Appendix A.1, B.1, and C. 1 contain the fault tree, basic event report and cutset report for the existing $A B T$ respectively. Appendix A.2, B.2, and C. 2 contain the fault tree, basic event report, and cutset report for the proposed ABT scheme, respectively.

The ABT transfer scheme was originally modeled as part of the AC Power Distribution System analysis for CY (Reference 2). This original ABT fault tree logic serves as the basis for the fault trees developed within this analysis for the existing and proposed ABT scheme.

The fault trees within Appendix A contain only those portions of the original fault tree that were affected by the modeling changes for this analysis. This is done to focus on the changes for this analysis. The remainder of the fault tree structure remains unchanged and is represented by transfer gates which preserves the remainder of the logic for the analysis.

For the existing $A B T$ scheme this original fault tree was revised to take into consideration fast transfers from non-preferred to the preferred power supply and the conditional probability that $D G-B$ starts first followed by DG -A.

The conditional probability of $D G-A$ starting before $D G-B$ for the existing ABT design was assumed to be $50 / 50$ given a loss of offsite power event. This assumption was incorporated into the fault tree for the existing $A B T$ scheme to take into consideration the requirement to fast transfer in certain cases.

The conditional probability of DG-A starting before DG-B for the proposed ABT design was assumed to be $50 / 50$ (respectively) given a loss of offsite power event. The basis for this assumption is the limited start time data for the DG (Appendix D.4).

For both cases ABT breaker 9 C is assumed to be the selected breaker to normally supply MCC-5.

For both cases no operator recovery actions were credited for recovery of power to MCC-5.

For both cases certain failure mechanisms for some components were eliminated based upon more information on the physical characteristics of the design which would preclude that type of failure (i.e., certain mechanical contact pair failures, certain relay failure mechanisms, etc.).

Both fault trees assumed an eighteen month refueling cycle with full integrated testing of $A B T 9 C / 11 C$ during the refueling outage. It is understood that $C Y$ will go to a twenty four month refueling outage at some future date.

Based upon recent testing results and the associated failures of the existing ABT to fast transfer (Reference 1), a failure probability of $0.1 /$ demand (basic event AB1BA911) was assumed. This value is assumed to be a conservative representation of the existing $A B T 9 C / 11 C$ components required for the fast transfer and is based upon the failure of the ABT during testing. This was done to expedite the analysis of the effect of the multiple fast transfers associated with a preferred and non-preferred power supply on the MCC-5 failure to supply power probability.

For the proposed $A B T$ scheme and assuming a total loss of offsite power, ABT breaker 9 C will remain closed. Once a DE starts or the DG start:

- if $D G-A$ starts first and energizes Bus $1-5$ before $D G-B$ can energize Bus $1-6$, MCC-5 remains supplied by Bus $1-5$.
- if following a total LOSP, EDG 'B' energizes Bus $1-6$ before EDG ' A ' energizes Bus $1-5$, ABT breaker $9 C$ opens and $A B T$ breaker 11 C closes. If after ABT breaker 11 C closes, EDG ' B ' fails, ABT breaker 11 C must re-open and ABT breaker 9C must close.
- if following a total LOSP, EDG ' B^{\prime} energizes Bus $1-6$ before ED ' A ' energizes Bus $1-5, A B T$ breaker $9 C$ opens and $A B T$ breaker 11 C does not close, then $A B T$ breaker 9 C recloses once EnG ' A ' energizes Bus $1-5$.
- if following a total LOSP, EDG ' B^{\prime} energizes Bus 1-6 before $E D G$ ' A ' energizes Bus $1-5$, and $A B T$ breaker 9 C fails to open
susirgct EValuation of Exiating Versa Proposed ABT BY J. I. Rothert, DAre \qquad $04 / 12 / 94$ H/2/94 CALC. NO. $\mathrm{C} 2-517-1073-\mathrm{RR}$ REV. \qquad SHEET NO. \qquad or \qquad
(remains closed) thus ABT breaker 11 C will not close, then MCC-5 could become energized if EDG ' A^{\prime} successfully energizes Bus 1-5 (Note - this is a failure of ABT breaker 9 C which is credited with success).
- (assuming initial alignment is to Bus 1-6) if following a partial loss of power on Bus $1-6, A B T$ breaker 11 C opens and $A B T$ breaker 9 C does not close then $A B T$ breaker 11 C recloses once EDG ' B ' energizes Bus $1-6$.
(assumes initial alignment is to Bus 1-5) if following a partial loss of power on Bus 1-5, ABT breaker 9 C opens and ABT breaker 11 C does not close then ABT breaker 9 C recloses once EDG ' A ' energizes Bus $1-5$.
- if DG-B starts first and energizes Bus $1-6$ before DG-A can energize Bus $1-5$, ABT breaker 9 C will open and breaker 11C will close to energize $\mathrm{MCC}-5$ and remain in this alignment. The only way to re-transfer back to Bus $1-5$ is if there is a loss of power on Bus $1-6$ and Bus $1-5$ is energized, or if operators took manual control to re-transfer.

The basic event AB1BACCF models the potential failure of 9 C to reclose which results in common mode failure that prevents 11C closure. Thus, both breakers are failed in the open position. A screening beta factor of .1 and a testing interval of refueling was assumed for this basic event. This basic event is conditional on the unique case where Bus $1-6$ loses power 1-2 seconds after Bus $1-5$ on a LOSP and Bus 1-5 becomes energized before Bus $1-6$ (DG-A starts first followed by DG-B). This is represented by the following small event tree which favors proper function of the design and results in the conditional probability of 9 C having to open/reclose 32% (AB1911CP) of the time for the event discussed above.

Assuming a loss of power only on Bus $1-5$, ABT breaker 9 C would open and breaker 11 C would close to energize MCC-5 from Bus 1-6.

Assuming that both 9 C and 11C fail closed and both Buses $1-5$ and $1-6$ are being supplied by the DGs no fault (phase miss-match) would be able to propagate and result in one or both of the DGs tripping. Voltage protection between MCC-5 and the DGs would have to fail. This coupled with both breakers failing closed would be a minimum three order cutset and an extremely low probability occurrence. Thus, this type of an event is not considered credible.

SuBJECT Evaluation of Existing Versus Proposed ABT
Transfer Schemes on MCC-5 Reliability
\qquad DATE 04/08/94 CHRN, BY E.O. Cietek DATT $4 / 12 / 04$ REV. \qquad 1 CALL. NO. $\mathrm{C} 2-517-1073-\mathrm{Rg}$ OF \qquad Or

5.0 References

1. NRC Letter Docket No. 50-213, 'NRC Augmented Inspection Team Regarding Two Loss of Offsite Power Events and the Loss of Motor-Control-Center-5', Aug. 16, 1993.
2. NU Calc. File No. C2-517-587-RE, 'AC Power Distribution System (4160V and 480 V)'.
3. NU Memo PSCY-93-199, 'CY EWR No. 93-MS104 "MCC-5 Automatic Bus Transfer (ABT) Re-Design', Aug. 30, 1993.
4. PDCR No. 1434, Rev. 1 (DRAFT), 'MCC-5 Automatic Bus Transfer Re-Design'.

SUBJECT Evaluation of Existing Veraus Proposed ABT BY \qquad DATE \qquad CHKD. BY F,O, Cietek DATE \qquad 94 Fransfer Schemee on MCC-5 Reliability

CALC. NO.
SHEET NO. \qquad太 $\frac{1}{}$. \qquad or \qquad

Appendix A

A. 1	OLDABT Fault Tree
A. $2 \ldots$	NEWABT Fault Tree

Appendix B

B. 1
OLDABT Basic Event Report
B. 2
NEWABT Basic Event Report

Basic Event and Type Code Data:
NAME RATE U \qquad 0 e
\& ROB
DESC

1 ABIBAOSC	4.00E-4 N
2 AB1BAL1C	4.00E-4 N
3 AB1BA4T5	$4.00 \mathrm{E}-4 \mathrm{~N}$
4 AB1BAB41	$4.00 \mathrm{E}-4 \mathrm{~N}$
5 AB1BA911	4.00E-4 N
6 AB1BA971	$4.00 \mathrm{E}-4 \mathrm{~N}$
7 AB1BA9CO	4.00E-4 N
8 AB1BAM23	4 00E-4 N
9 AB1BAM36	4.vi= - N
10 AB1BAM44	4.00E-4 N
11 AB1BAM47	4.00E-4 N
12 AB1BAM67	4.00E-4 N
13 ABIBAM68	4.00E-4 N
14 AB1BPM85	4.00E-4 N
15 AB1BXM25	4.00E-4 N
16 ABIDA09C	5.00E-7 H
17 AB1DA11C	$5.00 \mathrm{E}-7 \mathrm{H}$
18 AB1DA4T5	$5.00 \mathrm{E}-7 \mathrm{~B}$
19 AB1DAA02	$5.00 \mathrm{E}-7 \mathrm{~B}$
20 AB1DABO2	$5.00 \mathrm{E}-7 \mathrm{H}$
21 AB1DAM13	$5.00 \mathrm{E}-7 \mathrm{H}$
22 ABIDAM66	$5.00 \mathrm{E}-7 \mathrm{H}$
23 AB1DAM76	$5.00 \mathrm{E}-7 \mathrm{H}$
24 AB1DCC56	$5.00 \mathrm{E}-7$ \#
25 AB1DJ102	$5.00 \mathrm{E}-$? B
26 AB1DJ110	5.00E-7 ${ }^{\text {H }}$
27 AB1DJ851	$5.00 \mathrm{E}-7 \mathrm{~B}$
28 ABIDJAOL	5.00E-7 8
29 AB1DJD01	$5.00 \mathrm{E}-7$ H
30 AB1DJ002	$5.00 \mathrm{E}-7 \mathrm{H}$
31 AB1DJD03	$5.00 \mathrm{E}-7$ H
32 AB1DJD04	5.00E-7 ${ }^{\text {H }}$
33 AB1DJD05	5.00E-7 ${ }^{\text {H }}$
34 AB1DJD06	$5.00 \mathrm{E}-7 \mathrm{H}$
35 AB1DF202	$5.00 \mathrm{E}-7 \mathrm{H}$
36 rB:DK210	5.00E. 7 H
3) ABIDK961	5.OOE -7 H
38 ABIDKBO1	5.00E-7 H
39 AB1DKD01	5.00E-7 H
40 AB1DKD02	S.00E-7 H
41 AB 2 DKD 03	5.00E-7 H
42 ABIDKD04	$5.00 \mathrm{E}-7 \mathrm{H}$
43 ABIDKDO5	5.00E-7 H
44 AB1 DKD06	5.00E-7 H
45 ABKAA2T8	$1.58 \mathrm{E}-4 \mathrm{~N}$
46 ABKAA3T9	1.58E-4 N
47 ABKAJ8T2	$1.58 \mathrm{E}-4 \mathrm{~N}$
48 ABKAK9T3	$1.58 \mathrm{E}-4 \mathrm{~N}$
49 ABKDAB50	6.00E-7 H

$6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB} 9 \mathrm{C}$ EAILS TO OPEN
$6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB} 11 \mathrm{C}$ FAILS TO CLOSE
6 N 1 2.40E-03 FAILURE OF TIE BREAKER $4 T 5$ TO CLOSE
6 N $12.40 \mathrm{E}=03 \mathrm{CB} 4011$ EFATIS TO OPEN (EAILURE ASSUMED SAME AS CLOSE)
1.0E-1
$6 \mathrm{~N} 1-2.00 \mathrm{E}-01 \mathrm{9C}$ FAILS TO CLOSE AETER
IC OPENS, DG A STARTS AFTER DG B
$6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB} 4971$ EATLS TO OPEN
$6 \mathrm{~N} 12^{2} .40 \mathrm{E}-03 \mathrm{CB} 9 \mathrm{C}$ FAILS TO CLOSE
E N 1 2.4OE-03 CA 2 C RETWEEN MCC $2-4$, MCC $3-4$ AND 3US $1-4$ FAIIS TO OREN
$6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB} 17 \mathrm{C}$ BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN
$6 \mathrm{~N} 1 \quad 2.40 \mathrm{E}-03 \mathrm{CB} 4 \mathrm{C}$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN
6 N $12.40 E-03 \mathrm{CB} 16 \mathrm{C}$ BETWEEN MCC $4-7 \mathrm{MCC}, 7-7$ AND BUS $1-7$ EAILS TO OPEN
$5 \mathrm{~N}+2,40 \mathrm{E}-03 \mathrm{CB} 14 \mathrm{C}$ BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAIIS TO OPEN
6 N $1240 \mathrm{E}-03 \mathrm{CB} 12 \mathrm{D}$ BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO OPEN
6 N 1 2. $2.40 \mathrm{E}-03 \mathrm{CE}$ CD BETWEEN MCC $8-5$ AND BUS $1-5$ EAILS TO OPEN
$\begin{array}{lllll}6 & \text { N } 1 & 2.40 E-03 \mathrm{CE} \\ 6 \mathrm{~N} & 1 & 2.40 \mathrm{E}-03 \mathrm{CB} & 6 \mathrm{C} \text { BETWEEN MCC } 8-5 \text { AND BUS } 1-5 \text { EAILS TO OPEN } \\ 6 & \text { BCC } 2-5 \text {, MCC } 1-5 \text { AND BUS } 1-5 \text { FAILS TO OPEN }\end{array}$

1 D 1 1.20E-05 CB 9 C FTRC THAT PREVENTS 11 C CLOSURE (LOW EROB. CATATTROPHICEVENT)
1 D $1 \quad 1.20 \mathrm{E}-05 \mathrm{CB} 11 \mathrm{C}$ FAILS TO REMAIN CLOSED
1 D $11.20 \mathrm{E}-05$ FAILURE OF TIE BREAKER $4 T 5$ TO REMAIN CLOSED
1 D $1.205-05$ MCC 5 BREAKER 2 EFL FAILS TO REMAIN CLOSED
1 D $11.20 \mathrm{E}-05 \mathrm{MCC} 5$ gREAKER 8 RFL FAILS TO REMAIN CLOSED
1 D $11.20 E-05$ BREAKER BETKEEN MCC $13-4$ AND BUS $1-4$ FAILS TO REMAIN CLOSED
(UV OR LOSP) FAST TRANSEER (UV OR LOSP)

IFR SAME AS C (ER SAME AS C (FR SAME AS C (FR SAME AS C IFR SAME AS C (FR SAME AS C

1 D $1,20 E-05$ BREAKER BETTEEN MCC $13-4$ ANO BUS $1-6$ FAILS TO REMAIN CLOSED
1 I $1-20 E-05$ COMMON BREAKER BETWEEN MCC $6-6$, MCC 7-6 AND BUS 1-6 FAILS TO REMAIN CLOSE
0.1 D 1 1.20E-06 CCF OF CB'S 4851 AND 4961 TO REMAIN CLOSED
(SCREENTNG FA
$\begin{array}{llllll}.1 & \text { D } & 1.20 E-06 & \text { CCE OF CB'S } 4851 \text { AND } 4961 \text { TO REMAIN CLOSED } \\ 1 & M & 1.80 E-04 & \text { LIGHTING PANEL LP-DI CKT. } 22 \text { FAILS TO REMAIN CLOSED }\end{array}$
1 M 2 1.80E-04 LIGHTING PANEL LP - DI CKT. \#10 EAILS TO REMAIN CLOSED
1 D 1 1.20E-05 FAILURE OE BREAKER 4851 TO REMAIN CLOSED
1 M $21.80 E-04 \mathrm{AC}$ DIST. CABINET EMERG. GEN. 2A CKT. 3 EAILS TO REMATN CLOSED
1 M $21.80 \mathrm{E}-04 \mathrm{CB}$ I EG FIELD FLASR FAILS TO REMAIN CLOSED
1 M $21.80 E-04 \mathrm{CB} 2$ GOVERNOR CONTROL FATLS TO REMAIN CLOSED
1 M 2 1.8OE-O4 CB 3 ALTERNATE FAILS TO REMAIN CLOSED
$1 \mathrm{M} 2 \mathrm{COE}-04 \mathrm{CB} 4$ DIESEL STARTER 2AI FAILS TO REMAIN CIOSEI
$\begin{array}{lllll}1 & M 2 & 1.80 \mathrm{E}-04 & \mathrm{CB} & 4 \\ \text { DIESEL STARTER } 2 A 1 \text { FAILS TO REMA } \\ 1 \mathrm{D} & 1.20 \mathrm{E}-05 \mathrm{CB} & 5 & \text { BUS } 8 \text { UV FAILS TO REMAIN CLOSED }\end{array}$
$1 \mathrm{M} 21.80 \mathrm{E}-04 \mathrm{CB} 6$ DIESEL STARTER 2A2 EAILS TO REMAIN CLOSED
1 D 1 1.20E-05 LIGHTING PANEL LP-D2 CKT. \#2 FAILS TO REMAIN CLOSED
1 D 1 1.20E-05 LIGHTING PANEL LP-D2 CKI. \#10 FAILS TO REMATN CLOSED
1 D $1.20 E-05$ FAILURE OF BREAKER 4961 TO REMAIN CLOSED
$1 \mathrm{M} 21.80 \mathrm{E}-04 \mathrm{AC}$ DIST. CABINET EMERG. GEN. 2 B CKT. 3 FAILS TO REMAIN CLOSED
$1 \mathrm{M} 21.80 E-04 \mathrm{CB} 1$ EG EIELD FLASH EAILS TO REMATN CLOSED
M 2 COE -04 CB 2 COVERNOR CONTROL FATTS TO RFMATN CIOSED
1 M 1 M $1.80 \mathrm{E}-04 \mathrm{CB} 3$ ALTERNATE EAILS TO REMAIN CLOSED
$\begin{array}{lllll}1 \mathrm{M} 2 & 1.80 E-04 & \mathrm{CB} & 3 & \text { ALTERNATE FAILS TC REMAIN CLOSED } \\ 1 \mathrm{M} 2 & 1.80 \mathrm{E}-04 \mathrm{CB} & 4 \\ \text { DIESEL STARTER } 2 \mathrm{~B} 1 \text { FAILS TO REMAIN CLOSED }\end{array}$
1 M $21.80 E-04 \mathrm{CB} 4$ DIESEL STARTER 2 Bl FAILS TO REMA
1 D $1 \quad 1.20 E-05 \mathrm{CB} 5$ BUS 9 UV FAILS TO REMAIN CLOSED
I M $21.80 E-O A C E$ DTESEI STARTER 2B2 FAILS TO REMATN CLOSED
$6 \mathrm{~N} 19.48 \mathrm{E}-04$ BREAKER $2 T 8$ FAILS TO OPEN
6 N 1 9.48E-04 BREAKER 3 T9 FAILS TO OPEN
6 N $19.48 \mathrm{E}-04$ BREAKER $8 T 2$ EAILS TO OPEN
\% * $9.48 \mathrm{E}-04$ BREARER $9 T 3$ FAILS TO ORTN
1 D. $1.44 \mathrm{E}-05$ FAILURE OF BREAKER 4850 TO REMAIN CLOSED

Basic Event and Type Code Data：
NAME
RATE
U FACTOR U C

PROB
DESC

50	ABKDA960	$6.00 \mathrm{E}-7$ \＃
51	ABKDCC55	6．00E－7
52	ABSTJA02	3．83E－6 \＃
53	ABSTJA03	3．83E－6 H
54	ABSTKBO2	3．83E－6 H
55	ABSTRB03	3，83E－6 H
56	ABSVAB04	4． $80 \mathrm{E}-8 \mathrm{H}$
57	ABSVAB05	4． $80 \mathrm{E}-8 \mathrm{H}$
58	ABSVAB06	4． $80 \mathrm{E}-8 \mathrm{~B}$
59	ABSVAM05	4． $80 \mathrm{E}-8 \mathrm{H}$
60	ABSVAM13	4．80E－8 H
61	ABSVAM66	4．80E－8 H
62	ABSVCC56	4．80E－8 ${ }^{\text {a }}$
63	ABSVCCB9	4．80E－8 H
64	ABSYJB08	4．80E－8
65	ABSVKB09	4．80E－8 E
66	ACPA145T	1．35E－4 N
67	ACPAJAO1	$1.35 \mathrm{E}-4 \mathrm{~N}$
68	ACPAK5A2	1．35E－4 N
03	ACEAK5A3	$1.35 \mathrm{E}-4 \mathrm{~N}$
70	ACPAK5B4	1． $35 \mathrm{E}-4 \mathrm{~N}$
11	ACPAKB01	$1.35 \mathrm{E}-4 \mathrm{~N}$
72	ACPAX401	$1.35 \mathrm{E}-4 \mathrm{~N}$
73	ACPAX501	1．35E－4 N
74	ACPAX601	$1.35 \mathrm{E}-4 \mathrm{~N}$
75	ACPAX701	$1.35 \mathrm{E}-4 \mathrm{~N}$
76	ACPAXA02	$1.35 \mathrm{E}-4 \mathrm{~N}$
77	ACPAXB02	$1.35 \mathrm{E}-4 \mathrm{~N}$
78	ACPBI83C	$1.35 \mathrm{E}-4 \mathrm{~N}$
19	ACPBI93C	1．35E－4 N
80	ACPBIA13	$1.358-4 \mathrm{~N}$
81	ACPBIA14	$1.35 \mathrm{E}-4 \mathrm{~N}$
82	ACPBIA15	1．35E－4 N
83	ACPBIA15	$1.35 \mathrm{E}-4 \mathrm{~N}$
84	ACPBIA17	$1.35 \mathrm{E}-4 \mathrm{~N}$
85	ACPBIA18	$1.35 \mathrm{E}-4 \mathrm{~N}$
86	ACPBIA19	1．35E－4 N
87	ACPBIA20	$1.35 \mathrm{E}-4 \mathrm{~N}$
88	ACPBIA21	$1.35 \mathrm{E}-4 \mathrm{~N}$
89	ACPBTA22	1．35E－4 N
90	ACPBIA23	1．35E－4 N
91	ACPBIA24	1．35E－4 N
92	ACPBIA25	1．35E－4 N
93	ACPBIB13	$1.35 \mathrm{E}-4 \mathrm{~N}$
94	AC？BIB14	1．35E－4 N
95	ACPBIB15	1．35E－4 N
96	ACPBTB16	1．35E－4 N
97	ACPB1B17	$1.35 \mathrm{E}-4 \mathrm{~N}$
98	ACPB1B18	$1.35 \mathrm{E}-4 \mathrm{~N}$

51 ABKDCC5 5
52 ABSTJA02
53 ABSTJA03
54 ABSTKBO2
56 ABSVABO4
57 ABSVABO5
58 ABSVABO6
60 ABSVAM1
61 ABSVAM66
62 ABSVCC5 6
63 ABSVCCB9
64 ABSYJBO8
66 ACPAI45
67 ACPAJAO1
68 ACPAK5A2
70 ACPAK5B4
11 ACPAKB01
72 ACPAX401
73 ACPAX501
75 ACPAX701
76 ACPAXA02
77 ACPAXBO2
79 ACPBT 930 80 ACPBIA13 81 ACPBIA14 82 ACPBIA15 83 ACPBIA15 85 ACPBIA1 86 ACPBIA19 88 ACPBIAZ 89 ACPBTA22 90 ACPBIA23 91 ACPBIA24 92 ACPBIA25 93 ACPB1B13 95 ACPBIB15

96 ACPBIB16
98 ACPBTB18
$6.00 \mathrm{E}-7$ म 6．00E－7 H $3.83 E-6$ \＃ $3.83 \mathrm{E}-6$ H $3.83 \mathrm{E}-6$ 日 $4.80 \mathrm{E}-8$ H 4． $80 \mathrm{E}-8$ 日
．80E－8 H
4． $80 \mathrm{E}-8$ H
$4.80 \mathrm{E}-8$ 相
4．80E－8 H
．80E－8
1． $35 \mathrm{E}-4 \mathrm{~N}$
． $35 \mathrm{E}-4 \mathrm{~N}$
1．35E－4 N
1．35E－4 N
1．35E－4 N
1． $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
．35E－4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
1．35E－4 N
．35E－4 N
1．358－4 N
1．35E－4 N
1．35E－4 N
．35E－4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
． $35 \mathrm{E}-4 \mathrm{~N}$
．35E－4 N
1．35E－4 N
1．35E－4 N
1． $35 \mathrm{E}-4 \mathrm{~N}$
1．35E－4
． $35 \mathrm{E}-4 \mathrm{~N}$
1．35E－4 N
$35 \mathrm{E}-4 \mathrm{~N}$

1 D 1 1．44E－05 FAILURE OF BREAKER 4960 TO REMAIN CLOSED
0.1 D 1 1．44E－06 CCF OF CB＇S 4850 AND 4960 TO REMAIN CLOSED

1 D 1 9．19E－05 FAULT ON LIGHTING PANEL LP－D
1 D $19.19 \mathrm{E}-05$ FAULT ON AC DIST CABINET EMERG．GEN．2A
1 D 1 9．19E－05 FAULT ON LIGHTING PANEL LE－D2
1 D $19.19 \mathrm{E}-05$ FAULT ON AC DIST CABINET EMERG．GEN． 2 B
1 D $11.15 \mathrm{E}-06$ BUS $1-4$ ，BUS FAULT
1 D $1 \quad 1.158-06$ BUS $1-5$ ，BUS FAULT
1 D $1.15 \mathrm{E}-06$ BUS $1-6$ ，BUS FAULT
1 D $1.15 \mathrm{E}-06 \mathrm{MCC}-5$ ，BUS FAULT
1 D $11.25 \mathrm{E}-06$ MCC $13-4$ ，BUS FAUL？
1 D 1 1．15E－06 MCC 6－6，BUS FAULT
0.1 D $11.15 \mathrm{E}-07 \mathrm{CCF}$ OF BUSES $1-5$ AND $1-6$
0.1 D 1 1．15E－07 CCF OF BUSES 8 AND 9

1 D $1.15 \mathrm{E}-06$ BUS 8，BUS FAULT
1 D 1 1．15E－06 BUS 9，BUS FAULT
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR $1 / \mathrm{BT} 4-5$ A11－B11 FAILS TO OPEN
1 N 1 1．35E－04 CONTACT PAIR 52MOC／EG2A M3－M10 EAILS TO OREN
1 N $1.1 .35 \mathrm{E}-04$ CONTACT PAIR $62-5$ A $2-6$ FAILS TO OPEN
6 N 1 8， $1 \rho E-04$ CONTACT PAIR $62-5 A \quad 3-5$ FAILS TO OPEN

I N 1 1．35E－04 CONTACT PAIR 52MOC／EC2B M9－M10 FAILS TO OPEN
6 N 1 8． $10 \mathrm{~F}-04$ CONTACT PAIR 27－4 $2-10$ FAILS TO OPEN
$6 \mathrm{~N} 18.10 \mathrm{E}-04$ CONTACT PAIR $27-5 \quad 2-10$ FAILS TO OPEN
$6 \mathrm{~N} 18.10 \mathrm{E}-04$ CONTACT PAIR 27－6 $2-10$ EAILS TO OPEN
$6 \mathrm{~N}, 8,10 E-04$ CONTACT PAIR 27－7 2－10 FAILS TO OPEN
6 N $18.10 \mathrm{E}-04$ 4OV CONTACT PAIR EAILS TO OPEN（EOLLOWING FIELD ELASH）
1 N $11.35 \mathrm{E}-0440 \mathrm{~V}$ CONTACT PAIR FAILS TO OPEN（FOLLOWING FIELD FLASH）
$6 \mathrm{~N} 18.10 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{Y} / 1-8$ 3－3C FAIL TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR 27Y／1－9 3－3C FAIL TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR 27Y／1－8 6－6C FAILS TO CLOSE
$6 \mathrm{~N} 18.10 \mathrm{E}-04$ CONTACT PAIR 59A／1－8 $1-10$ FAILS TO CLOSE
68 N $19.18 \mathrm{E}-03$ CONTACT PAIR 59B／1－8 1－10 FAILS TO CLOSE
68 N 1 9．18E－03 CONTACT PAIR 1－EG2AA A1－B1 FAILS TO CLOSE
$68 \mathrm{~N} 1 \quad 9.18 \mathrm{E}-0325 \mathrm{CVE} 1 \mathrm{VI}$ BUS CONTACT PAIR FAILS TO CLOSE
68 N I $9.18 \mathrm{E}-03$ CONTACT PAIR 25 －EG2AA AS－B5 EAILS TO CLOSE
$68 \mathrm{~N} 19.18 \mathrm{E}-0325$ CVE 1 V1 LINE CONTACT PAIR FAILS TO CLOSE
68 N $19.18 \mathrm{E}-03$ CONTACT PAIR FSR1 J－K FAILS TO CLOSE
1 N 1 1．35E－04 CONTACT PAIR FSR2 J－K FAILS TO CLOSE
68 N 1 9．18E－03 CONTACT PAIR VSR1 E－F FAILS TO CLOSE
$68 \mathrm{~N} 1 \quad 7.18 \mathrm{E}-03$ CONTACT PAIR SSP1 $18-19$ FAILS TO CLOSE
1 N $11.35 E-04$ CONTACT PAIR VSR2 E－F FAILS TO CLOSE
1 N $1.35 E-04$ CONTACT PAIR SSP2 18－19 FAILS TO CLOSE
1 N $11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{Y} / 1-9$ 6－6C FAILS TO CLOSE
1 N 1 1．35E－04 CONTACT PAIR 59A／1－9 1－10 FAILS TO CLOSE
6 N 1 8．10E－04 CONTACT PAIR 59B／1－9 1 －10 EAILS TO CLOSE
6 N $18.10 E-04$ CONTACT PAIR 1－EC2BA A1－B1 FAILS TO CLOSE
$6 \mathrm{~N} 188.10 \mathrm{E}-0425$ CVE 1 V1 BUS CONTACT PAIR PAILS TO CLOS9
6 N 1 8．10E－04 CONTACT PAIR 25－EG2EA A5－B5 FAILS TO CLOSE
（SCREENING FA

Basic Event and Iype Code Data:
NAME
RATE
(J) FACTOR

0 C
PROB
DESC

99 ACPBIB19 100 ACPBIB22
101 ACPBIB23
102 ACPBIB24
103 ACPBIB25
104 ACPBIY85
105 ACPBJAO2
106 ACPBJA03
107 ACPBJA04
107 ACPBJAO 108 ACPBJAC5
108 ACPBJACS
109 ACPBJAC6
110 ACPBJA07
110 ACPBJA07
111 ACPBJAOB
112 ACPBJA09
113 ACPBJA10
114 ACPBJA11
114 ACPBJA11
15 ACPBJA12
16 ACPBK5A2
117 ACPBKSB
118 ACPBK901
119 ACPBKBO2
120 ACPAKB03
121 ACPBKBO4
122 ACPBKBO5
123 ACPBKB06
124 ACPBKBO7
125 ACPBKBO8
125 ACPBKBOB
126 ACPBKBO9
127 ACPBKB10
128 ACPBKB11
129 ACFBKB12
130 ACPBX42C
131 ACPBX47C
132 ACPBX513
133 ACPBX52C
134 ACPBX613
135 ACPBX65C
136 ACPBX72C
137 ACPBX74C
138 ACPBX801
139 ACPBX802
140 ACPBX901
141 ACPBX902
142 ACPBXX441
143 ACPBXX51
144 ACPBXX61
145 ACPBXX73
146 ACPCA625
147 ACPCA851

1. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$ $1.35 \mathrm{E}-4 \mathrm{~N}$ 1.35 3.4 N 1. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
2. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{~B}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
3. $355 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
4. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
5. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 E-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
6. $35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
1.35E-4 N
1.35E-4 N
1.35E-4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 E-4$ N
. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
7. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
8. $35 \mathrm{E}-4 \mathrm{~N}$
9. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$2.66 \mathrm{E}-8$
$2.66 \mathrm{E}-8$
$6 \mathbb{N} 18.10 E-0425$ CVE 1 V1 LINE CONTACT PAIR FAILS TO CLOSE
6 N $18.10 E-04$ CONTACT PAIR VSRI E-E FAIIS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR SSP1 18-19 FAILS TO CTOSE
1 N 1 1.35E-04 CONTACT PATR VSR2 E-F FAILS TO CLOSE
1 N 11 1.35E-C4 CONTACT PAIR SSP2 18-19 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27Y/1-8 5-5C EAIL TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 Y / 1-8$ 1-1C FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \times / 1-8 \quad 2-5$ FAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-04$ CONTACT PAIR 27AX/1-8 $1-2$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27A/1-8 2-10 EAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-04$ CONMACT PAIR $27 \mathrm{BX} / 1-8$ 3-4 FAIIS TO CLOSE
1 N I $1.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{~B} / 1-8 \quad 2-10$ FAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{CX} / 1-81-2$ FAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-04$ CONTACT PAIR $1.37 \mathrm{CX} / 1-8$ 1-2 FAILS PAIR $27 \mathrm{C} / 1-8$ 2-10 FAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{AX} / 1-8$ 3-4 FAILS TO CLOSE
1 N $11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{BX} / 1-81-2$ FAIIS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{CX} / 1-8$ 3-4 FAILS TO CLOSE
6 N 1 B. 10E-04 CONTACT PATR 62-6A 2-6 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 62-5B 4-6 FAILS TO CLOSE
6 if 1 8.10E-04 BREAKER GC CP $15-15$ FATLS TO CLOSE UPON BREAKER TRIP
6 N 1 8.10E-04 BREAKER 9C CP $1.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{Y} / 1-91-1 \mathrm{C}$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{X} / 1-92-5$ FAILS TO CLOSE
1 N $11.35 \mathrm{E}-04$ CONTACT PAIR 27AX/1-9 1-2 EAILS TO CLOSE
IN 1 1.35E-04 CONTACT PAIR 27A/1-9 $2-10$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{BX} / 1-9$ 3-4 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27B/1-9 2-10 FAILS TO CLOSE
1 N $11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{CX} / 1-9 \quad 1-2$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27C/1-9 <-10 FATLS TO CLOSE
I N 1.35 -04 CONTACT PAIR 27AX/1-9 3-4 FAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{BX} / 1-9$ 1-2 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{CX} / 1-9$ 3-4 FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR 27Y-4 2-2C FAILS TO CLOSE

6 N 1 8.10E-04 CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{Y}-5$ 2-2C EAILS TO CLOSE
6 N I 8.10E-04 CONTACT FAIR 27X-6 9-13 EAILS TO CLOSE
5 N 1 8.10E-04 CONTACT PAIR 27Y-6 5-5C FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 Y-7$ 2-2C FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAID 27Y-7 4-4C EAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR 27Y2/1-8 1-7 FAIL TO CLOSE
6 N 18 8.10E-04 CONTACT PAIR $27 Y 2 / 1-8$ 3-6 FAIL TO CLOSE
$6 \mathrm{~N} 1 \quad 8.10 \mathrm{E}-04$ CONTACT PAIR $27 Y 2 / 1-91,7$ FAIL TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 Y 2 / 1-9$ 3.6 FALL TO CLOSE
6 N 1 8.1OE-04 CONTACT PAIR $27 \mathrm{X}-4$ 9-13 FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FATLS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR 27X-7 9-13 EAILS TO CLOSE
1 D $1-38 \mathrm{E}-07$ CONTACT PAIR $62-5$ A $2-6$ EAILS TO REMAIN OPEN
$1023.19 E-07$ CONTACT PAIR $1 / S S 5$ A11-B11 FAILS TO REMAIN OPEN

Basic Event and Type Code Data:
NAME
RATF:
0
FACTOR
0 C
PROB
DESC

148	ACPCI 45 V	2.66E-8
149	ACPCI850	2. $66 \mathrm{E}-8$ H
150	ACPCI 960	2. $66 \mathrm{E}-8$ \#
151	ACPCI961	$2.66 \mathrm{E}-8 \mathrm{H}$
152	ACPCK43S	2. $66 \mathrm{E}-8 \mathrm{E}$
153	ACPCK6A2	2. $66 \mathrm{E}-8 \mathrm{H}$
154	ACPCX161	2. $66 \mathrm{E}-8$ H
155	ACPCX601	2. $66 \mathrm{E}-8 \mathrm{~B}$
156	ACPCXL91	2. $66 \mathrm{E}-8$ \#
157	ACPCXY61	2. $66 \mathrm{E}-8 \mathrm{~B}$
158	ACPDIA05	$1.25 \mathrm{E}-7 \mathrm{H}$
159	ACPDIA06	1.25E-7 H
160	ACPDIA07	1.25E-7 H
161	ACPDIB05	$1.25 \mathrm{E}-7 \mathrm{H}$
162	ACPDIB06	$1.25 \mathrm{E}-7 \mathrm{E}$
163	ACPDIB07	1.25E-7 ${ }^{\text {E }}$
162	ACPDJA02	1.25E-7 H
165	ACPDJA03	1.25E-7 H
166	ACPDJA04	$1.25 \mathrm{E}-7$ H
167	ACPDK11C	$1.25 \mathrm{E}-7 \mathrm{~B}$
168	ACPDK6A4	1.25E-7 H
169	ACPDKBO2	$1.25 \mathrm{E}-7 \mathrm{H}$
170	ACPDKB03	$1.25 \mathrm{E}-7 \mathrm{H}$
171	ACPDKB04	1.25E-7 ${ }^{\text {E }}$
172	ACVAJ64A	$2.00 \mathrm{E}-4 \mathrm{~N}$
173	ACVAK64B	$2.00 \mathrm{E}-4 \mathrm{~N}$
174	ADGACPSE	
175	ADGBCPSE	
176	ADGCCOOL	
177	ADGECCAB	2.80E-3 N
178	ADGEJ02A	2.80E-3 N
179	ADGEK02B	2.80E-3 N
180	ADGFCCAB	$1.10 \mathrm{E}-3 \mathrm{H}$
181	ADGFJ02A	$1.10 \mathrm{E}-3 \mathrm{\#}$
182	ADGEK02B	$1.10 \mathrm{E}-3 \mathrm{H}$
183	ADGPZA01	
184	ADGQJ02A	$1.00 \mathrm{E}-2 \mathrm{~N}$
185	ADGQKC2B	1.00E-2 N
186	AFNECCRA	$6.00 \mathrm{E}-4 \mathrm{~N}$
187	AFNEJ64A	$6.00 \mathrm{E}-4 \mathrm{~N}$
188	AFNEK64B	$6.00 \mathrm{E}-4 \mathrm{~N}$
189	AENEA41A	1.00E-5 F
190	AFNEA61A	1.00E-5 \%
191	AFNFCCRA	1.00E-5 H
192	AFNFJ64	1.008-5 日
193	AFNFK64B	1.00E-5 R
194	AMVAJ64A	4.00E-3 N
195	AMVAK64B	$4.00 \mathrm{E}-3 \mathrm{~N}$
196	AMVQJ64A	$9.04 \mathrm{E}-4 \mathrm{~N}$

Basic Event and Type Code Data:
NAME
RATE
U EACTOR U C PROB

197 AMVQR64B
198 ARCHJ15A
-99 ARCHUAO3
200 ARCHJAO4
201 ARCHJA05
202 ARCHJAD 6
203 ARCHJAOB
204 ARCHJAIO
205 ARCHJA21
205 ARCHKO8A
207 ARCHKB03
208 ARCHKBO4
209 ARCHKBO5
210 ARCHKB06
211 ARCHKBOB
212 ARCAKB1O
213 ARCHKB21
214 ARCHXTY4
215 ARCHX7Y5
216 ARCHX7Y6
216 ARCHXTY
217 ARCHXIY
218 ARCHXA12
220 ARCHXAl
221 ARCHXA16
222 ARCHXA17
223 ARCHXA18
224 ARCHXA19
225 ARCHXA20
226 ARCHXA23
227 ARCHXA24
228 ARCHXB12
229 ARCHXB13
230 ARCHXB14
231 ARCHXB16
232 ARCHXBI7
233 ARCHXE18
234 ARCHXB19
235 ARCHXB20
236 ARCJJ15A
237 ARCJJ15B
238 ARCJKCBA
239 ARCJX276
240 ARCMJI5A
241 ARCMJAOI
242 ARCMK155
243 ARCMKBO1
244 ARCMX274
245 ARCMX2 15
$9.04 E-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$.00 E-5$
N
. $00 \mathrm{E}^{-4} \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
. $00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
. $00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
1.00E-4 NT
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
.OOE-4 N
. $00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$

1. $00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
6.00E-7 H
$6.00 \mathrm{E}-7 \mathrm{H}$
$6.00 \mathrm{E}-7 \mathrm{H}$
$6.00 \mathrm{E}-7 \mathrm{H}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
1.00E-4 N

1 N $19.04 \mathrm{E}-04$ MOTOR ORERATED INTAKE DAMPER OOS FOR MAINT.
6 N 1 6.00E-04 RELAY 62-5A FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $4 / E G 2 A$ EAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{Y} / 1-9$ FAILS TO ENERGIZE
$6 \mathrm{~N} 16.00 \mathrm{E}-04$ RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
6 N 5.00E-04 RELAY 27AX/1-8 FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{BX} / 1-8$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{CX} / 1-8$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 Y 2 / 1-8$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY 62-6A FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY 4/EG2B FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY 27Y/1-9 FATLS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
6 N 1 6.00F-04 RETAY 27 AX/ $11-9$ FAILS TO ENERGTZF
6 N 1 6.00E-04 RELAY 27AX/1-9 FAILS 0 ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{BX} / 1-9$ FAILS 30 ENERGIZE
$\begin{array}{lll}6 \\ \mathrm{~N} \\ 6 & 6.00 E-04 & \text { RELAY } 27 \mathrm{CX} / 1-9 \text { FAILS TO ENERGIZE } \\ 6 & 6.00 \mathrm{E}-04 & \text { RELAY } 27 Y 2 / 1-9 \text { FAILS TO ENERGIZE }\end{array}$
$\begin{array}{llll}6 \mathrm{~N} 1 & 6.00 \mathrm{E}-04 & \text { RELAY } 27 Y 2 / 1-9 \text { FAILS TO ENERGI } \\ 6 \mathrm{~N} 1 & 6.00 \mathrm{E}-04 & \text { RELAY } 27 Y-4 \text { FAILS TO ENERGIZE }\end{array}$
6 N 1 6.00E-04 RELAY $27 Y-5$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{Y}-6$ FAILS TO ENERGIZE
6 N 1 5.00E-04 RELAY $27 \mathrm{Y}-7$ FAILS TO ENERGIZE
I N 1 1. OOE-04 RELAY 40 V EAILS TO ENERGIZE (FOLLOWING FIELD FLASH)
$1 \mathrm{~N} 11.00 \mathrm{E}-04$ RELAY 59A/1-8 FAILS TO ENEKGIZE
$68 \mathrm{~N} 1 \mathrm{CBOE}-03$ RETAY 59B/1-9 FATIS TO ENFRGITE
$68 \mathrm{~N} 1 \quad 6.80 \mathrm{E}-0325 \mathrm{CVE} 1$ V1 LINE RELAY FAILS TO ENERGIZE
68 N 1 6.80E-03 RELAY VSR1 FAILS TO ENERGIZE

68 N 1	$6.80 E-03$
68 N 1	R.8LAY VSR 1 FAILS TO ENERGIZE
1	

1 N $11.00 E-04$ RELAY VSR2 FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY SSP2 VS FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY ESR1 FAILS TO ENERGIZE (EDG-2A)
1 N 1 1.00E-04 RELAY FSR2 EAILS TO ENERGIZE (EDG-2A)
$1 \mathrm{~N} 1 \quad 1.00 \mathrm{E}-04$ RELAY 40 V FAILS TO ENERGIZE (FOLLOWING IIELD FLASH)
1 N 1 1.00E-04 RELAY 59A/1-9 FAILS TO ENERGIZE
68 N 1 6.80E-03 RELAY $59 \mathrm{~B} / 1-9$ FAILS TO ENERGI2E
$68 \mathrm{~N} 1 \quad 6.80 \mathrm{E}-0325$ CVE 1 VI LINE RELAY EAIUS TO ENERGIZE
$68 \mathrm{~N} 1 \quad 6.80 \mathrm{E}-03$ RELAY VSR1 FAILS TO ENERGIZE
68 N 1 6.80E-03 RELAY SSP1 VS FAILS TO ENERGIZE
$1 \mathrm{~N} 11.00 \mathrm{E}-04$ REIAY VSR2 FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY SSP2 VS FAILS TO ENERGIZF
1 D 1 1.44E-05 RELAY 62-5A FAILS TO REMAIN ENERGIZED
$101 \quad 1.44 \mathrm{E}-05$ RELAY 62-5B EAILS TO REMAIN ENERGIZED
1 D $1.44 \mathrm{E}-05$ RELAY 62-6A EAILS TO REMAIN ENERGIZED
1 D 1 1.44E-05 RELAY $27-6$ FAILS TO REMAIN ENERGIZED
6 N 2 6.00E-04 RELAY 62-5A FAILS TO DEENERGI2E
6 N 1 6.00E-04 REIAY 27Y1/1-8 FAILS TO DEENERCIZE
6 N 1 6.00E-O4 RELAY 62-5B FAILS TO DEENERGIZE
6 N 1 6.00E-04 REIAY $27 \mathrm{~V} 1 / 1-9$ FAIIS TO DEENERGIZE
6 N 1 6.00E-04 RELAY 27-4 FAILS TO DE-ENERGIZE
6 N 1 6.00E-04 RELAY 27-5 FAILS TO DE-ENERGI2E

Basic Event and Type Code Data:
NAME
RATE \qquad (0) FACTOR

FACTOR C PROB
pros
DESC

246	ARCM $\times 276$	$1.00 \mathrm{E}-4 \mathrm{~N}$
247	ARCMX277	1.00E-4 N
248	ARCMX ${ }^{\text {P4 }}$	$1.00 \mathrm{E}-4 \mathrm{~N}$
249	ARCMX ${ }^{\text {P }} \times 5$	1.00E-4 ${ }^{\text {N }}$
$25 \sim$	ARCMX 7×6	1.00E-4 N
251	ARCMX 7×7	$1.00 \mathrm{E}-4 \mathrm{~N}$
252	ARCMXA07	1.00E-4 N
253	ARCMXA09	$1.00 \mathrm{E}-4 \mathrm{~N}$
254	ARCMXA11	$1.00 \mathrm{E}-4 \mathrm{~N}$
255	ARCMXA1S	1.00E-4 N
256	ARCMXB07	$1.00 \mathrm{E}-4 \mathrm{~N}$
257	ARCMXB09	$1.00 \mathrm{E}-4 \mathrm{~N}$
258	ARCMXB11	1.00E-4 N
259	ARCMXB15	1.00E-4 N
260	ASWGJA01	$2.66 \mathrm{E}-5 \mathrm{~N}$
261	ASWGJA02	$2.66 \mathrm{E}-5 \mathrm{~N}$
262	ASWGJAl1	2.66E-5 N
263	ASWGJA12	2.66E-5 N
264	ASWGKB01	2. $66 \mathrm{E}-5 \mathrm{~N}$
265	ASWGKB02	2. $66 \mathrm{E}-5 \mathrm{~N}$
266	ASWGKB11	2.66E-5 N
267	ASWGKB12	2. $66 \mathrm{E}-5 \mathrm{~N}$
268	AT1QJA01	2.20E-6 N
269	AT1QKB01	$2.20 \mathrm{E}-6 \mathrm{~N}$
270	AT1TJA01	3. OOE - ? H
271	ATITKB01	8.00E-7 H
272	ATRQJ485	$2.21 \mathrm{E}-4 \mathrm{~N}$
273	ATRQK496	2.21E-4 N
274	ATRTCC56	7.00E-7 H
275	ATRTJ485	7.00E- ${ }^{\text {H }}$
276	ATRTK496	$7.00 \mathrm{E}-7 \mathrm{H}$
277	DB1DA016	$5.00 \mathrm{E}-\mathrm{T} \mathrm{H}$
278	DB1DA018	$5.00 \mathrm{E}-7 \mathrm{H}$
279	DB1DA022	$5.00 \mathrm{E}-7 \mathrm{~F}$
280	DB1DAA07	$5.00 \mathrm{E}-7 \mathrm{H}$
281	DBIDAA14	$5.00 \mathrm{E}-7 \mathrm{H}$
282	DB1DAA15	$5.00 \mathrm{E}-7 \mathrm{H}$
283	DB1DAA17	$5.00 \mathrm{E}-7 \mathrm{H}$
284	DB1DAA19	$5.00 \mathrm{E}-7 \mathrm{H}$
285	DB1DAB08	$5.00 \mathrm{E}-7 \mathrm{E}$
286	DB1DAB12	$5.00 \mathrm{E}-7 \mathrm{H}$
287	OB1DAB13	$5.00 \mathrm{E}-7 \mathrm{H}$
288	DB1DAB14	$5.00 \mathrm{E}-7 \mathrm{H}$
289	DBIDAX0A	5.00E-? H
290	DBIDAX13	5.00E-7 H
291	DB1DB010	$5.00 \mathrm{E}-7 \mathrm{H}$
292	DB10BB06	$5.00 \mathrm{E}-7 \mathrm{H}$
293	DBSTIOOA	$3.83 \mathrm{E}-6$ -
294	DBSTIOOB	3.83E-6 ${ }^{\text {E }}$

246 ARCMX276 247 ARCMX277 249 ARCMX7X5 2 2 251 ARCMX7X7 253 ARCMXAD 9 254 ARCMXA11 255 ARCMXA1S 256 ARCMXBO7 257 ARCMXB09 258 ARCMXB11 260 ASWGJAO1
261 ASWGJA02
262 ASWGJAl1
264 ASWGKBO1
265 ASWGKB02
266 ASWGKB11
267 ASWGKB12 269 AT1QKBO1 270 AT1TJA01

272 ATROJ485
273 ATROK496 274 ATRTCC56 275 ATRTJ485 276 ATRTK496 277 EB1DA016 279 DB1DA022 280 DB1DAAU7 282 DB1DAA15 283 DB1DAA17 284 DB1DAA19 286 DB1DAB12 288 DB1DAB14 289 DBIDAXOA 291 DB1DB010 292 UBIOBBO6 294 DBSTIOOB
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$

1. $00 \mathrm{E}-4 \mathrm{~N}$
2. $00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
3. $00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$2.66 \mathrm{E}-5 \mathrm{~N}$
$2.66 \mathrm{E}-5 \mathrm{~N}$
4. $66 \mathrm{E}-5 \mathrm{~N}$
$2.66 \mathrm{E}-5 \mathrm{~N}$
5. $66 \mathrm{E}-5 \mathrm{~N}$
$2.66 \mathrm{E}-5 \mathrm{~N}$
6. $66 \mathrm{E}-5 \mathrm{~N}$
7. $20 \mathrm{E}-6 \mathrm{~N}$
8. $00 \mathrm{E}-$? H
8.00E-7 H
$.21 \mathrm{E}-4 \mathrm{~N}$
$7.00 \mathrm{E}-7$ H
$7.00 \mathrm{E}-3$ H
. $00 \mathrm{E}-7$ 日
. $0.0 \mathrm{E}-\mathrm{F}$ H
$5.00 \mathrm{E}-7$ 品
$5.00 \mathrm{E}-7 \mathrm{H}$
5.00E-7 H
.00E-7 H
$5.00 \mathrm{E}-7 \mathrm{R}$
$5.00 \mathrm{E}-7 \mathrm{~B}$
$5.00 \mathrm{E}-7 \mathrm{H}$
.00E-7 H
$5.00 \mathrm{E}-$? H
5.00E-7 H
$5.00 \mathrm{E}-7 \mathrm{H}$
9. $83 \mathrm{E}-6$ H
3.83E-6 Hi

6 N 1 6.00E-04 RELAY 27-6 FAILS TO DE-ENERGIZE
5 N 1 5.OOE-04 RELAY 27-7 EAILS TC DE-ENERGIZE
6 N 1 6.DOE-04 REIAY $27 \mathrm{Y}-4$ FAT:S TO DEFNERGTZE
6 N 1 6.00E-04 RELAY $27 \mathrm{X}-5$ FAILS TO DE-ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGIZE
$6 \mathrm{~N}: \quad 6.00 \mathrm{E}-04$ RELAY $27 \mathrm{X}-7$ FAILS TO DE-ENERGIZE
1 N i $1.00 \mathrm{E}-04$ RELAY 27A/1-8 FAILS TO DEENERGIZE
$1 \mathrm{~N} 1.00 \mathrm{E}-04$ RELAY $27 \mathrm{~B} / 1-8$ FATIS TO DEENERGIZE
$1 \mathrm{~N} 21.00 \mathrm{E}-04$ RELAY $27 \mathrm{C} / 1-8$ FAILS TO DEENERGIZE
6 N 1 6.OOE-04 25 CVE 1 V1 BUS RELAY FAILS TO DEENERGIZE
1 N 1 1.00E-04 RELAY 27A/1-9 FAILS TO DEENERGIZE
1 N 1 - $1.00 \mathrm{E}-04$ RELAY 27B/T-G FATTS TO RFFNERCTM
N 1 N.OOE-04 RELAY 27C/1-9 PALLS TO DEENERCIZE
I N 1 1.00E-04 RELAI 1.07 VI BUS RELAY FAILS TO DEENERGIZE
$1 \mathrm{~N} 1 \quad 2.66 \mathrm{E}-05$ SWITCH 1 -EG2AA FAILS TO ORERATE
$1 \mathrm{~N} 1 \quad 2.66 \mathrm{E}-05$ SWITCH 25-EG2AA FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG' 2 A ' START PUSHBUTTON FATLS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG $+2 A^{\prime}$ FIELD ELASH PUSHBUTTON FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ SWITCH 1 -EG2BA FAILS TO OPERATE
1 N 1 2.66E-05 SWITCH 25-EG2BA EAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG ' $2 \mathrm{~B}^{\prime}$ ' START PUSHBUTTON FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG $\cdot 2 \mathrm{~B}$. FIELD FLASH PUSHBUTTON EAILS TO OPERATE
I N 1 2.20E-06 480-120/240V TRANSFORMER FEEDING UP-D1 OOS FOR MAINT
1 N 1 2.20E-06 $480-120 / 240 \mathrm{~V}$ TRANSFORMER FEEDING LP-D2 OOS FOR MAINT.
1 D $11.92 \mathrm{E}-05$ TRANSFORMER FEEDING LP - D1 FAILS
1 D 1 1.92E-05 TRANSFORMER FEEDING LP-D2 FAILS
1 N $12.21 \mathrm{E}-04$ 4160/480V TRANSFORMER (485) OOS FOR MAINT,
1 N $12.21 \mathrm{E}-04 \quad 4160 / 480 \mathrm{~V}$ TRANSFORMER (496) OOS FOR MAINT.
0.1 D $1.68 \mathrm{E}-05 \mathrm{CCF}$ OF TRANSFORMERS 485 AND 496
(SCREENING FA
1 D $11.68 \mathrm{E}-054160 / 480 \mathrm{~V}$ TRANSFORMER (485) FAILS TO OPERATE
D 1 1.68E-05 $4160 / 480 \mathrm{~V}$ TRANSFORMER (496) FAILS TO OPERATE
1 BE 205 BREAKER BETWEEN 125 VDC BUS BX (CKT 16) AND PANEL B FAILS TO REMATN CLOSE
1 D $1,20 \mathrm{E}-05$ RREAKER BETWEEN 125 VDC BUS A (CKT 18) AND PANEL A FAILS TO REMAIN CLOSED
1 D $1.20 \mathrm{E}-05$ BREAKER BETKEFN 125 VDC BUS A (CKT 22) AND CAB. EGG2A FAILS TO REMAIN CLO 1 D $1.20 \mathrm{E}-05 \mathrm{CB} 7$ OFF OF DC BUS A FAILS TO REMAIN CLOSED
1 D $11.20 E-05$ BREAKER OFF $125 V D C$ DIST. PANEL A (CKT A14) FAILS TO REMAIN CLOSED
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 15$ OFF OF DC BUS A FATLS TO REMAIN CIOSED
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 17$ OFF OF DC BUS A FAILS TO REMAIN CLOSED
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 19 \mathrm{OFF}$ OF DC BUS A FAILS TO REMAIN CLOSED
1 D $11.20 E-05 \mathrm{CB} 8$ OFF OF DC BUS BX FAILS TO REMAIN CLOSED
$3120 \mathrm{E}-05 \mathrm{CB} 12 \mathrm{OEF}$ OF DC BUS BX FATIS TO REMATN CLOSED
$I D 1 \quad 1.208-05 \mathrm{CB} 13$ OFF OF DC BUS BX FAILS TO REMAIN CLOSED
1 OL $125 V D C$ DIST. PANEL B (CKT B14) EAILS TO REMAIN CLOSED
1 D $1.20 \mathrm{E}-05 \mathrm{CB} 8$ OFE OF DC BUS BX FAILS TO REMAIN CLOSED
1 D $1 \quad 1.20 \mathrm{E}-05 \mathrm{CB} 13 \mathrm{OFF}$ OF DC BUS BX FAILS TO REMAIN CLOSED
$1011.20 E-05$ BREAKER BETWEEN $125 V D C$ BUS B (CKT 10) AND CAB. EGG2B FAILS TO REMAIN CLOS
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 6$ OFF OF DC BUS B FAILS TO REMAIN CLOSED
1 II $19.19 \mathrm{E}-05$ LOCAL. FAULTS ON 125 VDC OISTRIBUTION PANEL A
1 D 1 9.19E-05 LOCAL FAULTS ON 125VDC DISTRIBUTION PANEI A

Basic Event and Type Code Data:
NAME RATE

$$
0 \text { FACTOR }
$$

UC PROB
DESC

295 DBSTJE2A
296 DBSTKE2B
297 WAVAC290
298 WAVAJ129
299 WAVAK 130
3.83E-6 표
3. 83E-6 H
$2.00 \mathrm{E}-3 \mathrm{~N}$
$2.00 \mathrm{E}-3 \mathrm{~N}$
$2.00 \mathrm{E}-3 \mathrm{~N}$

ID 1 9.19E-05 LOCAL FAULTS ON 125 VDC DISTRIBUTION CABINET EGG2A
I D 1 9.19E-05 LOCAL EAULTS ON 125 VDC DISTRIBUTION CABINET EGG2B
$6.85-2 \mathrm{~N}$ 1 $1.36 \mathrm{E}-\mathrm{C4} \mathrm{CCF}$ OF SW-FCV-129 5130 TO OPEN
1 N $12.00 \mathrm{E}-03 \mathrm{SW}-E C V-129$ FAILS TO OPEN
$1 \mathrm{~N} 12.00 \mathrm{E}-03 \mathrm{SW}-\mathrm{FCV}-130$ EAILS TO OPEN

Basic Event and Type Code Data:
NAME
RATE
U FACTOR
0 C
PROB
DESC

1 AARCLLB4
2 AARCLLB5
3 AARCLLB6
4 AB1911CP
5 ABIBAO9C
6 AB1BA11C
7 AB1BA4T5
9 AB1BA841
8 AB1BAB4I
9 AB1BA971
10 AB1BA9C0
11 AB1 AAC11
12 AB1BACCF
12 AB1 BACCF
13 AB1 BAM23
13 AB1 BAM23
15 AB1BAM44
16 AB1BAM47
17 AB1BAM67
18 AB1BAM68
19 AB1BPM85
20 AB1BXM25
21 AB1DA09C
22 AB1DA11C
23 AB1DA4T5
24 ABIDAA02
25 AB1DAB02
26 ABIDAM13
27 ABIDAM66
28 AB1DAM76
29 AB1DCC56
30 AB1DJ102
31 AB1DJ110
32 AB1DJ851
33 AB1DJA01
34 AB1DJDO1
35 AB1DJD02
36 AB1DJO03
37 AB1DJD04
38 AB1DJD05
39 AB1DJD06
40 AB1DX202
41 AB1DK210
42 AB10K961
43 AB1DKB01
44 AB1DKD01
45 AB1DKDO2
46 ABIDKD0 3
47 AB1DKDO4
48 AB1DKD0
49 ABIDKDO6

1. $000 \mathrm{E}+00$
4.00E-4 N 4. $00 \mathrm{E}-4 \mathrm{~N}$ 4. $00 \mathrm{E}-4 \mathrm{~N}$ 4. $00 \mathrm{E}-4 \mathrm{~N}$ 4. $00 \mathrm{E}-4 \mathrm{~N}$ 4.00E-4 N $4.00 \mathrm{E}-4 \mathrm{~N}$ 4.00E-4 N $4.00 \mathrm{E}-4 \mathrm{~N}$
$4.00 \mathrm{E}-4 \mathrm{~N}$ 4.00E-4 N $4.00 \mathrm{E}-4 \mathrm{~N}$ 4. $00 \mathrm{E}-4 \mathrm{~N}$ 4. $00 \mathrm{E}-4 \mathrm{~N}$ $4.00 \mathrm{E}-4 \mathrm{~N}$ 4.00E-4 N 4. $00 \mathrm{E}-4 \mathrm{~N}$ $5.00 \mathrm{E}-7 \mathrm{H}$ 5.00E-7 H $5.00 \mathrm{E}-7$. H 5.00E-7 H 5.00E-7 H 5.00E-7 H 5.00E-7 H $5.00 \mathrm{E}-7 \mathrm{H}$
$5,00 \mathrm{E}-7 \mathrm{H}$ 5.00E-7 H $5.00 \mathrm{E}-7$ H $5.00 \mathrm{E}-7$. H 5.000 -7 \# $5.00 \mathrm{E}-7$ H $5.00 \mathrm{E}-7 \mathrm{H}$ 5.00E-7 B $5.00 \mathrm{E}-7$ स $5.00 \mathrm{E}-7 \mathrm{H}$
$5.00 \mathrm{E}-7 \mathrm{~B}$ 5. $00 \mathrm{E}-7 \mathrm{H}$
2. 5.00E-7 B $5.00 \mathrm{E}-7 \mathrm{~B}$ 5.OOE-7 H $5.00 \mathrm{E}-7$ H $5.00 \mathrm{E}-7 \mathrm{~B}$ 5.00E-7 H 5.00E-7 日 $5.00 \mathrm{E}-7$ ㅛ $5.00 \mathrm{E}-7 \mathrm{H}$ 5.00E-7 $5.00 \mathrm{E}-7 \mathrm{H}$ 5.00 E-7 H $5.00 \mathrm{E}-7 \mathrm{H}$ $5.008-7$ H
3. 32
$3.00 E+00$ ' A' SWITCHGEAR ROOM COOLING CONTROL POWER LOGIC LOOR,
$3.20 \mathrm{E}-01$ CONDITIONAL PROBABILITY OF 9 C HAVING TO OPEN/RECLOSE
6 N 1 2.40E-03 CB 9C EAILS TO OPEN (EAILURE RATE ASSUMED SAME AS CLOSE
$6 \mathrm{~N} 1 \mathrm{2} 2.40 \mathrm{E}-03 \mathrm{CB} 11 \mathrm{C}$ FAILS TO CLOSE
6 N $12.40 \mathrm{E}-03$ FAILURE OF TIE BREAKER $4 T 5$ TO CLOSE
$6 \mathrm{~N} 12.40 E-03 \mathrm{CB} 4841$ FAILS TO OPEN (FAlLURE ASSUMED SAME AS CLOSE) (UV OR LOSP) 6. N $12.40 \mathrm{E}-03 \mathrm{CB} 4971$ EAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) (UV OR LOSP) 5 N $12.40 \mathrm{E}-03 \mathrm{CB} 9 \mathrm{C}$ FAITS TO CIOSE
$6112.40 \mathrm{E}-03 \mathrm{CA}$ I1C EAILS TO OPEN
$2.4 E-04 \quad 2.40 E-04$ COMMON MODE FAILURE OF 9 C TO RECIOSE THAT PREVENTS 11 C FROM CLOSING
6 N 1 2.40E-03 CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN $6 \mathrm{~N} 1 \quad 2.40 \mathrm{E}-03 \mathrm{CB}$ I7C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ EAILS TO OPEN $6 \mathrm{~N} 122.40 \mathrm{E}-03 \mathrm{CB} 4 \mathrm{C}$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN 6 N $12.40 \mathrm{E}-03 \mathrm{CB} 16 \mathrm{C}$ BETWEEN MCC $4-7 \mathrm{MCC}, 7-7$ AND BUS $1-7$ EAILS TO OPEN 6 N $12.40 \mathrm{E}-03 \mathrm{CB} 14 \mathrm{C}$ BETWEEN MCC $6-6$. MCC $7-6$ AND BUS $1-6$ FAILS TO OREN $6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB} 12 \mathrm{D}$ BETVEEN MCC $8-6$ AND BUS $1-6$ FATLS TO OPEN
$6 \mathrm{~N} 12,40 \mathrm{E}-03 \mathrm{CB}$ 8D BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN
(FRR SAME AS C IER SAME AS C (FR SAME AS C (FR SAME AS C (FR SAME AS C (FR SAME AS C
(FR SAME AS C
(ERR SAME AS
$6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB} 6 \mathrm{C}$ BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN
$6 \mathrm{~N} 12.40 \mathrm{E}-03 \mathrm{CB}$ 6C BETNEEN MCC $2-5$, 1 CB OC ETRC THAT PREVENTS 11 C CLOSURE (LOW PROB. CATASTROPRIC EVENT)
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 11 \mathrm{C}$ EAILS TO REMAIN CLOSED
1 D $11.20 \mathrm{E}-05$ EAILURE OF TIE BREAKER $4 T 5$ TO REMAIN CLOSED
1 D 1 1.20E-05 MCC 5 BREAKER 2 EFL FAILS TO REMAIN CLOSED
1 L 1 1.20E-05 MCC 5 BREAKER \& RFL FAILS TO REMAIN CLOSED
1 D $1 \quad 1.20 \mathrm{E}-05$ GREAKER BETWEEN MCC $13-4$ AND BUS $1-4$ FAILS TO REMAIN CLOSED
1 D $1.20 \mathrm{E}-05$ BREAKER BETWEEN MCC $6-6$ AND BUS $1-6$ FAILS TO REMAIN CLOSED
1 D $1.20 E-05$ COMMON BREAKER BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAILS TO REMAIN CLOSE 0.1 D $1.20 \mathrm{E}-06 \mathrm{CCF}$ OF $\mathrm{CB}^{\prime} 54851$ AND 4961 TO REMAIN CLOSED (SCREENING FA

1 M 2 1.8OE-04 LIGHTING PANEL LP-D1 CKT. $\$ 2$ EAILS TO REMAIN CLOSED
1 M 2 1.8OE-04 LIGHTING PANEL LP-i)1 CKT. \#10 FAILS TO REMAIN CLOSED
1 D 1 1.20E-05 FAILURE OF BREAKER 4851 TO REMAIN CLOSED
M 2 1.8OE-04 AC DIST. CABINET EIUERG. GEN. 2A CKT. 3 FAILS TO REMAIN CLOSED
1 M 2 1.8OE-04 CB 1 EG FIELD FLASH FAILS TO REMATN CLOSED
$1 \mathrm{M} 21.80 \mathrm{E}-04 \mathrm{CE} 2$ GOVERNOR CONTROL FAILS TO REMAIN CLOSED
1 M $21.80 \mathrm{E}-04 \mathrm{CB} 3$ ALTERNATE FAILS TO REMAIN CLOSED
$1 \mathrm{M} 21,80 \mathrm{E}-04 \mathrm{CB} 4$ DIESEL STARTER 2AI FAILS TO REMAIN CLOSED
1 D $1.20 \mathrm{E}-05 \mathrm{CB} 5$ BUS 8 UV FAILS TO REMAIN CLOSED
M 2 BOE-04 CB 6 DIESEL STARTER $2 A 2$ EAILS TO REMAIN CLOSED
$1 \mathrm{M} 21.80 \mathrm{E}-04 \mathrm{CB} 6$ DIESEL STARTER 2A2 EAILS TO REMAIN CLOSED
$\begin{array}{lllllll}1 & D & 1 & 1.20 E-05 & \text { LIGHTING PANEL LP-D2 CKI. \#2 FAILS } \\ 1 & \mathrm{D} & 1 & 1.20 \mathrm{E}-05 & \text { LIGHTING PANEL LP-D2 CKT. \#10 FALLS TO REMAIN CLOSED }\end{array}$
$\begin{array}{llll}1 & D & 1.20 E-05 & \text { LIGHTING PANEL LP-D2 CKT. \#10 FAILS } \\ 1 & \mathrm{D} & 1.20 \mathrm{E}-05 & \text { EAILURE OF BREAKER } 4961 \text { TO REMAIN CLOSED }\end{array}$
1 M 2 1.8OE-04 AC DIST. CABINET EMERG. GEN. 2B CKT. 3 EAILS TO REMAIN CLOSED
1 M $21.80 E-04$ CB 1 EG FIELD FLASH FAILS TO REMAIN CLOSED
1 M $21.80 E-04 \mathrm{CB} 2$ GOVERNOR CONTROL FAILS TO REMAIN CLOSED
1 M $21.80 E-04 \mathrm{CB} 3$ ALTERNATE FAILS TO REMAIN CLOSED
1 M 21 BOE-04 CB 4 DIESEL STARTER 2B1 FAILS TO REMAIN CLOSED
1 M $2,80 \mathrm{E}-05 \mathrm{CB} 5$ BUS 9 UV FATIS TO RFMATN CIOSED

- IFTREE INEWABT CAF

CAFTA Fault Tree Report
4-12-94 1:01 Pace

NAME
RATE
U
FACTOR
U C
PROB

6 N 1 9.48E-04 BREAKER $2 T 8$ FAILS TO OPEN
6 N 1 9.48E-04 BREAKER 3T9 EAILS TO OPEN
6 N 1 9.48E-04 BREAKER $8 T 2$ FAILS TO OPEN
6 N 1 9.48E-04 BREAKER 9T2 \&AILS TO OPEN
1 D 1 1.44E-05 BREAKER $2 T 8$ FIILS TO REMAIN CLOSED
1 D 1 1.44E-05 BREAKER 3 T9 FAILS TO REMATN CLOSED
(D 1 1.44E-05 FATLURE OF BREAKER 4850 TO REMAIN CTOSED
1 L 1 1.44E-05 EAILURE OF BREAKER 4960 TO REMAIN CLOSED
0.1 D $1.44 \mathrm{E}-06 \mathrm{CCF}$ OF CB'S 4850 AND 4960 TO REMAIN CLOSED
$1 \mathrm{D}=1.44 \mathrm{E}-05$ BREAKER GT2 FAILS TO REMAIN CLOSED
1 D $\overline{1}$ 1.44E-05 BREAKER 9 T 3 FAILS TO REMAIN CLOSED
1 D 1 1.44E-05 SWITCHYARD BKEAKER 3891 FAILS TO REMAIN CLOSED
1 D 1 1.44E-05 SWITCEYARD BREAKER 3991 FAILS TO REMATN CLOSED
1 D $1 \quad 9.19 E-05$ FAULT ON LIGHTING PANEL LP-D1
1 D 1 9.19E-05 FAULT ON AC DIST CABINET EMERG. GEN , 2A
1 (1) $9.19 \mathrm{E}-05$ FAULT ON ETGHTING EANEI. LP-D2
1 D 1 9.19E-05 FAULT ON AC DIST CABINET EMERG. GEN. 2B
ID $11.15 \mathrm{E}-06$ BUS $1-2$, BUS FAULT
1 D $1.1 .15 \mathrm{E}-06$ BUS $1-3$, BUS FAULT
1 D 1 1.15E-06 BUS $1-4$, BUS FAULT
1 D $11.15 \mathrm{E}-06$ BUS $1-5$, BUS FAULT
1 D $1 \quad 1.15 \mathrm{E}-06$ BUS $1-6$, BUS FAULT
1 D $1 \quad 1.15 \mathrm{E}-06 \mathrm{MCC}-5$, BUS FAULT
ID $1.1 .15 \mathrm{E}-06 \mathrm{MCC} 13-4$, BUS FAUIT
1 D $11.15 \mathrm{E}-\mathrm{C} 6 \mathrm{MCC}$ 6-6, BUS EAULT
0 D 1 1.15E-07 CCF OF BUSES $1-5$ AND $1-6 \quad$ (SCREENING FA
0.1 D 1 1.15E-07 CCF OF BUSES 8 AND 9
(SCREENING FA
1 D 1 1.15E-06 BUS 8, BUS FAULT
1 D $1.15 \mathrm{E}-06$ BUS 9, BUS FAULT
$6 \mathrm{~N} 18.10 E-04$ CONTACT PAIR $1 / \mathrm{BT} 4-5$ A11-B11 FAILS TO OPEN
1 NI 1.35E-0S CONTACT PAIR 52MOC/EG2A M9-M10 FAILS TO OPEN
1 N 1 1.35E-04 CONTACT PAIR $52 \mathrm{MOC} / \mathrm{EG} 2 \mathrm{~B}$ M9-M10 FAILS TO OPEN
6 N 1 8.10E-04 CONTACT PAIR $27-4 \quad 2-10$ FAILS TO OPEN
6 N 1 8.10E-04 CONTACT PAIR 27-5 $2-10$ FAILS TO OPEN
6 N $18.10 E-04$ CONTACT PAIR $27-6$ 2-10 FAILS TO OPEN
6 N 1 B.10E-04 CONTACT PAIR 27-7 2-10 FAILS TO OPEN
$6 \mathrm{~N} 18.10 \mathrm{E}-0440 \mathrm{~V}$ CONTACT PAIR EAILS TO OPEN (FOLIOWING FIELD FLASH)
$6 \mathrm{~N} 18.10 \mathrm{E}-0440 \mathrm{~V}$ CONTACT PAIR FAILS TO OPEN (FOLLOWING EIELD I LR 3H)
5 1 8.10E-04 CONTACT PAIR 62-5A 2-6 FAILS TO CLOSE
61 8.10E-04 CONTACT PAIR 62-6A 2-6 FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR 27Y/1-8 3-3C EAIL TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR 27Y/1-9 3-3C EAIL TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR 27Y/1-8 6-6C FAIIS TO CLOSE
5 N 1 8. $10 \mathrm{E}-04$ CONTACT PAIR 59A/1-3 1 -10 FALLS TO CLOSE
$68 \mathrm{~N} 19.18 \mathrm{E}-03$ CONTACT PAIR 59B/1-8 $1-10$ EAILS TO CLOSE
68 N 9 A -03 CONTACT PAIR 1-EG2AA A1-B1 FAILS TO CLOSE

$\begin{array}{llll}68 \mathrm{~N} & 9.18 \mathrm{E}-03 & 25 \text { CVE } 1 \text { VI BUS CONTACT PAIR FAILS TO CLOSE } \\ 68 \mathrm{~N} 1 & 9.18 \mathrm{E}-03 & \text { CONTACT PAIR } 25-E G 2 A A ~ A S-B S ~ F A I L S ~ T O ~ C L O S E ~\end{array}$
68 \& 1 9.18E-03 25 CVE 1 V1 LINE CONTACT PAIP FAILS TO CLOSE

99 ACPBIA20
100 ACPBTA21
101 ACPB1A22
102 ACPBIA23
103 ACPBIA24
104 ACFBIA25
105 ACPBIB13
106 ACPBIB14
107 ACPBIB15
108 ACPBIB16
169 ACPBIB17 169 ACPBIB17 110 ACPBIB18
111 ACPBIB19
112 ACPBIB22
112 ACPBTB22
113 ACPB1B23
113 ACPBIB23
114 ACPBIB24
115 ACPBIB25
116 ACPBIY85
117 ACPBJAO2
118 ACPBTAOJ
118 ACPBJA03
119 ACPBJAC4
121 ACPBJAOS
121 ACPBJA06
123 ACPBJADB
124 ACPBJAO9
125 ACPBJA10
126 ACPBJA11
127 ACPBJA12
128 ACPBK4A5
129 ACPBK6A4
130 ACPBKBO2
131 ACPBKBO3
132 ACPBKBO4
133 ACPBKBO5
134 ACPBKB06
135 ACPBRB07
136 ACPBKBO8
137 ACPBKB09
138 ACPBKB10
139 ACPBKB11
140 ACPBKB12
141 ACPBX42C
142 ACPBX47C
143 ACPBX5 13
144 ACPEX52C
144 ACPEX52C
145 ACPBX513
146 ACPBX65C
147 ACPBX72C
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 E-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$

1. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
1.35E-4 N
$1.35 E-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
2. $35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
1.35E-4 N
3. $35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
4. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 E-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
5. $35 \mathrm{E}-4 \mathrm{~N}$
6. $35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
7. $35 \mathrm{E}-4 \mathrm{~N}$
8. $35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
9. $35 \mathrm{E}-4 \mathrm{~N}$
10. $35 \mathrm{E}-4 \mathrm{~N}$
11. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~K}$
12. $35 \mathrm{E}-4$
$1.35 \mathrm{E}-4 \mathrm{~N}$
13. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
14. $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
1.35E-4 N
$1.35 \mathrm{E}-4 \mathrm{~N}$
15. $35 \mathrm{E}-4 \mathrm{~N}$

68 N 1 9.18E-03 CONTACT PAIR FSR1 J-K EAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR FSR2 J-K FAILS TO CLOSE
68 N $19.18 \mathrm{E}-03$ CONTACT PATR VSR1 E-F FAIIS TO CLOSE
68 N 1 9.18E-03 CONTACT PAIR SSP1 18-19 EAILS TO CLOSE
1 N $1-35 \mathrm{~F}-04$ CONTACT PAIR VSR2 $\mathrm{E}-\mathrm{F}$ FAILS TO CLOSE
$1 \mathrm{~N} 1.35=04$ CONTACT PAIR VSR2 E-F 1.3 FATS TO CLOS
$\begin{array}{llll}1 & N 1 & 1.35 \mathrm{E}-04 \\ 6 & \mathrm{~N} & 1 & 8.10 \mathrm{E}-00 \\ \text { CONTACT PAIR SSP2 } 18-19 \text { FAILS TO CLOSE } \\ 6\end{array}$
6 N 1 8.10E-04 CONTACT PAIR 59A/1-9 $1-10$ FAILS TO CIOSE
$68 \mathrm{~N} 19.188-03$ CONTACT PAIR $59 \mathrm{~B} / 1-91-10$ EAILS TO CLOSE
$6 \mathrm{~N} 18.10 \mathrm{E}-04$ CONTACT PAIR 1-EG2BA A1-B1 FAILS TO CLOSE
6 N 1 B. $10 E-0425$ CVE 1 V1 BUS CONTACT PAIR FAILS TO CLOSE
6 N $18,10 \varepsilon-04$ CONTACT PAIR 25-EG2BA AS-B5 FAILS TO CLOSE
$6 \mathrm{~N} 18.10 \mathrm{E}-0425$ CVE 1 VI LINE CONTACT PAIR FAILS TO CLOSE
68 N 1 9.18E-03 CONTANT PAIR VSR1 E-F FAILS TO CLOSE
69 N 1 9.18E-03 CONTACT PAIR SSP1 18-19 FAILS TO CLOSE
$1 \mathrm{~N} 11.35 \mathrm{E}-0 \hat{0}$ CONTACT PAIR VSR2 E-F FAILS TO CLOSE
$1 \mathrm{~N} 1 \quad 1.35 \mathrm{E}-04$ CONTACT PAIR SSP2 $18-19$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 Y / 1-85-5 \mathrm{C}$ EAIL TO :LOSE
1 N 1 1.35E-04 CONTACT PAIR $27 Y / 1-81-1 \mathrm{C}$ EAILS TO TOSE
1 N $11.35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{~K} / 1-8 \quad 2-5$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27AX/1-8 1-2 FAILS TO CLOSE
1 N 1 1.355-04 CONTACT FAIR 27A/1-8 2-10 EAILS TO EIOSE
N 1 35E-04 CONTACT PATR 27BY/1-8 3-4 SATS TO CTOSE
1 N 1 1.35E-04 CONTACT PAIR 27B/1-8 2-10 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27CX/1-8 1-2 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{C} / 1-8$ 2-10 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27AX/1-8 3-4 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27BX/1-8 1-2 FAILS TO CLOSE
1 N 1 1.35E-0.4 CONTACT PAIR $27 \mathrm{CX} / 1-8$ 3-4 FAILS TO CLOSE
61 B.10E-04 CONTACT PAIR $62-5 \mathrm{~A}$ 4-6 FAILS TO CLOSE
6 1 8.10E-04 CONTACT PAIR 62-5A 4-6 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27Y/1-9 1 -1C FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{X} / 1-9$ 2-5 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27AX/1-9 1-2 FAILS TO CLOSE
1 N 1 1. $1.35 E-04$ CONTACT PAIR 27AK/1-9 $2-10$ EAILS TO CLOSE
1 N $1.31 .35 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{BX} / 1-9$ 3-4 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27B/1-9 2-10 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{CX} / 1-91-2$ FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27C/1-9 2-10 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 A X / 1-9$ 3- 4 EAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR 27EX/1-9 1-2 FAILS TO CLOSE
1 N 1 1.35E-04 CONTACT PAIR $27 \mathrm{CX} / 1-9$ 3-4 EAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 Y-4 \quad 2-2 \mathrm{C}$ FAILS TO CLOSE
6 N $18.10 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{Y}-4 \quad 7-7 \mathrm{C}$ EAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 \mathrm{Y}-5 \quad 2-2 \mathrm{C}$ FAILS TO CLOSE
$5 \mathrm{~N} 18.10 \mathrm{E}-04$ CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FAILS TO CLOSE
6 N 1 8.10E-04 CONTACT PAIR $27 \mathrm{Y}-6$ 5-5C FAILS TO CLOSE
$6 \mathbb{N} 18.10 E-04$ CONTACO PATR 2TY-7 2-2C FAITS TO CIOSE

$148 \mathrm{ACPBX74C}$

149 ACPBX801
150 ACPBX802
151 ACPBX901
152 ACPBX902
153 ACPBXX41
154 ACEBXX51
155 ACPBXX61
156 ACPBXX 71
157 ACPCAB51
157 ACPCA851
158 ACPCI45V
159 ACPCI850
160 ACPCT 960
161 ACPCI961
162 ACPCX161
163 ACPCX601
164 ACPCX801
165 FCPCX802
166 ACPCX803
166 ACPCX803
167 ACPCX804
168 ACPCX901
169 ACPCX902
170 ACPCX903
171 ACPCX904
172 ACPCXL 91
173 ACPCXY 61
174 ACPDA2A5
175 ACPDA2A6
176 ACDDTAO5
176 ACPDIA05
177 ACPDIAO
178 ACPDIAO7
179 ACPDTEOS
180 ACPDIBCG
181 FCPDIBO7
182 ACPDJA02
183 ACPDJAO3
184 ACPDJAO4
185 ACPDEBO
185 ACPDKBO2
186 ACPDKBO3
187 ACPDKB04
188 ACVAJ64A
188 ACVAJ64A
189 ACVAK64B
190 ADGACPSE
191 ADGBCPSE
192 ADGCCOOL
193 ADGECCAB
193 ADGECCAB
194 ADGEJO2
195 ADGEK02
196 ADGFCCAB
$1.35 \mathrm{E}-4 \mathrm{~N}$
1．35E－4 N 1． $35 \mathrm{E}-4 \mathrm{~N}$ $1+35 \mathrm{E}-4 \mathrm{~N}$ ． $35 \mathrm{E}-4$ 1．35E－4 N $1.35 E-4 \mathrm{~N}$ $1.35 \mathrm{E}-4 \mathrm{~N}$ 1． $35 \mathrm{E}-4 \mathrm{~N}$
$1.35 \mathrm{E}-4 \mathrm{~N}$
$2.66 \mathrm{E}-8 \mathrm{~B}$
$2.66 \mathrm{E}-8$ 年
$2.66 \mathrm{E}-8$
$2.56 \mathrm{E}-8$
$2.66 \mathrm{E}-8 \mathrm{E}$
2． $66 \mathrm{E}-\varepsilon$ E
2． $66 \mathrm{E}-8 \mathrm{~B}$
2． $66 \mathrm{E}-8$ H
2． $66 \mathrm{E}-8$ H
2． $66 \mathrm{E}-8$ 昼
$2.66 \mathrm{E}-8$ H
2． $66 \mathrm{E}-8 \mathrm{H}$
2． $66 \mathrm{E}-8$ स
$2.66 E-8 ~ H$
$2.66 E-8 ~$
2． $66 \mathrm{E}-8 \mathrm{H}$
$2.66 \mathrm{E}-8 \mathrm{H}$
2． $66 \mathrm{E}-8$ ．
$2.66 \mathrm{E}-8 \mathrm{H}$
2． $66 \mathrm{E}-8$ H
2． $66 \mathrm{E}-8$ 且
1．25E－7 H
$1.25 \mathrm{E}-7 \mathrm{H}$
$1.25 \mathrm{E}-7 \mathrm{H}$
1． $25 \mathrm{E}-7 \mathrm{H}$
． $25 \mathrm{E}-7 \mathrm{H}$
． $25 \mathrm{E}-7 \mathrm{H}$
$.258-7 \mathrm{H}$
$1.25 \mathrm{E}-7 \mathrm{Z}$
．25E－7 H
1．25E－7 H
$1.25 \mathrm{E}-7$ \＃
$1.25 \mathrm{E}-7 \mathrm{H}$
$1.25 \mathrm{E}-7 \mathrm{H}$
1．25E－7 R
$1.25 \mathrm{E}-7 \mathrm{H}$
2．00E－4 N
$2.00 \mathrm{E}-4 \mathrm{~N}$
$2.80 \mathrm{E}-3 \mathrm{~N}$
2．80E－3 N
$2.80 \mathrm{E}-3 \mathrm{~N}$
$1.10 \mathrm{E}-3$ H

6 N 1 8．10E－04 CONTACT PAIR $27 Y-7$ 4－4C EAILS TO CLOSE
6 N 1 8．10E－04 CONTACT PAIR 27Y2／1－8 1－7 PAIL TO CLOSE
$6 \mathrm{NI} 8.10 \mathrm{E}-04$ CONTACT PAIR 27Y2／1－0 3－6 FAIL．TO CLOSE
6 N 1 8．10E－04 CONTACT PAIR $27 Y 2 / 1-91,7$ FAIL TO CLOSE
6 N 1 8．10E－04 CONTACT PAIR $27 Y 2 / 1-93.6$ FAIL TO CLOSE
5 N 1 8．10E－04 CONTACT PAIR $27 \mathrm{X}-4 \quad 9-13$ FAILS TO CLOSE
6 N 18 8，10E－04 CONTACT PAIR $27 \mathrm{X}-5$（ $9-13$ EAILS TO CLOSE
6 N 1 8．10E－04 CONTACT PAIR $27 \mathrm{X}-6$ 9－13 FAILS TO CLOSE
6 N 1 8．10E－04 CONTACT PAIR $27 \mathrm{X}-7$ 9－13 FAILS TO CLOSE
1 D $23.19 \mathrm{E}-07$ CONTACT PAIR $1 / 555$ A11－911 EAILS TO REMAIN OPEN
1 D 1 6．38E－07 CONTACT PAIR $1 /$ BT4－5 A11－B11 FAIIS TC REMAIN OPEN
1 D $2 \quad 3.195-07$ CONTACT PAIR $1 / S S 15$ A11－B11 EAILS TO REMAIN OPEN
1 D $23.19 \mathrm{E}-07$ CONTACT PAIR $1 / \mathrm{SS} 16$ A11－B11 FAITS TO REMAIN OPEN
1 D 2 3．19E－07 CONTACT PAIR $1 / 556$ Al1－811 FAILS TO REMAIN OPEN
1 D 1 6．36E－07 CONTACT PAIR 27X1－6 3－7 FAILS TO REMAIN OPEN
1 D $1 \quad 6.38 \mathrm{E}-07$ CONTACT PAIR $27-62-10$ FAILS TO REMAIN OPEN
1 D $16.38 \mathrm{E}-07$ CONTACT PAIR $27 Y 2 / 1-81-7$ FAIL TO REMAIN OPEN
1 D $1 \quad 6.38 \mathrm{E}-07$ CONTACT PAIR $27 צ 2 / 1-8$ 3－6 FAIL TO REMAIN OPEN
1 D $16.38 E-07$ CONTACT PAIR B6 3－6 PAIL TO REMAIN OPEN
1 D $16.38 \mathrm{E}-07$ CONTACT PAIR 87 X 5－6 FAILS TO REMAIN OPEN
1 D 1 6．38E－07 CONTACT PAIR $27 Y 2 / 1-91,7$ FAIL TO REMATN OPEN
1 D $16.38 \mathrm{E}-07$ CONTACT PAIR $27 Y 2 / 1-9$ 3－6 EAIL TO REMAIN OPEN
1 D 1 6．38E－07 CONTACT PAIR $87 \times 5-6$ FAIL TO REMAIN OPEN
1 D 1 6．38E－07 CONTACT PAIR 86 3－5 FAIL TO REMAIN OPEN
1 D $1 \quad 6.38 \mathrm{E}-07$ CONTACT PAIR $94 \mathrm{LS} / 1-9$ 9－10 FAILS TO REMAIN OPEN
1 D $16.38 \mathrm{E}-07$ CONTACT PAIR $27 \mathrm{Y}-6 \quad 5-5 \mathrm{C}$ FAILS TO REMAIN OREN
1.5 Y $28.21 \mathrm{E}-04$ CONTACT PAIR $62-5$ A $3-5$ FAILS TO RENAIN CLOSED
1.5 Y 2 8．21E－04 CONTAC：PAIR 62－6A 3－5 EATLS TO REMAIN CLOSED

18 M 2 B． $10 \mathrm{E}-04$ CONTACT PAIR 1 －EG2AA C12－D12 FATLS TO REMATM CLOSED
18 M 2 8．10E－04 CONTACT PAIR NFLDA A－C FAILS TO REMAIN CLOSED
18 M 2 8．10E－04 CONTACT PAIR OTR L－M FAILS TO REMAIN CLOSED
18 M 2 8． $10 \mathrm{E}-04$ CONTACT PAIR 1－EG2BA C12－D12 FAILS TO REMAIN CLOSED
78 M 2 8． $10 \mathrm{E}-04$ CONTACT PAIR NFLDA A－C FAILS TO REMATN CIOSED
$18 \mathrm{M} 2 \mathrm{~B} .10 \mathrm{E}-04$ CONTACT PAIR OTR L－M FAILS TO REMAIN CLOSED
$18 \mathrm{M} 28.10 \mathrm{E}-04$ AUX CONTACT PAIR $4 / E G 2 A 14$ EAILS TO REMAIN CLOSED
$18 \mathrm{M} 28.10 \mathrm{E}-04$ AUX CONTACT PAIR $27 Y / 1-817$ FAILS TO REMAIN CLOSED
$18 \mathrm{M} 28.10 \mathrm{E}-04 \mathrm{AUX}$ CONTACT PAIR $27 Y / 1-815$ FAILS TO REMAIN CLOSED
$18 \mathrm{M} 28.10 E-04$ AUX CONTACT PAIR $4 / E G 2 B 14$ FAILS TO REMAIN CLOSED
$18 \mathrm{M} 28.10 \mathrm{E}-04$ AUX CONTACT PAIR $27 \mathrm{Y} / 1-917$ FAILS TO REMAIN CLOSED
$18 \mathrm{M} 28.10 \mathrm{E}-04$ AUX CONTACT PAIR $27 Y / 1-918$ FAILS TO REMAIN CLOSED
1 N 1 2．00E－04 EDG A ROOM INTAKE DAMPER FAILS TO OPEN
1 N 1 2．OOE－O4 EDG A ROOM INTAKE DAMPER FAILS TO OPEN
0.5 5．OOE－O1 CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST
0.5 5．00E－01 CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1－6 FIRST

6． $60 \mathrm{E}-04 \quad 6,70 \mathrm{E}-04$ COMMON CAUSE FAILURE OR EDG ROOM COOLING
$0.038 \mathrm{~N} 1 \quad 1.06 \mathrm{E}-04 \mathrm{CCF}$ OF EDG＇S＇ $2 \mathrm{~A}^{\prime}$＇AND＇ $2 \mathrm{~B}^{\prime}$ TO START
$1 \mathrm{~N} 12.80 \mathrm{E}-03$ DIESEL 2A EAILS TO START
1 N 1 2．80E－03 DIESEL 2B EAILS TO START
0.068 D $1.80 E-03 \mathrm{CCF}$ OF EDG＇S＇ 2 A ＇AND＇ 2 B ＇TO RUN

Basic Event and Type Code Data:
PROB
DESC

197	ADGE J02A	$1.10 \mathrm{E}-3$
198	ADGFK02B	1.10E-3 ${ }^{\text {d }}$
199	ADGP ZA01	
200	RDGQJO2A	1.00E-2 N
201	ADGQK023	1.00E-2 N
202	AFNECCRA	$6,00 \mathrm{E}-4 \mathrm{~N}$
203	AFNEJ64A	$6.00 \mathrm{E}-4 \mathrm{~N}$
204	AFNEK64B	$6.00 \mathrm{E}-4 \mathrm{~N}$
205	AFNFA41A	1.00E-5 H
206	AFNFA61A	1. $000 \mathrm{E}-5$ 면
207	AFNFCCRA	1.00E-5 日
208	AFNFJ64A	1.00E-5 H
209	AFNFK64B	$1.00 \mathrm{E}-5 \mathrm{H}$
210	AMC110LL	
211	AMCC50LL	
212	AMVAJ64A	4.00E-3 N
213	AMVAK64B	4.00E -3 N
214	AMVQJ64A	$3.04 \mathrm{E}-4 \mathrm{~N}$
215	AMVQK64B	$9.04 \mathrm{E}-4$
216	ARCHJ15A	1.00E-4 N
217	ARCHJA03	1.00E-4
218	ARCHJAO4	1.00E-4 N
219	ARCHJA05	1.00E-4
220	ARCHJAO6	1.00E-4
221	ARCHJAOS	$1.00 \mathrm{E}-4$
222	ARCHJA10	$1.00 \mathrm{E}-\frac{5}{}$
223	ARCHJA21	1. $000 \mathrm{E}-4$
224	ARCHKOEA	1.00E-4
225	ARCHKB03	1.00E-4
226	ARCHKB04	1.00E-4
227	ARCHKB05	$1.00 \mathrm{E}-4$
228	ARCHKB06	$1.00 \mathrm{E}-4$
229	ARCERBO8	$1.00 \mathrm{E}-4$
230	ARCHKB10	$1.00 \mathrm{E}-4$
231	ARCHK®21	$1.00 \mathrm{E}-4$
232	ARCHX 7 Y4	1.00E-4
233	ARCHX7Y5	$1.00 \mathrm{E}-4$
234	ARCEXTY6	$1.00 \mathrm{E}-4$
235	ARCHX7Y7	1,00E-4
236	ARCHXA12	1.00E-4
237	ARCHXA13	$1.00 \mathrm{E}-4$
238	ARCHXA14	$1.00 \mathrm{E}-4$
239	ARCHXA16	1.00E-4
240	ARCHXA17	$1.00 \mathrm{E}-4$
241	ARCHXA18	$1.00 \mathrm{E}-4$
242	ARCHXA19	$1.00 \mathrm{E}-4$
243	ARCHXA20	$1.00 \mathrm{E}-4$
244	ARCHXA23	1.00E-4
	ARC	1.00E-4

245 ARCHXA2 4
$1.10 \mathrm{E}-3 \mathrm{H}$
1.10E-3 H
1.00E-2 N
$1.00 \mathrm{E}-2 \mathrm{~N}$
$6.00 \mathrm{E}-4 \mathrm{~N}$
$6.00 \mathrm{E}-4 \mathrm{~N}$

1. $00 \mathrm{E}-5 \mathrm{H}$
$1.00 \mathrm{E}-5$ ㅂ
1.00E-5 H
. $00 \mathrm{E}-5 \mathrm{H}$
2. $00 \mathrm{E}-3 \mathrm{~N}$
4.00E-3 N
$9.04 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
1.00E-4 N
1.00E-s N
1.00E-4 N
.OOE-4 N
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
3. $00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4
1.00E-4 N
1.00E-4 N
4. $00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N

1 D $12.54 E-02$ EDG '2A' FAILS TO RUN GIVEN STARI
1 D $12.64 E-02$ EDG ' 2 B ' FAILS TO RUN GIVEN STARI
0.013

1 N
N 1 1.30E-02 OPERATOR EAILS TO ATTEMPI DIESEL RECOVERY
1 N $1.00 E-02$ EMERGENCY DESCY DESTEL GENERATOR 'B' OOS FOR MAINT.
N 1 1.COE-02 EMERGENCY DESIEL GENERATOR ' ${ }^{\prime}$ OOS FOR MATNT.
1 N 1 6.00E -04 FAN F-64-1A FAITS TO START
1 N $16.00 \mathrm{E}-04$ FAN $\mathrm{F}-64-1$ E FAILS TO START
8 日 1 8.OOE-05 'A' SWITCHGEAR ROOM EXHAUST FAN FAILS TO RUN
8 H $18.00 \mathrm{E}-05$ ' A ' SWITCHGFAR ROOM INTAKE FAN FAILS TO RUN
8 H 1 8, OOE-06 CCF SWGR 'A' ROOM INTAKE/EXHAUST EANS FAIL TO RUN
1 D $12.40 E-04$ EAN E-54-1A FAILS TO RUN
1 1 $2.40 \mathrm{E}-04$ EAN F-54-18 EAILS TO RUN
0 O OOE +00 LOGIC LOOP WITH MCC-11 AND AC EGG-2B PANEL
$0 \quad 0.008+00$ LOGIC LOOP WITH MCC-5 AND EGG-2A PANEL
1 N 1 4.00E-03 FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER LAILS TO OPEN
1 N 1 4.00E-03 FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OR F-64-13 MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN
1 N $19.04 E-04$ FAN E-64-1A MOTOR CPERATED EXHAOST DAMPER OOS FOR MAINT.
1 N $19.04 \mathrm{E}-04$ FAN $\mathrm{F}-64-1 \mathrm{~B}$ MOTOR CPERATED EXHAUST DAMPER OOS FOR MAINT.
6 N i $6.00 \mathrm{E}-04$ RELAY 62-5A FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY 4/EG2A FAILS TO ENERGIZE
6 N 1 6.00B-04 RELAY $27 Y / 1-8$ EATLS TC ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{X} / 1-8$ EAILS TO ENERGIZE
$6 \mathrm{~N} 1 \quad 6.00 \mathrm{E}-04$ RELAY $27 \mathrm{AX} / 1-8$ EAILS TO ENERGIZE
6 N1 6.00E-04 RELAY $27 \mathrm{BX} / 1-8$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{CX} / 1-8$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY 27Y2/1-B FAILS TO ENERGIZE
61 6.00E-04 RELAY 62-6A FAILS TO ENBRGIZE
6 N 1 6.00E-04 RELAY $4 /$ EG2B FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 Y / 1-9$ FAILS TO ENERGIZE
$6 \mathrm{~N} 1-6.00 \mathrm{E}-04$ RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{AX} / 1-9$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{BX} / 1-9$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY 27CX/1-9 EAILS TO ENERGIZE
$6 \mathrm{~N} 1-6.00 \mathrm{E}-04$ RELAY $27 \mathrm{~N} 1 \mathrm{C} / 00 \mathrm{E}-04$ RELAY $27 \mathrm{Y} / 1-9$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{Y}-4$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 Y-5$ FAILS TO ENERGIZE
$6 \mathrm{~N} 16.00 \mathrm{E}-04$ RELAY $27 \mathrm{Y}-6$ FAILS TO ENERGIZE
6 N 1 6.00E-04 RELAY $27 Y-7$ FATLS TO ENERGIZE
1 N 1 2. DOE -04 RELAY 40 V FATLS TO ENERGIZE (FOLLOWING FIELD ELASH)
$1 \mathrm{~N} 11.00 \mathrm{E}-04$ RELAY $59 \mathrm{~A} / 1-8$ EAILS TO ENERGIZE
68 N 1 6. 0 OE 03 RELAY $598 / 1-8$ FAILS TO ENERGI2E
68 N 1 S $80 E-0325$ CVE $1 /$ V1 LINE RELAY FAILS TO ENERGIZE
68 N 1 6. BOE-03 RELAY VSR1 FAILS TO ENERGIZE
$68 \mathrm{~N} 1 \quad 6,80 E-03$ RELAY VSR1 FAILS
1 N 1 1.00E-04 RELAY VSR2 FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY SSP2 VS FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY FSR1 FAII.S TO ENERGI2E (EDG-2A)
1 N 1 1.00E-04 RELAY FSR2 FAILS TO ENERGIZE (EDG-2A)

Basic Event and Type Code Data:
NAME
RATE
U FACTOR
$\mathrm{U} \cdot \mathrm{C}$
PROB
DESC

246 ARCHXB12
247 ARCHXB13
248 ARCHKB14
249 ARCHXB16
250 ARCHXB17
251 ARCHXB18
252 ARCHXB19
253 ARCHX 920
254 ARCJJISA
255 ARCJKOBA
255 ARCJKOBA
256 ARCJK 15 A
257 ARCJX276
258 ARCMJ15A
259 ARCMJA01
260 ARCMK15A
261 ARCMKBO1
262 ARCMX274
263 ARCM×275
264 ARCMX276
264 ARCMX276
265 ARCMX27
266 ARCMX7X4
267 ARCM $\times 7 \times 5$
268 ARCMX 7×6
269 ARCMX7X
270 ARCMXAO7
271 ARCMXA09
272 ARCMXA11
273 ARCMXA15
273 ARCMXA15
274 ARCMXBC
275 ARCMXBO9
276 ARCMXB11
277 ABCMXB15
278 ASWGu: 71
279 ASWGJAOZ
280 ASWGJA11
281 ASWGJA12
282 ASWGKBO1
282 ASWGKBO1
283 ASWGKBO2
284 ASWGKB11
285 ASWGKB12
286 AT1QJAO1
287 AT1QKLO1
288 AT1IJAO
289 AT1TKBO1
290 ATRQJ485
291 ATRQK496
291 AIRQK496
292 ATRTCC5
293 ATRTU485
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$

- OOE-4
-. OOE-4
. $00 \mathrm{E}-4$
. $00 \mathrm{E}-4 \mathrm{~N}$
$.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 *
1.00E-4 N
6.00E-7 E
$6.00 \mathrm{E}-7$:
6.00E-7 H
6.00E-7
.00E-7 H
. $00 \mathrm{E}-4$
. $000 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$.00 \mathrm{~s}-4$
. $00 \mathrm{E}-4$
. 00 ER
. 008-4 N
$.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-\frac{\mathrm{N}}{\mathrm{N}}$
$1.30 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
1.00E-4 N
$1.00 \mathrm{E}-4 \mathrm{~N}$
$1.00 \mathrm{E}-4 \mathrm{~N}$

1. $20 \mathrm{E}-4 \mathrm{~N}$
$2.66 \mathrm{E}-5 \mathrm{~N}$
2. $66 \mathrm{E}-5 \mathrm{~N}$
3. $66 \mathrm{E}-5 \mathrm{~N}$
$66 \mathrm{E}-5 \mathrm{~N}$
$\therefore 66 \mathrm{E}-5 \mathrm{~N}$
$2.66 \mathrm{E}-5 \mathrm{~N}$
4. $66 \mathrm{E}-5 \mathrm{~N}$
5. $66 \mathrm{E}-5 \mathrm{~N}$
$2.20 \mathrm{E}-6 \mathrm{~N}$
6. $20 \mathrm{E}-6 \mathrm{~N}$
7. $00 \mathrm{E}-7$ H
8.00E-7 B
$2.21 \mathrm{E}-4 \mathrm{~N}$
$2.21 \mathrm{E}-4 \mathrm{~N}$
7.00E-7 H
8. OOE - ? H
7.00E-7 H

IN 1 1.00E-04 RELAY $40 V$ EAILS TO ENERGIZE (FOLLOWING FIELD ELASH
1 N $1.00 \mathrm{E}-04$ RELAY 59A/1-9 EAILS TO ENERGIZE
$58 \mathrm{~N} 1-5.80 E-03$ RHLAY $598 / 1-9$ FAITS TO ENERGYZE
68 N 1 6. $80 \mathrm{E}-0325$ CVE 1 V1 LINE RELAY FAILS TO ENERGIZE
68 N 1 6.80E-03 RELAY VSR1 EAILS TO ENERGIZE
68 N 1 6.80E-03 RELAY SSP1 VS FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY VSR2 FAILS TO ENERGIZE
1 N 1 1.00E-04 RELAY SSR2 VS EAILS TO ENERGIZE
1 D $1.44 E-05$ RELAY $62-5 A$ FAILS TO REMAIN ENERGIZED
1 D 1 1.44E-05 RELAY 62-6A FAILS TO REMAIN ENERGIZED
$2411.44 E-05$ RELAY 52-6A FAILS TO REMAIN ENERGITED
(D 1 1.44E-05 RELAY 27-5 FAILS TO REMAIN ENERGI2ED
6 N 1 6.00E-04 RELAY 62-5A FAILS TO DEENERGI2E
6 N 1 6.00E-04 RELAY $27 Y 1 / 1-8$ FAILS TO DEENERGIZE
6 6.00E-04 RELAY 62-6A FAILS TO DE-FNERGIZE
6 N 1 6.00E-04 RELAY $27 Y 1 / 1-9$ FAILS TO DEENERGIZE
6 N 1 6.00E-04 RELAY 27-4 EAILS TO DE-ENERGIZE
6 N 1 6.00E-04 RELAY 27-5 FAILS TO DE-ENERGIZE
5 N 1 5.00E-04 RELAY 27-6 EAILS TO DE-ENERGI2E
6 N 1 6.00E-04 RELAY 27-7 FAILS TO DE-ENERGIZE
6 N 1 6. DOE-04 RELAY $27 \mathrm{X}-4$ FAILS TO DEENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{X}-5$ FKILS TO DE-ENERGIZE
6 N 1 6.00E-04 RELAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGI2E
6 N 1 6. $00 \mathrm{E}-04$ RELAY $27 \mathrm{X}-7$ FAILS TO DE-ENERGIZE
1 N 1 1.00E-04 RELAY 27A/1-8 FAILS TO DEENERGIEE
N 1 1.00E-04 RELAY $27 \mathrm{~B} / 1-8$ FAILS TO DEENERGIZE
1 N $11.00 \mathrm{E}-04$ RELAY $27 \mathrm{C} / 1-8$ FAILS TO DEENERGIZE
6 N 1 6.00E-04 25 CVE 1 VI BUS RELAY FAILS TO DEENERG13E
1 N $11.00 \mathrm{E}-04$ RELAY 27A/1-9 FAILS TO DEENERGIZE
N 1 1.00E-04 RELAY $27 \mathrm{~B} / 1-9$ FAIIS TO DEENERGTZE
N 1 1.00E-04 RELAY $27 \mathrm{Cl} 1-9$ FAILS TO DEENERGI2E
6 N $1.6 .00 \mathrm{E}-0425$ CVE 1 V 1 BUS RELAY FAILS TO DEENERGIZE
$1 \mathrm{~N} 12.66 \mathrm{E}-05$ SWITCH 1 -EG2AA FAILS TO OPERATE
N $12.66 \mathrm{E}-05$ SWITCH 25 -EG2AA FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG ' 2 A' START PUSHBUTTON FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG ' $2 \mathrm{~A}^{\prime}$ FIELD FLASH PUSHBUTTON FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ SWITCH 1 -EG2BA EAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ SWITCH 25-EG2BA FAILS TO OPERATE
1 N $12.66 \mathrm{E}-05$ EDG $+2 \mathrm{~B}^{\prime}$ START PUSHBUTTON FAIIS TO OPERATE
N $1-2.66 E-05$ EOG ' $2 B^{\prime}$ ' FIELD ELASE PUSHBUTTON FAILS TO OPERATE
N $12.20 \mathrm{E}-06480-120 / 240 \mathrm{~V}$ TRANSFORMER EEEDING LP $-D 1$ OOS FOR MAINT
$1 \mathrm{~N} 12.20 \mathrm{E}-06480-120 / 240 \mathrm{~V}$ MRANSFORMER FEEDING LP-D2 OOS FOR MAINT.
1 D $11.92 \mathrm{E}-05$ TRANSFORMER FEEDING LP-D1 FAILS
1 D 1 1.92E-05 TRANSFORMER FEEDING LP-D2 FAILS
1 N $1 \quad 2.21 \mathrm{E}-04$ 4160/480V TRANSFORMER (485) OOS FOR MAINT.
1 N $1 \quad 2.21 \mathrm{E}-044160 / 480 \mathrm{~V}$ TRANSFORMER (496) COS FOR MAINT.
0.1 D 1 T.68E-06 CCF OF TRANSFORMERS 485 AND 496

1 D $11.68 E-054160 / 480 \mathrm{~V}$ TRANSFORMER (485) FAIZS TO OPERATE
1 D $1.68 \mathrm{E}-054160 / 480 \mathrm{~V}$ TRANSFORMER (496) FAILS TO OPERATE

Basic Event and Type Code Data:
\qquad RATE 0
NAME
7.008-7 8
7.00E-7 K
$5.00 \mathrm{E}-7 \mathrm{H}$
$5.00 \mathrm{E}-7$ \#
$5.00 \mathrm{E}-7 \mathrm{H}$
$5.00 \mathrm{E}-7 \mathrm{H}$
$5.00 \mathrm{E}-7$ 日
$5.00 \mathrm{E}-7 \mathrm{H}$
$5.00 \mathrm{E}-7$ 日
$5.00 \mathrm{E}-7$ म
5.00E-7 H
$5.00 \mathrm{E}-7 \mathrm{~B}$
$5.00 \mathrm{E}-7 \mathrm{H}$
3.83E-6 \#
3. 83E-6 H
3. $83 \mathrm{E}-6$ H
$3.83 \mathrm{E}-6$ H

$5.0 \mathrm{E}-1$
 $5.0 \mathrm{E}-1$ $5.0 \mathrm{E}-1$

$5.0 E-1$
$5.0 E-1$
$.08-1$
0.5
$2.47 \mathrm{E}-4$
$6.8 \mathrm{E}-2 \mathrm{~N}, \quad$ 2.47E-04 OFESITE POWER AVAILABI
$6.8 \mathrm{E}-2 \mathrm{~N} 1.36 \mathrm{E}-04 \mathrm{CCF}$ OF SW-FCV-129 6 130 TO OPEN
$1 \mathrm{~N} 12.00 \mathrm{E}-03 \mathrm{SW}$-FCV- 129 FAIIS TO OPEN
$1 \mathrm{~N} 122.00 \mathrm{E}-03 \mathrm{SW}-\mathrm{FCV}-129$ FAIIS TO OREN
9. $75 \mathrm{E}-5$

1 D $1.68 E-05$ SWITCHYARD TRANSFOR EER 389 FAILS TO OPERATE
$\begin{array}{llll}1 \text { D } & 1 & 1.68 E-05 \\ 1 & 1.68 E-05 & \text { SWITTCHYARD TRANSFOR SR } 399 \text { FAILS TO OPERATE }\end{array}$ 1 D $1 \quad 1.20 \mathrm{E}-05 \mathrm{CB} 7$ OFF OF DC BUS A FAILS TO REMAIN CLOSED

1 D $11.20 \mathrm{E}-05 \mathrm{CB} 15 \mathrm{OFF}$ OF DC PIS + FAILS TO REMATN CIOSED
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 17 \mathrm{OFF}$ OF DC BUS A FAILS TO REMATN CLOSED
1 D 1 1.20E-05 CB 19 OFF OF DC BUS A FAILS TO REMAIN CLOSED
1 D $1.1 .20 \mathrm{E}-05 \mathrm{CB} 19 \mathrm{OFF}$ OF DC BUS A FAILS TO REMAIN CLOSED
1 D $1.20 \mathrm{E}-05 \mathrm{CB} 8$ OFE 1 OC BUS BX FAILS TO REMAIN CLOSED
$\begin{array}{llllll}1 & 1 & 1.20 E-05 \mathrm{CB} & 12 \mathrm{OFF} \text { OF DC BUS BX FAILS TO REMAIN CLOSED } \\ 1 & \mathrm{D} & 1 & 1.20 \mathrm{E}-05 \mathrm{CB} & 13 \mathrm{OFF} \text { OF DC BUS BX FAILS TO REMAIN CLOSED }\end{array}$
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 8 \mathrm{OFE}$ OF DC BUS BX EAILS TO REMAIN CLOSED
1 D $11.20 \mathrm{E}-05 \mathrm{CB} 13$ OFF OF DC BUS BX FAILS TO REMAIN CLOSED
1 D $1.20 \mathrm{E}-05 \mathrm{CB} 6$ OFF OF DC BUS B FAILS TO REMAIN CLOSED
1 D $19.19 \mathrm{E}-05$ LOCAL FAULTS ON 125 VDC DISTRIBUTION PANEL A
I $19.198-05$ LOCAL FAULTS ON 125 VDC DISTRIBUTION PANEL B
D $19.19 \mathrm{E}-05$ LOCAL FAULTS ON 125 VDC DISTRIBUTION CABINET EGG2A
9.19E-05 LOCAL FAULTS ON 125VDC DISTRIBUTION CABINET EGG2B
5.00E-01 NO DC POWER FROM 125 V DC BUS A
$5.00 \mathrm{E}-01$ NO DC POWER FROM 125 VDC BUS BX
5.00E-01 NO DC POWER FROM 125 V DC BUS B
$5.008-01$ LOSS OF OEFSITE PONFR
$9.75 \mathrm{E}-05$ LOSS OF SERVICE WATER COOLING

1 D $1.20 \mathrm{E}-05$ BREAKER BETWEEN 125 V C BUS BX (CKT 16) AND PANEL B EATLS TO REMATN CLOSE 1 i i $1.20 E-05$ BREAKER BETWEEN 125 VIC BUS A $(C K I ~ 1 B$) AMD RANEL A FAILS TO REMAIN CLOSED 1 D 1 1.2OE-05 BREAKER BETWEEN 125 VI C BUS A (CKI 22) AND CAB. EGG2A FAILS TO REMAIN CLO

1 D $1.20 \mathrm{E}-05$ BREAKER OFF $125 V D C$ D ST. PANEL A (CKT A14) EAILS TO REMAIN CLOSED

1 D $1.20 \mathrm{E}-05$ BREAKER OFF 125 VDC DIST. PANEL B (CKT B14) FAIS TO REMATN CIOSED

1 D $1.20 E-05$ BREAKER BETWEEN $125 V D C$ BUS B $\{C K T ~ 10\}$ AND CAB. EGG2B FAILS TO REMAIN CLOS

Appendix C

C. 1	OLDABT Cutset Report
C. 2	NEWABT Cutset Report

Fllter: 'ACTIVE'

MODULE/EVENT NAME

1) GAAMO5
2) AB1BA911 ADGBCPSE
3) $A D G F C C A B$
4) $A B 1 B A 9 C 0$ AOGACPSE
5) ADGCCOOI
6) ADGACPSE ADGEJ02A ADGFKO2B
7) ADGACPSF ARCHJ15A
8) ADGBCPSF ADGFJ02A ADGFKO2B
9) ADGACPSE ADGFJ02A ADGQK02B
10) ADGACESE ADGFKO2: ADGQJO2A
11) WAVAC290
12) ADGECCAB
13) ADGBCPSF ADGFJO2A ADGQK02B
14) ACPBK5B4 ADGACPSF
15) ACPAK5A2 ADGACPSF
16) ADGACPSF ADGFK02B AMVAJ64A
17) ADGACPSF ADGEJ02A AMVAK64B
177-ADGAFPGE ADGQJ02A ADGQK02B
18) ADGACPSF ADGEJ02A ADGEKO2B
19) $A D G A C P S F$ ADGEK02B ADGEJ02A
20) ADGBCPSE ADGFKO2B AMVAJ64A
21) ADGBCPSF ADGFJO2A
<module»
$9 C$ FAILS 10 CLOSE AETER 110 OPENS, DG A STARTS AFTER DG B FAST I COND. FROB. DG B LOADS ONTO BUS $1-6$ FIRST
CCF CF EDG'5 ' $2 A^{\prime}$ ' AND ' $2 \mathrm{~B}^{\prime}$ TO RUN
CB 9 C EAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS i-5 FIRST COMMON CAUSE FAILURE OR EDG ROOM COOLING COND. PROB, DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A. FAILS TO RUN GIVEN START
EDG ' 23 ' FATLS TO RUN GIVEN START
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST RELAY 62-5A FAILS TO ENERGIZE
COND, PROB. DG B LOADS ONTO BUS 1-6 FI IS EDG ' $2 \mathrm{H}^{\prime}$ EAILS TO RUN GIVEN START BDG 12 PH FAILS TO RTN GTVEN START COND PROB. DG A LOADS ONTO BUS $1-5$ EIRST EDG : $2 A$ F FAILS TO PUN GIVEN START EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT. COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI EDG * 2A' FAILS TO RUN GIVEN START EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MAINT. CCE OE SW-FCV-129 6130 TO OPEN CCF OF EDG'S : $2 A^{\prime}$ AND ' 28 ' TO START COND, PROB DG B LOADS ONTO BUS 1-6 FIRST EDG; 2A. FAILS TO RUN GIVEN START MMFRGENCY DESTEI GENERATOR' B' OOS FOR MAINT EMERGENCY DESTEL GENERATOR CONTACT PAIR 62-5B 4-6 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST CONTACT PAIR 62-5A 2-6 EAILS TO OPEN COND. PROR DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO EUS 1-5 FIRST EDG ' 2 B' EAILS TO RUN GIVEN START MOTOR OPERATED INTAKE DAMPER FAILS TO OREN COND. PROD DG A LOADS ONMO BIS $1-5$ ETRST GDG: 2 A R FAIIS TO RDN GIVEN START MOTOR OPERATEP INTAKE DAMPER FAILS TO OPEN EOAD. RHOB, DG A LOAOS ONTQ, DHY OOS FOR MAINT, EMERGENCY DESIEL GENERATOR 'R' OOS FOR MAINT.
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRSI
DIESEL 2A FAILS TO START
GDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
COND. PROB. DG A LOADS ONTO BUS $1-5$ ELRST OTESEL 2B EATLS TO START
EDG • 2 A' FAILIS TO RUN GIVEN STAR?
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 B ' FAILS TO RUN GIVEN START MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN COND. PROB. DG B TOADS ONTO BUS $1-6$ FIRSI EDG ' 2 A' FAILS TO RUN GIVEN START

RATE
RAIE

EXPOSURE

E.E.

ExPOSURE

MOD./CS.
PROB.
*5.87E-02
$1.10 E-3$
$4.00 E-4$
$4.00 \mathrm{E}-4$

1.0E-1
 0.06R

6
5.70E-04
$6.70 \mathrm{E}-04$
$1.10 \mathrm{E}-3$
$1.10 \mathrm{~B}-3$

$10 \mathrm{E}-3$	$2.64 \mathrm{E}-02$
$2.564 \mathrm{E}-02$	

$2.64 \mathrm{E}-02$
$5.00 \mathrm{E}-01$
6. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
2. $64 \mathrm{E}-02$
5.00E-0.
2. $64 \mathrm{E}-02$
$2.64 \mathrm{E}-02$
1.00E-02
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$

1. $00 \mathrm{E}-02$
$1.36 E-04$
1.36E-04 1.36E-04
1.06E-04 1.06E-04
$5.00 \mathrm{E}-01 \quad 1.32 \mathrm{E}-04$
2. $64 \mathrm{E}-02$
1.008-02
1.35E-04
1.35E-04
3. $75 \mathrm{E}-05$
$5.00 \mathrm{E}-01$
4. $35 \mathrm{E}-04$
5. $75 \mathrm{E}-05$

$5.00 \mathrm{E}-01 \quad 5.28 \mathrm{E}-05$
6. $64 \mathrm{E}-02$
7. $00 \mathrm{E}-03$
$5.00 \mathrm{E}-01 \quad 5.28 \mathrm{E}-05$
8. $64 \mathrm{E}-02$
$4.00 \mathrm{E}-03$
4.00E-03

1.00E-02

1. $00 \mathrm{E}-02$
2. COE -01 $\quad 3.70 \mathrm{E}-05$
1.COE-2
3. $80 \mathrm{E}-03$
4. $54 \mathrm{E}-02$
5.00E-01 3.70E-05
5. $80 \mathrm{E}-03$
6. $64 E-02$
$\div .60 \mathrm{E}-01$
7. $2.60 \mathrm{E}-01$
8. $64 \mathrm{E}-02$
9. $00 \mathrm{E}-03$
.00E-01 $\quad 5.28 \mathrm{E}-05$

AMVAK64B
22) AB 1 BAMA 4 ADGACPSE ADGEK02B
23) AB1BAIIC ADGACPSF ADGFJO2A
24) AB1BAM47 ADGACPSE ADGFJO2A
25) AB1BAM36 ADGACPSF ADGEJ02A
26) AB1BA841 ADGACPSF ADGFK02B
27) AB1BAM68 ADGACPSE ADGFJ02A
28) AB1BAM23 ADGACPSF ADGEK02B
29) AB1BA971 ADGACPSF ADGFJO2A
30) AB1BXM25 ADGACPSE ADGFKO2B
31) AB1BPM85 ADGACPSE ADGFKO2B
32) AB1BA09C ADGACPSE ADGFJO2A
33) AB1 BAM67 ADGACPSF ADGACPSF
34) ADGACPSF AFNECCRA
35) ADGACPSF ADGFJ02A WAVAK 130
36) ADGACPSE ADGFK02B WAVAJ129
37) ADGBCPSF ADGEK02B ADGEK02B
38) ADGBCPSE ADGEJO2A

MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS $7 O$ OPEN
COND, PROB. DG A LOADS ONTO BUS 1-5 EIRSI EDE ' $2 B^{\prime}$ FAILS TO RUN GIVEN START CB 11 C EAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 A^{\prime}$ FAIIS TO RUN GIVEN START
CB $26 C$ BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ FAILS TO OREN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CB 17 C BETWEEN MCC 3-7, MCC $6-7$ AND BUS $1-7$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS
EDG ' $2 A^{\prime}$ FAILS TO RUN G
CB 4841 FAILS TO OPEN
(FAILURE ASSUMED SAME AS CLOSE) COND. PROB. DG A LOADS ONTO BUS $1-5$ FIAST
EDG ' 2 ' FAILS TO RUN GIVEN START
CB 12D BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' 2 A FAILS TO RUN GIVEN START
CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EDG : 2 ' FAILS TO RUN GIVEN START
CB 4971 FAILS TO OPEN (EAILURE ASSUMED SAME AS CLOSE)
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' 2 A' EAILS TO RUN GIVEN START
CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LCADS ONTO BUS $1-5$ FIRST
EDG ' 2 B' EAILS TO RUN GIVEN START
CB $8 D$ BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND: PROB. DG A LOADS ONTE BUS TO RIN GIVEN START CB 9C FAILS TO OPEN (FAILURE RATE ASSU COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CB $14 C$ BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG ' 2 A' EAILS TO RUN GIVEN START
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
CCF OF SWGR ROOM 'A' INTAKE/EXHAUST FANS TO START AFTER LOSP (SCR COND PROB DG A LOADS ONTO BUS 1-5 ETRST EDG : $2 A$ ' FAILS TO RUN GIVEN START
SW-FCV-130 FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG; 2 ER EAILS TO RUN GIVEN START
SW-FCV-129 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
DIESEL 2B FAILS TO START
EDG ' $2 A$ ' EAILS TO RUN GIVEN START
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST DIESEL 2A FAILS TO START
4.00E-3

(ER SA
4. $00 \mathrm{E}-4$

1.10E-3

$1.10 \mathrm{E}-3$
$4.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
(ER SA
4.00E-8
1.10E-3
(ER SA
(UV CR
1.10E-1
(UV OR
(FR SA
(FR SA
(UV OR

$$
\begin{array}{r}
4 \\
4 \\
4
\end{array}
$$

1.10E-
(FR SA
6. $00 \mathrm{E}-4$
4. 10E-3
IER SA
(FR SA
UMED SAME AS CLOSE)
OSE)
1
(FR SA
$\begin{array}{ll}4 . \\ \\ \text { A } \\ 4 . \\ & 4.0\end{array}$
$4.10 \mathrm{E}-3$
$4.00 \mathrm{E}-4$
$1.108-3$
$4.005-4$
2.10E-3
$4.00 \mathrm{E}-4$

1. $10 \mathrm{E}-3$
$4.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$6.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$2.00 \mathrm{E}-3$
$1.10 \mathrm{E}-3$
$2.00 \mathrm{E}-3$
2. $80 \mathrm{E}-3$
$1.10 \mathrm{E}-3$
3. $80 \mathrm{E}-3$
B.E.

EXPOSURE
PROB.
4.00E-03 2. $40 \mathrm{E}-03$ 5. $60 \mathrm{E}-01$ $2.64 z-02$ 2. $40 \mathrm{E}-03$ $5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
$2.40 \mathrm{E}-03$
5.00E-01
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $24 \mathrm{E}-02$
2. $40 \mathrm{E}-0.3$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
$2.40 \mathrm{E}-03$
5.00E-01
2. $54 \mathrm{E}-02$
2.40E-03
5.00e-01
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
2.40E-03
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
5.00E-01
6. $00 \mathrm{E}-25$
5.00E-01
2. $64 \mathrm{E}-02$
$2.00 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
2.00E-03
$5.00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
2. $64 E-02$
5.00E-01
2.80E-03

MOT , 1 CS .
PROB.
$3.17 \mathrm{E}-05$
$3.17 E-05$
3. 17E-05
$3.17 E-05$
$3.17 e-05$
$3.27 \mathrm{E}-05$
$3.17 \mathrm{E}-05$
$3.17 E-05$
$3.17 \mathrm{E}-05$
$3.17 \mathrm{E}-05$
$3.17 \mathrm{E}-05$
3.17E-05
$3.00 \mathrm{E}-05$
2. $64 \mathrm{E}-05$
2. $64 E-05$
3.70E-05
3. $70 \mathrm{E}-05$

- \CUTSET IOLDABT.CUT Eilter: 'ACTIVE'

MODULE/EVENT NAME

ADGEK02B
39) ABIBA11C ADGBCPSF ADGEJO2A
4C) AB18XM25 ADGBCPSF ADGFK02B
41) AB1BAM67 ADGBCPSE ADGFJ02A
42) $A B 1$ PPM 85 ADGBCPSF ADGEKO2B
43) AB1BAM6B ADGBCPSE ADGFJ02A
44) AB1BAM4 7 ADGBCPSE ADGFJO2A
45) AB1BAO9C ADGBCPSF ADGEJ02A
46) ABIBAM44 ADGBCPSE ADGEK02B
(4) AB1BA971 ADGBCPSF ADGFJ02A
48) $\mathrm{AB} 1 \mathrm{BAB41}$ ADGBCPSE ADGFK02B
49) AB 1 BAM 36 ADGBCPSF ADGFJ02A
50) AB1BAM23 ADGBCPSF ADGFKO2B
51) ADGACPSF ADGQJ02A AMVAK64B
52) ADGACPS: ADGQK02B AMVAJ64A
53) ADGBCPSE ADGFKO2B WAVAJ129
5) ADGBCPSE ADGFJ02F WAVAK130
55) ACPAK5B4

CUTSET REPORT

DESCRIPTION

EDG '2日' FAILS TO RUN GIVEN START
CB IIC EAILS TO CLOSE
COND. PROB DG B LOADS ONTO BUS $1-6$ FIRST
EDG $+2 A$ ' FAILS TO RUN GIVEN START
CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-5$ FIRST
EDG ' $2 \mathrm{~B}^{\prime}$ EAILS TO RUN GIVEN START
CB 14C BETWEEN MCC 6-6, MCC 7-6 AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG 3 LOADS ONTO BUS $1-6$ FIRST
EDG ' 2 A' FAILS TO RUN GIVEN START
CB 8D BETWEEN MCC 8-5 AND BUS $1-5$ FATLS TO OREN COND. PROB. DG B LOADS ONTO BUS 1 - 6 FIRST EDG ; 2B' FAILS TO RIJN GIVEN START
CB 12 D BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO ODEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EDG ' 2 A' FAILS TO RUN GIVEN STAR'?
-7 FAILS TO OPEN

CB 16 C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSI EDG ' 2 A' FAILS TO RUN GIVEN START
CB OC FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG : $2 A$ ' FAILS TO RUN GIVEN START
CB 4C BETWEEN MCC $1-4$, MCC 4-4 AND BUS $1-4$ EAILS TO OREN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 2 ' ${ }^{\prime}$ FAILS TO RUN GIVEN START CB 4971 FAILS TO OREN (FAILURE ASSUMED COND. PROB. DG B L.OADS ONTO BUS $1-6$ EIRST EDG ' $2 A^{\prime}$ FAILS TO RUN GIVEN START
CB 4841 FAIIS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG : $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN STARI
CB $2 C$ BETWEEN MCC 2-4, MCC 3-4 AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 B' FAILS TO RUN GIVEN START
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR ' 2 ' O OS FOR MAINT
SMORGENCY DESIEL GENERATOR OPERATED INTAKE DAMPER FAILS TO OPEN
MOTOR OPERATED INTAKE DAMPER FAILS TO OPE:
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' B' OOS FOR MAINT.
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAIN
MOTOR OPERATED INTAKE DAMPER FAILS TO UPEN
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND. PROB. DG B LOADS ONTO BUS
GDG: 2 B FAILS TO RUN GIVEN START
SW-FCV-129 EAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-5$ FIRST
EDG : $2 A$: FAILS TO RUN GIVEN START
SW-FCV-130 FAILS TO OPEN
SW-FCV-130 FAILS TO OPEN
CONTACT PAIR $62-5 B$ 4-6 FAILS TO OPEN

10-04-93 8:57 Page 3

EXPQSURE	E.E. EROB.	MOD. ICS. PROB.
1	2. $64 \mathrm{E}-02$	
6	$2.40 \mathrm{E}-03$	3.17E-05
. 5	$5.00 \mathrm{E}-01$	
1	$2.64 \mathrm{E}-02$	
6	2.40E-03	3.17E-05
. 5	$5.00 \mathrm{E}-01$	
1	$2.64 \mathrm{E}-02$	
6	$2.40 \mathrm{E}-03$	3.17E-05
. 5	$5.00 \mathrm{E}-01$	
1	$2.64 \mathrm{E}-02$	
6	2. $40 \mathrm{E}-03$	3.17E-05
. 5	$5.00 \mathrm{E}-01$	
1	2.64E-02	
6	2. $40 \mathrm{E}-03$	$3.17 \mathrm{E}-05$
. 5	5.00E-01	
1	2. $64 \mathrm{E}-02$	
6	2.40E-03	$3.17 \mathrm{E}-05$
. 5	5.00E-01	
1	2.64E-02	
6	2. $40 \mathrm{E}-03$	$3.17 \mathrm{E}-05$
. 5	5.00E-01	
1	$2.64 \mathrm{E}-02$	
6	2.40E-03	$3.17 \mathrm{E}-05$
. 5	5.00E-01	
1	$2.64 \mathrm{E}-02$	
6	2.40E-03	$3.17 \mathrm{E}-05$
. 5	$5.00 \mathrm{E}-01$.	
1	$2.64 \mathrm{E}-02$	
6	2. $40 \mathrm{E}-03$	$3.17 \mathrm{e}-65$
. 5	5.00E-01	
1	$2.64 \mathrm{E}-02$	
6	2.40E-03	3.17E-05
. 5	5.00E-01	
1	2.64E-02	
6	2.40E-03	$3.17 \mathrm{E}-05$
. 5	5.00E-01	
1	$2.64 \mathrm{E}-02$	
. 5	5.00E-01	$2.00 \mathrm{E}-05$
1	1.00E-02	
,	4.00E-03	
. 5	5.00E-01	2.00E-05
1	1.00E-02	
1	4.00E-03	
. 5	5.00E-01	2. $64 \mathrm{E}-0.5$
1	2.64E-02	
1	2.00E-03	
. 5	$5.00 \mathrm{E}-01$	$2.64 \mathrm{E}-05$
1	2.64E-02	
1	2.00E-03	
8	1.08E-03	1.43E-05

COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' 2 A' FAILS TO RUN GIVEN START
COND. PROB. DG A TOADS ONTO BUS $1-5$ PTRSM
DIESEL 2A FAILS TO START
EMERGENCY DESIEL CENERATOR 'B' OOS FOR MAINT
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
DIESEL 2B EAIIS TO START
EMERGENCY DESIEL GENERATOR ' 2 A' COS FOR MAINT
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB 4841 FAILS TO OPEN (EAILURE ASSUMED SAME AS CLOSE) COND PROE. DG A LOADS ONTO BUS $1-5$ FIRST
MERCENCY DESIEL GENERATOR 'B' OOS FOR MAINT
CB 2C BETWEEN MCC 2-4, MCC 3-4 AND BUS $1-4$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT.
CB 14 C BETNEEN MCC 6-6, MCC 7-6 AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG A IOADS ONTO BUS $1-5$ FIPST
EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MAINT
C3 4971 FAILE TO OPEN (FAILURE ASSUMED SAME AS CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EMERGENCY DESIEI GENERATOR ' $2 A$ ' OOS FOR MAINT.
CB 12 D BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' $2 A$ ' COS FOR MAINT.
CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MAINT
CB GC EAILS TO OPEN (EAILURE RATE ASSUMED SAME AS CLOSE
COND PROB, DG A LOADS ONTO BUS $1-5$ EIRST
EMERGENCY DES $\angle L$ GENERATOR '2A. OOS FOR MAINT.
$C B$ BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
CB 6C BETWEEN NCC $2-5$, MCC $1-5$ AND BUS $1-5$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT. CB 11 C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT.
CB 16 C BETWEEN MCC $4-7$ MCC, 7-7 AND BUS $1-7$ FAILS TO OPEN CB 16 C BETWEEN MCC $4-7$ MCC,
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT.
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
COND. PROB. DG A LGADS ONTO BUS 1-S EIRST
EOND. PROB. DG A YAALS ONTE BUS TO RUN GTVEN START
SDG ' 2 ' FAILS TO RUN GIVEN START

RATE
B.E.

EXPOSURE

PROB.
MOD. ICS

- - -

(FR SA

S $\frac{1}{4}$
(FR SA
(UV OR
(ER SA

SA
(FR SA
$4.00 \mathrm{E}-$
1.00E-2
4.00E-4
$1.00 \mathrm{E}-2$
(FR SA
fFR SA

FR SA 4.00E-4
$1.00 \mathrm{E}-2$
4. OOE-4
1.00E-2
(ER SA
(FR SA
(FR SA
4.00E-4
1.00E-2
$4.00 \mathrm{E}-4$
1.0ne-2
$1.10 \mathrm{E}-3$
9.04E-4
$5.00 \mathrm{E}-01$
2.64E-02
5.00E-01
2. $80 \mathrm{E}-03$

1. $00 \mathrm{E}-02$
5.00E-01
2.80E-03
2. $00 \mathrm{E}-02$
$5.00 \mathrm{E}-01$
3. $00 \mathrm{E}-02$
4. $00 \mathrm{E}-03$
$2.40 E-03$
5.00E-01
1.00E-02
5. $40 \mathrm{E}-03$
2.40E-03
1.00E-02
6. $40 \mathrm{E}-03$
5.00E-01
7. $00 \mathrm{E}-02$
8. $40 \mathrm{E}-03$
5.00E-01
1.00E-02
9. $40 \mathrm{E}-03$
10. $40 \mathrm{E}-03$
11. $00 \mathrm{E}-01$
$1.00 \mathrm{E}-02$
12. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
5.00E-01
13. $00 \mathrm{E}-02$
14. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
1.00E-02
15. $40 \mathrm{E}-03$
16. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$1.00 \mathrm{E}-02$
17. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
18. $00 \mathrm{z}-02$
19. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
20. $00 \mathrm{E}-02$
1.00E-02
21. $40 \mathrm{E}-03$
22. $00 \mathrm{E}-01$
23. $00 \mathrm{E}-02$
1.00E
24. 40E $-03 \quad 1.20 \mathrm{E}-05$
5.00E-01
1.00E-02
$5.00 \mathrm{E}-01$
25. $64 \mathrm{E}-02$
9.04E-08

PROB.
$1.40 \mathrm{E}-05$
1.40E-05
2.00E-05
1.20E-05
$1.20 \mathrm{E}-05$

1. $20 \mathrm{E}-05$
2. $20 \mathrm{E}-0.5$
$1.20 \mathrm{E}-05$
1.20E-05
3. $20 \mathrm{E}-05$
4. $20 \mathrm{E}-05$
1.20E-05
$1.20 \mathrm{E}-05$
1.20E-05
5. $19 \mathrm{E}-05$

ICUTSETIOLDABT.CUT Filter: 'ACTIVE'

MODULE/EVENT NAME

DESCRIPTION
72) ADGACPSF ADGFKO2B AMVOJ64A
73) ACPSI 93 C ADGACPSF ADGFJ02A
74) ACPAXEOI ADGACPSF ADGFJ02A
75) ACPBX65C ADGACPSE ADGFJ02A
76) ACPAX701 ADGACPSE ADGFJ02A
77) АСРАЕ5АЗ ADGACPSE ADGFJOZA
78) ACPDJAO3 ADGACPSE ADGFK02B
79) ACPBX47C ADGACPSE ADGFKOZB
80) ACPBX72C ADGACPSF ADGFJ02A
81) ACPBI83C ADGACPSF ADGFKO2B
82) ACPBX513 ADGACPSE ADGFKO2B
83) $A C P E \times \times 61$ ADGACPSF ADGEJO2A
84) ACEBX42C ADGACPSE ADGFK02B
85) ACPAX401 ADGACPSF ADGEK02B
86) ACPBXX51 ADGACPSE ADGEK02B
87) ACPDKBO. ADGACPSF ADGEJ02A
88) ACPBK901 ADGACPSF

COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 B' $^{\prime}$ EAILS TO RUN GIVEN START MOTOR OPERATED TNTAKE DAMPER OOS FOR MANN CONTACT PAIR 27Y/1-9 3-3C FAIL TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST GDG ; 2 A FAILS TO RUN GIVEN START GONTACI PAIR 27-6 $2-10$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START CONTACT PAIR 27Y-6 5-5C FAILS TO CLOSE COND. PROE. DG A LOADS ONTO BUS $1=5$ FIRST EDG +2 A FAILS TO RUN GIVEN START CONTACT PAIR 27-7 z-10 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG : $2 A^{\prime}$ FALLS TO RUN GIVEN START CONTACT PAIR 62-5A 3-5 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' FAIL. 5 TO RUN GIVEN START AUX CONTACT PAIR 27Y/1-8 17 FAILS TO REMATN CLOSED COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR 27Y-4 7-7C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG: 2B FAILS TO RUN GIVEN START
CONTACT PAIR 27Y-7 2-2C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CONTACT PAIR 27Y/1-8 3-3C FAIL TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START CONTACT PAIR 27X-5 9-13 FAILS TO CLOSE COND. PROB. DG A LOAUS ONTO BUS 1-S FIRST EDG : 2 B . FAILS TO RUN GIVEN STARI CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRS? EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CONTACT PAIR $27 Y-4 \quad 2-2 C$ EAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 B ' FAILS TO RUN GIVEN START
CONTACT PAIR 27-4 2-10 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG; 2 B . FAILS TO RUN GIVEN START
EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN SIART
CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS COND. PROB. DG A LOADS ONTO BUS $1-$
EDG 28 FAILS TO RUN GIVEN START
EDG ' 28 F FAILS TO RUN GIVEN START
AUX CONTACI PAIR $27 Y / 1-917$ FAILS TO REMAIN CLOSEL COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A FAILE TO RUN GIVEN START
BREAKER 9C CP 15-16 FAILS TO CLOSE UPON BREAKER TRIP COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST

	. 5	5.00E-01	1.19E-05
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
9. $04 \mathrm{E}-4$	1	$9.04 \mathrm{E}-04$	
1. $35 \mathrm{E}-4$	6	8.10E-04	1.07E-05
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	8.10E-04	1.07E-0.5
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	$2.64 \mathrm{E}-02$	
1.35E-4	6	B. $10 \mathrm{E}-04$	1.07E-65
	. 5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
1.10E-3	1	2.64E-02	
$1.25 \mathrm{E}-7$	18	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
1.10E-3	1	$2.64 \mathrm{E}-02$	
1. $35 \mathrm{E}-4$	6	8. $10 \mathrm{E}-04$	1.07 E .05
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
$1.35 \mathrm{E}-4$	6	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	$8.10 \mathrm{E}-04$	7.07E-05
	. 5	5.0nz-01	
1.10E-3	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	8.10E-04	$2.07 \mathrm{E}-05$
	. 5	5.00E-01	
1.10E-3	1	2. $64 \mathrm{E}-52$	
1.35E-4	6	8. $10 \mathrm{E}-04$	$1.078-05$
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	2.64E-02	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
1.10E-3	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.25E-7	18	8.10E-C4	1.07E-05
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	8.10E-04	1.07E-05
	. 5	$5.00 \mathrm{E}-01$	

. VCUTSETIOLDART. LUT Filter: 'ACTIVE'

MODULE/EVENT NA:AE

ADGEJ02A
89) ACPAX613 ADGACPSE ADGFJ02A
90) ACPEXX7i ADGACPSF ADGEJO2A
91) ACPDJAO4 ADGACPSF ADGFKO2B
92) ACPDKB04 ADGACPSE ADGFJO2A
93) ACPBX52C ADGACPSE ADGFK02B
94) ACPBKSA2 ADGACPSE ADGFJ02A
35) ACPBX 74 C ADGACPSF ADGEJ02A
96) ACPBXX41 ADGACPSF ADGFK02B
97) ACPAX501 ADGACPSE ADGFKO2B
99) ADGACPSF ADGQJ02A WAVAK 130
99) ADGACPSF ADGQK02B WAVAJ129
100) ACPAR5B4 ADGBCPSE ADGBCPSE
ADGEJ02A
101) ADGBCPSF ADGEJO2A ADGEK02 B
102) ADGACPSF AMVAJ54A AMVAK64B
103) ABIRAM23 ADCBCPSE ADGQK02B
104) AB1BPM85 ADGBCPSF ADC2K02B
105) AB1 BXM25

DESCRIETION

EDG 2 AA FAILS TO RUN GIVEN START
CONTACI PAIR 27X-6 9-13 FAILS TO CLOSB
GOND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EDG: 2 A F FAIIS TO RIN GIVEN START
CONTACT PAIR 27X-7 9-13 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
EDG '2A' FAILS TO RUN GIVEN START
AUX CONTACT PAIR $2 / Y / 1-818$ FAILS TO REMAIN CLOSED
COND. PROB. DG A LOALS ONTO BUS $1-5$ FIRST
EDG ' 2 ' FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 \mathrm{Y} / 1-918$ EAILS TO REMAIN CLOSED
COND, PROB, DG A LOADS ONTO BUS $1-5$ EIRST
EDG : $2 A$. FAILS TO RUN GIVEN START
CONTACT PAIR $27 Y-5$ 2-2C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRS?
EDG '2B' FAILS TO RUN GIVEN START
CONTACT PAIR 62-6A $2-6$ FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CONTACT PAIR 27Y-7 4-4C EAILS TO CLOSE
COND PROB DG A LOADS ONTO BUS $1-5$ FIRS? EDG : 2A, FAILS TO RUN GIVEN START
CONTACT PAIR $27 \mathrm{X}-4$ 9-13 FAILS TO CLOSF
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 ' FAILS TO RUN GIVEN START
CONTACT PAIR 27-5 2-10 FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRS?
EDG ' 2 ' FAILS TO RUN GIVEN START
COND. PROB. DG A LOADS ONTO BUS 1-5 PIRS? EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ ' OOS FOR MAINT SN-FCV-130 FAIIS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO EMER B OES DESIEL GENERATOR B^{r} OOS MAINT. SW-FCV-129 FAILS TO OPEN
CONTACT PAIR 62-5B 4-6 FAILS TO OPEN
COND. FROB. DG B LOADS ONTO BUS 1-6 FIRST
EDG ' 2 A' EALLS TO RUN GIVEN START
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
DTESEL 2A FATLS TO START
EMERGENCY DESTEL. GENERATOR 'B' OOS FOR MAZNT
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. EROB. DG A LOADS OAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FALLS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EMERGENCY DESIEL, GENERATOR 'B' OOS FOR MAINT.
CB $8 D$ BETWEEN MCC $8-5$ AND BUS $1-5$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EMERGENCY DESTEL GENERATOR ' B^{\prime} OOS FOR MAINT CB GC BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN

RATE
RATE

Filter: 'ACTIVE'

MODULE/EVENT NAME

OESCRIPTION

ADGBCPSF ADGQKO2B
106) ABIBAB4I ADGBCPSF ADGQKO2B
107) AB1BAM44 ADGE \sim PSF ADGQK02B
108) ADGBCPSF ADGEJ02A AMVQK64B
109) ADGBCPSE ADGFK02B AMVQJ64A
110) ADGACPSF ADGFK028 ARCHX7Y4
(111) ADGACPSE ADGEJ02A ARCHX7Y6
1121 ADGACPSF ADGFJ02A ARCHKBO 4
113) ADGACPSF ADGFJ02A ARCMX276
114) ADGACPSE ADGFJO2A AFNEK64B
115) ADGACPSE ADGFKO2B ARCHJAO4
116) ADGACPSF ADGEK02B ARCMX 7×4
1177 ADGACPSE ADGFJ02A ARCHKB21
118) ADGACPSF ADGFJC2A ARCHKB05
119) ADGACPSE ADGFK02B ARCMXTX
120) ADGACPSE ADGFJ02A ARCMX277
121) ADGACPSE ADGFKO2B ARCH3ACS

COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAIN
CB 4841 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE COND. PROB. DG B LOADS ONTO BUS 1-6 EIRSE
EMERGENCY DESIEL GENERATOR *B' OOS FOR MAINT.
CB 4C BETWEEN MCC $1-4$, MCC $4-4$ AND BUS 1-4 FAIIS TO OPEN COND. PRCB. DG B LOADS ONTO BUS $1-6$ EIRST EMERGENCY DESIEL GENERATOR ' B ' OOS EOR MAINT.
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EDG ' 2 ' FAILS TO RUN GIVEN START
MOTOR OPERATED INTAKE EAMPER OOS FOR MAINT.
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 B' FAILS TO RUN GIVEN START MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 B^{\prime}$ ' EAILS TO RUN GIVEN START RELAY $27 Y-4$ EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG + 2 ' FAILS TO RUN GIVEN START RELAY $27 Y-6$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' EAILS TO RUN GIVEN START
RE:AY 27Y/1-9 FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 ' FAILS TO RUN GIVEN START RELAY 27-6 FAILS TO DE-ENERGIZE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 ' FAILS TO RUN GIVEN START FAN F-64-1B EAILS TO START
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 B ' FAILS TO RUN GIVEN START
RETAY $27 Y / 1-8$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START RELAY $27 \mathrm{X}-4$ FAILS TO DEENERGIZE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI EDG ' 2 A' FAILS TO RUN GIVEN START RELAY $27 \times 2 / 1-9$ FAILS TO ENERGIZE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG • 2 A' FAILS TO RUN GIVEN START RELAY $27 \times / 1-9$ FAILS TO ENERGIZE RELAY $27 X / 1-9$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST COND. PROB. DG A LOADS ONTO BUS
EDG ' $2 B^{\prime}$ ' FATLS TO RUN GIVEN STAR EDG ' 2 ' FATLS TO RUN GIVEN STAR
RELAY $27 \mathrm{X}-5$ FAILS TO DE-ENERGI2E
RELAY $27 \mathrm{X}-5$ FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RELAY 27-7 FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1 -5 FIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
$1.00 \mathrm{E}-2$
$1.10 \mathrm{E}-3$
$9.04 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$9.04 \mathrm{E}-4$
1.10E-3

1. $00 E-4$
$.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
. $00 \mathrm{E}-4$
2. $10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$6.00 \mathrm{E}-4$
1.10E-3
$1.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$1.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
1.10E-3
$1.00 \mathrm{E}-4$
3. $10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
4. $10 \mathrm{E}-3$
$1.00 e^{4}$
$1.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
5. $10 \mathrm{E}-3$
1.00E-4
1.00E-2
$.00 \mathrm{E}-4$
1
6
B.E.

EXPOSURE

MOD. 7 CS
PROB.

500-01
1 . $00 \mathrm{z}-02$
2.40E-03 \quad 1.20E-05
5. $00 \mathrm{E}-01$
1.00E-02
2.40E-03
5.00E-01
5. $00 \mathrm{E}-01$
1.00E-02
5.00E-01
2. $645-02$
$9.04 \mathrm{E}-04$
5.00E-01
2. $64 E-02$
9. C4E-04
5.00E-01
2. $54 \mathrm{~F}-02$
2. $64 \mathrm{E}-02$
$6.00 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.00E-04
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
2. $54 \mathrm{E}-02$
6.00E-04
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-\mathrm{n} 2$
6. $00 \mathrm{E}-14$
$5.00 \mathrm{z}-21$
2.64E-02
6.00E-04
5.00E-01
2. $64 \mathrm{E}-\mathrm{C} 2$
6.00E-04
5.00E-01
$2.64 \mathrm{E}-02$
6.00E-04
5. $00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.00E-04
5.00E-01
2. 64E-02
6. $00 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $54 \mathrm{E}-02$
6.008-04
7. $92 \mathrm{E}-06$

- ICUTSETIOLDABT.CUT Eilter: 'ACTIVE'

MODULE/EVENT NAME

DESCRIPTION

CUTSET REPORT

COND PROB, DG A 1 OADS ONTO BUS $1-5$ FIRS EDG ' 2 Br FAILS TO RUN GIVEN START
EAN F-64-1A FAILS TO 5TART
FAN E-64-1A EAILS TO 5TART
COND. PROB. DG A LOADS ONTO BUS $1-5$ PIRST EDG: $2 A$ ' FAILS TO NUN GIVEN START
RELAY 27Y:/1-9 FAILS TO DEENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG 2 RA EAILS TO RUN GTVEN START
RELAY $27 Y-7$ FAILS TO EPERGIZE
COND PROB, DG A Li 5 ONTO BUS $1-5$ FTRS EOND : 2 Br $^{\prime}$ FAILS TO T TN GIVEN STARI EDG ' 28^{\prime} FAILS TO STN GIVEN STAR
RELAY $27-4$ FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRSI EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
RELAY $27 Y 1 / 1-8$ FAILS TO DEENERGIZE
COND. PROB, DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN. START
RELAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGIZE
COND PROB, DG A LOADS ONTO BUS $1-5$ PTRST EOND ; $2 B^{\prime}$ FAIIS TO RUN GTYEN START EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIFEN SIART RELAY $27-5$ EAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTC BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RON GIVEN START
RELAY $27 \mathrm{X}-7$ EAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START RELAY 27Y-5 FAILS TO ENERGIZE
COND PROR. DG A LOADS ONTO BUS $1-5$ EIRST EDG : $2 A$. FAILS TO RUN GIVEN START EDG ' $2 A$ ' FAILS TO RUN GIVEN S
RELAY 62-6A EAILS TO ENERGIOE
COND. PROB. DG A LOADS ONTO BUS EDG ' 2 A' FAIIS TO RUN GIVEN START RELAY 62-5A FAILS TO DEENERGI2E COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG * 2 B' FAILS TO RUN GIVEN START REIAY $27 Y 2 / 1-8$ FAILS TO ENERGIZE. COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG: 2A: FAILS TO RUN GIVEN START
RELAY 62-5B FAILS TO DEENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST RELAY 62-5B FAILS TO REMAIN ENERGIZED
CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE COND. PROB. DG B L.OADS ONTO BUS $1-6$ EIRST EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PATR 27-6 $2-10$ FAILS TO OPEN
CONTACT PAIR 27-6 2-10 FAILS TO OPEN COND : PROB. DG B LOADS ONTO BUS
EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CONTACT PAIR $27-4 \quad 2-10$ FAILS TO OPEN
CONTACT PAIR $27-4 \quad 2-10$ FAILS TO OREN
COND. PROB. DG 3 LOADS ONTO BUS $1-6$ FIRSI EDG ' 28 ' FAILS TO RUN GIVEN START
122) ADGACPSF ADCFKO2B ARNEJ64A
123) ADGACPSF ADGEJO2A ARCMKBO1
124: ADGACPSE ADGFJO2A ARCHX7Y7
ADGFK02B ARCMX 274
126) ADGACPSF ADGFKO2B
127) ADGACPSE ADGEJ02A ARCMX7X6
12B) ADGACDE: ALGEK02B ARCMX275
129) ADGACPS: ADGFJ02A ARCMX 7×7
130) ADGACPSF ADGFK02B ARCHXTY5
131) ADGACPSE ADGFJ02A ARCHKO8A
132) ADGACPSE ADGEJ02A ARCMJ15A
133) ADGACPSE ADGFKO2B ARCHJA2 21
134) ADGACPSF ADGFJ02A ARCMK15B
(135) ADGACPS ARCJU15B
136) ACPBXX5 ADGBCESE ADGFKO2R
137) ACPAX601 ADGBCPSF ADGFJ02A
138) ACPAX401 ADGBCESE ADGFK02B
$10-04-93$
8:57 Page
B

. ICUTSETIOLDABT.CUT
Filter: 'ACTIVE'

MODULE/EVENT NAME

DESCRIPTION
139) ACPBI93C ADGBCPSF ADGBCPSF
140) ACPDTAO4 ADGBCPSE ADGFKO2B
141) ACPBX42C ADGBCPSE ADGFK02B
142) ACPBXXT1 ADGBCPSE ADGBCIO2A
1431 ACPAX701 ADGBCPSF ADGBCJO2A
44) ACPDKBO4 ADGBCPSF ADGFJ02A
145) ACPDJA03 ADGBCPSE ADGFK02B
146) ACPBK5A. ADGBCPSE ADGFJ02A
147) ACPBX47C ADGBCPSE ADGFK02B
148) ACPBX65C ADGBCPSE ADGBC.SE
9) $A C P B I 83 C$ ADGBCPSF ADGFK02E
150) ACPBK90 ADGBCPS: ADGFJO2A
151) ACPAX501 ADGBCPSE ADGFKO2B
1521 ACPBX52C ADGBCPSF ADGFK02B
153) ACPAK5A3 ADGBCPSF ADGFJ02A
154) ACPBXS13 ADCHCPSF AワGEK02B
155) ACPDKB0 3 3-GBCPSE

CONTACT PAIR $27 Y / 1-9$ 3-3C EAIL TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSL EDG ' 2 A' FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-818$ FAILS TO REMATN CLOSEC COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EDG : $2 B^{\prime}$ FAILS TO RUN GTVEN START CONTACI PAIR $27 \mathrm{Y}-4 \quad 2-2 \mathrm{C}$ EAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG $\cdot 2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR $27 \mathrm{X}-7$ 9-13 EAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG • $2 A$ ' EAILS TO RUN GIVEN START
CONTACT PAIR 27-7 2-10 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ; 2A. FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-9$ 18 FAILS TO REMAIN CLOSED COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG : $2 A$ P FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-8$ IT EAIIS TO REMATN CLOSED COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG $\cdot 2$ B' FAILS TO RUN GIVEN START
CONTACT PAIR 62-6A 2-6 FAILS TO CLOSE
COND PROB. DG B IOADS ONTO BUS $1-6$ EIRST COND. PROB. DG B ROAUS GIVEN START
EDG '2A' FAILS TO RUN GIVEN START
CONTACT PATR $27 Y-4 \quad 7-7$ C EAILS TO CLOSE
CONTACT PAIR $27 Y-4$ I- 1 EALLS
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 B ' FAILS TO RUN GIVEN START
CONTACT PAIR 27Y-6 5-5C EAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CONTACT PAIR 27Y/1-8 3-3C FATL TO CLOSE
COND PROB DG B IOADS ONTO BUS $1-6$ FTRST
EDG : 2 B : FAILS TO RUN GIVEN START
EDG ' 2 B ' FAILS TO RUN GIVEN START
BREAKER 9 C CP $15-16$ FAILS TO CLOSE UPON BREAKER TRIP
BREAKER 9 C CP $15-16$ FAILS TO CLOSE URON
COND. PROB DG B LOADS ONTO BUS $1-6$ FIRST
EDG : 2 A FAILS TO RUN GIVEN START
CONTACT PAIR 27-5 $2-10$ EAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRS?
EDG ' $2 \mathrm{~B}^{\prime}$ FALLS TO RUN GIVEN START
CONTACT PAIR $27 Y-5 \quad 2-2 C$ FAILS TO CLOSE
COND PROB DG B LOADS ONTO BUS $1-6$ FIRS COND: PROB. DG FALLS TO RUN GIVEN START
EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN STARE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSI EDG ' $2 A$ F FAILS TO RUN GIVEN START
CONTACT PAIR 27X-5 9-13 FAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSI
QDG ' 2 B ' FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-917$ FAILS TO REMAIN CLOSED COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRS

RATE

$1.35 \mathrm{E}-4$	$\begin{aligned} & 6 \\ & .5 \end{aligned}$	$\begin{aligned} & \text { B. } 10 \mathrm{E}-04 \\ & 5.00 \mathrm{E}-01 \end{aligned}$	$1.078-05$
1.10E-3	1	$2.64 E-02$	
1.25E-7	18	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	$2.64 \mathrm{E}-02$	
1.35E-4	6	8.10E-04	1.07E-05
	. 5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2.64E-02	
$1.35 E-4$	6	8. $10 \mathrm{E}-04$	1.07E-05
	. 5	5.00E-01	
1.10E-3	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
$1.258-7$	18	8.10E-0.4	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.25 \mathrm{E}-7$	16	8.10E-04	$1.075-05$
	. 5	5. $30 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
$1.35 \mathrm{E}-4$	6	8. $10 \mathrm{c}-04$	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-6$:	
$1.10 \mathrm{E}-3$	1	2.64E-02	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2.64E-02	
1. $35 E-4$	6	8. 10E-04	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
1. $35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	$1.07 E-05$
	. 5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	. 5	$5.00 \mathrm{E}-01$	
1.10E-3	1	$2.64 \mathrm{E}-02$	
1.35E-4	6	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	2.64E-02	
1.35E-4	6	8.10E-04	1.07e-05
	. 5	5.00E-01	
1.10E -3	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	1. $2.07 \mathrm{E}-05$
	. 5	5.00E-01	
1.10E-3	1	2. $64 \mathrm{E}-02$	
$1.35 E-4$	6	8.10E-04	1.07E-05
	. 5	5.00E-01	
1.10E-3	1	$2.64 \mathrm{E}-02$	
$1.255-7$	18	8.10E-04	1.07e-05
	. 5	5.00E-C1	

. CUTSETIOLDABT.CUT Filter: 'ACTIVE'

ADGFJ02A
156) ACPBX74C ADGBCPSE ADGFJ02A
157) ACPBXX61 ADGBCPSF ADGEUC.A
458) ACPBX72C ADGBCPSE ADGFJO2A
159) ACPBX613 ADGBCPSF ADGFJO2A
160) ACPBXX4 AUGBCPSF ADGFK02B
161) ADGBCPSF ADGQKO2B ADAVAJ129
162) AB1DA09C ADGACPSF 3) ADGACPSE DB1DAA19
164) ADGACPSF DB1DAB08
165) ADGACPSF ADGEJO2A AMVAK 64 B
66) ADGACPSF ADGEK02B AMVAJ64A
1671 ACPATE 5 ADGACPSE ADGQJO2A
168) ADGBCPSF AMVAJ64A AMVAX64B
169) ADGBCPSF ADGFJ02A ARCHK08A
170) ADGBCPSE ADGFK02B ARCMX275
171) ADGBCPSE ADGFJO2A ARCMKBO1
1721 ADGBCPSE ADGFKO2B AFNEJ64A
173) ADGBCRS

EDG '2A' FAILS TO RUN GIVEN STARI
CONTACT PAIR 27Y -7 4-4C FAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST SDG ; 2A' FAILS TO RUN GIVEN START CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FAIIS TO CLOSE COND. PROB. DG B LOADS ONTO BUS 1-6 FIRS: EDG ' 2 A' FAILS TO RUN GIVEN STRRT
CONTACT PAIR $27 \mathrm{Y}-7 \quad 2-2 C$ FATLS TO CLOSE COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EDG ' 2A' FAILS TO RUN GIVEN START CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE COND. PROB. DG E LOADS ONTO BUS 1-6 FIRST EDG: $2 A$ FAITS TO RUN GIVEN START EDG 2A FAILS TO RUN GIVEN START CONTACT PAIR $27 X-4$ 9-13 FAILS 10 CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B LOADS ONTO BUS $1-6$
EDG ; $2 B^{\prime}$ FAILS TO RUN GIVEN START COND 28 FAILS IO RON GIVEN STAR COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EMERGENCY DESIEI GENERATOR 'A' OOS EOR MAINT SW-FCV-129 FAILS TO OPEN
CB 9C FTRC THAT RREVENTS 11C CLOSURE (LOW PROB. CATASTROP日TCEVENT) COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FTRST CB 19 OFF OF DC BUS A FAIIS TO REMAIN CLOSED CB 19 OFE OE DC BUS A EAILS BUS COND . PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 8 OFF OF DC BUS BX EAILS TO REMAIN CLOSED COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2A FAILS TO START
MOTOR OPERATED INTAKE DAMPER FAIIS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRSI DIESEL 2B FAILS TO START
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATE PATR 62-5B 4-6 FAILS TO OPEN COND PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MAINT COND. PROB. DG E LOADS ONTO BUS 1-6 FIRSI MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EDG ' 2 A' FAILS TO RUN GIVEN START RELAY 62-6A FAILS TO ENERGI2E
ROND PROB DG B IOADS ONTO BUS $1-6$ ETRST COND. PROB. DG B LOADS GIVEN START EDG * 2 ' FAILS TO RUN GIVEN STA
RELAY $27-5$ FAILS TO DE-ENERGIZE RELAY 27-5 EAILS TO DE-ENERGIZE COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START RELAY $27 Y 1 / 1-9$ FALLS TO DEENERGIZE COND. PFOB. DG B LOADS ONTO BUS $1-6$ EIRST EDG ${ }^{\prime} 2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START EAN E-64-1A EAILS TO START
COND DROB. DG B LOADS ONTO BUS 1-5 FIRST

$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.35 \mathrm{E}-$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
	.5	$5.00 \mathrm{E}-01$	$1.00 \mathrm{E}-05$
$1.00 \mathrm{E}-2$	1	$1.00 \mathrm{E}-02$	
$2.00 \mathrm{E}-3$	1	$2.00 \mathrm{E}-03$	
$5.00 \mathrm{E}-7$	1	$1.20 \mathrm{E}-05$	$6.00 \mathrm{E}-06$
	.5	$5.00 \mathrm{E}-01$	
	.5	$5.00 \mathrm{E}-01$	$6.00 \mathrm{E}-06$
$5.00 \mathrm{E}-7$	1	$1.20 \mathrm{E}-05$	
	.5	$5.00 \mathrm{E}-01$	$6.00 \mathrm{E}-06$
$5.00 \mathrm{E}-7$	1	$1.20 \mathrm{E}-05$	
	.5	$5.00 \mathrm{E}-01$	$5.60 \mathrm{E}-06$
$1.80 \mathrm{E}-3$	1	$2.80 \mathrm{E}-03$	
$1.00 \mathrm{E}-4$	5	$4.00 \mathrm{E}-03$	
$1.0 \mathrm{E}-3$	1	$5.00 \mathrm{E}-01$	$5.60 \mathrm{E}-06$
$1.00 \mathrm{E}-4$	1	$5.00 \mathrm{E}-3$	1

B.E. XPOSURE

EDG ' 2 A' EAILS TO RUN GIVEN START
RELAY 27YZ/1-9 FAILS TO ENERGIZE
COND, PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RELAY $27 Y / 1-9$ EAILS TO ENERGIZE COND. PROB. DG B LOADS ONTO BUS 1-6 EIKST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RRLAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGIZE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 \mathrm{~B}^{\prime}$ EAILS TO RUN GIVEN START RELAY 27Y/1-8 FAILS TO ENERGIZE
COND. P' $O O B$. DG B LOADS ONTO BUS $1-6$ FIRSI EDG : $2 A^{\prime}$ ' EAILS TO RUN GIVEN START RELAY 27Y-7 FAILS TC ENERGIZE
COND. PROB. DG B LOADS INTO BUS 1-6 EIRST EDG ' $2 A$ F FAILS TO RUN GI IEN START
RELAY $27-7$ FAILS TO DE-EN. RGIZE
COND. PROB. DG B LOADS ONIO BUS 1-6 FIRSI EDG $\cdot 2$ F' FAILS TO RUN GIVE: 2 START
RELAY $27 \times 2 / 1-8$ FAILS to ENEJGT2E
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG: 2A. FAIL 3 TO RUN GIVEN START RELAY $62-5 B$ FAILS TO DEENERGIZE COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 2 A' EAILS TO RUN GIVEN START
RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
COND. PROB. DG B LOADS ONTO BUS $2-6$ FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RELAY 62-5A FAILS TO DEENERGIZE
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST ENG : 2B' FATLS TO RUN GIVEN START
RELAY 27-4 FAILS TO DE-ENERGIZE
COND. PROB. DG i LOADS ONTO BUS $1-6$ EIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
RELAY $27 Y-4$ FAILS TC ENERGIZE
COND. PRCB. DG B LOADS ONTO BUS $1-6$ FIRST EDG $=2 \mathrm{~B}^{\text {r }}$ FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-4$ FAILS TO DEENERGIZE
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X} / 1-8$ FALLS TO ENERGI2E
RELAY $27 \mathrm{X} / 1-8$ FAILS TO ENERGIZE
COND. FROB. DG B LOADS ONTO BUS $1-6$ FIRSI EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-7$ FAILS TO DE-ENERGIZE
COND. PROB. DG B LOADS ONTO BUS 1 -6 FIRST EDC $\cdot 2$ ' FAILS TO RUN GIVEN START
RELAY $27 Y-5$ FAILS TO ENERGIZE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FTRST EDG ' ZA' FAILS TO RUN GIVEN START
FAN F-64-1B FAILS TO START

RATE
RATE

$\begin{aligned} & 1.10 \mathrm{E}-3 \\ & 1.00 \mathrm{E}-4 \end{aligned}$	1
	6
	. 5
1.10E-3	1
$1.00 \mathrm{E}-9$	6
	. 5
$1.20 \mathrm{E}-3$	1
1.00E-4	6
	. 5
$1.108-3$	1
1.00E-4	6
	. 5
$1.10 E-3$	1
1.00E-4	6
	. 5
$1.10 \mathrm{E}-3$	1
1.00E-4	6
	.5
$1.10 \mathrm{E}-3$	1
$1.00 \mathrm{E}-4$	6
	. 5
$1.10 E-3$$1.00 E-4$	1
	6
	. 5
$1.10 \mathrm{E}-3$	1
$1.00 \mathrm{E}-4$	6
	. 5
$1.10 \mathrm{E}-3$	1
$1.00 \mathrm{E}-4$	6
	. 5
1.10E-3	1
1.00E-4	6
	. 5
1.10E-3	1
1.00E-4	6
	. 5
$\begin{aligned} & 1.10 \mathrm{E}-3 \\ & 1.00 \mathrm{E}-4 \end{aligned}$	1
	6
	. 5
1.10E-3	1
$1.00 \mathrm{E}-4$	6
	. 5
$1.10 \mathrm{E}-3$	1
1.00E-4	6
	. 5
1.10t-3	1
1. $00 \mathrm{E}-4$	6
	$;$
$1.10 \mathrm{E}-3$	1
6.00E-4	1

MOD./CS PROB.

ADGFJO2A ARCHKB21
174) ADGBCPSF ADGEJO2A ARCHKBO4
175) ADGBCESF ADGFJ02A
ARCMXIXG
ADGFKO2R ADCH 7 AO
177) ADGBCPSF ADGFJ02A ARCHX7Y7
178) ADGBCPSE ADGFJ02A ARCMX273
179) ADGBCPSE ADGFK02B ARCHJA2) ADGBCPSE ARCMK 15 S
181) ADGBCPSF ADGFJ02A ARCHRBO5
182) ADGBCPSE ADGFJ02A
183) ADGBCPSE ADCTK02B ARCMX274
184) ADGBCPSE ADGFK02B ARCHX7Y4
185) ADGBCPSE ADGFK02B ARCMX7 $\times 4$
186) ADGBCPSF ADGFK02B ARCHJAOS
187) ADGBCPS: ADGFJ02A ARCMX7X7
183) ADGBCPSF ADGFKO2B ARCHX7Y5
189) ADGBCPSF ADGFJO2A AENEK64B

2, 64E-02
6.005-0.
5.00E-01
2. w, $E-02$
6.00E-04
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
S. $00 \mathrm{E}-01$
2. $\mathrm{CAE}=-02$
2. $64 \mathrm{E}=-02$
6.00E-J4
5.00E-01
2. $64 \mathrm{E}-02$
6.00E-04
5.00E-
$2.64 \mathrm{E}-0.2$
$6.00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.00E-04
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.03E-04
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.00E-04
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
6.00E-0.
5.00E-01
2. $64 \mathrm{E}-02$
5. $00 \mathrm{E}-04$
5.00E-01
2. $64 \mathrm{E}-02$
2. $64 \mathrm{E}-02$
5.00E-01
2. $64 \mathrm{E}-02$
6.00E-04
5.00E-01
$2.64 \mathrm{E}-02$
5.00E-04
5.00E-01
2. $64 \mathrm{E}-02$
2. $64 \mathrm{E}-02$
6.00E-04
5. $00 \mathrm{E}-01$
2. $44 \mathrm{E}-02$
6.00E-04
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6. 00E-04

Filter：＇ACTIVE＇
MODULE／EVENT NAME

190）ADGBCPSF ADGFK02B A ACMY 7×5
191）ADCBCPSE ADGFJO2A ARCHX7Y 6
192）$A D G B C P S E$ ADGFJ02A ARCMX276
193）AB1BAM36 ADGACPSE AMVAJ64A
194）AB1BAM44 ADGACPSF AMVAK64B
951 AB1BXM25 ADGACPSF AMVAK64B
196）AB1BA09C ADGACPSE AMVAJ64A
197）AB1 BAM23 ADGACPSE AMVAK64B
291 AB1BAM68 ADGACPSF AMVAJ64A
199）AB1BA841 ADGACPSE AMVAK64B
200）AB1 BAM47 ADCACPSF AMVAJ64A
201）AB1BFM85 ADGACPSF AMVAK64B
202）AB1BAM67 ADGACPSF AMVAJ64A
203）AA1 AA971 ADGACPSP AMVAJ64A
204）ABIEALIC ADGACPSE AMVA．364A
205）ADGACPSF ADGQKO2B AMVQJ64A
206）ADGACPSF ADGQJ02A

COND．PROB．DG B LOADS ONTO BUS $1-6$ FIRST EDG $\cdot 2 \mathrm{~B}$＇FAILS TO RUN GIVEN START
RELAY 27X－S EAILS TO DE－VNERGIZR
COND．PROB．DG B LOADS ONTO BUS 1－6 EIRST EDG $\cdot 2 A^{\prime}$ FAILS TO RUN G？START
RELAY $27 Y-6$ FAILS TO ENt C $Z E$
COND．PROB．DG B LOADS ON O BUS $1-6$ FIRST EDG＇ 2 A＇FAILS TO RUN GIVEN START
RELAY 27－6 EAILS TO DE－ENERGIZE
CB $17 C$ RETHEEN VCC $3-7$ ，MCC $6-7$ AND BUS $1-7$ EAILS TO OPEN COND．PROB．DG A LOACS ONTO BUS 1－5 FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN
C $: ~ 1 C$ BETWEEN MCC $1-4$ ，MCC 4－4 AND BUS $1-4$ FAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB 5 C BETWEEN MCC $2-5$ ，MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER FATLS TO OPEN
CB 9C FAILS TO OPEN GOS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TC OPEN
CB 2C BETWEEN MCC $2-4$ ，MCC $3-4$ AND BUS $1-4$ FAILS TO OPFN COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CB 12 D BETWEEN MCC 8－6 AND BUS $1-6$ EAILS TO OREN COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMEER EAILS TO OPEN CB 4841 FAILS TO OREN（EAILURE ASSUMED
COND PROB DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAIIS TO ODE CB 16 C BETWEEN MCC $4-7$ MCC， $7-$ ？AND BUS $1-7$ FAILS TO OPEE COND PROB．DG A LOADS ONTO BUS $1-5$ FIRST COND．PROB．DG A LOADS ONTO BUS $1-5$ FTRSI
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER FAILS TO OREN
CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ EAILS TO OREN COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN CB 14 C BETWEEN MCC 6－6，MCC 7－6 AND BUS $1-6$ FAILS TO OPEN COND．PROB．DG A LOADS ONTO BUS 1－5 FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CB 4971 इमIIS TO OPFN
（EAILURE ASSUMED SAME AS CLOSE）
COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST MOTGR OPERATED INTAKE DAMPER EATLS TO OPEN CB 11C FAILS TO CLOSE
COND．PROB．DG A LOADS ONTO BUC $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPE FAILS TO OREN
COND．PROB．DG A LOADS ONTO BUS I－5 FIRSI
EMERGENCY DESIEL GENERATOT＇B＇OOS FOR MAINT
MOTOR OPERATED INTAKE DAMFER OOS FOR MAINT
COND．PROB．DG A LCADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR＇ $2 A$＇OOS FOR MAINT．

RATE

1．10E－3
1．00E－4
1．10E－3
1．00E－4
$1.10 \mathrm{E}-3$
1． $.00 \mathrm{E}-4$
（ER SA
（FR SA
（FR SA
4．00E－3
（FR SA
4．00E－
．00E－3
$4.00 \mathrm{E}-4$
$4.00 \mathrm{E}-3$
（FR SA
4．00E－

4．00E－3
（FR SA
（IN OR
（FR SA
（FR SA
（FR SA
（ER SA

IUV OR
4．00E－4
$4.00 \mathrm{z}-3$

4．．00E－3
－ $4.00 \mathrm{E}-3$
$4.00 E-3$
$4.00 E-4$
4． $00 \mathrm{E}-3$

4． $00 \mathrm{E}-3$
$4.00 \mathrm{E}-4$
$4.00 \mathrm{E}-3$
1．00E－2
$9.04 \mathrm{E}-4$
1．00E－2

EXPOSURE
B．E．

1
6
5
.5
PROB．
MOD．PCS． PROB．

． 5	$5.00 \mathrm{E}-01$	7． $92 \mathrm{E}-06$
1	$2.64 \mathrm{E}-02$	
6	6．00E－04	
． 5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
1	$2.64 \mathrm{E}-02$	
6	6．00E－04	
． 5	5．00E－01	$7.92 \mathrm{E}-06$
1	$2.64 \mathrm{E}-02$	
6	$6.00 \mathrm{E}-04$	
6	2．40E－03	4．80E－06
． 5	5．2ぐ－01	
1	1．00E－03	
6	2 $40 E-33$	4．80E－06
． 5	5 フOE－ 01	
1	$4.00 \mathrm{E}-03$	
6	c． $40 \mathrm{E}-03$	4．80E－06
． 5	$5.00 \mathrm{E}-01$	
1	4．00E－03	
6	2．40E－03	3． $80 \mathrm{E}-06$
． 5	5．00E－01	
1	4．00E－03	
6	2．40E－03	4．80E－06
． 5	5．00E－01	
1	4．00E－03	
6	2． $40 \mathrm{E}-03$	4．80E－06
． 5	$5.00 \mathrm{E}-01$	
1	4． $00 \mathrm{E}-03$	
6	2． $40 \mathrm{E}-03$	4． $80 \mathrm{E}-06$
． 5	5．00E－01	
1	4．00E－03	
6	2．40E－03	4． $80 \mathrm{E}-05$
． 5	5．00E－01	
1	4．00E－03	
6	2．40E－03	4．80E－06
． 5	$5.00 \mathrm{E}-01$	
1	4．00E－03	
6	2． $40 \mathrm{E}-03$	4．80E－06
． 5	5．00E－01	
1	4．00E－03	
6	2．40E－03	x． $80 \mathrm{E}-06$
． 5	5．00E－01	
1	4．00E -03	
6	2． $40 \mathrm{E}-03$	A． $80 \mathrm{E}-06$
． 5	5．00E－01	
1	4．00E－03	
． 5	5． $000 \mathrm{E}-01$	4．52E－06
1	1．00E－02	
1	$9.04 \mathrm{E}-04$	
． 5	5．00E－01	4．52E－06
1	1．00z－02	

- CUTSET IOLDABT.CUT Fllter: 'ACTIVE'

MODULE/EVENT NAME

DESCRIPTION

AMVQK64B
207) ACPBK5A2 ADGACPSE ADGQJ02A
208) ACPAX701 ADGACPSF ADGQJ02A
209) ACDAK5A3 ADGACPSF ADGQJ02A
210) ACPEXX41 ADGACPSE ADGQK02B
211) ACPAX601 ADGACPSF ADGQJO2A
212) ACPMX42C ADGACPSE ADGOK02B
213) ACPBX65C ADGACPSE ADGQJ02A
214) ACPAX501 ADGACPSF ADGQK02B
215) ACPBX47C ADGACPSE ADGOK02B
216) ACPBX513 ADGACPSF ADGQK02B
2i7) ACPBX52C ADGACPSE ADGQK02B
218) ACPDJAO4 ADGACPSE ADGOKO2B
219) ACPDKBO4 ADGACPSF ADGQJO2A
220) ACPDKB03 ADGACPSE ADGQJ02A
221) $\mathrm{ACPBX} \times 51$ ADGACPSE ADGQK02B
222) ACPBXX71 ADGACPSE ADGQJ02A
223) ACPBX613

MOTOR OPERATED INTAKE DAMPER COS FOR MAINT.
CONTACT PAIR 62-6A 2-6 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRS EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MAINT CONTACT PATR 27-7 $2-10$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' 2 A ' OOS EOR MAINT. CONTACT PAIR 62-5A 3-5 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR $2 A$ OOS EOR MAINT CONTACT PAIR 27X-4 9-13 PAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR ' B^{*} OOS FOR MAINT. CONTACT PAIR 27-6 $2-10$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' $2 A^{*}$ OOS FOR MAINT. CONTACT PAIR 27Y-4 2-2C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT. CONTACT PAIR 27Y-6 5-5C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MATNT CONTACT PATR $27-5 \quad 2-10$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSE EMERGENCY DESIEL GENERATOR' B^{\prime} OOS FOR MAINT. CONTACT PAIR 27Y-4 7-7C FAILS TO CLOSE COND. RROB. DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR * Br OOS : R MAINT. CONTACT PAIR 27X-5 9-13 FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT CONTACT PAIR 27Y-5 2-2C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' B^{\prime} ' OOS FOR MAINT. AUX CONTACT PAIR $27 Y / 1-8$ 18 FAILS TO REMAIN CLOSEI COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT. AUX CONTACT PAIR 27Y/1-9 18 EAILS TO REMAIN LOSED COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT. AUX CONTACT PAIR 27Y/1-9 17 EAILS TO REMAIN CLOSED COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS OOS FOR MAINT.
CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESIEL GENERATOR *B' OOS FOR MAINT CONTACT PAIR 27X-7 9-13 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGEMCY DESTEI GENERATOR : 2A OOS FOR MAINT. CONTACT PAIR 27X-6 9-13 FPILS TO CLOSE

B.E.

PROB.
MOD. ICS PROB. PROB.
9. $04 E-04$
$8.10 \mathrm{E}-04 \quad 3.05 \mathrm{E}-08$
5.00E-01

1. $00 \mathrm{E}-02$
2. $10 \mathrm{E}-04$
5.00E-01
$1.00 \mathrm{E}-02$
3. $10 \mathrm{E}-04$
4. OOE-01
1.00E-02
3.10E-04
$5.00 \mathrm{E}-01$
1.00E-02
5. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
6. $00 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.00E-02
7. $00 \mathrm{E}-01$
$1.00 \mathrm{E}-02$
8. 10E-0.
$5.00 \mathrm{E}-01$
$1.06 E-C 2$
8.10E-04
5.COE-01
1.00E-02
9. $10 \mathrm{E}-04$
10. $00 \mathrm{E}-01$
1.00E-02
8.10E-04
5.00E-01
11. $00 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
12. $00 \mathrm{E}-01$
1.00E-02
$8.10 \mathrm{E}-04$
5.00E-01
1.00E-02
8.10E-04
$5.00 \mathrm{E}-01$
1.008-02
8.108-04
$5.00 \mathrm{E}-01$
13. $00 \mathrm{E}-02$
14. $10 \mathrm{E}-04$
5.00E-01
$1.00 \mathrm{E}-02$
15. $10 \mathrm{E}-04$
$4.05 \mathrm{E}-06$
$4.05 E-06$
4.05E-06
4.05E-06
$4.05 \mathrm{E}-06$
4.05E-0
$4.05 \mathrm{E}-06$
$4.05 E-06$
$4.05 \mathrm{E}-06$
16. $0.5 \mathrm{E}-06$
$4.05 E-06$
$4.05 \mathrm{E}-06$
4.05E-06
4.05E-06
$4.05 E-0.6$
. CUTSETIOLDABT.CUI Filter: 'ACTIVE'

MODULE/EVENT NAME

ADGACPSE ADGQJO2A
224) ACPBI83C ADGACPSF ADGQK02B
225) ACPAX401

ADGACPSE ADGQKO2B
226) ACPBX72C ADGACPSE ADGQJ02A
227) ACPBXX61 ADGACPSF ADGQJ02A
228) ACPBK 901 ADGACPSE ADGQJ02A
229) ACPBI93C ADGACPSE ADGQJO2A
2301 ACPDJA03 ADGACPSF ADGQKO2B
231) ACPBX74C ADGACPSE ADGQJ02A
232) ADGACPSF AMVAK 64 B WAVAJ129
233) ADGACPSE AMVAJ64A WAVAK130
234) ADGBCPSF DB1DABO8
235) ADGBCPSF DB1DAA19
236) ADGACPSF AFNFCCRA
237) ADGACPSF ADGEJ02A ADGEK02B
238) ADGBCPSF ADGEJ02A AMVAK64B
239) ADGBCPSE ADGEKO2B AMVAJ64A
240) AB1BAM67 ADGACPSF ADGEJO2A

CUTSET REPORT

DESCRIPTION

COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR '2A' OOS FOR MAINT
CONTACT PAIR 27Y/1-8 3-3C EAIL TO CLOSE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
CONTACT PAIR 27-4 $2-10$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTY BUS $1-5$ EIRST EMERGENCY DESIEL GENERATOR * B ' OOS FOR MAINT. CONTACT PAIR 27Y-7 2-2C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-5 FIRSI EMERGENCY DESIEL GENERATOR ' 2 N 005 FOR MAINT CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR * 2 A' OOS FOR MAITIT. BREAKER GC CP 15-16 EATLS TO CIOSE UPON BREAKER TRTP COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR ' 2 A' OOS FOR MAINT. CONTACT PAIR 27Y/1-9 3-3C FAIL TO CLOSE COND. PROB. DG A LOADS ONTO BOS $1-5$ FTRST EMERGENCY DESIEL GENERATOR ' $2 A$ ' OOS FOR MAINT.
AUX CONTACT PAIR 27Y/1-8 17 FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST EMERGENCY DESTEL GENERATOR'B' OOS FOR MAINT CONTACT PAIR 27Y-7 4-4C FAILS TO CLOSE
CONTD. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS EOR MAINT.
COND. PROB. DG A LOADS ONTC BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN SW-FCV-129 EAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN SW-FCV-130 FAT S TO OPEN
COND PROR DG B I.OADS ONTO BUS $1-6$ FIRST CB 8 OFF OF DC BUS EX EAILS TO REMAIN CLOSED COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
CB 19 OFF OF DC BUS A FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CCF SWGR 'A' ROOM INTAKE/EXHAUST FANS FAIL. TO RUN
COND, PROB. DG A LOADS ONTO BUS 1-S FIRST
DIESEL 2A FAILS TO START
IRSET 2B FAILS TO START
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST DIESEL 2A FAILS TO START
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
OIESEL 2B EAILS TO START
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB 14C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG A LOADS CNTO BUS $1-5$ FIRST
DIESEL 2A FAIIS TO START
$1.00 \mathrm{E}-$
1.35E-4

1. $00 \mathrm{E}-2$
1.35E-4
1.00E-2
1.35E-4
2. $00 \mathrm{E}-2$
3. $35 \mathrm{E}-4$
1.00E-2
4. $358-4$
1.00E-2
5. $35 \mathrm{E}-4$
6. ค~E-2
1.25E-7
1.00E-2
7. $35 \mathrm{E}-4$
$1.00 \mathrm{E}-2$
8. $00 \mathrm{E}-3$.
2.00E-3
4.00E-3
2.00E-7
$5.008-7$
5.008-7

ISCRE 1.0OE-5
2. $80 E-3$
2. $80 E-3$
2. $80 \mathrm{E}-3$
$2.80 E-3$
$4.00 E-3$
2. $80 \mathrm{E}-3$
$2.80 E-3$
4. $00 \mathrm{E}-3$
(ER SA
$4.00 E^{-4}$
2. $80 \mathrm{E}-3$

EXPOSURE
B.E.
$5.00 \mathrm{E}-01$

1. $00 \mathrm{E}-02$
2. $10 \mathrm{E}-64$
5.00E-01
1.00E-02
8.10E-04
5.00E-01
1.00E-02
1.00E-0
3. $10 \mathrm{E}-04$
4. $00 \mathrm{E}-01$
5. $00 \mathrm{E}-02$
6. $10 \mathrm{E}-04$
5.00E-01
1.00E-02
7. $10 \mathrm{E}-04$
8. $00 \mathrm{E}-01$
5.00E-01
1.00E-02
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.00E-02
8.10E-04
5.00E-01
1.00E-02
9. 10E-04
5.00E-01
1.00E-G2
1.00E-02
10. $00 \mathrm{E}-01$
11. $00 \mathrm{E}-03$
2.00E-03
5.00E-01
12. ©0e -03
13. $00 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
1.20E-05
1.20E-05
$5.00 \mathrm{E}-01$
$1.20 \mathrm{E}-05$
$1.20 \mathrm{E}-05$
14. $00 \mathrm{E}-01$
B. $00 \mathrm{E}-06$
5.00E-01
2.80E-03
15. $80 \mathrm{E}-03$
5.00E-01
2.80E-03
4.00E-03
5.00E-01 5.60E-06
2.80E-03
4.00E-03
$\begin{array}{ll}4.00 E-03 \\ 2.40 E-03 & 3.36 E-06\end{array}$
5.00E-01
$2.80 \mathrm{E}-03$

MOD. 7 CS PROB.
$4.05 \mathrm{E}-06$
4.05E-06
t. $05 \mathrm{E}-06$
4.05E-06
$4.05 \mathrm{E}-06$
$4.05 \mathrm{E}-06$
4. $05 \mathrm{E}-06$
A.00E-06
4.00E-06
6.00E-06
6. $00 \mathrm{E}-06$
4.00E-06
3. $92 \mathrm{E}-0.6$
5. $60 \mathrm{E}-06$
. \CUTSETIOLDABT.CUT Filter: 'ACTIVE'

MODULE/EVENT NAME
241) ABIBAM47 ADGACPSF ADGEJO2A
242) AB1BAM36 ADGACPSE ADGEJ02A
243) AB1BA971 ADGACPSE ADGEJO2A
244) AB1BAO9C ADGACPSF ADGEJO2A
245) AB1BAB* ADGACPSE ADGEKO2E
246) AB1BPM85 ADGACPSE
247) AB1BAM44 ADGACPSF ADGEK029
249) AB1 BYM25 ADGACPSF ADGACPS
49) AB1BAM23 ADGACPSF ADGEK02B
250) AB1 BAM68 ADGACPSE ADCEJ02A
251) AB1BA11C ADGACPSF ADGEJ02^
252) AB1BA841 ADGBCPSF
531 AR1AAO9C ABIBA09C AMVA.J64A
254) AB1 BXM 25 ADGBCPSF AMVAK 64 B
255) AB1BAM36 ADGBCPSF AMVA 164 A
256) AB1BAM67 ADGBCPSF AMVAJ64A
257) AB1BA11C ADGBCPSF

DESCRIPTION

CB 16 C BETWEEN MCC $4-7$ MCC. 7-7 AND BUS $1-7$ FAILS TO OP COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2A FAILS TO START
CB 17 C AETWEEN NCC $3-7$, NCC $6-7$ AND BUS $1-7$ FAILS $T O$ OREN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2A FAILS TO START
CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2A FAILS TO START DIESEL 2A FAILS TO START CB $9 C$ FAILS TO OPEN CFAILURE RATE ASSU
COND. PROB. DG A LOADS CNTO BUS $1-5$ FIRST DIESEL 2A FAILS TO START
(FAILURE ASSUMED CB 4841 FAILS TO OPEN (FAILURE ASSUMED
COND PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ON
\qquad
CB GD BETWEEN MCC \&-5 AND BUS $1-5$ EATLS TO OREA COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2B FAILS TO START
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TD OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2B FAILS TO START
CB 6 C BETWFEN MCC $2-5$, MCC $1-5$ AND BUS 1-5 FATLS TO OPEN IFR SA 4 . $00 \mathrm{E}-4$ COND PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS 2 FATIS TO START
 $C B 2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS
COND. PROB. DG A LIOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS O
DIESEI 2B FAILS TO START
CB 12D BETWEEA MCC $8-6$ AND BUS $1-6$ EAILS TO OPEN
CB 121 BETWEEN MCC 8-6 ANO BUS $1-6$ EAILS DIESEL 2A FAILS TO START
CB 11C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
OIESEL 2A FAILS TO START CB 4841 FAILS TO OPEN (FAILURE ASSUMED COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN CE 9 C FAILS TO OPEN fEAILURE RATE ASSU COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR ORERATED INTAKE DAMPER EAILS TO OPEN
CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS I
COND. PROB. DG B 1OADS ONTO BUS $1-6$ FIRST
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN $4.00 \mathrm{E}-3$
CA 14 C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST NOTOR OPERATED INTAKE DAMPER FATLS TO OPEN CB 11 C FAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST

RATE

EXPOSURE R. PROB.
\qquad
5. $00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
2. $40 \mathrm{er}-03$
5.00E-01
2.80E-03
2. $40 \mathrm{E}-03$
5.00E-01
2. $80 \mathrm{E}-53$
2. $40 \mathrm{E}-03$
2. $40 \varepsilon-03$
5. $00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
2. $40 \mathrm{EF}-03$
$5.00 \mathrm{E}-01$
2. 80E-03
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $80 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $5.00 \mathrm{E}-01$
5. $00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $80 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}=01$
4.00E-03
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
4.00E-03
4. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
5.00z-01
$4.00 \mathrm{z}-03$
4. $00 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$

MOD. ICS.
PROB.
3. $36 \mathrm{E}-06$
3. $36 E-06$
3.36E-06
3. $36 \mathrm{E}-06$
3. $36 \mathrm{E}-06$
3. $36 \mathrm{E}-06$
3. $36 \mathrm{E}-06$
$3.36 \mathrm{E}-06$
3. $36 \mathrm{E}-06$
$3.36 \mathrm{E}-0.6$
3. $36 \mathrm{E}-0.5$
4. $80 \mathrm{E}-06$
4.80E-06
4. $80 \mathrm{E}-06$
4.80e-06
4. $80 E-06$
$4.80 \mathrm{E}-06$
. ICUTSETIOLDABT, CUT
Filter: 'ACTIVE'

MODULE/EVENT NAME

AMVAJ64A
258) AB1BAM47 ADGBCPSF AMVAJ64A
259) AB1BAM68 ADGBCPSE AMVAJ64A
260) AB1BAM44 ADGBCPSE AMVAK64B
261) ABIBA971 ADGBCPSE AMVAJ 64 A
262) AB1BPM85 ADGBCPSF AMVAK $64 B$
263) AB1BAM23 ADGBCPSF AMVAK64B
264) ADGACPSF ADGFK02B AFNFJ64A
265) ADGACPSF ADGFJ02A AFNFK64B
266) ADGBCPSF ADGQKO2B AMVQJ64A
267) ADGACPSE ADGQJO2A ARCHKOBA
268) ADGACPSE ADGQJO2A ARCMJ15A
269) ADGACPSF ADGQK02B AFNEJ64A
270) ADGACPSF ADGQJ02A AFNEK648
271) ADGACPSF ADGQK02B ARCHJAO4
272) ADGACPSF ADGQJ02A ARCMX276
273) ADGACPSF ADGQU02A ARCMK 158
274) ADGACPSE

MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CA $15 C$ BETWEEN MCC 4-7 MCC, 7-7 AND BUS 1-7 IALLS TO OREN COND. PROB. DG E LOADS ONTO BUS $1-5$ EITST HOTOR OPERATED INTAKE DAMPER EAILS TO OPEN CB 12 D BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN
CB 4971 FAIIS TO OPEN
(FAILURE ASSUMED SAME AS CLOSEI COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB BD BETWEEN MCC 8-5 AND BUS 1-5 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB 2C BETWEEN MCC $2-4$, MCC 3-4 AND BUS 1-4 FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
FAN F-64-1A FAILS TO RUN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ; 2 A' FAILS TO RUN GIVEN START
FAN E-64-1B FAILS TO RUN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
MOTOR OPERATED INTAKE DAMPEH OOS EOR MAINT.
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROE. DG A LOADSEY DESIEL GENERATOR ' 2A' OOS FOR MAINT.
EMERGENCY DESIEL GENERATOR 2
RELAY $62-6 A$ FAILS TO ENERGIZE
RELAY 62-6A EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR, 2A' OOS FOR MAIN
RELAY 62-5A FAILS TO DEENERGIZE
COND. FROB. DG A LOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
FAN E-64-1A EAILS TO START
COND PROB DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT.
FAN F-64-1B FAILS TO START
COND. PROE. DG A LOADS ONTO BUS $1-5$ FIRSI
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
RELAY $27 Y / 1-8$ EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR $+2 A$ OOS EOR MAINT,
RELAY 27-6 FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS EOR MAINT
EMERGENCY DESIEL GENERATOR ZA
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRS:

RATE
E.E.

EROB
-.........
4. $00 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
4.00E-03
2. $40 \mathrm{E}-03$
5. $005-01$
5.00E-01
4. $00 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
4.00E-03
2.40E-C3
$5.00 \mathrm{E}-01$
4. OOE-03
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
4.00E-03
2. $40 \mathrm{E}-03$
5.00E-01
4.00E-03
5.00E-01
2. $64 \mathrm{E}-02$
2. $2.40 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
5. $00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
2. $64 \mathrm{E}-02$
$2.40 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.00E-02
3.04E-04
$5.00 \mathrm{E}-01$
1.00E-02
6.00E-04
5.00E-01
5.00E-01
1.00E-02
6. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$1.00 \mathrm{E}-02$

1. $00 \mathrm{E}-02$
2. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.00E-02
1.00E-02
$6.00 \mathrm{E}-04$
5.00E-01
5.00E-01
1.00E-02
3. $00 \mathrm{E}-02$
6.00E -04
5.00E
$5.00 \mathrm{E}-01$
$1.00 \mathrm{E}-02$
6.00E-04
5.00E-01
1.00E-02
6.00E-04
5.00E-01

MOD . 7 CS . PROB.
4.80E-06
4.80E-06
4. 80E-06
$4.80 \mathrm{E}-06$
14.80E-06
4. $80 E-06$
3.17E-06
$3.17 \mathrm{E}-06$
4. $52 \mathrm{E}-0.6$
3. $00 \mathrm{E}-06$
3.00E-06
3. $00 \mathrm{E}-06$
3.00E-06
3.00E-06
$3.005-06$
$3.00 \mathrm{E}-06$
$1.00 \mathrm{E}-2$
1.00E-4 6
3.00E-0.6

- ICUTSETIOLDABT.CUT Filter: 'ACTIVE'

MODULE/EVENT NAME

ADGQJO2A
ARGCHXTY6
275) ADGACPSE

ADGQK02B ARCHJAOS
276) ADGACPSF ADGQKOZE ARCHJA21
277) ADGACPSF ADGQJO2A ADGQJ02A ARCMX277
278) ADGACPSF ADGQJ02A ARCMX 7×6
279) ADGACPSF ADGQJ02A ARCMKBO 1
280) ADGACESF ADGQK02B ARCRX7Y5
281) ADGACPSF ADGQJ02A ARCHX7Y?
282) ADGACPSF ADGQK02B ARCMX274
283) ADGACPSE ADGQJ02A ARCHKB2 1
284) ADGACPSF ADGQJO2A ARCHKBO4
285) ADGACPSF ADGQJO2A ARCMX 7×7
286) ADGACPSF ADGQK02B ARCMJAOI
287) ADGACPSF ADFSKO2B ARCMX7 $\times 4$
288) ADGACPSE ADGQK02B ARCHX7Y4
$289)$ ADGACPSF ADGQKD2B ARCMX 7×5
2901 ADGACPSF ADGQUO2A ARCHKB05

CUTSET REPORT

DESCRIPTION

EMERGENCY DESIEL GENERAIOR $~ 2 ~ 2 A * ~ O O S ~ F O R ~ M A I N T . ~$
RELAY 27Y-6 EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ ETRST
EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT.
RELAY $27 \times / 1-8$ EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT. RELAY $27 Y 2 / 1-8$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 ETRST EMERGENCY DESIEL GENERATOR * $2 A$ ' OOS FOR MAINT.
RELAY 27-7 FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MATNT.
RELAY $27 X-6$ FAULS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR • 2A OOS FOR MAINT.
RELAY $27 Y 1 / 1-9$ EAILS TO DEENERGIZE
COND. PROB. DG A TOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
RELAY $27 Y-5$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEI GENERATOR / 2A OOS FOR MAINI. RELAY $27 \mathrm{Y}-7$ EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT. RELAY 27-4 FAILS TO DE-ENERGIZE
COND, PROB. DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR ' 2 ' O OS FOR MAINT. RELAY $27 Y 2 / 1-9$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT. RELAY $27 Y / 1-9$ FAILS TO ENERGIZE
COND. PROR. DG A LOADS ONTO BUS $1-5$ FIRST
COND . PROR. DG A LOADS ONTO BUS OUS FOR MAINT.
EMERGENCY DESIEL GENERATOR 2 IA OOS FOR MA
RELAY $27 \mathrm{X}-7$ FAILS TO DE-ENERGI2E
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT
RELAY $27 Y 1 / 1-8$ FAILS TO DEENERGIZE
COND DROB. DG A IOADS ONTO BUS $1-5$ FIRST COND. QROB. DG A LOADS ONIO BUS OOS EOR MAIN?
RELAY $27 \mathrm{X}-4$ EAILS TC DFENERGIZE
RELAA COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EMSRGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
RELAY $27 Y-4$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 EIRSI
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
RELAY $27 \mathrm{X}-5$ FAILS TO DE-ENERGI2E
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRSI
EMERGENCY DESIEL GENERATOR ' $2 A$ ' OOS FOR MAINT.
RELAY $27 \times / 1-9$ FAILS TO ENERGIZE

RATE	EXPOSURE	E.E. FROB.	MOD. $/ \mathrm{CS}$. PROB.
$1.00 \mathrm{E}-2$	1	1. $00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6. $00 \mathrm{E}-04$	
	. 5	5.00E-01	3.00E-06
1.00E-2	1	1.00E-02	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	. 5	5.00E-01	3.00E-06
$1.00 \mathrm{E}-2$	1	1.00E-02	
1.00E-4	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	3.00E-06
1.00E-2	1	$1.00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	5	6.00E-04	
	. 5	$5.00 \mathrm{E}-01$	3.00E-06
1.008-2	1	1.00E-02	
1.00E-4	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$3.00 \mathrm{E}-06$
1.00E-2	1	$1.00 \mathrm{E}-02$	
1.00E-4	6	$5.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	3.00E-06
1.00E-2	1	$1.00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	. 5	5.00E-01	3. $00 \mathrm{E}-06$
1.00E-2	1	$1.00 \mathrm{E}-02$	
1.00E-4	6		
	. 5	$5.00 E-01$	3.00E-06
$1.00 \mathrm{E}-2$	1	1.00E-02	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$3.00 \mathrm{E}-06$
$1.00 \mathrm{E}-2$	1	1.00E-02	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	3.00E-06
1.00E-2	1	1.00E-02	
1.00E-4	5	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	3.00E-06
1.00E-2	1	1.00E-02	
1.00E-4	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$3.00 \mathrm{E}-06$
$1.00 \mathrm{E}-2$	1	$1.00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$3.00 \mathrm{E}-06$
1.00E-2	1	$1.00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	. 5	5.00E-01	3.00E-06
1.00E-2	1	$1.00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	. 5	$5.00 \mathrm{E}-01$	3. $00 \mathrm{E}-06$
$1.00 \mathrm{E}-2$	1	$1.00 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$3.00 \mathrm{E}-06$
$1.00 \mathrm{E}-2$	1	$1.00 \mathrm{E}-02$	
1.00E-4	6	6.00E-04	

, CUTSETIOLDABT.CUT Fliter: 'ACTIVE.

MODULE/EVENT NAME

DESCRIPTION

CUTSET REPORT
291) ADGACPSF ADGOK02B ARCMX275
292) ADGACPSF ADGFK02B ATRQU485
293) ADGACPSE ADCEJO2A ATRQK496
294) AB1BAB41 AB1BAM68 ADGACPSF
295) AB1BA110 AB1BAM23 ADGACPSF
296) AB1BA11C AB1BAM44 ADGACPSF
297) AB1BA09C AB1BAB41 ABIBAB41
ADGACPSE
2981 AB1BAO9C AB1BPM85 ADGACESE
299) AB1BA841 AB1BA971 ADGACPSE
3001 AB1BA84 1 AB1BAM36 ABIBAM36
301) AB1BA841 AB1 BAM67 ADGACPSE
302) AB1 BAM 68 AB1BXM25 ADGACPSF
303) AB1BA841 AB1BAM47 ADGACPSF
304) AB1 BA 11 C AB1BPM85 ADGACPSE
305) AB1BAM68 AB1BPMB5 ADGACPSF
306) AB1BA11C AB1BA841 ADGACPSE
307) AB1BAM23 AB1BAM68

COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
EMERGENCY DESIEL GENERATOR 'B' OOS EOR MAIN.
RELAY 27-5 EAILS TO DE-ENERGIZ
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EDG ' 2 ' FAILS TO RUN GIVEN START
$4160 / 480 \mathrm{~V}$ TRANSFORMER (485) OOS FOR MAINT.
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRSI EDG : ZA' FAILS TO RUN GIVEN START
$4160 / 480 \mathrm{~V}$ TRANSFORMER (496) OOS FOR MAINT.
CB 48द1 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE
CB 120 BETWEEN MCC B-6 AND BUS $1-6$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 11 C FAILS TO CLOSE
CB $2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST CB 11 C FAILS TO CLOSE
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST
CB 9 C EAILS TO OREN (FATLURE RATE ASSUMED SAME AS CLOSE) CB 4841 FAILS TO OPEN
(FATLURE ASSUMED SAME AS CLOSE) COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST CB 9 C FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CIOSE) CB 8D BETWEEN MCC B-5 AND BUS $1-5$ FAILS TO OPEN CB $8 D$ BETWEEN MCC $8-5$ AND BUS $1-5$ FAILSS T
COND PROB, DG A LOADS ONTO BUS $1-5$ FIRST
CB 4841 FAILS TO OREN
FAILURE ASSUMED CB 4971 FAILS TO OPEN GFAILURE ASSUMED
COND. PROB. DG A LOADS ONTO BUS 1 -5 FIRST
COND. PROB. DG A LOADS ONTO BUS 1^{-5} FTRST CB 4841 EAILS TO OPEN
(EAILURE ASSUMED SAME AS CLOSE) CB 17 C BETKEEN MCE $3-7$, MCC 6-7 AND BUS $1-7$ FATLS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
CB 4841 FAILS TO OPEN (EALLURE ASSUMED SAME AS CLOSE) CB 14 C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS I-5 FIRST
CB 12 D BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS $T O$ OPEN
CB GC BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
CB 4841 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CB 16 C BETWEEN MCC $4-7$ MCC, 7-7 AND BUS 1-7 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
CB 11 C FAILS TO CLOSE
CB 8D BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN CB 8D BETWEEN MCC $8-5$ AND BUS $1-5$ FALLS
COND. PROB. DG A LOADS ONTO BUS $1-5$ FAIRS
CB $12 D$ BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO OPE
$C B$ BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OEEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB IIC FAILS TO CLOSE
(FAILURE ASSUMED SAME AS CLOSE) CB 4841 FAILS TO OPEN TO BUS 1-5 EIRS? COND. PROB. DG A LOADS ONTC BUS 1-5 EIRST CB 12 D BETWEEN MCC 8-6 AND BUS $1-6$ EAILS TO OPEN

RATE
B.E.

PROB. EXPOSURE: PROB.

$5.00 \mathrm{E}-01$	$3.00 \mathrm{E}-06$
$1.00 \mathrm{E}-02$	
$6.00 \mathrm{E}-04$	
$5.00 \mathrm{E}-01$	$2.92 \mathrm{E}-06$
$2.64 \mathrm{E}-02$	
$2.21 \mathrm{E}-04$	
$5.00 \mathrm{E}-01$	$2.92 \mathrm{E}-06$
$2.64 \mathrm{E}-02$	
$2.21 \mathrm{E}-04$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	$2.98 \mathrm{E}-06$
$2.40 \mathrm{E}-03$	$2.88 \mathrm{E}-06$
$2.00 \mathrm{E}-01$	
$2.40 \mathrm{E}-03$	
2.00	

- \CUTSETIOLDABT.CUT Filter: 'ACTIVE'

MODULE/EVENT NAME

ADGACPSE
308) AB1BA971 AB1BAM23 ADGACPSE
309) AB1BA971 AB1 BAM44 ADGACPSE
310) AB1BA971 AB1BPM85 ADGACPSE
311) AB1BA09C AB1BXM25 ADGACPSE
312) AB1BAM23 AB1BAM36 ADGACPSF
313) AB1 BAM23 AB1BAM67 ADGACPSE
314) AB1 BAM44 AB1BAM68 ADGACPSE
315) AB1BAM44 AB1BAM47 ADGACPSE
316) AB1BAM23 AB1 BAM47 ADGACPSP
317) AB1BAM36 AB1BXM25 ADGACPSE
318) AB1BAM67 AB1 BXM25 ADGACPSE
319) AB1BAM47 AB1BXM25 ADGACPSE
320) AR1BAM36 AB1BAM44 ADGACPSE
321) ABIBAMA AB1BAM67 ADGACPSF
322) AB1BA11C ABIBXM25 ABGGACPSF
323) AB1BA971 AB1BXM25 ADGACPSE
324) AB1BAM36

DESCRIPTION

COND. PROB. DG A LOADS ONTO BUS 1-5 FTRST CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE
 COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST CB 4971 FAILS TO OPEN
(EATIURE ASSUMED (EATLURE ASSUME SAME AS CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CB BD BETWEEN MCC B-5 AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 9C FAILS TO OPEN (FATLURE RATE ASSUMED SAME AS CLOSE) CB 6C BETNEEN MCC $2-5$, MCC 1-5 AND BUS $1-5$ EAILS TO OREN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST CB 2C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-6$ FALLS TO OREN CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN CCND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
CB 2C BETWEEN MCC 2-4, MCC 3-4 AND BUS 1-4 EhILS TO OPEN CB 14 C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 PIRST CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAIL TO OPEN CB 12 D BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 4 C BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN CB 16 C BETWEEN MCC 4-7 MCC, 7-7 AND BUS 1-7 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN CB 16 C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EAILS TO OPEN COND. PROB. DG A LCADS ONTO BUS 1-5 FIRST
CB 17 C BETNEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN $C B 6 C$ BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ EAILS TO OPEN CB GC BETWEEN MROB. DG A LOADS ONTO BUS $1-5$ FIRSI
CB $14 C$ BETWEEN MCC $6-6$, MCC 7-6 AND BUS $1-6$ EAILS TO OPEN CB 6 C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ EAIL.S TO OREN COND. PROB. DG A LOADS ONTO BOS $1-5$ FIRST
CB 16 C BETWEEN MCC $4-7 \mathrm{MCC}, 7-7$ AND BUS $1-7$ FAILS TO OREN CB $6 C$ BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OREN COND. PROB. DG A LOADS ONTO BOS 1-5 FIRST
CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ EAI:S TO OPEN CB 4 C BETNEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAULS TO OPEN CB 4 C BETWEEN MCC $1-4$, MCC COND PROB DG A LOADS ONTO BUS $1-5$ PIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 4C BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN CB 14 C BETNEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST
CB 11 C FAI'S TO CLOSE
CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CB 4971 FAILS TO OPEN CFAILURE ASSUMED SAME AS CLOSE) CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN

IUV	Or	4.00E-4
(FR	SA	4.00E-4
(0V)	OR	$4.00 \mathrm{E}-4$
(FR	SA	$4.00 \mathrm{E}-4$
(tV)	OR	4.00E-4
(ER	SA	$4.00 \mathrm{E}-4$
		4.00E-4
(FR	SA	4.00E-4
(ER	SA	4.00E-4
(FR	SA	$4.00 \mathrm{E}-4$
(ER	SA	4.00E-4
(FR	SA	4.00E-4
(ER	SA	4. $200 \mathrm{E}-4$
(FR	SA	$4.00 \mathrm{E}-4$
(FR	SA	4.00E-4
(t)R	SA	$4.00 \mathrm{E}-4$
(FR	SA	4.00E-4
(FR)	SA	4.00E-4
(FR	SA	4.00E-4
tER	SA.	4. 0 OE-4
(FR	SA	4.00E-4
(FR	SA	$4.00 \mathrm{E}-4$
(FR	S2	4. $000 \mathrm{E}-4$
(fR	SA	$4.00 \mathrm{E}-4$
(FR	S 2	4.00E-4
(FR	52	4.00E-4
(FR	SA	$4.00 \mathrm{E}-4$.
(FR	Si	4.00E
		4.00E-4
IFR	SA	$4.00 \mathrm{E}-4$
Itv		$4.00 \mathrm{E}-4$
(FR		4.00E-4

B.E.

PROB.
MOD. ICS.
EXPOSURE:
PROB.
5. $00 \mathrm{E}-01$
$2.40 \mathrm{E}-03 \quad 2.88 \mathrm{E}-06$
2.40E-03
5.00E-01
$2.40 \mathrm{E}-03 \quad 2.88 \mathrm{E}-06$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$2.40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $405-03$
$5.00 \mathrm{E}-01$
$2.40 \mathrm{z}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $40 \Sigma-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-\mathrm{C} 3$
2.40E-C
5. $00 \mathrm{E}-01$
2. $40 E-03$
2.40E-03
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. 00E -01
$2.40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
2.40E-03
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. 00E-01
$2.40 \mathrm{E}-03 \quad 2.88 \mathrm{z}-06$

- ICUTSETIOLDABT.CUT Filter: 'ACTIVE'

CB 8 D BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPER COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
C3 14 C BETWEEN MCC $5-6$, MCC $7-5$ AND BUS $1-6$ TATIS TO OPEN CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND, PROB, DG A LOADS ONTO BUS $1-5$ FIRST CB 9C FAILS TO OPEN
(FAILURE RATE AS
CB $4 C$ OETNEEN MCO 1 MCC $4-4$ AND BUS $1-4$ FAITS IO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 16C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EAILS TO OPEN CB AD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
CB 9 C FAILS TO OPEN FEALLURE RATE ASSUMED SAME AS CLOSE
CE $2 C$ BETWEEN MCC $2-4$, MCC 3-4 AND BUS 1-4 FATLS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2A FAILS TO START
SW-FCV-130 FAILS TO CREN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2 B FAILS TO START
SN-FCV-129 FAILS TO OPEN
CONTACT PAIR 27-4 $\quad 2-10$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
EMERGENCY DESIEL GENERATOR FAIL TO CLOSE
CONTACT PAIR $27 Y / 1-8$ 3-3C FAIL
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
CONTACT PAIR 27×-4 9-13 FAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
AUX CONTACT PATR $27 Y / 1-817$ FAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS $1-6$ FTRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
EMERGENCY DESIEL GENERATOR IS TO OPEN
CONTACT PAIR $27-5$ 2-10 FAILS TO OPEN
COND PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR
CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
CONTACT PAIR $27 \times-5 \quad 9-13$ FAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT
AUX CONTACT PAIR $27 Y / 1-818$ FAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
MERGENCY DESTEI GENERATOR 'B' OOS FOR MAINT
CONTACT PATR $27 \mathrm{Y}-52-2 \mathrm{C}$ FAILS TO CLOSE
CONTACT PAIR 27Y-5 2-2C EAILS
COND. PROB. DG E LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR * B OOS FOR MAINT
EMERGENCY DESIEL GENERATOR 'B' OOS FOR
CONTACT PAIR $27 Y-4 \quad 7-7 C$ FAILS TO CLOSE
COND. PROB. DG B IOADS ONTO BUS $1-6$ FIRSI
COND. PROB. DG B LOADS ONTO BUS 1 - 6 FIRST
EMERGENCY DESIEL GENERATOR 'B" OOS FOR
CONTACT PAIR $27 Y-4 \quad 2-2 C$ FAILS TO CLOSE
COND PROB DG B :OADS ONTO BUS $1-6$ EIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
B.E. EXPOSURE

MOD.7CS. PROB.

ADCR
2. $40 \mathrm{E}-03$
5.00E-01
$2.40 \mathrm{E}-03 \quad 2.88 \mathrm{E}-06$
$2.40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $4 \mathrm{CE}-03$
$2.40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
5.00E-01
$2.80 \mathrm{E}-03$
2.00E-0.3
$5.00 \mathrm{E}-01$
$2.80 \mathrm{E}-03$
2.00E-03
8.10E-04
$5.00 \mathrm{E}-01$
1.00E-02
$8.10 \mathrm{E}-04$
5. OOE -01
$5.00 \mathrm{E}-01$
$1.00 \mathrm{E}-02$

1. $00 \mathrm{E}-0$
$8.10 \mathrm{E}-0$
$5.00 \mathrm{E}-01$
1.00E-02
2. $10 \mathrm{E}-04$
5.00E-01
3. OOE-02
8.10E-04
5.00E-01
4. $00 \mathrm{E}-02$
B. 10E-04
5.00E-01
1.00E-02
$8.10 \mathrm{E}-04$
5.00E-01
1.00E-02
$8.10 E-04$
$5.00 \mathrm{E}-01$
1.00E-02
5. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.00E-02
6. $10 \mathrm{E}-04$
5.00E-01
1.00E-02
$4.05 \mathrm{E}-0.6$
．）CUTSET IOLDABT．CU
Eilter：＇ACTIVE＇
\qquad

341）ACPBX513 ADGBCPSF ADGOK02B
342）ADGBCPS AMVAJ64A WAVAK130
343）ADGBCPSE AMVAK64B WAVAJ129
344）ACVAJ64A ADGACPSE ADGACPS
ADGFK02B
345）ACVAK64B ADGACPSE ADGEJO2A
346）ADGBCPSF ADGEJ02A ADGERO2B
347）AB1BA09C ADGACPSF WAVAJ129
348）AB1BAB41 ADGACPSF WAVAK 130
349）AB1BAM36 ADGACPSE WAVAJ129
350）AB1 BAM68 ADGACPSF ADGACPSF
WAVAJ129
351）AB1BAM67 ADGACPSE WAVAJ129
352）AB1 BXM25 ADGACPSF WAVAK 130
353）AB1BAM44 ADGACPSF
354）WAVARMMA 54）AB1BAM47 ADGACPSF WAVAJ129
355）AB1 BPM85 ADGACPSE WAVAK 130
356）AB1BAM23 ADGACPSF WAVAK 130
357）AB1BA11C ADGACPSE

CUTSET REPORT

DESCRIPTION

CONTACT PAIR 27X－5 9－13 FAILS TO CLOSE
COND．PROB．DG B LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR＇${ }^{\prime}$＇OOS FOR MAINT．
COND．PROB．DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN MOTOR OPERATED INTAKE DAM
SW－FCV－130 FAILS TO OPEN
SW－FCV－130 FAILS TO OPEN
COND．PROB．DG B LOADS ONTO BUS 1－6 EIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
SW－ECV－129 FAILS TO OPEN
FAN F－64－1A EXHAUST DAMPER EAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRSI
EDG ： $2 B^{\circ}$ FAILS TO RUN GIVEN START
FAN $F-64-1 B$ EXHAUST DAMPER FAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST EDG＇ $2 A$＇FAILS TO RUN GIVEN START
COND．PRCB．DG B LOADS ONTO BUS $1-6$ FIRST
DIESEL 2A FAILS TO START
DIESEL 2B FAILS TO START
CB 9C FATLS TO OPEN（FAILURE RATE ASSUMED SAME AS CLOSE）
COND．PROB．DG A LOADS ONTO BUS 1－5 DIRST
SW－FCV－129 EAILS TO OPEN
SW－FCV－129 EAILS TO OPEN（FAILURE ASSUMED SAME AS CLOSE） CB 4841 FAILS TO OPEN OND．PROB．DG A LOADS ONTO BUS $1-5$ FTRST
SW－FCV－130 FAILS TO OPEN
CB 17 C BETWEEN MCC $3-7$ ，MCC $6-7$ AND BUS $1-7$ EAILS TO OPEN COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST
SW－FCV－129 FAILS TO OPEN
CB 12 D 日ETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS 1－5 FIRST
SW－FCV－ 129 FAILS TO OPEN
CB $14 C$ BMTWEEN MCC $6-6$ ，MCC $7-6$ AND BUS 1－6 ンATIS TO OPEN COND．PROB．DG A LOADS ONTO BUS $1-5$ EIRST
COND．PROB．DG A LOADS ON
SW－FCV－ 129 FAILS TO OPEN
CB GC BETWEEN MCC $2-5$ ，MCC
CB $6 C$ BETWEEN MCC $2-5$ ，MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST
SW－FCV－130 FAILS TO OPEN
CB $4 C$ BETWEEN MCC $1-4$ ，MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN COND．PROB．DG A LOADS ONTO BUS $1-5$ EIRST
SW－FCV－130 FAILS TO OPEN
CB 16 CC BETWEEN MCC $4-7$ MCC， $7-7$ AND BUS $1-7$ FAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS 1－5 FIRST
SW－FCV－129 FAILS TO OPEN
CB BD BETWEEN MCC 8－5 AND BUS $1-5$ EAILS TO OPEN
COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRSI
SW－FCV－130 FAILS TO OPEN
CB $2 C$ BETWEEN MCC $2-4$ ，MCC 3－4 AND BUS $1-4$ FAILS TO OPEN COND．PROB．DG A LOADS ONTO BUS $1-5$ FIRST
SW－ECV－130 FAILS TO OPEN
CB IIC EATLS TO CLOSE
COND，PROB．DG A LOADS ONTO BUS $1-5$ FIRST

MOD．たS．

 PROB．EXPOSURE

PROR
PROB．
8．10E－04
8．10E－04
$5.00 \mathrm{E}-01$
1． $00 \mathrm{E}-02$
5．00E－01
4．00E－03
2． $00 \mathrm{E}-03$
5．00E－01
4． $0.00 \mathrm{E}-03$
$4.00 \mathrm{E}-03$
$2.00 \mathrm{E}-03$
$2.00 \mathrm{E}-03$
$2.00 \mathrm{E}-04$
$2.00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2． $64 \mathrm{E}-02$
2．00E－04
5．00E－01
$2.64 \mathrm{E}-02$
5．00E－01
2． $80 \mathrm{E}-03$
$2.80 \mathrm{E}-03$
$2.80 \mathrm{E}-03$
$2.80 E-03$
$2.40 E-03$
$2.40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2．00E－03
2． $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2． $00 \mathrm{E}-03$
2． $40 \mathrm{E}-03$
5．00E－01
2．00E－03
2． $40 \mathrm{E}-0$
5． $00 \mathrm{E}-01$
2．00E－03
2． $40 \mathrm{E}-03$
5．00E－01
2． $00 \mathrm{E}-03$
2． $40 \mathrm{E}-03$
5．00E－01
2． $00 \mathrm{E}-03$
2． $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2．00E－03
2． $40 \mathrm{E}-03$
5．00E－01
2．00E－03
2．10E－03
2．10E－03
5．00E
5．00E－01
2．00E－03
$2.40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.00 \mathrm{E}-03$
2． $40 \mathrm{E}-03$
5．00E－01

4． $05 \mathrm{E}-0.5$
$4.208-06$

4．00E－06
$2.64 \mathrm{E}-06$

2． $64 \mathrm{E}-06$

B． $92 \mathrm{E}-06$

2．40E－0．
$2.40 E-06$

2． $40 \mathrm{E}-06$
$2.40 \mathrm{E}-06$

2． $40 \mathrm{E}-06$

2． $40 \mathrm{E}-06$

2． $40 E-06$

2． $40 \mathrm{E}-06$
$2.40 \mathrm{E}-06$

2． $40 \mathrm{E}-06$

2． $40 E-06$
. ICUTSETICLDABT.CUT
Eilter: 'ACTIVE'
MODULE/EVENT NAME

WAVAJ129

358) AB1BA971

ADGACPSP WAVAJ129
359) AB1DJ102 ADGACPSF ADGEK02B
360) AB1DKB01 ADGACPSF ADGFJ02A
361) AB1DJD06 ADGACPSF ADGEK02B
362) ABIDKDO3 ADGACPSE ADGFJ02A
363) AB1DJDO3 ADGACPSE ADGFK02B
364) AB1DJ110 ADGACPSF ADGFKO2B
365) AB1DJDO2 ADGACPSE ADGFKO2B
366) AB1DJDO1 ADGACPSE ADGFK02B
367) AB1.DKD02 ADGACPSE ADGEJO2A
368) ABIDKD04 ADGACPSF ADGFJ02A
369) ABIDKDOI ADGACPSF ADGEJO2A
370) AB1DKD06 ADGACPSF ADGFJ02A
371) AB1DJDU4 ADGACPSF ADGFK02B
372) AB1DJA01 ADGACPSE ADGFKO2B
373) ACPCK6A2 ADGACPSF ADGFJO2A
374) AB1BPM85

CUTSET REPORT

DESCRIPTION

SW-FCV-129 EAILS TO OREN
(FAILURE ASSUMED SAME AS COSE) COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
SW-FCV-129 EAILS TO OPEN
LIGHTING PANEL LP-D1 CKT. 32 EATLS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
AC DISI. CABINET EMERG. GEN. 2 B CKT. 3 EAILS TO REMAIN CLOSED COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG $+2 A^{\prime}$ EAILS TO RUN GIVEN START
CB 5 DIESEL STARTER 2AZ FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG ' 2 B' EAILS TO RUN GIVEN START
EDG 3 ALTERNATE FAILS TO REMATN CLIOSED
CB 3 ALTERNATE FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$
EDG $2 A$ FAILS TO RUN GIVEN START
CB 3 ALTERNATE FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EDG +2 B $^{\circ}$ EAILS TO RUN GIVEN START
LIGHTING PANEL LP-D1 CKT . 310 FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EDG ' $2 B^{\prime}$ TATLS TO RUN GIVEN START
CB 2 GOVERNOR CONTROL FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EDG : 28 ' FAILS TO RUN GIVEN STARI
C3 1 EG FIELD FLASH FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
EDG ' $2 B^{\prime}$ ' FAILS TO RUN GIVEN START
CB 2 GOVERNOR CONTROL FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CB 4 DIESEL STARTER $2 E 1$ FAILS TO REMAIN CLOSED
COND. PROR. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CB 1 EG FIELD FLASH FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' 2 A' FAILS TO RUN GIVEN START
CB 6 DIESEL STARTER 2B2 FAILS TO REMATN CLOSED
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG : $2 A$. FAILS TO RUN GIVEN START
CB 4 DTESEL STARTER $2 A 1$ EAILS TO REMAIN CLOSED
CB 4 DIESEL STARTER $2 A 1$ EAILS TO REMAIN C
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
COND. PROB. DG A LOADS ONTO BUS 1-
EDG ' $2 \mathrm{~B}^{\prime}$ EAILS TO RUN GIVEN START
AC DIST. CABINET EMERG. GEN. 2A CRT. 3 FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' 2 B ' FAILS TO RUN GIVEN SIART
CONTACT PAIR 62-6A 2-6 FAILS TO REMAIN OPEN
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG ' 2 A' FAILS TO RUN GIVEN START
CB 8D BETWEEN MCC $8-5$ AND BUS $1-5$ EAILS TO OEEN

10-04-93
$8: 57$
B.E.

EXPOSURE
PROB.
RATE
2. $00 \mathrm{E}-3$
4. $00 \mathrm{E}-4$
2.00E-3
$5.00 \mathrm{E}-7$
1.10E-3
1.10E-3
$5.00 \mathrm{E}-7$
1.10E-3
$5.00 \mathrm{E}-7$
1.10E-3
$5.00 \mathrm{E}-7$
1.10E-3
$5.00 E-7$
1.10E-3
5.00E-7
$1.10 \mathrm{E}-3$
$5.00 \mathrm{E}-7$
$1.10 \varepsilon-3$
$5.00 \mathrm{E}-7$
1.10E-3
5.00E-7

1. 10E -3
5.00E-7
$1.10 \mathrm{E}-3$
$5.00 \mathrm{E}-7$
1.10E-3
$5.005-7$
1.108-3
$5.00 \mathrm{E}-7$
1.10E -3
$5.00 \mathrm{E}-7$
1.10E-3
2. $66 E-8$
$1.208-3$
(FR 5A 4.00E-4
3. $00 \mathrm{E}-03$
4. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
6. $00 \mathrm{E}-03$
$1.80 \mathrm{E}-04$
5.00E-01
7. $54 \mathrm{E}-02$
8. $80 \mathrm{E}-04$
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
9. $00 \mathrm{E}-01$
10. $64 \mathrm{E}-02$
11. $64 \mathrm{E}-02$
12. $80 \mathrm{E}-04$
5.00E-01
13. $64 \mathrm{E}-02$
1.80E-04
$5.00 \mathrm{E}-01$
14. 5 AE-0?
1.80E-04
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.54 \mathrm{E}-02$
1.80E-04
5.00E-01
15. $64 \mathrm{E}-02$
16. $80 \mathrm{E}-04$
17. $00 \mathrm{E}-01$
18. $00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
$1.80 \mathrm{E}-04$
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
$2.64 \mathrm{E}-02$
$1.80 \mathrm{E}-04$
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
19. $64 \mathrm{E}-02$
1.80E-04
5.00E-01
$3.00 E-01$
20. $64 \mathrm{E}-02$
21. $80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
$2.64 \mathrm{E}-02$
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
22. $64 \mathrm{E}-02$
23. $80 \mathrm{E}-04$
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
$\begin{array}{ll}\text { 2.64E-02 } & \\ 1.80 E-04 & 2.38 E-06\end{array}$
24. $80 \mathrm{E}-04$
5.00E-01
$2.64 \mathrm{E}-02$
1.72E-04
5.00E-01
25. $64 \mathrm{E}-02$
2.40E-03 $3.36 \mathrm{E}-06$
26. $40 \mathrm{E}-06$
27. $38 \mathrm{E}-06$
$2.38 \mathrm{E}-06$
$2.38 \mathrm{E}-06$
28. $38 \mathrm{E}-06$
29. $38 \mathrm{E}-06$
30. $38 \mathrm{E}-06$
31. $38 E-0.5$
32. $38 E-05$
33. $38 \mathrm{E}-06$
34. $38 \mathrm{E}-06$
35. $38 \mathrm{E}-06$
36. $38 \mathrm{E}-06$
$2.38 \mathrm{E}-06$
$2.38 \mathrm{E}-06$
$2.28 \mathrm{E}-05$

MOD. $f C S$.
PROB.
PROB.

- ICUTSETIOLDABT. CUT

Filter: 'ACTIVE' MODULE/EVENT NAME

ADGBCPSE ADGEKO2B
375) AB1BA971 ADGBCPSE ADGEJ02A
275) AB1BAME8 ADGBCPSE ADGEJ02A
377) AB1BXM25 ADGBCPSE ADGEK02B
378) $\mathrm{AB} 1 \mathrm{BAO9C}$ ADGBCPSE ADGEJ02A
379) AB1PA841 ADGBCPSF ADGEKD2B
380) AB1BAM44 ADGBCPSF ADGEKO28
381) ABIBA11C ADGBCPSF ADGEJ02A
382) AB1BAM36 ADGBCPSE ADGEJO2A
3i3) AB1BAM67 ADGBCPSF ADGEJ02A
384) AB1BAM23 ADGBCPSE ADGEK02B
385) AB1BAM47 ADGBCPSE ADGEJ02A
386) ACPAK5B4 ADGACPSE AMVAJ64A
387) ADGBCPSF ADGFJ02A AFNFK64B
388) ADGBCPSF ADGFKO2B AFNFJ64A
389) ADGBCPSF ADGQK02B ARCHX7Y4
3901 ADGBCPSE ADGQK02B ARCMX7×4

DESCRIPTION

COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
DIESEL 2B FAILS TO START
CB 4971 EAILS TO OPEN TEATLURE ASSTMED SAME AS CLOSE)
COND. PROB. DE B LOADS ONTO BUS $1-6$ FIRST
DIESEL 2A FAILS TO START
CB 122 BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
DIESEL 2A FAIES TO START
CB EC BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
DIESEL 2B EAILS TO START
(FATLURE RATE ASSUMED SAME AS CLOSE)
CB 9 C FAILS TO OPEN
COND. PROB. DG B LOADS ONT
(B 4841 FAIIS TO OPEN (FAILURE ASSUMEO SAME AS CLOSE) COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
DIESEL 2B EAILS TO START
DIESEL 2B EAILS TO START
CB $4 C$ BETWEEN MCC $1-4$, MCC 4-4 AND BUS $1-6$
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSI
DIESEL 2B FAILS TO START
CB 11 C FAILS TO CLOSE
COND. PROB. DG 3 LOADS ONTO BUS $1-6$ FIRST
OTESEL 2A EAILS TO START
CB 17 C BETWEF: MCC $3-7$, MCC 6-7 AND BUS 1 -7 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
DIESEL 2A FAILS TO START
CB 14 C BETWEEN MCC 6-6, MCC 7-6 AND BUS $1-6$ EA. LS 10 OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
DIESEL 2A FAILS TO START
CB 2C BETWEEN MCC $2-4$, MCC 3-4 AND BUS $1-4$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
OIESEL 2B FAILS TO START
CB $16 C$ BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EATLS TO OREN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND. PROB. DG B LOADS ONT
DIESEL 2A FAILS TO START
CONTACT PAIR $62-5 \mathrm{~B} \quad 4-6$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
EDG * 2 ' FAILS TO RUN GIVEN START
FAN F-64-1B EAILS TO RUN
COND PROB. DG B LOADS ONTO BUS $1-6$ FIRS?
COND : PROB. FAIIS TO RUN GIVEN START
EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIV
FAN $\mathrm{F}-64-1$ A FAILS TO RUN
FAN F-64-1A FAILS TO RUN
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
RELAY $27 Y-4$ FAILS TO ENERGIZE
COND. PROB. DG B LOACS ONTO BUS 1-6 EIRST
EMERGENCY DESIEL GENERATOR • B* OOS FOR MAINT. RELAY 27×-4 FAIIS TO DEENERGIZE

RATE
2
(UV OR
2. $\mathrm{HOE}-3$
2.EOE-3
(FR SA $4.00 \mathrm{E}-4$
$2.80 \mathrm{E}-3$
(ER SA
4.00E-4
2. $80 \mathrm{E}-3$
$4.00 E-4$
2. $60 \mathrm{E}-3$
(UV OR
$4.00 \mathrm{E}-4$
2. $80 \mathrm{E}-3$
(ER SA
4. $00 \mathrm{E}-4$
2. $80 \mathrm{E}-3$
4.00E-4

2.not-3

IFR SA
$4.00 \mathrm{E}-4$
2.80E-3

IFR SA
2. $80 \mathrm{E}-3$
(FR SA
2. $80 \mathrm{E}-3$
2. $80 \mathrm{E}-3$
(FR SA 4.00E-4
2. $80 E-3$
$1.35 E-4$
4.00E-3
1.10E-3
1.00E-5
$1.10 \mathrm{E}-3$
1.00E-5
1.00E-2
1.00E-4
1.00E-2
1.00E -4

EXPOSURE	$\begin{aligned} & \mathrm{B}: \mathrm{E} . \\ & \text { PROB. } \end{aligned}$	NOD. fes. PROB.
. 5	5.00E-01	
1	2. $80 \mathrm{E}-03$	
6	2.40E-03	3.36E-06
. 5	5.00E-01	
1	2.80E-03	
3	2.40E-03	$3.36 \mathrm{E}-06$
. 5	5.00E-01	
1	$2.80 \mathrm{E}-03$	
6	2.40E-03	$3.36 \mathrm{E}-06$
. 5	5.00E-01	
1	2.80E-03	
6	$2.40 \mathrm{E}-03$	$3.36 \mathrm{E}-06$
. 5	5.00E-01	
1	$2.80 \mathrm{E}-03$	
6	2.40E-03	3. $36 \mathrm{E}-06$
. 5	$5.00 \mathrm{E}-01$	
1	$2.805-03$	
6	$2.40 \mathrm{E}-03$	3.36E-06
. 5	5.00E-01	
1	$2.80 \mathrm{E}-03$	
6	2.40E-03	3.36E-06
. 5	5.00E-01	
1	$2.80 \mathrm{E}-03$	
6	2. $40 \mathrm{E}-03$	3.36E-06
. 5	$5.00 \mathrm{E}-01$	
1	$2.80 \mathrm{E}-03$	
6	2.40E-03	3.36E-06
. 5	$5.00 \mathrm{E}-01$	
1	$2.80 \mathrm{E}-03$	
6	$2.40 E-03$	3. $36 \mathrm{E}-06$
. 5	$5.00 \mathrm{E}-01$	
1	$2.80 E-03$	
6	$2.40 \mathrm{E}-03$	3. $36 \mathrm{E}-06$
. 5	$5.00 \mathrm{E}-01$	
1	2.80E-03	
8	$1.08 \mathrm{E}-03$	2.16E-06
. 5	$5.00 \mathrm{E}-01$	
1	4.00E-03	
. 5	$5.00 \mathrm{E}-01$	3.17E-06
1	$2.64 E-02$	
1	2.40E-04	
. 5	5.00E-01	3.17E-06
1	$2.64 \mathrm{E}-02$	
1	2.40E-04	
. 5	$5.00 \mathrm{E}-01$	3.00E-06
1	1. $000 \mathrm{E}-02$	
6	6.00E-04	
. 5	5.00E-01	3.00E-06
1	1.00E-02	
6	$6.00 \mathrm{E}-04$	

391) ADGBCPSF ADGQK02B ARCHJA05
3921 ADGBCPSF ADGQKC2B ARCHJAD 4
3931 ADGBCPST ADGQK02B ARCMX275
392) ADGBCPSF ADGQKO2B ARCHX7Y5
393) ADGACPSF WAVAJ129 WAVAK 130
394) ADGBCPSF ADGQKO2B ARCHJA21
395) ADGBCPSE ADGQK02B AFNEJ64A
396) ADGBCPS ADGQK02B ARCMX274
397) ADGBCPSE ADGOK02B ARCMX 7×5
398) ADGBCPSF ADGFJ02A ATROK496
399) AB1 BAM36 AB1BXM25 ADGBCPSF
400) AB1BAM67 AB1 BXM25 ADGBCPSF
401) AB1BAM47 AB1 BXM25 ADGBCPSF
402) ABIBAO9C AB1BA841 ADGBCPSF
403) AB1BA11C AB1BAM23 ADGBCPSF
404) AB1BA97i AB1BPM85 ADGBCPSF
405) AB1BA841 ABIBAM68

COND. PROB, DG B LOADS ONTC BUS 1-6 EIRSI EMERGENCY DESIEL GENERATOR 'B' OOS EOR MAIN' . RELAY $27 \times / 1-8$ FAILS TO ENERGIZE
COND. PROB. DG 8 LOADS ONTO BUS $1-6$ FIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
RELAY 27Y/1-6 EAILS TO ENERGIZE
COND. PROB. DG B LOADS ONIO BUS 1-6 EIRSI
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
RELAY 27-5 FAILS TO DE-ENERGI2E
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
EMERGENCY DESTEL GENERATOR + Br OOS EOR MAINT
RELAY $27 \mathrm{Y}-5$ FAIIS TO ENERGTZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST SW-FCV-129 FAILS TO OPEN
SW-ECV-130 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRSI EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
RELAY 27Y2/1-8 FAILS TO ENERGIZE
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST PMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
FAN F-64-IA FAILS TO START
FAN F-64-IA FAILS TO START
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSI
RELAY 27-4 FAILS TO DE-ENERGIZE
RELAY 27-4 FAILS TO DE-ENERGIZE
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
RELAY $27 \mathrm{X}-5$ FAILS TO DE-ENERGIZE
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
EDG $\cdot 2$ A EAILS TO RUN GIVEN START
$4160 / 480 \mathrm{~V}$ TRANSFORMER (496) OOS FOR MAINT.
$4160 / 480$ V TRANSFRMER MCC $3-17 \mathrm{MCC}$ 6-7 AND BUS 1-7 FAILS TO OPEN CB 17 C BEINEEN MCC $2-5$, MCC $1-5$ AND BOS $1-5$ FAIIS TO OPEN CB 6C BETWEEN MCC $2-5$, MCC
CB 14 C BETNEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPES CB 14C BETWEEN MCC $6-6$, MCC $1-5$ AND BUS $1-5$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
CB 16C BETWEEN MCC 4-7 MCC, 7-7 AND BUS $1-7$ EAILS TO OP $2 N$ CB $6 C$ BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OP N COND. PROB. DG B LOADS ONTO BUS $2-6$ FIRST
CB FALLS TO OPEN (FAILURE RATE ASSUMED SAME AS C:OSE
CB 9C FAILS TO OPEN
FAILURE RATE ASSUMED SAME AS C: CB 4841 FAILS TO OPEN (FAILURE ASSUMEU
COND. PROB, DG B LOADS
CB 11 C FAILS TO CLOSE
CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ EAILS TO OPEN COND. PROB. JG B LOADS ONTO BUS $1-6$ FIRST
CB 4971 FATLS TO OREN (EAILURE ASSUMED SAME AS CLOSE CB BD BETWEEN MCC B-5 AND BUS 1-5 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND, PROB. DG B LOADS ONTO BUS 1-6 RIRSI SAME AS CIOSE CB 4841 FA

FAILURE ASSUMED SAME A

RATE
EXPOSURE
B. E.

Exposure
MOD. /CS.
$5.00 \mathrm{E}-01$
1.00E-02
6.00E-04
5.00E-01

1. $00 \mathrm{E}-02$
6.00E-05
$5.00 \mathrm{E}-01$
1.00E -02
2. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.00E-02
6.00E-04
5.00E-01
3. $00 \mathrm{E}-03$
4. $00 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
1.00E-02
6.00E-04
5.00E-01
1.00E-02
6.00E-04
$5.00 \mathrm{E}-01$
1.00E-02
6.00E-04
$5.00 \mathrm{E}-01$
1.00E-02
6.00E-04
5.00E-01
$2.64 E-02$
2.21E-04
5. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
5.00E-01
6. $40 \mathrm{E}-03$
7. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
8. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
5.00E-01
$2.40 \mathrm{E}-03$
9. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
5.00E-01
2.40E-03 2.8BE-06
10. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
?. $40 \mathrm{E}-01$
11. $40 \mathrm{E}-03$
12. $40 \mathrm{E}-03$
$5.005-01$
13. $40 \mathrm{E}-03 \quad 2.89 \mathrm{E}-06$
14. OOE -06
$3.00 \mathrm{E}-\mathrm{c} 6$
$3.00 E-06$
$3.008-06$
$2.00 \mathrm{E}-06$
$3.00 \mathrm{E}-06$
3.00E-06
$3.00 \mathrm{E}-06$
$3.00 \mathrm{E}-06$
$2.92 \mathrm{E}-06$
15. $88 \mathrm{E}-06$
16. $88 \mathrm{E}-06$
17. $88 \mathrm{E}-06$
2.88E-06
18. $40 \mathrm{E}-03$

ADGBCPSF
408) AB1SA11C AB1BXM25 ADGBCPSF
409) AB1BAM36 AB1BAM44 ADGBCPSE
410) AB1BAM44 AB1BAM4 7 ADGBCPSE
411) AB1BA971 AB1BXM25 ADGBCPSF
412) AB1BA09C AB1 BPM85 ADGBCPSF
413) AB1BAM35 AB1BPM85 ADGBCPSE
414) AA1BAM6 AB1BPM85 ADGBCPSF
415) ABIBAM47 AB1RPM85 ADGBCPSF
416) AB1 BAME: AB1BPM85 ADGBCPSF
417) AB1BAM23 AB1BAM36 ADGBCPSF
418) A31BAM23 AB1BAM67 ADGBCPSF
419) AB1BAM23 AB1BAM68 ADGBCPSF
420) AB1BAM68 AB1BXM25 ADGBCPSF
421) AB1BAIIC AB1BA84 4
ADGBCPSF
422) AB1RAO9C AB1BAM4 4 ADGBCPS:
423) AB1BAB41 ABIBAM36 ADCBCPSP
424) AB1BA971

COND, PROB, OG B LOADS ONTO BUS $1-6$ FIRST
CB IIC FAILS TO CLOSE
CB GC BETWEEN MCC 2-5, MCC $1-5$ AND BUS $1-5$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRSI
CB 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN CB 4 C BETWEEN MCC 1-4, MCC 4-4 AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-5$ FTRST
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN CB 160 BETWEEN MCC $4-7 \mathrm{MCC}, 7-7$ AND BUS $1-7$ FAILS TO OPEN COND. PROB. DG B LOADS ONTC BUS $1-6$ FIRST
CB 4971 FAILS TO OPEN (EAILURE ASSUMED SAME AS CTOSE) CB 6 C BETWSEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 9C FAILS TO OREN (FAILURE RATE ASSUMED SAME AS CLOSE CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 17 C BETWEEN MCC $3-7$, MCC 6-7 AND BUS $1-7$ FAILS TO OPEN CA BD 日ETWEEN MCC B-5 AND BUS $1-5$ PAIIS TO OPEN COND DTKB. DG B LCAIS ONTO BUS 1-6 FIRST
CR $14 C$ BETWELN MCC 6-6, MCC 7-6 AND BUS 1-6 FAILS TO OPEN CB 8 D BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 16 C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS 1-7 EAILS TO OPEN CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 12 D BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO OPFN
CB AD RETWEEN NCC B-5 AND BUS $1-5$ EAIL.S TO CPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB $2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN CB 17 C BETWEEN MCC $3-7$, MCr $6-7$ AND BUS $1-7$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB $2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN
CB $14 C$ BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB $工 \mathrm{C}$ BETNEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN CB 12D BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN
COND. PROB. DG 3 LOADS ONTO BUS $1-6$ FIRST
CB 120 BETWEEN MCC $8-6$ AND BUS $1-6$ EAILS TC OPEH
CB GC BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN CB GC BETWEEN MCC $2-5$, PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 11C FAILS TO CLOSE
CB 4841 EAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
CB 9C FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSE) CB $4 C$ BETWEEN MCC $1-4$, MCC 4-4 AND BUS $1-4$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 4841 FAILS TO OPFY (FANIURE ASSUMED SAME AS CLOSE CB 484 FAILS TO OPEN MCC 6-7 AND PUS 1 T EAINS TO OPEN CB $17 C$ BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ EAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST CB 4971 EAILS TO OPEN
(FAILURE ASSUMSD SAME AS CLOSE)

10-04-93 8:57 Page 25

RATE
4. $00 \mathrm{E}-4$
(E2 SA 4.0OE-4

EXPOSURE
E.E.
\qquad
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{EE}-03$
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 E-03$
2. $405-02$
2. $40 \varepsilon-03$
5. $00 \mathrm{E}-01$
$2.40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \varepsilon-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 E-03$
$5.00 \mathrm{E}-01$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
5.00E-01
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2.40E-03
2. $40 \mathrm{E}-03$
5.00E-01
2. $50 \mathrm{E}-03 \quad 2.88 E-06$

MOD. /CS
PROB.
$2.88 \mathrm{E}-06$
2.88E-06
$2.88 E-06$
$2.88 E-06$
2. 88E-06
$12.88 E-06$
2. $88 E-06$
$2.88 \mathrm{E}-06$
2. $88 \mathrm{E}-06$
2.88E-06
$2.86 \mathrm{E}-06$
2. 88E-06
2. $88 \mathrm{E}-06$
2.88E-06
2. $88 \mathrm{E}-06$
$2.88 \mathrm{E}-06$

SA 4.00E-4
IUV OR $4.00 \mathrm{E}-4$
(ER SA 4.00E-4
OTV OR 4.OOE-4

TCuTSETIOLDABT.CUT Eflter: 'ACTIVE'

MODULE/EVENT NAME

RATE

CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
CB $4 B 41$ FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CB 14 C BETWEEN MCC 6-6, NCC 7-6 AND BUS $1-6$ EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
C3 4841 TAILS TO Ur CB 4971 FAIIS TO OPEN FATITIRF RSSUMED SAME AS CLOSEI COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB $2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS 1-4 FAILS TO OPEN
 COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OREN CB 14C BETWEEN MCC 6-6, MCC $7-6$ AND BUS $1-6$ FAILS TO ODEN COND. PFOB, DG B LOADS ONTO BUS $1-6$ FIRST
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN CB $12 D$ BETWEEN MCC S-6 AND BUS $1-6$ FAILS TO OPEN
COND. PROB. DC B LOADS ONTO BUS $1-6$ FIRST
CB 9 C EAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSE
CB $2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 9 C FAILS TO OPEN (EAILURE RATE ASSUMED SAME AS CLOSE) CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CB 2 C BETWEFN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B LOADS ONTO (EAILURE ASSUMED CB 4841 FAILS TO OPEN

EAILURE ASSUMED SAME AS CLOSE CB 16 C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EAILS TO OPEN COND. PROB, DG B LOADS ONTO BUS $1-5$ FIRSI CB 11 C FAIIS TO CLOSE
CB BD BETWEEN MCC 8-5 AND BUS $1-5$ EATLS TO OPEN COND. PROB. DG E LOADS ONTO BUS $1-6$ FIRST CB 11 C EAILS TO CLOSE
CB 4 C BETWEEN MCC $1-4$, MCC 4-4 AND BUS $1-4$ EAILS TO OPEN COND. PROB. DG E LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST DIESEL 28 FAILS TO START
SW-FCV-129 EAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST DIESEL 2A FAILS TO START SW-FCV-130 FAILS TO OREN
SW~FCV-130 EAILS TO OREN ONTO BUS 1-5 FIRST COND. PROB. DG A LOADS ONERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT
COND FROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN
MOTOR OPERATED INTAKE DFMPER OOS FOR MAINT. MOTOR OPERATED INTAKE DFMPER OOS FOR MA
CONTACT PAIR $27 \mathrm{X} / 1-9 \quad 2-5$ FAILS TO CLOSE CONTACT PAIR $27 \times / 1-9 \quad 2-5$ FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EDG : $2 A$ P EAILS TO RUN GIVEN START
126) AB1BAB41 AB1BA971
427) AB1 BAM23

AB1BAM47 ADGBCPSE
428) AB1BAM44 AB1 BAM67 ADGBCPSE
4291 AB1BAM4 4 AB1 BAM68 ADGBCPSF
AB1BAM23 ADGBCPSF
431) AB1BA09C AB1BXM25 ADGBCPSE
432) AB1BA971 AB1BAM23 ADGBCPSE
433) AB1BA84 AB1 BAM4 7 AEGBCPSF
434) AB1BA11C AB1 BPME5 ADGBCPSF
435) AB1BA11C AB1 BAM44
436) ADGBCPSE ADGEK02B WAVAJ129
437) ADGBCPSF ADGEJO2A WAVAK 130
433) ADGACPSF AMVAK64B AMVQJ54A
439) ADGACPS AMVAJ64A AMVQK64B
440) ACPBKBO3 ADGACPSF ADGEJO2A

- CUTSETVCLDABT. CUT

Filter: 'ACTIVE'

MODULE/EVENT NAME
441) ACPBJAO3 ADGACPSF ADGACPSF
442) ACPAJAO1 ADGACPSE ADG: K02 8
443) ACPAKBOI ADGACPSF ADGFJ02A
444) ACVAJ64A ADGBCPSE ADGFK02B
445) ACVAK64B ADGBCPSF ADGEJ02A
446) ACPBX52C ADGACPSE AMVAK64B
447) ACPBX47C ADGACPSE AMVAK64B
448) ACPBX42C ADGACPSE AMVAK64B
449) ACPBK901 ADGACPSE AMVAJ64A
450) ACPBK5A ADGACPSF ADGACPSF
451) ACPAK5A3 ADGACPSF AMVAJ 64 A
452) ACPBX513 ADGACPSE AMVAK64B
453) ACPBX65C ADGACPSF ADGACPSF
AMVAJ64A
454) ACPBX72C ADGACPSF AM'/AJ64A
455) ACPBXX61 ADGACPSF AMVAJ64A
456) ACPBX613 ADGRCPSE ADGRCPSE
AMVAJ64A
457) ACPAX701 ADGACPSF

DESCRIPTION

CONTACT PAIR $27 \times / 1-8$ 2-5 FATLS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EDG ' $2 \mathrm{~B}^{\prime}$ EAILS 40 RUN GIVEN START
CONTACT PAIR 52MOC/EG2A M9-M10 FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ; 2 ' FAILS TO RUN GIVEN START
CONTACI PAIR $52 \mathrm{MOC} / \mathrm{EG2B}$ M9-M10 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EDG '2A' EAILS TO RUN GIVEN START
FAN E-64-1A EXHAUST DAMPER FAILS TO OPEN COND. PROB. DG B LONOS ONTO BUS $1-5$ FIRST EDG $\cdot 2 B^{\prime}$ EAILS TO RUN GIVEN START
FAN F-64-1B EXHAUST DAMPER FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG - 2 A FAILS TO RUN GIVEN START
EDG CONTACT PAIR $27 \mathrm{Y}-5 \quad 2-2 \mathrm{C}$ FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27Y-4 7-7C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR $27 \mathrm{Y}-4 \quad 2-2$ C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI MOTOR OPERATED INTAKE OAMPER EAILS TO OREN BREAKER 9C CP $15-16$ FAILS TO CLOSE OPON BR
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST WOTOR OPERATED INTAKE DAMPER FAILS COND. PROB. DG A LCADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FATLS TO OPEN CONTACT PAIR 62-5A 3-5 FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PATR $27 \times-5 \quad 9-13$ FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27Y-6 5-5C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST MOTOR OPERATED INTARE DAMPER FAILS TO OPEN CONTACT PAIR 2TY-7 2-2C FAILS TO CLOSE COND. PROB. DG A IOADS ONTO BUS $1-5$ EIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRSI MOTOR OPERATED INTAKE DAMPER FAIIS TO OP CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27-7 $2-10$ FAILS TO OPEN COND PROB, DG A LOADS ONTO BUS $1-5$ FIRST

RATE

1.35E-

1.10E-3

1.35E-4

1. $10 E-3$
1.10E-3
2. $35 E-4$
1.10E-3
2.00E-4
1.10E-3
$2.00 \mathrm{E}-\boldsymbol{r}$
1.10E-3
1.10E-3
3. $35 \mathrm{E}-4 \quad 6$
4.00E-3
4. $35 \mathrm{E}-4$

द. $00 \mathrm{E}-3$
1.35E-4
4.00E-3
4. $35 \mathrm{E}-4$
4.00E-3
4.00E-3
1.35E-4 6
$4.00 \mathrm{E}-3$

1. $35 \mathrm{E}-4$
$4.00 \mathrm{E}-3$
$1.35 \mathrm{E}-4$
4.00E-3
$1.35 E-4$
4.00E-3
2. $35 \mathrm{E}-4$
4.00E-3
3. $1.35 \mathrm{E}-4$
1.3
$4.00 \mathrm{E}-3$
1.3. $5-4$
4. $00 \mathrm{E}-3$
5. $35 E-4$

10-04-93
8:57 Page
27
10-04-93 8:57 Page: 27

EXPOSURE
PROB.
-…--

PROB.

$1.35 E-04$
$5.00 \mathrm{E}-01$
2. $64 E-02$

1. $35 \mathrm{E}-04$
5.00E-01
2. $64 \mathrm{E}-02$
3. $35 \mathrm{E}-64$
4. $35 \mathrm{E}-\mathrm{C4}$
5.00E-01
5. $2.64 \mathrm{E}-02$
6. $2.00 \mathrm{E}-04$
5.00E-01
7. $64 \mathrm{E}-02$
2.00E-04
5.00E-01
2.64E-02
$2.64 E-02$
8. $5.00 \mathrm{E}-04$
9. $00 \mathrm{E}-01$
10. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
5.00E-01
4.00E-03
8.10E-04
5.00E-01
4.00E-03
8.10E-04
$8.10 E-04$
$5.00 E-01$
11. $00 \mathrm{E}-01$
4.00E-03
12. 10E-04
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$4.00 \mathrm{E}-03$
8.10E-04
5.00E-01
13. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
14. $00 \mathrm{E}-01$
15. $00 \mathrm{E}-01$
16. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
4.00E-03
8.10E-04
5.00E-01
4.00E-03
$8.10 \mathrm{E}-04$
$8.10 E-04$
$5.00 E-01$
$5.00 \mathrm{E}-01$
17. $00 \mathrm{E}-03$
18. $10 \mathrm{E}-04$
5.00E-01
19. $00 \mathrm{E}-03$
20. 10E-04
21. $00 \mathrm{E}-01$

MOD. CS . PROB.
$1.78 \mathrm{E}-06$

1. $78 \mathrm{E}-06$
2. $78 \mathrm{E}-06$
3. $64 \mathrm{E}-06$
4. $64 \mathrm{E}-06$
$2.52 \mathrm{E}-06$
1.62E-06
5. $62 \mathrm{E}-06$
$1.62 E-0.6$
6. $62 \mathrm{E}-0.6$
7. $62 \mathrm{E}-06$
8. $62 \mathrm{E}-06$
9. $62 \mathrm{E}-06$
10. $62 \mathrm{E}-06$
1.62E-06
11. $62 E-06$
12. $62 \mathrm{E}-06$

- ICUTSETIOLDABT. CUT

Filter: 'ACTIVE'

MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN CONTACT PAIR 27X-7 9-13 EAILS TO CLOSE
COND. YROB. DG A LOADS ONTO BUS $1-5$ FTRST
MOTOR OPERATED TNTAKE DAMPER EAILS TO OREN
CONTACT PAIR $27 Y-74-4 C$ FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
MOTOR OPERATED INTAKE DAMPER FAILS 10 OPEN MOTOR OPERATED INTAKE DAMPER FAILS 10 O
CONTACT PAIR $27 \times-4 \quad 9-13$ FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27×-5 9-13 FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FTRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER TAIES OPEN
CONTACT PAIR 27-6 2-10 FAIIS TO OREN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN
MOTOR OPERATED INTAKE DAMPER EAILS TO
CONTACT PAIR $27-5 \quad 2-10$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
AUX CONTACT FAIR $27 Y / 1-8$ 1.8 FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CONTACT PAIR 27y/i-9 3-3C FATL TO CLOSE
CONZACI PAIR 2 IY MOADS ONTO BUS 1-5 FIRE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
HOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
AUX CONTACT PAIR $27 Y / 1-918$ FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS OMTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CONTACT PAIR 27Y/1-8 3-3C FAIL TO CLOSE
COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST
जOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
AUX CONTACT PATR 27Y/1-9 17 FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$ ILRSI
MOTOR OPERATED INTAKE DAMPER FAILS TO REMA
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CONTACT PAIR 27-4 $2-10$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CB 4841 FAILS TO OPEN \{FAILURE ASSUMED
COND. PROB. DG B LOADS ON
SW-FCV-130 FAILS TO OPEN
CB 4 C BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-5$ FIRST SW-FCV-130 FAIIS TO OPEN
CB 17 C BETWEEN MCC 3-7, MCC 6-7 AND BUS 1-7 EAILS TO OREN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST SW-FCV-129 FAILS TO OPEN
CE 16C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ FAILS TO OPEN

RATE

EXPOSURE EXPOSURE ---.--~.
$4.00 \mathrm{E}-3$
$1.35 \mathrm{E}-4$
$4.00 \mathrm{E}-3$
$1.35 \mathrm{E}-4$
4.00E-3
$4.00 \mathrm{E}-3$
$1.35 \mathrm{E}-4$
3.1.
4.008-03
4.00E-03
$8.10 \mathrm{E}-0$ 5.00E-01 4. $00 \mathrm{E}-03$ $8.10 \mathrm{E}-04$
5.00E-01
4. 00E-03
$8.10 \mathrm{E}-04$ $5.00 \mathrm{E}-01$ 4.00E-03 8. $10 \mathrm{E}-04$ $5.00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
8. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
4.00E-03
8. 10E-04
5. $5.00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
5.00E-01
4. $00 \mathrm{E}-03$
8.10E-04
5.00t-01
4. $00 \mathrm{E}-03$
8. $10 \mathrm{E}-04$
5.00E-01
4. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
4.00E-03
6. $10 \mathrm{E}-04$
5.00E-01
$4.00 \mathrm{E}-03$
8.10E-04
$5.00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $20 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
$2.40 \mathrm{E}-03$
$5.00 \mathrm{z}-01$
$5.00 \mathrm{E}-01$
2.00E-03
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$5.00 E-01$
$2.00 E-03$
$\begin{array}{ll}2.00 \mathrm{E}-03 \\ 2.40 \mathrm{E}-03 & 2.40 \mathrm{E}-06\end{array}$

1. $62 \mathrm{E}-06$
2. $62 \mathrm{E}-06$
3. $62 \mathrm{E}-06$
4. $62 \mathrm{E}-06$
5. $62 \mathrm{E}-06$
6. $62 \mathrm{E}-06$
7. $62 \varepsilon-06$
$1.62 \mathrm{E}-06$
$1.62 \mathrm{E}-06$
$1.62 \mathrm{E}-08$
8. $62 \mathrm{E}-06$
$1.62 \mathrm{E}-06$
9. $62 \mathrm{E}-06$
10. $40 \mathrm{E}-06$
11. $40 \mathrm{E}-06$
$2.40 E-06$

DESCRIPTION

COND. PROB. DG B LOADS ONTO BUS 1-6 FIK 31 SW-FCV-129 FAILS TO OPEN
CB 120 BETWEEN MCC 8-6 AND BUS $1-6$ EATLS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRSI SW-FCV-129 FAILS TO OPEN
CB 9C FAILS TO OPEN (EAILURE RATE ASSUMED SAME AS CLOSE)
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIPST
SW-FCV-129 FAILS TO OPEN
CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE)
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
WW-FCV-129 EAILS TO OPEN
CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ EAILS TO OREN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST SW-FCV-130 FAILS TO OPEN
CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND. PROB. DG 8 LOADS ONT
SW-FCV- 130 FAILS TO OPEN
CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ FAILS TO OPEN
CB 2C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-$
COND. PROB. DG 8 LOADS ONTO BUS $1-6$ FIRST
SW-FCV-130 FAILS TO OPEN
CB 11 C EAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
SN-FCV-129 FAILS TO OPEN
CB $14 C$ BETWEEN MCC $6-6$, MCC 7-6 AND BUS 1 -6 FAILS TO OPEN (ER SA COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST SW-ECV-129 FAILS TO OPEN
N DIST CABINET EMERG. GEN 2A CKIT-3 RAI
AC DIST. CABINET EMERG. GEN. 2A CKT. 3 EA
COND. PROB. DG B LOADS ONTO BUS 1
EUG : 2 R' FAILS TO RUN GIVEN START
EUG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
CB 6 DIESEL STARTER $2 A 2$ FAILS TO REMAIN CLOSE
CB 6 DIESEL STARTER $2 A 2$ FAIIS COND. PROB. DG 3 LOADS ONTO BUS $1-6$ FIRST
EDG $\cdot 2$ R FAILS TO RUN GIVEN STARI
CB 1 EG EIELD FLASH FAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRS
PDG : 2B? FAILS TO RUN GIVEN START
EDG ' 2 B' FAILS TO RUN GIVEN START COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST EDG ' $2 B^{\prime}$ ' FAILS TO RUN GIVEN START
CB 3 ALTERNATE FAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRS EDG ' 2 ' FAILS TO RUN GIVEN START
CB 4 DIESEL STARTER 2BI EAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG: $2 A$. FAIIS TO RUN GIVEN START
EDG 2A EAILS TO RUN GIVEN START REMAIN CEOSED CB 6 DIESEL SIARTER 2B2 FAILS TO REMAIN CI
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B L.OADS ONTO BUS 1-6
EDG ${ }^{\prime} 2 A$ ' FATLS TO RUN GIVEN START
CB 2 GOVERNOR CONTROL FAILS TO REMAIN CLOSE
CB 2 GOVERNOR CONTROL FAILS TO REMAIN CLOS
COND. PROR. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
$10-04-93$
8:57 Pag
29

ADGBCPSF
WAVAJ129
75) AB1 BAM68

ADGBCPSF
4767
ADGBCPSE
WAVAJ129
77) AB1BA971 ADGBCPSE
478) AB1BXM25 ADGBCPSE WAVAK130
479) AB1BPM85 ADGBCPSF WAVAK 130
80) AB1 BAM23 ADGBCFSE WAVAK 130
481) AB1BA11C ADGBCPSF
48) AB1PAM67 ADCBCPSF WAVA.J129
483) AB1DJAO1 ADGBCPSE ADGFK02B
484) AB1DJD06 ADGBCPSE
485) AB1DJDO1 ADGBCPSE ADGFK02B
486) AB1DJDO2 ADGBCFSF ADGFKO2B
487) AB1DJ003 ADGBCPSE
488) ABIDKDO4 ADGBCPSF ADGFJO2A
489) AB1DKD06 ADGBCPSE ADGEJO2A
4901 ABIDKDC2 ADGBCPSF ADGEJ02A
B.E. EXPOSURE
XPOSURE

PROB.

MOD. /CS.
PROB.

$5.00 \mathrm{E}-01$	
$2.00 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	$2.40 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.00 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	2. $40 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.00 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	2. $40 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.00 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	2. $40 \geq-06$
$5.00 \mathrm{E}-01$	
$2.00 \mathrm{E}-03$	
2.40E-03	2. $40 \mathrm{E}-06$
5.00E-01	
$2.00 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	2. $40 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.00 \mathrm{E}-03$	
$2.40 \mathrm{E}-03$	2. $40 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
2.00E-03	
$2.40 \mathrm{E}-03$	2. $40 \mathrm{E}-06$
5.00E-01	
2.00E-03	
1. $80 \mathrm{E}-04$	2. $38 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
2.64E-02	
1.80E-04	2.38E-06
$5.00 \mathrm{E}-01$	
2.64E-02	
1.80E-04	2.38E-06
$5.00 \mathrm{E}-01$	
$2.64 \mathrm{E}-02$	
1.80E-04	2. $38 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.64 \mathrm{E}-02$	
1.80E-04	2.38E-06
$5.00 \mathrm{E}-01$	
$2.64 \mathrm{E}-02$	
$1.80 \mathrm{E}-04$	2. $38 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
$2.64 \mathrm{E}-02$	
$1.80 \mathrm{E}-04$	2. $38 \mathrm{E}-06$
$5.00 \mathrm{E}-01$	
2. $64 \mathrm{E}-02$	
1.80E-04	2. $38 E-06$
$5.00 \mathrm{E}-01$	
2.64E-02	

- ACUTSETIOLDABT.CUT

Filter: 'ACTIVE'

MODULE/EVENT NAME

491) AB1DKD03 ADGBCPSE ADGFJO2A
4921 AB1DJ110 ADGBCPSF ADGFK02B
492) ABIDJ102 ADGBCPSF ADGFKO2B
(494) AB1DJD04 ADCBCPSF ADGFK02B
493) AB1DKDO1 ADGBCPSF ADGFJ02A
494) AB1DKB01 ADGBCPSE ADGEJ02A
495) АСРСК6А2 ADGBCPSE ADGBCPSE
496) ACPAK5B4 ADGACPSE ADGEJ02A
497) ACPDK11C ADGACPSF
498) ACPAK5B4 ADGBCPSF AMVAJ64A
499) ATRTCC56
500) ADGBCPSE WAVAJ129 WAVAK130
501) AB1BAM44 ACPAK5B4 ADGACPSF
502) AB18A841 ACPAK5B4 ADGACPSF
503) AB1BPM85 ACPAK5BA ADGACPSF
504) AB1 BXM25 ACPAK5B4 ADGACPSE
505) AB1BAM23 ACPAK5B4 ACPGACPSF
506) ADGACPSF ADGEJ02A

CB 3 ALTERNATE FAILS TO PEMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRSI
EDG ' 2 A ' FAIt'S TO RUN GIVEN START
LIGHTING PANEL LP-DI CKI. *10 EAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTC BUS $1-6$ FIRST
EDG ; $2 B^{\circ}$ FAILS TO RUN GIVEN START
LIGHTING PANEL LP-D1 CKT. 12 EAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EDG ' 2 ' EAILS TO RUN GIVEN START
CB 4 DIESEL STARTER 2AI FAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS $2-6$ FIRSI
EDG ' 2 E ' FAILS TO RUN GIVEN STARI
CB 1 EG FIELD FLASH EAILS TO REMAIN CLOSED
COND. PROB. DG B LOADS ONTO BUS 1-6 FIIST
EDG : 2A FAIIS TO RUN GIVEN START
AC DIST. CABINET EMERG. GEN. 2B CKI. 3 FAILS TO REMAIN CLISED COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CONTACT PAIR 62-6A $2-6$ EAILS TO REMATN OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST
EDG ' 2 A' EAILS TO RUN GIVEN STARI
CONTACT PAIR 62-5B 4-6 FAILS TO OPE
COND PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
COND. PROB, DG A LOAUS
IESEL 2A EAILS TO START
CONTACT PAIR 15-16 FOR 11C CELL SWITCH FATLS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CONTACT PAIR 62-5B $4-6$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
CCF OF TRANSFORMERS 485 AND 496
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
SW-FCV-129 FAILS TO OPEN
SW-FCV-129 EAILS TO OPEN
CB 4 C 日ETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN CONTACT PAIR 62-5B 4-6 FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1 \sim 5$ EIRSI
CB 4841 FAILS TO OPEN
(FAILURE ASSUMED SAME AS CLOSE
CONTACT PAIR 62-58 $4-6$ EAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ EAILS TO OPEN
CONTACT PAIR 62-5B 4-6 FAILS TO OPEN
CONTACI PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
CB 6 C PETFEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ EAITS TO OPEN CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND B CONTACT PAIR 62-5B 4-6 FATLS TU OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
CB 2 C BETWEEN MCC $2-4$, NLCC $3-4$ AND BUS $1-4$ FAILS TO OPEN CONTACT PAIR 62-5B 4-6 FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
DIESEL 2A FAILS TO START

RATE
RATE
ED
ISCREE

B.E. MOD.7CS. EXPOSURE \qquad
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$1.80E-04
5. $00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
$1.80 \mathrm{E}-04$
$5.00 \mathrm{E}-01$$5.00 \mathrm{E}-01$$2.64 E-02$
$1.80 \mathrm{E}-04$
5.00E-01$2.64 \mathrm{E}-02$1.80E-04$5.00 \mathrm{E}-01$$2.64 \mathrm{E}-02$
$1.80 \mathrm{E}-04$1.80E-04$5.00 \mathrm{E}-01$$2.64 \mathrm{E}-02$$1.72 \mathrm{E}-04 \quad 2.28 \mathrm{E}-0.6$
5.00E-012. $54 \mathrm{E}-02$1.08E-03$5.00 \mathrm{E}-01$2.80E-03
3. $00 \mathrm{E}-06$5.00E-01$1.08 \mathrm{E}-03$

$$
5.00 \mathrm{E}-01
$$

$$
\begin{aligned}
& 3.00 E-01 \\
& 4.00 E-03
\end{aligned}
$$

$$
\begin{array}{ll}
4.00 \mathrm{E}-03 & 1.68 \mathrm{E}-06 \\
1.68 \mathrm{E}-06 & 1.60
\end{array}
$$

$$
5.00 \mathrm{E}-01 \quad 2.00 \mathrm{E}-06
$$

$$
2.00 \mathrm{E}-03
$$

$$
2.00 \mathrm{E}-03
$$

$$
\text { 2. } 40 \mathrm{E}-03
$$

$$
\begin{aligned}
& \text { 2. } 40 \mathrm{E}-03 \\
& 1.08 \mathrm{E}-03
\end{aligned}
$$

$$
\begin{aligned}
& 1.08 E-03 \\
& 5.00 E-01
\end{aligned}
$$

$$
5.00 \mathrm{E}-01
$$

2. $40 \mathrm{E}-03$
$1.08 \mathrm{E}-03$
1.08E-03
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.40 \mathrm{E}-03$
1.08E-03
$5.00 \mathrm{E}-01$
3. $40 \mathrm{E}-03$ 2. $40 \mathrm{E}-03$ 1.08E-03 5.008-01 $2.40 \mathrm{E}-03$ 1. $08 \mathrm{EE}-03$ $5.00 \mathrm{E}-01$ $5.00 \mathrm{E}-01$
4. $80 E-03$

PROB.
$2.38 E-06$
2. $33 \mathrm{E}-06$
$2.38 E-06$
2. $38 \mathrm{E}-06$
2. $38 \mathrm{E}-06$
$2.38 \mathrm{E}-06$
2. $28 \mathrm{E}-0.6$

1. $51 \mathrm{E}-06$
$1.50 \mathrm{E}-06$
$2.16 \mathrm{E}-06$
1.30E-06
1.30E-06
2. $30 \mathrm{E}-06$
3. $30 E-06$
4. $30 \mathrm{E}-06$
$1.27 \mathrm{E}-06$

. ICUTSETIOLDABT.CUT
Ellter: 'ACTIVE'

MODULE/EVENT NAME

AMVQK64B
509) ADGACPSF AWCEKO2B AMVQJ64A
5101 ADGACPSF ADGFKO2B DESTJE2A
511) ADGACPSF ADGFJ02A DBSTKE2B
512) ADGACPSE ADGFJC2A DBSTIOOB
513) ADGACPSE ADGFK02B DBSTIOOA
514) ABSTJA03 ADGACPSF ADGFKO2B
515) ABSTJAOZ ADGACPSF ADGFK02B
516) ABSTKBO2 ADGACPSF ADGFJO2A
517) ABSTKBO3 ADGACPSE
518) ADGBCPSF AMVAK64B AMVQ
519) ADGBCPSF

AMVAJ64A AMVQK54B
520) ADGACPSF AFNEJ64A AFNEJ64A
521) ADGACPSE AFNEK64B AMVAJ64A
522) ADGACPSE ADGQKO2B AFNFJ64A
523) ADGACPSF ADGQJO2A AFNFK64B
524) ADGACPSF AMVAJ64A AMVAJ $64 A$
ARCMK15B
525) ADGACPSF

DESCRIPTION

MOTOR OPERATED INTAEE DAMPER OOS FOR MAINT COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST DIESEL 2B FAILS TO START
MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT
COND. PROB. DG A LOADS ONIO BUS $1-5$ FIRS
EDG ' 2 B' FAILS TO RUN GIVEN START
LOCAL EAULTS ON 125 VDC DISTRIBUTION CABINET EGG2A
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI
EDG : 2A' FAILS TO RUN GIVEN STAEI
LOCAL FAULTS ON 125VDC DISTRIBUTION CABINET EGG2B COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EDG ' 2 A' FAILS TO RUN GIVEN START
LOCAL. FAULTS ON 125 VDC DISTRIBUTION PANEL B
LOCAL. FAULTS ON 125 VDC DISTRIBUTION PANEL
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRSI
COND. PROB. DG A LOADS ONTO BUS
EDG : $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
EDG : $2 B^{\prime}$ FAILS TO RUN GIVEN START
LOCAL FAULTS ON $125 V D C$ DISTRIBUTION PANEL
FAULT ON AC DIST CABINET EMERG. GEN. 2A
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EDG ' 2 B' $^{\prime}$ FAILS TO RUN GIVEN START
FAULT ON LIGHTTNG PANEI, LP-D1
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND : PROB. DG A LOADS GIVEN START
EDG ' 2 B ' FAILS TO RUN GIVEN S
FAUBT ON LIGHTING PANEL LP-D2
FAULT ON LIGHTING PANEL LP-D2
COND, PEDB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PEJB. DG A LOADS ONTO BUS $1-5$
EDG : $2 A$ ' FAILS TO RUN GIVEN START
EDG ' 2A' FAILS TO RUN GIVEN START
FAULT ON AC DIST CABINET EMERG. GEN. 2B
FAULT ON AC DIST CABINET EMERG. GEN. 2 B
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A. EAILS TO RUN GIVEN START COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED TNTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT.
COND PROB. DG B LOADS ONTO BUS $1-6$ FIRST
COND. PROB. DG 8 LOADS ONTO BUS MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER OOS FOR MAINI
COND PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO
FAN F-64-1A FAILS TO START
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST FAN F-64-1B EAILS TO START
MUTOR OPERATED INTAKE DAMPER FAILS TC OPEN MUTOR OPERATED INTAKE DAMPER BUS 1-5 EIRST COND. PRERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT. FAN E-64-1A FAILS TO RUN
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT. EAN F-64-1B EAILS TO RUN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OREN
RELAY 62-5B FAILS TO DEENERGIZE
COND. PROB. DG A LOADS GNTO BUS $1-5$ FIRST

RATE	EXPOSURE	E.E. PROB.	MOD. IES. PROB.
$9.04 \mathrm{E}-4$	1	$9.04 \mathrm{E}-04$	
	. 5	5.00E-01	2.27E-06
2.80E-3	1	2.80E-03	
$9.04 \mathrm{E}-4$	1	9.04E-04	
	. 5	5.00E-01	11.21E-06
$1.10 \mathrm{E}-3$	1	2.64E-02	
$3.83 \mathrm{E}-6$	1	9.19E-05	
	. 5	5.00E-01	1.21E-06
1.10E-3	1	2.64E-02	
$3.83 \mathrm{E}-6$	1	9.19E-05	
	. 5	5.00E-01	$1.21 \mathrm{E}-06$
1.10E-3	1	2.64E-02	
3,8ラE-6	1	$9.19 \mathrm{E}-05$	
	. 5	5.00E-01	$1.21 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$3.83 \mathrm{E}-6$	1	$9.19 \mathrm{E}-05$	
3.83E-6	1	$9.19 \mathrm{E}-05$	$1.21 \mathrm{E}-06$
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$3.83 \mathrm{E}-6$	1	$9.19 \mathrm{E}-05$	1.21E-06
	. 5	$5.00 \mathrm{E}-02$	
1.10E-3	1	$2.64 \mathrm{E}-02$	
$3.83 \mathrm{E}-6$	1	$9.19 \mathrm{E}-05$	1.21E-06
	. 5	5.00E-01	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$3.83 \mathrm{E}-6$	1	$9.19 \mathrm{E}-05$	$1.21 \mathrm{E}-06$
	. 5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
	. 5	$5.00 \mathrm{E}-01$	1.81E-06
$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
$9.04 \mathrm{E}-4$	1	$9.04 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$1.81 \mathrm{E}-06$
$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
$9.04 E-4$	1	$9.04 \mathrm{E}-04$	
	. 5	$5.00 \mathrm{E}-01$	$1.20 E-06$
$6.00 E-4$	1	$6.00 \mathrm{E}-04$	
$4.00 \mathrm{E}-3$	1	4.00E-03	
	. 5	$5.00 \mathrm{E}-01$	1.20E-06
6.00E-4	1	$6.00 \mathrm{E}-04$	
$4.00 E-3$	1	4. $00 \mathrm{E}-03$	
	. 5	$5.00 \mathrm{E}-01$	$1.20 \mathrm{E}-06$
1.00E-2	1	1.00E-02	
1.00E-5	1	2.40E-04	
	. 5	$5.00 \mathrm{E}-01$	1. 20E-06
1.00E-2	1	1.00E-02	
$1.00 \mathrm{E}-5$	1	2.40E-04	
	. 5	5.00E-01	$1.20 \mathrm{E}-06$
4.00E-3	1	4.00E-03	
$1.00 \mathrm{E}-4$	5	$6.00 \mathrm{E}-04$	
	. 5	5.00E-01	1.20E-06

. Icumset loldabt.cut
E1lter: 'ACTIVE'
MODULE/EVENT NAME

AMVAJ64A
ARCHKOBA
526) ADGACPSE AMVAJ64A ARCMX 7×6
527) ADGACPSF AMVAJG4A ARCMX 276
528) ADGACPSE AMVAJ64A ARCHX7V6
529) ADGACPSE AMVAJ64A ARCHX?Y7
530) ADGACPSE AMVAJ64A ARCM×277
531) ADGACPSF AMVAK64B ARCMX274
532) ADGACPSF AivVAK64B ARCHX7Y4
533) ADGACPSF AMVAK 643 ARCMX7X4
534) ADGACPSF AMVAK64B ARCMX275
535) ADGACPSF AMVAK64B ARCHX7Y5
536) ADGACPSE AMVAK64B ARCMK7 $\times 5$
537) ADGACPSE AMVAK64B ARCHJAOS
538) ADGACPSF AMVAJ64A AMVAJ 64 A
ARCMX7X7
539) ADGACFSF AMVAK64B ARCHJAOA
540) ADGACPSF AMVAJ64A ARCHKB05
541) ADGACPSE AMVAJ64A ARCHKBO 4

DESCRTPTION

MOTOR OPERATED INTAKE DAMPER FAILS TO OREN RELAY 62-6A FAILS TO ENERGIZE
COND. EROB. DG A LOADS ONTO BUS 1-5 TIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY 27-6 FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRSI MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY $27 Y-6$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED TNTAKE DAMPER FAILS TO OPEN REIA: $27 Y-7$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY $27-7$ FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OP $Z \mathbb{N}$ RELAY 27-4 FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN REIAY $27 Y-4$ FAIIS TO ENERGIZE
COND PROB DG A IOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONLO BUS I-S RIRSI MOTOR OPERATED INTAKE DAMPER FA RELAY $27 \mathrm{X}-4$ EAILS TO DEENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY 27-5 FAILS TO DE-ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR $\sim P E R A T E D ~ I N T A K E ~ D A M P E R ~ F A I L S ~ T O ~ O P E N ~$ RELAY $27 Y-5$:AILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN MOTAK $27 \mathrm{X}-5$ FAILS TO DE-ENERGIZE
COND. PROE. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN RELAY $27 \mathrm{X} / 1-8$ EAILS TO ENERSI2E
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED TNTAKE DAMPER FAILS TO OPEN RELAY 27X-7 FAILS TO DE-ENERGIZE COND PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOP OPERATED INTAKE DAMPER FAILS TO OPEN RELAY $27 Y / 1-8$ FAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BIS $1-5$ FIRSI MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
CUND. PROB. DG A LOADS ONTO BUS 1-5 FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN RELAY $27 Y / 1-9$ FAILS TO ENERGIZE

RATE
4.00 E
$4.00 E-3$
$1.00 E-4$
EXPOSURE
E. E.

PROB.
$1.00 \mathrm{E}-4 \quad 5$
4.00E-3 1
1.00E-4 5
4.00E-3 :

1. $00 \mathrm{E}-4 \quad 6$
4.00E-3 i
$1.00 \mathrm{E}-4 \quad 6$
4.00E-3 i
1.00E-4 6
4.005-3:
. $00 \mathrm{E}-4$
.00e-4 6
2. $00 \mathrm{E}-3$
1.00E-4
3. $00 \mathrm{E}-3$
1.00E-4
4.00E-3
.5
. 00 E-3
. OOE -4
4.00E-3
$1.00 \mathrm{E}-4$
. $.00 \mathrm{E}-3$
1.00E-4
$4.00 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
4.00E-3
$1.00 \mathrm{E}-4$
$4.00 \mathrm{E}-3$
4. 00 E-4
5. OOE -3
$i_{1}^{.5}$
1.00E-4 6
$4.00 \mathrm{E}-3$
1.0OE-4
4.00E-3
$1.00 E-4$
6. $00 \mathrm{E}-03$
$6.00 \mathrm{E}-0.4$
5.00E-01
$4.00 \mathrm{E}-03$
6.00E-0.
$5.00 \mathrm{E}-01$
7. $005-03$
$6.00 \mathrm{E}-04$
6.00E-04
8. $00 \mathrm{E}-01$
9. $00 \mathrm{E}-03$
10. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
11. $00 \mathrm{E}-03$
6.00E-04
5.008-01
4.00E-03
12. $00 \mathrm{E}-03$
5.00E-04
13. $00 \mathrm{E}-01$
14. $00 \mathrm{E}-03$
15. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
4.00E-03
6.00E-04
5.00E-01
4.00E-03
4.00E-03
5.00E-04
16. $00 \mathrm{E}-01$
$4.00 \mathrm{E}-03$
6.00E-04
5.00E-01
17. OOE-03
6.008-04
5.00E-01
18. $00 \mathrm{E}-\mathrm{C} 3$
6.00E-04
19. $00 \mathrm{E}-01$
4.00E-03
20. DOE-04
5.00E-01
$4.00 \mathrm{E}-03$
6.008-09
5.00E-01
21. $000 \mathrm{E}-03$
22. $00 \mathrm{E}-04$
23. $5.00 \mathrm{E}-04$
24. $00 \mathrm{E}-01$
25. $00 \mathrm{E}-03$
6.002-04
$\begin{aligned} & 6.00 \mathrm{E}-04 \\ & 5.00 \mathrm{E}-01 \\ & 4.00 \mathrm{E}\end{aligned} \mathrm{I} .20 \mathrm{E}-06$
4.00E-03
26. $00 \mathrm{E}-04$

MOD PES.
PROB.
……
2. $20 \mathrm{E}-06$
1.208-06
$2.20 \mathrm{E}-06$
1.20E-06

1. 2 CE-06
$1.20 \mathrm{E}-06$
1.20E-06
1.20E-06
$1.20 \mathrm{z}-06$
1.20E-06
$1.20 \mathrm{E}-06$
$1.20 \mathrm{E}-06$
1.20E-06
1.20E-06
2. $20 \mathrm{E}-06$
. ICUTSETVOLDAET. CUT Fllter: 'ACTIVE'

MODULE/EVENT NAME
542) ADGACPSE AMVAJ64A ARCM 15A
543) ADGACPSF AMVAJ64A ARCMKBCI
544) ADGACPSE AMVAK 64 B ARCMJAO:
545) ADGACESF AMVAJ64A ARCHKB21
546) ADGACPSE AMVAK64B ARCHJA21
547) ABKDCC56
548) ACPAKBO1 ADGBCPSE ADGBCPSF
549) ACPBJAO3 ADGBCPSF ADGFKO2B
550) ACPBKBO ADGBCPSE ADGFJ02A
5511 ACPBX65C ADGACPSE ADGEJO2A
552) ACPBX72C ADGACPSE ADGEJ02A
553) ACPBK 5 A2 ADGACPSE ADGEJ02A
554) ACPBI93C ADGACPSF ADCEJ02A
555) ACPBXX41 ADGACPSF ADGEK02B
556) ACPAX401 ADGACPSE ADGEXO2B
557) ACPAK501 ADGACPSF ADGEK02B
558) ACPDJAO4. ADGACPSE ADGEK02a
559) ACPDJAO3

CUTSET REPORT

DESCRIPTION

COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST MOTOR OPERATED INTAKE DAMPER EAILS IO OPEN RELAY 62-5A FAILS TO DEENERGTZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRSI
MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN RELAY 27Y1/1-9 FAILS TO DEENERGIZE
COND. PROB. DG A LOADS ONTO BUS I-5 EIRSI
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN RELAY 27Y1/1-8 FAILS TO DEENERGIZE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRSI MOTOR OPERATED INTARE DAMPER FAIIS TO OPEN RELAY $27 Y 2 / 1-9$ EAILS TO ENERGIZE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN MOTOR OPERATED INTAKE DAMPER FAIL
RELAY $27 Y 2 / 1-8$ EAILS TO ENERGIZE RELAY $27 Y 2 / 1-8$ EAITS TO ENERGIZE
CCF OF CB' 54850 AND 4960 TO REMA CCF OF CB'S 4850 AND 4960 TO REMAIN CLOSED CONTACT PAIR 52MOC/EG2B M9-M10 EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDC - 2A. FATES TO RUN GTVEN SPART
CONTACT PAIR $27 \times / 1-8 \quad 2-5$ FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 B ' FAILS TO RUN GIVEN START EDG ' 2 B ' FAILS TO RUN GIVEN SIARI CONTACT PAIR $27 \times / 1^{-9}-5$ FAILS TO CLOSE
COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST COND. PROB. DG 3 LOADS ONTO BUS
EDG 2 . FAILS TO RUN GIVEN START EDG ' $2 A$ F FAILS TO RUN GIVEN STARI
CONTACT PAIR $27 Y-65-5 C$ EAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI DIESEL 2A EATLS TO START
CONTACI PAIR $27 Y-7$ 2-2C FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS 1-S EIRST DIESEL 2A EAILS TO START
CONTACT PAIR 62-6A 2-6 FAILS TO CLOSE CONTACT PAIR 62-6A $2-6$ FAILS BUS $1-5$ EIRST
COND. PROB. DG A LOADS ONTO BUS DIESEL 2A FAILS TO START
CONTACT PAIR 27Y/1-9 3-3C FALL TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2A FAILS TO START
CONTACT PAIR 27×-4 9-13 FAILS TO CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI DIESEL 2B FAILS TO START
CONTACT PAIR $27-4 \quad 2-10$ FAILS TO OREN
CONTACT PAIR $27-4$ 2-10 FAILS TO OREN
COND. FROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. FROB. DG A LOADS ON
DIESEL 2B FAILS IO START
DIESEL 2B FAILS TO START
CONTACT PAIR $27-5 \quad 2-10$ FAILS TO OPEN
CONTACT PAIR $27-5$ 2-10 EAIIS TO OEEN
COND. PROB. DG A LOADS OAIO $2 T S ~ 1-5$ FIRST
DIESEL 2B FAILS TO STARI
AUX CONTACT PAIR $27 \mathrm{Y} / 1-818$ FALLS TO REMAIN CLOSED COND. PROB. DG A LOADS ONTO BUS i-5 EIRST
DIESEL $2 B$ EAILS TO START
AUX CONTACT PATR $27 Y / 1-8 \quad 17$ FAILS TO REMATN CLOSED

- \CUTSETIOLDABT. CUT Filter: 'ACTIVE,

MODULE/EVENT NAME DESCRIPTION

AOGACPSF ADGEK02B
560) ACPDKBO4 ADGACPSE ADGEJO2A
561) ACPDKBO3 ADGACPSE ADGEJO2A
56) ACPBI83C ADGACPSE ADGEKO2B
563) ACPBX47C ADGACPSF ADGEK02B
564) ACPBK901 ADGACPSE ADGEJ02A
565) ACPBX513 ADGACPSE ADGEK02B
566) ACPBXX51 ADGACPSE ADGEKO2B
567) ACPBX52C ADGACPSF ADGER02B
568) ACPAX601 ADGACPSE ADGEJ02A
5691 ACPBX42C ADGACPSF ADGEK02B
5701 ACPAK5A. ADGACPSF ADGEJ02A
571) ACPBX613 ADGACPSF ADGEJ02A
572) ACPBXX71 ADGACPSF ADGEJ02A
573) ACPAX701 ADGACPS: ADGEJ02A
574) ACPBXX61 ADGACPSF ADGEJ02A
575) ACPBX74C ADGACPSF ADGEJ02A

COND. PROS. DC A LOADS ONTO BUS 1-5 EIRST
DIESEL. 2B FAIL O TO START
AUX CONTACT PATR 27Y/1-9 18 FAIUS TL ROMAIN CLOSED
COND. EROB. DG A LOADS ONTO BUS $1-5$ FIRST
DIESEL 2A FAILS TO START
AUX CONTACI PAIR $27 Y / 1-917$ FAILS TO REMAIN CLOSED
COND. PROB. DG A LOADS ONTO BUS 1-5 EIRST
DIESEL 2A FAILS TO START
CONTACT PAIR $27 Y / 1-8$ 3-3C FAIL TO CLOSE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
DIESEL 2B FAILS TO START
CONTACT PAIR 27Y-4 7-7C EAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRS? DTESEI 2B FAILS TO START
B,SAKER 9C CP 15-16 FAILS TO CLOSE UPON BREAKER TRIP COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
DIESEL 2A FAILS TO START
CONTACT PAIR 27X-5 9-13 EAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2B FAILS TO START
CONTACT PAIR 27X-5 9-13 FATLS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2 B FAILS TO START
CONTACT PAIR 27Y-5 $2-2 C$ FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2B FAILS TO START
CONTACT PAIR $27-6 \quad 2-10$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2A FAILS TO START
CONTACT RAIR $27 Y-4 \quad 2-2 C$ EAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
DIESEL 2 F FAILS TO START
CONTACT PATR $52-5$ A $3-5$ FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST DIESEL 2A FAILS TO START
CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
DIESEL 2A FAILS TO START
CONTACT PAIR $27 \mathrm{X}-7$ 9-13 FAILS TO CLOSE
COND. PROE. DG A LOADS ONTO BUS $1-5$ FIRST
DIESEL 2A FAILS TO START
CONTACT PAIR 27-7 2-10 FAILS TO OPEN
COND. PROB. DG A LOADS ONTO BUS 1 -5 EIRST
DIESEL 2A EAILS TO START
CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
DIESEL. 2F FAILS TO START
CONTACT QAIR 27Y-7 4-4C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST
DIESEL 2A FATLS TO START

RATE	EXPOSURE	PROB.	PRCB.
	. 5	5.008-01	
2.80E-3	1	$2.80 \mathrm{E}-03$	
$1.25 \mathrm{E}-7$	18	8.10E-04	1,13E-06
	. 5	5.00E-01	
2.90E-3	1	$2.80 \mathrm{E}-03$	
1.25E-7	18	8. $10 \mathrm{E}-04$	$1.13 \mathrm{E}-0.6$
	. 5	5.00E-01	
$2.80 \mathrm{E}-3$	1	2.80E-03	
1.35E-4	6	8.10E-04	$1.13 \mathrm{E}-06$
	. 5	$5.00 \mathrm{E}-01$	
2.80E-3	1	$2.80 \mathrm{E}-03$	
1.35E-4	6	8.10E-04	$1.13 \mathrm{E}-06$
	. 5	$5.00 \mathrm{E}-01$	
$2.80 \mathrm{E}-3$	1	$2.80 \mathrm{E}-03$	
1.35E-4	6	8.10E-04	2.13E-06
	. 5	$5.00 \mathrm{E}-01$	
2.80E- 3	1	2. $80 \mathrm{E}-03$	
1.35E-4	6	8.10E-04	1.13E-06
	. 5	5.00E-01	
$2.80 \mathrm{E}-3$	1	$2.80 \mathrm{E}-03$	
1.35E-4	6	$8.10 \mathrm{E}-04$	$1.13 \mathrm{E}-06$
	. 5	$5.00 \mathrm{E}-01$	
2. $80 \mathrm{E}-3$	1	$2.80 \mathrm{E}-03$	
1. $35 E-4$	6	$8.10 \mathrm{E}-04$	1.13E-06
	. 5	$5.00 \mathrm{E}-01$	
$2.80 \mathrm{E}-3$	1	2.80E-03	
1.35E-4	6	$8.10 \mathrm{E}-04$	1.13E-06
	. 5	$5.00 \mathrm{E}-01$	
$2.80 \mathrm{E}-3$	1	2.80E-03	
1.35E-4	6	8.108-04	1.13E-06
	. 5	5.00E-01	
$2.80 \mathrm{E}-3$	1	2.80E-03	
1.35E-4	6	8. $10 \mathrm{E}-04$	$1.13 \mathrm{E}-06$
	. 5	5.00E-01	
2. $80 E-3$	1	$2.80 \varepsilon-03$	
1.35E-4	6	8.10E-04	$1.13 \mathrm{E}-06$
	. 5	5.00E-01.	
2.80E-3	1	$2.80 \mathrm{E}-03$	
1. $35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	1.13E-06
	. 5	$5.00 \mathrm{E}-01$	
2.80E-3	1	$2.80 \mathrm{E}-03$	
$1.35 E-4$	6	$8.10 \mathrm{E}-04$	$1.13 \mathrm{E}-06$
	. 5	$5.00 \mathrm{E}-01$	
$2.80 \mathrm{E}-3$	1	2.80E-03	
1.35E-4	6	8.10E-04	$1.13 \mathrm{E}-06$
	. 5	$5.008-01$	
$2.80 E-3$	1	2.80E-03	
1.35E-4	6	8.10E-04	$1.13 \mathrm{E}-06$
	. 5	5.00E-01	
2.8OE-3	1	2. $80 \mathrm{E}-03$	

Filter: 'ACTIVE'

HODULE/EVENT NAME

RATE

COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR ' B^{\prime} OOS FOR MAIN1.
$4160 / 480 \mathrm{~V}$ TRANSFORMER (485) OOS EOR MATNT.
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST
EMERGENCY DESIEL GENERATOR ' 2 A' DOS FOR MAINT.
$4160: 480 \mathrm{~V}$ TRANSFORMER (496) OOS FOR MAINT.
CB 6C BETWEEN MCC $2-5$, MCC 1-5 AND BUS $1-5$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
MOTOR OPERATED INTAKE DAMPER DOS FOR MAINT.
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OREN
COND. PTRCB. DU A IOADS ONTC BUS 1-5 EIRST
MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT
CB 2C BETWEEN MCC 2-4, MCC 3-4 AND BUS $1-4$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST YOTOR OPERATED INTAKE DAMPER OOS FOR MAINT. CB 9C EAILS YO OPEN
(FAILURE RATE ASSUMED SAME AS CLOSE) COND. PROR. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER OOS FOR MATNT CB I1C FAILS TO CLOSE
COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST MOTOR OPERATED TNTAKE DAMPER OOS FOR MAINT. CB 4841 FAILS TO OREN (FAILURE ASSUMED SAME AS CLOSE COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER OOS FOR MAINE CA $8 D$ BETWEEN MCC 8-5 AND BUS $1-5$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRSI MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT. CB $17 C$ BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN COND - PROB. DG A LOADS ONTO BUS $1+5$ EIRST MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT CB $14 C$ BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ इALUS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER OOS EOR MAINT CB 16 C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER DOS FOR MAINT. CE 120 BETWEEN NCC 8-6 AND BUS $1-6$ FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST MOTOR OPERATED INTAKE DAMPER OOS POR MAINT. CB 4971 FAITS TO OPEN (FAILURE ASSOMED SAME AS CLOSE COND. PROA. DG A LOADS ONTO BUS $1-5$ EIRST MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT. CONTACT PATR $27 \mathrm{X}-6$ 9-13 FAILS TO CLOSE COND. PROE. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE OAMPER FAILS TO OPEN CONTACT PAIR $27 \mathrm{X}-7$ 9-13 FAILS TO CLOSE COND. PROB. DG B TOADS ONTO BUS $1-6$ PIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27Yー7 4-4C FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS 1-6 EIRST

B.E.

MOD. 7 CS. PROB.
…--
$5.00 \mathrm{E}-01$
5.00E-01
$1.00 \mathrm{E}-02$
$2.21 \mathrm{E}-04$
2. $21 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
1.0. $\mathrm{E}-02$
2.21E-0.
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
9. $04 \mathrm{E}-04$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$9.04 \mathrm{E}-04$
$2.40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
9.04E-04
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
. $00 \mathrm{E}-01$
$9.04 \mathrm{E}-04$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
9. $04 \mathrm{E}-04$
2. $40 \mathrm{E}-03$
5. ©0e -01
$9.04 \mathrm{E}-04$
2. $40 \mathrm{E}-03$
5.00E-01
$9.04 \mathrm{E}-4.4$
2.40E-03
5.00E-01
9.04E-04
2. $400-03$
5.00E-01
9. $04 \mathrm{E}-04$
2. $40 \mathrm{E}-03$
2. $40 \mathrm{E}-03$
-. $00 \mathrm{E}-01$
$9.04 \mathrm{E}-04$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{z}-01$
9.04E-04
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$9.04 \mathrm{E}-04$
8.10E-04
$5.00 \mathrm{E}-01$
4.00E-03
$8.10 \mathrm{E}-04$
5.00E-01
4. OOE -02
$8.10 E-04$
$5.008-01$
1.10E-06

1. $10 \mathrm{E}-06$
$1.08 \mathrm{E}-06$
1.08E-C6
$1.08 \mathrm{E}-06$
1.08E-06
$1.08 \mathrm{E}-06$
1.08E-06
$1.08 \mathrm{E}-06$
1.08E-06
$1.08 \mathrm{E}-06$
$1.08 \mathrm{E}-06$
1.08E-06
$1.08 \mathrm{E}-06$
1.62E-06
2. $62 \mathrm{E}-06$
3. $62 \mathrm{E}-06$

Filter: 'ACTIVE'

MODULE/EVENT NAME

DESCRIPTION

AMVAJ64A
593) ACPBI 93 C

ADCBCPSF AMVAJ64A
594) ACPDKBO4 ADGBCPSE AMVAJ64A
595) ACPDKB03 ADGBCPSE AMVAJ64A
596) ACPDJA03 ADGBCPSE AMVAK 64 B
597) ACPAX501 ADGBCPSE AMVAK64B
(598) ACPBXX41 ADGBCPSE AMVAK64B
599) ACPAX401 ADGBCPSF AMVAK64B
600) ACPBI83C ADGBCPSF AMVAR $64 B$
601) ACPDJAO4 ADGBCPSE AMVAK $54 B$
602) ACPAX701 ADGBCPSE AMVAJ64A
603) ACPBX72C ADGBCPS AMVAJ64A
604) ACPAX601 ADGBCPSE ADGBCPSF
605) ACPBXX61 ADGBCPSE AMVAJ64A
606) ACPBXX5 ADGBCPSE AMVAK64B
6071 ACPBX 650 ADGBCPSF AMVAJ64A
608) ACPBX 470 AOGBCPSE AMVAK64B
609) ACPBX513

MOTOR QPERATED INIAKE DAMPER EAILS TO OPEN CONTACT PAIR 27Y/1-9 3-3C PAIL TO CLOSE COND. PROB. DG B IOADS ONTO BUS 1 - 6 EIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN
AUX CONTACT PAIR $27 Y / 1-9 \quad 18$ FAILS TO REMAIN CLOSED COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN
AUX CONTACT PAIR 27Y/1-9 17 EAILS IO REMAIN CLOSED COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OREN AUX CONTACT PAIR 2TY/1-8 17 EAILS TO REMAIN CLOSED COND. PROB. DG LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OREN CONTACT PAIR 27-5 $2-10$ FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAl4PER FAILS TO OPEN CONTACT PAIR 27X-4 9-13 FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BI $51-6$ FIRST MOTOR OPERATED INTARE DAMPER AAILS TO OPEN CONTACT PAIR 27-4 2-10 EAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST MOTOR OPERATED INTAKE DAMPER EATLS TO OREN CONTACT PATR $27 Y / 1-8 \quad 3-3 C$ FAIL TO CLOSE COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN AUX CONTACT PAIR $27 Y / 1-8 \quad 18$ FAILS TO REMAIN CLOSED COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST MOTCR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27-7 2-10 FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE, DAMPER FAILS TO OPEN CONTACT PAIR 27Y -7 2-2C FAIIS TO CLOSE COND. PROE. DG E LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DANPER EAILS TO OPEN CONTACT PAIR 27-6 $2-10$ EAILS TO OPEN COND. PRUB. DG B LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27X-6 9-13 EAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN CONTACT PAIR $27 \mathrm{X}-5$ - $9-13$ EATLS TO CLOSE COND. PRO日. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR $27 Y-6$ 5-5C EAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR $27 Y-4 \quad 7-7 C$ FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27X-5 9-13 FAILS TO CLOSE

$4.00 \mathrm{E}-3$
 $1.35 E-4$

$4.00 \mathrm{E}-3$
1.25E-7

4.00E-3

$4.00 E-3$
$1.25 E-7$
4.00E-3
$1.25 E-$?
4. $000 \mathrm{E}-3$

1. $35 \mathrm{E}-4$
4.00E-3
2. $35 \mathrm{E}-4$
4.00E-3
3. $35 \mathrm{E}-4$
4.00E-3
4. $35 E-4$
5. $00 \mathrm{E}-3$
$4.00 \mathrm{E}-3$
$1.25 \mathrm{E}-7$
6. $00 \mathrm{E}-3$
7. $35 \mathrm{E}-4$
$4.00 \mathrm{E}-3$
$1.35 \mathrm{E}-4$
1.35E-4
4.00E-3
8. $35 \mathrm{E}-4$
9. $00 \mathrm{E}-3$
10. $35 \mathrm{E}-4$
4.008-3
$1.35 \mathrm{E}-4$
. 00E-
$1.35 E-4$
11. $00 \mathrm{E}-3$
12. $35 E-4$
13. .00E-3
14. $35 \mathrm{E}-4$
B.E. EXPOSURE PROB.

MOD. ICS.
PROB.
4. 00E-03
$8.10 \mathrm{E}-04 \quad 1.62 \mathrm{E}-06$
5.00E-01
4.00E-03
9.10E-04
5.00E-01
4. $00 \mathrm{E}-03$
8.10E-04
$5.00 \mathrm{E}-01$
$4.00 \mathrm{E}-03$
8.10E-04 $\quad 1.62 \mathrm{E}-06$
5.00E-01
4.00E-03
8. 10E-04
5.00E-01
5.00E-01
4. $00 \mathrm{E}-03$
3. $10 E-04$
5.00E-01
5.00E-01
4.00E-03
5. $00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
B. $10 \mathrm{E}-04$
5.00E-01
5.00E-01
4. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{~F}-01$
5. OOE-01
4.00E-03
8. $10 \mathrm{E}-04$
5.00E-01
1.OOE-03
8.10E-04
$5.00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
8. $10 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
4.00E-03
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
4.00E-03
8.10E-04
$5.00 \mathrm{E}-01$
$4.00 \mathrm{E}-0$
4.00E-0
8. $10 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
4. $00 \mathrm{E}-03$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
4. $000-03$
8.10E-04

1. $62 \mathrm{E}-06$
2. $62 \mathrm{E}-06$
3. $62 \mathrm{E}-0.6$
$1.62 \mathrm{E}-06$
4. $62 \mathrm{E}-06$
$1.62 \mathrm{E}-06$
5. $62 \mathrm{E}-0.6$
6. $62 \mathrm{E}-06$
7. $62 \mathrm{E}-06$
8. $62 E-06$
9. $62 \mathrm{E}-06$
10. $62 \mathrm{E}-06$
11. $62 \mathrm{E}-06$
12. $62 E-06$
13. 62E-06

- ICUTSETIOLDABT, CUT

Filter: 'ACTIVE'
MODULE/EVENT NAME
MODULE/EVENT NAME

ADGBCPSE AMVAK64B
6101 ACPBXA2C ADGBCP' AMVAK64日
611) ACPBK901 ADGBCDSE AMVAJ64A
612) ACPBK5A2 ADGBCPSF AMVAJ64A
613) ACPARSA3 ADGBCPSE AMVAJ64A
614) ACPBX52C ADGBCPSE AMVAK64B
615) ACPAK5B4 ADCACPSF WAVAJ129
616) ACPAK5B4 ADGBCPSF ADGEJ02A
617) ACVAJ64A ADGACP SF ADGQR02B
618) ACVAK $64 B$ ADGACPSE ADGQJ02A
619) AB1DCC56
620) ABSVAMO5
621) AB1BA841 ACPAKSB4 ADGBCPSF
622) AB1BAM23 ACPAK5B4 ADGBCPSF
623) $\mathrm{AB} 1 \mathrm{~B} \times \mathrm{M} 25$ ACPAK5B4 ADGBCPSE
624) AB1BAM44 ACPAK5B4 ADGBCDSF
6251 AB1 BPMB5 ACPAKSB4 ADGBCPSE
6261 ADGBCPSE ADGEJ02A AMVQK64B 627) ADGBCPSE

COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST MOTOR OPERATED INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 27Y-4 2-2C FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B LOALS ONFRATED INTAKE, DAMPER FAILS TO OPEN BYEAKER 9 C CP $15-16$ FAILS TO CLOSE UPON BREAKER TRIP COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST MOTOR DR SRATISD INTAKE DAMPER FAILS TO OPEN CONTACT PAIR 62-6A 2-6 FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE, DAMPER FAILS TO OPEN CONTACT PAIR 62-5A 3-5 FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST MOTOR OPERATED INTAKE DAMPER EAIIS TO OPEN CONTACI PAIR 27Y-5 2-2C FAILS TO CLOSE COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST MOTOR OPERATED INTAKE DAMPER EAILS TO OPEN CONTACT PAIR 62-5B $4-5$ FAILS TO OPEN COND. PROR, DG A LOADS ONTO BUS I-5 PTRST SW-FCV-129 FAILS TO OREN
CONTACT PAIR 62-5B 4-6 FAILS TO OPEN COND. PROB. DG B LOADS ONTO BUS $1-6$ EIRST COAD. PROB. DG E LOADS OT
DIESEL 2A FAILS TC START FAN F-64-1A EXHAUST DAMPER FAILS TO OPEN
COKD. PROB. DG A LOADS ONTO BUS $1-5$ FIRST COND. PROB. DG A LOADS ONTO BUS $1-5$ FIRST
EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAIN'.
FAN E-64-1B EXHAUST DAMPER FAILS TO OPEN COND. PROB. DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR ' $2 A^{\prime}$ ' OOS FOR MAINT. CCF OF CB'S 4851 AND 4961 TO REMAIN CLOSED MCC-5, BUS FAOLT
CB $48 \angle 1$ FAIIS TO OPEN
(FAILURE ASSUMED SAME AS CLOSE) CONTACT PAIR 62-5B 4-6 FATIS TO OPEN
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
CB 2C BETWEEN MCC $2-4$, MCC 3-4 AND BUS $1-4$ FAILS TO OPEN CONTACT PAIR 62-50 $4-6$ EAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS 1-6 FIRST
CB GC BETHEE: MCC 2-5, NCC 1-5 AND BUS $1-5$ FAILS TC OREN CONTACT PAIR 62-5B 4-6 EAILS TO OPEN
COND. PPOB. DG B LOADS ONTO BUS $1-6$ EIRST CB AC JETWEEN MLE $1-4$, NCC $4-4$ AND BUS $1-4$ EATHS 10 CPEN CB 4C BETWEEN MLE 1-4, NCC 4-द AND BUS CONTACT PAIR 62-5B 4-6 FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRST
CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPE CONTACT PAIR $62-5 B \quad 4-6$ FAILS TO OPEN
COND. PROB. DG B LOADS ONTO BUS $1-6$ FIRS: COND. PROB, DG B LOADS ONTO BUS $1-6$ FIRST DIESEL 2A FAILS TO START
MOTOR OPERATED INTAKE DAMPER OOS FOR MAINT. MOTOR OPERATED INTAKE DAMPER BUS $1-6$ EIRST

	RATE	EXPOSURE	PROB.	PROB.
		. 5	$5.00 \mathrm{E}-01$	
	4.00E-3	1	4.00E-03	
	1.35E-4	6	$8.10 \mathrm{E}-04$	$1.62 \mathrm{E}-06$
		. 5	$5.00 \mathrm{E}-01$.	
	4.00E-3	1	$4.00 \mathrm{E}-03$	
	1.35E-4	6	$8.10 \mathrm{E}-04$	1. $62 \mathrm{E}-06$
		. 5	$5.00 \mathrm{E}-01$	
	$4.00 \mathrm{E}-3$	1	4.00E-03	
	1.35E-4	6	8.10E-04	1. $62 \mathrm{E}-06$
		. 5	$5.00 \mathrm{E}-01$	
	4.00E-3	1	4.00E-03	
	1. $35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	1.62E-06
		. 5	$5.00 \mathrm{E}-01$	
	4.00E-3	1	4.00E-03	
	1.35E-4	6	8. $10 \mathrm{E}-04$	$1.62 \mathrm{E}-06$
		. 5	$5.00 \mathrm{E}-{ }^{-1}$	
	4. $000 \mathrm{E}-3$	1	. Svo-03	
	1.35E-4	8	$1.08 \mathrm{E}-03$	1.08E-06
		. 5	5.00E-01	
	2.00E-3	1	2.00E-03	
	1. $35 \mathrm{E}-4$	8	1.08E-03	1.51E-06
		. 5	$5.00 \mathrm{E}-01$	
	$2.80 \mathrm{E}-3$	1	$2.80 \mathrm{E}-03$	
	2. $00 \mathrm{E}-4$	1	2.00E-04	$1.00 \mathrm{E}-06$
		. 5	$5.00 \mathrm{E}-01$	
	$1.00 \mathrm{E}-2$	1	1.00E-02	
	C. OOE-4	1	2.00E-04	1.00E-06
		. 5	5.00E-01	
	$1.00 \mathrm{E}-2$	1	1.00E-02	
(SCREE	$5.00 \mathrm{E}-7$	0.1	1.20E-06	1.20E-06
	4.80E-8	1	$1.15 \mathrm{E}-06$	1. $15 \mathrm{E}-0.5$
(UV OR	4.00E-4	6	2.40E-03	1. $30 \mathrm{E}-0.6$
	$1.35 \mathrm{E}-4$	8	1.09E-03	
		. 5	5.00E-01	
(FR SA	4.00E-4	6	2.40E-03	1.30E-06
	1. $35 \mathrm{E}-4$	8	1.08E-03	
		. 5	5.00E-01	
(FR 5A	2. $00 \mathrm{E}-4$	6	2.40E-03	1.30E-06
	1. $25 \mathrm{E}-4$	8	1.08E-03	
		. 5	5.00E-01	
(FR SA	4.00E-4	6	2.40E-0.3	1.3CE-36
	1. $35 \mathrm{E}-4$	8	1. $78 \mathrm{E}-03$	
		. 5	5.005-01	
(FA SA	$4.00 \mathrm{E}-4$	6	2. $40 \mathrm{E}-03$	1.30E-06
	1.35E-4	8	$1.08 \mathrm{E}-03$	
		. 5	$5.00 \mathrm{E}-01$	
		. 5	$5.00 \mathrm{E}-01$	1. $7 \mathrm{E}-0.6$
	2.80E-3	1	$2.80 \mathrm{E}-03$	
	$9.04 \mathrm{E}-4$	1	9.04E-04	
		. 5	$5.00 \mathrm{E}-01$	$2.27 \mathrm{E}-0.6$

C: \CAETAIOLDABT, REP

. ICUTSETIOLDABT, CUT Filter: 'ACTIVE'

MODULE/EVENT NAME

ADGEK02B AMVQJ6:

CUTSET REFORT

DESCRIPTION

DTESE1 2 B FALLS TO STAR
HOTOR OPERATED INTAKE DAMEER OOS FOR MAINT

10-04-93 8:57 Page 38

EXPOSURE BROB MROB.

AATE EXPOSURE PROB. PROB.

$2.80 \mathrm{E}-3 \quad 1 \quad 2.80 \mathrm{E}-03$
$9.04 \mathrm{E}-4 \quad 1 \quad 9.04 \mathrm{E}-04$

1) GAAMO5
2) $A D G F C C A B$
3) ADGCCOOL
4) $A D G A C P S E$ ADGFJO2A ADGFK02B
5) ADGBCPSE ADGEJ02A ADGFK02B
6) WAVAC290
7) ADGACPSF ADGFJ02A ADGQK02E
8) ADGBCPSF ADGEKO2B ADGQJ02A
9) $A D G E C C A B$
10) $A B 1911 C P$ AB1 BACCE ABLBACCE
11) ADGACPSE ADGFJO2A
AMVAKGAB
12) ADGACPSF ADGFK02B AMVAJ64A
13) ADGBCPSF ADGFJ02A ADVFAK6AB
14) ADGBCPSF ADGEKO2B AMVAJ 64 A
15) ADGACPSF ADGEK02B ADGFJO2A
16) ADGBCPSF ADGEJ02A ADGFK02B
17) AB1BA09C ADGBCPSF ADGFJO2A
18) AB1BA11C ADGBCPSF ADGFJ02A
19) ABIBA11C ADGACPSE
ADGEJ02A
20) ABIBAB41 ADGACDSE AB1BA841

RATE
<module>
CCF OF EDG'S ' $2 A$ ' AND ' $2 B$ ' TO RUN
COMMON CAUSE FAILURE OR EDG ROOM COOITNC
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 FIRS? EDG '2A' EAILS TO RJN GIVEN START
EDG 2 ' 2 ' EAILS TO RUN GIVEN START
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRS? FDG ' 2 A' EAILS TO RUN GIVEN START
EDG ' 2 ' FAILS TO RUN GIVEN STAR?
CCF OF SW-FCV-129 6130 TO OPEN
CONDITIONAL PROBARILITY THAT DG A LOADS ONTO BUS $1-5$ FIRS EDG ; 2 . FAILS TO RUN GIVEN START
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 R' FAILS TO RUN GIVEN START
EMERGENCY DIESEL SENERATOR ' 2 ' ' OOS EOR MAINT.
CCF OF EDG' 5 ' $2 A^{\prime}$ AND ' $2 B^{\prime}$ TO START
CONDITIONAL PROBABILITY OF 9C HAVING TO OPEN/RECLOSE
COMMON MODE FAILURE OF 9 C TO RECLOSE THAT PREVENTS 11 C FROM CLOSIN CONDITTONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG $\cdot 2$ ' FAILS TO RUN GIVEN START
FAN E-64 - MOTOR OPERATED EXHAUST DAMPER EATLS TO OPFN
FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER EAL BUS $1-5$ FIRST EDG ' $2 \mathrm{~B}^{\prime}$ F FAILS TO RUN GIVEN START
FAN E-64-1A MOTOR OPERATED EXHAUST DAMPER EAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
FAN $\mathrm{F}-64-1 \mathrm{~B}$ MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG $\cdot 2$ B $^{\text {: FATLS TO RUN GTVEN START }}$
EAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN
FAN E-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS CONDITIONAL PROBABILITY
EDG '2A' FAILS TO RUN GIVEN START
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST DIESEL 2A FAILS TO START
EDG '2B' FAILS TO RUN GIVEN STAR'
CB 9C FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSE) CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRST EDG ' $2 A^{\prime}$ FAILS TO RUN GIVEN START
CB 11C FATLS TO CLOSE
CONDITTONAL PROBABILITY THAT DG B LOADS ONIO BUS $1-6$ EIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CB 11 C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 A' FAILS TO RUN GIVEN STARI
CB 4881 FAILS TO DPEN (EAILURE ASSUMED SAME AS CLOSE) CONDIPTONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST FDG : 2 B' FAITS TO RUN GIVEN START
CB 4841 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE?
IUV OR

DV OR

MOD . $/ \mathrm{CS}$.
PROB.
$* 6.49 \mathrm{E}-03$
$1.80 \mathrm{E}-03$
6. $70 \mathrm{E}-04$
$3.48 \mathrm{E}-04$
3.48E-04

1. $36 E-04$
2. $32 \mathrm{E}-\mathrm{L4}$
3. $32 \mathrm{E}-04$
1.06E-04
4. $68 \mathrm{E}-05$
$5.28 \mathrm{E}-05$
5.28E-0.
$5.28 E-05$
5.28E-05
3.70E-05
$3.70 \mathrm{E}-05$
$3.17 E-05$
$3.17 \mathrm{E}-05$
5. 17E-05
3.17E-05
3.17E-05

ADGBCPSF

ADGFK02B
21) AB1BA971 ADGBCPSE ADGEJ02A
22) AB1BA971 ADGACPSF ADGFJ02A
23) AB1BA9C0 ADGBCPSE ADGFK~2B
24) AB1BAC11 ADGBCPSE ADGER02B
25) AB1BAM23 ADGBCPSF ADGFK02B
26) AB1BAM23 ADGACPSF ADGEKO2B
27) AB1BAM36 ADGACPSF ADGEJ02A
28) ABIBAM 36 ADGBCPSE ADGFJO2A
29) AB1BAM44 ADGACPSF゙ ADGFK02B
30) AB1BAM44 ADGBCPSF ADGFKO2B
31) AB1BAM47 ADCACPSE ADGFJO2A
32) AB1BAM47 ADGBCPSF ADGFJ02A
33) AB1BAM6?

ADGBCPSE ADGEJO2A
34) AB1BAM67 ADGACPSF ADGFJO2A
35) ABIBAM58 ADGBCPSE ADGBCPS:
ADGEJO2A
36) AB1BAM68 ADGACPSE ADGFJ02A

CONDITIONAL PROBABILITY THAT DG $\#$ LOADS ONTO BUS $1-6$ FIRSI EDG '2B' FAILS TO RUN GIVEN START
CB 4971 EAITS TO OPEN TFATLURE ASSTMED SANE AS CLOSEX CONDITIONAL PROBABILTTY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CA 9C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 B^{\prime}$ ' FAILS TO RUN GIVEN START
CB 11 C EAILS TO OEEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 2 ' FAILS TO RUN GIVEN START
CB 2 C BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ EAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO EUS $1-6$ FIRST EDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START
CB 2C BETHEEN MCC 2-4, MCC 3-4 AND BUS 1-4 FATLS TO OPEN CONDITIONAL PRORABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 ' FAILS TO RUN GIVEN START
CB 17 C BETWEEN MCC $3-7$, MCC 6-7 AND BUS $1-7$ EAILS TO OREN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CB 17 C BETAEEN MCC $3-7$, MCC 6-7 AND BUS $1-7$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRST EDG $\cdot 2$. FAITS TO RUN GTVEN START
CB 4 C BETHEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN CONLITIONAL PROBABILITY THAT DG A LOADS ONTO EUS $1-5$ FIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
CB 4 C BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI CONDITIONAL PROBABILITY THAT DG 8
EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
CA 16 C BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG '2A' EAILS TO RUN GIVEN START
CB 16 C BETWEEN MCC $4-7 \mathrm{MCC}, 7-7$ AND BUS $1-7$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRST EDG ' $2 A$ ' FAILS TO RUN GTVEN START
CB 14 C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST CONDITIONAL PROBABILITY IVAN FAILS TO RUN GIVEN START
CB 14 C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRSI EDG ' 2 A' EAILS TO RUN GIVEN START
CB 12D BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN
CONDITIONAL PCOBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 A$, FATIS TO RUN GIVEN START
CB 120 BETWEEN MCC $8-6$ AND BUS $1-6$ EAILS TO OPEN
CONDTTIONAL PROBABTLITY THAT DG A LOADS ONTO BUS $1-5$ FTRST CONDITIONAL PROBABILITY IHAT DG A

RATE
0

10 V OR
(UV OP
$1.10 \mathrm{E}-$
4.00E-4
1.105-3
4. $00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
4. OOE -4
$1.10 \mathrm{E}-$
(ER SA
(FR SA
(ER SA
(FR SA
(ER SA
(FR SA
(ER SA

IER SA
(ER SA

YFR SA
1.10E-3

1. $10 \mathrm{E}-3$
(FR SA
4.00E-4
2. $10 \mathrm{E}-3$
(FR SA
3. $00 \mathrm{E}-4$
$1.108-3$
E.E.

EXPOSURE
-.....

MOD. 7 CS . PROB.
5. $00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
2.40E-03
5.00E-01
$2.64 \mathrm{E}-02$
2.40E-03
2.40E-03
5.00E-01
$2.64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2.64E-02
2. $100=03$
$2.40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $54 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $64 E-02$
2. $40 E-03$
5. $00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
2.40E-03 3.17E-05
5.00E-01
3. $00 \mathrm{E}-01$
3. $64 \mathrm{E}-02$
$\therefore .64 \mathrm{E}-02$
?.40E $-03 \quad 3.17 \mathrm{E}-05$
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
2. $24 \mathrm{E}-0$?
2. $64 E-02$
2. $40 \mathrm{E}-03$
5. $00 \mathrm{E}-01$
5. $00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2. $64 \mathrm{E}-02$
2. $40 \mathrm{E}-03$
5.00E-01
2.64E-02
3.17E-05
3.17E-05
$3.17 \mathrm{E}-05$
$3.17 \mathrm{E}-05$
3.17E-05
$3.17 \mathrm{E}-05$
3.17E-05
3.178-05
3.17E-05
$3.17 \mathrm{E}-05$
$3.17 E-05$
3.17E-05
$3.17 \mathrm{E}-05$
$3.17 \mathrm{E}-05$

CB BD BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSD EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
CB AD BETWEEN MCC 8-5 AND BUS $1-5$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START
CB 6 C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ EAITS TO OEEN CONDITIONAL RROBABILITY THAT DG B LOADS ONTO BUS I-6 FIRST EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CB $6 C$ BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $2-5$ FAILS TO OPEN CONDTTTONAL PROBABTITTY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 B' $^{\prime}$ FAILS TO RUN GIVEN START
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST CCF OF SWGR ROOM 'A' INTAKE/EXRAUST FANS TO START AFTER LOSP CONDITIONAL PROBABILITY TKAT DG B LOADS ONTO BUS $1-6$ EIRST CCE OF SWGR ROOM 'A' INTAKE/EXHAUST FANS TO START AFTER LOSP DIESEL 2A FAILS TO START
EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
DIESEL 2B FAILS TO START
EMERGENCY DTESEI GENRRATOR - $2 A$, OOS FOR MAINT.
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 EF FAILS TO RUN GIVEN START
SW-FCV-129 EAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST SDG $\cdot 2$ A FAILS TO RUN GIVEN START
SW-FCV-130 EAIIS TO OREN
CONDTTIONAL PROBABTLITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 A' EAILS TO RUN GIVEN START
SW-FCV-130 EATLS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG '2B' FAILS TO RUN GIVEN START
SW-FCV-129 FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESTEL GENERATOR 'B' OOS FOR MAINT.
FAN E-64-1A MOTOR OPERATED EXHAUST DAMPER FATHS TO OPEN CONDITIONAL PPOBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRST EMERGENCY DIESEL GENERATOR ' $2 A$ ' OOS FOR MAINT.
FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER FAIIS TO OPEN CA OC FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSE) CB 9C FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSEI CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EMERGENCY DIESEL GENERATOR '2A' OOS FOR MAINT, CB 11C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EMERGENCY DIESEL GENERATOR ' $2 A$ ' OOS FOR MAINT. C3 4841 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 FIRST EMERGENCY DESIEL GENERATOR ' B^{+}OOS FOR MAINT.
CB 4971 FATIS TO OPEN (EAILURE ASSUMED SAME AS CLOSE) CB 4971 FAILS TO OPEN (FAILURE ASSUMED SAME AS CLOSE) CONDITIONAL PROBABILITY THAT DG 3 LOADS ONTO BUS $1-6$ FIRST EMERGENCY DTESEL GENERATOR ' $2 A$ ' COS FOR MAINT.

RATE

EXPOSURE

B. E.

PROB.
2. $40 \mathrm{E}-03$
5.00E-01

MOD. ICS. PROB.

$.17 E-05$
$3.17 E-05$
$3.17 \mathrm{E}-05$
.17E-05
$3.00 \mathrm{E}-05$
$3.00 \mathrm{E}-05$
2.80E-05
2. $64 \mathrm{E}-05$
$2.64 \mathrm{E}-05$
.008 03
2.64E-02
2.00E-03
5.00E-01
. $64 \mathrm{E}-02$
. $00 \mathrm{E}-01 \quad 2.00 \mathrm{E}-05$
4. $00 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
. $00 \mathrm{E}-02$
. $40 \mathrm{E}-03$
5.00E-01
1.00E-02
. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
1.00E-02
.40を-03
1.00E-02
2. $40 \mathrm{E}-03$
.00E-01
1.00E-02

CB $2 C$ BETWEEN MCC $2-4$, MCC $3-4$ AND BUS $1-4$ EATLS TO OEEN CONDITIONAL PROBABILITY TAAT DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESTEI, GENFRATOR ' B' OOS EOR MATNT
CB $17 C$ BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN CONDIIIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI EMERGENCY DIESEL GENERATOR ' 2 ' ' OOS FOR MAINT.
CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRSI EMERGENCY DESIEL GENERATOR ' B^{\prime} OOS FOR MAINT,
CB $16 C$ BETWEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST CONDITIONAL, PROBABILIII OKEY DTESEI GENERATOR ' 2 A' OOS FOR MAINT
EMERGENCY DIESE GENERATOR CB $14 C$ BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPEN CONDITTONAI PRORARILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EMERGENCY DIESEL GENERATOR ' $2 A^{\prime}$ ' OOS FOR MAINT.
CB 120 BETWEEN MCC $8-6$ AND BUS $1-6$ FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EMERGENCY DIESEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT.
CB BD BETWFEN MCC B-5 AND BUS $1-5$ FAIIS TO OPEN
CONDTTTONAL PROBABILTTY THAT DG A LOADS ONTO BUS $1-5$ FIRS? EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
EMERGENC CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAIES TO OPEN CONDITIONAI PROBABILITY THAT DG A LOADS ONIO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
CONTACT PAIR 62-5A $3-5$ EAILS TO REMAIN CLOSED
CONDITIONAL PROBABIIITY THAT DG B LOADS ONTO BUS $1-6$ FIRS? EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR 62-6A 3-5 FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI FDG $/ 2 A$ ' EAILS TO RUN GIVEN START
CONTACT PAIR 27-4 $\quad 2-10$ FAILS TO OPEN
CONDITIONAL PROBABILITY THAT LIG A LOADS ONTO BUS $1-5$ EIRSI EDG ' 2 B' FAILS TO RUN GIVEN START
CONTACT PAIR 27-4 $2-10$ FAILS TO OPEN
CONDTTIONAL PROBABTZITY THAT DG B IOADS ONTO BUS $1-6$ EIRSI EDG +2 B' $^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR 27-5 $2-10$ EAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG : 2 B' FAILS TO RUN GIVEN START
EDG 2B FAILS
CONTACT PAIR 27-5 2-10 FAILS TO OPEN
CONDITIONAL PROBABILITY TRAT DG A LOADS ONTO BUS $1-5$ FIRST CONDITIONAL PROBABILITY TEAT DG A
EDG $\cdot 2 \mathrm{~B}$ EAILS TO RUN GIVEN STARI
CONTACT PAIR $27-6$ 2-10 FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-4$-TRST EDG ' 2 A' EAILS TO RUN GIVEN START
CONTACT PAIR 27-6 $2-10$ FAILS TO OPEN
CONDTTIONAL PROBABILITY TAAT DG A LOADS ONTO BUS $1-5$ FIRS: EDG $/ 2 A^{\prime}$ FAILS TO RUN GIVEN START
CONTACI PAIR 27-7 2-10 FAILS TO OPEN
CONTACI PAIR 27-7 2-10 FAILS TO UPEN
CONDITIONAL PROBABILTTY THAT DG B LOADS ONTO BUS $1-6$ FIRST

1.008-2
4.002-4

1. $00 \mathrm{E}-2$
$\begin{aligned} & \\ & 1.00 \mathrm{E}-4 \\ & 1.00 \mathrm{E}-2\end{aligned}$
(FR SA $4.00 \mathrm{E}-\mathrm{A}$
(ER SA
1.00E-2
(ER SA 4.00E-4
$1.00 \mathrm{E}-2$
(FR SA 4.00E-4
1.00E-2
(FR SA 4.00E-4
(ER SA
1.00E-2
4.00E-4
1.00E-2
$1.25 \mathrm{E}-7$
$1.10 \mathrm{E}-3$
$1.25 \mathrm{E}-7$
$1.10 \mathrm{E}-3$
$1.35 \mathrm{E}-4$
1.10E-3
1.35E-4
$1.10 \mathrm{E}-3$
2. $35 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
1.35E-4
$1.10 \mathrm{E}-3$
3. $35 \mathrm{E}-4$
4. $10 \mathrm{E}-3$
5. $35 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
6. $35 E-4$

EXPOSURE
B.E.

PROB.
2. $40 \mathrm{E}-03$
5. OOE

1. OOE
1.02
$2.40 \mathrm{E}-03 \quad 1.20 \mathrm{E}-05$
5.00E-01
2. $00 \mathrm{E}-02$
3. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
4. $00 \mathrm{E}-02$
5. $40 \mathrm{E}-03$
5.00E-01
6. $00 \mathrm{E}-02$
7. $40 \mathrm{E}-03$
5.00E-01
5.00E-01
1.00E-02
8. $40 \mathrm{E}-03$
$5.00 \mathrm{E}-01$
1.00E-02
9. $40 \mathrm{E}-03$
5.00E-01
1.00E-02
10. $40 \mathrm{E}-03$
11. $00 \mathrm{E}-01$
5.00E-01
1.00E-02
$8.21 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
12. $64 \mathrm{E}-02$
$8.21 \mathrm{E}-04$
13. $00 \mathrm{E}-01$
2.64E-02
14. 10E-04
5.00E-01
15. $64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
16. $20 \mathrm{E}-01$
2.64E-02
$8.10 \mathrm{E}-04$
5.00E-01
17. $64 \mathrm{E}-02$
18. $10 \mathrm{E}-04$
5.00E-01
19. $64 \mathrm{E}-02$
20. $10 \mathrm{E}-04$
5.00E-01
$1 \quad 2.64 \mathrm{E}-02$
0.5
21. $10 \mathrm{E}-04$
5.00E-01
$2.64 \mathrm{E}-02$
8.10E-04
$5.00 \mathrm{E}-01$

MOD. fCS.
PROB.
1.20E-05
1.20E-05
2. $20 \mathrm{E}-05$
1.20E-05
1.20e -05
$1.20 \mathrm{E}-05$
$1.20 \mathrm{E}-05$
$1.08 \mathrm{E}-05$
1.08E-05
$1.07 \mathrm{E}-05$
1.07E-05
1.07E-05
$1.07 \mathrm{E}-05$
2.07E-05
1.07E-05
$1.07 \mathrm{E}-05$
. ICUTSET INE.WABT.CUT Filter: 'ACTIVE

MODULE/EVENT NAME

ADGFJ02A
12) ACPAX 701 ADGACFSF ADGFJ02A
73) АСРВА5А2 ADGBCPSE ADCE JO2A
4) ACPBAGA2 ADGBCPSF ADGFK02B
75) ACPBI83C ADGBCPSF ADGFKC2B
76) ACPBIB3C ADGACPSE ADGFK02B
77) इस्RBI 930 ADGACPSE ADGFJ02A
78) ACPBI930 ADGECPSE ADGFJ02A
79) ACPBK $4 A 5$ ADGRCPSF ADGBCPSF
80) ACPRKGA4 ACPBK6A4 ADGACPSE ADGEJO2A
81) ACPBK6A4 ADGBCPSF ADGFJ02A
82) ACPBX 42 C ADGACPSF ADGFK02F
83) ACPBX420 ADGBCPSF ADGFK023
84) ACPBX47C ADGACPSE ADGACPSF
85) ACPAX470 ADGRCDSE ADGBCES
851 ACPRY51 ADGACPSF ADGFK02B
87) ACPBX51 ADGBCPSF ADGFK02B
88) $\mathrm{ACPBX52C}$

CUTSET REPORT

DESCRIPTION

EDG ' 2 A' FAILS TO RUN GIVEN START
CONTACT PAIR 27-7 $2-10$ FAILS TO OPEN
CONDITIONAL PROBADILITY THAT DG A LOADS ONTO BUS $1-5$ EIRSI EDG $+2 A$ FATLS TO RUN GTVEN STARI
CONTACT PAIR 62-5A $2-6$ FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
CONTACT PATR 62-6A $2-6$ FAIIS TO CLOS
CONDIIIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRS? EDG ' 2 B' FAILS TO RUN GIVEN STIRRT
CONTACT PATR 27Y/1-8 3-3C FAIL TO CIOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR 27Y/1-8 3-3C EAIL TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRS EDG ' 2 B ' FAILS TO RUN GIVEN START
CONTACT PAIR 27Y/1-9 3-3C FAIL TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRSI EDG ' 2 A. FAILS TO RUN GIVEN START
CONTACT PAIR 27Y/1-9 3-3C FALL TO CTOGE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRS EDG '2A' FAILS TO RUN GIVEN START
CONTACT PAIR 62-5A 4-6 FAIIS TO CLOSE
CONDITIONAL PROBABTLITY THAT DG B LOADS ONTO BUS $1-6$ FIRS ERG ' 2 B ' EAILS TO RUN GIVEN START
CON:ACT PAIR 62-6A 4-6 FAILS TO CLOSE

CONDITTONAL PRORABILITY THAT DG A IOADS ONTO BUS $1-5$ FIRST CONDITIONAL PROBABILITY THAT DG A
CONTACT PAIR 62-6A $4-6$ FAILS TO CLOSR
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG • 2A FATLS TO RUN GIVEN START
CONTACT PAIR $\angle 7 \mathrm{Y}-4 \quad 2-2 \mathrm{C}$ FAILS TO CLOS:
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG ' 2 B ' FAILS TO RUN GIVEN START CONTACT PAIR $27 Y-4 \quad 2-2 C$ FAILS TO CLOSE CONDITIONAL PROBABILITY THAT DG E LOADS ONTO BUS $1-6$ EIRS? EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR $27 Y-4$ T-7C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRSI EDG ' 2 ' EAILS TO RUN GIVEN START
CONTACT PAIR $27 Y-4$ 7-7C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRS EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
CONTACT PAIR 27×-5 9-13 FAILS TO CLOSE
CONDITIONAL PROBABTLTTY THAT DG A LOADS ONTO BUS $1-5$ ETRST CONDIIIONAL PROBABILITY THAT DG A
EDG * 2 E' FAILS TO RUN GIVEN START $_{\text {CONTACT PAIR }-7 X-5 \text { P } 9-13 \text { FAILS TO CLOSE }}$
CONTACT PAIR 27X-5 9-13 FAILS TO CLOSE EDG $\cdot 2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START CONTACT PAIR $27 \mathrm{Y}-5 \quad 2-2 C$ EAILS TO CLOSE

4-26-94 \qquad

B.E.

PROB.
2. 64E-02
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
8. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
8.10E-04
5.00E-01
2. $24 \mathrm{E}-02$
8.10E-04
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$8.10 \mathrm{E}-04$
8. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
5.00E-01
2. $64 \mathrm{E}-02$
e. $10 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
8. $10 \mathrm{E}-04$
5.00E-01
2. $54 \mathrm{E}-02$
8.10E-04
5.00E-01
2. $2.64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
8. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
8. $10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
5.00E-01
2. $64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
5.00E-01
5. $2.64 \mathrm{E}-01$
2.62
$2.64 \mathrm{E}-02$
$8.10 \mathrm{E}-04$
$8.10 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
5.00E-01
2. $64 \mathrm{E}-02$
8. $10 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
8. $10 \mathrm{E}-04$

MOD. ICS.
PROB.
$1.07 \mathrm{E}-05$
1.07E-05
$1.07 \mathrm{E}-05$
$2.07 \mathrm{E}-05$
1.07E-05
$1.07 \mathrm{E}-05$
$1.07 \mathrm{E}-05$
$1.07 \mathrm{E}-05$
$2.07 \mathrm{E}-05$
$2.07 \mathrm{E}-05$
$1.07 \mathrm{E}-05$
$1.07 \mathrm{E}-05$
$1.07 \mathrm{E}-05$
$1.07 \mathrm{E}-05$
1.07E-05
$1.07 \mathrm{E}-05$
$\pm .07 \mathrm{E}-05$

- TCUTSET INEWABT.CUT

Filter: 'ACTIVE'
MODULE/EVENT NAME

DESCRIPTION

ADGBCPSF ADGFK02B
89) ACPBX52C ADGACPSF ADGFKO2B
90) ACPBX613 ADGBCPS: ADGFJO2A
91) ACPBX613 ADGACPSF ADGFJ02A
92) ACPBX65C ADGBCPSF ADGFJ02A
93) $A C P B X 65 C$ ADGACPSE $A D C=J 02 A$
94) ACPBX 72 C ADGACPSF ADGFJO2A
95) ACPBX72C ADGBCPSF ADGEJ02A
96) ACPBX 74 C ADGACPSF ADGFJ02A
97) ACPBX 74 C ADGBCPSF ADGFJ02A
98) ACPBXX4 ADGBCPSE ADGFK02B
99) ACPBXX41 ADGACPSF ADGFK02B
100) ACPBXX51 ADGACPSE ADGFK02B
101) ACPEXX51 ADGBCPSF ADGFKO2B
102) ACPBXX61 ADGACPSF ADGEJ02A
103) ACPBXX61 ADGBCPSF ADGFJ02A
104) ACPBXX7 ADGACPSF ADGFJ02A

CONDITIONAL FROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRSI EDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START CONTACT PAIR 27Y-5 2-2C FAILS TO CLOSE
CONDITIONAL PPOBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START
CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 EIRST EDG '2A' FAILS TO RUN GIVEN START
CONTACT PAIR 27×-6 9-13 FAILS TU CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 EIRST EDG ' $2 A$ ' EAILS TO RUN GIVEN START
CONTACT PAIR 27Y-6 5-5C EAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B SOADS ONTO BUS $1-6$ EIRST EDG '2A' FAILS TO RUN GIVEN START
CONTACT PATR 27Y-6 5-5C FAIIS TO CLOSE
CONDITIONAL PROAABILITY THAT DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CONTACT PAIR 27Y-7 2-2C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRS? EDG $12 A$ EAILS TO RUN GIVEN START
CONTACT PAIR $27 Y-7 \quad 2-2 C$ FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ${ }^{\text {+2A }}$ FAILS TO RUTN GIVEN START
CONTACT PAIR 27Y-7 4-4C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 FIRST EDG *2A. FAILS TO RUN GIVEN START
CONTACT PAIR 27Y-7 4-4C EAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
CONTACT PAIR $27 \mathrm{X}-4$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 2 ' F' FAILS TO RUN GIVEN START
CONTACT PAIR 27X-4 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS DNTO BUS $1-5$ EIRSI EDG '2B' FAILS TO RUN GTVEN START
CONTACI PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG $\quad 2 \mathrm{Br}$ FAILS TO RUN GIVEN START
CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 B$ ' FAILS TO RUN GIVEN START
CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FAILS TO CLOSE
CONDITYONAL PROBABIITTY THAT DG A LOADS ONTO BUS $1-5$ FIRSI EDG ' 2 A' FAILS TO RUN GIVEN START
CONTACT PAIR 27X-6 9-13 FAILS TO CLOSE
CONDITIONAI, PROBABILITY THAT DG B LOADS ONTO BUS 1 -6 FIRST EDG + $2 A^{\circ}$ FAILS TO RUN GIVEN START
EDG ${ }^{2} 2 A^{\prime}$ FAILS TO RUN GIVEN SIART
CONTACT PAIR $27 \mathrm{X}-7$ 9-13 FAILS TO CLOSE
CONTACT PAIR $27 \mathrm{X}-7$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START

	0.5	5. $000 \mathrm{~B}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-\mathrm{C2}$	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2. $64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	1.07E-05
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
$1.35 E-4$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	5.00E-01	
1.10E -3	1	2. $64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	5.00E-01	
1.10E-3	1	2.64E-02	
1.35E-4	6	8.10E-0.4	$1.07 \mathrm{E}-05$
	0.5	5.00E-01	
1.10E-3	1	2.64E-02	
1.35E-4	6	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1. $10 \mathrm{E}-3$	1	2.64E-02	
1. $358-4$	6	8.10E-04	1.07E-05
	0.5	5.00E-01	
1.10E-3	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	8.10z-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
1. $35 \mathrm{E}-4$	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$1.35 \mathrm{E}-4$	6	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	$2.64 \mathrm{E}-02$	
1.35E-4	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.35E-4	6	$8.10 \mathrm{E}-04$	1.07E-05
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	

- \CUTSET INEWABT.CUT

Filter: 'ACTIVE'

MODULE/EVENT NAME
105) ACPBXX71 ADGBCPSF ADGFJ02A
106) ACPDJAO3 ADGACPSE ADGER02B
107) ACPDJAO3 ADGBCPSE ADGFK02B
108) ACPDJAO4 ADGACPSF ADGFKO2B
109) ACPDJAO4 ADGBCPSE ADGFK02B
110) ACPDKBO 3 ADGACPSF ADGFJ02A
111) ACPDKBO ADGBCPSE ADGEJO2A
1121 ACPOKBO4 ADGBCPSF ADGFJ02A
113) ACPDKB04 ADGACPSF ADGFJ02A
114) ADGACPSF ADGOK02B WAVAJ129
115) ADGBCPSF ADGQJ02A HAVAK1 30
116) ADGACPSE AMVAJ64A AMVAK64B
117) ADGBCPSF AMVAJ64A AMVAK64B
118) ADGACPSF ADGEJ02A AFNEK64B
119) ADGACPSE ADGFK02B AFNEJ64A
120) ADGBCPSE ADGFJ02A AFNEK64B
21) ADGBCPSE ADGFKO2B

DESCRIPTION

CONTACT PAIR 27X-7 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRS EDG ' 2 A' FAILS TO RUN GTVEN START
AUX CONTACT PAIR 27Y/1-8 17 FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 B' EAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-817$ EAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS I-6 EIRSI EDG '2B' FAILS TO RUN GIVEN START
AUX CONTACT EAIR 27Y/1-8 18 FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRS EDG * 2 ' FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-818$ FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-917$ FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1 -5 EIRST EDG ' 2 ' FAILS TO RUN GIVEN START
AUX CONTACT PAIR 27Y/1-9 17 FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTC BUS 1-6 FIRST EDG ' 2 A' EAILS TO RUN GIVEN START
AUX CONTACT PAIR $27 Y / 1-918$ FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG : 2 A. FAITS TO RUN GIVEN START
AUX CONTACT PAIR 27Y/1-9 18 EAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG : 2 A FAILS TO RUN GIVEN START
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT.
SW-FCV-129 FALLS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ IIRST EMERGENCY DIESEL GENERATOR ' $2 A^{\prime}$ OOS FOR MAINT.
SW-FCV-130 FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO CPEN
FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER EAILS TO OPEN CONDITIONAL PROBABILIIY THAT DG B LOADS ONTO BUS $1-E$ FIRST FAN E-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN EAN E-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
EAN F-64-1B FAILS TO START
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG * 2 ' FAILS TO RUN GIVEN START
FAN F-64-1A FAILS TO START
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG '2A' FAILS TO RUN GIVEN START
FAN F-64-1B EAILS TO START
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START

RATE	EXPOSURE	$\begin{aligned} & \mathrm{B} . \mathrm{E}_{\text {. }} \\ & \text { PROB. } \end{aligned}$	$\begin{aligned} & \text { MOD. ICS . } \\ & \text { PROB. } \end{aligned}$
1.35E-4	6	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.25 \mathrm{E}-7$	18	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.108-3	1	$2.64 \mathrm{E}-02$	
$1.25 \mathrm{E}-7$	18	8.10E-04	1.07E-05
	. 5	$5.005-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$1.25 \mathrm{E}-7$	18	8.10E-04	$1.07 \mathrm{e}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$1.25 \mathrm{E}-7$	18	B. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2.64E-02	
$1.25 \mathrm{E}-7$	18	B. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	$2.64 \mathrm{E}-02$	
$1.25 \mathrm{E}-$?	18	8. $10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	5.00E-01	
$1.10 \mathrm{E}-3$	1	2.64E-02	
$1.25 \mathrm{E}-7$	18	$8.10 \mathrm{E}-04$	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
$1.10 \mathrm{E}-3$	1	2.64E-02	
$1.25 \mathrm{E}-7$	18	8.10E-04	$1.07 \mathrm{E}-05$
	0.5	$5.00 \mathrm{E}-01$	
1.10E-3	1	2.64E-02	
	0.5	5.00E-01	1.00E-05
1.00E-2	1	1.00E-02	
$2.00 E-3$	1	2.00E-03	
	0.5	$5.00 \mathrm{E}-01$	$1.00 \mathrm{E}-05$
$1.00 \mathrm{E}-2$	1	1.00E-02	
2. $00 \mathrm{E}-3$	1	2.00E-03	
	0.5	5.00E-01	8.00E-06
$4.005-3$	1	$4.00 \mathrm{E}-03$	
$4.00 \mathrm{E}-3$	1	4.00E-03	
	0.5	$5.00 \mathrm{E}-01$	8.00E-06
4.00E-3	1	4.00E-03	
$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
	0.5	5.00E-01	7.92E-06
1.108-3	1	2.64E-02	
$6.00 \mathrm{E}-4$	1	6.00E-04	
	0.5	5.00E-01	7.92E-06
1.10E-3	1	2. $64 E-02$	
6.00E-4	1	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$5.00 \mathrm{E}-4$	1	6.00E-04	
	0.5	5.00E-01	7. $92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	

. ICUTSETYNEWABT. CUT
CUTSET REPORT
Filter: 'ACTIVE'

MODULE/EVENT NAME

AFNE. 34 A
122) ADGACPSF ADGEJO2A ARCHX7Y6
123) ADGACPSF ADGFJ02A ARCMX 276
124) ADGACPSF ADGFJO2A ARCHKB21
125) ADGACPSE ADGEJ02A ARCMX 277
126) ADGACPSE ADGFJ02A ARCMX $7 \times$?
127) ADGACPSE ADGFKO2B ARCHJAO 4
128) ADGACPSE ADGFJO2A ARCHKBO 4
129) ADGACPSF ADGFK02B ARCHX7Y4
130) ADGACPSE ADGFK02B ARCMX275
131) ADGACPSE ADGFK02B ADGFKO2B
1321 ADGACPSE ADGEKO2B ARCMX7X5
133) ADGACPSF ADGFK02B ARCMX7X4
134) ADGACPSF ADGFJO2A ARCHKB05
135) ADGACPSE ADGFK02B ARCHJA21
136) ADGACPSF ADGFK02B ARCHJAOS
137) ADGACPSF ADGFJ02A ARCMKBO1
138) ADGACPSF

DESCRIPIION

FAN F-64-1A FAILS TO START
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 EIRSI EDG ' 2 A' FAILS TO RUN GIVEN START
RELAY $27 Y-6$ FAILS TO ENERGIZE
CONDITIONAL FROBABILITY THAT DG A LOADS ONTO BUS I-5 EIRST EDG ' 2 A' FAILS TO RUN GIVEN START
RELAY 27-6 FAILS TO DE-ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTC BUS $1-5$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
RELAY $27 Y 2 / 1-9$ FAILS TO ENERGIZE
CONDTTIONAL PROEABITITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG ' 2 A' EAILS TO RUN GIVEN START
RELAY 27-7 FAILS TO DE-ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG '2A' FAILS TO RUN GIVEN START RELAY $27 \mathrm{X}-7$ FAIIS TO DE-ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ${ }^{2} 23^{*}$ FATLS TO RUN GIVEN START
RELAY 27Y/1-8 FAIIS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG • $2 A$ ' EAILS TO RUN GIVEN START
REIAY $27 Y / 1-9$ EAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EEG ' 28 ' FAILS TO RUN GIVEN START RELAY $27 \mathrm{Y}-4$ FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ${ }^{2} 2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
RELAY 27-5 FAILS TO DE-ENERGIZE
CONDIIIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG ' 2 B ' FAILS TO RUN GIVEN START
RELAY 27Y1/1-8 FAILS TO DEENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRSI EDG ' $2 B^{\prime}$ FAILS TO RON GIVEN START
RELAY $27 X-5$ FAILS TO DE-ENERGIZ5
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG ' $2 B^{\prime}$ ' FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-4$ FAIIS TO DEENEPGIZE
CONDIIIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
RETAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
CONDITIONAL PRORABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' $2 B^{\prime}$ ' FAILS TO RUN GIVEN START RELAY 27Y2/1-8 FAILS TO ENERGI2E
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG $\cdot 2$ R FAIIS TO RUN GIVEN START
RELAY $27 \times / 1-8$ FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BOS 1-5 FIRST EDG '2A' EAILS TO RUN GIVEN STARI
RELAY 27 Y1/1-9 FATLS TO DEENERGIZE
RELAY $27 Y 1 / 1-9$ FAILS TO DEENERGIZE
CONDITIONAI PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST

$6.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
1.10E-3
$1.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
1.10E-3
1.00E-4
$1.10 \mathrm{E}-3$

1. $\mathrm{COE}-4$
1.10E-3
$1.00 \mathrm{E}-4$
2. $10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
$1.10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
1.10E-3
1.00E-4
$1.10 \mathrm{E}-3$
1.00E-4
$1.10 \mathrm{E}-3$
1.00E-4
3. $10 \mathrm{E}-3$
$1.00 \mathrm{E}-4$
1.105-3
1.00E-4
4. $10 \mathrm{E}-3$
1.00E-4
$1.10 \mathrm{E}-3$
$1.008-4$
$1.10 \mathrm{E}-3$
1.00E-4

4-26-94
B.E.

EXPOSURE -_-.....

MOD. /CS.
PROB.
6. OOE -04
$5.00 \mathrm{E}-01$
$2.64 E-02$
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
6.00E-04
5.00E-01
2. $64 \mathrm{E}-02$
6.00E-04
5. $.00 \mathrm{E}-01$
2. $54 \mathrm{E}-02$
2. $54 \mathrm{E}-02$
$6.00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6. $0.00 \mathrm{E}-04$
6. 00E -0
5. $00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
5.00E-01
$2.64 \mathrm{E}-02$
6.00E-04
5.00E-01
$2.64 \mathrm{E}-02$
6.00E-0.4
5.00E-04
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
5. $00 \mathrm{E}-01$
5. $00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.00E-04
5.00E-01
2. $64 E-02$
6. $00 \mathrm{E}-04$
$5.00 \mathrm{E}-01$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
$2.64 \mathrm{E}-02$
6. $00 \mathrm{E}-0$
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-02$
6. $00 \mathrm{E}-02$
$5.00 \mathrm{E}-01$
2. $64 \mathrm{E}-02$
6.00E-04
5.00E-01
$5.00 \mathrm{E}-01$
$2.64 \mathrm{E}-0$.
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
5.00E-01
2. $64 \mathrm{E}-02$
6.00E-04
5.00E-01
2. $64 \mathrm{E}-02$
6. $00 \mathrm{E}-04$
5.00E-01 7.92E-06

MODULE/EVENT NAME

ADGFKO2B ARCHX7Y5
139) ADGACPSF ADGFJ02A ARCMX 7×6
1403 ADGACPSF ADGFJ02A ARCHX7Y7
141) ADGACPSF ADGFJC2A ARCHKOgA
142) ADGACPSE ADGFKO2B ARCMX274
143) ADGBCPSF ADGFJ02A ARCHX7Y?
144) ADGBCPSE ADGEJ02A ARCMJ15A
145) ALGBCPSF ADGFJ02A ARCMX 7×7
146) ADGBCPSF ADGFJ02A ARCMX 276
147) $A D C B C P S E$ ADGEK02B ARCMX7 $\times 4$
148) ADGBCPSF ADGFJO2A ARCHKB21
149) ADGBCPSF ADGFKO2B ARCHJAD 4
150) ADGBCPSF ADGEJ02A ARCHK08A ADGFJ02A ARCMKBO1
152) ADGBCPSF ADGFKO2B ARCMX275
153) ADGBCPSF ADGFJ02A ARCHKB05
154) ADGBCPSE ADGFJ02A ARCMX 7×6

DESCRIPTION

BDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START
RELAY 27Y-5 EAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EDG ' 2 Ar EAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGI2E
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRS? EDG ' 2 A' FAILS TO RUN GIVEN START
RELAY 27Y-7 FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAI DC A LOADS ONTO BUS $1-5$ FIRSJ EDG '2A' FATLS TO RUN GIVEN START
RELAY 62-6A FAILS TO ENERGI2E
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EDG $+28^{\prime}$ FAILS TO RUN GIVEN START
RELAY 27-4 FAILS TO DE-ENERGI2E
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RELAY $27 Y-7$ FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 EIRSI EDG ' $2 A^{\prime}$ EAILS TO RUN GIVEN START
RELAY 62-5A FAILS TO DEENERGIZE
CONDIZIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 A$ ' EAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-7$ FAILS TO DE-ENERGIZE
CONDIFIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 2 A' FAILS TO RUN GIVEN SIART
RELAY 27-6 FAILS TO DE-ENERGI2E
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRS? EDG $\cdot 2$ B* FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-4$ FAILS TO DEENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1 - 6 FIRST EDG $=2 A^{\prime}$ FAILS TO RUN GIVEN START
RELAY $27 Y 2 / 1-9$ FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 29 ' FAILS TO RUN GIVEN START
RELAY 27Y/1-8 FAILS TO ENERGIZE
CCNDITIONAL PROBABILITY THAT DG E LOADS ONTO BUS 1-6 FIRST EDG '2A' FAILS TO RUN GIVEN START
RELAY 62-6A FAIIS TO ENERGTZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 A$ ' FAILS TO RUN GIVEN START
RELAY $27 Y 1 / 1-9$ FATLS TO DEENERGIZE
RELAY $27 Y 1 / 1-9$ FAILS TO DEENERGI2E
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST CONDITIONAL PROBABILITY THAT DG B
EDG ' 2 ' FAILS TO RUN GIVEN START REEAY 27-5 FAILS TO DE-ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 A' FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X} / 1-9$ FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG : 2A, FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-6$ FAILS TO DE-ENERGI2E

RATE	EXPOSURE	B.E. PRCB.	MOD. ICS. PROB.
1.10E-3	1	2.64E-02	
1.00E-4	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	7.92E-06
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
1.00E-4	6	$6.00 \mathrm{E}-04$	
	0.5	5.00E-01	7. $92 \mathrm{E}-05$
1.10E-3	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2.64E-02	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
1.10E-3	1	2. $64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.008-4	6	6.00E-05	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6. $000 \mathrm{E}-04$	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-0.4	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
1.10E-3	1	2.64E-02	
1.00E-4	6	$6.00 \mathrm{E}-04$	
	0.5	$5.00 \mathrm{E}-01$	7.92E-06
1.10E-3	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	5.00E-01	$7.92 \mathrm{E}-06$
1.10E-3	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6. $00 \mathrm{E}-04$	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.54 \mathrm{E}-02$	
1. $00 \mathrm{E}-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-05$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
1.00E-4	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1. $00 \mathrm{E}-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$3.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2.64E-02	
$1.00 \mathrm{E}-4$	6	$6.00 \mathrm{E}-04$	
	0 S	5.00E-01	7. $92 \mathrm{E}-06$
1.10E-3	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	7.92E-06
1.10E-3	1	2.64E-02	
1.00E	6	6.00E-0.	

MODULE/EVENT NAME

CONDITTONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
RELAY 62-5A EAILS TO ENERGLZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 \mathrm{~B}^{\prime}$ FAILS TO RUN GIVEN START
RELAAY 62-6A FAILS TO DE-ENERGIZE
COXDTTTONAL PROAARILTTY THAT DC A LOADS ONTO BUS $1-6$ FIRSI EDG ' $2 B^{\prime}$ EAILS TO RUN GIVEN START
RELAY $27 Y-5$ EAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRSI EDG ' 2 A' FAILS TO RUN GIVEN START
RELAY 27-7 FAILS TO DE-ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START RELAY $27 \times / 1-8$ FATLS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' $2 B^{\prime}$ FAILS TO RUN GIVEN START
RELAY 27Y1/1-8 FAILS TO DEENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG $\cdot 2 A$. EAILS TC RUN GIVEN START
RELAY $27 Y-6$ FAILS TO ENERGIZE
CONDITIONAL PFOBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG ' 2 A' FAILS TO RUN GIVEN START RELAY $27 \times / 1-9$ FAILS TO ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EDG $\cdot 28^{\prime}$ FAILS TO RUN GIVEN START
REIAY 2TY2/1-8 FAILS TO ENFRCIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EDG ' 2 B' FAILS TO RUN GIVEN START
RELAY $27 \mathrm{X}-5$ FAILS TO DE-ENERGIZE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRSI EDG ' 2 B' FAILS TO RUN GIVEN START
RELAY $27 Y-4$ FAIIS TO ENERGI2E
CONDITIONAL, PROBABILITY THAT DG B LOADS ONTO BUS 1 - 6 EIRST EDG - 2B' FAILS TO RUN GIVEN START
RELAY 27-4 EAILS TO DE-ENERGIZE
DIESEL 2A FAILS TO START
DIESEL 2B FAILS TO START
CONDITIONAL PROBABILTTY THAT DG A LOADS ONTO BUS $1-5$ EIRST DIESEL 2B FAILS TO START
EAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST DIESEL 2A FAILS TO START
FAN $\mathrm{F}-64-2 \mathrm{~B}$ MOTOR OPERATRD EXHAUST DAMPER FATLS TO OPEN CB 9 C FAILS TO OPEN (FAILURE RATE ASSUMED SAME AS CLOSE) CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB IIC FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN

Rate	EXPOSURE	B.E. PROB.	MOD. /CS. PROB.
	0.5	5.00E-01	7. $92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2.64E-02	
1.00E-4	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{e}-3$	1	2. $64 \mathrm{E}-02$	
1.00E-4	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	7. $92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.54 \mathrm{E}-02$	
$1.008-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	7.92E-06
1.10E-3	1	2.54E-02	
1.00E-4	6	$6.00 \mathrm{E}-04$	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	5.00E-01	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.54 \mathrm{E}-02$	
1. $00 \mathrm{E}-4$	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	7.92E-06
1.10e -3	1	2. $64 \mathrm{E}-02$	
1.00E-4	6	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 E-06$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	5.00E-01	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	$2.64 \mathrm{E}-02$	
1. 0 OE-4	5	6.00E-04	
	0.5	$5.00 \mathrm{E}-01$	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
	0.5	5.00E-01	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
1.00E-4	6	6.00E-04	
	0.5	5.00E-01	$7.92 \mathrm{E}-06$
$1.10 \mathrm{E}-3$	1	2. $64 \mathrm{E}-02$	
$1.00 \mathrm{E}-4$	6	6.00E-04	
$2.80 \mathrm{E}-3$	1	$2.80 \mathrm{E}-03$	7.84E-06
2.80E-3	1	2. $80 \mathrm{E}-03$	
	0.5	5.00E-01	5. $60 \mathrm{E}-06$
$2.80 \mathrm{E}-3$	1	2. $80 \mathrm{E}-03$	
$4.00 \mathrm{E}-3$	1	4.00E-03	
	0.5	$5.00 \mathrm{E}-01$	5.60E-06
$2.80 \mathrm{E}-3$	1	2. $80 \mathrm{E}-03$	
$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
4.00E-4	6	2.40E-03	4. $80 \mathrm{E}-06$
	0.5	5.00E-01	
$4.00 \mathrm{E}-3$	1	4.00E-03	
4.00E-4	6	2.40E-03	$4.80 E-06$
	0.5	$5.00 \mathrm{E}-01$	
4.00E-3	1	4.00E-03	

172) AB1BA11C ADGACESF AMVAJ 64 A
173) AB1BA84 ADGACPSF AMVAR64B
174) AB1BAB41 ADGBCPSF AMVAK64B
175) AB1BA97 ADGBCPSF AMVAJ64A
176) AB1BA972 ADGACPS: AMVAJ64A
177) AB1BA9CO ADGBCPSF AMVAK 64 B
178) AB1BAC1 ADGBCPS: AMVAK64E
179) AB1BAM23 ADGACPSF AMVAK64B
180) AB1 BAM23 ADGBCPSF AMVAK 64 B
181) AB1 AAM 36 ADGACPSF AMVAJ64A
182) AB1 BAM36 ADGBCPSE AMVAJ $64 A$
183) AB1 EAM4 4 ADGACPSF AMVAK64B
184) ABIPAMA4 ADGBCPSF AMVAK64B
185) AB1BAM47 ADGBCPSE AMVAJ64A
186) AB1BAM47 ADGACPSE AMVAJ64A
187) AB1BAM6? ADGBCPSE AMVAJ64A
188) ABIBAMG ADGACPSE

CB 11C EAILS TO CLOSE
CONDIIIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 4841 EAILS TO OPEN

FATLURE CONDITIONAL PROBABILITY THAT DG A LOADS CNTO BUS $1-5$ EIRS? FAN E-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 4841 FAILS TO OPEN
(EAILURE ASSUMED SAME AS CLOSE) CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 EIRS? FAN E-64-1B MOTOR OPERATED EXHAUST DAMPER EAILS TO DPEN CB 4971 FAILS TO OPEN
(EAILURE ASSUMED SAME AS CLOSE CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI FAN E-64-1A MOTOP OPERATED EXHAUST DAMPER FATLS TO OPEN CB 4971 EAILS IO OPEN (EAILURE ASSUMED SAME AS CLOSE) CONDIIIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 9C FATLS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1 - 6 FIRST FAN $\bar{F}-64-1 \mathrm{~B}$ MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB IIC FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 FIRSI EAN E-64-1B MOTOR OPERATED EXHAUST DAMPER EAILS TC OPEN CB $2 C$ BETWEEN MCC 2-4, MCC 3-4 AND BUS 1-4 EAILS TO OREN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRS? FAN E-64-1B MOTOR OPERATED EXPAUST DAMPER FAILS TO OPEN CB 2C BETWEEN MCC 2-4, MCC 3-4 AND BUS $1-4$ EAILS TO OPEN CONDITIONAL. PROBABILTTY THAT DG B LOADS ONTO BUS 1-6 FIRS? EAN F-64-1B MOTOR OPERATED EXFAUST DAMPER FAILS TO OPEN C3 17 C BETWEEN MCC $3-7$, MCC $6-7$ AND BUS $1-7$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST FAN E-64-1A MOTOR OPERATED EXHAUST DA.APER FAILS TO OPEN CB $17 C$ BETWEEN MCC $3-7$, MCC 6-7 AND BUS $1-7$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI FAN $\bar{E}-64-1$ A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 4C BETWEEN MCC $1-4$, MCC 4-4 AND BUS $1-4$ FAILS TO OREN CONDTTIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OREN CB $4 C$ BETWEEN MCC $1-4$, MCC $4-4$ AND BUS $1-4$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 16 C BETAEEN MCC $4-7$ MCC, $7-7$ AND BUS $1-7$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 16 C BETWEEN MCC $4-7 \mathrm{MCC}, 7-7$ AND BUS $1-7$ FAILS TO OPEN CONDTTIONAL PRORABTUITY THAT DG A LOADS ONTO BUS $1-5$ FIRST FAN E-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 14 C BETWEEN MCC $6-6$, MCC $7-6$ AND BUS $1-6$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 14 C BETNEEN MCC $6-6$, MCC 7-6 AND BUS $1-6$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST

		RAIE	EXPOSURE	$\begin{aligned} & \mathrm{B}, \mathrm{E} . \\ & \mathrm{PROB} . \end{aligned}$	MOD. ICS. PROB.
(UV OR		4.005-4	$\begin{aligned} & 6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.40 \mathrm{E}-03 \\ & 5.00 \mathrm{E}-01 \end{aligned}$	4. $80 \mathrm{E}-06$
		4.00E -3	1	4.00E-03	
		4.00E-4.	6	2. $40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		$4.00 \mathrm{E}-3$	1	4.00E-03	
(UV	OR	$4.00 \mathrm{E}-4$	6	$\text { 2. } 40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	$4.00 \mathrm{E}-03$	
1 tV	OR	4.00E-4	6	2.40E-03	$4.80 \mathrm{E}-06$
			0.5	$\text { 5. } 00 \mathrm{E}-01$	
		4.00E-3	1	4.00E-03	
(UV		4.00E-4	6	2.40E-03	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	$4.00 \mathrm{E}-03$	
		4.00E-4	6	2. $40 \mathrm{E}-03$	4.80E-06
			0.5	5.00E-01	
		$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
		$4.00 \mathrm{E}-4$	6	2.4CE-03	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	$4.00 \mathrm{E}-03$	
(ER	SA	$4.00 \mathrm{E}-4$	6	2.40E-03	$4.80 \mathrm{E}-06$
			0.5	5.00E-01	
		$4.00 \mathrm{E}-3$	1	4.00E-03	
(FR	SA	$4.00 \mathrm{e}-4$	6	2. $40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	$4.00 \mathrm{E}-03$	
(FR	SA	$4.00 \mathrm{E}-4$	6	2. $40 \mathrm{E}-03$	4.80e-06
			0.5	$5.00 \mathrm{E}-01$	
		$4.00 \mathrm{E}-3$	1	4. OOE-03	
(FR	SA	4.00E-4	6	2. $408-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	$4.00 \mathrm{E}-03$	
(FR	SA	$4.00 \mathrm{E}-4$	6	2. $40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
(FR	SA	4.00E-4	6	2. $40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		$4.00 \mathrm{E}-3$	1	4. $00 \mathrm{E}-03$	
(FR	SA	$4.00 \mathrm{E}-4$	6.	2.40E-03	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		$4.00 \mathrm{E}-3$	1	$4.00 \mathrm{E}-03$	
(ER	SA	4.00E-4	6	2. $40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	$4.00 \mathrm{E}-03$	
(FR	SA	4.00E-4	6	$2.40 \mathrm{E}-03$	4.80E-06
			0.5	$5.00 \mathrm{E}-01$	
		4.00E-3	1	4.008-03	
(FR	SA	$4.00 \mathrm{E}-4$	6	2.40E-03	$4.80 \mathrm{E}-06$
			0.5	$5.00 \mathrm{E}-01$	

DESCRIPTION

EAN E-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 12D BETWEEN MCC 8-6 AND BUS $1-6$ FAILS TO OPEN
CONDITIONAL PROBABILTY THAT DG A DOADS ONTO BUS I-5 FIRS? EAN F-64-1A MOTOR OPER, "Fク EXHAUST DAMPER FAILS TO OEEN CB $12 D$ BETWEEN MCC $8-6$ AND BUS $1-6$ EAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 8D BETWEEN MCC $8-5$ AND BUS $1-5$ FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST FAN P-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB $8 D$ BETWEEN MCC 8-5 AND BUS $1-5$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EAN F-64-1B MOTOR OPERATED EXHAUST DAMPER EALLS TO OPEN CB EC BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN CONDITIONAL PROBABILITY THAI DG A LOADS ONTO BUS $1-5$ EIRSI FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CB 6C BETWEEN MCC $2-5$, MCC $1-5$ AND BUS $1-5$ FAILS TO OPEN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EAN F-64-1B MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN CONTACT PAIR 62-6A 3-5 FATLS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 EIRST EMERGENCY DIESEZ GENERATOR ' $2 A$ ' OOS FOR MAINT.
CONTACT PAIR 27-4 $2-10$ FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRS? EMERGENCY DESIEL GENERATOR ' B' OOS FOR MATNT
CONTACT PAIR 27-5 $2-10$ FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BOS $1-5$ FIRSI EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
CONTACT PAIR 27-6 2-10 FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EMERGENCY DIESEL GENERATOR ' $2 A$ ' OOS FOR MAINT.
CONTACT PAIR 27-7 $2-10$ FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRS? EMERGENCY DIESEL GENERATOR ' $2 A^{\prime}$ COS FOR MAINT.
CONTACT PAIR 62-5A $2-6$ FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI EMERGENCY DIESEL GENERATOR ' 2 A ' OOS FOR MAINT.
CONTACT PAIR 27Y/1-8 3-3C FAIL TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
CONTACT PAIR 27Y/1-9 3-3C EAIL TO CIOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRS? EMERGENCY DIESEL GENERATOR ' $2 A^{r}$ OOS FOR MAINT.
CONTACT PAIR 62-6A 4-6 ILS TO CLOSE
CONDITIONAL FROBABILITY THAT DG B LOADS ONTC BUS $1-6$ EIRST EMERGENCY DIESEL GENERATOR ' 2 A' OOS FOR MAINT.
CONTACT PATR 2TY-4 $2-2 C$ FAILS TO CLOSE
CONOITIONAL FROBABILITY THAT DG A IOADS ONTO BUS $1-5$ FIRSI EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
CONTACT PAIR $27 Y-4 \quad 7-7 C$ FAILS TO CLOSE

- \cdot.COE-4
\qquad
B.E.

EXPOSURE
PROB.
MOD. ICS
PROB.

	4.005-03	
	$2.40 \mathrm{E}-03$	4.80E-06
0.5	$5.00 \mathrm{E}-01$	
	$4.00 \mathrm{E}-03$	
	2.40E-03	4.80E-0.6
0.5	5.00E-01	
	$4.00 \mathrm{E}-03$	
	$2.40 \mathrm{E}-03$	$4.80 \mathrm{E}-06$
0.5	5.00E-01	
	4.00E-03	
	$2.40 \mathrm{E}-03$	4.80E-06
0.5	$5.00 \mathrm{E}-01$	
	4.00E-03	
6	$2.40 \mathrm{E}-03$	4. $80 \mathrm{E}-06$
0.5	$5.00 \mathrm{E}-01$	
	$4.008-03$	
	2. $40 \mathrm{E}-03$	4.80E-06
0.5	$5.00 \mathrm{E}-01$	
	4. $00 \mathrm{E}-03$	
1.5	$8.21 \mathrm{E}-04$	4.11E-06
0.5	$5.00 \mathrm{E}-01$	
	1.00E-02	
6	$8.10 \mathrm{E}-04$	4.05E-06
0.5	5.00E-01	
1	$1.00 \mathrm{E}-02$	
6	$8.10 \mathrm{E}-04$	4.05E-06
0.5	$5.00 \mathrm{E}-01$	
	$1.00 \mathrm{E}-02$	
6	$8.10 \mathrm{E}-04$	4.05E-06
0.5	$5.00 \mathrm{E}-01$	
1	1.00E-02	
6	8.10F-04	4.05E-06
0.5	5.00E-01	
1.	1. $000 \mathrm{E}-02$	
6	8.10E-04	4.05E-06
0.5	$5.00 \mathrm{E}-01$	
1	i. $00 \mathrm{E}-02$	
6	$8.10 \mathrm{E}-04$	4.05E-06
0.5	5. $00 \mathrm{E}-01$	
1	1.00E-02	
6	8.10E-04	4.05E-06
0.5	5.00E-01	
1	1. $00 \mathrm{E}-02$	
6	8. $10 \mathrm{E}-04$	A. $05 \mathrm{E}-06$
0.5	$5.00 \mathrm{E}-01$	
1	1.00E-02	
6	8.10E-04	4.05E-0.6
0.5	5.00E-01	
1	1.00E-02	
6	3.10E-04	4.05E-06

- \CUTSETINEWABT.CUT

Filter: 'ACTIVE'

MODULE/EVENT NAME

ADGACPSF ADGQK02B
2061 ACPEX513 ADGACPSF ADGQK02B
207) ACPBX52C ADGACPSF ADGQKO2B
208) ACPBX613 ADGBCPSF ADGQJ02A
209) ACPBX65C ADGBCPSF ADGQJO2A
210) ACPBX72C ADGBCPSF ADGQJ02A
211) $A C P B X 74 C$ ADGBCPSF ADGQJO2A
212) ACPBXX41 ADGACPSF ADGQK02B
213) ACPBXX51 ADGACPSF ADGQK02B
214) ACPBXX61 ADGECPSE ADGQJ02A
215) ACPBXX71 ADGBCPSE ADGQJ02A
216) ACPDJAO3 ADGACPSF ADGQK02B
217) ACPDJAO4 ADGACPSF ADGQK02B
218) ACPDKBO 3 ADGBCPSF ADGQJ02A
219) ACPDKBO4 ADGBCPSF ADGQJO2A
220) ADGACPSE AMVAK64B WAVAJ129
221) ADGACPSF AMVAJ64A WAVAK 130

CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1 -5 FIRST EMERGENCY DESIEL GENERATOR ' B^{\prime} OOS FOR MAINT.
CONTACT PATR 27X-5 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT.
CONTACT PAIR 27Y-5 2-2C EAILS TO CLOSE
CONDITIONAL PROBAETLITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT.
CONTACT PAIR $27 \mathrm{X}-6$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EMERGENCY DIESEL GENERATOR ' $2 A$ ' OOS FOR MAINT.
CONTACT PAIR 27Y-6 5-5C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTC BUS $1-6$ PIRSI EMERGENCY DIESEL GENERATOR ' $2 A$. OOS FOR MAINT.
CONTACT PAIR $27 Y-7 \quad 2-2 C$ FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST EMERGENCY DIESEL GENERATOR ' $2 A^{\prime}$ ' OOS FOR MAINT.
CONTACT PAIR 27Y-7 4-4C FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS 1-6 EIRST EMERGENCY DIESEL GENERATOR ' 2 A' OOS FOR MAINT.
CONTACT PAIR $27 \mathrm{X}-4$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS 1-5 FIRSI EMERGENCY DESIEL GENERATOR ' B ' OOS FOR MAINT.
CONTACT PAIR 27X-5 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESIEL, GENERATOR 'B' OOS FOR MAINT.
CONTACT PAIR $27 \mathrm{X}-5$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG E LOADS ONTO BUS $1-6$ EIRST ZMERGENCY DTESEL GENERATOR ' 2 A' OOS FOR MAINT.
CONTACT PAIR $27 \mathrm{X}-7$ 9-13 FAILS TO CLOSE
CONDITIONAL PROBABILITY THAT DG B LOADS UNTO BUS $1-6$ FIRST EMERGENCY DIESEL GENERATOR ' 2 A' OOS FOR MAINT.
AUX CONTACT PAIR $27 Y / 1-817$ EAILS TO REMAIN CLOSED
CONDITIONAG PROBABIIITY THAT DG A LOADS ONTO BUS $1-5$ EIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT.
AUX CONTACT PAIR $27 Y / 1-818$ FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST EMERGENCY DESIEL GENERATOR 'B' OOS FOR MAINT
AUX CONTACT PAIR 27Y/1-9 17 FAILS TO REMAIN CLOSED
CONDITIONAI FROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRST EMERGENCY DIESEL GENERATOR ' 2 A O OS FOR MAINT.
AUX CONTACT PAIR 27Y/1-9 18 FAILS TO REMAIN CLOSED
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ FIRSI EMERGENCY DIESEL GENERATOR ' $2 A$ ' OOS FOR MAINT.
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ EIRST FAN $F-64-1$ M MOTOR OPERATED EXHAUST DAMPE FA FALLS TO OPEN SW-ECV-129 FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS ONTO BUS $1-5$ FIRST FAN F-64-1A MOTOR OPERATED EXHAUST DAMPER FAILS TO OPEN SW-FCV-130 FAILS TO OREN

RATE

- CUTSETYNEWABT.CUT

CUTSET REPORT

Eliter: 'ACTIVE'

MODULE/EVENT NAME

222) ADGBCPSE AMVAJ64A
223) ADGBCPSE AMVAK $64 B$ WAVAJ 129
224) ADGACPSF AFNFCCRA
225) ADGBCPSF

DESCRIPTION

CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS I-6 EIRST EAN P-64-1A MOTOR OPERATED EXHAUST DAMPER EAILS TO OPEN SW-FCV-130 FAll is TO OPEN
CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST FAN F-64-1B MOTOR OPERATED EXHAUST DAMPER EAILS TO OPEN SW-FCV-129 FAILS TO OPEN
CONDITIONAL PROBABILITY THAT DG A LOADS CNTO BUS $1-5$ EIRST CCF SHGR 'A' ROOM INTAKE/EXHAUST FANS FAIL TO RUN CONDITIONAL PROBABILITY THAT DG B LOADS ONTO BUS $1-6$ EIRST CCF SWGR 'A' ROOM INTAKE FEXHADST FANS FAIL TO RUN

4-26-94
8:14
Page 14

SUBJECT Evaluation of Existing Versus Proposed ABT

$B Y$
BY J.K. Rothert
DATE 04/22/94

Transfer Sohemes on MCC-5 Reliablifty CHKD. BY E.O. Cietek DATY of $1 1 2 \longdiv { 9 4 }$ CAIC. NO. C2-51.7-1073-RE REV. 1 SHEET NO. $253+1$ or D_{1}

Appendix D

```
D.1 ------ Reference 1
D.2 -..-... Reference 3
D.3 -...-- Reference 4
D.4 ...... DG start data
```

Apeonoix D. 1 COTRAP Letter Alll78

TO: NUCLEAR LICENSING
FROM:

AGENCY LETTER DATE: $8 / 16 / 43$ DATE OF RECEIPT: $8 / 23 / 93$

Please distribute the attached document and insure proper and timely action as per NEO Procedure 4.01 and NL Procedure 3.01, as appropriate.
sUBSET: NRC Augmented Inopectim Team (ATT) Regarding COMMENTS: Nne Report No. $50-213 / 93.80$

COMMENTS:
Nu Response is Required. NUCLEABLIEENSNG

ED
(1) Additional hooter testing in corgunetion with (2) A Alvady comes by F3586F;
(2) Evaluation of dusigir changes to increase reliability of mec-5 $A B T$ is already covered by F35E8D;
(3) NL has already in. Fitted Gu FSAR charge to comet sigh Failure issue.

UNITED STATES
NUCLEAR REGULATORY COMMISSION
REGION I
475 ALLENDALE ROAD
KING OF PRUSSIA, PENNSYLVANIA 19406-1415
AUG 161993

Docket No. 50-213
Mr. John F. Opeka
Executive Vice President - Nuclear
Connecticut Yankee Atomic Power Company
P. O. Box 270

Hartford, Connecticut 06141-0270
Dear Mr. Opeka:
SUBJECT: NRC AUGMENTED INSPECTION TEAM (AIT) REGARDING TWO LOSS OF OFFSITE POWER EVENTS AND THE LOSS OF MOTOR-CONTROL-CENTER-5 NRC REPORT NO. 50-213/93-80

The enclosed report refers to the NRC Augmented Inspection Team (AIT), led by Mr. James Trapp of this office, on June 30 through July 9, 1993, at the Haddam Neck Plant in Haddam, Connecticut. The purpose of this inspection was to review the circumstances regarding two separate loss of offsite power events, and a loss of motor-control-center-5 (MCC-5) that occurred during the conduct of test activities. At the conclusion of the inspection, the team findings were discussed with Mr. Stetz and members of your staff at an exit meeting that was open for public observation on July 27, 1993.

The scope of the inspection included developing a detailed event description, evaluating the ront causes for the events, assessing the effectiveness of corrective actions, and evaluating the safety significance of each event. The inspection consisted of selective examination of procedures and representative records, observations of testing and inspections, and intervicws with personnel.

The loss of offsite power events were significant because they caused a temporary loss of shutdown cooling and the loss of offsite power is a precursor to station blackout. The reliable operation of MCC-5 is vital to plant safety because both trains of emergency core cooling system injection valves are powered from this motor-control-center. Based on the significance of these events, all of which occurred in a short time period, the NRC dispatched an AIT.

The root causes for the June 22 and June 26, 1993, loss of offsite power events were pusitively identified as a wiring error and a blown fuse reonectivelw. For hoth events, the operator actions to mitigate the consequences or the events were appropriate. 1 the corrective actions taken in response to these events were reviewed by the AIT and determined to be acceptable. The NRC team concluded that these events were the result of defective nonsafety-related equipment and were not the result of recent performance deficiencies by plant staff or procedures.

The root cause for the June 27, 1993, failure of the MCC-5 automatic bus transfer scheme was not positively identified. Although the root cause was not identified, two highly suspect components were identified and replaced. Your corrective actions and compensatory measures taken to ensure the reliability of MCC-5 were outlined in your letter to the NRC, dated July 15, 1993, "Commitments to Test Motor-Control-Center-5." We have reviewed these commitments and determined ihat the proposed actions and compensatory measures are appropriate. While trouble-shooting the automatic bus transfer (ABT) failure, your staff identified a potential generic problem with the Westinghouse DB 25 breaker, 52 X relays. At the conclusion of this inspection, this potentially generic breaker failure concern was still under review by your staff and the breaker vendor. We expect that this issue will be resolved and appropriate actions will be taken in an expeditious manner. In addition, your letter states that you plan to conduct a review of potential design changes to the ABT which could improve the reliability of this scheme. We request that you provide the results of this design review and the schedule for implementing any design changes identified to the Region I Regional Administrator.

The NRC team also noted two issues regarding the licensing basis of MCC-5. The updated UFSAR, Section 8.3, states, in part, that "The Class 1E system has the redundancy, capacity, capability, and reliability to supply power to all safety-related loads. This system ensures a safe plant shutdown to mitigate accident effects, even in the event of a single failure," This statement does not appear to be accurate as related to single failures and MCC-5. In addition, the team questioned the applicability of 10 CFR 50.46 (d), which explicitly states that the performance of the emergency core cooling system (ECCS) system must include in particular Criterion 35 of Appendix A, which requires that the ECCS safety function be accomplished assuming a single failure. The current design of the ECCS sy stem does not satisfy the requirement of Criterion 35 due to the single failure vulnerabilities of MCC-5. While the team noted that an exemption had been granted by the NRC for the MCC-5 single failure vulnerability during original plant licensing, an explicit exemption from the 50.46 requirement was not apparent to the team. Both of these issues are currently being reviewed by the NRC.

In accordance with 10 CFR 2.790 of the Commission's regulations, a copy of this letter and the enclosed inspection report will be placed in the NRC Public Document Room.

We will gladly discuss any questions you have concerning this inspection.
imy-ci,

Marvin W. Hodges, Director Division of Reactor Safety

Enclosure: NRC Region I Inspection Report No. 50-213/93-80
ce w/encl:
W. D. Romberg, Vice President, Nuclear, Operations Services
J. P. Stetz, Vice President, Haddam Neck Station
G. H. Bouchard, Director, Nuclear Quality Services
D. J. Ray, Unit Director
R. M. Kacich, Director, Nuclear Licensing

Gerald Garfield, Esquire
Nicholas Reynolds, Esquire
K. Abraham, PAO (2)

Public Document Room (PDR)
Local Public Document Room (LPDR)
Nuclear Safety Information Center (NSIC)
NRC Resident Inspector
State of Connecticut SLO

U. S. NUCLEAR REGULATORY COMMISSION REGION I AUGMENTED INSPECTION TEAM REPORT INSPECTION OF TWO LOSS OF OFFSITE POWER EVENTS AND A LOSS OF MOTOR-CONTROL-CENTER-5

EXECUTIVE SUMMARY 2
1.0 INSPECTION OBJECTIVE 4
2.0 DETAILED INSPECTION FINDINGS 4
2.1 LOSS OF OFFSITE POWER EVENT (JUNE 22, 1993) 4
2.1.1 Description of Event 4
2.1.2 Corrective Actions 8
2.1.3 Conclusions 9
2.2 LOSS OF OFFSITE POWER EVENT (JUNE 26, 1993) 10
2.2.1 Description of Event 10
2.2.2 Corrective Action 14
2.2.3 Conclusions 14
2.3 LOSS OF MOTOR-CONTROL-CENTER-5 (JUNE 27, 1993) 15
2.3.1 Description of Event 15
2.3.2 Corrective Actions 19
2.3.3 Inappropriate Notification of Emergency Classification 20
2.3.4 Equipment Failure History 23
2.3.5 Conclusions 24
3.0 EXIT MEETING 25
ATTACHMENTS:ATJACHMENT A, Persons ContactedATPACHMENT B, MCC-5 ABT Functional DescriptionATTACHMENT C, Augmented Inspection Team CharterATTACHMENT D, Augmented Inspection Team Exit Meeting Slides
FIGURES:
FIGURE 1, Simplified Electrical System Diagram
FIGURE 2, Bus 1-3 PT Circuit \& Undervoltage Trip Scheme
FIGURE 3, Bus 1-2/1-3 Undervoltage Logic
FIGURE 4, MCC-5 Simplified Diagram
FIGURE 5, ABT Logic Diagram

EXECUTIVE SUMMARY

The scope of the Augmented Inspection Team (AIT) inspection was provided by the Region I Regional Administrator in the Augmented Inspection Team Charter. The team was tasked with conducting a detailed review of the circumstances surrounding the June 22, 1993 and June 26, 1993, losses of offsite power gat the rume 97 100t incs of motor-control-center-5. Specifically, the team was tasked with developing a detailed sequence ot events, evaluating the root cause determination, assessing the effectiveness of the corrective actions, and evaluating the safety significance for each event.

On June 22, 1993, while performing Oreaker failure trip logic testing on the offsite power tie breaker, the station experienced a total loss of offsite power. In response to the loss of offsite power, both emergency diesel generators automatically started and provided emergency power to the station. The plant was in cold shutdown at the time of the event and shutdown cooling was temporarily lost. This event was important to safety because of the temporary loss of shutdown cooling and the loss of offsite power is a precursor to a station blackout. The root cause for this event has been identified as a wiring error in offsite power tie breaker 12R-1T-2 breaker failure trip logic. The wiring error occurred during or shortly following plant construction. The wiring error had not been previously identified since this was the first test conducted of this particular trip logic which included tripping the breakers. An evaluation of the wiring error's effect on plant safety concluded that the error did not degrade plant safety margins and could be left as-is. The basis for this conclusion was that the station emergency power supplies could be isolated from offsite power system faults by safety-related breakers and the reliability of the offsite power supply was not degraded. The team concluded that the root cause had been correctly identified and the corrective actions were acceptable. Operator performance in response to the loss of offsite power was determined to be good.

On June 26, 1993, while performing surveillance testing of train A of the safety injection actuation logic with a partial loss of offsite power, a complete loss of offsite power occurred. In response to the loss of offsite power, the emergency diesel generators automatically started and shutdown cooling was restored. The root cause of this failure was determined to be a blown fuse to a bus voltage sensing relay. The fuse was likely blown during maintenance being performed on associated equipment. The fuse was replaced and the surveillance procedure was revised to verify that the bus voltage sensing relay fuses were not blown prior to conducting this test. The team determined that the operator response to the loss of offsite power was good. The root cause for this event was a blown fuse and the corrective actions taken were appropriate. The team concluded that the June 22 and June 26 events were not related in that the corrective actions from the first event could not have precluded the second event from occurring.

On June 27, 1993, while performing surveillance testing of train B of the safety injection actuation logic with a partial loss of offsite power, a temporary loss of motor-control-center5 (MCC-5) occurred when the automatic bus transfer scheme failed to operate. Power was
 bus. Following this event, an erroneous event classification of an alert was sent to the state and local authorities. The event classification was corrected to an unusual event a short time later. This event was important to safety because MCC-5 provides power for the emergency core cooling syste n injection valves and the successful operation of MCC-5 is essential for the iemergency core cooling systems to function. The root cause evaluation of this event failed to positively identify a root cause for the failure. The evaluation was successful in identifying two components which had the highest probability of having caused the failure. Both of these components have been replaced and the automatic bus transfer (ABT) has been successfully tested numerous times since the event. Because the exact cause of the failure has not been positively identified, a number of compensatory actions were proposed by the licensee. These actions include additional system and component testing, online inspections of suspected components, a design review of the ABT scheme, and resolving a potential generic issue with 52 X relay coil plunger sticking. The team reviewed these compensatory measures and determined they were appropriate. The misclassification of the event as an alert was determined to be a performance error by a non-licensed shift member who transmitted the message. The team concluded that the root cause evaluation and testing were thorough and the corrective actions taken in response to this event were appropriate.

The team also noted two issues regarding the licensing basis of MCC-5. The updated UFSAR, Section 8.3, states in part that "The Class 1E system has the redundancy, capacity, capability, and reliability to supply power to all safety-related loads. This system ensures a safe plant shutdown to mitigate accident effects, even in the event of a single failure." This statement does not appear to be accurate as related to single failures and MCC-5. In addition, the team questioned the applicability of 10CFR 50.46 (d), which explicitly states that the performance of the emergency core cooling system (ECCS) system must include in particular Criterion 35 of Appendix A, which requires that the ECCS safety function be accomplished assuming a single failure. The current design of the ECCS system does not satisfy the requirement of Criterion 35 due to the single failure vulnerabilities of MCC-5. While the team noted that an exemption had been granted by the NRC for the MCC- 5 single failure vulnerability during original plant licensing, an explicit exemption from the 50.46 requirement was not apparent to the team. Both of these issues are currently being reviewed by the NRC.

DETAILS

1.0 INSPECTION OBJECTIVE

The comon of the Aumboviad Insnection Team (AIT) inspection was provided by the Region 1 Regional Admimstrator in the Augnituted Inspection Team Charter (Attachment C). Generally, the team was tasked with conducting a detailed review of the circumstances surrounding the June 22, 1993 and June 26, 1993 losses of offsite power and the June 27, 1993 los: of motor-control-center-5. Specifically, the team was tasked with:

- Developing a detailed sequence of events.
- Collecting, analyzing and documenting factual information to determine the causes, conditions, and circumstances pertaining to each event.
- Evaluating the licensee response to each event including the corrective actions and the inappropriate Emergency Action Level declared following the June 27, 1993 event.
- Assessing the safety significance of each event and communicating to regional and headquarters management the facts and safety concerns related to problems identified, including single failure vulnerabilities and impact of non-safety related equipment on safety-related equipment.
- Evaluating the knowledge and performance of the licensee staff during these events.
- Evaluating the maintenance testing and any changes made to the design which may have contributed to this failure.

This inspection report is divided into three sections with each section providing a description of each event and the team's findings. It was not the responsibility of the AIT to recommend enforcement actions. These aspects will be addressed in subsequent NRC correspondence.

2.0 DETAILED INSPECTION FINDINGS

2.1 LOSS Of OFFSITE POWER EVENT (June 22, 1993)

2.1.1 Description of Event

An unplanned loss of offsite electrical power was caused during a test of transmission line protective equipmient on June 22, 1993, at 09:15. The plant was in Operational Mode 5 (cold shutdown) at the time of the event with the reactor coolant system level in the pressurizer and the ' A ' residual heat removal (RHR) pump in service for core decay heat removal.

Following the loss of offsite power, both emergency diesels started and energized the eqfeguards electrical buses. All safety-related equipment functioned properlv. Control room operators followed the instructions provided in Emergenc, qpitatu. $\%$ \%omure (bus) $3.1-10$, "Partial Loss of AC." They restored core cooling RHR flow in two minutes, service water cooling to the component cooling water (CCW) heat exchangers in eleven minutes and spent fuel pool cooling in twenty-five minutes. Offsit ... was restored to station service Bus 1-2 at 09:28. Power was available from both 11. it (kV) transmission lines into the switchyard during this event.

The loss of offsite power was classified as an Emergency Action Level Unusual Event at $09: 36$. The NRC Duty Officer was notified at 09:41 and the event classification was promulgated outside the station using the Emergency Notification and * soonse System (ENRS) at 09:46. The Unusual Event was terminated at $1: 15$.

Background

Offsite power is supplied to the station by two 115 kV transmission lines. This offsite power system delivers all station service power while the plant is shutdown or operating at low power. Above approximately ten percent power, the unit auxiliary transformer, which is supplied from the main generator output, delivers power to the reactor coolant pump motor buses only. The 115 kV system supplies all other station service ! qfeguards electrical buses. The 115 kV system is unaffected by a turbine generator trik the main generator supplies power to a separate 345 kV distribution system.

The 115 kV system normally receives electric power from two separate offsite sources (Figure 1). Transmission lines from Middletown (1772) and Haddam (1206) supply power to the station 4160 Volt buses through two 115 kV to 4.16 kV station service transformers T-389 and T-399. The two transformers supply power to station service Buses 1-2 and 1-3 through circuit breakers 3891 and 3991, respectively A normally closed oil circuit breaker 3897399 (12R-1T-2) connects the two 115 kV transmussion liws. A normally open circuit breaker B-2T3 can be closed to tie the two 4160 Volt station service buses together in the event that power from either $115 / 4.16 \mathrm{kV}$ station service transformer is not available. The transformers, the oil circuit breaker 12R-1T-2 and associated motor operated disconnects are all located within the 115 kV switchyard. The 4160 Volt circuit breakers 3891,3991 and B2 T 3 are installed in Buses 1-2 and 1-3 located in the plant " A " switchgear room.

The two 4160 Volt station service buses normally supply the two safeguards electrical buses, Bus 8 and Bus 9. Each of these may be powered from the emergency diesel generators and are each separated from the station service buses in the event of an undervoltage condition by to or ircuit breakers in series.

There is overlapping responsibility between the plant and other utility organizations for the i : n , operation and maintenance of the offsite power suppl Mhe Cuonecticer Vache Electric Power Exchange (CONVEX) load dispatcher has jurisdiction for the operation of the 115 kV lines and associated switching equipment up to and including the 4160 Volt supply breakers 3891 and 3991 to Buses 1-2 and 1-3. Although, those circuit breakers are operated from the plant control room; their position is coordinated with the CONVEX. The plant control room operators also keep CONVEX informed of the position of the normally open 4160 volt bus tie breaker B-2T3. The 115 kV tie breaker 12R-1T-2 may be controlled remotely by the dispatcher; however, it is normally kept in local control from the plant control room. The control room operators are not restricted in operating this equipment in the event of an emergency. The station has maintenance responsibility for all equipment starting with the 115 kV motor operated disconnect at the primary side of each $115 / 4.16 \mathrm{kV}$ transformer. The Connecticut Light and Power Company, Regional Test Department is responsible for transmission line protection including its design control and testing.

The June 22, 1993, loss of offsite power involved a test of the protective devices that act in the event breaker 12R-1T-2 fails to open when a fault is detected on one of the lines. Both transmission lines are protected by several types of fault detection devices arranged into primary and backup groups. In addition to tripping open the transmission line breakers at remote sub-stations, both the primary and backup devices will trip breaker 12R-1T-2. That breaker has redundant trip coils fed separately by each relay group.

Breaker 12R-1T-2 is monitored for proper operation by a breaker failure scheme. In the event that breaker $12 \mathrm{R}-1 \mathrm{~T}-2$ fails to open, this protection circuit acts to open remote substation breakers supplying power to both the Haddam (1206) and Middletown lines (1772) in order to de-energize the faulted line from the other sources of power. In addition to opening the remote 115 kV breakers, the breaker failure protection logic also trips open the 4160 Volt supply breakers 3891 and 3991 . These breakers are tripped to isolate any potential electrical sources, such as the emergency diesel generators, from feeding the faulted transmission lines. Unless isolated for testing, actuation of the 12R-1T-2 breaker failure logic will always cause : full loss of offsite power at the Haddam Neck Plant.

Connecticut Light and Power Company, Regional Test Department is responsible for transmission line protection including design control. Its personnel conduct the tests of transmission liee protective devices including the $12 \mathrm{R}-1 \mathrm{~T}-2$ breaker failure logic. Their activities are coordinated by plant personnel who developed procedures and interface with plant operations. Prior to this refueling outage, the maintenance department had been responsible for coordinating this testing. This responsibility was transferred to the Generation Test Department because their skills and work activities are more closely related to control logic and electrical protective device testing. The test procedures used were revised to enhance the scope of testing. Preventative Maintenance Procedure PMP 9.8-117, "1206 Connecticut Yankee - Haddam Line Trip Test," replaced the previous test procedure and became effective on April 30, 1993. Changes to the procedure included verifying a trip
signal from a transmission line protective device to each of the station service bus supply breakers. During the test Bus $1-3$ supply breaker 3991 was to be racked into the test position and tripped open. Previouslv, the breaker failure trip signal had been interrupted at a test switch that prevented a..ip o. whe o.. sin 4100 vor. ose ors or a trip of the remote substation 115 kV breakers.

Event Time Line

The tests of the Haddam transmission line protective devices were first performed with the recently revised procedure PMP 9.8-117 on June 22, 1993. This test was to include an actual trip of the Bus $1-3$ supply breaker 3991 , which was withdrawn from the switchgear to the test position. To support the test, station service power was supplied from offsite through the other 4160 Volt breaker, 3891, to Bus 1-2. The normally open bus tie, B-2T3, was closed to supply Bus 1-3 from Bus 1-2.

Section 6.2 of the test procedure verified the ability of the 12R-1T-2 breaker failure logic to trip the 3991 breaker. The test procedure initial conditions, procedure step 6.1 .5 , isolated all output trip functions from the logic. Then switch contacts 8 and 8 c were closed to enable the 3991 breaker trip. At 09:15 the test technicians initiated the breaker failure logic by manually actuating a station service transformer T-399 differential current protective device (procedure step 6.2.3). Upon initiating a breaker failure signal, the 3891 breaker tripped open instead of the 3991 breaker. This resulted in a loss of offsite power because all power to the station was supplied through breaker 3891. Both emergency diesel generators started and energized safeguards electrical Buses 8 and 9. The shutdown cooling flow was restored in two minutes and spent fuel pool cooling was restored in twenty-five minutes. There was no noticeable increase in reactor coolant or spent pool temperatures. A planned radioactive liquid release was in progress and terminated with the loss of power. The sequence of events for the June 26 loss of offsite power are provided below:

07:44 Close Bus 1-2 to 1-3 tie breaker B-2T3, breaker 3991 in test position
09:15 Commenced breaker failure test, breaker 3891 tripped open, loss of all incoming power, offsite 115 kV lines remain energized, both emergency diesel generators start and energize Buses 8 and 9
09:17 Control room operators start A-RHR pump and C-CCW Pump
09:18 Control room operators start B-CCW pump
09:26 Service water cooling restored to both CCW heat exchangers
09:28 Control room operators shut breaker 3891, energized Bus 1-2
09:40 Restored spent fuel pool cooling
09:46 Promulgated declaration of Unusual Event
09:50 Completed actions under EOP 3.1-10
11:02 Shut breaker 3991, opened breaker B-2T3
11:12 Terminated Unusual Event

2.1.2 Corrective Actions

Root Cause

Licensee personrel examined the point-to-point wiring associated with contacts 8 and 8 c of the $12 \mathrm{R}-1 \mathrm{~T}-2$ treaker failure lock-out relay, $86 \mathrm{BF}-\mathrm{A}$, and its associated test switch and identified that tl ese contacts were inadvertently wired to the station service breaker 3891 trip circuit. Although this wiring should have been in the trip circuit for station service breaker 3991, it was funct vnally wired in parallel with the breaker 3891 trip circuit that is associated with contacts 9 and 9 of the lock-out relay. There was no other connection from the breaker failure logic to station service breaker 3991 trip circuit.

The licensee suspects that this wiring error had been made early in plant life, possibly before commercial operation. This is because of the type of wire, lack of circuit number labels, type of crimp lug, and the type of crimp tool used were different than those used for the other trip circuits. The wires were not included in laced bundles, but appear to have been installed following construction of the control boards. Specifically, the main control board wiring drawings specified that the two wires from terminal 8 C of device "ON" and terminal 16 of device "OP" were to be connected to terminal 2 and 3, respectively, of device "PB" that is part of the breaker 3991 trip circuit (control circuit bus numbers 523 P and 523 T). Instead, the wires were taken to terminals 5 and 7 of device "AJ," which is in the breaker 3891 trip circuit (control circuit bus numbers 522 P and 522 T).

The licensee intends to correct the wiring error during the next refueling outage following a review of the $12 \mathrm{R}-1 \mathrm{~T}-2$ breaker failure circuit. Additionally, the licensee intends to test the revised circuit. However, because the breaker failure circuit is common to both sources of offsite power, there is a risk of causing additional losses of offsite power events while performing the post modification retest. For this reason, the licensee intends to evaluate and determine the optimum test configuration to minimize risk during testing. The circuit drawings were revised to reflect the as built configuration of the $12 \mathrm{R}-1 \mathrm{~T}-2$ breaker failure circuit and the breaker 3891 and 3991 trip circuits.

Justification for Operation

A technical evaluation was prepared to justify operation during the next cycle with the existing wiring configuration. This justification was based on the qualification of the Category 1E loss-of-Voltage relays to protect the on-site electrical distribution system from conditions occurring on the offsite supply system. These Category 1E protective devices operate to protect the emergency diesel generator from thie offsite system. In the case of a loss of offsite power while the emergency diesel generator is o erating in parallel with the system, voltage will decay rapidly, due to the high impedaner, of the generator. The bus
undervoltage relays will trip the safeguards bus free of offsite power within two seconds. Also, the generator impedance will limit fault currents to low levels. This provides a self "hroite hamatortin that nrotects the generator from external faults.

The Connecticut Light and Power Company, Transmission and Distribution Department has design jurisdiction over the 12R-1T-2 breaker failure logic. Representatives of that organization concurred in the plant operating for an additional cycle with the wiring configuration as-is. This was based on the low probability for back-feed from the plant electrical system into the 115 kV distribution system. The effect of the "2B"-emergency diesel generator monthly surveillance test concurrent with operation of the breaker failure circuit was acceptable due to the size of the generator, the plant and transmission system impedance and the ability of Class 1 E protection devices to isolate the generator.

2.1.3 Conclusions

Event

The loss of offsite power was important to safety because shutdown cooling was temporarily lost and the loss of offsite power is a precursor to a station blackout. The actual event had minor significance due to the low decay heat generation rate and the condition of the emergency diesel generators that were both operable during the event. It occurred 39 days after the reactor had been shutdown for the refueling outage. Operator performance was good in restoring reactor core decay heat removal and spent fuel pool cooling in a short period of time. All safety-related equipment functioned as expected. The classification of this event by plant operators as an Unusual Event was appropriate.

This event was caused by a wiring error that probably occurred early in plant life. The team independently verified the root cause by observing the wiring error. The deficiency in wiring the breaker trip circuit had been identified as result of a recent initiative to improve upon the scope of transmission line periodic tests. The newly revised test procedure used to conduct this test provided adequate detail and did not contribute to the cause of this event. The test was successful in identifying long standing deficiencies in the plant configuration.

Corrective Action

The team concluded that the technical justification for not correcting the wiring error to the breaker trip circuit prior to the next refueling outage was acceptable. The purpose for tripping the station service supply breakers 3891 and 3991 is to provide isolation of a fault and therefore prevent back-feeding the fault from the station. Each safeguards electrical bus is isolated from the non-safety station service bus by two breakers in series and a qualified bus undervoltage protection circuit. The emergency diesel generator winding impedance will act to limit fault current. The limited fault current and the settings of the undervoltage protection act together to avoid sustaining damage to the generator. In addition, the 12R-1T2 breaker failure trip is a backup to the primary and secondary breaker trip schemes
referenced in the final safety analysis report (FSAR) and is to protect non-safety-related transmission equipment. If a breaker failure were to occur, the logic would trip open the ahewewn wic havuain tsing on line breakers at their respective switchyards. Therefore, leaving the wiring error as-is has no effect on the reliability of offsite power sources.

The team concluded that the licensee's action to revise drawings to reflect the plant as-built conditions is appropriate when taken with their plans to verify, correct and test the $12 \mathrm{R}-1 \mathrm{~T}-2$ breaker failure protection logic during the next refueling outage.

2.2 LOSS OF OFFSITE POWER EVENT (June 26, 1993)

2.2.1 Description of Event

The plant was in Operational Mode 5 (cold shutdown) on June 26 with the reactor coolant system level in the pressurizer and the ' B ' residuat heat removal (RHR) pump in service for core decay heat removal. Licensee personnel completed preparations to perform a partial loss of normal power test in accordance with procedure SUR 5-1-18, "Test of Train A SIAS with Partial Loss of AC." The test is conducted each refueling outage. The objective of the test was to verify the proper operation of the Train A safety systems in response to a simulated safety injection actuation signal coincident with a loss of normal power. The test verifies that safety equipment is capable of starting and being powered from the ' A ' emergency diesel generator. The initial station electrical lineup was established in the normal configuration that separates the two trains, allowing test personnel to de-energize the Train A side (Bus 1-2), while the Train B side (Bus 1-3) equipment remains powered by the offsite power source during the test (Figure 1).

Plant personnel aligned the Train A safety systems in a standby condition. In accordance with SUR 5.1-18, breaker 3891 was closed to supply power to Bus $1-2$ and breaker 3991 was closed to supply power to Bus 1-3. The cross-tie breaker B-2T3 was open. At procedure step 6.2 .5 , plant personnel initiated a partial loss of power by opening the Bus $1-2$ supply breaker, 3891, and simulated a low pressurizer pressure condition to initiate a Train A safety injection actuation signal (SIAS). When step 6.2 .5 was performed, the Train A side deenergized as expected, but supply breaker 3991 to Bus 1-3 also opened which de-energized the Train B side. The plant experienced a complete loss of normal power (LNP) from the offsite distribution system at 19:17.

Event Time Line - Operator Response

Plant operators immediately identified the unexpecief vpcrauon vi orcakel $3>\ldots$, an...d from testing, and entered Emergency Operaling Procedure (EOP) 3.1-10, "Partial Loss of AC. " Both emergency diesel generators automatically started and energized the emergency buses as expected. Plant operators restored shutdown cooling and component cooling. The operators manually started the 'B' RHR pump within 3 minutes of the LNP; however, the pump tripped after running less than a minute. The 'A' RHR pump was started and it ran satisfactorily. The reactor heat-up was less than 2 degrees fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ during the time that shutdown cooling system was not operating.

The operators restored offsite power at 19:34 by closing breaker 3891 to power Bus 1-2, and then closing tie breaker B-2T3 to power Bus 1-3. Breaker 3991 was left open pending the completion of a review to determine the cause of its unintended operation. Emergency Buses 8 and 9 were transferred to the offsite supply at 19:40. The spent fuel pool cooling pumps were restarted within 44 minutes of the LNP. The spent fuel pool temperature increase was less than $5^{\circ} \mathrm{F}$.

While completing actions to secure from the test, the operators classified the loss of offsite power as an Unusual Event emergency, and reported the event to the offsite state and local authorities at 19:36. The Unusual Event classification was reported to the NRC Duty Officer at 19:48, as required by 10 CFR 50.72. The operators exited EOP 3.1-10 at 20:01 after returning the spent fuel cooling system to normal. The sequence of events for the June 26 LNP are provided below.

19:17 Initiate simulated Train A SIAS and Partial LNP.
19:17 Breaker 3891 manually opened and 3991 unexpectedly opened - Result total LNP.
Emergency Diesels start and Power Emergency Buses
19:20 'B' RHR pump manually restarted.
19:21 'B' RHR pump tripped; 'A' RHR pump started.
19:34 Breakers 3891 \& B-2T3 closed to power Buses 1-2 \& 1-3.
19:35 Unusual Event Notification sent.
19:40 Emergency Buses 8 \& 9 transferred to offsite supply.
19:48 NRC Duty Officer notified of Unusual Event.
20:01 ' B ' spent fuel pool cooling pump started.
20:01 Operators exit EOP 3.1-10.
20:42 NRC Duty Officer Notified of Unusual Event - Terminated.
Aside from the trip of the ' B ' RHR pump, all other equipment operated as expected. While restoring the system lineups following the LNP, the operator attempted to close high pressure safety injection valves 861 A and 861 B , which opened in response to the SIAS. This was done prior to resetting the safety injection lock-in relays. The valves automatically re-opened
as designed. The operator realized his error, reset the safety injection lock-in relays. The operator then noticed that the breakers for the valves were open with the valves in the midposition. The breakers were reset and the valves were closed without further problem.

Undervoltage Trip Scheme - Design \& Operation

The loss of normal power event occurred as a result of an inadvertent operation of the undervoltage trip and lockout scheme on 4160 Volt Bus 1-3. The 4 kilovolt (kV) bus undervoltage trip scheme is shown on the simplified one line diagram in Figure 2, and in the logic diagram in Figure 3. The high side of potential transformers (PT) are connected to each phase of Buses 1-2 and 1-3 in a wye configuration. The low side of each PT is also connected in a wye configuration with the center phase connected to ground. The low side of the PT branches to several relay and instrumentation circuits.

One circuit from phase 3 (line 3 V 29) is protected with a 6 amp fuse and feeds a voltmeter, a test transformer, and undervoltage relay 27B. Relay 27 B is connected across phases 1 and 3 and is used in the trip and lockout protection scheme for Bus 1-3. The test transformer is used to provide low voltage supply internal to the protection cabinets to power the pilot wire trip signals. The voltmeter is located on the main control board and displays Bus 1-3 voltage. The operator can switch the voltmeter to read across the different Bus 1-3 phases by manipulating a switch on the main control board. The selector switch consists of a multistacked series of contact wafers and also controls the readouts on voltmeters for Buses 1-2, $1-1 \mathrm{~A}$ and 1-1B.

The trip and lockout scheme uses undervoltage relays (27A \& 27B) on both 4160 Volt buses and works on a logic that requires that an undervoltage condition be sensed on both Buses 12 and $1-3$ before a trip signal is generated to lockout the power supplies to the bus (See Figure 3) The 6 amp fuse protecting line 3V29 had blown, leaving the 27B relay in a deenergized condition at the start of the test on June 26 . This condition was not annunciated or otherwise indicated in the control room, and was not known to plant personnel during the conduct of the test. The fuse had blown some time prior to June 26 , but the undervoltage logic had not actuated to lockout Bus 1-3 as long as power was available on Bus 1-2. When the operators opened breaker 3891 to conduct the Train A LNP test, the trip and lockout logic for Bus 1-3 was completed when the 27B relay on Bus 1-2 de-energized, and the total loss of offsite power occurred.

The licensee could not identify exactly when the fuse had blown, but concluded that the failure most likely occurred earlier in the outage. The PT circuit was disturbed when the voltmeter associated with line 3 V 29 was relocated as part of a control board design change.

Investigation of Anomalous Voltmeter Indications

In the evaluation of this event, the licensee identified a missed opportunity to have identified the failed fuse in the PT circuit. This opportunity occurred on about June 15 when plant
operators noted an anomalous indication of the voltmeter following the restoration of a station service transformer T-399 to service after its replacement. Plant operators noted that the voltage readino on Rus 1.3 was about 200 Volts lower than that on Bus $1-2$. The voltage reading shum have veen the same since vow were powered from the 115 kV system.

The anomalous indication was discussed with Generation Test Services (GTS) personnel, who were responsible for the transformer work, the control board design changes, and for work related to the bus instrumentation and controls. The operator investigated the anomaly with a GTS technician. The investigation included the manipulation of the voltmeter selector switch to review the bus voltage indication on all three phases. The technician read nominal voltage on phase 1, about 95% of nominal on phase 2, and several hundred volts on phase 3 while troubleshooting the problem with the operator. The GTS technician erroneously diagnosed this indication as a likely problem with the selector switch, and not a blown fuse. The GTS technician stated that he needed to investigate the switch problem and correct it before plant restart, but he had prioritized follow-up of the problem for later in the outage. The drawings (Series 16103-32001, Sheets 5TA, 5TB, 5TC) were recently issued prior to this event as part of a program to upgrade plant records.

The AIT reviewed the PT circuit and concluded that the presence of the low impedance transformer in the circuit created voltage readings across the phases that tended to mask the blown fuse. The team concluded that the voltage readings were not obviously indicative of a blown fuse. The team noted further that neither the technician nor the operator submitted a trouble report for the anomalous voltage readings on June 15 in accordance with ACP 1.25.1. "PMMS Trouble Reporting System and Automated Work Order." This action would have entered the problem into the work control system to identify the defective equipment. However, the same technician who diagnosed the anomalous voltage indications with the operator on June 15 would also have been assigned to perform the follow-up repairs. The team concluded that had the equipment deficiency been incorporated in the work control program, it most likely would not have been identified as requiring repair prior to the conduct of SUR 5.1-18 and would not have prevented the June 26 LNP event from occurring.

Operator Use of the 4160 Volt Voltmeter

The team reviewed the circumstances involving an alleged reluctance by operators to use the selector switch for the voltmeter on the 4 kV buses due to an incident when the reactor tripped while manipulating the switch. The team confirmed that there was an event about 20 years ago during which the reactor tripped from the 4 kV bus undervoltage protection scheme. The licensee concluded at that time that the trip occurred due to the use of test equipment in use to monitor the protection scheme. The exact reason for the trip was not conclusively resolved, but there was no problem with the voltmeter selector switch either suspected or left uncorrected. Some operations and maintenance personnel were nonetheless
left with the impression that there might be a problem with the selector switch. The operating practice of routinely using the switch to monitor 4 kV bus voltage on all three phases was changer to only manitor a single phase. That practice persisted until July 1993 and the selector swiun was not rounnery useu.

The team determined from interviews with licensee personnel that some operators and maintenance personnel had the impression that "there might be a problem with the voltmeter selector switch," but others were not aware of the issue. The team noted that operators would use the switch if necessary and as required to review the status of the electrical system. The licensee changed the operating practice during this inspection to require the operator manipulate the switch every day to record 4 kV phase voltages as part of the daily control board rounds and \log keeping.

It is notable nonetheless that the general impression that "there might be a problem with the selector switch" did have a bearing on the decision by the Generation Test technician to not investigate further the low voltage reading noted by the operators on Bus 1-3 on June 14.

2.2.2 Corrective Action

The license replaced the blown fuse in the PT circuit on June 27 after identifying the cause for the June 26 loss of offsite power. The Train A LNP test was successfully re-performed on June 27. Surveillance procedure SUR 5.1-18 (and 5.1-19 for the Train B) were changed by Temporary Procedure Change 93-5-4 on June 27 to add prerequisite step that required the operator to verify that the fuses are good prior to performing the surveillance test. The licensee also changed the control room operators round sheet to require that the voltmeter selector switch be exercised during daily reading on the 4160 Volt buses.

2.2.3 Conclusions

Event

The loss of offsite power was important to safety because shutdown cooling was temporarily lost and the loss of offsite power is a precursor to station blackout. However, during this specific event the safety significance was low since both emergency diesel generators were operable and offsite power remained available. The event occurred 43 days after the reactor had been shutdown for the refueling outage, and thus decay heat levels were relatively low. The team concluded that the June 22 and the June 26 events were not related in that the corrective actions from the first event could not have precluded the second from occurring.

Operator performance was good in restoring shutdown cooling and spent fuel pool cooling in a short period of time. Except for the RHR pump and the high pressure safety injection valve breakers, plant equipment functioned as expected during the event. The breakers for valves SI-861A \& B are a Westinghouse motor circuit protection breaker, Type HMCP, that has been the subject of a generic concern for setpoint. The HMCP's tripped after the safety
injection signal reversed the motor direction after the operator shut the valves. The licensee addressed the HMCP issue for these and similar breakers in a design change prior to restart from the outage. Further NRC follow-up of this issue is described in NRC Inspection Report

The root cause for this failure was positively identified as a blown fuse in Bus 1-3 trip and lockout logic scheme. The PT circuit fuse most likely failed during the modification activity which relocated the associated voltmeter as part of the changes resulting from the detailed control room design review. The team reviewed the licensee statement that plant operators were reluctant to use the voltmeter selector switch and concluded that it was not relevant to this event.

The team noted that more detailed troubleshooting of the anomalous voltmeter indications on June 15 could have identified the failed fuse. However, the symptoms presented to repair personnel on June 15 were reasonably diagnosed as a likeiy problem with a switch contact, which warranted a lower priority for further follow-up.

Corrective Actions

The surveillance activity was successful in detecting a problem in the Bus 1-3 undervoltage protection circuit. The team concluded that it is not reasonable to expect that the plant surveillance procedure would check for blown fuses prior to the conduct of a partial LNP test. The procedure revisions and the replacement of the blown fuse were acceptable corrective actions. The licensee requirement to operate the voltage selector switch on a daily basis will assist in identifying fuse failures and avoid unnecessary plant transients.

2.3 LOSS OF MOTOR-CONTROL-CENTER-5 (June 27, 1993)

2.3.1 Description of Event

Background

Motor-control-center-5 (MCC-5) and its associated automatic bus transfer scheme (ABT) are a design which is unique to the Haddam Neck Plant. The design is necessary because both trains of certain valves are required to mitigate the consequences of certain accidents assuming a single active failure. For example, MCC-5 supplies electrical power to the high and low pressure safety injection system injection valves. These vz' es are normally closed and must open for the high and low pressure injection systems to operate. For the low pressure safety injection (LPSI) system to satisfy it's design basis flow, assuming a single failure of one LPSI pump, both injection valves must open. Similar constraints exist with the high pressure safety injection system. To address this design constraint, MCC-5 was designed with an automatic bus transfer (ABT) scheme which switches the 480 Volt electrical source for MCC-5 from its preferred supply bus (manually selected) to the alternate bus in the redundant train upon loss of power to the preferred source (see Figure 4). The transfer
circuitry will also automatically transfer (MCC-5) back to the preferred bus if its voltage is subsequently restored. The automatic transfer circuitry contains appropriate interlocks to thase that hrankers 9C and 11 C cannot be closed at the same time which would narallel the two emergency power sources. During original plant licensing, the NRC giance we licensee an exemption from assuming single failure of MCC-5. This exemption was required since a postulated single failure of the ABT would render both the high and low pressure emergency core cooling systems inoperable.

The MCC-5 ABT scheme is shown in Figure 4. The components making up the circuitry are two Westinghouse DB-25 480 Volt air circuit breakers with their associated integral components (identified with a 52 or 33 prefix), three Agastat timing relays (identified with a 62 prefix), a two-position preferred source selector switch, and several manual trip/close pushbuttons. The Agastat timing relays are used to detect voltage on Buses 5 and 6 and thus are the components that initiate the automatic transfer. The breaker control reiays (52 X) provide contacts to momentarily energize their corresponding breaker's closing coil and provide the anti-pump protection which prevents repeated breaker closure attempts. A functional description of the operation of the ABT transfer is provided in Attachment B and Figure 5 of this inspection report.

Time Line of Event

On June 27, 1993, the plant was in Mode 5 (cold shutdown) with the reactor coolant system level in the pressurizer and the shutdown cooling system in service for the train not being tested. The plant's procedures for conducting the partial loss of offsite power coincident with a safety injection actuation signal (SIAS) had been revised to include an integral test of the ABT of MCC- 5 based on recommendations resulting from a probability risk assessment (PRA) study. Prior to this test, the MCC-5 automatic transfer function had not been formally tested.

Surveillance test procedure 5.1-18, "Test of Train A SIAS with a Partial Loss of AC," was successfully performed for the Train A. MCC-5 had transferred from Bus 5 to Bus 6 and back to Bus 5 when Bus 5 was energized by the emergency diesel generator. Following the successful completion of the Train A test, the licensee initiated testing the Train B using surveillance procedure 5.1-19, "Test of Train B SIAS with a Partial Loss of AC." An initial condition of this test is to select Bus 6 as the preferred source of power for MCC-5. Selecting Bus 6 as the preferred power source allows the ABT to transfer from Bus 6 to Bus 5 (energized by offsite power) when offsite power is secured on Bus 6. The ABT will transfer back to Bus 6 , since it is the preferred source of power, when emergency diesel generator 2BB re-energizes Bus 6. At 18:48, breaker 3991 was opened to secure offsite power from Train B. Bus 6 (the preferred source), which was powering MCC-5, was deenergized and the automatic transfer to Bus 5 (alternate source of power for MCC-5) occurred as expected. Approximately 6 seconds later, after the Train B emergency diesel generator came up to speed, Bus 6 was re-energized. Because Bus 6 was selected as the preferred source, the breaker (9 C) from Bus 5 powering MCC-5 tripped open, but the
breaker (11C) from Bus 6 did not close as expected. As a result, MCC-5 was without power. In an attempt to restore power to MCC-5, an operator located at the ABT in the switch-gear room selected Bus 5 (bosition 1) as the preferred source of power for MCC-5. MCC-5 remained de-energized. at opciation wien allempuen winue osfully to close breaker 9 C by pressing the manual close pushbutton on the breaker. Subsequently, the operator was able to mechanically close Breaker 9 C using a portable operating handle which re-energized MCC-5 from Bus 5 at 18:52. MCC-5 had remained de-energized for approximately 4 minutes during this event. The surveillance test was terminated and offsite power was restored to Train B.

Trouble-Shooting Activities

Several repeated operations of the ABT, following the event, between Buses 5 and 6 would not reproduce the failure. Based on an erroneous assumption that the initial automatic transfer from Bus 6 to Bus 5 had not occurred, trouble-shooting activities concentrated on breaker 9 C . Breaker 9 C was removed from Bus 5 and preventive maintenance was performed on this breaker. The breaker's control relay (52 X) was replaced during the preventative maintenance. Breaker 9 C was reinstalled into the Bus 5 switch-gear and surveillance test 5.1-19 was completed with the MCC-5 ABT functioning as expected.

Following the arrival of the AIT, the licensee initiated a formal root cause evaluation of the MCC-5 ABT failure. Based on conflicting observations as to whether the transfer to Bus 5 did or did not occur during the event, the licensee investigation team examined computer alarm logs and bus voltage traces to ascertain the exact sequence of events. It was then concluded that the initial transfer to Bus 5 had occurred and the subsequent transfer back to Bus 6 had failed. This indicated that the initial troubleshooting activities had focused on the wrong breaker. A failure modes and effects analysis was performed by the licensee and independently verified by the AIT, which concluded that the suspect components were either breaker 11C's control relay, an associated Agastat relay or interconnecting wiring. Both the control relay and the Agastat relay were replaced on July 2, 1993 and set aside for further testing.

The licensee then performed a hand-over-hand wiring check, redlining, and connection integrity check evolution for the interconnections between all components in the MCC-5 ABT scheme in accordance with procedure ST 11.8-35, "Functional Test of MCC-5 Transfer Scheme," on July 4-5, 1993. The AIT witnessed these functional test activities. No wiring errors were identified.

While performing the above wiring check, the licensee's personnel observed that the plunger of the control relay (installed several days earlier) associated with Breaker 9C exhibited a sluggish drop out upon removal of control power from the relay. Since this was identical to one of the suspected component's possible failure modes, the control relay was removed for further testing. This failure mode has reoccurred during subsequent bench testing of this specific relay. Five new control relays from the warehouse were also tested and one relay
exhibited the sluggish dropout of the relay plunger. The AIT witnessed a number of bench tests of the 52 X relays and observed that it appears their exists an attraction between the plunger and the fix parts of the sole wiot. The thatims of ahe 52 Y ghaner to drop out promptly is one possible explanation for the failure of the ABT which occurred on June 27,1993 . If the breaker $11 \mathrm{C}, 52 \mathrm{X}$ relay plunger were to hold up for the 6 seconds required for the emergency diesel generator to re-energize Bus 6 , then breaker 11 C would not re-close. However, the failure of a 52 X relay plunger has only been observed when control power is removed from the solenoid and not during an actual breaker opening. The operation of a breaker tripping open will be accompanied by a mechanical shock of the main breaker contacts opening which would tend to assist dropping out the 52 X relay plunger. While the failure of the 52 X relay plunger is one possible explanation for the MCC-5 ABT failure on July 27, 1993, it is by no means the positive root cause of this failure. Further testing of the 52 X relays plunger sticking was ongoing by the licensee and the relay vendor at the conclusion of this inspection.

Following the completion of procedure ST 11.8-35, the ABT was again functionally tested by securing power to Buses 5 and 6 and verifying the ABT function. These test were conducted in accordance with surveillance test ST 11.7-126, "Functional Test of MCC5 Automatic Bus Transfer (ABT)," and the tests were witnessed by the AIT. Additional tests were conducted to verify that the 52 X relays plungers, installed in breakers 9 C and 11 C , would not stick when control power was removed. The tests energized the 52 X relays in breakers 9 C and 11 C for a long period of time and then removed the control power. These tests were witnessed by the AIT and the solenoid plungers were observed not to stick.

Root Cause

The root cause for this failure has not been positively identified. A formal root cause determination has been completed and (2) components have been identified as being the most likely cause of the failure. These components are an Agastat timing Relay, 62-6A, and the 11 C breaker, 52 X relay which is an integral part of a Westinghouse DB 25 breakers.

The licensee provided a "Test Plan for Evaluation of Suspect Components," as part of the root cause determination report. The plan provides for extensive cycle testing of the suspected components. Following the cycle testing, the plan requires physical examination of the suspect components. The plan is scheduled for completion within two week after reaching 100% power following startup from the current refueling outage. The plan was reviewed by the AIT and determined to be comprehensive.

2.3.2 Corrective Actions

The licensee's short term, long term and compensatory measures for the MCC-5 ABT failure were provided to the NRC in a letter " Commitments to Test Motor-Control-Center-5," dated July 15, 1993. The licensee has committed to complete the following actions prior to entering Mode 4:

1. Brief all on-shift licensed operators on the significance of a loss of MCC-5 and how to recognize and correct this situation in accordance with Emergency Operating Procedure 3.1-50.
2. Put in-place a procedure for ensuring that any time there is a transfer of MCC-5, a visual verification of the "dropout" of the 52 X relay of the open MCC- 5 feeder breaker is performed.
3. Place caution tags on each of the breaker trip pushbuttons in the " A " switch-gear room to preclude the potential for lockup of both breakers in the open position. During the inspection, it was identified that if the preferred source breaker was manually tripped, MCC-5 would be de-energized and no automatic transfer would occur. The caution tags were written to inform plant operators of this fact.

These actions were completed prior to the conclusion of this inspection and the actions were verified by the AIT.

The licensee also committed to conduct additional online testing of the ABT. These testing activities are contingent upon receiving approval by the NRC of an amendment to the Technical Specifications. The amendment is required to allow the temporary removal of the control power to breaker 9C. Removal of the control power to the breakers will render the ABT inoperable. The online testing activities are as follows:

1. Disconnect the direct current power to the 52 X relay in 480 Volt, Bus 5 , compartment 9 C . The dropping of the relay will be witnessed visually when the power is disconnected. The frequency of this test will vary starting with weekly tests for four weeks, monthly tests for the next 4 months and then quarterly tests for the remainder of Cycle 18.
2. A functional test of MCC-5 will be conducted any time during Cycle 18 the plant is placed in Mode 5.

The licensee has also committed to the following long-term actions:

1. Conduct an investigation of poiential design changes that would increase the reliability of the ABT scheme. Any modifications concluded to be appropriate would be implemented, if possible, during the next refueling outage.
2. Preventative maintenance will be performed on Breakers 9 C and 11 C each refueling outage in lieu of every other refueling outage as currently required.
3. The licensee will continue to work with the breaker vendor to investigate the root cause of the ABT failure.

2.3.3 Inappropriate Notification of Emergency Classification

The AIT reviewed the licensee's response to the loss of MCC-5 on June 27, 1993 as related to the implementation of the emergency plan. The event was correctly reported to the NRC as an Unusual Event, but was initially, erroneously reported to the State of Connecticut as an Alert. The team reviewed the circumstances involved in this mis-communication to understand how it occurred, and to determine what factors may have contributed to it, including equipment and personnel performance, training, and procsdure adequacy.

Background

The Emergency Notification and Response System (ENRS) is a computer based system that automatically provides notification of an emergency event and its details to the licensee staff and offsite emergency response organizations. The ENRS uses pre-formatted electronic voice messages to describe each emergency classification. The pre-formatted messages are customized for each incident when the Shift Supervisor Staff Assistant (SSSA) enters event specific information into the systern via a computer terminal. The SSSA also supplements the pre-formatted data with a voice message to briefly describe the incident. The entire message unit is then sent to the radio tower for broadcast to the radio-pagers. The ENRS facilitates data entry through a seri-s of prompts and data input screens. The main data input screen is formatt-1 to replicate the hard copy Incident Report Form from emergency plan implementing rocedure (EPIP) 1.5-2 that is filled out by licensed operations and/or shift management f rrsonnel, and approved for release. Once reviewed for accuracy and approved, the message form is given to the SSSA, who translates the approved hard copy information into the ERTRS to produce the electronic message. In addition to the above electronic voice features, the system also allows operations personnel to broadcast a message directly from the tower.

Event

un June 27, 1993, motor-control-center-5 failed to remain cirigicus sutimg survenimike testing. The operations shift supervisor and the duty officer recognized the loss of MCC-5 as an emergency action level and classified the event as an Unusual Event and entered the emergency plan implementing procedures as necessary to make the required notifications for this event. The event classification was erroneously reported to the state as an Alert at 19:14. Two subsequent emergency notification messages were broadcast over the ENRS in attempts to correct the error at 19:28 and 19:40. A fourth radio-pager message was sent at 19:45 directly over the broadcast tower in an attempt to stop emergency responders who might be in transit to the site or emergency response facilities.

The event was properly classified as an Unusual Event by the Shift Supervisor and the Duty Officer. The information was properly coded on the Incident Notification Form (INF), as approved by the Shift Supervisor. The duty SSSA incorrectly translated the Incident Classification from the form to the ENRS.

The data translation error was made when the SSSA failed to notice that he chose an "Alert" posture code and incident classification from the menu on the data input screen. The SSSA did not adequately verify the information as he was inputing into the ENRS, and in spite of three subsequent opportunities to check the inputs for accuracy and to discover the incorrect Alert classification coded into the electronic massage. It takes about 10 minutes for the SSSA to input the data into the ENRS. During this time the ALERT classification is clearly visible on the terminal screen. The SSSA could have discovered the misclassification at any time during that period had he checked his inputs for accuracy. The SSSA stated that he felt under pressure to process the notification within the 12 minutes required by the procedure, and assumed his inputs were accurate. By not checking the notification message for accuracy, the SSSA failed to meet two specific procedure requirements: (1) Step 6.1 .5 of EPIP 1.5-2, "Notification and Communication" requires the SSSA, once the INF data has been input into the ENRS, to "review the entire INF and verify the information is accurate" prior to getting Shift Supervisor permission to release the radio-pager message; and, (2) Step 6.4.3 of NOP 2.16-10, "Operation of the ENRS and Centracom", requires the SSSA to "review the entire recorded INF message to ensure that all data is accurate" prior to releasing the radio-pager message.

The incorrect Alert classification was identified by others in the control room who heard the event notification being broadcast over the pager system. The SSSA received additional assistance to correct the mistake by (i) sending out an "update" message stating that the last event was an Unusual Event and that a response to the plant was not required; and, (ii) sending out a third notification that properly classified the LNP event as an "Unusual Event." Finally, a fourth message was sent out directly to the radio-tower from the Centracom to plant personnel informing them that they need not respond to the plant.

The SSSA provided erroneous meteorological information in the "Alert" notification to the state and local officials. He did this when the ENRS system prompted him for wind speed
 information prompted by the ENRS was on his incident notification form except the meteorological (MET) data, which is not sent for Unusual Events. MET data is only provided for events classified as Alert or higher. The fact that ENRS was prompting him for MET data for an event he knew was an Unusual Event, should have caused the SSSA to question his inputs and cause him to discover the Alert classification.

The SSSA knew he had to provide all the information that ENRS prompted him for before the system would send the notification message. He did not have the necessary information on the INF. He should have either checked with the Shift Supervisor, or gotten the MET data himself. The SSSA rationalized that MET data is not needed for an Unusual Event message, so he made up the information to satisfy the ENRS prompt. The SSSA thought that it was not important that the MET data was accurate because he thought that the ENRS would not send the MET data as part of the Unusual Event message. The SSSA stated he was overly focused on getting the initial message out within the 12 minutes, and did so at the expense of assuring the accuracy of the information.

The team noted that the meteorological data for the "Alert Update" message sent out at 19:28 also had erronecus meteorological data. This message was prepared by the duty SSSA, with the assistance of an off-duty SSSA and the operations Shift Supervisor. The Shift Supervisor authorized the use of fictitious wind speed and direction in compiling the update message. The Shift Supervisor stated to the team that he did so because (i) it was an expediency to inform licensee and offsite authorities as quickly as possible that the first message was really an Unusual Event - it was important to correct the mis-communication as quickly as possible; and, (ii) the actual meteorological information was not important since the actual event involved no radiological release or other offsite impact.

The licensee's review of the response by state and local authorities to the Alert message at 19:05 was less than expected. The radio-pager message is the official prompt notification of plant events that have the potential to impact the public and which may demand prompt protective measures. State and local communities acknowledge receipt of the radio-pager message by a call-in process whereby they get more detailed information about the event in progress. The licensee noted that 9 of 18 local communities and 3 of 6 state agencies did not perform the call in verification in response to the Alert message at 19:14. The licensee has taken action to address this matter in a letter to the Connecticut State Office of Emergency Management (EP-93-464), dated July 6, 1993.

Corrective Action

The root cause for the mis-communication of the June 27 emergency message was personnel erro in failing to follow procedures and exercising attention to detail in the completion of this task. The team concluded that procedures were adequate, and that training was not a
factor in the event. The licensee took actions to address a personnel performance issue. The licensee recognized the significance of using incorrect meteorological information on the ENRS messages. The licensee addrecsed the need for accuracy in this data with all SSSAs and will address wis iopic with uperations purssit A..

2.3.4 Equipment Failure History

The Nuclear Plant Reliability Data System was used to identify the failure history of Westinghouse DB type breakers control relays. The search identified approximately 28 reported failures of control relays since 1984. The cause of these failures was generally attributed to dirt, aging, mechanical misalignment, or mechanical binding due to burrs. However, a positive root cause was often not identified. Corrective actions generally included 52 X relay replacement, repair or readjustment.

The team also reviewed two licensee event reports (LERs) pertaining to 52 X relay failures:
LER 34-023 from Haddam Neck Plant reported on six incidents of Westinghouse breakers failing to close when required. Five of those failures were directly attributed to 52 X relay malfunctions. The sixth breaker failure possibly resulted from a 52 X relay malfunction. The main cause of the control relay malfunctions was stated to be dust or dirt accumulation on the plunger and its latch arm assembly. Since the licensee concluded that the malfunctions presented a generic problem in the plant, the immediate action was to inspect and clean all 52 X control relays. Westinghouse incorporated an improved description of the adjustment procedure necessary for the 52 X relay's mechanical latch/linkage into DB-50 (reactor trip breakers) maintenance manuals but did not included similar information in the maintenance manuals for the DB- 25 breakers, which use 52 X relays.

LER 92-002 from Oconce Nuclear Station reported the failure of 52 X relays on the plant's emergency hydro units' field and field flashing breakers (Westinghouse DB25 s). The 52 X relay did not reset until the hydro unit coasted down. A speed switch de-energizes the 52 X coil and the plunger falls by gravity to reset the relay. The failure mode, failing to reset, was first discovered in June 1991 on commercial grade 52 X relays. The cause of the specific failure mode was not known and the relays were replaced with safety grade relays. On January 28,1992 , a safety grade 52 X relay failed to reset. As immediate corrective action the licensee inspected each 52 X relay to ensure that they did reset following each shutdown. A design change has now been implemented to replace the electro-mechanical anti-pump scheme provided by the 52 X relay with an electrical scheme.

2.3.5 Conclusions

Event

The safety significance of this event was determined to be high. MCC-5 and the associated ABT are required to provide power to the emergency core cooling system (ECCS) valves needed to mitigate the consequences of accidents. If MCC-5 is lost, the normally closed high and low pressure injection valves will not open. The actual risk to the health and safety of the public was low since the reactor was in cold shutdown and the ECCS systems were not required to be operable. However, the reliable operation of MCC-5 and the associate $A B T$ is essential for plant safety.

The team concluded tha: the actions taken by the operators to restore power to MCC-5 were appropriate. The shudown cooling system was not lost during this event. The licensee's failure to transmit the correct event notification was the result of an error by a non-licensed Shift Supervisor Staff Assistant (SSSA). The licensed Shift Supervisor had correctly classified this event as an irnusual Event. The SSSA erroneously selected the wrong classification while making the somputer entry to transmit the notification and did not identify the error during verification v^{f} the message. Licensee actions to address a personnel performance issue and accurate meteorological information were appropriate.

The formal root cause analysis was thorough and identified the error in the original assumption that breaker 9 C had failed to close during the event. The team independently verified that the components that were the inost likely cause of this event were the breaker 11C 52 X control relay, Agastat timing relay $62-6 \mathrm{~A}$, the breaker 9 C auxiliary switch $52 / \mathrm{b}$ contacts, or interconnecting wiring. The hand-over-hand inspection, redlining and continuity check eliminated interconnecting wiring as a potential cause for this failure. Testing and design of the auxiliary relay switch on the 9 C breaker eliminated it as a potential cause. The evaluation concluded the malfunction of the 52 X relay or the Agastat timer relay was the most likely cause of this event. The team concluded that this event was a due to an intermittent equipment failure of a component(s) in the MCC-5 ABT or the associated breakers and was not the result of performance deficiencies by the plant staff, procedures, or maintenance of the equipment.

Assessment of Corrective Actions

The team also concluded that the short-term corrective actions taken by the licensee were comprehensive. While the root cause evaluation was unsuccessful in identifying a failed component which would account for this failure, it was successful in identifying the suspect components which were subsequently replaced. The compensatory measures taken are adequate to assure reliable operation of the currently installed ABT equipment. The licensee's investigation and proposed actions to address the sticking plunger in the Westinghouse 52 X control relay were appropriate.

The long term corrective actions are also appropriate. The commitment to conduct additional testing of the suspected components is essential to exhaust all avenues for determining a root cause for this failure. The proposed engineering evaluation of the ABT desion is imnortant ω opluwze the reliability of this safety significant system. Reducuig uie vieaner preventatuve maintenance interval to each refueling outage will also enhance breaker performance.

An apparent discrepancy was noted between the Updated Final Safety Analysis Report (UFSAR), Section 8.3.1, and the install configuration of the plants electrical system. The UFSAR states in part that "The Class IE system has the redundancy, capacity, capability, and reliability to supply power to all safety-related loads. This systern ensures a safe plant shutdown to mitigate accident effects, even in the event of a single failure." This statement does not appear to be accurate as related to single failures and MCC-5. The UFSAR does not explicitly discuss single failure vulnerabilities of MCC-5. The licensee stated at the exit meeting that the UFSAR would be reviewed and if appropriate, changes would be made.

The team questioned the applicability of 10CFR 50.46 (d), which explicitly states that the performance of the ECCS system must include in particular Criterion 35 of Appendix A, which requires that the ECCS safety function be accomplished assuming a single failure. The current design of the ECCS system does not satisfy the requirement of Criterion 35 due to the single failure vulnerabilities of MCC-5. The team noted that the Haddam Neck Plant was licensed prior to Appendix A and does not need to meet these criteria. However, the team could not determine if an exemption from 10CFR 50.46 (d) was required in addition to the exemption granted for the single failure of MCC-5 during original plant licensing. This issue is currently under review by the NRC.

3.0 EXIT MEETING

The team met with those denoted in Attachment A, on July 27, 1993, to discuss the preliminary inspection findings which are detailed in this report. The exit meeting was open for public observation and the NRC answered public questions following the exit meeting. The slides used at the exit meeting are provided as Attachment D of this inspection report.

ATTACHMENT A PERSONS CONTACTED

Connecticut Yankee Atomic Power

* E. Annino
P. Ballote
W. Barton
M. Bain
* W. Becker
M. Brothers
A. Castagno
* D. Dube
* C. Gladding
* W. Kadlec
J. LaPlatney
T. McDonald
* B. McKenna
* R. Morse
* T. Nichols
E. Perkins
*G. Pittman
D. Ray
R. Rogozinski
* M. Samek
* B. Solomon
* J. Stetz
* R. Trejo
R. Willis

Sr. Analyst - CY
Generation Test Technician
Engineer
CY Eng. Manager
Supervisor - ED
Engineering Supervisor NU - Manager Nuclear Information
PRA Supervisor - NUSCO
CY Engineering Manager
Generation Test Supervisor
Operations Manager
Maintenance Manager
Engineer
Maintenance Engineer
CY Maintenance
Nuclear Licensing Engineer
CYPSD - Corp. Eng.
Unit Director
Procurement Engineering Supervisor
Supervisor - CYPSD Assistant Engineer - Licensing Vice President - Haddam Neck Station
Sr. Nuclear Information Rep. - CY
Shift Supervisor

U. S. Nuclear Regulatory Commission

* J. Andersen NRC Project Manager
* C. vitiler NRC Deputy Director, DRS
* P. Habighorst Resident Inspector - Haddam Neck
* T. Ulses NRC Reactor Engineer

Asterisk (*) denotes those present at the exit meeting.

ATTACHMENT B

MCC-5 ABT FUNCTIONAL DESCRIPTION

A typical transfer would occur in the following sequence witn the assumption that Bus 6 is the preferred source and is initially energized and connected to MCC-5 through Breaker 11C (See Figure 5):

1. The automatic transfer starts when Bus 6 becomes de-energized. Agastat 62-6A senses the loss of voltage on the bus and trips Breaker 11 C after a one second delay through its contacts 6-2.
2. If Bus 5 is energized, the control relay 52 X for Breaker 9 C picks up through contacts $6-2$ of Agastat $62-5 \mathrm{~B}$ and contacts $52 / \mathrm{b}$ of Breaker 11 C .
3. The closing coil 52 CC for Breaker 9 C is energized through contacts from 52 X . Breaker 9C closing mechanically causes the 52 X contacts to then open.
4. The transfer has thus taken place and the 52 X control relay for Breaker 9 C remains energized as long as voltage remains on Bus 5 and Breaker 11 C remains open or in the test or racked-out position. The control relay is in the anti-pump position and prevents further attempts 'o energize its close coil 52 CC .

If Voltage is restored to Bus 6, a retransfer will occur in the following sequence since it is the preferred source:

1. When voltage is restored, Agastat $62-6 \mathrm{~A}$ picks up and Breaker 9 C 's trip coil is energized through contacts 5-3 of 62-6A and contacts A11-B11 of the selector switch.
2. When Breaker 9 C opens, the control relay for Breaker 11 C is energized through contacts $6-4$ of Agastat relay $62-6 \mathrm{~A}$ and Breaker 9 C contacts $52 / \mathrm{b}$.
3. The closing coil 52 CC for Breaker 11 C is then energized through contacts from 52 X . The control relay for Breaker 9C also becomes de-energized when Breaker 11C closes.
4. The retransfer has taken place and the 52 X relay for Breaker 11 C now remains energized.

ATTACHMENT C AUGMENTED INSPECTION TEAM CHARTER

UNITED STATES
 NUCLEAR REGULATORY COMMISSION
 REGION I
 475 ALLENDALE ROAD
 KING OF PRUSSIA, PENNSYLVANIA 19406-1415

UN 291993

MEMORANDUM FOR: Marvin W. Hodges, Director, Division of Reactor Safety
FROM:

Thomas T. Martin, Regional Administrator

SUBIECT:

On June 22, 26 and 27, 1993, Haddam Neck station declared Unusual Events (UEs) as a result of problems experienced during electrical system testing. Due to the nature of these events, ! have determined that an Augmented Inspection Team (AIT) inspection should be conducted to review the causes, safety implications, and associated licensee actions which led to (or resulted in) the repeated loss of offsite power, and loss of power to a vital motor control center (MCC 5).

The Division of Reactor Safety (DRS) is assigned the responsibility for the overall conduct of this Augmented Inspection. Jim Trapp, Team Leader, DRS, is appointed as Augmented Inspection Team Leader. Other AIT members are identified in Enclosure 2. The Division of Reactor Projects (DRP) is assigned the responsibility for resident and clerical support, as necessary; and the coordination with other NRC offices, as appropriate. Further, the Division of Reactor Safety, in coordination with DRP, is responsible for the timely issuance of the inspection report, the identification and processing of potentially generic issues, and the identification and completion of any enforcement action warranted as a result of the team's review.

Enclosure 1 represents the charter for the Augmented Inspection Team and details the scope of the inspection. The inspection shall be conducted in accordance with NRC Management Directive (MD) 8.3, NRC Inspection Manual 0325, Inspection Procedure 93800, Regional Office Instruction 1010.1, and this memorandum. Concerns have been identified with the repetitive loss of off site power, the apparent i- \quad t of non-safety related protective features on vital power supplies, a possible lack of redunc rith respect to safety-related loads powered by MCC-5, and the miscommunication of the swe 27 event classification to the state. An AIT to review these events is appropriate since they involve significant system interactions and unknown underlying root causes. The NRC staff needs to fully understand the causes of these events, and determine whether further actions will be required.

Thomas T. Martin
Regional Administrator

Enclosures:

1. Augmented Inspection Team Charter
? Team Membership
cc w/encls:
J. Taylor, EDO
J. Sniezek, OEDO
T. Murley, NRR
J. Partlow, NRR
J. Calvo, NRR
C. Rossi, NRR
J. Stolz, PD 1-4, NRR
F. Miraglia, NRR
C. McCracken, NRR
F. Rosa, NRR
W. Russell, NRR
J. Wiggins, NRR
A. Thadani, NRR
B. Grimes, NRR
J. Roe, NRR
E. Jordan, AEOD
D. Ross, AEOD
D. Wheeler, OEDO
W. Kane, DRA, RI
D. Cooper, DRP, RI
W. Lanning, DRP, RI
R. Blough, DRP, RI
L. Doerflein, DRP, RI
T. Shedlosky, DRP, RI
C. Hehl, DRSS, RI
S. Shankman, DRSS, RI
W. Raymond, SRI, Haddam Neck
A. Wang, PD I-4, NRR
F. Burrows, EELB, NRR
J. Durr, DRS, RI
L. Bettenhausen, DRS, RI
J. Trapp, DRS, RI
K. Abraham, PAO, RI
M. Miller, SLO, RI

ENCLOSURE 1

Haddam Neck Station

Review of Unusual Nent Durink Fratian' Trection ot Haddam Neck

Augmented Inspection Team (AIT) Charter

The general objectives of this AIT are to:

1. Conduct a thorough and systematic review of the circumstances surrounding the June 22 and June 26 loss of off-site power events, and the June 27 loss of power to safety bus MCC-5 event.
2. Develop a detailed sequence of events for each loss of off-site power and the loss of bus MCC-5.
3. Collect, analyze, and document relevant factual information to determine the causes, conditions, and circumstances pertaining to each event.
4. Evaluate the licensee's review of and response to each event and the implemented corrective actions, including providing the state an inappropriate EAL on June 27, 1993.
5. Assess the safety significance of each event and communicate to Regional and Headquarters management the facts and safety concerns related to problems identified, including single failure vulnerabilities and impact of non-safety related equipment on safety systems.
6. Evaluate the knowledge and performance of licensee staff during these events.
7. Evaluate the maintenance testing and any changes made to the design which may have contributed to this failure.
8. Prepare a report documenting the results of this review for signature of the Regional Administrator within thirty days of the completion of the inspection.

ENCLOSURE 2

Haddam Neck AIT Membership

Jim Trapp, AIT Leader, Division un Reaciun Saiety (DR3), kig.i... . RI)
William Raymond, Senior Resident Inspector, Haddam Neck, DRP, RI
Thomas Shedlosky, Project Engineer, DRP, RI
Fred Burrows, NRR

Other NRC personnel, consultants, or contractors will be engaged in this AIT, as needed.

ATTACHMENT D

AUGMENTED INSPECTION TEAM

EXIT MEETING SLIDES

HADDAM NECK AUGMENTED INSPECTION TEAM PT BLIC EXIT MEETING AGENDA

JULY 27, 1993

1. EXIT MEETING BETWEEN NRC AND LICENSEE.
2. NRC ADDRESS PUBLIC QUESTIONS REGARDING TEAM FINDINGS.

EVENTS

- LOSS OF OFFSITE POWER ON JUNE 22, 1993
- LOSS OF OFFSITE POWER ON JUNE 26, 1993
- LOSS OF MOTOR CONTROL CENTER 5 ON JUNE 27, 1993

HADDAM NECK LOSS OF OFFSITE POWER JUNE 22, 1993 EVENT
\section*{EVENT DESCRIPTION}

- PLANT ELECTRICAL SYSTEM CONFIGURED TO SUPPORT BREAKER FAILURE TESTING OF TIE BREAKER 389 T399.
- TEST UNEXPECTEDLY OPENS BREAKER 3891 AND ISOLATES OFFSITE POWER FROM THE PLANT.
- THE EMERGENCY DIESEL GENERATORS AUTOMATICALLY SUPPLY POWER TO THE PLANT.

ROOT CAUSE

- WIRING ERROR WHICH OCCURRED DURING OR SHORTLY FOLLOWING PLANT CONSTRUCTION.

CORRECTIVE ACTIONS

- TECHNICAL JUSTIFICATION DEVELOPED FOR LEAVING PLANT CONFIGURATION AS IS.
- REVIEW BREAKER TRIP CIRCUIT WIRING DURING THE NEXT REFUELING OUTAGE.

HADDAM NECK LOSS OF OFFSITE POWER JUNE 22, 1993 EVENT CONILNLED

ASSESSMENT OF EVENT

- PLANT EQUIPMENT FUNCTION AS EXPECTED FOLLOWING THE EVENT.
- OPERATOR RESPONSE TO THE EVENT WAS GOOD.
- NOTIFICATION OF AN UNUSUAL EVENT WAS APPROPRIATE.
- TECHNICAL JUSTIFICATION ADEQUATELY SUPPORTS LEAVING WIRING ERROR AS IS.
- REVIEW OF TRIP LOGIC WIRING DURING THE NEXT REFUELING OUTAGE IS APPROPRIATE.

HADDAM NECK LOSS OF OFFSITE POWER JUNE 26, 1993 EVENT

EVENT DESCRIPTION

- SURVEILLANCE TEST BEING PERFORMED WHICH SIMULATES PARTIAL LOSS OF OFFSITE POWER.
- WHEN BREAKER 3891 WAS OPENED BREAKER 3991 UNEXPECTEDLY OPENED.
- THE EMERGENCY DIESEL GENERATORS AUTOMATICALLY SUPPLY POWER TO THE PLANT.

ROOT CAUSE

- BLOWN FUSE IN VOLTAGE SENSING CIRCUIT.

CORRECTIVE ACTIONS

- REPLACED FUSE.
- REVISED TEST PROCEDURE.

HADDAM NECK
 LOSS OF OFFSITE POWER JUNE 26, 1993 EVENT CONTINUED

ASSESSMENT OF EVENT

- GENERALLY PLANT EQUIPMENT FUNCTION AS EXPECTED FOLLOWING THE EVENT.
- OPERATOR RESPONSE TO THE EVENT WAS GOOD.
- NOTIFICATION OF AN UNUSUAL EVENT WAS APPROPRIATE.
- THIS EVENT ROOT CAUSE IS UNRELATED TO FII.JT EVENT.
- THE IDENTIFIED VOLTMETER DEFICIENCY SHOULD HAVE BEEN INCLUDED IN THE WORK CONTROL SYSTEM.
- CAUSE OF FUSE FAILURE MOST LIKELY MAINTENANCE ON ASSOCIATED EQUIPMENT.
- THE CORRECTIVE ACTIONS TAKEN FOR THIS EVENT WERE APPROPRIATE.

HADDAM NECK LOSS OF MOTOR CONTROL CENTER 5 JUNE 27, 1993 EVENT

EVENT DESCRIPTION

- SURVEILLANCE TEST BEING PERFORMED WHICH SIMULATES PARTIAL LOSS OF OFFSITE POWER.
- MCC-5 TRANSFERRED TO BUS 5 FOLLOWING LOSS OF POWER ON BUS 6.
- MCC-5 IS DE-ENERGIZED WHEN AUTOMATIC BUS TRANSFER FAILS TO TRANSFER BACK TO BUS 6.
- OPERATORS MANUALLY CLOSE BREAKER TO ENERGIZE MCC-5 FROM BUS 5.
- AN ERRONEOUS EVENT CLASSIFICATION OF AN alert is sent To The state and Towns.

ROOT CAUSE

- NOT POSITIVELY IDENTIFIED. TWO SUSPECTED COMPONENTS HAVE BEEN IDENTIFIED.

LOSS OF MOTOR CONTROL CENTER 5 JUNE 27, 1993 EVENT CONTINUED

CORRECTIVE ACTIONS

SHORT TERM

- REPLACED SUSPECT COMPONENTS.
- PERFORMED A FORMAL ROOT CAUSE EVALUATION.
- CONDUCTED A WIRING CHECK OF ABT SYSTEM.

COMPENSATORY MEASURES

- ADDITIONAL ABT TESTING.
- CAUTION TAG ON BREAKERS 9C AND 11C.
- CONDUCT OPERATOR TRAINING.

LONG TERM

- EVALUATE AUTOMATIC BUS TRANSFER SYSTEM DESIGN.
- CONDUCT PREVENTATIVE MAINTENANCE ON 9C AND 11C BREAKERS EACH REFUELING OUTAGE.

LOSS OF MOTOR CONTROL CENTER 5 JUNE 27, 1993 EVENT CONTINUED

ASSESSMENT OF EVENT

- THE FUNCTION OF MCC-5 IS VERY SIGNIFICANT TO OVERALL PLANT SAFETY.
- TEAM INDEPENDENTLY VERIFIED MOST LIKELY CAUSE OF FAILURE.
- THE EVENT CLASSIFICATION ERROR WAS AN INDIVIDUAL PERFORMANCE ISSUE.
- TROUBLE-SHOOTING AND TESTING CONDUCTED WAS APPROPRIATE.
- ACTIONS TAKEN TO RESTORE MCC-5 WERE APPROPRIATE.
- THE FORMAL ROOT CAUSE EVALUATION WAS THOROUGH.
- SHORT TERM CORRECTIVE ACTIONS TAKEN WERE APPROPRIATE.
- COMPENSATORY MEASURES ARE APPROPRIATE.
- ENGINEERING EVALUATION OF DESIGN.

BUS 1-3 PT CIRCUIT \& UNDERVOLTAGE TRIP SCHEME

FIGURE 2

BUS $1-2 / 1-3$ UNDERVOLTAGE LOGIC

FIGURE 3

August 30, 1993
PSCY-93-199

TO. Distribution

Merge Trumping

$$
\begin{array}{ll}
\text { FROM: } & \text { George R. Townsend } \\
& \text { CY Project Services Department } \\
& \text { Berlin, NO28 (Ext. 5059) }
\end{array}
$$

SUBJECT: CY EWR No. 93-MS104 "MCC-5 Automatic Bus Transfer (ABT) Re-Design"
Attachments: 1. Proposed Sketches SK-JBL-1;-2 (Preliminary design ; not final)
2. NUSCO Drawings 16103-32001, Sheets 6AP, 6AQ, 6DG

The purpose of this memo is to discuss the status of the re-design effort of the MCC-5 ABT scheme and list projected project milestones.

Several meetings have been held between Engineering Department - Electrical, CYPSD Electrical, CY Engineering, Generation Test, CY Maintenance, and Probabilistic Risk Assessment (PRA) to re-design the scheme. Three criteria governed the re-design. They are:

1. Do not need needlessly trip a feeder breaker to MCC-5 that could be called upon to subsequently re-close. This unnecessarily challenges the operation of the breaker.
2. Do not have a "preferred" source that the scheme will always seek. The scheme should seek a stable power source, and once obtained, should remain there.
3. Keep the scheme relatively simple. This includes design, installation, and maintainability. The attached sketches are the result of these meetings. The main features and functions of the scheme are:
A. 480 V Bus 5 breaker 9 C (supply from Bus 5 to MCC-5) will be the "selected" (the word "preferred" is intentionally not used) breaker to normally supply MCC-5.
B. Assuming a total loss of off-site power, breaker 9C will remain closed. Once the emergency diesel generators start:

- If Bus 5 is energized before Bus 6, MCC-5 remains supplied from Bus 5. There is no needless tripping of breaker 9 C and subsequent re-closing, since the breaker remained closed.
- If Bus 6 is energized before Bus 5, breaker 9C will trip and 480 V bus 6 breaker 11C (supply from Bus 6 to MCC-5) will close and energize MCC-5, and remain in this alignment. The only way there would be a re-transfer back to Bus 5 is if there was a loss of power on Bus 6 while Bus 5 was energized, or if operators took manual control to retransfer.

PSCY-93-199
August 30, 1993
Page 2
${ }^{-}$C. Assuming a loss of power on Bus 5 only, breaker 9 C would trip and breaker 11 C would close.
D. Assuming a loss of power on Bus 6 only, breaker 9 C would remain closed and aligned to MCC-5.
E. The scheme allows a one-second time delay when transferring from one source to another. This provides sufficient time delay to allow voltage transients to subside.
F. The "arming" of the automatic transfer scheme can be defeated via a cut-off switch to allow for manual control of breakers 9 C and 11 C , or during maintenance of one of the breakers.
G. The scheme will prevent manually closing one of the breakers while the other is closed.
H. Assuming a loss of 125 VDC Bus ' A ', breaker 9 C would remain in the closed position (assuming there is no MCC-5 fault) and the automatic transfer scheme would be disabled. Assuming a subsequent loss of off-site power, emergency diesel generator ' A ' would be unable to energize 4160 V Bus 8 and 480 V Bus 5 , thus rendering MCC-5 de-energized until manual actions could be taken to open breaker 9 C and close breaker 11C. This scenario is also a vulnerability in the present scheme and has been addressed as an extremely low probability by PRA. Attempts to design around this single failure vulnerability would be very difficult and costly.

The new components required for the proposed scheme are:

QTY

DEVICE

$1 \quad$ Agastat general purpose relay (43A)
2 Westinghouse type W2 control switches (for breakers 9C and 11C) 1 White indicating light (to indicate status of the automatic transfer feature)

The existing transfer selector switch located on compartment 10 A of the 480 V bus line-up would be re-used and re-labeled as 43 ACO (cut-off switch for the automatic transfer scheme).

Existing timing relay $62-5 \mathrm{~B}$ would no longer be required. Existing timing relays $62-5 \mathrm{~A}$ and $62-6 \mathrm{~A}$ (timing range 0.1-1 sec.) may be replaced with new timers (timing range 0.5 . 5 sec .) pending further discussions.

Existing and spare cell switch contacts on breakers 9C and 11C will be utilized in the new scheme. All wiring will take place within 480 V switchgear compartments $9 \mathrm{C}, 10 \mathrm{~A}$, and 11 C . Compartment 10A would house all the new devices.

Existing annunciator window G-1-9-2U "MCC-5 Auto Transfer" would no longer be required.
It is felt that the proposed scheme adequately meets the three criteria. Other design considerations included control of breakers 9C and 11C from the control room, interlocks with safety injection signal, and a stand-alone ABT switch that is not dependent on DC power. These were considered to be too complicated and/or costly.

PSCY-93-199
August 30, 1993
Page 3

The PRA group is presently analyzing the proposed scheme for reliability compared to the existing scheme and for the effects on overall core-melt frequency.

The proposed schedule for this EWR is as follows:

Finalize design of scheme	September 17, 1993
Drawings (Electrical and Civil) complete	October 4, 1993
PDCR to plant	October 15, 1993
Material on site	October 22, 1993

If there are any questions regarding the proposed scheme or schedule, please contact John Lawson, extension 3151 or myself.

GRT:mpd
Distribution
W. H. Becker
M. H. B:others
R. V. Caminati
D. A. Dube
J. Fortier
C. G. Gladding
W. F. Kadlec
J. B. Lawson
G. W. Loftus
B. P. McKenna
R. Morse
G. R. Pitman
D. J. Ray
J. Rothert
M. F. Samek

Berlin, W010
Connecticut Yankee
Connecticut Yankee
Berlin, W141
Connecticut Yankee
Connecticut Yankee
Connecticut Yankee
Berlin, W010
Berlin, N028
Connecticut Yankee
Connecticut Yankee
Berlin, N028
Connecticut Yankee
Berlin W-141
Berlin, N028

FORM A

PDCR SUMMARY

(Scope of Plant Design Change)

区 QA (Cat. I, RWQA, FPQA, ATWS QA, SBQA)
\square Non-QA

1. PROPOSED PLANT DESIGN CHANGE (OR REVISION) (Reference Instruction 4.1.1)

Re-design the 480 V MCC-5 Automatic Bus Transfer (ABT) scheme. The major features of the new scheme are:

- $\quad 480 \mathrm{~V}$ Bus 5 breaker 9C (supply from Bus 5 to MCC-5) will be the selected breaker to normally supply MCC-5.
- Upon a total loss of offsite power, MCC-5 will be energized from the first available source and remain aligned to it, unless the source is subsequently lost or operators take manual control to re-transfer.

No additional relays or switches will be added to the present ABT breaker control scheme; spare contacts from existing devices will be utilized. One additional terminal block will be Installed in compartment 10A.

Timing relays $62-5 \mathrm{~A}$ and $62-6 \mathrm{~A}$ will be replaced with similar type relays with the exception that the timing range is different.

Existing timing relay $62-58$ will be removed from service. Existing SS43 selector switch will be removed from service. Existing electrical 'close' and 'trip' pushbuttons mounted on the 9C \& IIC breaker compartments will be removed from service.

Main control board annunciator window G-1-2-9U "MCC-5 Auto Transfer" will be re-labeled "MCC-5 Transfer to Bus 6".
2. REASON FOR PROPOSED PLANT DESIGN CHANGE (OR REVISION) (Reference Instruction 4.1.2)

Testing of the present scheme that was performed during the Cycle 17 refueling outage uncovered vulnerabilities and design deficiencies. (Reference PIR Nc. 93-139 "Loss of MCC-5"). Specifically, the present scheme allows for the tripping of a "preferred" circuit breaker and subsequent re-closing. This places unnecessary challenges to the breaker operavion. Additionally, the scheme allows for a fast transfer from one division source to another, which could result in undesirable transients. Also, the "preferred" source design needlessly trips a stable source and challenges breaker operation.

As a result of the above PIR No. 93-139, and in order to conclude the Cycle 17 refueling outage, operational testing of the existing control scheme was committed to be performed during Cycle 18 [Design Input 7]. Recent performance on February 15 \& 16, 1994 of this test found unsatisfactory ABT responses:

1) The breakers failed to automatically energize MCC-5 with she selector swith in Position No. 2 (Reference PIR 94-28, "Failure of MCC-5 ABT.) Failure of the scheme in this configuration was identified in the Root Cause Analysis performed as a result of PIR 93-139, and,
2) The scheme failed to energize MCC-5 with the selector switch in Position No.I.

The original design proposed by revision No. 0 of this PDCR was subsequently reviawed to identify those minimum [and therefore simpiest] features needed for the transier scheme to perform its design function, and delete from this modification those aspects [currently installed aswellas proposed in Revision No. 0] which are not considered required, taking into account operational, surveillance and maintenance requirements.

The new scheme will be more reliable in that there are less challenges to breaker operations. The new scheme also reduces the overall core melt frequency and, thus, has a positive impact on corporate nuclear safety goals.

FORM B^{8}

PLANT DESIGN CHANGE RECORD

PDCR No. 1434 Rev. No. 1 है
DESIGN CHANGE DESCRIPTION (Reference Instructions 4.2.2 and 4.2.3)
Attach documentation for each part below, including a copy of a project description If appropriate.

Ensure Director of Nuclear Training is notified and provided with appropriate information.

3A. BASES OF CURRENT DESIGN (See Instruction 4.2.3.1)
The existing scheme utilizes a selector switch mounted on the door of compartment 10A of the 480 V Bus switchgear line-up in Switchgear Room ' A '. The three timing relays used in the scheme are located in compartment IOA.

480 V Bus 5 breaker 9 C is chosen via the selector switch as the "preferred" source to energize MCC-5. 480 V Bus 6 breaker IIC is the aiternate source. Upon a loss of offsite power breaker 9C would trip one second later. The emergency diesel generators would automatically start on the ioss of offsite power. If Bus 5 becomes energized before Bus 6 then breaker 9C would re-close and breaker IIC would remain open. If Bus 6 is energized before Bus 5 then breaker $I \mathrm{C}$ would close. Upon the subsequent energizing of Bus 5 , breaker $I \mathrm{C}$ would open and 0.25 seconds later breaker 9C would close.

Bus 6 breaker IIC can be chosen as the "preferred" source via the selector switch, and thus, Bus 5 breaker 9C would be the alternate source. (Note: This is not the normal alignment) Under this alignment, upon a loss of offsite power, breaker IIC would trip one second later. The emergency diesel generators would automatically start on the loss of offsite power. If Bus 6 becomes energized betore Bus 5 then breaker IIC would re-close and breaker 9 C would remain open. If Bus 5 is energized before Bus 6 , then breaker 9 C would close. Upon the subsequent energizing of Bus 6, breaker 9C would open and breaker 11 C would close simultaneously. This portion of the transfer scheme is not desired since the bus transfer would most likely take place during an out-of-phase condition.

Mounted on each circuit breaker compartment door are two pushbutton switches that are used to electrically control the circuit breaker.

An electrical breaker interlock scheme prevents the closure of one breaker while the other breaker is closed. In addition, an interlock exists which maintains a breaker close signal on one breaker while the other breaker is in the test or racked-out position.

3B. METHOD OF CHANGE (See instruction 4.2.3.2)

The existing selector switch located on compartment 10 A of the 480 V Bus switchgear line-up will no longer be required, will be disconnected and either abandoned-in-place or removed. Any wiring that needs to be used from this selector switch will be landed on a new terminal block.

Existing timing relay $62-5 B$ located in compartment 10A will no longer be required and will be disconnected and either abandoned-in-place or removed.

The existing 62-6A \& 62-5A time-delay relays will be replaced with similar devices that have a different setting range. Spare contacts from these devices will be used to achieve the desired control scheme.

All wiring will take place within 480 V switchgear compartments 9C, 10A and IIC.
Existing annunciator window G-1-2-9U "MCC-5 Auto Transfer" will be relabeled "MCC-5 Transfer to Bus 6," signifying that an automatic or manual MCC-5 feeder transfer has occurred.

3C. DESIGN INPUTS (See instruction 4.2.3.3)

1. Connecticut Yankee Updated Final Safety Analysis Report, sections 8.3.1.1.2 "480V System Description," 8.3.1.4 "independence of Redundant Systems."
2. IEEE 344-1987, Recommended Practice for Seismic Qualification of Class IE Equipment for Nuclear Power Generating Stations.
3. IEEE 383-1974, Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations.
4. NUSCO Calculation No. PA 76-633-40-GE, Rev, 5 "CY-Degraded Voltage Setpoints."
5. Electrical Separation Study: CY ISAP Topic \#1.64 "System Dependencies on Motor Control Center 5," Rev. O, Attachment A, dated March 1990.
6. NUSCO Calculation No. PA 78-741-01-GE, Rev. 3, "CY-Diesel Generator Automatic Loading Analysis," Attachment "P" - Motor Starting Study.
7. NU to USNRC Correspondence, "Commitments to Test Motor-Control-Center 5," COTRAP \#B14550, dated July 15, 1993.
8. Root Cause Determination, "MCC-5 Auto-Bus Transfer Failure," associated with PIR 93139, dated August 2, 1993.
9. USNRC AIT Report Regarding Two Loss of Offsite Power Events and the Loss of Motor Control Center 5," USNRC Report No. 50-213/93-80, dated August 16, 1993.
10. Haddam Neck Technical Specification Revision to section 3/4.8.3, COTRAP \#B14572, dated August 18, 1993
11. Plant Procedure, Special Test ST 11.7-126, rev. 1, "Functional Test of MCC-5 ABT", performed under Maintenance AWO 93-11505 \& 94-1445.

3D. DETAILED DESIGN (See Instruction 4.2.3.4)

The most obvious change resulting from this modification is the removal of the Preferred Source selector switch. It is the intention of this modification to administratively align Bus 5 as the normal source bus for MCC-5 (see below). By removing this switch, the ability to automatically re-transfer MCC-5 back to Bus-5 after it is aligned to Bus 6 is removed. The transfer scheme will seek to align MCC-5 to whichever Bus re-energizes first, as a result of a total loss-of-offsite power. The only means to disable the control scheme for the MCC-5 feeder breakers is to de-energize the DC control power associated with the 9 C and/or IIC breaker. This will also be discussed later. All other facets of this modification, except for the rewording of the annunclator window, shall be transparent to the operator.

The new scheme does not utilize a "preferred" source in which the scheme always aligns to the preferred source as long as it is available. The new scheme will administratively align MCC-5 to Division ' A ' 480 V Bus 5 breaker 9 C , since the ' A ' electrical division is normally less loaded than the ' B ' electrical division 'Ref. Design input 4), and it is preferred from a PRA perspective in that there are currently no cases where redundant equipment (notably MOVs) are powered by MCC-5 and ' A ' electrical division MCC-13 (Ref. Design Input 5). This selected alignment will be administratively controlled and documented in applicable plant procedures.

With breakers 9 C and IIC in the racked-in position and the 9 C breaker closed, the breakers and breaker control scheme is considered in the 'normal configuration'.

Two of the existing time-delay drop-out timing relays will be replaced for the new scheme. The 62-5A relay is connected to a $480-120 \mathrm{~V}$ potential transformer (PT) on Bus 5, and the 62-6A relay is connected to a $480-120 \mathrm{~V}$ PT on Bus 6 . The new relays are similar to the existing ones, with the one exception that the timing range is changed from $0.1-1.0$ seconds to $0.5-5.0$ seconds. A 1.0 second time delay will continue to be utilized on the $62-5 \mathrm{~A}$ relay. The $62-6 \mathrm{~A}$ will be set at .75 second, thereby assuring that the ABT scheme remains alignied to Bus 5 with no breaker operation, when responding to the expected total loss of offsite power event. A basis of this design is that a total loss of offsite power will result in the simultaneous loss of both Bus 5 \& Bus 6 .

The timing relays are picked-up when the respective 480 V bus is energized. When the bus is de-energized, the relay coll drops out after reaching the preset time delay. (The one-second time delay for an automatic bus transfer from Bus 5 to Bus 6 is sufficient to allow voltage transients to subside.) Upon re-energizing of the bus, the relay coil picks up immediately. The 120 VAC relay coil is rated to pick up at 85% voltage and to drop out at approximately 50% voltage. This drop-out reting, in combination with the one-second time delay, is sufficient to ensure that nuisance transfers will not take place during worst-case motor starting transients (Ref. Design Input 6).

With the new scheme in-service, and assuming a total loss of off-site power, breaker 9 C will remain closed. Upon a total loss of offsite power, both the 62-5A and $62-6 \mathrm{~A}$ relays will begin timing out. At time equal to .75 seconds after the initial loss of power, the $62-6 \mathrm{~A}$ relay will drop-out and transmit a trip signal to the 11 C breaker. The $62-6 \mathrm{~A}$ contact in the 9 C breaker
trip circuit will open, thereby blocking any trip of the 9 C breaker. At time equals I second after the initial loss of power, the $62-5 \mathrm{~A}$ relay will drop-out, its contact in the 9 C breaker's trip circuit will close, but because of the series open contact of the 62-6A the trip circuit will not power the 9 C trip coll, thereby assuring that the 9C breaker remains closed. Once the emergency diesel generators start

- If Bus 5 is energized before Bus 6, MCC-5 remains supplied from Bus 5. There is no neediess tripping of breaker 9 C and subsequent re-closing, since the breaker remained closed.
- If Bus 6 is energized before Bus 5, breaker 9 C will trip and 480V Bus 6 breaker IIC (supply from Bus 6 to MCC-5) will close and energize MCC-5, and remain in this alignment. The only way there would be an automatic transfer back to Bus 5 is if there was a loss of power on Bi's 6 while Bus 5 was energized. A subsequent total loss of AC to Bus 5 and Bus 6 after MCC-5 was aligned to Bus 6 will result in both breakers tripping open [after the appropriate time delay], and the control scheme is set to reenergize MCC-5 from whichever bus re-energizes first.

Note: \quad If Division " A " were to lose power first (Time $T=0$) and Division " B " lost power after $.25 \mathrm{sec} .(.25<T \leq 1 \mathrm{sec}$.), then at $T \equiv 1 \mathrm{sec}$. breaker 9 C would trip and breaker 11 C would close. Assuming Bus 5 is energized before Bus 6, breaker IIC would trip and breaker 9C would re-close.

Assuming a loss of power on Bus 5 only, breaker 9C would trip one second later and breaker IIC would close.

Assuming a loss of power on Bus 6 only, breake $\ni \mathrm{C}$ would remain closed.
When steps are taken to restore the normal line-up [MCC-5 fed from Bus 5], the operator would take manual control by disabiling the breakers' control scheme.

The scheme will prevent manually closing one of the breakers while the other is closed, by using breaker interlocks in the control schemes. The scheme will include a feature to maintain a breaker close signal on one breaker when the other breaker is in the test or racked-out position.

The proposed design contains nu direct, external electrical control of the breakers. Utilizing the mechanical breaker control to trip the IIC breaker will then automatically close the 9 C breaker, as it is currently designed. Because there would be no time delay in this operation, MCC 5 is susceptible to extreme voltage excursions through this transfer, levels of which could possibly overstress the energized loads. Station procedures will be revised, therefore, to identify the steps necessary to realign MCC- 5 to Bus 5 after being transferred to Bus 6 , or whenecer it is desired to remove a breaker from service. These steps will instruct the operator to first de-energize the DC control power for the breaker that will be closed (transferred to), trip open the breaker to be removed from service, and after an obvious time delay (approximately one (1) second), manually close the desired breaker, and then restore the DC control power previously disabled. This delay in re-energizing MCC. $\$$ allows all residual voltages to decay to an acceptable level prior to being re-excied.

Assuming a loss of 125 VDC Bus ' A ', breaker 9C would remain in the closed position (assurning there is no MCC-5 fault). Assuming a subsequent loss of off-site power, emergency diesel generator ' A ' would be unable to automatically energize 4160 V Bus 8 (due to no 125 VDC control power for the diesel generator breaker) and therefore, at 480 V Bus 5 , thus rendering MCC-5 de-energized until manual actions could be taken to open breaker 9 Can . close breaker IIC. This scenario is also a single fallure vulnerability in the present sci eme and has been addressed as an extremely low probability by Probabilistic Risk Assessment viroup.

As with the existing scheme, relay and breaker auxiliary contacts from both divisions are used in a common circuit for the scheme to operate properly.

All wiring will be qualified to the flame test requirements of IEEE 383-1974 (Design input 3).
The following disciplines provided support in this design change: CY Design Engineering, CY Systerns Engineering, CY Electrical Maintenance, Generation Test Services, and Probabilistic Risk Assessment Group. Northeast Uutlities Memorandum PSCY-93-199 dated August 30, 1993 to distribution from G. R. Townsend, "CY EWR No. 93-MS104 'MCC-5 Automatic Bus Transfer (ABT) Re -Design"" (cof/ attached) also documents the early development of this re-design effort for Revision No. 0 of the PDCR.

Drawings issued for this modification are listed in Attachment 3D.

3E. IMPLEMENTATION PLAN (See Instrvidon : 2.2 .5)
The installation will be performed in accordance with approved design drawings and using NUSCO Specification SP-EE-076, "Standard Specification for Electrical Installations at all Northeast Utilities Generating Plants," Rev. 5, as a guide.

CY Electrical Maintenance or their designee is responsible for all installations, removals, and wiring. Panel re-work shall be performed in accordance with existing plant procedures and design drawings.

Wires that are abandoned in-place will be done so and labeled in accordance with CY Procedure ACP 1.0-35 "Permanently Lifted Leads."

All work will be performed with the reactor plant in Mode 5.

3F. TEST PLAN (See Instruction 4.2.3.6)
CY Electrical Maintenance or their designee is responsible for all electrical testing associated with this PDCR.

The new instalied cables shall be tested for continuity.
The new scheme will be tested in accordance with CY Procedure ACP 1.2-3.8 "Electrical Wiring Verification, Functional Testing, and Scheme Verification," and spectal test procedure ST 11.7-126, "Functional Test of MCC-5 ABT".

Post installation testing shall be performed first by replicating the signals into the control scheme to show that it functions as expected．MCC－5 shall be jumpered to an un－affected source of power during the periormance of this testing so as to minimize the impact testing has on plant operations．An integrated test will then be performed to validate the modified control scheme to verifying that given a loss of Bus 5 and／or Bus 6：No breaker action occurs when Bus 5 is re－energized first；MCC－ 5 will automatically transfer to Bus 6 when it is avalable before Bus 5 ；and to verify that MCC－5 does not automatically re－transfer back to Bus 5 once it is aligned to Bus 6 ，unless Bus 6 subsequently becomes de－energized following an Initial transfer．

Distribute copies of the completed form in accordance with Section 4．1．4．

3G．QUALITY QUESTIONS（See instruction 4．2．3．7）
Does this plant design change involve systems，components，or structures that are：

	Yes
QA Category 1	区
Radwaste QA	\square
Fire Protection QA	\square
ATWS QA	\square
Station Blackout QA	\square

Initiate and complete MEPL Determination Form（s）per NEO 8.01 If necessary．

	Yes	No
MEPL Determination Required	\square	
\boxed{y}		

IF yes，list determination number（s）：
Verify MEPL determination completed prior to construction．

4．EARLY APPROVAL FOR CONSTRUCTION（Reference Instruction 4．10．1）
\square
Yes \square N／A 区
Hyes，describe the allowed scope of work．Attach the safety assessment and note any restrictions on construction as a result of incomplete design，design reviews，design verification， and／or safety evaluation．

Approved \qquad Date \qquad

form

PaGE 15 of 25 - A

(Use Attachment 8.A for Guidance)

Safety Evaluation Number N/A
Revision No. N/A
Plant Change Number 1434

Revision No. \qquad

Plant Change Title CY-MCC-5 Automatic Bus Transfer Re-Design

1.0 SUMMARY INFORMATION

1.1 Safety Evaluation Conclusions

This Safety Evaluation concludes that the re-design of the MCC-5 Automatic Bus Transfer (ABT) scheme is not an unreviewed safety question and it is safe.

1.2 Description of the Change

The plant design change performs a re-design of the control schemes for 480 V Bus 5 breaker 9 C and 480 V Bus 6 breaker IIC. These two breakers and their control schemes comprise the ABT scheme for supplying power to Class IE 480V Motor Control Center MCC-5. The major features of the new scheme are:

- 480 V Bus 5 breaker 9 C (supply from Bus 5 to MCC-5) will be the selected breaker to normally supply MCC-5.
- Upon a total loss of offsite power, MCC-5 will be energized from the first available source and remain aligned to it, unless the source is subsequently lost or operators take manual control to re-transfer.

Timing relays $62-5 \mathrm{~A}$ and $62-6 \mathrm{~A}$ will be replaced with similar type relays with the exception that the timing range is different.

The existing selector switch will be no longer be required.
Existing timing relay $62-5 \mathrm{~B}$ will no longer be required.
Existing annunciator window G-1-9-2U "MCC-5 Auto Transfer" will be relabeled "MCC-5 Transfer to Bus 6," signifying that MCC-5 been transferred to Bus 6, the offnormal position.

All wiring will take place within 480 V switchgear compartments $9 \mathrm{C}, 10 \mathrm{~A}$ and IIC.
The new scheme will normally align MCC-5 to Division "A" 480V Bus 5 breaker 9C
through adminisratively control, since the " A " electrical division is normally less loaded than the " B " electrical division, and it is preferred from a probabilistic risk assessment perspective (Reference 1.5.2).

With breakers 9 C and IIC in the racked-in position, and breaker 9C closed, the MCC-5 ABT Scheme is considered in its normal configuration.

Assuming a total loss of off-site power, breaker 9C will remain closed. (See Note below for exception.) Once the emergency diesel generators start and energize their respective 4 kV \& 480 V Buses:

- If Bus 5 is energized before Bus 6, MCC-5 remains supplied from Bus 5. There is no needless tripping of Breaker 9 C and subsequent reclosing, since the breaker remained closed.
- If Bus 6 is energized before Bus 5 , breaker 9 C will trip and 480 V Bus 6 Breaker IIC (supply from Bus 6 to MCC-5) will close and energize MCC-5, and remain in this alignment. The only way there would be a re-transfer back to Bus 5 is if there was a loss of power on Bus 6 while Bus 5 was energized; or if operators took the steps to manually transfer back to Bus 5 .

Note: If Division "A" were to lose power first (Time $T=0$) and Division " B " lost power within the following one second ($0 \leq T \leq 1 \mathrm{sec}$) then at $T=1$ second breaker 9C would trip and breaker IIC would close. Assuming Bus 5 is energized before Bus 6 then breaker IIC would trip and breaker 9 C would re-close. Only in this low probability scenario would the new scheme work like the existing scheme in which a breaker opens and subsequently re-closes.

Assuming a loss of power on Bus 5 only, breaker 9 C would trip one second later and breaker IIC would close.

Assuming a loss of power on Bus 6 only, breaker 9 C would remain closed and aligned to MCC-5.

The scheme will prevent manually closing one of the breakers while the other is closed, by using breaker interlocks in the control schemes.

All of the re-work will be performed in Switchgear Room ' A ' which is a non-harsh environment, thus there are no EEQ concerns.

All new safety-related components will be seismically qualified by either test or analysis.

1.3 Aspects of the Change Evaluated

The electrical aspects of the change are being evaluated compared to the existing scheme.

The equipment malfunction evaluated is a breaker failing to close when called upon to energize MCC-5.

References
1.5.1 CY PDCR 1434, Rev. I, "MCC-5 Automatic Bus Transfer Re-Design."
1.5.2 Electrical Separation Study, Connecticut Yankee ISAP Topic \#1.64, "System
Dependencies on Motor Control Center 5," by D. A. Dube, NUSCO
Probabilistic Risk Assessment.

2. UNREYIEWED SAFETY QUESTION DETERMINATION

2.1 Impact on Previously Evaluated Accidents
2.1.1 List of Accidents Evaluated

The list of Licensing Basis Accidents for CY as shown in Figure A. 3 of NEO 3.12, Rev. 7 has been considered. From this list, a loss of offsite power event is evaluated.

Although it is not a Licensing Basis Accident, a loss of DC power event is also evaluated.
2.1.2 Effect on the Probability of Occurrence of Previously Evaluated Accidents (A.4.1)

There is no increase in the probability of occurrence of previously evaluated accidents as a result of this change.

The re-designed control scheme for breakers 9C and IIC does not create or result in an accident.
2.1.3 Effect on the Probability of Occurrence of a Previously Evaluated Malfunction of Equipment Important to Safety (A.4.2)

The new scheme does not initially trip breaker 9 C on a total loss of offsite power. Thus, the breaker is not challenged to re-close. As described in Section 1.2, breaker 9C will trip only if Bus 6 becomes reenergized before Bus 5. With the existing scheme, the Breaker supplying MCC-5 will always trip upor the loss of power and will re-close if it's bus is re-energized first. Since the new scheme does not challenge breaker operation for every loss of power scenario, there is actually a decrease in the probability of occurrence of a breaker failing to close to energize MCC-5.

2.1.4 Effect on the Consequences of the Previously Evaluated Accidents (A.4.3)

The result of this modification does not change the consequences of the previously evaluated accidents. A postulated loss of offsite power event would automatically start both emergency diesel generators. If one diesel generator were to fail, MCC- 5 would automatically align to the associated 480 V bus of the diesel generator that did not fail.

Assuming a loss of 125 VDC Bus "A," breaker 9C would remain in the closed position (assurning there is no MCC-5 fault) and the automatic transfer scheme would be disabled. Assuming a subsequent loss of off-site power, emergency diesel generator " A " would be unable to energize 4160 V Bus 8 (due to no control power for the diesel generator breaker) and 480 V Bus 5 , thus rendering MCC-5 deenergized until manual actions could be taken to open breaker 9 C and close breaker 11 C . This scenario is also a vulnerability in the present scheme and has been addressed as an extremely low probability by the Probabilistic Risk Assessment Group (Reference 1.5.2). Thus, the consequences of a loss of I25VDC Bus " A " remain unchanged.
2.2 Effect on the Consequences of a Previously Evaluated Malfunction of Equipment Important to Safety (A.4.4)

This modification does not change the consequences of a breaker failing to close when called upon to energize MCC-5. If a breaker did not close, the alternate breaker would close provided that the alternate bus is energized. The new scheme will not automatically close a breaker until the other one is open. For example, if breaker 9 C is initially closed, and there is a subsequent loss of power on Bus 5 only, then breaker 9 C would automatically trip after one second, and breaker $11 C$ would automatically close. If breaker IIC failed to close, operators would be alerted in the Control Room that MCC-5 is not energized and they would manually close breaker IIC in Switchgear Room "A," as with the present scheme. If power was restored to Bus 5 before breaker IIC is closed, then breaker 9C would automatically close.

2.3 Potential for a New Unanalyzed Accident

2.3.1 Possibility of an Accident of a Different Type than Previously Evaluated (A.4.5)

The change does not create an accident of a different type than previously evaluated. The re-design of the ABT scheme does not create a new accident.
2.3.2 Possibility of a Malfunction of a Different Type than Previously Evaluated (A.4.6)

The change does not create a malfunction of a different type than previously evaluated. The same breakers are used in the new scheme and the new control scheme is designed to place less challenges on breaker operation compared to the existing scheme.

2.4 Impact on the Margin of Safety (A.4.7)

The margin of safety as defined in the basis for any technical specification is not reduced in that the parameters of the protective boundaries are unchanged as a result of this plant change.

If any bus is removed from service during the change, the work will be performed within the time frame of the applicable technical specification LCO action statements.

3. SAFETY DETERMINATION

3.1 Qualitative Safety Determination

Based on this Safety Evaluation, the proposed change is not an unreviewed safety question and it is safe, in that it does not cause an increase in risk to the public.
4.0 Approval

Prepared By:

> | G. J. Silberquit, Senior Engineer | Date |
| :--- | :--- |
| CY Design Engineering | |

Approved By:

> G. R. Townsend, Supervisor Date CY Design Engineering

Approved By:

> | C. J. Gladding, Manager | Date |
| :--- | :--- |
| CY Design Engineering | |

MESSAGE]
fou
Please provide me with chronological EDG 'A' and 'B' fast start data (date and fast start times) through fanuary 1, 1990 (if possible). This dato is needed to support the MCC - 5 ABT redesign effort. Thanks

Completed 3/9/94
EDG-2A Fast Start

Dates

$$
\text { ARAD, } 4
$$

Start Times

$$
\begin{aligned}
& \frac{5.08}{5.08}
\end{aligned}
$$

A Governor replaced
1991

$2 / 12$	5.75
$8 / 15$	4.72
$10 / 19$	5.49

1042

| $2 / 11$ |
| :--- | :--- |
| $8 / 12$ |\quad| 5.25 |
| :--- |
| 4.98 |$-$ FASTER

1993

$2 / 9$	6.61
$6 / 8$	5.17
$6 / 8$	3.05
$6 / 8$	37
$6 / 10$	-
$6 / 22$	-
$6 / 26$	-
$6 / 27$	-
$6 / 29$	483
$8 / 10$	FASTER

$199 y \quad 2 / 8$

194 not taken yet.

CuclusData mpporte asoumption of $50 / 50$ ofit of A mensua- B stanting If (DCA) corespenda to May (D, B) and Aagust (D, A) conneponide to Now: (DGB)

