UNITED STATES

LICENSEE: Northeast Utilities (NU)

FACILITIES: Haddam Neck, Millstone Units 1, 2, and 3, and Seabrook
SUBJECT: SUMMARY OF APRIL 21, 1994, NRC/NORTHEAST UTILITIES COUNTERPARTS MEETING

On April 21, 1994, representatives of Northeast Utilities (NU) and the NRC staff met at the NU Corporate Headquarters in Berlin, Connecticut. Enclosure 1 contains the list of attcndees. The meeting represented the eighth in a series of "counterpart meetings" during which the NRC and NU discussed various programs and issues at Haddam Neck, Millstone Units 1, 2, and 3, and Seabrook. Enclosure 2 contains summary material relating to NU's presentations.

Following opening remarks by NRC and NU, R. E. Busch addressed the group and spoke about the importance of safety as the first priority. Mr. Busch described safety as the "permissive gate" to discussion of economic issues and emphasized the importance of demonstrating the understanding of safety to the public, the regulators, and to NU. Mr. Busch went on to say that the NU reengineering effort is expected to begin (e.g., mobilizing appropriate personnel) later this year in the nuclear organization. Reengineering is a method for evaluating the process for delivering a service to NU customers.

There was an exchange of ideas and acknowledgement by the NRC of the importance being placed on cost beneficial licensing actions (CBLAs). NRC commented that the NRC has had a team interviewing utilities for the past year, soliciting input on issues that are considered to provide no significant safety benefit.

NU provided an overview of the initiative undertaken to return Millstone Station to the status of excellence. The key to reestablishing Millstone Station's former state of excellence is developing employee trust. Once employee trust is regained, an atmosphere that allows cultural change can develop which will promote teamwork. This increased sense of employees working as a team will result in improved initial performance ("more things being done right the first time"), improved employee morale, and lessened employee frustration. The resultant outcome will be improved safety and increased electric production.

With regard to the concerned employee issue, NU noted that once employee trust is regained, employees will feel more comfortable addressing their concerns through the management chain. The NRC noted that it has been NRC's experience that the majority of employee concerns deal with processes (i.e., procedures), and improvements in this area seem to be slow. NU responded by stating that one way to achieve improvement in this area is by implementing more common procedures across the three Millstone units.

With regard to the schedule for submittal of 24 -month refueling license amendment requests, the NRC requested additional clarification. NU pointed out that the 1 icense amendment requests would be for extension of surveillance intervals (from 18 -month to 24 -month intervals), and the dates designated in the handout material were target dates for submittal of the last license amendment requests to the NRC. NU also noted that they intend to organize the license amendment requests by system in order to help minimize the number of reviews required to be performed by the Staff.

The NRC asked why Seabros' not planning on going to 24 -month fuel cycles. NU roplied that Seabrook 6 ,t have sufficient operating experience at this time to make the transition wum 18- to 24 -month cycles, although it may be considered at some point in the future.

The NRC questioned whether the spent fuel ponl storage capacity noted in the current monthly operating report corresminds to the schedules represented in the 24 -month fuel cycle project. NU r d that the schedules do match; however, they do not take into considi any contemplated future reracking.

With regard to CBLAs, NU provided an overview of the efforts ongoing at NU to identify potential items for inclusion in the nuclear group's reduction of regulatory burden program. NU stated that the nuclear group has generated approximately 90 ideas for possible CBLAs. NU noted that they have recently docketed the first official CBLA, $4 . e .$, a submittal specifically identified as such. Notwithstanding this, approximstely 23.5 to 29.5 million dollars of avoided costs have been achieved thr CBLA activities during 1993.

The NRC noted that it is important for licensees to understand how the NRC plans on handling CBLAs. Currently, items of low safety significance are assigned a low priority. The technical reviewers process them as time is available. CBLAs will get a slightly higher priority than they would otherwise get as low safety significant issues. The NRC considers it important that licensees are aware of this process so that issues of higher safety significance aren't labeled as CBLA and, therefore, lowered in priority by the NRC ranking process.

More information on the topic of CBLAs is expected to be available at the regulatory information conference.

With regard to responding to employee concerns, the NRC asked if individuals received monetary incentives for bringing forth nuclear safety concerns. NU responded that there have been a few instances where money has been awarded to employees who bring forth safety concerns (through the Spot Recognition Program), but that the NU management team needed to exercise case-specific judgment given that nuclear safety is considered to be a fundamental responsibility of every employee.

The NRC noted that the tabulation of employee concerns for Millstone Station that was presented in the handout appeared somewhat misleading. The NRC
stated that the actual number of nuclear safety concerns is more like 75 to 80 rather than the 38 identified by NU. With regard to the identirication of nuclear safety concerns, the NRC pointed out that the initial conflict occurs at the first-line supervisor level and that NU needs to do a better job of supporting those supervisors.

On the subject of a long-term solution for the Millstone Unit No. 3 supplementary leak collection and release system (SLCRS), NU provided the system description, recent activities, and an action plan to resolve the design deficiencies. The NRC inquired as to whether NU had revisited the possibility of having two trains operating simultaneously rather than having one train shut down before the next one starts. NU reported that NU is considering many alternatives that will simplify the SLCRS. With regard to NU's schedule for submittal of any license amendment requests (i.e., restored containment leakage rate, revised drawdown time), the NRC was informed that NU expects to submit requests in the August/September timeframe.

With regard to long term improvements, NU spoke on the impact of existing source term assumptions, specifically the magnitude and timing of a release, and the relative urgency placed on the NRC issuing the revised source term (NUREG-1465) and its application to existing plants.

On the subject of human engineering discrepancies (HEDs), the NRC stated their willingness to support resolution of the remaining items by having their human factors branch personnel come to NU and assist in dispositioning the remaining HEDs. The schedule for dispositioning the remaining HEDs at Millstone Unit No. 1 is late summer/early fall 1994.

On the subject of 10 CFR Part 50, Appendix J modifications, NU reported that a submittal was recently docketed for Millstone Unit No. 1. This submittal contained Appendix J exemption requests for several penetrations. In addition to the exemption requests, NU discussed why certain valves were considered to be outside the scope of Appendix J. The basis for not performing modifications to certain valves was previously discussed in the ISAP update reports. Modifications to make these valves testable would cost millions of dollars and would provide no commensurate safety benefit. The NRC asked what the difference was between this current Appendix J submittal and the one that NRC had previously rejected. NU stated that the current submittal provides an improved basis for the exemptions requested as well as a discussion concerning why certain valves do not belong in the Appendix J program.

With regard to the Performance Enhancement Program status, a concern was raised about the number of fallures during the validation process. NU stated that some questions arose during the Verification/Validation (V\&V) process and the decision was made to keep those action plans open and reassess them. The NRC suggested that action plans that have failed validation, or action plans that are completed but not yet validated, be reflected in the 1995 business plan. The NRC went on to emphasize the importance of demonstrating that the intended effects of the action plan are complete and reiterated that the NRC feels obligated to assure that all 42 action plans are complete. The NRC does not view an item as complete until the validation is closed out.

On the subject of integration of the corporate EOC into the site organizations, NU provided an overview of the plan to eliminate the corporate EOC by incorporation of the functions into the site organization, with a longrange plan of designating the State Armory as the alternate location. The State of Connecticut is aware of these plans which are expected to improve communications between the State and the sites. The overall plan is intended to strengthen the technical support centers at the sites. NRC approval is required to change the alternate location from the corporate EOC to the Armory.

Original signed by:

David H. Jaffe, Sr. Project Manager Project Directorate I-4
Division of Reactor Projects - 1/11
Office of Nuclear Reactor Regulation

Enclosures:

1. List of Attendees
2. NU's Presentation

DISTRIBUTION: w/enclosures 1 \& 2
Docket File
NRC \& Local PORS
PDI-4 Memo
LDoerflein, RGI
DJaffe
DISTRIBUTION: W/enclosure 1
Wrussell/FMiraglia ADe Agazio PHabighorst
LReyes
VRooney PSwetland
SVarga
GVissing ACRS (10)
JCalvo
JAndersen
SNorris
AWang
OGC
E.Jordan

OFFICE	1A:PDI-4	PM: PDI-4	D:PQI-4			
NAME	SNoniv	DJaffeitp	JStoiz			
DATE	51/V94	$5 / 8 / 94$	$5118 / 94$	$1 \quad 194$		

OFFICIAL RECORD COPY
Document Name: G: \JAFFE COUNTSUM

On the subject of integration of the corporate EOC into the site organizations, NU provided an overview of the plan to eliminate the corporate EOC by incorporation of the functions into the site organization, with a longrange plan of designating the State Armory as the alternate location. The State of Connecticut is aware of these plans which are expected to improve communications between the State and the sites. The overall plan is intended to strengthen the technical support centers at the sites. NRC approval is required to change the alternate location from the corporate EOC to the Armory.

David H, Jaffe, Sr. Project Manager
Project Directorate I-4
Division of Reactor Projects - 1/II
Office of Nuclear Reactor Regulation
Enclosures:

1. List of Attendees
2. NU's Presentation

Mr. John F. Opeka
Northeast Nuclear Energy Company

Haddam Neck Plant \& Millstone Power
Station, Unit Nos. 1, 2 \& 3
cc:

Gerald Garfield, Esquire
Day, Berry and Howard
Counselors at Law
City Place
Hartford, Connecticut 06103-3499
Resident Inspector
Haddam Neck Plant
c/o U.S. Nuclear Regulatory Commission
361 Injun Hollow Road
East Hampton, Connecticut 06424-3099

Kevin T. A. McCarthy, Director Monitoring and Radiation Division Department of Environmental Protection 79 Elm Street
Hartford, Connecticut 06106-5127

Allan Johanson, Assistant Director Office of Policy and Management Policy Development and Planning Division 80 Washington Street
Hartford, Connecticut 06106
S. E. Scace, Vice President

Nuclear Operations Services
Northeast Utilities Service Company
Post Office Box 270
Hartford, Connecticut 06141-0270
F. R. Dacimo, Nuclear Unit Director

Millstone Unit No. 3
Northeast Nuclear Energy Company
Post Office Box 128
Waterford, Connecticut 06385
Burlington Electric Department
c/o Robert E. Fletcher, Esq.
271 South Union Street
Burlington, Vermont 05402
R. M. Kacich, Director

Nuclear Planning, Licensing \& Budgeting
Northeast Utilities Service Company
Post Office Box 270
Hartford, Connecticut 06141-0270
J. P. Stetz, Vice President Haddam Neck Plant
Connecticut Yankee Atomic Power Company 362 Injun Hollow Road
East Hampton, Connecticut 06424-3099

Regional Administrator
Region I
U.S. Nuclear Regulatory Commission

475 Allendale Road
King of Prussia, Pennsylvania 19406

First Selectmen
Town of Waterford
Hall of Records
200 Boston Post Road
Waterford, Connecticut 06385
P. D. Swetland, Resident Inspector

Millstone Nuclear Power Station
c/o U.S. Nuclear Regulatory Commission
Post Office Box 513
Niantic, Connecticut 06357
M. R. Scully, Executive Director

Connecticut Municipal Electric
Energy Cooperative
30 Stott Avenue
Norwich, Connecticut 06360
David W. Graham
Fuel Supply P1anning Manager
Massachusetts Municipal Wholesale
Electric Company
Post Office Box 426
Ludlow, Massachusetts 01056

```
Mr. John F. Opeka
Nuclear Northeast Nuclear Energy Company
Haddam Neck Plant \& Millstone
Power Station, Unit Nos, 1, 2 \& 3
```

cc:
H. F. Haynes, Nuclear Unit Director Millstone Unit No. 1
Northeast Nuclear Energy Company
Post Office Box 128
Waterford, Connecticut 06385
Charles Brinkman, Manager
Washington Nuclear Operations
ABB Combustion Engineering
Nuclear Power
12300 Twinbrook Pkwy., Suite 330
Rockville, Maryland 20852

Nicholas S. Reynolds
Winston \& Strawn
1400 L Street, NW
Washington, DC 20005-3502
J. J. LaPlatney

Haddam Neck Unit Director
Connecticut Yankee Atomic Power Company
36? Injun Hollow Road
East Hampton, Connecticut 06424-3099
J. M. Solymossy, Director

Nuclear Quality and Assessment Services
Northeast Utilities Service Company
Post office Box 270
Hartford, Connecticut 06141-0270
G. H. Bouchard, Nuclear Unit Director Millstone Unit No. 2
Northeast Nuclear Energy Company
Post Office Box 128
Waterford, Connecticut 06385
Board of Selectmen
Town Office Building
Haddam, Connecticut 06438
Donald B. Miller, Jr.
Senior Vice President
Millstone Station
Northeast Nuclear Energy Company
Post Office Box 128
Waterford, Connecticut 06385

Mr. Ted C. Feigenbaum
cc:
Thomas Dignan, Esq.
John A. Ritsher, Esq.
Ropes and Gray
One International Place
Boston, Massachusetts 02110-2624
Mr. Peter Brann
Assistant Attorney General
State House, Station \#6
Augusta, Maine 04333
Resident Inspector
U.S. Nuclear Regulatory Commission

Seabrook Nuclear Power Station
Post Office Box 1149
Seabrook, New Hampshire 03874
Jane Spector
Federal Energy Regulatory Commission 825 North Capital Street, N.E.
Room 8105
Wastington, DC 20426

Mr. T. L. Harpster
North Atlantic Energy Service Corporation
Post Office Box 300
Seabrook, New Hampshire 03874

Town of Exeter
10 Front Street
Exeter, New Hampshire 03823
Gerald Garfield, Esq.
Day, Berry and Howard
city Place
Hartford, Connecticut 06103-3499
Mr. R. M. Kacich
Northeast Utilities Service Company
Post Office Box 270
Hartford, Connecticut 06141-0270

Seabrook Station

Mr. George L. Iverson, Director
New Hampshire Office of Emergency
Management
State Office Park South
107 Pleasant Street
Concord, New Hampshire 03301
Regional Administrator, Region I
U.S. Nuclear Regulatory Commmission

475 Allendale Road
King of Prussia, Pennsylvania 19406
Office of the Attorney General
One Ashburton Place
20th Floor
Boston, Massachusetts 02108
Board of Selectmen
Town of Amesbury
Town Hall
Amesbury, Massachusetts 01913
Mr. Jack Dolan
Federal Emergency Management Agency
Region I
J.W. McCormack Post Office \&

Courthouse Building, Room 442
Boston, Massachusetts 02109
Mr. David Rodham, Director
Massachusetts Civil Defense Agency
400 Worcester Road
Post Office Box 1496
Framingham, Massachusetts 01701-0317
ATTN: James Muckerheide
Jeffrey Howard, Attorney General
G. Dana Bisbee, Deputy Attorney General
Attorney General's Office
25 Capitol Street
Concord, New Hampshire 03301
Mr. Robert Sweeney
Bethesda Licensing Office
Suite 610
3 Metro Center
Bethesda, Maryland 20814

NCR/NU COUNTERPARTS MEETING

NRC

J. Stolz
D. Jaffe
P. Habighorst
P. Swetland
A. Wang
G. Vissing
A. De Agazio
V. Rooney
J. Andersen

NU

R. Kacich	P. Miner
B. Solomon	K. Hannon
E. Perkins, Jr.	T. Silko
D. Miller, Jr.	E. Bennett
H. Risley	P. Patton
L. Chatfield	J. Peschel
L. Cuoco	A. Callendrello
M. Wilson	A. Castagno
M. Bonaca	W. Temple
S. Scace	J. Stetz
F. Dacimo	R. Schmidt
J. Solymossy	W. Hutchins
R. Necci	E. Marks
R. Young	G. Pitman
C. Ashton	J. DeVeau
F. Van Noordennen	P. Pastuszak
M. Kupinski	D. Dube
C. Ondash	

P. Miner
B. Solomon K. Hannon
E. Perkins, Jr.
T. Silko
D. Miller, Jr.
E. Bennett
H. Risley
P. Patton
L. Chatfield
A. Callendrello
M. Wilson
A. Castagno
M. Bonaca
J. Stetz
F. Dacimo
R. Schmidt
J. Solymossy
E. Marks
R. Young
G. Pitman

Ashton
P. Pastuszak
M. Kupinski
D. Dube
C. Ondash

NRC/NU COUNTERPARTS MEETING APRIL. 21, 1994

NRC/NU COUNTERPARTS MEETING

Location:
Time:

Room 0-3F, NU-East
9 a.m. to 4 p.m.

Agenda

1. INTRODUCTION

II. SELECTED NU INITIATIVES

A. Initiatives for the 90 's
B. Nuclear Group Reorganization and Relocation to the Sites
C. 24-Month Fuel Cycles
D. Cost-Beneficial Licensing Actions
E. NRB Restructuring
F. Current Licensing Basis (CLB) Status
G. Integration of the Corporate EOC Into the Site Organization
H. PEP Status

1. Responding to Employee Concerns

III. MAJOR LICENSING ISSUES

A. SLCRS Long-Term Solution
B. Status of SEP Topics (CY \& Millstone 1)
C. Control Room Design Review - HED Status Millstone 1 \& CY
D. Appendix J Modifications/Changes - Millstone 1
E. Spent Fuel Storage Capacity and Future Spent Fuel Storage Plans at Millstone Units and CY
NRC/NU COUNTERPARTS MEETINGAPRIL 21, 1994
IV. REGULATORY INTERFACE ISSUES
A. NRC/NU Communication - General Discussion
B. NRC Inspection Schedule
C. ISAP License Conditions
V. GENERAL LICENSING TOPICS
A. Implementation of Line-item Technical SpecificationImprovements
B. Plant-Specific Issues
C. Status of USI, TMI Items, SEP Items, GSIs
VI. SUMMARY AND CONCLUSIONS

I. INTRODUCTION

II. SELECTED NU INITIATIVES

II. A Initiatives for the 90's

INITIATIVES TO RETURN MILLSTONE STATION TO STATUS OF EXCELLENCE

- DEVELOP CONSISTENCY IN WORK PROGRAMS BETWEEN UNITS
- ESTABLISH TEAMWORK BETWEEN UNITS
- DEVELOP OPENNESS TO COMMENTS
- DEVELOP OWNERSHIP BY FRONT LINE SUPERVISORS
- DEVELOP/ENHANCE LEADERSHIP SKILLS
- fOCUS WORKERS ON THEIR jOBS

Page 4

II. A Initiatives for the 90's (Cont'd.)

DEFINITION OF MY JOB

- PROTECT HEALTH AND SAFETY OF THE EMPLOYEES
- protect health and safety of the neighbors
- CONTRIBUTE TO A SUCCESSFUL NU ORGANIZATION
- COMmunicate my values:
- Safety
- Integrity
- People
- Teamwork
- MONITOR EFFECTIVENESS OF INITIATIVES

II. A Initiatives for the 90's (Cont'd.)

SELF-ASSESSMENT

- "MILLSTONE STATION SELF-ASSESSMENT PROCESS MANUAL" ISSUED MARCH 1994
- ONGOING SELF-ASSESSMENT PROVIDES FOR STATION IMPROVEMENT BY:
- Candid and Objective Evaluation of Our Own Performance
- Timely and Effective Corrective Action
- Fostering a No-Fault Attitude to Problem Discovery and Reporting
- MAJOR FOCUS FOR 1994 IS HORIZONTAL (INPO-STYLE) AND VERTICAL. ASSESSMENTS

PLANT INFORMATION REPORT

- REDESIGN OF PIR PROCESS
- anyone can initiate a report
- PROMOTE A LOW INITIATION THRESHOLD
- PROCESS COORDINATED BY A SINGLE GROUP
- Implementation in third quarter 1994

ENHANCE COMMUNICATIONS WITH EMPLOYEES

- COMMUNICATION IS VERY IMPORTANT TO WORKERS
- DEVELOPED DAILY PAPER: "TO THE POINT"
- INCREASE MANAGEMENT PRESENCE IN FIELD
- ESTABLISH A COMMUNICATIO\#S COUNCIL

APPROACH TO THE CONCERNED EMPLOYEE ISSUE AT MILLSTONE

II. A Initiatives for the 90's (Cont'd.)

EXPECTATIONS OF EMPLOYEE BEHAVIOR

- TREAT EVERYONE WITH RESPECT
- WORK TOGETHER AS A TEAM
- DO EVERY TASK RIGHT THE FIRST TIME
- IMMEDIATELY REPORT SAFETY ISSUES
- TAKE RESPONSIBILITY FOR OWN ACTIONSNRC/NU COUNTERPARTS MEETING

II.B Nuclear Group Reorganization and Relocation to the Sites

II. B Nuclear Group Reorganization and Relocation to the Sites

ENGINEERING INTEGRATION - BACKGROUND

- INTEGRATION OF ACTIVITIES
- OPERATIONAL FOCUS

OBJECTIVE: IMPROVE QUALITY OF ENGINEERING SUPPORT TO PLANTS

- CLARIFY ENGINEERING ROLES AND RESPONSIBILITIES
- ELIMINATE DUPLICATION OF WORK

APPROACH: WHO, HOW

- WHO:
- NU Team of Engineering Managers
- Full Time
- Consultant - Towers Perrin
- HOW:
- Issue Definition
- Detailed Analysis and Recommendations Development
- Finalization and Implementation

II. B Nuclear Group Reorganization and Relocation to the Sites (Cont'd)

RESULTS OF ENGINEERING INTEGRATION

- MORE EFFECTIVE ORGANIZATION
- CLEAR ROLES AND RESPONSIBILITIES
- FOCUS ON PLANT OPERATIONS
- RECOGNIZES ENGINEERING'S ROLE
- DIRECTOR LEVEL ENGINEERING DEPARTMENT
- FULLY IMPLEMENTS SYSTEM ENGINEERING

II. B Nuclear Group Reorganization and Relocation to the Sites (Cont'd)

MAINTENANCE INTEGRATION

- similar to engineering
- EQUIPMENT ANALYSIS
- NDE
- PROGRAMMATIC MAINTENANCE
- MAINTENANCE SUPPORT

RESULTS OF MAINTENANCE INTEGRATION

- UNIT MAINTENANCE
- ALL MAINTENANCE SUPPORT UNDER SENIOR VICE PRESIDENT OF MILLSTONE
- Improve effectiveness
- FUTURE RECOMMENDATIONS

II. B Nuclear Group Reorganization and Relocation to the Sites (Cont'd)

RELOCATION TO SITE

- FACILITIES (TECHNICAL SUPPORT BUILDING)
- PERSONNEL
- INFORMATION TECHNOLOGY
- STATUS
- Technical Support Building, Completion - July 1994
- Millstone 1 Personnel Relocated
- Millstone 2 and 3 Personnel
- Connecticut Yankee Personnel
- Quality and Assessment Services
- Nuclear Planning, Licensing and Budgeting
- Nuclear Operations Support Service
- Nuclear Emergency Preparedness

II.C 24-Month Fuel Cycles

II.C 24-Month Fuel Cycles

BACKGROUND

- VARIOUS FACTORS HAVE ENCOURAGED NU TO PURSUE 24-MONTH CYCLES AT MILLSTONE 2, MILLSTONE 3, AND CONNECTICUT YANKEE
- Successful 24 -month operation at Millstone 1
- Successful 24 -month operation at other plants
- Historically, NU has operated its units on the longest achievable fuel cycle without a mid-cycle shutdown
- Potential cost and radiation dose savings due to fewer outages
- EFFECTIVELY SUPPORTED BY THE IMPLEMENTATION OF THE MAINTENANCE RULE
- FUEL DESIGNS AND FUEL MANAGEMENT SCHEMES WILL ALLOW 24-MONTH OPERATION AT MILLSTONE 2, MILLSTONE 3, AND CONNECTICUT YANKEE

OBJECTIVES

DEVELOP AND IMPLEMENT INTEGRATED TECHNICAL AND LICENSING PROGRAM TO ADDRESS REGULATORY REQUIREMENTS FOR A 24 -MONTH FUEL CYCLE FOR MILLSTONE 2, MILLSTONE 3, AND CONNECTICUT YANKEE

iI.C 24-Month Fuel Cycles (Cont'd.)

SCOPE

WILL ADDRESS FUEL AND NONFUEL-RELATED ISSUES

- FUEL ISSUES
- Cycle design and length reload analysis
- Spent Fuel/New Fuel Storage Requirements
- NONFUEL-RELATED ISSUES
- Instrumentation Drifts and Setpoint Impacts
- Steam Generator Tube Inspections
- Containment Leak Rate
- Safety Goal Compatibility
- Plant Maintenance/Reliability
- Outage Integrations
- NRC GUIDANCE - GL 91-04 WILL BE USED TO EVALUATE AND TO PREPARE NECESSARY SUBMITTALS

ORGANIZATION STRUCTURE FOR THE 24-MONTH FUEL CYCLE PROJECT FOR MILLSTONE 2, MILLSTONE 3, AND CONNECTICUT YANKEE

II.C 24-Month Fuel Cycles (Cont'd.)

SCHEDULES AND MILESTONES

Fuel Cycle Plans

PLant	Months/Current CYCLE	Next	Following
Connecticut Yankee	18 Months (Cycie 18)	20 Months (Cycle 19)	24 Months (Cycle 20) September 1996
Millstone 2	20 Months (Cycle 12)	23 Months (Cycle 13)	24 Months (Cycle 14) July 1996
Millstone 3	21 Months (Cycle 5)	24 Months (Cycle 6) (July 1995)	24 Months (Cycle 7)

Major Milesiones

Plant	License Amendment Requests Submittals to THE NRC	Requested NRC Approval
Connecticut Yankee	November 1995	September 1996
Millstone ?	September 1995	July 1996
Millstone 3	July 1995	September 1996

II.D Cost-Beneficial Licensing Actions
II. E NRB Restructuring

II.E NRB Restructuring

BACKGROUND

- REFOCUS THE OVERSIGHT REVIEW FUNCTION FROM A STRONGLY TECHNICAL TO AN ASSESSMENT ROLE
- CLOSE ALIGNMENT OF THE OVERSIGHT REVIEW FUNCTION WITH FUNCTIONAL MANAGEMENT
- STRENGTHEN THE COMMUNICATION LINK WITH THE EVP-NUCLEAR
- ENHANCE THE ABILITY TO IDENTIFY GLOBAL ISSUES ACROSS THE ORGANIZATION
- FOSTER A HEALTHY SELF-ASSESSMENT ATTITUDE IN THE NUCLEAR ORGANIZATION

RESTRUCTURE PROCESS

- INVESTIGATE OTHER OVERSIGHT REVIEW BOARDS FOR MULTIPLE UNIT, MULTIPLE SITE UTILITIES
- ESTABLISH OBJECTIVES FOR THE NU OVERSIGHT REVIEW BOARD
- DEVELOP A CHARTER DESCRIBING THE BROAD PHILOSOPHICAL ASPECTS FOR THE BOARD
- DEVELOP THE IMPLEMENTING PROCEDURE DESCRIBING THE STRUCTURE AND PROCESSES OF THE OVERSIGHT REVIEW BOARD
- EVALUATE THE STRUCTURE AND PROCESS AGAINST INDUSTRY EXPERIENCE

II.E NRB Restructuring (Cont'd.)

CONCEPTUAL ORGANIZATION STRUCTJRE

- ONE UNIFIED BOARD WOULD REPLACE THE FOUR UNIT NRBs AND THE MILLSTONE SNRB
- NSAB - NUCLEAR SAFETY ASSESSMENT BOARD
- CHAIRMAN IS THE VICE PRESIDENT OF NUCLEAR OPERATION SERVICES
- OUTSIDE MEMBERS (CONSULTANTS AND EXCHANGE MEMBERS) PROVIDE DIVERSITY
- ORGANIZATIONAL INFRASTRUCTURE TO PROVIDE SUPPORT TO THE CHAIRMAN AND THE BOARD

II.E NRB Restructuring (Cont'd.)

KEY POINTS

- MEMBERS

- Senior management is the backbone of the membership; Vice Presidents, selected directors, and members-atlarge comprise the NU committee members
- Consultants and exchange members from other utilities add an independent perspective that encompasses industry and regulatory issues
- Minimize the need for in-depth technical experts as members; technical expertise can be brought in on an as-needed basis
- Members have the authority to act on most issues that come before the NSAB; only major issues will require direct involvement by the EVP-Nuclear

- SUBCOMMITTEES

- Used to ensure effective use of member's time
- Subcommittees for Safety Evaluation, Technical Support, Operations, and Quality Assurance are being considered
- Ad hoc subcommittees can be commissioned by the chairman when appropriate

II.E NRB Restructuring (Cont'd.)

- COMMUNICATIONS WITH THE EVP-NUCLEAR

- Chairman provides a one-on-one briefing soon after each meeting
- A memo to the EVP-Nuclear communicates significant issues or recommendations
- Minutes of each meeting are forwarded to the EVP-Nuclear
- EVP-Nuclear may attend meetings on a periodic basis to get a "flavor" of the issues
- PROCEDURES
- Charter for the Nuclear Safety Assessment Board (NEO 2.02) is the implementing procedure for the Technical Specification requirements
- NSAB Principles (NEO 2.02 attachment) provides the safety and assessment philosophy for the NSAB
- Administrative procedures provide the detailed "how to" instructions; these procedures will be controlled and approved by the Chairperson

II.E NRB Restructuring (Cont'd.)

- MILESTONES AND DELIVERABLES

NSAB Principles (draft) March 1994
Enabling Procedures (draft) March 1994
Site Visits to Evaluate the Process April 1994
Technical Specification Change Review March \& April 1994
Presentation to the NRC Today
NRC Review and Approval May - October 1994
Administrative Procedures May 1994
Develop the Transition Plan June 1994

- MEMBERS OF THE NRB RESTRUCTURE TASK GROUP
John Blaisdell
Paul CallaghanCarl Clement
Reggie RodgersRichard Schmidt
Gerry van NoordennenNuclear Safety Engineering
Vice Chairman, MP3 NRB
Vice Chairman, MP1 NRB
Vice Chairman, CY NRB
Vice Chairman, MP2 NRB
Nuclear Licensing
II.f Current Licensing Basis (CLB) Status

II.F Current Licensing Basis (CLB) Status

- CLB BACKGROUND
- CLB PRODUCTS
- NUCLEAR GROUP APPLICATIONS
- CLB APPLICATIONS TO LICENSING ISSUES
- LONG-TERM MAINTENANCE
- HARDWARE CONFIGURATION
- SUMMARY
- DEMONSTRATIONNRC/NU COUNTERPARTS MEETING
II. F Current Licensing Basis (CLB) Status (Cont'd.)

CLB BACKGROUND

- NRC ACTIVITIES RELATING TO CLB

- November 7, 1991
* Generic Letter 91-18 (Operability/Degraded Equipment)
- January 13, 1992
- CLB Definition 10CFR54.3
- March 19, 1992
- Generic Letter 92-03 (CLB Pilot Program)
- June 1992
- NRC/Utility Workshop on CLB Development
- November 1992
- Office of Policy Planning Document (OPP-92-02) Current Licensing Basis for Operating Plants
- 1993
= NRC Audits of How Licensees Control Changes to Their CLB
- Spontaneous Demonstrations to NRC During Visits/ Inspections at NU

II.F Current Licensing Basis (CLB) Status (Cont'd.)

- NU's ACTIVITIES RELATED TO CLB
- HISTORICALLY, CLB ISSUES HANDLED AS EMERGING CIRCUMSTANCES REQUIRED
- MID 1980s CONFIGURATION MANAGEMENT/DBR DISCUSSIONS
- CLB INITIATIVE PROPOSED IN 1990
- PEP ACTION PLAN 2.3.7 INITIATED TO ADDRESS CLB DEVELOPMENT
- Overall Schedule Consists of Goals and Milestones Defined in PEP Action Plan 2.3.7
- Activities Began in 1992 and Continue Through 1995
- Major 1992 Accomplishments
- Defined CLB Documents
- Hardware, Software, and Data Conversion, Vendors Selected
- Major 1993 Accomplishments
- Data Conversion Pilot Program Analysis and Revisions
- Full Scale Data Conversion Activities
- Long-Range Planning Document (Issued 4/2/93)
- Declaration of CLB Retrieval System Fully Functional ($8 / 27 / 93$)
- CLB Pilot Program Benchmarking and Benchmarking Report (Issued 12/31/93)

II.f Current Licensing Basis (CLB) Status (Cont'd.)

- Major 1994 and 1995 Activities
= Application Review (Completed 3/31/94)
- Use of Tool in Existing Work Flow
- Use of Tool in New Work Flow
- Recommended Changes to Work Flow Procedures
- Implementation of Work Flow Procedure Changes
- Application to Licensing Issues (Underway)

iI.F Current Licensing Basis (CLB) Status (Cont'd.) CLB PRODUCTS

- WIDE VARIETY OF INFORMATION IS AVAILABLE ELECTRONICALLY - CLB DATA BASE CONTAINS APPROXIMATELY 300,000 PAGES OF SEARCHABLE TEXT WITH APPROXIMATELY 230,000 IMAGES AVAILABLE
- Licensing Basis (10CFR54.3 and NE\&0 4.01)
- Operating Licenses
- NRC SERs
- Technical Specifications
- 10CFR
- NRC/WU Correspondence
- ASCII Text
- Raster Images
* Licensee Event Reports
- Generic Correspondence
- Bulletins
- Generic Letters
- Information Notices
- Circulars
II.F Curbent Licensing Basis (CLB) Status (Cont'd.)

CLB PRODUCTS (CONT'D.)

- Supporting Information Examples
- Regulatory Guides
- NUREG Abstracts
- NUREG-0737 (TMI)
- NUREG-0800 (Standard Review Plan)
- NRC Inspection Manual
- NRC Enforcement Manual
- SEARCH CAPABILITIES
- Enhanced Engineering Support (50.59, 50.72 and 50.73)
- Program Integration Benefits (EQ, DBD, HELB, NOV)
- LICENSING PRODUCTIVITY INCREASED
- Response to Emergent Situations Enhanced
- General Support to Nuclear Units Improved
- Licensing Information Readily Retrievable; Less Time Researching Files

NUCLEAR GROUP APPLICATIONS

- CLB DETERMINATIONS AND OTHER LICENSING INTERPRETATIONS REMAIN THE RESPONSIBILITY OF NL
- SAFETY EVALUATIONS PER 10CFR50.59
- REPORTABILITY AND OPERABILITY DETERMINATIONS
- JUSTIFICATION FOR CONTINUED OPERATIONS
II.F Current Lxcensing Basis (CLB) Status (Cont'd.)

NUCLEAR GROUP APPLICATIONS (CONT'D.)

- BACKFIT DETERMINATIONS
- INTEGRATION WITH DESIGN BASIS RECONSTRUCTION AND OTHER ESTABLISHED ENGINEERING PROGRAMS
- ENHANCED MEANS OF ACCESS TO PREVIOUS COMMITMENTS
- ENHANCED MEANS OF ACCESS TO PREVIOUS SIMILAR NU LERS

CLB APPLICATIONS TO LICENSING ISSUES

- PRELIMINARY LIST OF LICENSING ISSUES
- Solicited Issues From Nuclear Group
- Identified Licensing Issues Likely to Meet One of the Objectives of CLB
- PRIORITIZED LICENSING ISSUES
- END PRODUCT DEVELOPMENT
- Defined CLB End Products Not Previously Captured
- End Product Definition Based on Analysis and Results of the CLB Benchmarking Activities
- ADDRESS LICENSING ISSUES
- Systematically Address the Identified and Prioritized Licensing Basis Issues
- Subject to Resources, Staffing, and Priorities
- SCHEDULE
- PEP 2.3.7 Targeted for Completion December 31, 1995
- Issue Development to Continue Until Proactively Resolved

```
NRC/NU COUNTERPARTS MEETING
                                    APRIL 21, }199
                            <l.F Current Licensing Basis (CLB) Status (Cont'd.)
```


LONG-TERM MAINTENANCE

```
- DATABASE MAINTENANCE
- Frequent Database Updates to Keep It Current
- Periodic Database Backups
- USER PRODUCT MAINTENANCE
- First Choice
- Find Cost-Effective Homes for User Products, E.G., FSAR, T.S., T.S. Bases, Technical Requirements Manuals, Engineering Program Manuals, DBDPS, etc.
- Alternate Choice
w Create Selected CLB Summary Documents and Keep Them Current
```


II. F Current Licensing Basis (CLB) Status (Cont'd.)

SUMMARY

- A Number of New and Enhanced Licensing Products
- Enhanced Means of Access to All Licensing Basis Documents
- Enhanced Means of Access to Previous NU Commitments to NRC
- In Harmony with Current NRC Thinking
- Close Communication with Seabrook
- Potential Asset in Facilitating Regulatory Interface
- Promote Cost-Effective Operation
- Demonstration

II.g Integration of the Corporate eoc Into the Site Organization

II.G INTEGRATION OF THE CORPORATE EOC INTO THE SITE ORGANIZATION

- INTEGRATION DRIVEN BY:
- Engineering Support Relocating to the Sites
- Need to Strengthen the TSCs at Both Sites Based on Internal and NRC Feedback
- Need to Strengthen the EOFs by Integrating the Organization Into One Entity
- Need to Expedite Communications to the State
- Resource Savings

II. E Integration of the Corporate eoc Into the Site Organization (Cont'd.)

SCHEDULE

- MARCH 29 EXECUTIVE VICE PRESIDENT - NUCLEAR APPROVAL
- APRIL-OCTOBER - REVISE AND DEVELOP PROCEDURES; SUBMIT TO PORC/SORC AS DEVELOPED FOR 3-1-95 IMPLEMENTATION
- JUNE-OCTOBER - TABLE TOP SESSIONS WITH THE ERO MEMBERS TO V \& V DRAFT PROCEDURES
- JULY-DECEMBER -- NUCLEAR TRAINING DEVELOPS TRAINING MATERIALS BASED ON APPROVED PROCEDURES
- NOVEMBER 1 - ALL PROCEDURES MUST BE READY FOR PORC/SORC APPROVAL IN ORDER FOR TRAINING TO DEVELOP TRAINING MATERIALS
- JANUARY-FEBRUARY - INTEGRATED TRAINING PRIOR TO IMPLEMENTATION
- MARCH 1, 1995 - IMPLEMENTATION OF THE NEW ORGANIZATION

II.H PEP Status

II.H PEP Status

PERFORMANCE ENHANCEMENT PROGRAM STATUS

- PEP Deliverables Remain On-Schedule
- 1994 PEP Deliverable Status Chart
- Action Series 1 through 4 Status

Action Plan Status

PEP Action Plans are Being Completed

Action Plans Completed \& Validated 7
Action Plans Completed 23
Action Plans Active 12
Action Plans in Validation 9Remaining Validation Schedule
Q1 Q2 Q3 Q4 Total

1994	--	6	4	3	13
1995	--	4	2	-	6
1996	--	3	-	1	4
1997	1	-	1	--	2
1998	1	--	--	--	1

1994 PEP DELIVERABLES / MILESTONES
PERFORMANCE CHART

II. H PEP Status (Cont'd.)

- VALIDATION IS UNDERWAY, 1994 IS AN ACTIVE YEAR
- Twelve Validation reports prepared to date
- 7 Recommended for Closure
- 5 Remain Open, Issues Being Actively Pursued
- Eighteen Additional Validations Planned for Remainder of this Year
- Six Scheduled for 1995
- Six to be Completed for Remainder of Program (19961998)

II.h PEP Status (Cont'd.)

- VALIDATION PROCESS REFLECTS HIGH STANDARDS

- Assess If Intended Effect Achieved
- Validation Team is Independent of Action Plan Manager
- Action Plan Sponsor Concurs with Validation Plan
- Action Plan is Closed only After Intended Effect Achieved

II. H PEP Status (Cont'd.)

- PEP WILL TRANSITION INTO BUSINESS PLAN

- 1994 Business Plan
- Partial Integration (PEP Deliverables specified, PEP Action Plan Remains a Unique Document)
- 1995 Business Plan
: Full Integration of Open PEP Deliverables into Business Plan
- Validation Process Continues

II.H PEP Status (CONT'D.)

- THE PERFORMANCE ENHANCEMENT PROGRAM IS MAKING A POSITIVE CHANGE
- Management Development Program is Being Implemented
- Cultural Analysis Re-Survey Results Show Improvement
- Engineering Backlog Reduction is Complete on Two Units
- Technical Procedures Upgrades Are Being Accomplished
- Engineering and Maintenance Integration is Complete
- Root Cause Evaluations Are Becoming Part of NU Culture
- Self-assessment Manual Has Been Issued at Millstone Station
- Measures of Performance are Complete and Part of Management Process

II. I Responding to Employee Concerns

II. I Responding to Employee Concerns

EMPLOYEE CONCERNS ACTIVITY IS HIGH

1993	NRC MILLSTONE	NRC HADDAM NECK	NSCP
1st Qtr.	4	1	7
2nd Qtr.	8	$3\left(1^{*}\right)$	5
3rd Qtr.	15	2	8
4th Qtr.	11	$\left.22^{*}\right)$	4
Total 1993	38	11	24
1994			
1st Qtr.	9	2	4
Millstone \& Haddam Neck, Jointly			

II. I Responding to Employee Concerns (Cont'd.)

2.206 PETITIONS ARE ANOTHER INDICATOR OF EMPLOYEE CONCERN ACTIVITY

- FOUR PETITIONS FILED BY CURRENT NU EMPLOYEES PENDING AT THIS TIME
- TWO PETITIONS FILED BY FORMER NU EMPLOYEES RECENTLY RESOLVED BY THE NRC STAFF

II. I Responding to Employee Concerns (Cont'd.)

EMPLOYEE CONCERNS ACTIVITY HAS BOTH QUANTITIVE AND QUALITATIVE INPUTS

- WE ARE KEENLY AWARE OF THE CONCERNS RAISED EXTERNAL TO LINE MANAGEMENT - THAT ACTIVITY IS QUANTITATIVE AND MONITORED
- WE ARE QUALITATIVELY AWARE OF SAFETY ISSUES BROUGHT TO AND RESOLVED BY LINE MANAGEMENT
II. I kesponding to Employee Concerns (Cont'd.)

EMPLOYEE CONCERNS ISSUES REMAIN A KEY AREA OF MANAGEMENT FOCUS

- AGGRESSIVE, COMPREHENSIVE ACTIONS HAVE BEEN AND ARE BEING TAKEN TO:
- Resolve Current Issues
- Develop a Climate, Culture, and Management Responsiveness and Attentiveness Conducive to Raising and Resolving all Concerns through Line Management

II. I Responding to Employee Concerns (Cont'd.)

EMPLOYEE CONCERNS INVOLVEMENT BY MANAGEMENT IS HIGH

- NEEDS TO BE HIGH

- Involves Matters Affecting Nuclear Safety
- Management Involvement is Necessary to Learn Lessons and Achieve Desired Results
- Can Lead to Very Significant Problems/Resource Burden if Not Well Handled at the Outset
- Additional Resources Have Been and Will Be Made Available to Managers Who Need Them
II. I Responding to Employee Concerns (Cont'd.)

WE CONTINUE TO TAKE ACTIONS TO IMPROVE OUR RESPONSIVENESS TO CONCERNS

- BUSINESS PLAN INITIATIVES
- ENHANCED COMMUNICATIONS
- NSCP Director - Facilitated Case Studies: VP/Director Meetings and Peer Representatives
- NSCP Director Involvement in Engineering Ethics Training
- Communicating Appreciation for Those Who Raise Safety Concerns
- Frequent Management Dialogue With Those Who Have Raised Safety Issues
- INDEPENDENT EVALUATION OF TECHNICAL ISSUES
- Yankee Atomic
- Jim Partlow
- SUPPORT MECHANISMS ARE BEING EXPLORED FOR SUPERVISORS
- Enhanced Training
- Supervisor's Handbook
- Support Team

III. MAJOR LICENSING ISSUES

III. A SLCRS Long-Term Solution

III. A SLCRS Long-Term Solution

SLCRS/ABVS Description

- SLCRS

- The operability of SLCRS ensures that radioactive material that leaks from the primary containment into the secondary containment boundary following a DBA is filtered and absorbed prior to any release to the environment
- SLCRS is a redundant two train system with a common inlet and discharge duct system
- Prior to recently approved Technical Specifications, SLCRS was required to achieve a negative pressure of $0.25 \mathrm{~W} / \mathrm{g}$ in the secondary containment boundary within one minutes of DBA
- ABVS/ABFS
- The system design basis role is twofold:
- ABVS (which includes ABFS) provides cooling to vital equipment housed in the auxiliary building under normal and post-accident conditions
- Augments the SLCRS in completing its enclosure and ancillary building vacuum drawdown design requirement
- The ABVS is redundant in terms of active components, but lacks independence since failure of one train of equipment must be positively detected prior to startup of the standby train
- System timing under worst case failure and postulated accident and loss-of-power conditions, suffers while a determination of operational status of each of the ABVS trains is automatically made.

III. A SLCRS Long-Term Solution (Cont'd.)

- ABVS/ABFS (Cont'd.)
- This is quite unlike conventional redundant equipment trains wherein both auto-start on accident and both run oblivious to the other's operational status
- The net result is that the ABVS is complex and slow in response, in a role for which Technical Specifications require relatively rapid response
- Additionally, the system becomes complex to analyze, introducing the requirement to go beyond normal means to thoroughly coordinate design features and devices
- Positive means for one ABVS train to detect operation of the other, and vice versa, become cumbersome and introduces undesired time delays

III. A SLCRS Long-Term Solution (Cont'd.)

- RECENT ACTIVITIES

- October/November 1993, NNECO implemented several design changes to resolve the design deficiencies and technical specification to increase drawdown time to allow greater system tolerances for design complexity
- Yankee Atomic Electric Company Independent Assessment and NU's own Task Force provided several recommendations to further enhance the system reliability
III.A SLCRS Long-Term Solution (Cont'd.)

- SLCRS/ABVS ACTION PLAN

- Yankee Atomic and SLCRS Task Force recommendations include issues of both a hardware (system design) and software (preventive maintenance, surveillance testing, FMEA, training, etc.) nature
- Action Plan has been developed to resolve outstanding issues/recommendations using cost-effective and timeefficient approach
* Due to high cost and low safety significance, major modifications are not planned and are not warranted
- Hardware Issues
- Implementation of modifications identified in five engineering work requests (EWR) by the fifth refueling outage
- Consolidation of four EWRs into a PA and implementation in the sixth refueling outage
- ABVS FMEA to include additional factors
- Develop ABV'S/SLCRS detailed design description and walkdown
- Restore containment leak rate allowance and increase SLCRS/ABFS drawdown time
- Software Issues
- Ventilation air flow surveillance testing
* Evaluate the adequacy of preventive maintenance for SLCRS/ABFS components
* Training module will be developed to address test plan and test procedure development and test conduct and review of test results for design changes. This training module will be utilized for training design and system engineering personnel
- Regulatory and Analysis Options
= Relax T.S. Action for Inoperable SLCRS/ABFS Based on PRA Justification
- Pursue Exceptions to Standard Review Plan Using Radiological DBA LOCA Assumptions
- Increase drawdown time before exfiltration must be assumed
- No exfiltration for first minute
- Less than 100% exfiltration
- Reduced source-term for first few minutes
- Reduced Technical Support Center occupancy for first 15 minutes
- More effective containment sprayed/nonsprayed area mixing rate
- Reanalyze DBA LOCA Using SRP Allowed Assumptions
- Regain margin in containment leakage rate and maintain 2 minute drawdown
- Longer Term Improvements
- Staff approval of revised source term
(NUREG-1465) and application to existing
plants
- Industry groups (NEI) working with NRC to reduce requirements marginal to safety

III.B Status of SEP Topics (CY \& Millstone 1)

III.B Status of SEP Topics (CY \& Millstone 1)

MILLSTONE UNIT NO. 1

SEP Topic VIII-1.A Potential Equipment Failures Associated with Degraded Grid Voltage

SEP Topic VIII-3.B DC Power System Bus Voltage Monitoring and (ISAP Topic 1.25) Annunciation

Status - The NRC Staff by letter dated December 23, 1993, accepted the proposed modifications for the split-logic, loss of normal power detection scheme.

Action - NU - Submit proposed technical specification changes for degraded voltage settings in 1995.

- NU - Complete modifications during the Cycle 15 refueling outage in 1996 .
- NRC- Provide closeout letter for these SEP topics.

III.B Status of SEP Topics (CY \& Mxllstone 1) (Cont'd.)
 MILLSTONE UNIT NO. 1

SEP Topic III-6 Seismic Design Considerations (ISAP Topic 1.06)

Status - Safety-Related Piping Systems need to be upgraded for a Safe Shutdown Earthquake. The current approach would require substantial additional piping supports.

- A new approach to demonstrate seismic adequacy using the IPEEE seismic margins methodology will be proposed.
- Millstone Unit No. 1 will follow the same approach proposed for the Haddam Neck Plant and approved by the NRC Staff for Dresden 2 and 3 .
- NRC acceptance would greatly reduce the scope of the remaining modifications.

Action - NU - Submit letter requesting use of IPEEE seismic margins methodology to resolve this topic in 1994.

- NU - Implement remaining pipe support refueling outage in 1996 assuming revised approach.
- NRC- Provide response accepting revised approach.
III.B Status of SEP Topics (CY \& Millstone 1) Cont'd.)

CONNECTICUT YANKEE

SEP Topic III-1 Classification of Structural Components and (ISAP Topic 1.09) Systems
Status - A submittal was provided on January 27, 1993.
The NRC Staff has requested a comprehensive,
detailed analysis of the information
provided. This additional information was
submitted on April 11, 1994

Action - NRC - Provide closeout letter for this SEP Topic.

SEP Topics III-2 Wind and Tornado Loadings Tornado Missiles and III-4.A (ISAP Topic 1.06)

Status - The NRC SER was received on September 29, 1993.

- An air-cooled diesel has been purchased and will be installed during the Cycle 19 refueling outage in 1996.
- Also, MCC-5 modifications will be completed during the Cycle 18 refueling outage in 1995.

Action - NU - Complete modifications during the Cycle 19 refueling outage in 1996.

III.B Status of SEP Topics (CY \& Millstone 1) (Cont'd.) CONNECTICUT YANKEE

SEP: Topic III-6 (ISAD Topics $1.64,1.05)$

Status * The remaining piping systems to be upgraded are service water, main steam and main feedwater, all outside of containment.

A new approach to demonstrating seismic adequacy using seismic margin methodology was submitted on July 9, 1993 and discussed in a meeting with the Staff on March S, 1994.

- A revised approach using IPEEE seismic margins methodology will be proposed as a result of recent discussion with the Staff.
- The revised approach was approved by the NRC Staff for Dresden 2 and 3.
- NRC acceptance would greatly reduce the scope of the remaining modifications.

Action • NU- Submit letter requesting use of IPEEE seismic margins methodology to resolve this topic in April 1994.

NU- Implement Dipe support modifications during the Cycle 19 refueling outage in 1996 assuming revised approach.

NRC- Provide response accepting revised approach.
III. B Status of SEP Topics (CY \& Millstone 1) (Cont'd.)

CONNECTICUT YANKEE

```
SEP Topic III-7.B Design Codes, Design Criteria, Load
(ISAP Topic 1.09) Combinations, and Reactor Cavity Design
Criteria
Status - A final submittal was provided to the NRC Staff on January 19, 1993.
Action . NRC- Provide closeout letter for this SEP topic.
SEP Topic V-11.A Requirements for Isolation of HPSI and LPSI (ISAP Topic 1.02)
Status - Interlocks on the LPSI/Core Deluge Isolation valves will be installed to prevent opening of the valves until the RCS pressure is reduced below a certain value.
Action - NU - The modifications will be implemented during the Cycle 18 refueling outage in 1995.
```


III.B Status of SEP Topics (CY \& Millstone 1) (Cont'd.)

 CONNECTICUT YANKEESEP Topic VI-4 (ISAP Topic 1.03)

Containment Isolation System

Status - In a letter dated July 26, 1993, the NRC Staff concluded that all penetrations either meet the provisions of or the intent of the GDCs 54 through 57, except for $P-39$ and $P-40$ (containment purge and exhaust lines).

- On November 29, 1993, CYAPCO transmitted to the Staff information on how penetration P-39 and $P-40$ would be protected via a second barrier.
- Changes to the CY technical specifications have been developed to support the proposed modifications.

Action - NU - The proposed technical specification changes for the containment purge and exhaust line are scheduled to be submitted in May 1994.

- NU - The modifications are scheduled to be implemented during the Cycle 18 refueling outage in 1995.

NRC - Approve proposed technical specification changes to close this topic.

III.C Control Room Design Review - hed Status Millstone 1 \& CY

NRC/NU COUNTERPARTS MEETING APRIL. 21, 1994iII.C Control Room Design Review
STATUS OF HUMAN ENGINEERING DISCREPANCIES (HEDS) FOR MILLSTONE UNIT NO. 1

- TOTAL NUMBER OF HEDS: 361
- number of heds dispositioned Or will be DISPOSITIONED BY $\geq 80 \%$ START OF CYCLE 15 248
- REMAINING NUMBER OF HEDS TO BEDISPOSITIONED OR IMPLEMENTED BY ENDOF CYCLE 15113
iII.C Control Room Design Review (Cont'd.)

STATUS OF PRIORITY 1 HUMAN ENGINEERING DISCREPANCIES (HEDS) FOR THE HADDAM NECK PLANT

- REMAINING HEDS TO BE RESOLVED DURING THE UPCOMING CYCLE 18 REFUELING OUTAGE:
- Group 2 (Main Control Board) 25 HEDs
- Group 13 (Control Board Relabeling) 72 HEDs
- ALL OTHER PRIORITY 1 HEDS (TOTAL $=351$) HAVE BEEN DISPOSITIONED/RESOLVE DURING PREVIOUS REFUELING OUTAGES
III.d Appendix J Modifications/Changes - Millstone 1

III. E Spent Fuel Storage Capacity and Future Spent Fuel Storage Plans at Millstone Units and Cy

III. E Spent Fuel Storage Capacity and Future Spent Fuel Storage Plans at Millstone Units and CY

OBJECTIVES

- PROVIDE FULL-CORE-DISCHARGE (FCD) CAPABILITY FOR EACH UNIT UNTIL THE END OF THE OPERATING LICENSES
- PROVIDE COST EFFECTIVE ON-SITE STORAGE UNTIL DOE REMOVES SPENT FUEL

STRATEGY

- PURSUE SOLUTIONS THAT MINIMIZE UP-FRONT INVESTMENT
- PURSUE SOLUTIONS THAT MINIMIZE REGULATORY APPROVALS
- MAINTAIN OPTIONS OPEN

III. Epent Fuel Storage Capacity and Future Spent

 Fuel Storage Plans at Millstone Units and Cy (Cont'd.)SPENT FUEL POOL STORAGE REQUIREMENTS

UNIT	CURRENT* NO. OF ASSEMBLIES	CURRENT CAPACITY	PLANNED CELL ADDITIONS	CAPACITY SHORTFALL TO MEET EOL
MP1	2116	3229	227	$-860^{* *}$
MP2	784	1306	0	$-549^{* *}$
MP3	322	756	>1105	0
CY	816	1172	308	0

* As of December 1993
** Shortfall can be met through multiple options

III. E Spent Fuel Storage Capacity and Future Spent Fuel Storage Plans at Millstone Units and CY (Cont'd.)

FUEL STORAGE REQUIREMENTS

	Loss of FCD Capability	DOE Removal Schedule Year of Allocation	Licensed Life to
MP1	2002	Year 1	2010
MP2	2002	Year 5	2015
MP3	1999^{*}	Year 15 (es..)	2025
CY	2000^{*}	Year 1	2007

* Full utilization of pool by installing additional racks will provide storage to end of life.

At the present time, the units are expected to lose FCD capability as indicated above. Also displayed is the first year DOE currently plans to remove fuel from each unit.

NU has evaluated multiple options to address fuel storage requirements, such as consolidation, on-site transfers, and dry cask storage.
III. E Spent Fuel Storage Capacity and Future Spent Fuel Storage Plans at Millstone Units and Cy (Cont'd.)
SUMMARY

- UTILIZE WET (IN POOL) STORAGE AT MP AND CY
- PARTIAL RERACK OF HADDAM NECK PLANT IN 1995-1996
- EVALUATE REMOVAL OF MP2, REGION B CELL BLOCKERS IN 1995
- ADD RACK MODULES TO MP1 IN 1997
- RERACK MP3 IN 1998
- EVALUATE ECONOMICS OF ALTERNATIVES FOR MP1 AND MP2TRANSFERS/CONSOLIDATION/DRY STORAGE/NEW TECHNOLOGIES
- ASSESS DOE ABILITY TO PERFORM
- IMPLEMENT THE MOST ECONOMIC ALTERNATIVE
- NRC APPROVAL REQUIRED FOR IMPLEMENTATION

NRC/NU COUNTERPARTS MEETING

APRIL 21, 1994

IV. REGULATORY INTERFACE ISSUES

IV. A NRC/NU Communication - General Discussion
IV. B NRC Inspection Schedule

IV.C ISAP License Conditions

IV.C ISAP License Conditions

- ISAP BEGAN AT HADDAM NECK AND MILLSTONE 1 IN 1985
- LICENSE CONDITIONS INITIALLY PREPARED IN 1988
- SUPPLEMENTAL INFORMATION PROVIDED IN DECEMBER 1991
- LICENSE CONDITIONS ISSUED FEBRUARY 1992 FOR THE HADDAM NECK PLANT AND MILLSTONE 1 - EFFECTIVE FOR THREE YEARS (EXPIRE FEBRUARY 1995)
- NU CURRENTLY PROVIDING APPROXIMATELY SEMIANNUAL UPDATE REPORTS
- ISAP CONTINUES TO BE BENEFICIAL TOOL
- Several ISAP success stories - Examples:
- Millstone 1 Hydrogen Monitoring
. Haddam Neck Plant Tornado Missile Protection Modifications
- Haddam Neck Plant Containment Isolation Valves
- PLANS ARE TO REQUEST HADDAM NECK PLANT AND MILLSTONE 1 LICENSE CONDITIONS REMAIN IN EFFECT
- License Amendment Requests Would Be Submitted in mid-1994
- CURRENT EXPECTATIONS CONTINUE TO BE THAT ISAP WILL BE IMPLEMENTED ON MILLSTONE 2 AND 3
- ISAP BEING REVIEWED AS PART OF ONGOING PROJECT PRIORITIZATION RE-ENGINEERING EFFORT

V. GENERAL LICENSTMG TOPICS

V.A Implementation of Line-Item

 Technical Specification ImprovementsStatus of Generic Letters That Recomend specific Technical Specification Changes

Generic Letter (GL) Number/bate	Description	Millstone 1	Willstone 2	Millstone 3	Haddam Neck Plant
$\begin{aligned} & \text { GL. 93-08 } \\ & 12 / 29 / 93 \end{aligned}$	Relocation of Technical Specifications Tables of Instrument Response Time Limits.	Under Review	Under Review	Under Review	Under Review
$\begin{aligned} & \text { GL. } 93-07 \\ & 12 / 28 / 93 \end{aligned}$	Modification of the Technical Specifications Administrative Control Requirements for Emergency and Security Plans.	Under Review	Under Review	Under Review	Under Review
$\begin{aligned} & \text { GL. 93-05 } \\ & 9 / 27 / 93 \end{aligned}$	Line item Technical Specifications Improvements to Reduce SR for Testing During Power Operation.	Under Review	Under Review	Under Review	Under Review
$\begin{aligned} & \text { GL } 91-13 \\ & 9 / 19 / 91 \end{aligned}$	Request for Information Related to the Resolution of Generic Issue 130, "Essential Service Water System Failures at Multi-unit sites," pursuant to 10CFR50. 54 (f).	Not Applicable	Not Applicable	Not Applicable	Not Applicable
$\begin{aligned} & \text { GL 91-09 } \\ & 6 / 27 / 91 \end{aligned}$	Modification of Survetllance Interval for the Electrical Protective Assemblies in Power Suppliers for the Reactor Protection System.	Under Review	Not Applicable	Not Applicable	Not Applicable
GL. 91-08	Removal of Component Lists from Technical Specifications.	Under Review	Under Review	Implemented	Partially Implemented

Generic Letter (GL) Number/Date	Description	Millstone 1	Millstone 2	Millistone 3	Haddam Neck Plant
$\begin{aligned} & \text { GL } 91-04 \\ & 4 / 2 / 91 \end{aligned}$	Changes in Technical Specification Surveillance Intervals to Accommodate a 24 -month fuel cycle.	No Plans to Implement ${ }^{\text {(11) }}$	Under Review	Under Review	Under Review
$\begin{aligned} & \text { GL 91-01 } \\ & 3 / 3 / 91 \end{aligned}$	Reactor Vessel Surveillance Capsule.	No Plans to Implement:	Under Review	Under Review	Implemented
$\begin{aligned} & \text { GL. } 90-09 \\ & 12 / 11 / 90 \end{aligned}$	Alternative Requirements for Snubber Visual Inspection Intervals and Corrective Actions.	Implemented	Implemented	Implesented	Implemented
GL. 90-06	Resolution of Generic Issue 70, "Power-Operated Relief Valves Reliability, " and Generic Letter 94, "Additional Low-Temperature Overpressure Protection for Light Water Reactors," pursuant to 10CFR50.54 (f).	Not Applicable	Under review	Implemented	Implemented
$\begin{aligned} & \text { GL } 90-02 \\ & 02 / 01 / 90 \end{aligned}$	Alternative Requirements for Fuel Assemblies in the Design Features Section of Technical Specifications.	No Plans to Implement	Under Review	Implemented	Partially Implemented

(1) For Millstone Unit 1 NNECO has implemented the 24 month fuel cycle prior to the issuarce of Generic Letter 91-04. However, the survelllance extension for snubbers has been implemented.

Generic Letter (GL) Number/Date	Description	M111stone 1	Millstone 2	Millstone 3	Haddam Neck Plant
$\begin{aligned} & \text { GL. } 89-14 \\ & 8 / 21 / 89 \end{aligned}$	Line Item Improvements in Technical Specificationsremoval of the 3.25 Limit on Extending Surveillance Intervals.	Implemented	Implemented	Implemented	Implemented
$\begin{aligned} & \text { GL 89-01 } \\ & 01 / 31 / 89 \end{aligned}$	Implementation of Programmatic Controls for Radiological Effluent Technica! Specifications in the Administrative Control Section of the Technical Specification and the Relocation of Procedural Details of RETs to the Offsite Dose Calculations Manual or to the Process of Control Program.	Partially Implemented	Partially Implemented	Partially Implemented	Partially Implemented
$\begin{aligned} & \text { GL } 88-16 \\ & 10 / 04 / 88 \end{aligned}$	Removal of Cycle-Specific Parameter Limits from Technical Specification.	Implemented	Implemented	Implemented	Implemented
$\begin{aligned} & \text { GL 88-05 } \\ & 03 / 22 / 88 \end{aligned}$	Removal of Organization Charts from Technical Specification Administrative Control Requirements.	Implemented	Implemented	Implemented	Implemented
$\begin{aligned} & \text { GL } 87-09 \\ & 06 / 04 / 87 \end{aligned}$	Sections 3.0 and 4.0 of the Standard Technical Specification on the applicability of LCO and Surveillance Requirements.	No Plans to Implement	Implemented	Implemented	Implemented

Generic Letter (GL) Number/Date	Description	Millstone 1	Willstone 2	Millstone 3	Haddam Neck Plant
GL $85-10$ 4/24/86 and GL. 88-12 8/2/88	Implementation of Fire Protection Requirements.	Implemented	Under Review	Implemented	Under Review with NRC
$\begin{aligned} & \text { GL. } 85-09 \\ & 05 / 23 / 85 \end{aligned}$	Technical Specification for 6L 83-28, Item 4.3, for Westinghouse Plants.	Not Applicable	Not Applicable	Implemented in the Original Technical Specifications	Implemented
$\begin{aligned} & \text { GL. } 84-15 \\ & 07 / 02 / 84 \end{aligned}$	Proposed Staff Action to Improve and Maintain Diesel Generator Reliability.	Resolved via 2/4/85 Letter to NRC	Resolved via 2/4/85 Letter to NRC	Implemented in the Original Technical Specification and Further Modified via Amendment 64 $(3 / 9 / 92)$	Implemented
$\begin{aligned} & \text { GL84-13 } \\ & 5 / 3 / 84 \end{aligned}$	Technical : cification fer Snubbers	Implemented	Implemented	Implemented in the Original Technical Specifications	Implemented in the Reformatted Technical Specifications
$\begin{aligned} & \mathrm{GL} .83-36 \\ & 11 / 01 / 83 \\ & \text { or } \\ & \mathrm{GL} 83-37 \\ & 11 / 1 / 83 \\ & \hline \end{aligned}$	NUREG-0737 Technical Specificatiuns.	Implemented	Implemented	Implemented in the Original Technical Specifications	Implemented
$\begin{aligned} & \text { GL. 83-28 } \\ & \text { Supp. } 1 \\ & 10 / 7 / 92 \\ & \hline \end{aligned}$	Required Actions Based on Generic Implications of Salem ATHS Events.	Not Applicable	Not Applicable	Resolved	Not Applicable

V.b Plant Specific Issues

V.B Plant Specific Issues
 MILLSTONE UNIT NO. 1

INITIATIVES RECENTLY SUBMITTED

- APPENDIX J - PROPOSED RESOLUTION OF LLRTS
- RESPONSE TO BULLETIN 93-02, SUPPLEMENT 1
- ISAP UPDATE REPORT

UPCOMING INITIATIVES

- ISI REPORT (OUTAGE)
- ILRT REPORT (OUTAGE)
- ISAP UPDATE REPORT (ITEMS COMPLETED DURING OUTAGE)
- SHIFT CREW COMPOSITION - 3RD RO LICENSE AMENDMENT REQUEST
- VERIFICATION OF COMPLETION OF COMBUSTIBLE GAS CONTROL MODIFICATIONS
- LPCI/ESW $\triangle P$ ISSUE

LONG-TERM INITIATIVES

- PROPOSED LICENSE AMENDMENT - SINGLE LOOP OPERATION
- REMOVAL OF COMPONENT LISTS FROM TECHNICAL SPECIFICATIONS GL 91-08

AWAITING NRC ACTION

- ASME SECTION XI RELIEF REQUEST

V.B Plant Specific Issues (Cont'd.)
 MILLSTONE UNIT NO. 2

INITIATIVES RECENTLY SUBMITTED

- PROPOSED LICENSE AMENDMENTS
- 18-Month Surveillances, One-Time Extension
- Charcoal Filter Testing

UPCOMING INITIATIVES

- PROPOSED LICENSE AMENDMENT ESAS
- PROPOSED LICENSE AMENDMENT BATTERY CHARGER REPLACEMENT
- PROPOSED LICENSE AMENDMENT GL 90-06, BORON DILUTION, SD RISK
- PROPOSED LICENSE AMENDMENT FEEDWATER ISOLATION COMPONENTS
- PROPOSED LICENSE AMENDMENT REMOTE SHUTDOWN PANEL METER -
- PROPOSED LICENSE AMENDMENT FOR METEOROLOGICAL DATA COLLECTION/SWPP COLLECTION
- PROPOSED LICENSE AMENDMENT FOR SFP AREA ACCESS
- 24-MONTH FUEL CYCLE

LONG-TERM INITIATIVES

- ISAP IMPLEMENTATION/IPE IMPLEMENTATION
- REMOVAL OF CONTAINMENT ISOLATION VALVES FROM TECHNICAL SPECIFICATION

AWAITING NRC ACTION

- CHARCOAL FILTER TESTING LICENSE AMENDMENT

V.B Plant Specific Issues (Cont'd.)
 MILLSTONE UNIT NO. 3

INITIATIVES RECENTLY SUBMITTED

- PROPOSED LICENSE AMENDMENTS

- AC/DC Onsite Power Distribution System - Shutdown
- EDG Fuel 011 Capacity
- Reactor Coolant System - Flow Rate
- Main Steam Safety and Pressurizer Safety Valves - Lift Settings
- MSV Building Area Temperature

UPCOMING INITIATIVES

- Relaxation of the SLCRS Vacuum Drawdown Requirement and Regain the Margin Related to Containment Leak Rate
- Relocate Response Time for RPS and ESFAS from Technical Specification to Technical Requirements Manual - GL 93-08
- Technical Specification Improvement per GL 93-05
- 24 - Month Fuel Cycle

LONG-TERM INITIATIVES

- ISAP Submittal and License Condition
- Line Item Improvements Consistent with NUREG-1431

AWAITING NRC ACTION

NONE

V.B Plant Specific Issues (Cont'd.)

HADDAM NECK PLANT

INITIATIVES RECENTLY SUBMITTED

- PROPOSED LICENSE AMENDMENTS
- Pressure/Tempercture Limits
- RCP Pump Flywheel
- Spent Fuel Pool and New Fuel Storage Modifications
- Physics Methodology for PWR Reload Design
- UPDATE ON THE PROPOSED MODIFICATIONS TO THE AFW SYSTEM
- ISAP UPDATE
- PROPOSED RESOLUTION OF SEPT TOPIC III-1, "CLASSIFICATION OF STRUCTURAL COMPONENTS AND SYSTEMS"
- PROPOSED RESOLUTION OF SEP II-6, "SEISMIC DESIGN CONSIDERATIONS"

```
V.B Plant Specific Issues (Cont'd.)
    HADDAM NECK (Cont'd.)
```


UPCOMING INITIATIVES

- RESOLUTION OF CONTROL ROOM DESIGN REVIEW; PRIORITY 1 HUMAN ENGINEERING DISCREPANCIES
- PROPOSED LICENSE AMENDMENT - CYCLE 18 RELATED REFUELING OUTAGE
- PROPOSED LICENSE AMENDMENT - 24-MONTH FUEL CYCLE

LONG-TERM INITIATIVES

- AFW SYSTEM UPGRADINGS - ELECTRIC-DRIVEN PUMP
- CORE-MELT FREQUENCY REDUCTION EFFORTS EVALUATION
- Closeout of long-standing sep and tmi topics
- IPE EFFORTS

AWAITING NRC ACTION

- RESOLUTION OF PENDING SEP TOPIC FOR WHICH CLOSURE HAS BEEN PROPOSED
NRC/NU COUNTERPARTS MEETING APRIL 21, 1994
V.C Status of USI, TMI Items, SEP Items, GSIs

V.C Status of USI, TMI Items, SEP Items GSIs

USIS--Open Items

Haddam Neck Plant

| USI | Title | Action
 By | Remarks |
| :--- | :--- | :---: | :--- |$|$| A-31 | RHR Shutdown
 Requirement | Issue addressed under
 ISAP Topic 1.02 |
| :---: | :---: | :--- |
| A-40 | Seismic Design Criteria | - |
| Issue addressed under
 ISAP Topic 1.04 | | |
| A-44 | Station Blackout | NU |
| NRC issued supplemental
 SER on June 17, 1992.
 Station Blackout
 Program has been
 implemented. | | |
| A-46 | Seismic Qualification
 of Equipment in
 Operating Plants | NU |
| Final walkdowns
 performed during the
 1993 refueling outage.
 A report has been
 submitted to the NRC
 Staff. | | |

Millstone 1

USI	Title	Action By	Remarks
A-1	Water Hammer	NRC	Topic addressed under ISAP Topic 1.43. Topic closed. Awaiting NRC Staff response.
A-40	Seismic Design Criteria	NU	Being addressed as part Of ISAP Topic 1.06

V.C Status of USI, TMI Items, SEP Items gSis (Cont'd.)

USI	Title	Action By	Remarks
A-44	Station Blackout	NU	NRC-issued SER; implementation during the current refueling outage. Discussed as part of ISAP Topic 1.106
A-46	Seismic Qualification of Equipment in Operating Plants	NU	Being pursued via SQUG methodology; work currently scheduled to commence 5/93
A-47	Safety Implications of Control Systems	NRC	Licensee response under staff review
A-48	Hydrogen Control	NU	NRC issuad SER in August $19: 33$. Implementaition being completed during current refueling outage.

Millstone?

USI	Title	Action By	Remarks
A-44	Station Blackout	-	NRC-issued SER; implemented by 1994 refueling outage
A-46	Seismic Qualification of Equipment in Operating Plants	NU	Being pursued via SQUG methodology; work currently scheduled to commence 7/93
A-47	Safety Implication of Control Systems	NRC	Licensee position under staff review

V.C Status of USI, TMI Items, SEP Items GSIs (CONt'd.)

Millstone 3

USI	Title	Action By	Remarks
A-44	Station Blackout	-	NRC-issued SER; implemented during the fourth refueling outage
A-47	Safety Implication of Control Systems	NRC	Licensee position under staff review

IMI Action Items--Open Items.

		Action By	Status
HADDAM NECK			
1.D.1	Control Room Design Review	NU	Open
MILLSTONE 1			
I.D.1.2	Detailed CRDR	NU	Open
MILLSTONE 2			
1.D.1.2	Detailed CRDR	-	Closed
Millstone 3			
None			

STATUS OF CY SEP OPEN ITEMS

Fobruary 1994

$\begin{aligned} & \text { 8Ep } \\ & \text { TOPIC } \end{aligned}$	TITLE	PLANS	MPLEMENTATION ECHEDULE	TECHNICAL LEADS
$\begin{aligned} & \text { H-2 } \mathrm{A} \\ & \mathrm{H}-4 . \mathrm{A} \end{aligned}$	Wind and Tornado Loadings Tornado Misellea (PRA Signiflomnt) IS AP Tople 1.06	An air-cooled diesel will be instaffed during the Cyole 19 refusling outage. Also, MCC-5 separation modifleaclone will be completed during the Cycle 18 refualling outage. A submirtal discussing the proposed modiflcations and echadule was previded on June 30 , 1993. Additionat Information was provided on August 23, and September 14, 1993. The NRC SER wes recelved on September 29, 1993.	1938 iCyole 19 Outage)	R. J. Palmiart, C. J. Gladding
V1-4	Containment inolation System (Not PRA Significant) ISAP Topic 1.03	In a ietter dated July 26, 1993, the NPC Staff concluded thet all penetrations sither meet the provisions of or the Intent of the GDC 54 thiough 57, except for P- 39 and P-40 foontalnment purge and exhaust line1. On November 29, 1993, CYAPCO tranamitted to the Staff informetion on how penetration P. 39 end P- 40 would be protected vis asecond bserier. The modlfiostions to these barifers will be implemented during the Cyois 1 है refuelling outsge. Chenges to the CY technicel speciflications will be developed to eupport the proposed modificatione. Currentiy, a letter to the Staff ie achoduled to be submittad in February 1394 which wirl addresa the two ramaining confirmatory Items from the NRC SER of July 28, 1993. The two issues to be eddressed are (1) vertify that all automatio feolation valvee take the position of grestest eafety upon the loes of power; and (2) for those valives that do not recsive an automatic closure signsl, describe the edministretivs contrals thet assure the vaives are locked closed, or procedurally controlled during use.	Cyole 18 outage, lete 1994.	C. J. Gledding, R. M. Kacich R. J. Palmiari
(18-1	Clsestification of Structural Componente and Systems (Not PRA Signifionnt) ISAP Topie 1.009	A submittal was provided on Jenuary 27, 1993. The NRC Statf hes informally requested a comprehensive, detalled analysle of the information provided in Jamsery 1993. This additionsl information is schaduled to be submitted in February 1994.	1994 Ponding NRC action.	M. Kupinski, R, M. Kacich

STATUS OF CY SEP OPEN ITEMS (cont'd.)

$\begin{gathered} \text { SEP } \\ \text { TOPIC } \end{gathered}$	TITLE	PLANS	IMPLEMENTATION 8CHEDURE	TECHNICAL LEADE
18-6	Salemio Design Considarations (Small PRA Banefit) IS AP Topio $1.04,1.05$	The temaining piping systems to bo upgraded ar* servion watef, main steam and main feadwster, all outside of conta'rment. A new spprosch to demonatrating seismie adsquacy using zeismic margin methodology wes submitted on July 9, 1393. NRC soceptence would dramatioslly reduce the scops of the remaining modificestione. A masting with the NRC Steff is planned for Merch 1994. A supplemental sefety svaluation from the NRC Staff was recolved on January 6, 1394. Vie thie letter, the Staff eoncluded that the analysula and design of the new switehgesr bullding is edequate and that the opan lesues related to the plipe gallery struoture, euxiliary feedwater pumphouse and the PAB have bean resolved.	1998 (Cycle 19 Outsge) for Pipe Supporte	M. Kupinsk, G. J. Gladding. R. M. Kscich
V-19.A	Requiramenta for isolation of HPSI and LPSI (PRA Signifoomet) ISAP Topie 1.02	Interfocke on the LPSI/Core Deluge iesietion velven wili be insteilod during the Cycle 18 refualing outsge. The intarfocks will prevent opening of the valves until the RCS pressure ie reduoed below s eartain value.	Cyele is Outage, late 1994.	G. J. Glodding
限-7.8	Design Codes, Design Criterla, Lesd Combinations, and Reactor Cevity Design Criterla ISAP Tople 1.09	Final submittal providad on January 19, 1993. No sotion needed by NU at thie time. An NRC SER expected in July 1394.	1994 Pending NRC approvel.	M. Kupinski, R. M. Kacich

MILLETONE UNIT NO. 1
SEP BTATUS

$\begin{gathered} \text { EEP } \\ \text { Topie No. } \\ \text { (IBAP No.) } \end{gathered}$	Title	status	Comment	Closure Document
$\begin{gathered} \text { II-3.B, } \\ \text { II-3.B.1, } \\ \text { II-3.C } \\ (1.19) \end{gathered}$	Flooding Elevation: Intake Structure; Local Flooding; Gas Turbine Building; Diesel Fuel Dil; Emergency Procedures	closed		SER from NRC dated from January 4, 1990.
$\begin{aligned} & \text { II.4.F } \\ & (1.19) \end{aligned}$	```Turbine Building; Gas Turbine Generator Building; Burled Pipelines```	closed		M. L. Boyle letter to E. J. Mroczka, January 4, 1990.
$\begin{aligned} & \operatorname{III}-1 \\ & (1.15) \end{aligned}$	Radiography Requirements Fracture Toughness; Valves; Pumps; Storage Tanks	closed		Submittal of UFSAR on March 27, 1987. Draft NUREG-1184, dated April 2 , 1987.
$\begin{gathered} \text { III-2 } \\ (1.19) \\ \hline \end{gathered}$	Wind and Tornado Loadings	closed		SER from NRC dated November 11, 1985.
$\begin{gathered} \text { III-3.A } \\ (1.19) \\ \hline \end{gathered}$	Flood Elevation; Groundwater	closed		SER from NRC dated January 4, 1990.
$\underset{(1.15)}{\operatorname{III}-3 . C}$	Structures and Components Requring Inspection and Inspection Program	closed		Submittal of UFSAR in March of 1987. ISAP submittal dated Novemher 9, 1998. Draft NURE-1184, dated April 2 , 1987.

MILLETONE UNIT NO. 1

MILLETONE UNIT NO. 1
gRE BTATU8

gep Tople No. (IBAF NO.)	Title	status	Comments	Closure Document
III-10.A	Thermal-overload Protection for Motors of Motoroperated Valves	closed		```SER from NRC September 16, 1985. IPSAR Supplement Section 2.11.```
IV-2	Reactivity Control Systems	closed		Amendment \$97 to License
V-5	Reactor Coolant Pressure Boundary Leakage Detection	closed		Amendment $\$ 97$ to License
$\mathrm{V}-6$	Reactor Vessel Integrity	closed		D. M. Crutchfield letter to W. G. Counsil, August 28, 1982.
V.10.A	Residual Heat Removal System Heat Exchanger Tube Failure	Closed		IPSAR, Section 3.1.
V-10.B	Residual Heat Removal System Reliability	Closed		IPSAR Supplement Section 4.
$\begin{aligned} & V-11 . A \\ & (1.04) \end{aligned}$	Requirements for Isolation of High- and Low-Pressure Systems	Closed		Draft NUREG-1184, dated April 2, 1987.
V-11. ${ }^{\text {B }}$	RHR System Interlock Requirements	Closed		IPSAR, Section 3.1
$\mathrm{V}-12 . \mathrm{A}$	Water Chemistry Limits	Closed		Amendment 799 to License

MILLSTONE UNIT NO. 1

8EP BTATUG

EEY Topic Mo. (IBAP NO.)	itle	Status	Comments	Closure Docurent
VI-1	Organic Materials and Post Accident Chemistry	closed		J. Shea to w. G. Counsil February 26, 1982.
$\begin{gathered} \text { VI-4 } \\ (1.03) \\ \hline \end{gathered}$	Containment Isolation	closed		SER from the Staff on July 7, 1983.
VI-7.A. 3	ECCS Actuation System	closed		SER from the staff dated July 5, 1983.
$\mathrm{VI}-7 . \mathrm{A} .4$	Core Spray Nozzle Effectiveness	closed		IPSAR Section 4.22.
$\begin{gathered} \text { VI-7.C. } 1 \\ (1.21) \end{gathered}$	Redundant Onsite Power Systems	Closed		ISAP submittal dated November 9, 1988. NRC SER dated Septemioer 3, 1991.
$\begin{gathered} \text { VI-10.A } \\ (1.22) \\ \hline \end{gathered}$	Testing of RTS and ESF	closed		IPSAR Supplement, section 4.
VII-1.A	Isolation Devices Between Reactor Erotection System (RPS) and Monitoring Systems	closed		NRC SER dated September 3 , 1991.
VII-3	Systems Required for Safe Shutdown	closed		IPSAR Section 4.2.6.

MILLETONE UNIT HO. 1 SEP ETATUB

MILLSTONE URXT NO. 1
BEP BTATUE

MYLLETONE UNIT NO. 1
GEP ETATUS

	88? Topic No. (ISAP No.)	Title	Status	Comments	Closure Docurent
	$x V-7$	Reactor Coolant Pump Rotor Seizure and Shaft Break	closed		D. M. Crutchfield to W. G. Counsil, December 4, 1981. IPSAR, Section 3.1.
	XV-16	Radiological Consequences of Failure of Small Lines Carrying Primary Coolant Outside Containment.	closed		Amendment 999 to license and NRC SER June 21 1984.
7	XV-18	Radiological Consequences of a Main Steam Line Failure Outside Containment	Closed		Amendment $\# 99$ to license and NRC SER June $21,1984$.
$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	XV-19	LOCAs Resulting From Spectrum of Postulated Pipe Breaks Within RCPB	Closed		IPSAR, Section 3.1

SUMMARY:
Total Open SEP Topics: 2
Awaiting NRC closure: 2

FACILITY NAME:	Haddam Neck Plant
DOCKET NO.:	$50-213$
LICENSEE:	Connecticut Yankee Atomic Power Company

 STATUS OF LICENSEE IMPLEMENTATION OF GENERIC SAFETY ISSUES
 RESOLVED WITH IMPOSITION OF REQUIREMENTS OR CORRECTIVE ACTIONS

	GSI/(MPA No.)	Title	Applicability	Status*	Comments
	40 (B065)	Safety Concerns Associated With Pipe Breaks in the BWR Scram System	All BWRs	N/A	--
	41 (B058)	BWR Scram Discharge Volume Systems	All BWRs	N/A	--
0	43 (8107)	Reliability of Air Systems	All Plants	C	AFW modifications in Cycle 16 refueling outage completed.
$\stackrel{\sim}{v}$	51 (L913)	Improving the Reliability of OpenCycle Service Water Systems	All Plants	C	ISAP Topic 1.120 , see CYAPCO submittal dated $8 / 4 / 92$.
	67.3 .3 (A017)	Improved Accident Monitoring	All Plants	C	ISAP Topic 1.21, see CYAPCO submittal dated 3/30/94
	75 (8076)	Item 1.1--Post-Trip Review (Program Description and Procedure)	All Plants	C	Closed by NRC SER dated $3 / 20 / 85$.
	75 (B085)	Item 1.2--Post-Trip Review--Data and Information Capability	All Plants	C	Closed by NRC SER dated $7 / 3 / 85$.
	75 (8077)	Item 2.1--Equipment Classification and Vendor Interface (Reactor Trip System Components)	All Plants	C	Closed by NRC SERs dated 8/15/86 and 4/22/87.

GSI/ /MPA Mo.)	Title	Applicability	Status*	Comments
75 (8086)	Item 2.2.1--Equipment Classification for Safety-Related Components	All Plants	C	Closed by ISAP Topic 1.36, submittal dated 4/30/90.
75 (L003)	Items 2.2.2--Yendor Interface for Safety-Related Components	All Plants	C	ISAP Topic 1.36 and NRC SER dated $5 / 27 / 87$. NNECO addressed open issues in response to GL 90-03, dated $4 / 19 / 91$. Closed by NRC letter dated May 3, 1991.
75 (B078)	Items 3.1.1 \& 3.1.2--Post- Maintenance Testing (Reactor Trip System Components)	All Plants	c	Closed by NRC SER dated 2/21/86.
75 (B079)	Item 3.1.3--Post-Maintenance Test-ing--Changes to Test Requirements (Reactor Trip System Components)	All Plants	C	Closed by NRC SER dated $10 / 16 / 85$.
75 (8087)	Items 3.2.1 \& 3.2.2--PostMaintenance Testing (All Other Safety-Related Components)	All Plants	c	Closed by NRC SER dated $2 / 21 / 86$.
75 (8088)	Item 3.2.3--Post-Maintenance Test-ing--Changes to Test Requirements (All Other Safety-? ${ }^{\text {alated Compo- }}$ nents)	All Plants	C	Closed by NRC SER dated $10 / 16 / 85$.
75 (B080)	Item 4.1--React.r Trip System Reliability (Vendor-Related Modifications)	All Plants	C	Closed by NRC SER dated $2 / 21 / 86$.

[^0]

GSI/ (MPA No.)	Title	Applicability	Status*	Comments
B-36	Develop Design, Testing and Maintenance Criteria for Atmosphere Cleanup System Air Filtration and Adsorption Units for Engineered Safety Features Systems and for Normal Ventilation Systems	All Plants With OL Applications After 04/01/80	N/A	.
B-63 (8045)	Isolation of Low Pressure Systems Connected to the Reactor Coolant System Pressure Boundary	All Plants	$\stackrel{I}{(1994)}$	Plant modification planned for Cycle 18 refueling outage.

	FACILITY NAME: DOCKET NO.: LICENSEE:	Millstone Nuclear Power Station, Unit No. 1 50-245 Northeast Nuclear Energy Company STATUS OF LICENSEE IMPLEMENTATION OF GENERIC SAFETY ISSUES RESOLVED WITH IMPOSITION OF REQUIREMENTS OR CORRECTIVE ACTIONS			
	GSI/(MPA No.)	Title	Applicability	Status*	Comments
	40 (B065)	Safety Concerns Associated With Pipe Breaks in the BWR Scram System	All BWRs	C	Addressed under ISAP Topic 1.29. Closed by NRC in NUREG-1184.
	41 (B058)	BHR Scram Discharge Volume Systems	All BWRs	C	License Amendment \#85, dated $11 / 12 / 82$.
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	43 (B107)	Reliability of Air Systems	All Plants	C	NNECO submittals dated 5/4/90, 5/11/90, and NRC letter dated 10/15/91.
	51 (L913)	Improving the Reliability of OpenCycle Service Water Systems	All Plants	$\begin{gathered} 1 \\ (5 / 94) \end{gathered}$	Addressed Under ISAP Topic 1.112. NNECO submittals dated $1 / 25 / 90,6 / 1 / 90,4 / 3 / 92$ and $3 / 23 / 94$.
	67.3 .3 (A017)	Improved Accident Monitoring	All Plants	c	NRC issued SER in December which concluded that NNECO is in compliance with RG 1.97. Remaining Items to be addressed under ISAP Topic 1.09.

	GSI/(MPA No.)	Title	Applicability	Status*	Comments
	75 (8088)	Item 3.2.3--Post-Maintenance Test-ing--Changes to Test Requirements (All 0ther Safety-Related Components)	All Plants	C	Addressed Under ISAP Topic 1.33. Closed by NRC SER dated 9/3/85.
	75 (B080)	Item 4.1--Reactor Trip System Reliability (Vendor-Related Modifications)	All Plants	C	Closed by NRC SER dated $2 / 21 / 86$.
	75 (8081)	Items 4.2.1 \& 4.2.2--Reactor Trip System Reliability--Maintenance and Testing (Preventative Maintenance and Surveillance Program for Reactor Trip Breakers)	All PWRs	N/A	--
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{n} \end{aligned}$	75 (8082)	Item 4.3--Reactor Trip System Reliability--Design Modifications (Automatic Actuation of Shunt Trip Attachment for Westinghouse and B\&W Plants)	A11 H and B8:W Plants	N/A	--
	75 (8090)	Item 4.3--Reactor Trip System Reliability--Tech Spec Changes (Automatic Actuation of Shunt Trip Attachment for Westinghouse and B\& Plants)	A11 K and B\&H Plants	N/A	--
	75 (8091)	Item 4.4--Reactor Trip System Reliability (Improvements in Maintenance and Test Procedures for B\& M Plants)	All B\&H Plants	N/A	--
	75 (B092)	Item 4.5.1--Reactor Trip System Reliability--Diverse Trip Features (System Functional Testing)	All Plants	C	Addressed under ISAP Topic 1.35. Closed by NRC SER dated $2 / 21 / 86$

GSI/ $/$ (MPA NO.)	Title	Applicability	Status*	Corments
75 (8093)	Items 4.5.2 \& 4.5.3--Reactor Trip System Reliability--Test Alternatives and Intervals (System Functional Testing)	All Plants	C	Addressed Under ISAP Topic 1.34. Closed by NRC SER dated 5/31/89.
86 (B084)	Lc Range Dlan for Dealing With S'.ess Corrosion Cracking in BWR piping	All BWRs	C	Closed by NRC SER dated $12 / 1 / 89$; License License Amendment \#49, dated $3 / 25 / 91$ and License Amendment \#59, dated 9/24/92.
93 (8098)	Steam Binding of Auxiliary Feedwater Pumps	All PWRs	N/A	--
99 (1817)	RCS/RHR Suction line Valve Interlock on PWRs	All PwRs	N/A	--
124	Auxiliary Feedwater System Reliability	ANO-1\&2, Rancho Seco, Prairie Island 1\%2, Crystal River-3 Ft. Calhoun	N/A	--
A-13 (B017)	Snubber Operability Assurance-Hydraulic Snubbers	All Planis	C	License Amendment \#15, dated $3 / 17 / 88$.
A-13 (B022)	Snubber Operability Assurance-- Mechanical Snubbers	All Plants	c	License Amendment \#15, $3 / 17 / 88$.
A-16 (0012)	Steam Effects on BWR Core Spray Distribution	Oyster Creek \& NMP-1	N/A	--

FACILITY NAME:	Millstone Nuclear Power Station, Unit No. 2
DOCKET NO.:	$50-336$
LICENSEE:	Northeast Nuclear Energy Company

STATUS OF LICENSEE IMPLEMENTATION OF GENERIC SAFETY ISSUES RESOLVED WITH IMPOSITION OF REOUIREMENTS OR CORRECTIVE ACTIONS

	GSI/(MPA NO.)	Title	Applicability	Status*	Comments
	40 (B065)	Safety Concerns Associated With Pipe Breaks in the BWR Scram System	All BMRs	N/A	--
	41 (B058)	BuR Scram Discharge Volume Systems	All BuRs	N/A	--
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	43 (B107)	Reliability of Air Systems	All Plants	C	Closed by NNECO submittal dated 5/4/90. Closed by NRC letter dated $6 / 28 / 90$.
$\stackrel{\sim}{n}$	51 (L913)	Improving the Reliability of OpenCycle Service Water Systems	All Plants	C	NNECO submittal dated 6/18/93.
	67.3 .3 (A017)	Improved Accident Monitoring	All Plants	C	Closed by NNECO submittal dated 5/13/91.
	75 (8076)	Item 1.1--Post-Trip Review (Program Description and Procedure)	All Plants	C	Closed by NRC SER dated $7 / 10 / 85$.
	75 (B085)	Item 1.2--Post-Trip Review--Data and Information Capability	All Plants	C	Closed by NRC SER dated $6 / 12 / 86$.
	75 (B077)	Item 2.1--Equipment Classification and Vendor Interface (Reactor Trip System Components)	All Plants	C	Closed by NRC SER dated 7/27/87.
	75 (8086)	Item 2.2.1--Equipment Classification for Safety-Related Components	All Plants	C	Closed by NRC SER dated 10/31/88.

GSI/ (MPA No.)	Itile	Applicability	Status*	Comments
75 (L003)	Items 2.2.2--Vendor Interface for Safety-Related Components	All Plants	c	NNECO addressed open issues in response to GL 90-03, dated $4 / 19 / 91$. Closed by NRC letter dated May 3, 1991.
75 (8078)	Items 3.1.1 \& 3.1.2--Post- Maintenance Testing (Reactor Trip System Components)	All Plants	C	Closed by NRC SER dated $3 / 18 / 86$.
75 (B079)	Item 3.1.3--Post-Maintenance Test-ing--Changes to Test Requirements (Reactor Trip System Components)	All Plants	C	Closed by NRC SER dated $10 / 24 / 85$.
75 (8087)	Items 3.2.1 \& 3.2.2--PostMaintenance Testing (All Other Safety-Related Components)	All Plants	C	Closed by NRC SER dated $3 / 18 / 86$.
75 (8088)	Item 3.2.3--Post-Maintenance Test-ing--Changes to Test Requirements (All Other Safety-Related Components)	All Plants	C	Closed by NRC SER dated $10 / 24 / 85$.
75 (B080)	Item 4.1--Reactor Trip System Reliability (Vendor-Related Modifications)	All Plants	C	Closed by NRC SER dated $3 / 18 / 86$.
75 (B081)	Items 4.2.1 \& 4.2.2--Reactor Trip System Reliability--Maintenance and Testing (Preventative Maintenance and Surveillance Program for Reactor Trip Breakers)	Al1 PWRs	c	Closed by NRC SER dated 4/10/86.

GSI/ $/$ CMPA No. 1	Title	Applicability	Status*	Comments	
75 (8082)	Item 4.3--Reactor Trip System Reliability--Design Modifications (Automatic Actuation of Shunt Trip Attachment for Mestinghouse and B\&W Plants)	All H and Bat Plants	N/A	--	ㄹ 2 ¢ 2
75 (8090)	Item 4.3--Reactor Trip System Reliability--Tech Spec Changes (Automatic Actuation of Shunt Trip Attachment for Westinghouse and B\& ${ }^{6}$ Plants)	All K and B\&W Plants	N/A	--	
75 (8091)	Item 4.4--Reactor Trip System Reliability (Improvements in Maintenance and Test Procedures for B\&N Plants)	All B8H Plants	N/A	--	$\begin{aligned} & \overrightarrow{7} \\ & \underset{\boxed{z}}{2} \end{aligned}$
75 (8092)	Item 4.5.1--Reactor Trip System Reliability--Diverse Trip Features (System Functional Testing)	All Plants	c	Closed by NRC SER dated $3 / 18 / 86$.	
75 (8093)	Items 4.5.2 \& 4.5.3--Reactor Trip System Reliability--Test Alternatives and Intervals (System Functional Testing)	All Plants	c	Closed by NRC SERs dated 4/26/89 and 6/21/89.	
86 (B084)	Long Range Plan for Dealing With Stress Corrosion Cracking in BWR Piping	All BWRs	N/A	--	3
93 (B098)	Steam Binding of Auxiliary Feedwater Pumps	All PWRs	C	Closed by NNECO response to IEB 85-01, dated $2 / 28 / 86$.	$\xrightarrow{\sim}$
99 (L817)	RCS/RHR Suction Line Valve Interlock on PWRs	All PURs	c	Work was completed during Cycle 11 refueling outage.	F

FACILITY NAME:	Mil1stone Nuclear Power Station, Unit No. 3
DOCKET NO.:	$50-423$
LICENSEE:	Northeast Nuclear Energy Company
	STATUS OF LICENSEE IMPLEMENTATION OF GENERIC SAFETY ISSUES
	RESOLVED WITH IMPOSITION OF REQUREMENTS OR CORRECTIVE ACTIONS

GSI LMPA No.)
40 (B065)

41 (B058)
43 (B107)

51 (L.913)
67.3 .3 (A017)

75 (B076)

75 (B085)

75 (B077)

75 (B086)
\qquad

Applicability	Status*	Comments
All burs	N/A	.-
All BMRs	N/A	--
All Plants	C	Closed by NRC letter dated 5/5/89.
All Plants	C	NNECO letters of $1 / 25 / 90,5 / 31 / 91$, and 11/5/93

All Plants C Closed by Nureg 1031, Supplement 44 and NRC letter dated $10 / 21 / 87$.

Closed by NUREG 1031, Supplement ${ }^{24}$.

Closed by NRC letter dated $11 / 24 / 86$.

All Plants
c and Vendor Interface (Reactor Trip System Components)

Item 2.2.1--Equipment Classification for Safety-Related Components

Millstone Unit No. 3

Status* Conments

NNECO addressed open issues in response to GL 90-03, dated $4 / 19 / 91$. Closed by NRC letter dated May 3, 1991.

Closed by NRC letter dated 6/26/87.

Closed by NRC letter dated 11/24/86.

Closed by NRC letter dated $6 / 26 / 87$.

Closed by NRC letter dated $11 / 24 / 86$.

Closed by NRC letter dated $11 / 24 / 86$.

Closed by NRC letter dated $11 / 24 / 86$.

*1. Provide a separate entry for each licensed reactor unit. If the information is identical for multiple units, so state.
2. If a GSI is not applicable to a unit(s), enter "NA."
3. If a GSI is applicable but no changes were necessary to implement the resolution, enter "NC. " If the GSI implementation was completed prior to issuance of the operating license, enter "NC," as no postlicensing changes were necessary.
4. If a GSI is applicable, submittal of information and/or changes were necessary and such submittals were made or changes are complete, enter "C." Also identify the licensee's document(s) to the NRC which certified completion, and the document date(s).
5. If a GSI is applicable and changes are necessary but such changes are not yet fully implemented, enter "I" and the projected month and year of completion. Provide a brief explanation of the outstanding work in the "Consnents" column.
6. If implementation guidance for a resolved GSI was issued recently and the licensee is still evaluating the appropriate respense, enter "E" and the projected response date.
7. The "Comments" column may be used to explain any entry in the "Status" column.
VI. SUMMARY AND CONCLUSIONS

NRC/NU COUNTERPARTS MEETING

VI. Summary and Conclusions

- ACTION ITEM REVIEW
- SChEdule next meeting

[^0]: Haddam Neck Plant

