

Enclosure:

"ACRS Full Committee Presentation: NuScale Topical Report – Rod Ejection Accident Methodology," PM-0320-69146, Revision 0

ACRS Full Committee Presentation

NuScale Topical Report

Rod Ejection Accident Methodology

March 5, 2020

Presenters

Kenny Anderson

Nuclear Fuels Analyst

Matthew Presson

Licensing Project Manager

Opening Remarks – NuScale T/H Methods

System T/H Analysis Basis

- NRELAP5 code developed from RELAP5-3D
 - Modified to address NuScalespecific phenomena/systems
- LOCA Evaluation Model (EM) developed following RG 1.203 EMDAP
 - LOCAEM extended to derive EMs for other events as shown in this figure.
 - LOCA EM assessment basis leveraged for non-LOCA.
- Additional supporting EMs include
 - Nuclear Analysis Codes TR-0716-50350-P-A
 - Critical Heat Flux TR-0116-21012-P-A
 - Subchannel Analysis TR-0915-17564-P-A

Agenda

- Event Overview
- Acceptance Criteria
- PCMI Criteria DG-1327
- Method Flowchart
- Steady State Initialization
- Event Evaluations
- Summary

Overview

- NuScale seeks approval of methodology for modeling rod ejection accident (REA) events
- Bounding reactivity initiated accident (RIA) from General Design Criteria (GDC) 28
- REA is unique in comparison to other Ch. 15 events

Description	Rod Ejection	Other Events Thermal-Hydraulics	
Dominant Physics	Nuclear		
Timing	milli-sec	sec to hr	
Spatially	Local	Global	
Peak power	~5x Full Power	~1.2x Full Power	
Integrated Energy	Low	Low to High	
Postulated Cause	Failure of ASME Class 1 Pressure Boundary	Single Equipment Failure	
Acceptance Criteria	Specialized	Generic	

Unique Event Acceptance Criteria

Criteria Description	Topical Section	Unique?
Maximum reactor coolant system pressure	5.3	No
Hot zero power (HZP) fuel cladding failure	5.5.2	Yes
FGR effect on cladding differential pressure	N/A	Yes
Critical heat flux (CHF) fuel cladding failure	5.4.1	No
Cladding oxidation-based PCMI failure	5.5.3	Yes
Cladding excess hydrogen-based PCMI failure	N/A	Yes
Incipient fuel melting cladding failure	5.5.1	No
Peak radial average fuel enthalpy for core cooling	5.5.2	Yes
Fuel melting for core cooling	5.5.1	No
Fission product inventory (failed fuel census)	5.6	Yes

- Submitted NuScale design and method inherently precludes fuel failure, thus no accident radiological consequences are evaluated.
- PCMI: Pellet-Clad Mechanical Interaction

Revised PCMI Criteria

- In general, the NuScale REA methodology has adopted the limiting criteria of the 'Clifford Letter' (ML14188C423), now included in draft guide DG-1327 (ML16124A200). In spirit, NuScale is prepared for this regulatory change:
 - Closed session presents example results, showing large margins for enthalpy rise
 - A technical 'formality' inhibits complete adoption at this time. NuScale does not currently have a
 validated cladding H₂ model to convert local exposure to excess cladding hydrogen
 - Oxidation criteria from NUREG-0800 Section 4.2, Appendix B (ML07074000) is used
 - To simplify method, no exposure is credited (Limit: 75 ∆cal/gm)
 - NuScale M5 cladding less susceptible than other zirc alloy-type clad used in the industry

Unique Event Method (Flowchart)

Steady-State Initialization

- SIMULATE5: Setup the core response analysis
- Code shown to be appropriate in TR-0616-48793-A (Nuclear Analysis Codes and Methods Qualification)
- Determination of the worst rod stuck out (WRSO)
 - Assumption bounds potential for ejected assembly to damage adjacent control rod assembly
 - Due to rapid nature of the event, location does not significantly affect the results in NuScale application

Dynamic Core Response

- SIMULATE-3K: Model transient core response
- Benchmarked to SPERT-III experiment and NEACRP computational benchmark
 - Benchmarks demonstrate the combined transient neutronic, thermal-hydraulic, and fuel pin modeling capabilities
 - SIMULATE-3K results generally in excellent agreement with the results from the two benchmark problems
- Uncertainties applied for each simulation:
 - Delayed Neutron Fraction
 - Ejected Rod Worth
 - Doppler Temperature Coefficient
 - Moderator Temperature Coefficient

CHF Evaluation

- VIPRE-01: Model detailed thermal-hydraulics
- Evaluate critical heat flux (CHF) acceptance c
- Code shown to be appropriate in TR-0915-17. Analysis Methodology)
- Unique event differences in method:
 - Smaller axial nodalization (smaller time steps)
 - Radial power distribution (case-specific)
 - Axial power distribution (peak assembly)
 - Convergence parameters
- Additional parametric sensitivity cases pe application to holistically justify difference

Revision: 0

Adiabatic Fuel Heatup

- Hand-Calculation: Model fuel response
- Total energy (from SIMULATE-3K) during the transient is integrated
- Conservative as no energy is allowed to leave the fuel rod
- Energy is then converted into either a temperature or enthalpy increase
- Fuel rod geometry, heat capacity, and power peaking factors taken into account
- Calculated values compared to NRC developed acceptance criteria
 - Example values provided in closed session

Revision: 0

Dynamic System Response I

- NRELAP5: Evaluate system response for input to <u>CHF Evaluation</u>
- Code shown to be appropriate in TR-0516-49416 (Non-LOCA Methodologies)
- Transient power from SIMULATE-3K utilized as input
 - No reactivity calculation performed in NRELAP5
- Provides system thermal-hydraulic conditions to subchannel (CHF) evaluation
 - System flow, pressure, and inlet temperature
 - 'Screens' cases for potential to be limiting
 - Family of limiting cases evaluated with VIPRE-01

Template #: 0000-21727-F01 R5

Dynamic System Response II

- NRELAP5: Evaluate system response for <u>pressurization</u>
- Limiting scenario: Low ejected worth that raises the power quickly to just below both the high power and high power rate trip 'setpoints'
- Point-kinetics model used based on bounding static worth
- Peak system pressure calculated compared to acceptance criteria
- Example results to be presented in closed session

Summary

- A conservative analysis method for the unique rod ejection accident
- Topical report provides details and justification for:
 - Software tools and acceptance criteria used
 - Applicability of the method and tools
 - Appropriate treatment of uncertainties
- Results from application of the method provide input to FSAR Chapter 15

Revision: 0

Acronyms

- CHF Critical Heat Flux
- GDC General Design Criteria
- HZP Hot Zero Power
- MCHFR Minimum Critical Heat Flux Ratio
- NEACRP Nuclear Energy Agency Committee on Reactor Physics
- PCMI Pellet Clad Mechanical Interaction
- REA Rod Ejection Accident
- RIA Reactivity Initiated Accident
- WRSO Worst Rod Stuck Out

Portland Office

6650 SW Redwood Lane, Suite 210 Portland, OR 97224 971 371 1592

Corvallis Office

1100 NE Circle Blvd., Suite 200 Corvallis, OR 97330 541.360.0500

Rockville Office

11333 Woodglen Ave., Suite 205 Rockville, MD 20852 301.770.0472

Richland Office

1933 Jadwin Ave., Suite 130 Richland, WA 99354 541.360.0500

Charlotte Office

2815 Coliseum Centre Drive, Suite 230 Charlotte, NC 28217 980.349.4804

<u>http://www.nuscalepower.com</u> **Twitter:** @NuScale Power

