ATTACHMENT B TO BECO LETTER 91-012

Revised Technical Specification Pages

La star

9102140205 910206 PDR ADOCK 05000293

LIMITING CONDITIONS FOR OPERATION

3.7.A Primary Containment (Con't)

Primary Containment Integrity

2.a Primary containment integrity shall be maintained at all times when the reactor is critical or when the reactor water temperature is above 212°F and fuel is in the reactor vessel except while performing "open vessel" physics test at power levels not to exceed 5 Mw(t).

> Primary containment integrity means that the drywell and pressure suppression chamber are intact and that all of the following conditions are satisfied:

- All manual containment isolation valves on lines connected to the reactor coolant system or containment which are not required to be open during accident conditions are closed.
- (2) At least one door in each airlock is closed and sealed.
- (3) All blind flanges and manways are closed.
- (4) All automatic primary containment isolation valves and all instrument line flow check valves are operable except as specified in 3.7.A.2.b.
- (5) All containment isolation check valves are operable or at least one containment isolation valve in each line having an inoperable valve is secured in the isolated position.

SURVEILLANCE REQUIREMENTS

4.7.A Primary Containment (Con't)

Primary Containment Integrity

- 2.a The primary containment integrity shall be demonstrated by performing Primary Containment Leak Tests in accordance with 10CFR50 Appendix J, with exemptions as approved by the NRC and exceptions as follows:
 - The main steam line isolation valves shall be tested at a pressure ≥23 psig, and normalized to a value equivalent to 45 psig each operating cycle.
 - (2) Personnel air lock door seals shall be tested at a pressure ≥10 psig each operating cycle. Results shall be normalized to a value equivalent to 45 psig.

If the total leakage rates listed below are exceeded, repairs and retests shall be performed to correct the conditions.

- (1) All double-gasketed seals: 10% Lt (x)
- (2) All testable penetrations and isolation valves: 60% L_a (x)
- (3) Any one penetration or isolation valve except main steam line isolation valves: 5% L_t (x)
- (4) Any one main steam line isolation valve: 11.5 scf/hr @23 psig.

```
where x = 45 \text{ psig}

L_t = .75 L_a

L_a = 1.0\% by weight of the

contained air @ 45 psig

for 24 hrs.
```

Revision Amendment No. 17, 113

LIMITING CONDITIONS FOR OPERATION

SURVEILLANCE REOUIREMENTS

3.7.A Primary Containment (Con't)

Primary Containment Isolation Valves

In the event any automatic Primary 2.b.1 The primary containment 2.b. Containment Isolation Valve becomes inoperable, at least one containment isolation valve in each line having an inoperable valve shall be deactivated in the isolated condition. (This requirement may be satisfied by deactivating the inoperable valve in the isolated condition. Deactivation means to electrically or pneumatically disarm, or otherwise secure the valve.)*

4.7.A Primary Containment (Con't)

Primary Containment Isolation Valves

- isclation valves surveillance shall be performed as follows:
 - . 5 At least once per operating cycle the operable primary containment isolation valves that are power operated and automatically initiated shall be tested for simulated automatic initiation and closure times.
 - b. At least once per guarter:
 - 1. All normally open power operated primary containment isolation values (except for the main steam line power operated isolation valves) shall be ully closed and reopened.
 - 2. Trip the main steam isolation valves individually and verify closure time.
 - At least twice per week the C . main steam line power operated isolation valves shall be exercised by partial closure and subsequent reopening.
 - At least once per operating d. cycle the operability of the reactor coolant system instrument line flow check valves shall be verified.
- 2.b.2 Whenever a primary containment automatic isolation valve, is inoperable, the position of the isolated valve in each line having an inoperable valve shall be recorded daily.

*Isolation valves closed to satisfy these requirements may be reopened on an intermittent basis under ORC approved administrative controls.

Pages 160 through 164 are deleted

Amendment No. 63, 113

BASES:

3.7.A & 4.7.A Primary Containment

The primary containment leak rate test frequency is based on maintaining adequate assurance that the leak rate remains within the specification. The leak rate test frequency is in accordance with IOCFR50 App. J.

The penetration and air purge piping leakage test frequency, along with the containment leak rate tests, is adequate to allow detection of leakage trends. Whenever a bolted double-gasketed penetration is broken and remade, the space between the gaskets is pressurized to determine that the seals are performing properly. It is expected that the wajority of the leakage from valves, penetrations and seals would be into the reactor building. However, it is possible that leakage into other parts of the facility could occur. Such leakage paths that may affect significantly the consequences of accidents are to be minimized. The personnel air lock is tested at 10 psig, because the inboard door is not designed to shut in the opposite direction.

Primary Containment Isolation Valves

Double isolation values are provided on lines penetrating the primary containment and open to the free space of the containment. Closure of one of the values in each line would be sufficient to maintain the integrity of the pressure suppression system. Automatic initiation is required to minimize the potential leakage paths from the containment in the event of a loss of coolant accident.

<u>Group 1</u> - process lines are isolated by reactor vessel low-low water level in order to allow for removal of decay heat subsequent to a scram, yet isolate in time for proper operation of the core standby cooling systems. The valves in group 1 are also closed when process instrumentation detects excessive main steam line flow, high radiation, low pressure, main steam space high temperature, or reactor vessel high water level.

<u>Group 2</u> - isolation values are closed by reactor vessel low water level or high drywell pressure. The group 2 isolation signal also "isolates" the reactor building and starts the standby gas treatment system. It is not desirable to actuate the group 2 isolation signal by a transient or spurious signal.

<u>Group 3</u> - isolation valves can only be opened when the reactor is at low pressure and the core standby cooling systems are not required. Also, since the reactor vessel could potentially be drained through these process lines, these valves are closed by low water level.

<u>Group 4 and 5</u> - process lines are designed to remain operable and mitigate the consequences of an accident which results in the isolation of other process lines. The signals which initiate isolation of group 4 and 5 process lines are therefore indicative of a condition which would render them inoperable.

ATTACHMENT C TO BECO LETTER 91-012

Annotated Current Technical Specification Pages

Attachment C

LIMITING CONDITIONS FOR OPERATION

3.7.A Primary Containment (Con't)

Primary Containment Integrity

12.a Primary containment integrity shall be maintained at all times when the reactor is critical or when the reactor water temperature is above 212°F and fuel is in the reactor vessel except while performing "open vessel" physics test at power levels not to exceed 5 Mw(t).

> Primary containment integrity means that the drywell and pressure suppression chamber are intact and that all of the followir~ _onditions are satisfied:

- All manual containment isolation valves on lines connected to the reactor coulant system or containment which are not required to be open during accident conditions are closed.
- (2) At least one door in each airlock is closed and sealed.
- (3) All blind flanges and manways are closed
- (4) All automatic primary containment isolation valves and all instrument line flow check valves are operable except as specified in 3.7.A.2.b.
- (5) All containment isolation check valves are operable or at least one containment isolation valve in each line having an inoperable valve is secured in the isolated position.

SURVEILLANCE REQUIREMENTS

4.7.A Primary Containment (Con't)

Primary Containment Integrity

- 2.a The primary containment integrity shall be demonstrated by performing Primary Containment leak Tests in accordance with 10 CFR 50 Appendix J, as amended thru Sept. 22, 1980, with exemptions as approved by the NRC and exceptions as follows:
 - The main steam line isolation valves shall be tested at a pressure 223 psig, and normalized to a value equivalent to 45 psig each operating cycle.
 - (2) Personnel air lock door seals shall be tested at a pressure ≥10 psig each operating cycle. Results shall be normalized to a value equivalent to 45 psig.

If the total leakage rates listed below are exceeded, repairs and retests shall be performed to correct the conditions.

- (1) All double-gasketed seals: 10% Lt (x)
- (2) All testable penetrations and isolation valves: 60% La (x)
- (3) Any one penetration or isolation valve except main steam line isolation valves: 5% Lt (x)
- (4) Any one main steam line isolation valve:
 11.5 scf/hr @23 psig.

where x = 45 psig Lt = .75 La La = 1.0% by weight of the contained air @ 45 psig for 24 hrs.

Revision 116 Amendment No. 17, 113

155

LIMITING CONDITIONS FOR OPERATION	SURVEILLANCE REQUIREMENTS
3.7.A Primary Containment (Con't)	4.7.A Primary Containment (Con't)
Primary Containment Isolation Valves	Primary Containment Isolation Valves
2.b. In the event any Primary Containment Isolation Valve that receives an automatic isolation signal listed in Table 3.7 to becomes inoperable, at least one containment isolation valve in each line having an inoperable valve shall be deactivated in the isolated condition. (This requirement may be satisfied by deactivating the inoperable valve in the isolated condition. Deactivation means to elactrically or pneumatically disarm, or otherwise secure the valve.)*	 2.b.1 The primary containment isolation values surveillance shall be performed as follows: a. At least once per primary containment operating cycle the operable isolation values that are power operated and automatically initiated shall be tested for simulated automatic initiation and closure times. b. At least once per quarter: primary containment All normally open power operated isolation values (except for the main steam line power operated isolation values) shall be fully closed and reopened. 2. Trip the main steam isolation values individually and verify closure time. c. At least ince per week the main steam line power operated isolation values individually and verify closure time. d. At least once per opening. d. At least once per opening. d. At least once per week the main steam line power operated isolation values shell be exercised by partial closure and subsequent reopening. d. At least once per ing.

2.b 2 Whenever a primary containment av isolation valve, that receives an automatic isolation signal. listed in Table 3.7-1 is inoperable, the position of the isolated valve in each line naving an inoperable valve shall be recorded daily.

*Isolation valves closed to satisfy these requirements may be reopened on an intermittent basis under ORC approved administrative controls.

Revision 116 Amendment No. 113

155a

Attachment C Pages 160 through 164 are detected Amendment No. \$\$, 11\$ 160

GROUP	POWER OPERATED VALVE #	SYSTEM & DESCRIPTION	IPC/OPC	PENETRATION NUMBER	MAXIMUM OPERATING TIME (SEC)	NORMAL POSITION	ISOLATION POSITION
,	A0-203-TA	Main Steam Line "A" Isolation Valve	IPC	X-7A	3 <t< 5<="" td=""><td>Open</td><td>Closed</td></t<>	Open	Closed
	A0-203-2A	Main Steam Line "A" Isolation Valve	OPC	X-7A	3 ctc 5	Open	Closed
	A0-203-18	Mata Steam Line "B" Isolation Valve	IPC	X-78	3 <t< 5<="" td=""><td>Open</td><td>Closed</td></t<>	Open	Closed
	A0-203-28	Main Steam Line "B" Isolation Valve	OPC	X-78	3 < t < 5	Open	Closed
영화 위험	A0-203-1C	Main Steam Line "C" Isolation Valve	IPC	X-7C	3 <t< 5<="" td=""><td>Open</td><td>Closed</td></t<>	Open	Closed
S. 1995 - 1997	A0-203-2C	Main Steam Line "C" Isolation Valve	OPC	X-7C	3 <t< 5<="" td=""><td>Open</td><td>Closed</td></t<>	Open	Closed
	A0-203-10	Main Steam Line "D" Isolation Valve	IPC	X-70	3 <t< 5<="" td=""><td>Open</td><td>Closed</td></t<>	Open	Closed
	A0-203-20	Main Steam Line "D" Isolation Valve	OPC	X-70	3 <t< 5<="" td=""><td>Open</td><td>Closed</td></t<>	Open	Closed
	MO-220-1	Main Steam Drain Isolation Valve	IPC	X-8	30	Closed	Closed
1	M0-220-2	Main Steam Drain Isolation Valve	OPC	X-8	30	Closed	Closed
11	A0-220-44	Reactor Water Sample Line Valve	JPC	X-41A	10	Open	Closed
11	A0-220-45	Reactor Water Sample Line Valve	OPC	X-41A	10	Open	Closed
	NU-220-45	Reactor nater sumpre time farte	A.c	A-41A		open	crosed
23,5	A0-5033A	Drywell Purge/Makeup	OPC	X-26	10	Closed	Closed
25	A0-5033B	Drywell Purge/Makeup	S OPC	X-26	10	Closed	Closed
23,5	A0-5033C	Torus Makeup	OPC	X-205	10	Closed	Closed
25	AO-5035A	Drywell Purge/Makeup	OPC	X-26	5	Closed	Closed
25	A0-5035B	Drywell Purge/Makeup	OPC	X-26	5	Closed	Closed
25 25	A0-5036A	Torus Purge Inlet	OPC	X-205	5	Closed	Closed
25	A0-5036B	Torus Purge Inlet	OPC	X-205	X	Closed	Closed
23,5	A0-5041A	Torus Exhaust Bypass	OPC	X -227	10	Closed	Closed
23,5	A0-5041B	Torus Exhaust Bypass	OPC	X-227	10	Closed	Closed
25	A0-5042A	Torus Main Exhaust	OPC	X-227	5	Closed	Closed
25	A0-5042B	Torus Main Exhaust	OPC	X-227	5	Chosed	Closed
23.5	A0-5043A	Drywell 2" Exhaust Bypass	OPC	X-25	10	Closed	Closed
23,5	A0-5043B	Drywell 2" Exhaust Bypass	OPC	X-25	10	Closed	Closed
25	A0-5044A	Drywell Purge Exhaust	OPC	X-25	5	Closed	Closed
25	A0-5044B	Dryweli Purge Exhaust	OPC	X-25	5	Closed	Closed
24 24	A	TIP Ball - Ball Solenoid Valve	OPC	X-35	5	Closed	Closed
24	В	TIP Ball - Ball Solenoid Valve	OPC	X-35	5	Closed	Closed
24	C	TIP Ball - Ball Solenoid Valve	OPC	X-35	5	Closed	Closed
24	D	TIP Ball - Ball Solenoid Valve	OPC	X-35	5	Closed	Closed

TABLE 3.7-1 PRIMARY CONTAINMENT AND PEACTOR VESSEL ISOLATION VALVES

Revision 116 Amendment No. 68, 113

160

Attachment

0

GROUR	POWER OPERATED VALVE #	SYSTEM & DESCRIPTION I	PC/OPC	PENETRATION NUMBER	MAXIMUM OPERATING TIME (SEC)	NORMAL POSITION	ISOLATION POSITION
26	SV-5065-11A	H2/02 Analyzer Supply	0	PC X-228	J 2	Closed	Closed
26	SV-5065-138	H2/02 Analyzer and Leak Detection Suppl	y 0	PC X-50A	-d 2	Open	Closed
26	SV-5065-14A	H2/02 Analyzer and Leak Detection Suppl		PC X-106	A-b 2	Open	Closed
26 26	SV-5065-158	H270g Analyzer Supply	0	PC X-228	C 2	Closed	Closed
26	SV-5065-18A	H2/02 Amalyzer Supply	0	PC X-228	J 2	Closed	Closed
26	SV-5065-208	H2/02 Analyzer and Leak Detection Supply	y O	PC X-50A	-d 2	Open	Closed
26	SV-5065-21A	H2/02 Analyzer and Leak Detection Suppl		PC X-106	A-b 2	Open	Closed
26	SV-5065-228	H2/02 Analyzer Sample	0	PC X-228	C 2	Closed	Closed
25	SV-5065-24A	H2/02 and PASS Sample Return		PC X-46F		Oper	Closed
26	SV-5065-25B	H2/02 Analyzer Return		PC X-228		Closed	Closed
26	SV-5065-26A	H2/02 and PASS Sample Return		PC X-46F		Open	Closed
26	SV-5065-278	H2/02 Analyzer Return		PC X-228		Closed	Closed
26	SV-5065-31B	H2/02 Analyzer Supply		PC X-15E		Closed	Closed
26	SV-5065-33A	H2/02 Analyzer and PASS Supply	0 0	X-29E		Open	Closed
26	SV-5065-35B	H2/02 Analyzer Supply	0	PC X-15E		Closed	Closed
26	SV-5065-37A	H2/02 Analyzer and PASS Supply	0	PC X-29E		Open	Closed
26	SV-5065-63	PASS Reactor Sample Jet Pump #15	0	PC X-40A>		Closed	Closed
26	SV-5065-64	PASS Reactor Sample Jet Pump #15	0	PC X-40A-	a 2	Closed	Closed
26	SV-5065-71	PASS Liquid Sample Return	0	PC X-228H	2	Ciosed	Closed
26 6	SV-5065-72	PASS Liquid Sample Return	0	PC X-228H	X	Closed	Closed
6	SV-5065-77	PASS Liquid Sample Return	0	PC X-228G		Closed	Closed
-6	SV-5065-78	PASS Liquid Sample Return	0	PC X-228G		Closed	Closed
20	SV-5065-85	PASS Reactor Sample Jet Pump #5	0	PC X-400-		Glosed	Closed
26	SV-5065-86	PASS Reactor Sample Jet Pump #5	0	PC X-400-	c 2	Closed	Closed
2	CV-5065-91	Leak Detection and O2 Analyzer Return	0	PC X-32A	5	Open	Closed
2	CV-5065-92	Leak Detection and O2 Analyzer Return	0	PC X-32A	5	Open	Closed
2	AO-7011A	R/W Collection D/W Equip. Sump	01	PC X-19	20	Closed	Closed
2	A0-7011B	R/W Collection D/W Equip. Sump	0	PC X-19	20	Closed	Chosed
2	A0-7017A	R/W Collection D/W Floor Sump	0	PC X-18	20	Closed	Closed
2	A0-70178	R/W Collection D/W Floor Sump	. 01	PC X-18	20	Closed	Closed
2	MO-1001-21	RHR Discharge to Radwaste	0	PC None	20	Closed	Closed
2	MO-1001-32	RHR Discharge to Radwaste	0	PC None	20	Closed	Closed

TABLE 3.7-1 (con't) PRIMARY CONTAINMENT AND REACTOR VESSEL ISOLATION VALVES

Revision 116 Amendmer: No. 42, 113

161

Attachment

GROUP	POWER OPERATED VALVE #	SYSTEM & DESCRIPTION	IPC/OPC	PENETRATION NUMBER	MAXIMUM OPERATING TIME (SEC)	NORMAL POSITION	ISOLATION POSITION	
32	M9-1001-29A	RHR Injection "A" Loop	OPC	X-51A	30	Closed	Closed	
32	M0-1001-298	RHR Injection "B" Loop	OPC	X-518	30	Closed	Closed	
30			OPC	X-12	30	Closed	Closed	
3	M0-1001-47	RHR S/D Cooling Suction Valve	IPC	X-12	30	Closed	Closed	
3	MO-1001-50	Reactor Vessel Head Spray	OPC	X-17	30	Closed	Closed	
3	MO-1001-60 MO-1001-63	Reactor Vessel Head Spray	IPC	X-17	30	Closed	Closed	
		HPCI Steam to Turbine	IPC	X-52	25	Open	Closed	
4	MO-2301-4	HPCI Steam to Turbine	OPC	X-52	25	Open	Closed	
4	MO-2301-5	MPCI Steam to futorite	0.0					
		note there be turking	191	X-53	20	Open	Closed	
5	MO-1301-16	RCIC Steam to Turbine	ADC	X-53	20	Open	Closed	
5	MO-1301-17	RCIC Steam to Turbine	and					
1.1211		MICH Cushies	IPC	X-14	25	Open	Closed	
6	MO-1201-2	RWCU Suction	OPC	X-14	25	Open	Closed	
6	MO-1201-5	RWCU Suction	OPC	X-9A	30	Open	Closed	
6	MO-1201-80	RWCU Return	orc					
1.2		HPCI Vacuum Breake: Isolatica	OPC	X-219	30	Open	Closed	
7	MO-2301-33		OPC	X-219	30	Open	Closed	
7	MO-2301-34	HPCI Vacuum Breaker Isolation	010					
		Tar buston Line & Chack Value	IPC	X-9A	- \	Open	Process	
	6-58A	Feedwater Line A Check Valve	IPC	X-98	-	Apen	Process	
	6-588	Feedwater Line 2 Check Valve	OPC	X-9A	-	Open	Process	
	6-62A	Feerwater Line A Check Valve	OPC	X-98	-	Open	Process	
	6-628	Feedwater Line B Check Valve	IPC	X-42	-	Closed	Process	
	1101-15	SBLC Injection Check Valve	OPC	X-42	-	Closed	REPOCESS	
	1101-16	SBLC Injection Check Valve	Urc	N-45				

TABLE 3.7-1 (con't) PRIMARY CONTAINMENT AND REACTOR VESSEL ISOLATION VALVES

Revision 116 Amendment No. **57**, 113

•

162

Attachment

NOTES FOR TABLE 3.7-1

Key: IPC - Inside Primary Containment OPC - Outside Primary Containment

ISOLATION GROUPINGS

Group	1:	The valves in this group are closed upon any one of the following conditions.
	1.	Reactor Tom-low water level
	2.	Main Steam Line high radiation
	3.	Main Steam Line Migh flow
	4.	Main Steam Line tunnel high temperature
	5.	Main Steam Line low pressure (in run mode only)
	6.	Reactor high water level (not in run mode, below 880 psig)
Group	2:	The valves in this group are closed upon any one of the following conditions.
	1.	Reactor low water level
	2.	High drywell pressure
Group	3:	The valves in this group are closed upon any one of the following conditions.
	1.	Reactor low water level
	2.	High reactor pressure
	3.	High drywell pressure
Group	4:	The valves in this group are closed upon any one of the following conditions.
	1.	HPCI steam line high flow
	2.	HPCI steam line area high temperature
	3.	Low reactor pressure

Attachment 1

NOTES FOR TABLE 3.7-1 (con't)

Group 5: The valves in this group are closed upon any one of the following conditions.

1. RCIC steam line high flow 2. RCIC steam line area high temperature

3. Low reactor pressure

Group 6: The valves in this group are closed upon any one of the following conditions.

1. Reactor loy water level

2. Cleanup area high temperature

3. Cleanup inlet high flow

Group 7: The valves in this group are closed on the following conditions:

1. Reactor Low Pressure and High Drywell Pressure

FOOTNOTES:

- The Reactor Water Sample Line Isolation Valves initiate on a Group 1 or a Group 2 isolation signal.
- MO-1001-29A&B Isolate on reactor low water level OR high drywell pressure if 2 MO-1001-50 and MO-1001-47 are not fully closed AND reactor pressure not high (i.e., not >110 psig).
- Jelete In addition to Group 2 isolation, these valves also receive a reactor low-low 3 water level isolation which cannot be bypassed by utilizing the valves emergency open feature.
- Reactor vessel low water level or high drywell pressure causes automatic 4 withdrawal of TIP probe. When probe is withdrawn beyond these ball valves, these valves automatically close within 5 seconds.
- In addition to Group 2 isolation, these valves also receive a Refueling Floor 5 High Radiation isolation.
- Isolation signals are overridden with the keylocked Control Switch in the 6 "Override" position.

Revision 116 Amendment No. 113

.

3.7.A & 4.7.A Primary Containment

BASES:

.

The primary containment leak rate test frequency is based on maintaining adequate assurance that the leak rate remains within the specification. The leak rate test frequency is in accordance with 10 CFR 50 App. J as amended through Sept. 22, 1980.

The penetration and air purge piping leakage test frequency, along with the containment leak rate tests, is adequate to allow detection of leakage trends. Whenever a bolted double-gasketed penetration is broken and remade, the space between the gaskets is pressurized to determine that the seals are performing properly. It is expected that the majority of the leakage from valves, penetrations and seals would be into the reactor building. However, it is possible that leakage into other parts of the facility could occur. Such leakage paths that may affect significantly the consequences of accidents are to be minimized. The personnel air lock is tested at 10 psig, because the inboard door is not designed to shut in the opposite direction.

Primary Containment Isolation Valves

Double isolation valves are provided on lines penetrating the primary containment and open to the free space of the containment. Closure of one of the valves in each line would be sufficient to maintain the integrity of the pressure suppression system. Automatic initiation is required to minimize the potential leakage paths from the containment in the event of a loss of coolant accident.

<u>Group 1</u> - process lines are isolated by reactor vessel low-low water level in order to allow for removal of decay heat subsequent to a scram, yet isolate in time for proper operation of the core standby cooling systems. The valves in group 1 are also closed when process instrumentation detects excessive main steam line flow, high radiation,, low pressure, main steam space high temperature, or reactor vessel high water level.

<u>Group 2</u> - isolation valves are closed by reactor vessel low water level or high drywell pressure. The group 2 isolation signal also "isolates" the reactor building and starts the standby gas treatment system. It is not desirable to actuate the group 2 isolation signal by a transient or spurious signal.

<u>Group 3</u> - isolation valves can only be opened when the reactor is at low pressure and the core standby cooling systems are not required. Also, since the reactor vessel could potentially be drained through these process lines, these valves are closed by low water level.

<u>Group 4 and 5</u> - process lines are designed to remain operable and mitigate the consequences of an accident which results in the isolation of other process lines. The signals which initiate isolation of group 4 and 5 process lines are therefore indicative of a condition which would render them inoperable.

Revision 116 Amendment No. 113