

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON. D.C. 20555-0001

GULF STATES UTILITIES COMPANY** CAJUN ELECTRIC POWER COOPERATIVE AND

ENTERGY OPERATIONS, INC.

DOCKET NO. 50-458

RIVER BEND STATION, UNIT 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 72 License No. NFF-47

The Nuclear Regulatory Commission (the Commission) has found that: 1.

- A. The application for amendment by Gulf States Utilities* (the licensee) dated December 8, 1993, as supplemented by letter dated February 3, 1994, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
- The facility will operate in conformity with the application, as Β. amended, the provisions of the Act, and the rules and regulations of the Commission:
- There is reasonable assurance: (i) that the activities authorized C. by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
- The issuance of this license amendment will not be inimical to the D. common defense and security or to the health and safety of the public; and

9403080182 940218 PDR ADOCK 05000458 PDR

^{*} EOI is authorized to act as agent for Gulf States Utilities Company, which has been authorized to act as agent for Cajun Electric Power Cooperative, and has exclusive responsibility and control over the physical construction, operation and maintenance of the facility.

^{**}Gulf States Utilities Company, which owns a 70 percent undivided interest in River Bend, has merged with a wholly owned subsidiary of Entergy Corporation. Gulf States Utilities Company was the surviving company in the merger.

- E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment; and Paragraph 2.C.(2) of Facility Operating License No. NPF-47 is hereby amended to read as follows:

(2) <u>Technical Specifications and Environmental Protection Plan</u>

The Technical Specifications contained in Appendix A, as revised through Amendment No. 72 and the Environmental Protection Plan contained in Appendix B, are hereby incorporated in the license. EOI shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. The license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Risenne C. Black

Suzanne²C. Black, Director Project Directorate IV-2 Division of Reactor Projects III/IV/V Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuance: February 18, 1994

ATTACHMENT TO LICENSE AMENDMENT NO. 72

FACILITY OPERATING LICENSE NO. NPF-47

DOCKET NO. 50-458

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the areas of change. The overleaf pages are provided to maintain document completeness.

REM	OVE	INS	ERT
3/4	3-1 3-6 3-7 3-8 3-9	3/4 3/4 3/4 3/4 3/4	3-8
3/4 3/4 3/4	3-11 3-24 3-25	3/4 3/4 3/4	3-11 3-24
3/4 3/4	3-26 3-27 3-29	3/4 3/4 3/4	3-27 3-29
3/4 3/4	3-30 3-30a 3-40 3-41	3/4 3/4 3/4 3/4	3-40
3/4 3/4	3-42 3-43 3-59	3/4 3/4	
3/4 3/4 3/4	3-63 3-64 3-76	3/4 3/4 3/4	3-63 3-64 3-76
3/4 3/4 3/4	3-81 3-84	3/4 3/4	
		3/4	3-107 3-111 6-31
3/4 3/4	6-34 6-35 6-36	3/4 3/4	6-33 6-34 6-35 6-36
3/4 3/4	6-37 6-47 8-15	3/4 3/4	6-37 6-47 8-15
3/4	8-16 8-18 8-35	3/4	

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

- â. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for one trip system, place the inoperable channel(s) and/or that trip system in the tripped condition* within one hour.
- With the number of OPERABLE channels less than required by the b. Minimum OPERABLE Channels per Trip System requirement for both trip systems, place at least one trip system** in the tripped condition within one hour and take the ACTION required by Table 3.3.1-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.#

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.***

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2## shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip system.

- * An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.1-1 for that Trip Function shall be taken.
- ** The trip system need not be placed in the tripped condition if this would cause the Trip Function to occur. When a trip system can be placed in the tripped condition without causing the Trip Function to occur, place the trip system with the most inoperable channels in the tripped condition; if both systems have the same number of inoperable channels, place either trip system in the tripped condition. The requirement to place a trip system in the tripped condition does not apply to Functional Units 6 and 10 of Table 3.3.1-1.
- ***Logic System Functional Test period may be extended as identified by note 'p' on Table 4.3.1.1-1.
- # Channel Calibration period may be extended as identified by notes 'o' and 'q' on Table 4.3.1.1-1.
- ## Response Time test period may be extended as identified by note '##' on Table 3.3.1-2.

RIVER BEND - UNIT 1

3/4 3-1 Amendment No. 8,47,72

	REACTOR PI	TABLE 3.3.1-1 ROTECTION SYSTEM INSTR	UMENTATION	
FUN	CTIONAL UNIT	APPLICABLE OPERATIONAL CONDITIONS	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM (a)	ACTION
1.	Intermediate Range Monitors: a. Neutron Flux - High	2 3 5(b) ⁴	3 3 3	1 2 3
	b. Inoperative	2 3, 4 5	3 3 3	1 2 3
2.	Average Power Range Monitor (c):			· · ·
	a. Neutron Flux - High, Setdown	2 3 5(b) ⁴	3 3 3	1 2 3
	b. Flow Biased Simulated Thermal Power - High	1	3	4
	c. Neutron Flux - High	1	3	4
	d. Inoperative	1, 2 3, 4 5	3 3 3	1 2 3
3.	Reactor Vessel Steam Dome Pressure - High	1, 2 ^(d)	2	1
4.	Reactor Vessel Water Level - Low, Level 3	1, 2	2	1
5.	Reactor Vessel Water Level-High, Level 8	1(e)	2	4
6.	Main Steam Line Isolation Valve - Closure	1(e)	4	10
7.	Main Steam Line Radiation - High	1, 2 ^(d)	2	5
8.	rywell Pressure - High	1, 2 ^(f)	2	1

RIVER BEND - UNIT 1.

3/4 3-2

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION

TABLE NOTATIONS

- (a) A channel may be placed in an inoperable status for up to 2 hours for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.
- (b) Unless adequate shutdown margin has been demonstrated per Specification 3.1.1, the "shorting links" shall be removed from the RPS circuitry prior to and during the time any control rod is withdrawn".
- (c) An APRM channel is inoperable if there are less than 2 LPRM inputs per level or less than 11 LPRM inputs to an APRM channel.
- (d) This function is not required to be OPERABLE when the reactor pressure vessel head is removed per Specification 3.10.1.
- (e) This function shall be automatically bypassed when the reactor mode switch is not in the Run position.
- (f) This function is not required to be OPERABLE when DRYWELL INTEGRITY is not required.
- (g) With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
- (h) This function shall be automatically bypassed when turbine first stage pressure is < 187 psig,** equivalent to THERMAL POWER less than 40% of RATED THERMAL POWER.

*Not required for control rods removed per Specification 3.9.10.1 or 3.9.10.2. **To allow for instrumentation accuracy, calibration and drift, a setpoint of

< 177 psig turbine first stage pressure shall be used.

TABLE 3.3.1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

- UNIT	FUN	CTIONAL UNIT	RESPONSE TIME (Seconds)
	1.	Intermediate Range Monitors:	
-		a. Neutron Flux - High	
		b. Inoperative	NA NA
	2.	Average Power Range Monitor*:	
		a. Neutron Flux - High, Setdown	NA
		b. Flow Biased Simulated Thermal Power - High	<0.09**##
		c. Neutron Flux - High	<0.09##
		d. Inoperative	NA NA
3/4	3.	Reactor Vessel Steam Dome Pressure - High	<0.35##
	4.	Reactor Vessel Water Level - Low, Level 3	<1.05
3-6	5.	Reactor Vessel Water Level - High, Level 8	₹1.05
01	6.	Main Steam Line Isolation Valve - Closure	₹0.09
	7.	Main Steam Line Radiation - High	NA
	8. 9.	Drywell Pressure - High Scram Discharge Volume Water Level - High	NA
		a. Level Transmitter	NA
		b. Float Switches	NA
	10.	Turbine Stop Valve - Closure	<0.06
	11.	Turbine Control Valve Fast Closure, Valve Trip System	20.00
	10	Oil Pressure - Low	<0.07#
A		Reactor Mode Switch Shutdown Position	ÑA
Amend	13.	Manual Scram	NA

RIVER BEND

.

*Neutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel. **Not including simulated thermal power time constant specified in the COLR.

#Measured from start of turbine control valve fast closure.

##Response Time testing may be performed during the fifth refueling outage scheduled to begin -1 April 16, 1994. N

FUNC	TIONAL UNIT	CHANNEL	CHANNEL FUNCTIONAL TEST		OPERATIONAL CONDITIONS IN WHICH URVEILLANCE REQUIRED
1.	Intermediate Range Monitors: a. Neutron Flux - High	S/U,S,(b) S	s/u ^(c) , w	R R	2 3, 4, 5
	b. Inoperative	NA	W	NA	2, 3, 4, 5
2.	Average Power Range Monitor: ^{(f} a. Neutron Flux - High, Setdown) S/U,S,(b) S	s/u ^(c) , w w	SA SA	2 3, 4, 5
	b. Flow Biased Simulated Thermal Power - High	s,0 ^(h)	s/U ^(c) , W	W(d)(e),SA(o)(q),R(i)((q) 1
	c. Neutron Flux - High	S	s/u ^(c) , w	w ^(d) , sa	1
	d. Inoperative	NA	W	NA	1, 2, 3, 4, 5
3.	Reactor Vessel Steam Dome Pressure - High	S	м	R(g)(p)(d)	1, 2 ^(j)
4.	Reactor Vessel Water Level - Low, Level 3	s	м	_R (g)	1, 2
5.	Reactor Vessel Water Level - High, Level 8	s	м	_R (g)	1
6.	Main Steam Line Isolation Valve - Closure	NA	м	R	1
7.	Main Steam Line Radiation - High	s	м	R	1, 2 ^(j)
8.	Drywell Pressure - High	s	м	R(g)	1, 2 ⁽¹⁾

TABLE 4.3.1.1-1

RIVER BEND - UNIT 1

3/4 3-7

Amendment 3,8,9, 72

TABLE 4.3.1.1-1 (Continued)

FUNC	TIONAL UNIT	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
9.	Scram Discharge Volume Water Level - High a. Level Transmitter	S	н	R^(g) (p)	1, 2, 5 ^(k)
	b. Float Switch	NA	Q	R	1, 2, 5 ^(k)
10.	Turbine Stop Valve - Closure	5 ^(m)	M ⁽ⁿ⁾	R(g)(n)	1
11.	Turbine Control Valve Fast Closure, Trip Oil Pressure - Low	5(m)	M(u)	_R (g)(n)	1
12.	Reactor Mode Switch Shutdown Position	NA	R	NA	1, 2, 3, 4, 5
13	Manual Scram	NA	м	NA	1, 2, 3, 4, 5

REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

(a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(b) The IRM and SRM channels shall be determined to overlap for at least 1/2 decade during each startup after entering OPERATIONAL CONDITION 2 and the IRM and APRM channels shall be determined to overlap for at least 1/2 decade during each controlled shutdown, if not performed within the previous 7 days.

(c) Within 24 hours prior to startup, if not performed within the previous 7 days.

(d) This calibration shall consist of the adjustment of the APRM channel to conform to the power values

calculated by a heat balance during OPERATIONAL CONDITION 1 when THERMAL POWER >25% of RATED THERMAL POWER. Adjust the APRM channel if the absolute difference is greater than 2% of RATED THERMAL POWER. Any APRM channel gain adjustment made in compliance with Specification 3.2.2 shall not be included in determining the absolute difference.

(e) This calibration shall consist of the adjustment of the APRM flow biased channel to conform to a calibrated flow signal.

-

3/4 3-8

TABLE 4.3.1.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

- (f) The LPRMs shall be calibrated at least once per 1000 effective full power hours (EFPH) using the TIP system.
- (g) Calibrate Rosemount trip unit setpoint at least once per 31 days.
- (h) Verify measured drive flow to be less than or equal to established drive flow at the existing flow control valve position.
- (i) This calibration shall consist of verifying the simulated thermal power time constant is within the limits specified in the COLR.
- (j) This function is not required to be OPERABLE when the reactor pressure vessel head is removed per Specification 3.10.1.
- (k) With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
- (1) This function is not required to be OPERABLE when DRYWELL INTEGRITY is not required per Specification 3.10.1
- (m) Verify the Turbine Bypass Valves are closed when THERMAL POWER is greater than or equal to 40% RATED THERMAL POWER.
- (n) The CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION shall include the turbine first stage pressure instruments.
- (o) The CHANNEL CALIBRATION shall exclude the flow reference transmitters; these transmitters shall be calibrated at least once per 18 months. except that this test may be performed during the fifth refueling outage scheduled to begin April 16, 1994.
- (p) This period may be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.
- (q) CHANNEL CALIBRATION may be performed during the fifth refueling outage scheduled to begin April 16, 1994.

-

INSTRUMENTATION

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.2 The isolation actuation instrumentation channels shown in Table 3.3.2-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.2-2 and with ISOLATION SYSTEM RESPONSE TIME as shown in Table 3.3.2-3.

APPLICABILITY: As shown in Table 3.3.2-1.

ACTION:

- a. With an isolation actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.2-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for one trip system, place the inoperable channel(s) and/or that trip system in the tripped condition* within one hour.
- c. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for both trip systems, place at least one trip system** in the tripped condition within one hour and take the ACTION required by Table 3.3.2-1.

^{*}An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.2-1 for that Trip Function shall be taken.

^{**}The trip system need not be placed in the tripped condition if this would cause the Trip Function to occur. When a trip system can be placed in the tripped condition without causing the Trip Function to occur, place the trip system with the most inoperable channels in the tripped condition; if both systems have the same number of inoperable channels, place either trip system in the tripped condition.

INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each isolation actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.2.1-1.**

4.3.2.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.*

4.3.2.3 The ISOLATION SYSTEM RESPONSE TIME of each isolation trip function shown in Table 3.3.2-3 shall be demonstrated to be within its limit at least once per 18 months.*** Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months,*** where N is the total number of redundant channels in a specific isolation trip system.

RIVER BEND - UNIT 1

Logic System Functional Testing period may be extended as identified by note c on Table 4.3.2.1-1.

^{**} Channel Calibration period may be extended as identified by note 'd' on Table 4.3.2.1-1.

^{***}Response Time test period may be extended as identified by note 'c' on Table 3.3.2-3.

TABLE 3.3.2-1

ISOLATION ACTUATION INSTRUMENTATION

TRI	P FUN	CTION	VALVE GROUPS OPERATED BY OF SIGNAL*** PER	MINIMUM PERABLE CHANNELS TRIP SYSTEM (a)	APPLICABLE OPERATIONAL CONDITION	ACTION
1.	PRI	MARY CONTAINMENT ISOLATION				ACTION
	a.	Reactor Vessel Water Level- Low Low, Level 2	1, 7, 8, 9 ^{(b)(c)} 15, 16	2	1, 2, 3	20
	b.	Drywell Pressure - High	1, 3, 8 ^{(b)(c)(j)}	2	1, 2, 3	20
	c.	Containment Purge Isolation Radiation ~ High	8	1	1, 2, 3	21
2.	MAI	N STEAM LINE ISOLATION				
	a.	Reactor Vessel Water Level- Low Low Low, Level 1	6	2	1, 2, 3	20
	b.	Main Steam Line Radiation - High	6, 9 ^(d)	2	1, 2, 3	23
	c.	Main Steam Line Pressure - Low	6	2	1	24
	d.	Main Steam Line Flow - High	6	2/MSL	1, 2, 3	23
	е.	Condenser Vacuum - Low	6	2	1, 2**, 3**	23
	f.	Main Steam Line Tunnel Temperature - High	6	2	1, 2, 3	23
	g.	Main Steam Line Tunnel	6	2	1, 2, 3	23
	h.	Main Steam Line Area Temperature High (Turbine Building)	6	2/area	1, 2, 3	23

RIVER BEND - UNIT 1

3/4 3-12

Amendment No. 56

TABLE 3.3.2-2 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SETPOINTS

TRI	P FUNCTION	TRIP SETPOINT	ALLOWABLE VALUE
6.	RHR SYSTEM ISOLATION (Cont'd) e. Reactor Vessel (RHR Cut-in		
	Permissive) Pressure - High	≤ 135 psig	<pre>_ 150 psig</pre>
	f. Drywell Pressure - High	≤ 1.68 psig	≤ 1.88 psig
7.	MANUAL INITIATION	NA	NA

* See Bases Figure B 3/4 3-1.

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TR	RESPONS	E TIME (Seconds)#
1.	PRIMARY CONTAINMENT ISOLATION	
	a. Reactor Vessel Water Level - Low Low Level 2 b. Drywell Pressure - High c. Containment Purge Isolation Radiation - High ^(b)	< 10(a)(c) < 10(a)(c) NA
2.	MAIN STEAM LINE ISOLATION	
	 a. Reactor Vessel Water Level - Low Low Low Level 1 b. Main Steam Line Radiation - High^(b) c. Main Steam Line Pressure - Low d. Main Steam Line Flow - High e. Condenser Vacuum - Low f. Main Steam Line Tunnel Temperature - High g. Main Steam Line Tunnel △ Temperature - High h. Main Steam Line Area Temperature - High (Turbine Bldg) 	$\leq 1.0 */< 10(a) **(c)$ $\leq 1.0 */< 10(a) **(c)$ < 1.0 */< 10(a) **(c) < 0.5 */< 10(a) **(c) NA NA NA NA
3.	SECONDARY CONTAINMENT ISOLATION	
	 a. Reactor Vessel Water Level - Low Low Level 2 b. Drywell Pressure - High c. Fuel Building Ventilation Exhaust Radiation - High^(b) d. Reactor Building Annulus Ventilation Exhaust Radiation - High^(b) 	<pre>< 10(a)(c) < 10(a)(c) NA</pre>
4.	REACTOR WATER CLEANUP SYSTEM ISOLATION	
	 a. △ Flow - High b. △ Flow Timer c. Eclipment Area Temperature - High d. Equipment Area △ Temperature - High e. Reactor Vessel Water Level - Low Low Level 2 f. Main Steam Line Tunnel Ambient Temperature - High g. Main Steam Line Tunnel △ Temperature - High h. SLCS Initiation 	<pre>< 10(a)##(c) NA NA NA << 10(a)(c) </pre>
5.	REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION	
	 a. RCIC Steam Line Flow - High b. RCIC Steam Line Flow-High Timer c. RCIC Steam Supply Pressure - Low d. RCIC Turbine Exhaust Diaphragm Pressure - High e. RCIC Equipment Room Ambient Temperature - High f. RCIC Equipment Room △ Temperature - High g. Main Steam Line Tunnel Ambient Temperature - High h. Main Steam Line Tunnel △ Temperature - High 	< 10 ^{(a)###} NA < 10 ^(a) NA NA NA NA

RIVER BEND - UNIT 1 3/4 3-24

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRI	P FUN	ACTION	RESPONSE 1	TIME (Seconds)#
6.	j. k. 1. ກ.	Main Steam Line Tunnel Temperature Timer RHR Equipment Room Ambient Temperature - High RHR Equipment Room & Temperature - High RHR/RCIC Steam Line Flow - High Drywell Pressure - High Manual Initiation SYSTEM ISOLATION		NA NA NA NA NA
0.	a. b. c. d.	RHR Equipment Area Ambient Temperature - High RHR Equipment Area & Temperature - High Reactor Vessel Water Level - Low Level 3		NA ≤ 10(a) ≤ 10(a)(c)
		Pressure - High Drywell Pressure - High		NA NA
7.	MAN	UAL INITIATION		NA
(a)	Isolation system instrumentation response time diesel generator starting and sequence loading	specified delays.	includes the

- (b) Radiation detectors are exempt from response time testing. Response time shall be measured from detector output or the input of the first electronic component in the channel.
- (c) Response Time testing may be performed during the fifth refueling outage scheduled to begin April 16, 1994.
- * Isolation system instrumentation response time for MSIVs only. No diesel generator delays assumed.
- ** Isolation system instrumentation response time for associated valves except MSIVs.
- # Isolation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to isolation time shown in Tables 3.6.4-1 and 3.6.5.3-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve.
- ## Time delay of 45-47 seconds.
- ### Time delay of 3-13 seconds.

TABLE 4.3.2.1-1

TRIP	FUNC	TION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
1.	PRIM	ARY CONTAINMENT ISOLATION				
	а.	Reactor Vessel Water Level - Low Low Level 2	s	м	R ^(b)	1, 2, 3
	b.	Drywell Pressure - High	· 5	м	R ^(b)	1, 2, 3
	c.	Containment Purge Isolation Radiation - High	s	м	R	1, 2, 3
2.	MAIN	STEAM LINE ISOLATION				
	a.	Reactor Vessel Water Level - Low Low Low Level 1	s	м	R(p)	1, 2, 3
	b.	Main Steam Line Radiation - High	s	м	R	1, 2, 3
	с.	Main Steam Line Pressure - Low	s	м	R(b)	1
	d.	Main Steam Line Flow - High	S	м	R(b)	1, 2, 3
	e. f.	Condenser Vacuum - Low Main Steam Line Tunnel	S	м	R(p)	1, 2**, 3**
		Temperature - High	S	м	· R	1, 2, 3
	g.	Main Steam Line Tunnel ∆ Temperature - High	5	м	R	1, 2, 3
	h.	Main Steam Line Area Temperature-High (Turbine Building)	S	м	_R (b)	1, 2, 3

ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

RIVER BEND - UNIT 1

TRIP	FUNC	TION NDARY CONTAINMENT ISOLATION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
5.	a. b.	Reactor Vessel Water Level - Low Low Level 2 Drywell Pressure - High	5 5	M M	R(b) R(b)	1, 2, 3 1, 2, 3
	c. d.	Fuel Building Ventilation Exhaust Radiation - High Reactor Building Annulus	5	м	R	*
		Ventilation Exhaust Radiation - High	5	м	R	1, 2, 3
4.	REA	CTOR WATER CLEANUP SYSTEM ISOLA	TION		R(c)	
	a.	∆ Flow - High	S	м		1, 2, 3
	b.	∆ Flow Timer	NA	М	Q(c)	1, 2, 3
	c.	Equipment Area Temperature - High	S	м	R ^(c)	1, 2, 3
	d.	Equipment Area ∆ Temperature - High	S	м	R ^(c)	1, 2, 3
	e.	Reactor Vessel Water Level - Low Low Level 2	S	м	. _R (b)(c)	1, 2, 3
	f.	Main Steam Line Tunnel Ambien Temperature - High	t S	м	R ^(c)	1, 2, 3
	g.	Main Steam Line Tunnel ∆ Temperature - High	S	M (2)	$R^{(c)}_{(c)}$	1, 2, 3
	h.	SLCS Initiation	NA	M(a)	NA ^(c)	1, 2, 3

TABLE 4.3.2.1-1 (Continued)

ent No. 08. 72

TABLE 4.3.2.1-1 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRIP	FUM	CTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
5.	REA	CTOR CORE ISOLATION COOLING SYSTE	M ISOLATI	ION		
	8.	RCIC Steam Line Flow - High	S	м	R ^(b)	1, 2, 3
	b.	RCIC Steam Line Flow-High Times	NA	M	Q	1, 2, 3
	с.	RCIC Steam Supply Pressure - Low	s	м	R ^(b)	1, 2, 3
	đ.	RCIC Turbine Exhaust Diaphragm Pressure - High	s	м	R ^(b)	1, 2, 3
	e.	RCIC Equipment Room Ambient Temperature - High	5	м	R	1, 2, 3
	f.	RCIC Equipment Room	5	м	R	1, 2, 3
	g.	Main Steam Line Tunnel Ambient Temperature - High	s	н	R	1, 2, 3
	h.	Main Steam Line Tunnel & Temperature - High	s	м	R	1, 2, 3
	1.	Main Steam Line Tunnel Temperature Timer	NA	н	Q	1, 2, 3
	j.	RHR Equipment Room Ambient Temperature - High	\$	м	R	1, 2, 3
	k.	RHR Equipment Room A Temperature - High	s	м	R	1, 2, 3
	1.	RHR/RCIC Steam Line Flow-High	s	M	R(b)	1, 2, 3
	m.	Drywell Pressure-High	s	м	R(p)	1, 2, 3
	n.	Manual Initiation	NA	R	NA	1, 2, 3

TABLE 4.3.2.1-1 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRIP	FUN	CTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
6.	RHR	SYSTEM ISOLATION				
	a.	RHR Equipment Area Ambient Temperature - High	S	м	R	1, 2, 3
	b.	RHR Equipment Area				
		∆ Temperature - High	S	М	R	1, 2, 3
	с.	Reactor Vessel Water Level - Low Level 3	S	м	R(p)	1, 2, 3
	d.	Reactor Vessel Water Level -			(1-)	
		Low Low Low Level 1	S	M	R(b)	1, 2, 3
	e.	Reactor Vessel (RHR Cut-in Permissive) Pressure - High	S	м	R(b)(c)(d) R(b)	
	f.	Drywell Pressure - High	S	Μ.	R ^(b)	1, 2, 3 1, 2, 3
7.	MAN	JAL INITIATION	NA	м	NA	1, 2, 3

RIVER BEND - UNIT 1

3/4 3-29

*When handling irradiated fuel in the Fuel Building.

**When the reactor mode switch is in Run and/or any turbine stop valve is open.

(a) Each train or logic channel shall be tested at least every other 31 days.

(b) Calibrate trip unit setpoint at least once per 31 days.

(c) May be performed during the fifth refueling outage scheduled to begin April 16, 1994.

(d) CHANNEL CALIBRATION may be performed during the fifth refueling outage scheduled to begin April 16, 1994.

Amendment 8, 9,72

INSTRUMENTATION

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3 The emergency core cooling system (ECCS) actuation instrumentation channels shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table 3.3.3-3.

APPLICABILITY: As shown in Table 3.3.3-1.

ACTION:

- a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With one or more ECCS actuation instrumentation channels inoperable. take the ACTION required by Table 3.3.3-1.
- With either ADS trip system "A" or "B" inoperable, restore the C. inoperable trip system to OPERABLE status:
 - 1. Within 7 days, provided that the HPCS and RCIC systems are OPERABLE, or
 - 2. Within 72 hours, provided either the HPCS or the RCIC system is inoperable.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure to less than or equal to 100 psig within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.3.1-1.##

4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.##

##Channel Calibration and Logic System Functional testing period may be extended as identified by note b on Table 4.3.3.1-1.

RIVER BEND - UNIT 1 3/4 3-30

Amendment No. 9-72

INSTRUMENTATION

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

4.3.3.3 At least once per 18 months##, the ECCS RESPONSE TIME of each ECCS trip function shown in Table 3.3.3-3 shall be demonstrated to be within the limit. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months##, where N is the total number of redundant channels in a specific ECCS trip system.

##ECCS Response time testing period may be extended as identified by note A on Table 3.3.3-3.

RIVER BEND - UNIT 1

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION SETPOINTS ALLOWABLE TRIP SETPOINT

TABLE 3.3.3-2 (Continued)

a. 4.16 kv Basis -

delay (w/o LOCA) c. 3 ± 0.3 sec. time

delay (w/LOCA)

LOSS	OF	POWER	(continued)

- 2. Division III
 - a. 4.16 kv Standby Bus Undervoltage (Sustained Undervoltage)
 - b. 4.16 kv Standby Bus Undervoltage (Degraded Voltage)

3045 ± 153 volts 3045 ± 214 volts b. 3 ± 0.3 sec. time 3 ± 0.33 sec. time delay delay a. 4.16 kv Basis -3777 ± 30 volts 3777 ± 75 volts b. 60 ± 6 sec. time 60 ± 6.6 sec. time delay

VALUE

3 ± 0.33 sec. time delay

3/4 3-39

**(Bottom of CST is at EL 95'1".) The levels are measured from the instrument zero level of cL 36'5". #(Bottom of suppression pool is at EL 70'.) The levels are measured from the instrument zero level of FL 89'9".

##These are inverse time delay voltage relays or instantaneous voltage relays with a time delay. The voltages shown are the maximum that will not result in a trip. Lower voltage conditions will result in decreased trip times.

TRIP FUNCTION

D.

فسو

^{*}See Bases Figure B 3/4 3-1.

TABLE 3.3.3-3

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECCS	RESPONSE TIME (Seconds)
1. LOW PRESSURE CORE SPRAY SYSTEM	< 37 ^(A)
 LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM Pumps A and B Pump C 	$\leq 37^{(A)}$ $\leq 37^{(A)}$
3. AUTOMATIC DEPRESSURIZATION SYSTEM	NA
4. HIGH PRESSURE CORE SPRAY SYSTEM	≤ 27 ^(A)
5. LOSS OF POWER	NA

RIVER BEND - UNIT 1

Amendment No. 72

⁽A) Response time testing may be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.

TABLE 4.3.3.1-1

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL **OPERATIONAL** CHANNEL FUNCTIONAL **CHANNEL** CONDITIONS FOR WHICH TRIP FUNCTION CHECK TEST CALIBRATION SURVEILLANCE REQUIRED A. DIVISION I TRIP SYSTEM RHR-A (LPCI MODE) AND LPCS SYSTEM 1. Reactor Vessel Water Level a. $R^{(a)}_{R(a)}$ Low Low Low Level 1 S M 1, 2, 3, 4*, 5* b. Drywell Pressure - High S M 1, 2, 3 $R^{(a)}_{R(a)}$ c. LPCS Pump Discharge Flow-Low S M 1, 2, 3, 4*, 5* d. Reactor Vessel Pressure-Low S м 1, 2, 3, 4*, 5* (LPCS/LPCI Injection Valve Permissive) e. LPCI Pump A Start Time Delay Relay M NA Q_R(a) 1, 2, 3, 4*, 5* f. LPCI Pump A Discharge Flow-Low S Μ 1, 2, 3, 4*, 5* LPCS Pump Start Time Delay q. NA M 1, 2, 3, 4*, 5* 0 Relay R(b) Manual Initiation NA h. NA 1, 2, 3, 4*, 5* AUTOMATIC DEPRESSURIZATION SYSTEM 2. TRIP SYSTEM "A"# Reactor Vessel Water Level a. R(a)Low Low Low Level 1 S M 1, 2, 3 R(a)b. Drywell Pressure-High S M 1, 2, 3 ADS Timer NA c. M 0 1, 2, 3 Reactor Vessel Water Level d. R(a)Low Level 3 S M 1, 2, 3 e. LPCS Pump Discharge p(a) Pressure-High S M 1, 2, 3 f. LPCI Pump A Discharge R(a)Pressure-High S M 1, 2, 3 ADS Drywell Pressure Bypass NA M q. 0 1, 2, 3 Timer h. ADS Manual Inhibit Switch NA M NA 1, 2, 3 Manual Initiation R 1. NA NA 1, 2, 3

RIVER BEND .

UNIT فسو

3/4 3-41

N

TABLE 4.3.3.1-1 (Continued)

EMERGENCY CORE COOLING SYSTEM ACTUATION	INSTRUMENTATION	SUR /EILLANCE	REQUIREMENTS
---	-----------------	---------------	--------------

TRIP FU	NCTION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
B. DIV	ISION II TRIP SYSTEM				
1.	RHR B AND C (LPCI MODE)				
	a. Reactor Vessel Water Level -			(2)	
	Low Low Low Level 1	S	M	R(a)	1, 2, 3, 4*, 5*
	b. Drywell Pressure - High	S	М	R(a) R(a)	1, 2, 3
	c. Reactor Vessel Pressure-Low (LPCI Injection Valve Permiss	S ive)	м	R(a)	1, 2, 3 1, 2, 3, 4*, 5*
	d. LPCI Pump B Start Time Delay				de la construcción de la
	Relay	NA	M	Q(a)	1, 2, 3, 4*, 5*
	e. LPCI Pump Discharge Flow-Low	S	M		1, 2, 3, 4*, 5*
	f. LPCI Pump C Start Time Delay Relay	NA	М	Q	1, 2, 3, 4*, 5* 1, 2, 3, 4*, 5* 1, 2, 3, 4*, 5*
	g. Manual Initiation	NA	R(p)	NA	1, 2, 3, 4*, 5*
2.	AUTOMATIC DEPRESSURIZATION SYSTEM				
	a. Reactor Vessel Water Level -			(-)	
	Low Low Low Level 1	S	M	R(a)	1, 2, 3
	b. Drywell Pressure-High	S	M	. _R (a)	1, 2, 3
	c. ADS Timer	NA	M	Q	1, 2, 3
	d. Reactor Vessel Water Level -			(2)	
	Low Level 3	S	M	R ^(a)	1, 2, 3
	e. LPCI Pump B and C Discharge			_R (a)	
	Pressure-High	S	М	R	1, 2, 3
	f. ADS Drywell Pressure Bypass				No. Contraction of the second
	Timer	NA	M	Q	1, 2, 3
	g. ADS Manual Inhibit Switch	NA	M	NA	1, 2, 3
	h. Manual Initiation	NA	R	NA	1, 2, 3

RIVER BEND - UNIT 1

3/4 3-42

TRI	IP FUNCTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRE
C.	DIVISION III TRIP SYSTEM				
	1. HPCS SYSTEM				
	a. Reactor Vessel Water Level -			물건 생활 물건	
	Low Low Level 2	5	М	R(a)	1 2 3 44 54
	b. Drywell Pressure-High	S	M	R(a) R(a)	1, 2, 3, 4*, 5* 1, 2, 3
	c. Reactor Vessel Water Level-Hig	h			1, 2, 3
	Level 8	S	M	R(a)	1, 2, 3, 4*, 5*
	d. Condensate Storage Tank Level			(1)	., ., ., ., .
	e. Suppression Pool Water	S	M	R ^(a)	1, 2, 3, 4*, 5*
	Level - High	5	M	R(a)	
	f. Pump Discharge Pressure-High	S	M	R(a) R(a)	1, 2, 3, 4*, 5*
	g. HPCS System Flow Rate-Low	S	M	R(a)(b)	1, 2, 3, 4*, 5*
	h. Manual Initiation	NA	R	NA	1, 2, 3, 4*, 5*
D.	LOSS OF POWER			na	1, 2, 3, 4*, 5*
	1. Divisions I and II				
	a. 4.16 ky Standby Bus Under-	S	м	p(b)	
	voltage (Sustained Under-	3	n	R	1, 2, 3, 4**, 5**
	voltage)				
	b. 4.16 kv Standby Bus Under-	S	м	. p ^(b)	1 2 2 44 54
	voltage (Degraded Voltage)			ĸ	1, 2, 3, 4**, 5**
	2. Division III				
	a. 4.16 kv Standby Bus Under-	S	NA		
	voltage (Sustained Under-	5	11/3	R	1, 2, 3, 4**, 5**
	voltage)				
	b. 4.16 kv Standby Bus Under-				
	voltage (Degraded Voltage)	S	M	the second state of the	
	tottage (tergitades fortuge)		11	R	1, 2, 3, 4**, 5**

TABLE 4.3.3.1-1 (Cortinued)

Not required to be OPERABLE when reactor steam dome pressure is less than or equal to 100 psig. # When the system is required to be OPERABLE per Specification 3.5.2. *

** Required when ESF equipment is required to be OPERABLE.

RIV

(a) Calibrate trip unit setpoint at least once per 31 days.
(b) May be extended to the completion of the fifth refueling outage, scheduled to begin April 16, 1994.

INSTRUMENTATION

3/4.3.4 RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION

ATWS RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.4.1 The anticipated transient without scram recirculation pump trip (ATWS-RPT) system instrumentation channels shown in Table 3.3.4.1-1 shall be OPERABLE with their trip setpoints set consistent with values shown in the Trip Setpoint column of Table 3.3.4.1-2.

APPLICABILITY: OPERATIONAL CONDITION 1.

ACTION:

- a. With an ATWS-RPT system instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.4.1-2, declare the channel inoperable until the channel is restored to OPERABLE status with the channel trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels one less than required by the Minimum OPERABLE Channels per Trip System requirement for one or both trip systems, restore the inoperable channel to OPERABLE status within 30 days or be in at least STARTUP within the next 6 hours.
- c. Otherwise, restore at least one inoperable channel in each trip system to OPERABLE status within 72 hours or be in at least STARTUP within the next 6 hours.

SURVEILLANCE REQUIREMENTS

4.3.4.1.1 Each ATWS-RPT system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.4.1-1.

4.3.4.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

INSTRUMENTATION

3/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.6 The control rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2.

APPLICABILITY: As shown in Table 3.3.6-1.

ACTIUN:

- a. With a control rod block instrumentation channel trip setpoint less conservative than the value shown in the A¹¹ wable Values column of Table 3.3.6-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, take the ACTION required by Table 3.3.6-1.

SURVEILLANCE REQUIREMENTS

4.3.6 Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.#

RIVER BEND - UNIT 1

[#]Channel Calibration period may be extended as identified by notes 'c' and 'g' on Table 4.3.6-1.

	CONTROL	TABLE 3.3.6-1	TION	
TRI	P FUNCTION	ROD BLOCK INSTRUMENTA MINIMUM OPERABLE CHANNELS PER TRIP FUNCTION	APPLICABLE OPERATIONAL CONDITIONS	ACTION
1.	ROD PATTERN CONTROL SYSTEM			
	a. Low Power Setpoint b. High Power Setpoint	2	1, 2 1	60 60
2.	APRM			
	 a. Flow Biased & Fron Flux - Upscale b. Inoperative c. Downscale d. Neutron Flux - Upscale, Startup 	6 6 6	$1 \\ 1, 2, 5 \\ 1 \\ 2, 5$	61 61 61 61
3.	SOURCE RANGE MONITORS			
	a. Detector not full in ^(a)	3 2**	2 5	61 62
	b. Upscale ^(b)	3 2**	2	61 62
	c. Inoperative ^(b)	3 2**	2	61 62
	d. Downscale ^(C)	3 2**	2 5	61 62
4.	INTERMEDIATE RANGE MONITORS			
	a. Detector not full inb. Upscalec. Inoperative	6 6 6	2, 5 2, 5 2, 5	61 61 61
	d. Downscale ^(d)	6	2, 5	61
5.	SCRAM DISCHARGE VOLUME			
	a. Water Level-High	2	1, 2, 5*	62
6.	REACTOR COOLANT SYSTEM RECIRCULATIO	N FLOW		
	a. Upscale	2	1	62

RIVER BEND - UNIT 1

3/4 3-60

T A	10.0	-		- 10	-100	1.00
10	н		а.	. 3.	Sec. 1	
	101	- E.			. 13	

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRI	P FUNCTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION(a)	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
1.	ROD PATTERN CONTROL SYSTEM				SURFERENCE REQUINED
	a. Low Power Setpoint	s(f)	S/U(b)(e) M(e)	sa [#]	1, 2
	b. High Power Setpoint	s(f)	S(U(b)(e) M(e)	sa#	1**
2.	APRM				영양 영양 이상
	 a. Flow Biased Neutron Flux - Upscale b. Inoperative c. Downscale d. Neutron Flux - Upscale, Startup 	NA NA NA	S/U(b),M S/U(b),M S/U(b),M S/U(b),M S/U(b),M	SA(g) NA SA SA	1 1, 2, 5 1 2, 5
3.	SOURCE RANGE MONITORS				
	 a. Detector not full in b. Upscale c. Inoperative d. Downscale 	NA NA NA NA	S/U(b),W S/U(b),W S/U(b),W S/U(b),W S/U(b),W	NA SA NA SA	2, 5 2, 5 2, 5 2, 5 2, 5
4.	INTERMEDIATE RANGE MONITORS				2, 5
	 a. Detector not full in b. Upscale c. Inoperative d. Downscale 	NA NA NA NA	S/U(b),W S/U(b),W S/U(b),W S/U(b),W	NA SA NA SA	2, 5 2, 5 2, 5 2, 5 2, 5
5.	SCRAM DISCHARGE VOLUME				2, 3
	a. Water Level-High	NA	м	R# (c)	1, 2, 5*
6.	REACTOR COOLANT SYSTEM RECIRCULATION	FLOW			
	a. Upscale	NA	s/u ^(b) ,M	SA(g)	1

RIVER BEND - UNIT 1

3/4 3-63

Amendment No. 3, 23, 72

TABLE 4.3.6-1 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE REQUIREMENTS

NOTES:

- a. Neutron detectors may be excluded from CHANNEL CALIBRATION.
- b. Within 24 hours prior to startup, if not performed within the previous 7 days.
- c. CHANNEL CALIBRATION may be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.
- d. [DELETED]
- e. Includes reactor manual control multiplexing system input.
- Verify the Turbine Bypass valves are closed when THERMAL POWER is greater than 20% RATED THERMAL POWER.
- g. The CHANNEL CALIBRATION shall exclude the flow reference transmitters; these transmitters shall be calibrated at least once per 18 months, except that this test may be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.
- * With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
- # Calibrate trip unit setpoint once per 31 days.
- ** With THERMAL POWER greater than low power setpoint.

TABLE 4.3.7.3-1

METEOROLOGICAL	MONITORING	INSTRUMENTATION	SURVEILLANCE	REQUIREMENTS
----------------	------------	-----------------	--------------	--------------

INS	TRUMENT	CHANNEL	CHANNEL CALIBRATION
a.	Wind Speed		
	1. Elev. 30 ft.	D	SA
	2. Elev. 150 ft.	D	SA
b.	Wind Direction		
	1. Elev. 30 ft.	D	SA
	2. Elev. 150 ft.	D	SA
с.	Air Temperature Difference		
	1. Elev. 30/150 ft.	D	SA

INSTRUMENTATION

REMOTE SHUTDOWN MONITORING INSTRUMENTATION AND CONTROLS

LIMITING CONDITION FOR OPERATION

3.3.7.4 The remote shutdown monitoring instrumentation channels and controls shown in Table 3.3.7.4-1 and 3.3.7.4-2 shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

- a. With the number of OPERABLE remote shutdown monitoring instrumentation channels less than required by Table 3.3.7.4-1, restore the inoperable channel(s) to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours.
- b. With the number of OPERABLE remote shutdown system controls less than required by Table 3.3.7.4-2, restore the inoperable control(s) to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.4.1 Each of the above required remote shutdown monitoring instrumentation channels shall be demonstrated OPERABLE by performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.4-1.#

4.3.7.4.2 Each of the above required remote shutdown system control circuits shall be demonstrated OPERABLE by verifying, at least once per 18 months, its capability to perform its intended function(s).

#Channel Calibration may be extended as identified by note 'a' on Table 4.3.7.4-1.

TABLE 3.3.7.4-2 (Continued)

REMOTE SHUTDOWN SYSTEM CONTROLS

		MINIMUM CHANNELS	OPERABLE
		RSP1	RSP2
22.	RHR Shutdown Cooling MOV (1E12*MOVF006A, 6B)	2 ^(a)	NA
23.	RHR Outboard Shutdown Isolation MOV (1E12*MOVF008)	1	NA
24.	RHR Inboard Shutdown Isolation MOV (1E12*MOVF009)	1	NA
25.	RHR Hx Flow to Suppression Pool MOV (1E12*MOVFO11A, B)	1	1
26.	RHR Reactor Head Spray MOV (1E12*MOVF023)	1	NA
27.	RHR Test Line MOV (1E12*MOVF024A, B)	1	1
28.	Deleted		
29.	RHR Injection Shutoff MOV (1E12*MOVF027A, B)	1	1
30.	RHR Upper Pool Cooling Shutoff MOV (1E12*MOVF037A, B)	1	1
31.	RHR Injection MOV (1E12*MOVF042A, B, C)	1	2 ^(a)
32.	RHR Hx Shell Side Inlet MOV (1E12*MOVF047A, B)	1	1
33.	RHR Hx Shell Side Bypass MOV (1E12*MOVF048A, B)	1	1
34.	RHR Discharge to Radwaste MOV (1E12*MOVF040)	1	NA
35.	Deleted		
36.	RHR Injection MOV (1E12*MOVF053A, B)	1	1
37.	RHR Pump Minimum Flow MOV (1E12*MOVF064A, B, C)	1	2 ^(a)
38.	RHR Hx Water Discharge MOV (1E12*MOVF068A, B)	1	l
39.	Safety Relief Valves (1821*RVF051C, G, D)	3 ^(a)	3 ^(a)
40.	SSW Pump (1SWP*P2A, 2C, (b) 2B, 2D)	1	2 ^(a)
41.	Normal Service Water Isolation MOV (15WP*MOV96A, B)	1	1
42.	SSW Cooling Tower Inlet MOV (ISWP*MOV55A, B)	1	1
43.	SSW Component Cooling Water Inlet MOV (ISWP*MOV510A, B)	1	1
44.	SSW Component Cooling Water Outlet MOV (1SWP*MOV504A, B)	1	1

(a) One per control equipment.(b) SSW pump 1SWP*P2C is provided on panel 1EGS*PNL4C.

RIVER BEND - UNIT 1 3/4 3-79

T	ABI	F	2	2	7	A	- 1	
_	1 1001	ter Star		2.	8.	· 78	1	

REMOTE SHUTDOWN MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

	M	
1. Reactor Vessel Pressure	m	R (a)
2. Reactor Vessel Water Level	м	R ^(a)
3. Safety/Relief Valve Demand Position	м	NA
4. Suppression Pool Water Level	м	R
5. Suppression Pool Water Temperature	м	R
6. Drywell Pressure	м	R
7. Drywell Temperature	м	R
8. RHR System Flow: Loop A Loop B Loop C	M M	R R R
9. RHR Hx Cooling Water System Flow: Loop A Loop B	M M	R R
10. RCIC System Flow	м	R
11. RCIC Turbine Speed	м	R

(a) May be extended to be performed during the fifth refueling outage scheduled to begin April 16, 1994.

INSTRUMENTATION

ACCIDENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.5 The accident monitoring instrumentation channels shown in Table 3.3.7.5-1 shall be OPERABLE.

APPLICABILITY: As shown in Table 3.3.7.5-1.

ACTION:

With one or more accident monitoring instrumentation channels inoperable, take the ACTION required by Table 3.3.7.5-1.

SURVEILLANCE REQUIREMENTS

4.3.7.5 Each of the above required accident monitoring instrumentation channels shall be demonstrated OPERABLE by performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.5-1.#

#Channel Calibration period may be extended as identified by note (a) on Table 4.3.7.5-1.

RIVER BEND - UNIT 1

TABLE 3.3.7.5-1

ACCIDENT MONITORING INSTRUMENTATION

INS	TRUMENT	REQUIRED NUMBER OF CHANNELS	MINIMUM CHANNELS OFERABLE	APPLICABLE OPERABLE CONDITIONS	ACTION
1.	Reactor Vessel Pressure	2	1	1 2 2	00
2.	Reactor Vessel Water Level	٤.	1	1,2,3	80
	a. Wide Range	2	1	1,2,3	80
	b. Fuel Zone	2	1	1,2,3	80
3.	Suppression Pool Water Level	2	î	1,2,3	80
4.	Suppression Pool Water Temperature	2/secto	r 1/sector	1,2,3	80
5.	Primary Containment Pressure	2	1	1,2,3	80
6.	Drywell Pressure	2	1	1,2,3	80
7.	Drywell Air Temperature	2	1	1,2,3	80
8.	Drywell and Primary Containment Hydrogen Concentrat Analyzer and Monitor	ion 2	ĩ	1,2,3	80
9.	Area Radiation"				
	a. Primary Containment Area	2	1	1,2,3	81
	b. Drywell Area	2	î	1,2,3	81

High range gross gamma monitors.

RIVER BEND - UNIT 1

3/4 3-82

Table 3.3.7.5-1 (Continued)

ACCIDENT MONITORING INSTRUMENTATIONS

ACTION STATEMENTS

- ACTION 80 a. With the number of OPERABLE accident monitoring instrumentation channels less than the Required Number of Channels shown in Table 3.3.7.5-1, restore the inoperable channel(s) to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - b. With the number of OPERABLE accident monitoring instrumentation channels less than the Minimum Channels OPERABLE requirements of Table 3.3.7.5-1, restore the inoperable channel(s) to OPERABLE status within 48 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- ACTION 81 With the number of OPERABLE Channels less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable Channel(s) to OPERABLE status within 72 hours, or:
 - a. Initiate the preplanned alternate method of monitoring the appropriate parameter(s), and
 - b. Prepare and submit, within 14 days following the event, a Special Report to the Commission, pursuant to Specification 6.9.2, outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.

TABLE 4.3.7.5-1

ACCIDENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INST	TRUMENT	CHANNEL	CHANNEL	APPLICABLE OPERATIONAL CONDITIONS
1.	Reactor Vessel Pressure	М	R (a)	1, 2, 3
2.	Reactor Vessel Water Level			1, 2, 5
	a. Wide Range	м	R	1, 2, 3
	b. Fuel Zone	M	R	1, 2, 3
3.	Suppression Pool Water Level	M	R	1, 2, 3
4.	Suppression Pool Water Temperature	M	R	1, 2, 3
5.	Primary Containment Pressure	М	R	1, 2, 3
6.	Drywell Pressure	M	P	1, 2, 3
7.	Drywell Air Temperature	м	R	1, 2, 3
8.	Drywell and Primary Containment Hydrogen Concentration Analyzer and Monitor	М	Q*	1, 2, 3
9.	Area Radiation"			
	a. Primary Containment Area b. Drywell Area	M M	R** (a)	1, 2, 3 1, 2, 3

*Using sample gas containing:

a. One volume percent hydrogen, balance nitrogen.

b. Four volume percent hydrogen, balance nitrogen.

**The CHANNEL CALIBRATION shall consist of an electronic calibration of the channel, not including the detector, for range decades above 10 R/hr and a one point calibration check of the detector below 10 R/hr with an installed or portable gamma source.

[#]High range gross gamma monitors.

(a) May be extended to be performed during the fifth refueling outage scheduled to begin April 16, 1994.

RIVER BEND - UNIT 1

INSTRUMENTATION

3/4.3.9 PLANT SYSTEMS ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.9 The plant systems actuation instrumentation channels shown in Table 3.3.9-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.9-2.

APPLICABILITY: As shown in Table 3.3.9-1.

ACTION:

- a. With a plant system actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.9-2, declare the channel inoperable and take the ACTION required by Table 3.3.9-1.
- b. With one or more plant systems actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.9-1.

SURVEILLANCE REQUIREMENTS

4.3.9.1 Each plant system actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.9.1-1.#

4.3.9.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.#

RIVER BEND - UNIT 1

[#]Channel Calibration and Logic System Functional test period may be extended as identified by note (b) on Table 4.3.9.1-1.

TABLE 3.3.9-1

PLANT SYSTEMS ACTUATION INSTRUMENTATION

TRI	P FUNCTION	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM	APPLICABLE OPERATIONAL CONDITIONS	ACTION
1.	PRIMARY CONTAINMENT VENTILATION SYSTEM - UNIT COOLER & AND B			
	a. Drywell Pressure-High	2	1, 2, 3	150
	b. Containment-To-Annulus ∆P High	3	1, 2, 3	151
	c. Reactor Vessel Water Level-Low Low L	ow Level 1 2	1, 2, 3	150
	d. Timers	1	1, 2, 3	152
2.	FEEDWATER SYSTEM/MAIN TURBINE TRIP SYSTEM			
	a. Reactor Vessel Water Level-High Leve	18 3	1	153

RIVER BEND - UNIT 1

3/4 3-108

TABLE 4.3.9.1-1

PLANT SYSTEMS ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRI	P FUNCTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CALIBRATION	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
1.	PRIMARY CONTAINMENT VENTILATION SYS	TEM -			
	a. Drywell Pressure-High b. Containment-to-Annulus ΔP-High		M M	R(a)# R(a)	1, 2, 3 1, 2, 3
	 c. Reactor Vessel Water Level-Low Low Low Level 1 d. Timer 	DNA	M	R(a)₩ R	1, 2, 3 1, 2, 3
2.	FEEDWATER SYSTEM/MAIN TURBINE TRIP	SYSTEM			
	a. Reactor Vessel Water Level-Hig Level 8	h D	м	R ^(b)	1

(a) Calibrate trip unit setpoint once per 31 days.

(b) May be performed during the fifth refueling outage scheduled to begin April 16, 1994.

The specified 18 month interval during the first operation cycle may be extended to coincide with completion of the first refueling outage, scheduled to begin 9-15-87.

#

CONTAINMENT AND DRYWELL ISOLATION VALVES

SYSTEM	VALVE NUMBER	PENETRATION NUMBER	VALVE GROUP(1)	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (Yes/No)
a. Automatic Isolation Valves					
1. Primary Containment ^(a)	(Continued)				
RWCU Disch. to Condenser#	1G33*MOVF028	1KJ8*Z4	15	20.9	Yes(f)
RWCU Return to FW#	1G33*MOVF040	1KJB*Z6	15	24.2	No
RWCU Pump Suction#	1G33*MOVF001(0)	1KJB*Z7	16	19.8	No
RWCU Pump Disch. #	1G33*MOVF053	1KJB*Z129	15	5.5	No
RWCU Disch. to Condenser#	1G33*MOVF034	1KJ8*Z4	15	20.9	Yes(f)
RWCU Return to FW #	1G33*MOVF039	1KJB*Z6	15	24.2	No
RWCU Pump Suction#	1G33*MOVF004	1KJ8*Z7	7	6.6	No
RWCU Pump Disch. #	1G33*MOVF054	1KJB*Z129	15	5.5	No
RWCU Backwash Disch. #	1WCS*MOV178	1KJB*Z5	1	12.1	Yes(f)
RWCU Backwash Disch. #	1WCS*MOV172	1KJB*75	1	12.6	Yes(f)
HPCS Test Return-Supp. Pool	1E22*MOVF023(j)	1KJB*Z11	1	50	No
RHR A Return-Supp. Pool	1E12*MOVF024A(j)	1KJB*Z24A	10	63.8	No
RHR A Hx Dump-Supp. Pool	1E12*MOVF011A(j)	1KJB*Z24A	10	34.1	No
LPCS Test Return-Supp. Pool	1E21*MOVF012(j)	1KJB*Z24A	10	57.2	No
RHR B Return-Supp. Pool	1E12*MOVF024B(j)	1KJB*Z24B	10	63.8	No
RHR B Hx Dump-Supp. Pool	1E12*MOVF011B(j)	1KJ8*Z248	. 10	30.8	No
RHR C Return-Supp. Pool	1E12*MOVF021(j)	1KJ8*Z24C	10	97.9	No
Fuel Pool C&C Disch.	1SFC*MOV119	1KJ8*Z26	1	68	No
Fuel Pool C&C Suction	1SFC*MOV120	1KJB*Z27	1	62.7	No
Fuel Pool C&C Suction	1SFC*MOV122	1KJ8*Z27	1	63.8	No
Fuel Pool Purif. Suction	1SFC*MOV139	1K.18*Z28	1	39.6	No
Fuel Pool Purif. Suction	1SFC*MOV121	1KJB*Z28	1	39.6	No

CONTAINMENT AND DRYWELL ISOLATION VALVES

SYSTEM	VALVE NUMBER	PENETRATION NUMBER	VALVE GROUP(1)	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (Yes/No)
a. Automatic Isolation Valves					
1. Primary Containment ^(a)	(Continued)				
Floor Drain Disch.	1DFR*A0V102(b)	1KJB*Z35, 1DRB*Z36	1	N/A	No
Floor Drain Disch.	1DFR*AOV101(b)	1KJB*Z35,	1	N/A	No
Equip. Drain Disch.	1DER*AOV127(b)	1DRB*Z36 1KJB*Z38,	1	N/A	No
Equip. Drain Disch.	1DER*AOV126 ^(b)	1DRB*Z39 1KJB*Z38,	1	N/A	No
Fire Protection Hdr.	1FPW*MOV121	1DRB*Z39 1KJ8*Z41	1	34.1	Yes(f)
Service Air Supply	1SAS*MOV102	1KJB*Z44	1	22.0	Vec(T)
Instr. Air Supply	1IAS*MOV106	1KJ8*Z46	1	18.7	Yes(f)
RPCCW Supply	1CCP*MOV138	1KJ8*Z48	1	22.0	No
RPCCW Return	1CCP*MOV158	1KJB*Z49	1	23.1	No
RPCCW Return	1CCP*MOV159	1KJ8*Z49	1	24.2	No
Service Water Return	1SWP*MOV5A	1KJB*Z53A	1	50.6	No
Service Water Return	1SWP*MOV58	1KJB*Z53B ·	1	53.9	No
Vent. Chilled Water Rtn.	1HVN*MOV102	1KJ8*Z131	1	31.9	Yes(f)
Vent. Chilled Water Rtn.	1HVN*MOV128	1KJB*Z131	1	28.6	Yes(f)
Vent. Chilled Water Sup.	1HVN*MOV127	1KJB*Z132	1	27.5	Yes(f)
Condensate Makeup Supply	1CNS*MOV125	1KJB*Z134	1	22.0	Yes(')

CONTAINMENT AND DRYWELL ISOLATION VALVES

SYSTEM	VALVE NUMBER	PENETRATION NUMBER	VALVE GROUP(1)	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (Yes/No)
a. Automatic Isolation Valves					
1. Primary Containment ^(a)	(Continued)				
RHR & RCIC Steam Sup.	1E51*MOVF063 ^(b) 1E51*MOVF076 ^(b) (m)	1KJB*Z15	2	9.9	No
RHR & RCIC Steam Sup.	1E51*MOVF076(D)(m)	1KJB*Z15	2	13.4	No
RHR & RCIC Steam Sup.	1E51*MOVF064	1KJB*Z15	2	9.9	No
RCIC Pump SucSupp. Pool	1E51*MOVF064 1E51*MOVF031(j)	1KJB*Z16	2	30.5	No
RCIC Turbine ExhSupp. Pool	1E51*MOVF077	1KJB*Z17	3	14.2	No
RCIC Turbine Exh. Vac. Bkrs.	1E51*MOVF078	1KJB*Z18B,C	3	16.5	No
Cont./Drywell Purge Sup.	1HVR*A0V165	1KJB*Z31	8	3	No
Cont./Drywell Purge Sup.	1HVR*AOV123	1KJB*Z31	8	3	No
Cont. /Drywell Purge Outlet	1HVR*AOV128	1KJB*Z33	8	3	No
Cont./Drywell Purge Outlet	1HVR*AOV166	1KJB*Z33	8	3	No
Post-Accident Samp. Sup.	1SSR*SOV130	1KJB*Z601B	10	3	No
Post-Accident Samp. Sup.	155R*S0V131	1KJB*Z601B	10	3	No

RIVER BEND - UNIT 1

CONTAINMENT AND DRYWELL ISOLATION VALVES

	SYSTEM	VALVE NUMBER	PENETRATION NUMBER	VALVE GROUP(1)	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (Yes/No)
-	a. Automatic Isolation Valves					
	2. Drywell ^(k)					
	Cont./Drywell Purge Sup.	1HVR*AOV147	1DRB*Z32	1	3	No
	RPCCW Supply	1CCP*MOV142	1DR8*Z50	1	30	No
	RPCCW Return	1CCP*MOV144	1DRB*Z51	1	30	No
	RPCCW Return	1CCP*MOV143	1DR8*Z51	1	30	No
a	Service Water Supply	1SWP*MOV4A	1DRB*Z54	1	52.8	No
-	Service Water Supply	1SWP*MOV4B	1DR8*Z54	1	51.7	No
5	Service Water Return	1SWP*MOV5A	1DRB*Z55	1	50.6	No
3	Service Water Return	1SWP*MOV5B	1DR8*Z55	1	53.9	No
n.	Recirc. Flow Control	1RCS*MOV58A	1DRB*Z152	1	11.0	No
	Recirc. Flow Control	1RCS*MOV59A	1DR8*Z153	1	10.6	No
	Recirc. Flow Control	1RCS*MOV60A	10R8*Z154	1	6.3	No
	Recirc. Flow Control	1RCS*MOV61A	1DR8*Z155	1	8.6	No
	Recirc. Flow Control	1RCS*MOV58B	1DRB*Z156	1	10.6	No
	Recirc. Flow Control	1RCS*MOV59B	1DRB*Z157	1	10.8	No
	Recirc. Flow Control	1RCS*MOV60B	19RB*Z158	1	6.38	No
	Recirc. Flow Control	1RCS*MOV61B	1DRB*Z159	1	8.9	No
	Cont./Drywell Purge Sup.	1HVR*AOV125	1DRB*Z32	1	3	No
	Cont./Drywell Purge Rtn.	1HVR*A0V126	1DRB*Z34	1	3	No
	Cont./Drywell Purge Rtn.	1HVR*AOV148	1DRB*Z34	1	3	No

RIVER BEND - UNIT 1

CONTAINMENT AND DRYWELL ISOLATION VALVES

SYSTEM	VALVE NUMBER	PENETRATION NUMBER	VALVE GROUP(1)	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (Yes/No)
a. Automatic Isolation Valves					
2. Drywell ^(k) (Continued)					
Hydrogen Mixing Line Inlet	1CPM*MOV2A	10R8*257A	10	33	No
Hydrogen Mixing Line Inlet	1CPM*MOV4A	10R8*Z57A	10	33	No
Hydrogen Mixing Line Inlet	1CPM*MOV2B	1DR8*Z578	10	33	No
Hydrogen Mixing Line Inlet	1CPM*MOV4B	1DRB*Z578	10	33	No
Hydrogen Mixing Line Exhaust	1CPM*MOV3A	10R8*Z58A	10	33	No
Hydrogen Mixing Line Exhaust	1CPM*MOV1A	1DRB*Z58A	10	33	No
Hydrogen Mixing Line Exhaust	1CPM*MOV3B	1DRB*Z588	10	33	No
Hydrogen Mixing Line	1CPM*MOV1B	1DRB*Z588	10	33	No
Reactor Plant Sampling	1B33*A0VF019	1DRB*Z449	9	5	No
Reactor Plant Sampling	1833*A0VF020	1DRB*Z449	9	5	No

RIVER BEND - UNIT 1

CONTAINMENT AND DRYWELL ISOLATION VALVES

SYSTEM	VALVE NUMBER	PENETRATION NUMBER	SECONDARY CONTAINMENT BYPASS PATH (Yes/No)
b. Manual Isolation Valves			
1. Primary Containment ^(a)			
LPCI A to Reactor	1E12*F099A	1KJ8*Z21A	No
LPCI B to Reactor	1E12*F0998	1KJB*Z218	No
Reactor Plant Vent. AP Trans.	1HVR*V8(K)	1KJB*Z602A	No
Reactor Plant Vent. AP Trans.	14VR*V10(K)	1KJB*Z602B	No
PVLCS Pressure Transmitter	11 CURVEA(K)	1KJB*Z602D	No
Reactor Plant Vent. AP Trans.	1HVR*V12(k)	1KJB*Z602F	No
Cont. Leakage Monitor Press.	1LMS*V14	1KJB*Z603A	No
Cont. Leakage Monitor Press.	1LMS*V12	1KJB*Z603A	No
Cont. Leakage Monitor Press.	1LMS*V7	1KJB*Z603C	No
Cont. Leakage Monitor Press.	1LMS*V16.	1KJB*Z603C	No
Cont. Monitor Press. Sensing	1CMS*V2(*)	1KJB*Z605A	No
Cont. Monitor Press. Sensing	1CMS*V3(k)	1KJB*Z605B	No
Reactor Plant Vent. AP Trans.	1HVR*V14(k)	1KJB*Z606A	No
Reactor Plant Vent. AP Trans.	14VP*V16(x)	1KJB*Z606B	No
Cont. Monitor Press. Sensing	1CMCRV36(N)	1KJB*Z606C	No
Cont. Monitor Press. Sensing	1CMS*V152.7	1KJB*Z606D	No
PVLCS Pressure Transmitter	11 SVAVAS	1KJB*Z606E	No
Reactor Plant Vent. AP Trans.	1HVR*V18(k)	1KJB*Z606F	No
LPCI A to Reactor	1E12*VF044A	1KJB*Z21A	No
LPCI B to Reactor	1E12*VF0448 (a)	1KJB*Z21B	, No
SW Rtn Vacuum Release	1SWP*SOV522A(a)	1KJB*Z53A	No
SW Rtn Vacuum Release	1SWP*SOV5228(e)	1KJB*Z53B	No
SW Rtn Vacuum Release	1SWP*SOV522C(e)	1KJ8*Z53A	No
SW Rtn Vacuum Release	1SWP*SOV522D(e)	1KJB*Z53B	No

RIVER BEND - UNIT 1

CONTAINMENT AND DRYWELL ISOLATION VALVES

NOTES

- (a) Subject to a Type C leak rate test at a test pressure of 7.6 psig except as otherwise noted.
- (b) Also isolates the drywell.
- (c) Testable check valve.
- (d) Isolates on MS-PLCS air line high flow or MS-PLCS air line header to Main Steam Line low differential pressure.
- (e) Receives a remote manual isolation signal.
- (f) This line is sealed by the penetration valve leakage control system (PVLCS). The combined leakage from valves sealed by the PVLCS is not included in 0.60 La Type B and C test total.
- (g) This valve sealed by the main steam positive leakage control system (MS-PLCS). Valves sealed by the MS-PLCS are tested in accordance with Surveillance Requirement 4.6.1.3.f to verify that leakage does not exceed the limit specified in Specification 3.6.1.3.c. This leakage is not included in the 0.60 La Type B and C test total.
- (h) Not subject to Type C leakage tests. Valve(s) will be included in the Type A test.
- (j) Valve is hydrostatically leak tested at a test pressure of 8.36 psig (1.1 Pa). The leakage from hydrostatically tested valves is not included in the 0.60 La Type B and C test total.
- (k) Not subject to a Type A, B, or C leak rate test.
- (1) Valve groups listed are designated in Table 3.3.2-1.
- (m) Value 1E51*MOVF076 is not required to be OPERABLE through October 4, 1986.

[#]The specified 18 month automatic isolation valve actuation may be performed during the fifth refueling outage scheduled to begin April 16, 1994.

-

CONTAINMENT SYSTEMS

3/4.6.5 SECONDARY CONTAINMENT

SECONDARY CONTAINMENT INTEGRITY - OPERATING

LIMITING CONDITION FOR OPERATION

3.6.5.1 SECONDARY CONTAINMENT INTEGRITY - OPERATING shall be maintained.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

Without SECONDARY CONTAINMENT INTEGRITY - OPERATING restore SECONDARY CONTAINMENT INTEGRITY - OPERATING within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

- 4.6.5.1 SECONDARY CONTAINMENT INTEGRITY OPERATING shall be demonstrated by:
 - a. Verifying at least once per 24 hours that the pressures within the Shield Building annulus, the Auxiliary Building and the Fuel Building are less than or equal to 3.0, 0.00, and 0.00 inches of vacuum water gauge, respectively.
 - b. Verifying at least once per 31 days that:
 - 1. All secondary containment equipment hatch covers are installed.
 - The door in each access to the secondary containment is closed, except during normal entry and exit.
 - 3. All secondary containment penetrations not capable of being closed by OPERABLE secondary containment automatic isolation dampers and required to be closed during accident conditions are closed by valves, blind flanges, or deactivated automatic dampers/valves securer in position.

務

SURVEILLANCE REQUIREMENTS (Continued)

- b. At least once per 92 days, and within 7 days after a battery discharge with battery terminal voltage below 110 volts or after a battery overcharge with battery terminal voltage above 144 volts, by verifying that:
 - 1. The parameters in Table 4.8.2.1-1 meet the Category B limits,
 - 2. There is no visible corrosion at either terminals or connectors, or the connection resistance of these items is less than 150 x 10^{-6} ohms, and
 - 3. The average clectrolyte temperature of at least one out of six connected cells is above 60°F.
- c. At least once per 18 months# by verifying that:
 - 1. The cells, cell plates and battery racks show no visual indication of physical damage or abnormal deterioration,
 - The cell-to-cell and terminal connections are clean, tight, free of corrosion and coated with anti-corrosion material,
 - 3. The resistance of each cell-to-cell and terminal connection is less than or equal to 150 x 10^{-6} ohms and
 - 4. The battery charger will supply at least 300 amperes for chargers 1A and 1B and 50 amperes for charger 1C at a minimum of 130.2 volts for at least 8 hours.
- d. At least once per 18 months#, during shutdown, by verifying that either:
 - 1. The battery capacity is adequate to supply and maintain in OPERABLE status all of the actual emergency loads for the design duty cycle when the battery is subjected to a battery service test, or
 - The battery capacity is adequate to supply a dummy load of the following profile in accordance with IEEE 450 while maintaining the battery terminal voltage greater than or equal to 105 volts.
 - a) Division I ≥ 671 amperes for the first 60 seconds ≥ 270 amperes for the next 9 minutes ≥ 336 amperes for the next 60 seconds ≥ 270 amperes for the next 228 minutes ≥ 451 amperes for the last 60 seconds

#May be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.

RIVER BEND - UNIT 1

Amendment 'J. 72

SURVEILLANCE REQUIRFMENTS (Continued)

b)

D	ivis	ion II				
2	502	amperes	for	the	first 60 seconds	
2	261	amperes	for	the	next 9 minutes	
\geq	327	amperes	for	the	next 60 seconds	
2	261	amperes	for	the	next 228 minutes	
\geq	327	amperes	for	the	last 60 seconds	

- c) Division III \geq 53.2 amperes for the first 60 seconds \geq 15.4 amperes for the next 119 minutes
- e. At least once per 60 months## by verifying during shutdown that the battery capacity is at least 80% of the manufacturer's rating when subjected to a performance discharge test. Once per 60 month interval, this performance discharge test may be performed in lieu of the battery service test.
- f. At least once per 18 months, during shutdown, performance discharge tests of battery capacity shall be given to any battery that shows signs of degradation or has reached 85% of the service life expected for the application. Degradation is indicated when the battery capacity drops more than 10% of rated capacity from its average on previous performance tests, or is below 90% of the manufacturer's rating.

^{##}For Division III, may be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.

TABLE 4.8.2.1-1

BATTERY SURVEILLANCE REQUIREMENTS

	CATEGORY A ⁽¹⁾	CATEGORY E	3 (2)
Parameter	Limits for each designated pilot cell	Limits for each connected cell	Allowable(3) value for each connected cell
Electrolyte Level	>Minimum level indication mark and < %" above maximum level indication mark	>Minimum level indication mark and < ¼" above maximum level indication mark	Above top of plates and not overflowing
Float Voltage	≥ 2.13 volts	> 2.13 volts(c)	> 2.07 volts
Specific Gravity(a)	> 1.200 ^(b) (Div. I&II) > 1.195 ^(b) (Div. III)	<pre>≥ 1.195 (Div. I&II) ≥ 1.190 (Div. III)</pre>	Not more than .020 below the average of all connected cells
		Average of all connected cells	Average of all connected cells
		<pre>≥ 1.205 (Div. I&II) ≥ 1.200 (Div. III)</pre>	<pre>≥ 1.195(b)(Div.I&II) ≥ 1.190(b)(Div. III)</pre>

(a) Corrected for electrolyte temperature and level.

(b) Or battery charging current is less than 2 amperes when on float charge.

(c) May be corrected for average electrolyte temperature.

(1) For Category A parameters outside the limits shown, the battery may be considered OPERABLE provided that within 24 hours all the Category B measurements are taken and found to be within their allowable values, and provided all Category A and B parameters are restored to within limits within the next 6 days.

(2) For Category B parameters outside the limits shown, the battery may be considered OPERABLE provided that the Category B parameters are within their allowable values and provided the Category B parameters are restored to within limits within 7 days.

(3) Any Category B parameter not within its allowable value indicates an inoperable battery.

D.C. SOURCES - SHUTDOWN

LIMITING CONDITION FOR OPERATION

3.8.2.2 As a minimum, division I or division II and, when the HPCS system is required to be OPERABLE, division III, of the D.C. electrical power sources shall be OPERABLE with:

- a. Division I consisting of:
 1. 125 volt battery 1A.
 2. 125 volt full capacity Class 1E source charger.
- b. Division II consisting of:
 1. 125 volt battery 1B.
 2. 125 volt full capacity Class IE source charger.
- c. Division III consisting of:
 1. 125 volt battery 1C.
 2. 125 volt full capacity Class 1E source charger.

APPLICABILITY: OPERATIONAL CONDITIONS 4, 5 and *.

ACTION:

- a. With less than the division I and/or division II battery and/or charger of the above required D.C. electrical power sources OPERABLE, suspend CORE ALTERATIONS, handling of irradiated fuel in the primary containment or Fuel Building, and operations with a potential for draining the reactor vessel.
- b. With division III battery and/or charger of the above required D.C. electrical power sources inoperable, declare the HPCS system and the C SSW pump inoperable and take the ACTION required by Specifications 3.5.2, 3.5.3 and 3.7.1.1.
- c. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.8.2.2 At least the above required battery and charger shall be demonstrated OPERABLE per Surveillance Requirement 4.8.2.1.#

*When handling irradiated fuel in the primary containment or Fuel Building. #May be extended as identified by notes '#' and '##' in Surveillance Requirement 4.8.2.1.

RIVER BEND - UNIT 1

REACTOR PROTECTION SYSTEM ELECTRIC POWER MONITORING

LIMITING CONDITION FOR OPERATION

3.8.4.3 Two RPS electric power monitoring channels for each in-service RPS MG set or alternate power supply shall be OPERABLE.

APPLICABILITY: At all times.

ACTION:

- a. With one RPS electric power monitoring channel for an in-service RPS MG set or alternate power supply inoperable, restore the inoperable power monitoring channel to OPERABLE status within 72 hours or remove the associated RPS MG set or alternate power supply from service.
- b. With both RPS electric power monitoring channels for an in-service RPS MG set or alternate power supply inoperable, restore at least one electric power monitoring channel to OPERABLE status within 30 minutes or remove the associated RPS MG set or alternate power supply from service.

SURVEILLANCE REQUIREMENTS

4.8.4.3 The above specified RPS electric power monitoring channels shall be determined OPERABLE:

- a. By performance of a CHANNEL FUNCTIONAL TEST each time the unit is in COLD SHUTDOWN for a period of more than 24 hours, unless performed within the previous six months, and
- b. At least once per 18 months* by demonstrating the OPERABILITY of over-voltage, under-voltage and under-frequency protective instrumentation by performance of a CHANNEL CALIBRATION including simulated automatic actuation of the protective relays, tripping logic and output circuit breakers and verifying the following setpoints.
 - 1. Over-voltage ≤ 132 VAC, Bus A and B,
 - 2. Under-voltage ≥ 115 VAC, Bus A and B, and
 - 3. Under-frequency 57 Hz, + 2, 0%, Bus A and B.

Amendment No. 72

^{*}May be extended to the completion of the fifth refueling outage scheduled to begin April 16, 1994.

A.C. CIRCUITS INSIDE CONTAINMENT

LIMITING CONDITION FOR OPERATION

3.8.4.4 At least the following A.C. circuits inside containment shall be de-energized*:

Equipment ID	Location	Device			
1MHR*CRN1 1F42-PNLP003	1EJS*LDC2A 1SCA-PNL8C1		Breaker		
1F42-D002H 1SFT-PNL106	1SCA-PNL8C1 1SCA-PNL8B2	Circuit	Breaker		
1SFT-PNL106 1HVR*UC1AH	1SCA-PNL8B2 1SCV*PNL2A2		Breaker	10	
1HVR*UC1BH	1SCV*PNL2B2	Circuit	Breaker	12	
1HVR-UC1CH 1HVR-FN1AH	1SCA-PNL2C1 1SCA-PNL2A2		Breaker Breaker		
1HVR-FN1BH 1HVR-FN1CH	1SCA-PNL2F1 1SCA-PNL2E1		Breaker Breaker		
1HVR-FN1DH 1DRS-UC1AH	ISCA-PNL2B1	Circuit	Breaker	6	
1DRS-UC1BH	1SCA-PNL2E1 1SCA-PNL2F1		Breaker Breaker		
1DRS-UC1CH 1DRS-UC1DH	1SCA-PNL2E1 1SCA-PNL2F1		Breaker Breaker		
1DRS-UC1EH 1DRS-UC1FH	1SCA-PNL2E1 1SCA-PNL2F1	Circuit	Breaker	2	
1WCS-P5AH	1SCA-PNL2E1	Circuit	Breaker Breaker	4	
1WCS-P5BH	1SCA-PNL2F1	Circuit	Breaker	2	

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

ACTION:

With any of the above required circuits energized, trip the associated circuit breaker(s) in the specified location within 1 hour.

SURVEILLANCE REQUIREMENTS

4.8.4.4 Each of the above required A.C. circuits shall be determined to be de-energized by verifying at least once per 24 hours** that the associated circuit breakers are in the tripped condition.

*Except during entry into the containment.

**Except at least once per 31 days if locked, sealed or otherwise secured in the tripped condition.