QUAD-CITIES NUCLEAR POWER STATION

UNITS 1 AND 2

MONTHLY PERFORMANCE REPORT

NOVEMBER 1982

COMMONWEALTH EDISON COMPANY

AND

IOWA-ILLINOIS GAS & ELECTRIC COMPANY NRC DOCKET NOS. 50-254 AND 50-265 LICENSE NOS. DPR-29 AND DPR-30

TABLE OF CONTENTS

- I. Introduction
- II. Summary of Operating Experience
 - A. Unit One B. Unit Two
- III. Plant or Procedure Changes, Tests, Experiments, and Safety Related Maintenance
 - A. Amendments to Facility License or Technical Specifications
 - B. Facility or Procedure Changes Requiring NRC Approval
 - C. Tests and Experiments Requiring NRC Approval
 - D. Corrective Maintenance of Safety Related Equipment
 - IV. Licensee Event Reports
 - V. Data Tabulations
 - A. Operating Data Report
 - B. Average Daily Unit Power Level
 - C. Unit Shutdowns and Power Reductions
- VI. Unique Reporting Requirements
 - A. Main Steam Relief Valve Operations
 - B. Control Rod Drive Scram Timing Data
- VII. Refueling Information
- VIII. Glossary

I. INTRODUCTION

Quad-Cities Nuclear Power Station is composed of two Boiling Water Reactors, each with a Maximum Dependable Capacity of 769 MWe net, located in Cordova, Illinois. The Station is jointly owned by Commonwealth Edison Company and Iowa-Illinois Gas & Electric Company. The Nuclear Steam Supply Systems are General Electric Company Boiling Water Reactors. The Architect/Engineer was Sargent & Lundy, Incorporated, and the primary construction contractor was United Engineers & Constructors. The condenser cooling method is a closed cycle spray canal, and the Mississippi River is the condenser cooling water source. The plant is subject to license numbers DPR-29 and DPR-30, issued October 1, 1971, and March 21, 1972, respectively, pursuant to Docket Numbers 50-254 and 50-265. The date of initial reactor criticalities for Units 1 and 2 respectively were October 18, 1971, and April 26, 1972. Commercial generation of power began on February 18, 1973 for Unit 1 and March 10, 1973 for Unit 2.

This report was compiled by Becky Brown and Randall Buss, telephone number 309-654-2241, extensions 127 and 181.

II. SUMMARY OF OPERATING EXPERIENCE

A. Unit One

November 1-30: Unit One continued the End of Cycle Six Refueling Outage throughout the month.

B. Unit Two

November 1-6: Unit Two began the month increasing load at 5 MWe/hour following a load reduction on October 31 for a tripped 2B Recirculation Pump Motor-Generator Set. On November 2, 2B Recirculation Pump Motor-Generator Set tripped again on low oil pressure. Load was reduced to 350 MWe while repairs were made. On November 3, the unit began increasing load at 5 MWe/hour to a maximum achievable load of 801 MWe on November 6.

<u>November 7-19</u>: At 0010 hours, on November 7, load was reduced at 200 MWe/hour to 700 MWe for weekly Turbine testing. At 0141 hours, the unit scrammed on an Average Power Range Monitor High-High signal due to a spurious control valve fast closure signal during the weekly Turbine test. The Reactor was made critical at 1000 hours and the Generator was on line at 1308 hours. The unit began increasing load at 1600 hours at 100 MWe/hour. Load was reduced twice, on November 9 and 12, at the request of the Load Dispatcher due to low system demand and once on November 14, for weekly Turbine testing; otherwise maintaining an average load of approximately 800 MWe.

November 20-30: On November 20, at 2130 hours, the unit began decreasing load at 100 MWe/hour to minimum Recirculation Pump speed for a control rod pattern adjustment. Load was being held at 425 MWe by 0130 hours on November 21 and began increasing load at 0730 hours to 811 MWe by November 23. On November 26, load was dropped to 665 MWe to backwash and precoat a Condensate Demineralizer. Load was increased to 815 MWe on November 27. Load was reduced on November 29 at the request of the Load Dispatcher due to low system demand. Load began increasing on November 30 from 425 MWe at 0415 hours.

III. PLANT OR PROCEDURE CHANGES, TESTS, EXPERIMENTS, AND SAFETY RELATED MAINTENANCE

A. Amendments to Facility License or Technical Specifications

There were no amendments to Facility License or Technical Specifications for the reporting period.

B. Facility or Procedure Changes Requiring NRC Approval

There were no facility or procedure changes requiring NRC approval for the reporting period.

C. Tests and Experiments Requiring NRC Approval

There were no tests or experiments requiring NRC approval for the reporting period.

D. Corrective Maintenance of Safety Related Equipment

The following represents a tabular summary of the safety related maintenance performed on Unit One and Unit Two during the reporting period. The headings indicated in this summary include: Work Request Numbers, LER Numbers, Components, Cause of Malfunctions, Results and Effects on Safe Operation, and Action Taken to Prevent Repetition.

UNIT ONE MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE UPERATION	ACTION TAKEN TO PREVENT REPETITION
Q22472	82-26/03L	MO-1-1001-37A Torus Spray Header Injection Valve	The torque switch would not close the valve tight enough.	Valve 37A was found to leak in excess of the Tech Spec limit during Local Leak Rate Testing.	The torque switch was adjusted & the leak rate test failed. A Work Request was written to inspect the valve internals.
Q22164	82 -26 /03L	1-220-62A Feed- water Check Valve	The valve seating surface was slightly corroded and the O-ring was worn.	The "A" loop Feedwater check valve, CV 1-220- 62A failed to meet the Tech Spec requirements of less than or equal to 10.36 SCFH during local leak Bate Testing	The valve internals were inspected and cleaned. The seat ring O-ring was replaced & the Local Leak Rate Test was performed.
Q22165	82-26/03L	1-220-58A Feed- water Check Valve	The valve seating surface was corroded and the O-ring was worn.	The "A" loop Feedwater check valve could not be pressurized to the required 48 psig during Local Leak Rate Testing.	The valve internals were inspected and cleaned. The seat ring O-ring was replaced & the Local Leak Rate Test was performed.
Q22291		Suppression Chamber Vacuum Breaker 1–1601–31A	The shaft packing and O-rings were worn.	The vacuum breaker valve stem packing was found to be leaking during Local Leak Rate Testing. The leakage was within the Tech Spec limits.	The shaft packing and O- rings were replaced and the Leak Rate Testing was performed.

UNIT TWO MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q22388	82-19/03L	"A" Recirc Pump Discharge Valve 2-202-5A	The valve operator came loose due to missing bonnet-to- yoke bolts.	The valve could not be stroked. The Reactor was shutdown at the time.	The operator yoke was bolted to the bonnet & the valve was tested. The other valves in the containment were inspected.
Q22406	82-19/03L	Recirc Pump Discharge Valve 2-202-5A	The valve shaft was bent when the yoke came loose.	The valve could not be stroked. The Reactor was shutdown at the time.	The threaded part of the stem was cut off & a new piece was welded on. The valve was tested satisfactorily.
Q22709	82-23/03L	HPC1 Turbine 2-2300-PS1	The oil pressure switch was found to be defective.	The HPCI Turbine could not be reset.	The pressure switch was replaced & HPCI was tested satisfactorily.
Q20196		HPCI Pump Minimum Flow Valve MO-2-2301- 14	Worn parts in the operator caused the motor to draw high amperes.	The thermals trip when attempting to open the valve.	The Limitorque operator and motor was replaced.

IV. LICENSEE EVENT REPORTS

The following is a tabular summary of all linensee event reports for Quad-Cities Units One and Two occurring during the reporting period, pursuant to the reportable occurrence reporting requirements as set forth in sections 6.6.B.1. and 6.6.B.2. of the Technical Specifications.

UNIT ONE

There were no Licensee Event Reports for the reporting period for Unit One.

	UNIT TWO	
Licensee Event Report Number	Date	Title of Occurrence
82-23/03L	11-04-82	HPCI Inoperable - Dirty Oil Pressure Switch

V. DATA TABULATIONS

The following data tabulations are presented in this report:

- A, Operating Data Report
- B. Average Daily Unit Power Level
- C. Unit Shutdowns and Power Reductions

OPERATING DATA REPORT

DOCKET NO. 50-254

UNIT ONE

DATEDecember 01 1982

COMPLETED BYRandall D Buss

TELEPHONE309-654-2241x181

OPERATING STATUS

0000 110182

1. Reporting period: 2400 113082 Gross hours in reporting period: 720

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769* Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5.	Number of hours reactor was critical	0.0	5833.1	74932.2
6.	Reactor reserve shutdown hours	0.0	0.0	3421.9
7.	Hours generator on line	0.0	5777.1	71908.6
8.	Unit reserve shutdown hours,	0.0	0.0	909.2
۶,	Gross thermal energy generated(MWH)	0	11000483	146058842
i0.	Gross electrical energy generated(MWH)	0	3533214	47062147
i.i.	Net electrical energy generated(MWH)	-2045	3194639	43778723
12.	Reactor service factor	0,0	72.8	81.0
1.3.	Reactor availability factor	0.0	72.8	84.7
14.	Unit service factor	0.0	72.1	77.7
1.5.	Unit availability factor	0.0	72.1	78.7
16.	Unit capacity factor (Using MDC)	- , 4	51.8	61.5
1.7 .	Unit capacity factor (Using Des.MWe)	4	50.5	60.0
18.	Unit forced outage rate	0.0	1.5	6.7

19. Shutdowns scheduled over next 6 months (Type, Date, and Duration of each):

20. If shutdown at end of report period, estimated date of startup 12-19-82

#The MDC may be lower than 769 MWe during periods of high ambient temperature due to the thermal performance of the spray canal.

#UNOFFICIAL COMPANY NUMBERS ARE USED IN THIS REPORT

OPERATING DATA REPORT

DOCKET NO. 50-265

UNIT TWO

DATEDecember 01 1982

NA

COMPLETED BYRandall D Buss

TELEPHONE309-654-2241x181

OPERATING STATUS

0000 110182

1. Reporting period: 2400 113082 Gross hours in reporting period: 720

2. currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769% Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net); NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5.	Number of hours reactor was critical	711.8	6667.6	71519.4
6.	Reactor reserve shutdown hours	0.0	0.0	2985.8
7.	Hours generator on line	708.6	6602.9	68844.1
8.	Unit reserve shutdown hours.	0.0	0.0	702.9
9.	Gross thermal energy generated(MWH)	1589387	14948541	142835624
10.	Gross electrical energy generated(MWH)	512650	4761755	45467995
11.	Net elect ical energy generated(MWH)	479794	4526014	42650598
12.	Reactor service factor	98.9	83.2	78.1
13.	Reactor availability factor	98.9	83.2	81.3
14.	Unit service factor	98.4	82.4	75.1
1.5 .	Unit availability factor	98.4	82.4	75.9
16.	Unit capacity factor (Using MDC)	86.7	73.4	60.5
17.	Unit capacity factor (Using Des.MWe)	84,5	71.6	59.0
18.	Unit forced outage rate	1.5	16.0	9.2
	비행 영상에 많은 것을 수 없다. 것이 것 같은 것을 하는 것을 수 있다.			

19. Shutdowns scheduled over next 6 months (Type, Date, and Duration of each):

20. If shutdown at end of report period, estimated date of startup ____

#The MDC may be lower than 769 MWe during periods of high ambient temperature due to the thermal performance of the spray canal.

#UNOFFICIAL COMPANY NUMBERS ARE USED IN THIS REPORT

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. 50-265

UNIT TWO

DATEDecember 01 1982

COMPLETED BYRandall D Buss

TELEPHONE309-654-2241x181

MONTH NO	vember 1982		
DAY AVERAGE	DAILY POWER LEVEL	DAY AVERAGE	E DAILY POWER LEVEL (MWe-Net)
1	523.6	17.	761.5
2.	408.9	18	760.9
3.	387.6	19	764.5
4.	582.5	20.	744.3
s	672.9	21.	459.0
6.	742.9	22.	623.1
7	236.9	23	728.7
8	612.0	24.	761.8
9.	658.0	25	762.4
10.	754.4	26	748.9
11.	742.5	27.	725.4
12.	714.6	28	758,8
13.	769.5	29.	758.0
14.	694.0	30.	622.3
1.5.	754.8		
16.	756.7		

INSTRUCTIONS On this form, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

		DOCKET NO	50-254
		INU	TONE
		DAT	EDecember 01 1982
		COMPLETED B	YRandall D Buss
		TELEPHON	E309-654-2241x181
MONTH No	vember 1982		
DAY AVERAGE	DAILY POWER LEVEL MWe-Net)	DAY AVERAGE	DAILY POWER LEVEL MWe-Net)
1	-3.4	17	-3.5
2.	-3,4	18	-3,7
3.	-2.8	19	-3.2
4.	-3.1	20.	-3.3
5.	-2.9	21	-3.2
6.	-2.8	22.	-2.3
7.	-2,6	23	-2.3
8	-2.2	24	-2.2
9	-2.3	25.	-2.3
10.	-3.0	26	-2.3
11.	-3.5	27	-2,4
12	-3.5	28	-2.3
13.	-3,4	29.	-2.3
14	-3.0	30.	-2.3
15.	-3.0		
1.6.	-3.1		

INSTRUCTIONS On this form, list the average daily unit power level in MWe-Net for each day in the reporting month.Compute to the nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. ____ 50-265

UNIT TWO

DATEDecember 01 1982

COMPLETED BYRandall D Buss

TELEPHONE309-654-2241x181

MONTH NO	vember 1982		
DAY AVERAGE	DAILY POWER LEVEL (MWe-Net)	DAY AVERAGE	E DAILY POWER LEVEL (MWe-Net)
1	523.6	17.	761.5
2.	408.9	18.	760.9
3.	387.6	19.	764.5
4	582.5	20.	744.3
s	672.9	21.	459.0
6.	742.9	22.	623.1
7.	236.9	23.	728.7
8	612.0	24.	761.8
9.	658.0	25	762.4
10.	754.4	26.	748,9
11.	742.5	27.	725.4
12.	714.6	28.	758.8
1.3.	769.5	29.	758.0
14,	694.0	30.	622.3
1.5.	754.8		
16	756.7		

INSTRUCTIONS

On this form, list the average daily unit power level in MWe-Net for each day in the reporting nonth.Compute to the nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

ID/5A DOCKET NO. 050-254 UNIT NAME Quad-Cities Unit One DATE December 1, 1982			UNIT	APPE SHUTDOWNS A ORT MONTH	NDIX D ND POW	QTP 300-S13 Revision 6 August 1982 COMPLETED BY R. Buss TELEPHONE 309-654-2241			
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
32-85	820906	S	720.0	c	4		RC	FUELXX	Continuation of Cycle Six Refueling Outage
									APPROVED

ID/5A DOCKET NO. 050-265 UNIT NAME Quad-Cities Unit Two		Unit Two		UNTI	APPI SHUTDOWNS /	ENDIX D AND POW	QTP 300-S13 Revision 6 August 1982 COMPLETED BY R. Buss		
DATE	December 1, 1932				REI	PORT MONTH _	NOVEMBE	R 1982	TELEPHONE 309-654-2241
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
32-83	821102	F	0.0	В	5		СВ	INSTRU	Load reduced after 2B Recirculation Pump Motor-Generator Set tripped on low oil pressure switch trip
82-84	821107	S	0.0	в	5		НА	XXXXXX	Reduced load to perform weekly Turbine test
82-85	821107	F	11.5	A	3		НА	RELAYX	Reactor scram on Average Power Range Monitor High-High signal due to control valve closure during weekly Turbine test
82-86	821109	S	0.0	F	5		EA	ZZZZZZ	Load reduction requested by Load Dispatcher due to low system demand
82-87	821112	S	0.0	F	5		EA	ZZZZZZ	Load reduction requested by Load Dispatcher due to low system demand
82-88	821114	S	0.0	В	5		HA	XXXXXX	Reduced load to perform weekly Turbine test
									APPROVED
									AUG 1 6 1982

a ma

ALC: NO

-

hand hand hand burd

.

1825

D/5A ЮСКЕТ NO.	050-26	5			UNIT	APPE SHUTDOWNS A	NDIX D	QTP 300-S13 DNS Revision 6 August 1982	
NIT NAME	Quad-C	Quad-Cities Unit Two							COMPLETED BY R. Buss
ATE	Decembe	er 1,	1982		REF	PORT MONTH	NOVEMBE	R 1982	TELEPHONE 309-654-2241
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
82-89	821120	S	0.0	н	5		RB	CONROD	Load reduction for Control Rod Pattern adjustment
82-90	821126	F	0.0	В	5		HG	DEMINX	Reduced load due to Condensate Demineralizer problems
82-91	621129	S	0.0	F	5		EA	ZZZZZZ	Load reduction requested by Load Dispatcher due to low system demand
									APPROVED AUG 1 6 1982

Sec. 1

and and a

stard.

Contract State

1010100

10.000

a state one

-

hered

15

VI. UNIQUE REPORT NG REQUIREMENTS

The following items are included in this report based on prior commitments to the commission:

A. MAIN STEAM RELIEF VALVE OPERATIONS

There were no Main Steam Relief Valve Operations for the reporting period.

B. CONTROL ROD DRIVE SCRAM TIMING DATA FOR UNITS ONE AND TWO

There was no Control Rod Drive Scram Timing Data for Units One and Two for the reporting period.

VII. REFUELING INFORMATION

The following information about future reloads at Quad-Cities Station was requested in a January 26, 1978, licensing memorandum (73-24) from D. E. O'Brien to C. Reed, et al., titled "Dresden, Quad-Cities, and Zion Station--NRC Request for Refueling Information", dated January 18, 1978. QUAD-CITIES REFUELING INFORMATION REQUEST QTP 300-S32 Revision 1 March 1978

1.	Unit:	1	Reload:	6	Cycle:	7	
2.	Scheduled	date fo	r next refueling	g shutdow	n :	Sept 12, 1982	
3.	Scheduled	date fo	r restart follow	wing refu	eling:	Dec 4, 1982	

4. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment:

YES

5. Scheduled date(s) for submitting proposed licensing action and supporting information:

JULY 26, 1982

6. Important licensing considerations associated with refueling, e.g., new or 'different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

IMPLEMENTATION OF THE ODYN TRANSIENT ANALYSIS CODE AND RESULTS (MCPR SCRAM TIME DEPENDENCE)

7. The number of fuel assemblies.

a.	Number	of	assemblies	in	core:			224	new/724	total
b.	Number	of	assemblies	in	spent	fuel	after the pool: outage	_	1940	_

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a. Licensed storage capacity for spent fuel: 2920

b. Planned increase in licensed storage:

 The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity:

LOSS OF FULL CORE DISCHARGE CAPABILITY - 3/34 LOSS OF RELOAD CORE DISCHARGE CAPABILITY - 2/86

APPROVED

4636 new/7556 total

-1-

APR 2 0 1978

Q. C. O. S. R.

QTP 300-S32 Revision 1 March 1978

QUAD-CITIES REFUELING INFORMATION REQUEST

1.	Unit:	2	Reload:	6	Cycle:	7
2.	Scheduled	date	for next refueling	g shutdown	:	Feb 27, 1983
3.	Scheduled	date	for restart follow	wing refue	ling:	April 23, 1983

4. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment:

NO

5. Scheduled date(s) for submitting proposed licensing action and supporting information:

NONE

6. Important licensing considerations associated with refueling, e.g., new or 'different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

NONE

7. The number of fuel assemblies.

a.	Number	of	assemblies	in	core:				192 new/724 total
								after the	
ь.	Number	of	assemblies	in	spent	fuel	pool:	outage	2132

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a. Licensed storage capacity for spent fuel: 2920

b. Planned increase in licensed storage:

 The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity:

LOSS OF FULL CORE DISCHARGE CAPABILITY - 3/84 LOSS OF RELOAD CORE DISCHARGE CAPABILITY - 2/86

APPROVED

4636 new/7556 total

APR 2 0 1978

Q. C. O. S. R.

VIII. GLOSSARY

The following abbreviations which may have been used in the Monthly Report, are defined below:

ACAD/CAM	-	Atmospheric Containment Atmospheric Dilution/Containment
ANCT		Atmospheric Monitoring American National Standards Institute
ADDM	12	Average Power Range Monitor
ATUS	- 2 -	Anticipated Transient Without Scram
RUD	121	Roiling Water Reactor
CPD	-	Control Rod Drive
FUC		Electro-Hudraulic Control System
ENC		Energoney Operations Facility
COF	1	Concreting Stations Emergency Plan
UEDA	1	High-Efficiency Particulate Filter
UPCT		High Pressure Coolant Injection System
UDCC	121	High Radiation Sampling System
TPCIPT	- E -	Integrated Primary Containment Leak Rate Test
TRM	12	Intermediate Range Monitor
IST		Inservice Inspection
IFR	1.1	Licensee Event Report
LIRT	-	Local Leak Rate Test
IPCI		Low Pressure Coolant Injection Mode of RHRS
LPRM	-	Local Power Range Monitor
MAPLHGR	-	Maximum Average Planar Linear Heat Generation Rate
MCPR	-	Minimum Critical Power Ratio
MFLCPR	-	Maximum Fraction Limiting Critical Power Ratio
MPC	-	Maximum Permissible Concentration
MSTV		Main Steam Isolation Valve
NIOSH	-	National Institute for Occupational Safety and Health
PCI		Primary Containment Isolation
PCIOMR	-	Preconditioning Interim Operating Management Recommendations
RBCCW	1.0	Reactor Building Closed Cooling Water System
RBM	-	Rod Block Monitor
RCIC	-	Reactor Core Isolation Cooling System
RHRS	-	Residual Heat Removal System
RPS	-	Reactor Protection System
RWM	-	Rod Worth Minimizer
SBGTS	-	Standby Gas Treatment System
SBLC	-	Standby Liquid Control
SDC	-	Shutdown Cooling Mode of RHRS
SDV	-	Scram Discharge Volume
SRM	-	Source Range Monitor
TBCCW	-	Turbine Building Closed Cooling Water System
TIP	-	Traveling Incore Probe
TSC	-	Technical Support Center