

Entergy Operations, Inc.

P.O. Box B Kilona, LA 70066 Tal 604 739 6774

R. F. Burski

Nucleur Safety Waterford 3

W3F1-94-0019 A4.05 PR

February 28, 1994

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Subject:

Waterford 3 SES Docket No. 50-382 License No. NPF-38

Annual Radioactive Effluent Release Report

Gentlemen:

Attached is the Annual Radioactive Effluent Release Report for the period January 1 through December 31, 1993. This report is submitted in accordance with Waterford 3 Technical Specification 6.9.1.8.

If you have any questions,  $\rho$ lease contact C.J. Thomas at (504) 739-6531.

Very truly yours,

Q.f. Bush

R.F. Burski

Director

Nuclear Safety

RFB/CJT/ssf Attachment

cc:

(w/Attachment)

L.J. Callan (NRC Region IV), NRC Resident Inspectors Office

(w/o Attachment)

D.L. Wigginton (NRC-NRR), R.B. McGehee, N.S. Reynolds

040004

9403070312 931231 PDR ADDCK 05000382 R PDR TEAS IN

Annual Radioactive Effluent Release

Report

January 1, 1993 - December 31, 1993

Waterford 3 SES

Entergy Operations, Inc.

#### TABLE OF CONTENTS

#### 1.0 SCOPE

#### 2.0 SUPPLEMENTAL INFORMATION

- 2.1 Regulatory Limits
- 2.2 Maximum Permissible Concentrations
- 2.3 Average Energy
- 2.4 Measurements and Approximations of Total Radioactivity
- 2.5 Batch Releases
- 2.6 Unplanned Abnormal Releases
- 3.0 GASEOUS EFFLUENTS
- 4.0 LIQUID EFFLUENTS
- 5.0 SOLID WASTES
- 6.0 METEOROLOGICAL DATA

#### 7.0 ASSESSMENT OF DOSES

- 7.1 Doses due to Gaseous Effluents
- 7.2 Doses due to Liquid Effluents
- 7.3 40 CFR Part 190 Dose Evaluation
- 7.4 Doses to Public Inside the Site Boundary

#### 8.0 RELATED INFORMATION

- 8.1 Changes to the Process Control Program
- 8.2 Changes to the Offsite Dose Calculation Manual
- 8.3 Unavailability of REMP Milk Sampling
- 8.4 Report of Technical Specification Required Instrument Inoperability
- 8.5 Activity Released via Secondary Pathways
- 8.6 Missed Effluent Samples
- 8.7 Major Changes to Radioactive Waste Systems
- 8.8 Additional Information

- 9.0 TABLES
- 10.0 ATTACHMENTS

#### 1.0 SCOPE

This Annual Radioactive Effluent Release Report is submitted as required by Waterford 3's Technical Specification 6.9.1.8. It covers the period from January 1, 1993 through December 31, 1993. Information in this report is presented in the format outlined in Appendix B of Regulatory Guide 1.21.

The information contained in this report includes:

- (1) A summary of the quantities of radioactive liquid and gaseous effluents and solid wastes released from the plant during the reporting period;
- (2) A summary of the meteorological data collected during 1993;
- (3) Assessment of radiation doses due to liquid and gaseous radioactive effluents released during 1993;
- (4) A submittal of changes to the Offsite Dose Calculation Manual and Process Control Program during this reporting period.

#### 2.0 SUPPLEMENTAL INFORMATION

#### 2.1 Regulatory Limits

The Limits applicable to the release of radioactive material in liquid and gaseous effluents are described in the following sections. These limits are addressed in UNT-005-014, Offsite Dose Calculation Manual.

#### 2.1.1 Fission and Activation Gases (Noble Gases)

The dose rate due to radioactive noble gases released in gaseous effluents from the site to areas at and beyond the site boundary shall be limited to less than or equal to 500 mrem/yr to the total body and less than or equal to 3000 mrem/yr to the skin.

The air dose due to noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation and,
- b. During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

## 2.1.2 Iodines; Particulates, Half Lives > 8 Days; and Tritium

The dose rate due to Iodine-131 and 133, tritium, and all radionuclides in particulate form with half lives greater than eight (8) days, released in gaseous effluents from the site to areas at and beyond the site boundary, shall be limited to less than or equal to 1500 mrem/yr to any organ.

The dose to a member of the public from Iodine 131 and 133, tritium, and all radionuclides in particulate form with half lives greater than eight (8) days in gaseous effluents released to areas at and beyond the site boundary shall be limited to the following:

- During any calendar quarter: Less than or equal to 7.5 mrem to any organ and,
- b. During any calendar year: Less than or equal to 15 mrem to any organ.

#### 2.1.3 Liquid Effluents

The concentration of radioactive material released in liquid effluents to unrestricted areas shall be limited to the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2.0E-4  $\mu$ Ci/ml total activity.

The dose or dose commitment error of the public from radioactive materials in effluents released to unrestricted areas shall be limited to the following:

- a. During any calendar quarter to less than or equal to 1.5 mrem to the total body and less than or equal to 5 mrem to any organ, and
- b. During any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

#### 2.1.4 Uranium Fuel Cycle Sources

The dose or dose commitment to any member of the public due to releases of radioactivity and radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ (except the thyroid, which shall be limited to less than or equal to 75 mrem) over 12 consecutive months.

### 2.2 Maximum Permissible Concentrations

2.2.1 Fission and Activation Gases; Iodines; and Particulates, Half Lives > 8 Days

For gaseous effluents, maximum permissible concentrations are not directly used in release rate concentrations since the applicable limits are expressed in terms of dose rate at the site boundary.

#### 2.2.2 Liquid Effluents

The maximum permissible concentration (MPC) values specified in 10 CFR Part 20, Appendix B, Table II, Column 2 are used as the permissible concentrations of liquid radioactive effluents at the unrestricted area boundary. A value of 2.0E-4  $\mu$ Ci/ml is used as the MPC for dissolved and entrained noble gases in liquid effluents.

## 2.3 Average Energy

This is not applicable to Waterford 3's Effluent Specifications. E-Bars are not required to be calculated from effluent release data.

## 2.4 Measurements and Approximations of Total Radioactivity

The quantification of radioactivity in liquid and gaseous effluents was accomplished by performing the sampling and radiological analysis of effluents in accordance with the requirements of Tables 5.3-1 and 5.4-1 of UNT-005-014, Offsite Dose Calculation Manual.

### 2.4.1 Fission and Activation Gases (Noble Gases)

For continuous releases, a gas grab sample was analyzed monthly for noble gases. Each week a Gas Ratio (GR) was calculated according to the following equation:

GR = <u>Average Weekly Noble Gas Monitor Reading</u>

Monitor Reading During Noble Gas Sampling

The monthly sample analysis and weekly Gas Ratio were then used to determine noble gases discharged continuously for the previous week. For gas decay tank and containment purge batch releases, a gas grab sample was analyzed prior to release to determine noble gas concentrations in the batch. In all cases the total radioactivity in gaseous effluents was determined from measured concentrations of each radionuclide present and the total volume discharged.

#### 2.4.2 Iodines and Particulates

Iodines and particulates discharged were sampled using a continuous sampler which contained a charcoal cartridge and a particulate filter. Each week the charcoal cartridge and particulate filter were analyzed for gamma emitters using gamma spectroscopy. The determined radionuclide concentrations and effluent volume discharged were used to calculate the previous week's activity released.

The particulate samples were composited and analyzed quarterly for Sr-89 and Sr-90 by a contract laboratory (Teledyne Isotopes). Particulate gross alpha activity was measured weekly using alpha scintillation counting techniques. The determined activities were used to estimate effluent concentrations in subsequent releases until the next scheduled analysis was performed.

Grab samples of continuous and batch releases were analyzed monthly for tritium. The determined concentrations were used to estimate tritium activity in subsequent releases until the next scheduled analysis was performed.

#### 2.4.3 Liquid Effluents

For continuous releases, samples were collected weekly and analyzed using gamma spectroscopy. The measured concentrations were used to determine radionuclide concentrations in the previous week's releases. For batch releases, gamma analysis was performed on the sample prior to release.

For both continuous and batch releases, composite samples were analyzed quarterly by a contract laboratory (Teledyne Isotopes) for Sr-39, Sr-90, and Fe-55. Samples were composited and analyzed monthly for tritium and gross alpha using liquid scintillation and gas flow proportional counting techniques, respectively. For radionuclides measured in the composite samples, the measured concentrations in the composite samples from the previous month or quarter were used to estimate released quantities of these isotopes in liquid effluents during the current month or quarter.

The total radioactivity in liquid effluent releases was determined from the measured and estimated concentrations of each radionuclide present and the total volume of the effluent discharged.

#### 2.5 Batch Releases

A summary of information for gaseous and liquid batch releases is included in Table 1.

#### 2.6 Unplanned/Abnormal Releases

During this reporting period, there was one abnormal release. A liquid radioactive release was performed with the radiation monitor setpoint incorrectly specified. Licensee Event Report (LER) Number 93-003 documents this event. A discussion is provided below.

During the period from August 31, 1993 to September 3, 1993 liquid radioactive releases were performed from Dry Cooling Tower Sump #1 to the 40 Arpent Canal. The associated radiation monitor setpoint was incorrectly set to an administrative controlled value of 5.0 E-6 uci/ml instead of a value calculated as per the ODCM. During the releases, the radioactivity concentrations monitored remained below the ODCM calculated setpoint. At no time were any of the ODCM dose or concentration limits exceeded.

#### Description of Event:

Radioactivity was being detected in Dry Cooling Tower Sump #1 and Dry Cooling Tower Sump #2 intermittently during the period from August 31, 1993 to September 3, 1993. Releases were made to the 40 Arpent Canal or the discharge of the affected Dry Cooling Tower Sump was directed to the Liquid Waste Management System, depending upon concentrations of isotopes within the affected Sump.

An inadequate shift turnover resulted in the Health Physics Technician assuming that the discharge from DCTS #1 was aligned to the Liquid Waste Management System, when, in fact, it was aligned to pump to the 40 Arpent Canal. The setpoint for DCTS #1 Radiation Monitor (PRM-IRE-6775) was set to 5.0 E-6 uci/ml,

#### Description of Event (cont'd):

which is the administrative value when no isotopes are present in the Sump. If isotopes are present in the Sump, the setpoint is calculated as per ODCM methodology and the high alarm value adjusted to the newly calculated value in order to ensure that concentration limits of ODCM specification 5.3.1 are not exceeded. The pumps for each Dry Cooling Tower Sumps are secured upon receipt of a high alarm on their respective radiation monitors.

The Health Physics technician did not calculate and enter a new setpoint for the Dry Cooling Tower Sump #1 radiation monitor because he believed that the waste was not being pumped to the 40 Arpent Canal. Consequently, releases were made from Dry Cooling Tower Sump #1 to the 40 Arpent Canal with an incorrect setpoint, during the period from August 31, 1993 to September 3, 1993.

#### Cause of Event:

The root cause of this event was an inadequate shift turnover complicated by inappropriate assumptions by Health Physics count room personnel.

#### Corrective Action:

A sample was drawn from DCTS #1 on September 3, 1993. The sample did not contain any detectable isotopes. Therefore, the monitor setpoint was maintained at 5.0 E-6 uci/ml. Data from the Control Room and radiation monitor trends were collected and a calculation was performed to determine if any limits had been exceeded. Additional instructions concerning releases from the Dry Cooling Tower Sumps were written and placed in the counting room shift log book. The Count Room Technician who presumed incorrectly that the DCTS #1 was aligned to the Waste Tanks was counseled.

#### Actions Taken to Prevent Recurrence

On September 4, 1993, an additional interim measure was established requiring the Radiation Protection Superintendent be notified prior to discharging any DCTS waste containing radioactivity. On September 10, 1993, additional instructions were issued to RP Shift Technicians that clarified the requisite steps and information needed to assure a proper release of DCTS waste. RP Directive 93.4 was revised on October 26, 1993 to provide additional instructions on the information that should be recorded on shift turn-over documents.

#### 3.0 GASEOUS EFFLUENTS

The quantities of radioactive material released in gaseous effluents are summarized in Tables 1A, 1B, and 1C. Note that there were no elevated releases, since all Waterford 3 releases are considered to be at ground level. The estimated total error in % is based upon several statistical uncertainties due to sample counting, efficiency, volume, etc.

## 4.0 LIQUID EFFLUENTS

The quantities of radioactive material released in liquid effluents are summarized in Tables 2A and 2B. The estimated total error in % is based upon several statistical uncertainties due to sample counting, efficiency, volume, etc.

#### 5.0 SOLID WASTES

The summary of radioactive solid wastes shipped offsite for disposal is listed in Table 3. For certain waste forms Waterford 3 is now using volume reduction services provided by Scientific Ecology Group, Inc. and Alaron Corp. These waste forms are identified in Table 3 and volumes reported reflect the volume of waste shipped offsite, not final disposal volumes. Final disposal volumes are reported as they become available. The estimated total error in % is based upon several statistical uncertainties due to sample counting, efficiency, volume, etc.

#### 6.0 METEOROLOGICAL DATA

In Table 4 the hourly meteorological data from January 1, 1993 through December 31, 1993, is presented in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability. The Waterford-3 data recovery results by parameter are as follows:

| Parameter      | Annual Data Recovery Rate |
|----------------|---------------------------|
| Delta T        | 100.0%                    |
| Wind Speed     | 100.0%                    |
| Wind Direction | 100.0%                    |
| Overall*       | 100.0%                    |

<sup>\*</sup>Simultaneous occurrence of valid data for all three parameters.

#### 7.0 ASSESSMENT OF DOSES

#### 7.1 Dose Due to Gaseous Effluents

#### 7.1.1 Air Doses at the Site Boundary

Air doses from gaseous effluents were evaluated at the closest offsite location that could be occupied continuously during the term of plant operation and that would result in the highest dose. This location was determined by examining the atmospheric dispersion parameters  $(\chi/Q's)$  at the closest offsite locations that could be continuously occupied during plant operation in each of the meteorological sectors surrounding the plant. The location that would have the highest dose would be that location having the most restrictive (largest) x/Q value. Based on actual meteorological data collected during 1993, this location was determined to be in the NE sector at a distance of 966 meters from the plant. Doses were assessed at this location in accordance with the methodology described in the Waterford 3 Offsite Dose Calculation Manual considering only beta and gamma exposures in air due to noble gas. The results of these assessments for the year 1993 are summarized as follows:

Beta air dose: 0.74 mrad Gamma air dose: 0.32 mrad

The beta and gamma air doses are 3.7% and 3.2% of the Annual Dose Limits, respectively. The results of the dose calculations by quarter are summarized in Table 5.

#### 7.1.2 Maximum Organ Dose to the Critical Receptor

The maximum organ dose to a MEMBER OF THE PUBLIC from I-131, I-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at and beyond the site boundary was determined for 1993.

An assessment of the maximum organ dose was performed for the critical receptor. The critical receptor was assumed to be located at the nearest residence to the plant having the most restrictive atmospheric dispersion  $(\chi/Q)$  and deposition (D/Q) parameters. Furthermore, it was assumed that the receptor living at this residence consumed food products that were either raised or produced at this residence. Using land use census and meteorological data for 1993, the residence with the highest  $\chi/Q$  and D/Q values was determined to be in the NE sector at a distance of 1448 meters. The dose calculation was performed in accordance with the methodology described in the Waterford 3 Offsite Dose Calculation Manual considering the inhalation, ground plane exposure, and ingestion pathways.

The maximum organ dose to the critical receptor was determined to be 0.09 mrem to the infant thyroid. This represents 0.6% of the Annual Dose Limit. Dose calculation results are summarized by quarters in Table 5.

#### 7.2 Doses Due to Liquid Effluents

The annual doses to the maximum exposed individual resulting from exposure to liquid effluents released during 1993 from Waterford 3 were 0.17 mrem total body and 0.23 mrem to the maximum exposed organ (liver). These values are 5.7% and 2.3% respectively, of the Annual Dose Limits. Dose calculation results are summarized by quarters in Table 5. The doses were calculated in accordance with the methodology described in the Waterford 3 Offsite Dose Calculation Manual.

#### 7.3 40 CFR Part 190 Dose Evaluation

In accordance with Waterford 3 Offsite Dose Calculation Manual, Section 5.5.2, dose evaluations to demonstrate compliance with Surveillance Requirements 5.5.1.a and 5.5.1.b of the ODCM, dealing with dose from the uranium fuel cycle, need to be performed only if quarterly doses exceed 3 mrem to the total body (liquid releases), 10 mrem to any organ (liquid releases), 10 mrad gamma air dose, 20 mrad beta air dose, or 15 mrem to any organ from radioiodines and particulates.

At no time during 1993 were any of these limits exceeded; therefore, no evaluations were required.

## 7.4 Doses to Public Inside the Site Boundary

The Member of the Public inside the site boundary expected to have the maximum exposure due to gaseous effluents would be an employee at Waterford 1 and 2 fossil fuel plants, located in the NW sector, approximately 670 meters from the plant. Based on an assumed occupancy of 25% (40 hour work week) and the fact that all employees are adults, the maximum organ dose would be less than 0.010 mrem to the thyroid. Total body and skin doses were calculated to be 0.03 and 0.07 mrem, respectively. These doses were calculated according to the methodology described in the Waterford 3 Offsite Dose Calculation Manual considering only the inhalation and ground plane exposure pathways.

#### 8.0 RELATED INFORMATION

#### 8.1 Changes to the Process Control Program

There were minor changes to the Process Control Program during the reporting period. Specific vendor information was removed from procedure RW-001-210, Process Control Program. Copies of the changes to the Process Control Program are included in Attachment 10.1.

#### 8.2 Changes to the Offsite Dose Calculation Manual

There were minor changes to the Offsite Dose Calculation Manual during the reporting period.

Several Radiological Environmental Monitoring Program sample location descriptions were updated. Added definition of "Major Change" to a radioactive waste system. Added a section specifying preparation of the Annual Radioactive Effluent Release Report to the NRC. Added sections specifying content of special reports to the NRC. Added section addressing Secondary Release Paths. Clarified note in table 5.6-3 pertaining to MCES releases. Deleted MKE-4 sample location. Deleted milk goats from dispersion/deposition table in Attachment 6.2. Copies of the changes to the Offsite Dose Calculation Manual are included in Attachment 10.2.

#### 8.3 Unavailability of REMP Milk Samples

Due to the unavailability of three milk sampling locations within five kilometers of the plant, Broad Leaf sampling is performed in accordance with ODCM Table 5.8-1. Milk is collected, when available, from the control location and two identified sampling locations as indicated in Waterford 3 Offsite Dose Calculation Manual, Attachment 6.14.

### 8.4 Report of Required Effluent Instrument Inoperability

ODCM Specifications, 5.6.1.b and 5.6.2.b requires reporting in the Semiannual Radioactive Effluent Release Report of why designated inoperable effluent monitoring instrumentation was not restored to operability within the time specified in the ACTION Statement. During the reporting period, there were no cases when instrumentation was not restored to operability within the time specified.

#### 8.5 Activity Released Via Secondary Pathways

The following secondary release paths were continuously monitored for radioactivity: 1) the Hot Machine Shop Exhaust (AH-35), 2) Decontamination Shop Exhaust (AH-34), 3) the RAB H&V Equipment Room Ventilation system Exhaust (E-41A and E-41B); and 4) the Switchgear/Cable Vault Area Ventilation System (AH-25). Continuous sampling for these areas is maintained in order to demonstrate the operability of installed treatment systems and to verify integrity of barriers separating primary and secondary ventilation systems. Sampling for these areas was limited to continuous particulate and iodine sampling and monthly noble gas grab sampling. In addition to these release pathways, a steam release from the Steam Generators via the Atmospheric Dump Valves was performed and an atmospheric release from Auxiliary Component Cooling Water (ACCW) via the Wet Cooling Towers was performed. The activity released via these secondary pathways resulted from routine operations and remained below significant levels.

## 8.6 Missed Effluent Samples:

8.6.1 No liquid or gaseous effluent samples were missed during this reporting period.

#### 8.7 Major Changes to Radioactive Waste Systems

During the reporting period, no Major Changes were made to any Radioactive Waste Systems.

#### 8.8 Additional Information

The most recent Reactor Coolant System E-Bar calculation was 0.763 MeV/Disintegration from a sample obtained on June 1, 1993. Reactor Coolant System E-Bar is supplied for information only and is not used for effluent dose calculations.

#### 9.0 TABLES

- 1 Batch Release Summary
- 1A Semiannual Summation of all Releases by Quarter All Airborne Effluents
- 1B Semiannual Airborne Continuous Elevated and Ground Level Releases
- 1C Semiannual Airborne Batch Elevated and Ground Level Releases
- 2A Semiannual Summation of All Releases by Quarter All Liquid Effluents
- 2B Semiannual Liquid Continuous and Batch Releases
- 3 Solid Waste Shipped Offsite for Disposal
- 4 Joint Frequency Distribution of Meteorological Data
- 5 Dose Calculation Results for 1993

### 10.0 ATTACHMENTS

- 10.1 Changes to Process Control Program; January 1, 1993 to December 31, 1993 (8 pages)
- 10.2 Changes to Offsite Dose Calculation Manual; January 1, 1993 to December 31, 1993 (127 pages)

## TABLE 1 (1 of 2)

| REPORT CATEGORY RELEASE POINT TYPE OF RELEASE PERIOD START TIME PERIOD END TIME |    | BATCH LIQUID A | ND GASEOUS |
|---------------------------------------------------------------------------------|----|----------------|------------|
|                                                                                 | -  | *****          |            |
|                                                                                 |    | **********     |            |
|                                                                                 |    |                |            |
| LIQUID RELEASES                                                                 |    |                |            |
| NUMBER OF BELFACES                                                              |    |                |            |
| NUMBER OF RELEASES                                                              |    | : 63           |            |
| TOTAL TIME FOR ALL RELEASES                                                     | 5  | 16349.0        | MINUTES    |
| MAXIMUM TIME FOR A RELEASE                                                      |    | 344.0          | MINUTES    |
| AVERAGE TIME FOR A RELEASE MINIMUM TIME FOR A RELEASE                           | h  | 259.5          | MINUTES    |
| MINIMUM TIME FOR A RELEASE                                                      |    | : 116.0        | MINUTES    |
| AVERAGE STREAM FLOW                                                             |    | 836746.9       | GPM        |
|                                                                                 | ** |                |            |
|                                                                                 |    |                |            |
| CASECULE DELEASES                                                               |    |                |            |
| GASEOUS RELEASES                                                                |    |                |            |
| NUMBER OF RELEASES                                                              |    | : 3            |            |
| TOTAL TIME FOR ALL RELEASES                                                     | S  | 1 994.0        | MIMITES    |
| MAXIMUM TIME FOR A RELEASE                                                      |    | : 565.0        | MIMITES    |
| AVERAGE TIME FOR A RELEASE                                                      |    | 331.3          | MINUTES    |
| MINIMUM TIME FOR A RELEASE                                                      |    | 159.0          | MINUTES    |
| MINIMUM TIME FOR A RELEASE                                                      |    | 159.0          | MINUTES    |

## TABLE 1 (2 of 2)

| REPORT CATEGORY                                          | BATCH RELEASE SUMMARY                                          |
|----------------------------------------------------------|----------------------------------------------------------------|
| RELEASE POINT                                            | ALL                                                            |
| TYPE OF RELEASE                                          | BATCH LIQUID AND GASEOUS<br>4344:00 HRS = 12:00AM JULY 1, 1993 |
| PERIOD START TIME                                        | 4344:00 HRS = 12:00AM JULY 1 1007                              |
| PERIOD END TIME                                          | 8759:59 HRS = 11:59PM DECEMBER 31, 1993                        |
|                                                          | THE THE THE PERCENDER 31, 1993                                 |
|                                                          |                                                                |
|                                                          |                                                                |
|                                                          |                                                                |
|                                                          |                                                                |
| LIQUID RELEASES                                          |                                                                |
|                                                          |                                                                |
| NUMBER OF RELEASES                                       | : 73                                                           |
| TOTAL TIME FOR ALL RELEASE                               | 18423.0 MINUTES                                                |
| MAXIMUM TIME FOR A RELEASE                               | : 298.0 MINUTES                                                |
| MAXIMUM TIME FOR A RELEASE<br>AVERAGE TIME FOR A RELEASE | : 252.4 MINUTES                                                |
| MINIMUM TIME FOR A RELEASE                               | : 60.0 MINUTES                                                 |
| AVERAGE STREAM FLOW                                      | : 904974.6 GPM                                                 |
|                                                          |                                                                |
|                                                          |                                                                |
|                                                          |                                                                |
|                                                          |                                                                |
| GASEOUS RELEASES                                         |                                                                |
| NUMBER OF RELEASE                                        |                                                                |
| NUMBER OF RELEASES                                       | : 0                                                            |
| TOTAL TIME FOR ALL RELEASE                               | : 0.0 MINUTES                                                  |
| MAXIMUM TIME FOR A RELEASE                               | : 0.0 MINUTES                                                  |
| AVERAGE TIME FOR A RELEASE                               | : 0.0 MINUTES                                                  |
| MINIMUM TIME FOR A RELEASE                               | : 0.0 MINUTES                                                  |

# TABLE 1A (1 of 2)

| REPORT CATEGORY<br>TYPE OF ACTIVITY<br>REPORTING PERIOD |            | # 1 # | AUP DIA | RT    | ER # 2   |     |          |     |          |       |
|---------------------------------------------------------|------------|-------|---------|-------|----------|-----|----------|-----|----------|-------|
| TYPE OF EFFLUENT                                        |            | 1     | UNIT    | ** ** | HOURS    | 1   | : QUARTE | R 2 | :EST.TOT |       |
| A. FISSION AND ACTIVATIO                                |            |       |         |       |          |     |          |     |          |       |
| 1. TOTAL RELEASE                                        |            | :CUR  |         |       |          |     |          | 02  | : 1.50E  | 01:   |
| 2. AVERAGE RELEASE RATE                                 | FOR PERIOD | :UCI  | /SEC    | -     | 3.44E 0  | 1   | : 3.45E  |     |          | * * * |
| 3. PERCENT OF APPLICABLE                                | LIMIT      |       | ×       | 1     | N/A      |     | H/A      |     |          |       |
| B. RADIOIODINES                                         |            |       |         |       |          |     |          |     |          |       |
| 1. TOTAL ICOINE-131                                     |            | : CUR | IES     | ź     | 1.79E-09 | 9 : | 1.08E    | -06 | : 1.50E  | 01:   |
| 2. AVERAGE RELEASE RATE                                 | FOR PERIOD | :UCI  | /SEC    | ž     | 2.30E-10 | 0 : | 1.38E    | -07 | 2        | ***   |
| 3. PERCENT OF APPLICABLE                                | LIMIT      | :     | X       |       | N/A      |     | N/A      |     |          |       |
| C. PARTICULATES                                         |            |       |         |       |          |     |          |     |          |       |
| 1. PARTICULATES(HALF-LIVE                               | S>8 DAYS)  | : CUR | IES     | N. N. | 0.00E-01 | 1   | 0.00E    | 01  | : 1.50E  | 01:   |
| 2. AVERAGE RELEASE RATE                                 |            | :UCI  | /SEC    | :     | 0.00E-01 | 1   | 0.00E    | -01 | :        | ***   |
| 3. PERCENT OF APPLICABLE                                | LIMIT      |       | x       | 1     | N/A      | 2.0 | N/A      |     |          |       |
| 4. GROSS ALPHA RADIOACTIV                               |            | : CUR |         |       |          |     | 5.20E    | 06  |          |       |
| D. TRITIUM                                              |            |       |         |       |          |     |          |     |          |       |
| 1. TOTAL RELEASE                                        |            | :CUR) | ES      | 2 11  | 3.11E 01 | 7   | 5.05E    | 01  | 1.50E 0  | 11:   |
| 2. AVERAGE RELEASE RATE F                               | OR PERIOD  | :UCI/ | SEC.    |       | 4.00E 00 |     | 6.42E    | 00  |          |       |
| 3. PERCENT OF APPLICABLE                                |            |       |         |       | R/A      |     | N/A      |     |          |       |
|                                                         |            |       |         |       |          | -   |          |     |          |       |

| REPORT CATEGORY : SEMIANNO<br>TYPE OF ACTIVITY : ALL AIRS<br>REPORTING PERIOD : QUARTER |          | ENTS                                                                                  |   |
|-----------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|---|
|                                                                                         |          | :QUARTER 3 :QUARTER 4 :EST.TOTAL<br>:HOURS :HOURS :ERROR %<br>:4345-6552 :6553-8760 : |   |
| A. FISSION AND ACTIVATION PRODUCTS                                                      |          |                                                                                       |   |
|                                                                                         | : CURIES | : 2.45E 02 : 1.30E 02 : 1.50E 01                                                      |   |
| 2. AVERAGE RELEASE RATE FOR PERIOD                                                      | :UCI/SEC | : 3.08E 01 : 1.64E 01 :                                                               |   |
| 3. PERCENT OF APPLICABLE LIMIT                                                          | : X      | : N/A : N/A :                                                                         |   |
| B. RADIOIODINES                                                                         |          |                                                                                       |   |
|                                                                                         |          | : 0.00E-01 : 0.00E-01 : 1.50E 01:                                                     |   |
| 2. AVERAGE RELEASE RATE FOR PERIOD                                                      | :UCI/SEC | : 0.00E-01 : 0.00E-01 :                                                               | Ì |
| 3. PERCENT OF APPLICABLE LIMIT                                                          | : %      | : N/A : N/A :                                                                         |   |
| C. PARTICULATES                                                                         |          |                                                                                       |   |
| 1. PARTICULATES(HALF-LIVES>8 DAYS)                                                      | :CURIES  | : 0.00E-01 : 0.00E-01 : 1.50E 01:                                                     |   |
| 2. AVERAGE RELEASE RATE FOR PERIOD                                                      | :UCI/SEC | : 0.00E-01 : 0.00E-01 :                                                               |   |
| 3. PERCENT OF APPLICABLE LIMIT                                                          | : X      | 1 N/A 1 N/A 1                                                                         |   |
| 4. GROSS ALPHA RADIOACTIVITY                                                            |          |                                                                                       |   |
| D. TRITIUM                                                                              |          |                                                                                       |   |
| 1. TOTAL RELEASE                                                                        | : CURIES | : 1.63E 01 : 3.82E 00 : 1.50E 01:                                                     |   |
| 2. AVERAGE RELEASE RATE FOR PERIOD                                                      | :UC1/SEC | : 2.05E 00 : 4.81F-01 :                                                               |   |
| 3. PERCENT OF APPLICABLE LIMIT                                                          | : %      | : N/A : N/A :                                                                         |   |
|                                                                                         |          |                                                                                       |   |

| REPORT CATEGORY  TYPE OF ACTIVITY REPORTING PERIOD | : LEVEL RELEASES. TOTALS FOR EACH NUCLIDE RELEASED.                                                         |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                    |                                                                                                             |
|                                                    | : ELEVATED RELEASES : GROUND RELEASES :                                                                     |
|                                                    | : UNIT :QUARTER 1 :QUARTER 2 :QUARTER 1 :QUARTER 2 :<br>: :HOURS :HOURS :HOURS :                            |
| NUCLIDE                                            | : : 1-2160 :2161-4344 : 1-2160 :2161-4344 :                                                                 |
| FISSION GASES                                      |                                                                                                             |
| LIBSION PAPES                                      |                                                                                                             |
| XE-135                                             | : CURIES : 0.00E-01 : 0.00E-01 : 2.46E 02 : 1.90E 02 : CURIES : 0.00E-01 : 0.00E-01 : 1.18E 01 : 1.88E 01 : |
|                                                    | : CURIES : 0.00E-01 : 0.00E-01 : 2.58E 02 : 2.09E 02 :                                                      |
| IODINES                                            |                                                                                                             |
| 1-131                                              | : CURIES : 0.00E-01 : 0.00E-01 : 1.79E-09 : 1.08E-06 :                                                      |
| PARTICULATES                                       |                                                                                                             |
| H-3<br>G ALPHA                                     | : CURIES : 0.00E-01 : 0.00E-01 : 3.11F 01 : 5.01E 01 : CURIES : 0.00E-01 : 0.00E-01 : 3.31E-06 : 5.20E-06 : |
| TOTAL FOR PERIOD                                   | : CURIES : 0.00E-01 : 0.00E-01 : 3.11E 01 : 5.01E 01 :                                                      |
|                                                    |                                                                                                             |

```
REPORT CATEGORY
                          : SEMIANNUAL AIRBORNE CONTINUOUS ELEVATED AND GROUND
                              : LEVEL RELEASES. TOTALS FOR EACH NUCLIDE RELEASED.
 TYPE OF ACTIVITY : FISSION GASES, IODINES, AND PARTICULATES
REPORTING PERIOD : QUARTER # 3 AND QUARTER # 4
                                           : ELEVATED RELEASES : GROUND RELEASES :
                          : UNIT :QUARTER 3 :QUARTER 4 :QUARTER 3 :QUARTER 4 :
: :HOURS :HOURS :HOURS :
: :4345-6552 :6553-8760 :4345-6552 :6553-8760 :
 NUCLIDE
FISSION GASES
KR-85M : CURIES : 0.00E-01 : 0.00E-01 : 1.74E 00 : 0.00E-01 : XE-133 : CURIES : 0.00E-01 : 0.00E-01 : 2.12E 02 : 1.30E 02 : XE-135 : CURIES : 0.00E-01 : 0.00E-01 : 2.57E 01 : 0.00E-01 : AR-41 : CURIES : 0.00E-01 : 0.00E-01 : 5.34E 00 : 0.00E-01 :
TOTAL FUR PERIOD : CURIES : 0.00E-01 : 0.00E-01 : 2.45E 02 : 1.30E 02 :
ICOINES
PARTICULATES
H-3 : CURIES : 0.00E-01 : 0.00E-01 : 1.63E 01 : 3.82E 00 : G ALPHA : CURIES : 0.00E-01 : 0.00E-01 : 7.30E-06 : 5.66E-06 :
TOTAL FOR PERIOD : CURIES : 0.00E-01 : 0.00E-01 : 1.63E 01 : 3.82E 00 :
```

| REPORT CATEGORY   | : SEMIANNUAL AIRBORNE BATCH ELEVATED AND GROUND : LEVEL RELEASES. TOTALS FOR EACH MUCLIDE RELEASED.       |
|-------------------|-----------------------------------------------------------------------------------------------------------|
| TYPE OF ACTIVITY  | : FISSION GASES, IODINES, AND PARTICULATES                                                                |
| REPORTING PERIOD  | : QUARTER # 1 AND QUARTER # 2                                                                             |
|                   |                                                                                                           |
|                   | : ELEVATED RELEASES : GROUND RELEASES :                                                                   |
|                   | : UNIT : :QUARTER 1 :QUARTER 2 :QUARTER 1 :QUARTER 2 :                                                    |
| NUCLIDE           | : HOURS : HOURS : HOURS :                                                                                 |
|                   | : : 1-2160 :2161-4344 : 1-2160 :2161-4344 :                                                               |
| FISSION GASES     |                                                                                                           |
| FIDDIUM GASES     | ***************************************                                                                   |
| KR-85M            | : CURIES : 0.00E-01 : 0.00E-01 : 3.16E-03 : 1.72E-02 :                                                    |
| VE - 12 1W        | : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 1 14E 00 :                                                    |
| XE-133M<br>XE-133 | : CURIES : 0.00E-01 : 0.00E-01 : 8.60E-02 : 5.19E-01 :                                                    |
| XE-135            | : CURIES : 0.00E-01 : 0.00E-01 : 9.38E 00 : 6.02E 01 :                                                    |
|                   | : CURIES : 0.00E-01 : 0.00E-01 : 6.18E-02 : 3.91E-01 : CURIES : 0.00E-01 : 0.00E-01 : 4.11E-02 : 3.64E-01 |
|                   | : CURIES : 0.00E-01 : 0.00E-01 : 4.11E-02 : 2.46E-01 :                                                    |
| TOTAL FOR PERIOD  | : CURIES : 0.00E-01 : 0.00E-01 : 9.57E 00 : 6.25E 01 :                                                    |
| ***************   | ***************************************                                                                   |
| TODIMES           |                                                                                                           |
| NONE              |                                                                                                           |
|                   |                                                                                                           |
| PARTICULATES      |                                                                                                           |
| H-3               | : CURIES : 0.00E-01 : 0.00E-01 : 3.33E-03 : 3.28E-01 :                                                    |
| *************     | . CORRES : 0.00E-01 : 0.00E-01 : 3.33E-03 : 3.28E-01 :                                                    |

TABLE 1C (2 of 2)

| REPORT CATEGORY                 | : SEMIANNUAL AIRBORNE BATCH ELEVATED AND GROUND<br>: LEVEL RELEASES. TOTALS FOR EACH NUCLIDE RELEASED. |
|---------------------------------|--------------------------------------------------------------------------------------------------------|
| TYPE OF ACTIVITY                | : FISSION GASES, IODINES, AND PARTICULATES                                                             |
|                                 | : QUARTER # 3 AND QUARTER # 4                                                                          |
| 114.1 301.1 1.114 7 1.114 1.114 | A MOUNTER & 2 DUN MOUNTER & A                                                                          |
|                                 |                                                                                                        |
|                                 | : ELEVATED RELEASES : GROUND RELEASES :                                                                |
| ********                        | : UNIT :QUARTER 3 :QUARTER 4 :QUARTER 3 :QUARTER 4 :                                                   |
|                                 | : : : : : : : : : : : : : : : : : : :                                                                  |
| NUCLIDE                         | : :4345-6552 :6553-8760 :4345-6552 :6553-8760 :                                                        |
|                                 | ***************************************                                                                |
|                                 |                                                                                                        |
| FISSION GASES                   |                                                                                                        |
|                                 | ******************                                                                                     |
| NONE                            |                                                                                                        |
|                                 |                                                                                                        |
|                                 |                                                                                                        |
| IODINES                         |                                                                                                        |
|                                 |                                                                                                        |
| NOME                            |                                                                                                        |
| ******************              | ***************************************                                                                |
| PARTICULATES                    |                                                                                                        |
| TARTIUULATES                    |                                                                                                        |
| NONE                            |                                                                                                        |
|                                 | ***************************************                                                                |

| TYPE OF ACTIVITY : ALL LIG                               | UAL SUMMATIO<br>UID EFFLUENT<br># 1 AND QUA |                                                                                        |
|----------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------|
| TYPE OF EFFLUENT                                         |                                             | :QUARTER 1 :QUARTER 2 :EST.TOTAL:<br>:HOURS :HOURS :ERROR % :<br>: 1-2160 :2161-4344 : |
| A. FISSION AND ACTIVATION PRODUCTS                       |                                             |                                                                                        |
| 1. TOTAL RELEASE(NOT INCLUDING<br>TRITIUM, GASES, ALPHA) | :<br>:CURIES                                | : 1.49E-01 : 1.92E-01 : 1.50E 01:                                                      |
| 2. AVERAGE DILUTED CONCENTRATION DURING PERIOD           | :<br>:UCI/ML                                |                                                                                        |
| 3. PERCENT OF APPLICABLE LIMIT                           | : %                                         | : N/A : N/A ;                                                                          |
| B. TRITIUM                                               |                                             | ***************************************                                                |
|                                                          |                                             | : 4.97E 01 : 1.23E 02 : 1.50E 01:                                                      |
| 2. AVERAGE DILUTED CONCENTRATION DURING PERIOD           | :UCI/ML                                     | : 2.45E-06 : 3.92E-06 :                                                                |
| 3. PERCENT OF APPLICABLE LIMIT                           |                                             |                                                                                        |
| C. DISSOLVED AND ENTRAINED GASES                         |                                             |                                                                                        |
| 1. TOTAL RELEASE                                         | :CURIES                                     | : 4.42E-01 : 3.00E-01 : 1.50E 01:                                                      |
| 2. AVERAGE DILUTED CONCENTRATION                         | :<br>:UCI/ML                                | : 2.18E-08 : 9.54E-09 :                                                                |
| 3. PERCENT OF APPLICABLE LIMIT                           |                                             | : N/A : N/A :                                                                          |
| D. GROSS ALPHA RADICACTIVITY                             |                                             |                                                                                        |
| 1. TOTAL RELEASE                                         |                                             | : 0.00E-01 : 0.00E-01 : 1.502 01:                                                      |
| E. WASTE VOL RELEASED(PRE-DILUTION)                      | :GAL                                        | : 3.15E 05 : 2.28E 06 : 1.50E 01:                                                      |
| F. VOLUME OF DILUTION WATER USED                         |                                             | : 5.37E 09 : 8.31E 09 : 1.50E 01:                                                      |

| REPORT CATEGORY : SEMIANN TYPE OF ACTIVITY : ALL LIQ REPORTING PERIOD : QUARTER | UID EFFLUENT | S                                                                                        |
|---------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|
|                                                                                 |              | :QUARTER 3 :QUARTER 4 :EST.TOTAL:<br>:HOURS :HOURS :ERROR % :<br>:4345-6552 :6553-8760 : |
| A. FISSION AND ACTIVATION PRODUCTS                                              |              |                                                                                          |
| 1. TOTAL RELEASE(NOT INCLUDING<br>TRITIUM, GASES, ALPHA)                        | :<br>:CURIES | : 2.22E-01 : 4.09E-02 : 1.50E 01:                                                        |
| 2. AVERAGE DILUTED CONCENTRATION DURING PERIOD                                  | :UCI/ML      | : 5.77E-09 : 1.66E-09 :                                                                  |
| 3. PERCENT OF APPLICABLE LIMIT                                                  | : %          | : N/A : N/A :                                                                            |
| B. TRITIUM                                                                      |              |                                                                                          |
|                                                                                 | :CURIES      | : 2.14E 02 : 1.03E 02 : 1.50E 01:                                                        |
| 2. AVERAGE DILUTED CONCENTRATION DURING PERIOD                                  | :UCI/ML      | : 5.56E-06 : 4.17E-06 :                                                                  |
| 3. PERCENT OF APPLICABLE LIMIT                                                  |              |                                                                                          |
| C. DISSOLVED AND ENTRAINED GASES                                                |              |                                                                                          |
| 1. TOTAL RELEASE                                                                | :CURIES      | : 6.16E-01 : 2.40E-01 : 1.50E 01:                                                        |
| 2. AVERAGE DILUTED CONCENTRATION<br>DURING PERIOD                               |              |                                                                                          |
| 3. PERCEN. PLICABLE LIMIT                                                       | : %          | : N/A : N/A :                                                                            |
| D. GR YOR ALMEN RADIOACTIVITY                                                   |              |                                                                                          |
|                                                                                 | :CURIES      | : 0.00E-01 : 0.00E-01 : 1.50E 01:                                                        |
| E. WASTE VOL RELEASED (PRE-DILUTION)                                            | ;GAL         | : 2.69E 06 : 2.14E 06 : 1.50E 01:                                                        |
| F. VOLUME OF DILUTION WATER USED                                                | *****        |                                                                                          |

```
: SEMIANNUAL LIQUID CONTINUOUS AND BATCH RELEASES
 REPORT CATEGORY
: TOTALS FOR EACH NUCLIDE RELEASED.

TYPE OF ACTIVITY : ALL RADIONUCLIDES

REPORTING PERIOD : QUARTER # 1 AND QUARTER # 2
                                         : CONTINUOUS RELEASES : BATCH RELEASES :
                                        : UNIT : QUARTER 1 : QUARTER 2 : QUARTER 1 : QUARTER 2 :
                            : : HOURS : HOURS : HOURS : HOURS : 1-2160 : 2161-4344 : 1-2160 : 2161-4344 :
ALL NUCLIDES
H-3
                      : CURIES : 0.00E-01 : 7.55E-02 : 4.97E 01 : 1.23E 02 :
                          : CURIES : 0.00E-01 : 0.00E-01 : 9.06E-06 : 7.95E-06 : CURIES : 0.00E-01 : 0.00E-01 : 5.93E-04 : 2.92E-04 :
NA-24
CR-51
MN-54
                           : CURIES : 0.00E-01 : 0.00E-01 : 6.79E-04 : 2.66E-03 :
                           : CURIES : 0.00E-01 : 0.00E-01 : 3.34E-02 : 2.70E-02 : CURIES : 0.00E-01 : 0.00E-01 : 1.89E-04 : 0.00E-01 : CLRIES : 0.00E-01 : 0.00E-01 : 1.69E-02 : 1.61E-02 :
FE-55
FF-50
CO-58
                           : CURIES : 0.00E-01 : 0.00E-01 : 4.14E-03 : 1.66E-02 :
CD-60
RB-88
                           : CURIES : 0.00E-01 : 0.00E-01 : 2.97E-02 : 0.00E-01 :
SR-92
                              CURIES : 0.00E-01 : 0.00E-01 : 4.44E-05 : 1.50E-04 :
ZR-95
                            : CURIES : 0.00E-01 : 0.00E-01 : 9.90E-04 : 1.43E-03 :
ZR-97
                           : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 1.42E-05 :
NR-95
                           : CURIES : 0.00E-01 : 0.00E-01 : 2.15E-03 : 3.07E-03 : CURIES : 0.00E-01 : 0.00E-01 : 1.58E-04 : 7.28E-04 :
HO-99
TC-99M
                           : CURIES : 0.00E-01 : 0.00E-01 : 3.95E-04 : 4.52E-04 :
RU-106
                           : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 2.10E-05 :
                           : CURIES : 0.00E-01 : 0.00E-01 : 3.75E-04 : 1.50E-05 : CURIES : 0.00E-01 : 0.00E-01 : 4.26E-02 : 8.57E-02 :
AG-110M
1-131
1 - 132
                           : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 5.32E-05 :
1-133
                          : CURIES : 0.00E-01 : 0.00E-01 : 2.29E-03 : 1.15E-02 :
                           : CURIES : 0.00E-01 : 0.00E-01 : 4.54E-05 : 1.70E-03 : CURIES : 0.00E-01 : 0.00E-01 : 2.01E-03 : 5.11E-03 :
1-135
CS-134
CS-137
                           : CURIES : 0.00E-01 : 0.00E-01 : 2.90E-03 : 7.89E-03 :
                       : CURIES : 0.00E-01 : 0.00E-01 : 8.89E-05 : 1.22E-04 : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 1.03E-05 :
BA-140
LA-140
                          : CURIES : 0.00E-01 : 0.00E-01 : 8.08E-05 : 1.09E-04 :
LA-142
CE-144
                          : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 1.16E-04 :
W-187
                           : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 2.98E-04 :
```

```
REPORT CATEGORY : SEMIANNUAL LIQUID CONTINUOUS AND BATCH RELEASES : TOTALS FOR EACH NUCLIDE RELEASED.

TYPE OF ACTIVITY : ALL RADIONUCLIDES REPORTING PERIOD : QUARTER # 1 AND QUARTER # 2
                                                 : CONTINUOUS RELEASES : BATCH RELEASES :
 : UNIT :QUARTER 1 :QUARTER 2 :QUARTER 1 :QUARTER 2 :
: HOURS :HOURS :HOURS :
: 1-2160 :2161-4344 : 1-2160 :2161-4364 :
 NUCLIDE
 ALL NUCLIDES CONTINUED
 KR-85M
                : CURIES : 0.00E-01 : 0.00E-01 : 4.61E-04 : 0.00E-01 :
                             : CURIES : 0.00E-01 : 0.00E-01 : 8.33E-03 : 8.54E-03 : CURIES : 0.00E-01 : 0.00E-01 : 1.21E-04 : 0.00E-01 : CURIES : 0.00E-01 : 0.00E-01 : 5.57E-04 : 0.00E-01 :
KR-85
KR-87
KR-88
XE-131M
XE-133M
YE-133
                           : CURIES : 0.00E-01 : 0.00E-01 : 7.39E-03 : 7.42E-03 : CURIES : 0.00E-01 : 0.00E-01 : 2.02E-03 : 6.77E-04 :
XE-133
                                : CURIES : 0.00E-01 : 0.00E-01 : 4.12E-01 : 2.80E-01 : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 1.47E-03 :
XE-135M
XE-135
                         : CURIES : 0.00E-01 : 0.00E-01 : 1.06E-02 : 2.62E-03 :
AR-41
                           : CURIES : 0.00E-01 : 0.00E-01 : 5.85E-05 : 5.51E-05 : CURIES : 0.00E-01 : 0.00E-01 : 3.12E-05 : 1.32E-04 :
CO-57
            CURIES : 0.00E-01 : 0.00E-01 : 2.42E-04 : 6.07E-05 : CURIES : 0.00E-01 : 0.00E-01 : 3.97E-04 : 9.49E-04 : CURIES : 0.00E-01 : 0.00E-01 : 3.31E-04 : 1.69E-03 : CURIES : 0.00E-01 : 0.00E-01 : 1.10E-05 : 1.05E-05 : CURIES : 0.00E-01 : 0.00E-01 : 8.59E-03 : 7.81E-03 : CURIES : 0.00E-01 : 0.00E-01 : 5.14E-05 : 3.71E-05 :
SB-124
SN-113
NB-97
SB-122
SB-125
BR-82
TOTAL FOR PERIOD : CURIES : 0.00E-01 : 7.55E-02 : 5.03E 01 : 1.24E 02 :
```

```
REPORT CATEGORY
                            : SEMIANNUAL LIQUID CONTINUOUS AND BATCH RELEASES
                          : TOTALS FOR EACH NUCLIDE RELEASED.
                      : ALL RADIONUCLIDES
  TYPE OF ACTIVITY
  REPORTING PERIOD
                             : QUARTER # 3 AND QUARTER # 4
                                          : CONTINUOUS RELEASES : BATCH RELEASES :
                                        : UNIT :QUARTER 3 :QUARTER 4 :QUARTER 3 :QUARTER 4 :
                                         : HOURS : HOURS : HOURS
  NUCLIDE
                                        :4345-6552 :6553-8760 :4345-6552 :6553-8760 :
 ALL NUCLIDES
                    : CURIES : 1.01E-01 : 6.19E-02 : 2.14E 02 : 1.03E 02 :
 W-3
                           : CURIES : 0.00E-01 : 0.00E-01 : 4.32E-04 : 0.00E-01 :
 CR-51
                           : CURIES : 0.00E-01 : 0.00E-01 : 1.34E-03 : 2.62E-03 :
 MM-54
                            CURIES : 0.00E-01 : 0.00E-01 : 3.18E-03 : 3.37E-03 : CURIES : 1.20E-06 : 0.00E-01 : 7.29E-03 : 7.56E-03 :
 FE-55
 00-58
 CO-60
                           : CURIES : 0.00E-01 : 0.00E-01 : 7.95E-03 : 1.48E-02 :
 RR-RR
                            : CURIES : 0.00E-01 : 0.00E-01 : 8.03E-02 : 0.00E-01 :
 SR-92
                            : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 3.88E-05 :
 ZR-95
                           : CURIES : 0.00E-01 : 0.00E-01 : 1.17E-03 : 1.93E-03 :
 79-97
                           : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 2.17E-06 :
 NB-95
                           : CURIES : 0.00E-01 : 0.00E-01 : 2.29E-03 : 6.37E-03 : CURIES : 0.00E-01 : 0.00E-01 : 1.11E-03 : 0.00E-01 :
MO-90
 TC-99M
                          : CURIES : 0.00E-01 : 0.00E-01 : 1.68E-03 : 9.33E-06 :
RU-106
                          : CURIES : 0.00E-01 : 0.00E-01 : 0.00E-01 : 4.27E-04 :
1-131
                           : CURIES : 0.00E-01 : 0.00E-01 : 5.55E-02 : 2.69E-04 : CURIES : 0.00E-01 : 0.00E-01 : 2.37E-04 : 0.00E-01 :
1 - 132
1-133
                          : CURIES : 0.00E-01 : 0.00E-01 : 3.65E-02 : 4.97E-05 :
                          : CURIES : 0.00E-01 : 0.00E-01 : 6.16E-03 : 0.00E-01 : CURIES : 1.88E-06 : 4.62E-07 : 4.42E-03 : 1.44E-03 : CURIES : 3.93E-06 : 1.56E-06 : 3.74E-03 : 1.38E-03 :
1-135
CS-134
CS-137
LA-140
                          : CURIES : 0.00E-01 : 0.00E-01 : 7.14E-05 : 0.00E-01 :
LA-142
                         : CURIES : 0.00E-01 : 0.00E-01 : 2.21E-05 : 0.00E-01 : CURIES : 0.00E-01 : 0.00E-01 : 4.39E-03 : 0.00E-01 :
W-187
                     : CURIES : 0.00E-01 : 0.00E-01 : 1.05E-03 : 1.96E-06 :
KR-85M
                        : CURIES : 0.00E-01 : 0.00E-01 : 8.73E-03 : 6.78E-03 : CURIES : 0.00E-01 : 0.00E-01 : 2.12E-04 : 0.00E-01 : CURIES : 0.00E-01 : 0.00E-01 : 1.13E-03 : 0.00E-01 :
KR-85
KR-87
KR-88
XE-131M
                         : CURIES : 0.00E-01 : 0.00E-01 : 9.98E-03 : 7.83E-03 :
```

```
REPORT CATEGORY : SEMIANNUAL LIGHTH COATTAINS FOR EACH NUCLIDE RELEASED.
                                      : SEMIANNUAL LIQUID CONTINUOUS AND BATCH RELEASES
TYPE OF ACTIVITY : ALL RADIONUCLIDES
REPORTING PERIOD : QUARTER # 3 AND QUARTER # 4
                                                         : CONTINUOUS RELEASES : BATCH RELEASES :
 : UNIT :QUARTER 3 :QUARTER 4 :QUARTER 3 :QUARTER 4 :
: HOURS :HOURS :HOURS :HOURS :
: 4345-6552 :6553-8760 :4345-6552 :6553-8760 :
NUCLIDE
ALL NUCLIDES CONTINUED
XE-133M : CURIES : 0.00E-01 : 0.00E-01 : 4.30E-03 : 4.68E-04 :
                CURIES: 0.00E-01: 0.00E-01: 4.30E-03: 4.68E-04:

CURIES: 0.00E-01: 0.00E-01: 5.49E-01: 2.24E-01:

CURIES: 0.00E-01: 0.00E-01: 1.49E-02: 0.00E-01:

CURIES: 0.00E-01: 0.00E-01: 2.47E-02: 1.03E-03:

CURIES: 0.00E-01: 0.00E-01: 1.10E-03: 0.00E-01:

CURIES: 0.00E-01: 0.00E-01: 1.10E-03: 0.00E-01:

CURIES: 0.00E-01: 0.00E-01: 0.00E-01: 1.00E-04:

CURIES: 0.00E-01: 0.00E-01: 0.00E-01: 2.36E-04:

CURIES: 0.00E-01: 0.00E-01: 0.00E-01: 2.36E-04:

CURIES: 0.00E-01: 0.00E-01: 4.09E-05: 1.63E-05:

CURIES: 0.00E-01: 0.00E-01: 3.97E-03: 1.93E-03:

CURIES: 0.00E-01: 0.00E-01: 6.05E-05: 0.00E-01:
XE-133
XE-135M
XE-135
AR-41
CO-57
SN-113
NB-97
$8-122
$8-125
BR-82
TOTAL FOR PERIOD : CURIES : 1.01E-01 : 6.19E-02 : 2.15E 02 : 03F 02 :
```

TABLE 3 (1 of 8)

## SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

|     | ASTE<br>YPE                                                      | CONTAINER<br>VOLUME (ft³) | WASTE<br>VOLUME (m³)  | TOTAL<br>ACTIVITY (Ci)      | ERROR |
|-----|------------------------------------------------------------------|---------------------------|-----------------------|-----------------------------|-------|
| (B) | Non Compacted Dry<br>Activity Waste<br>Shipped to                | 2080                      | 58.91                 | 1.69E-01 *1                 | ±25%  |
|     | Scientific Ecology Group for Volume Reduction *                  |                           | 0.00<br>Burial Volume | 0.00E+00<br>Buried Activity | ±25%  |
| B)  | Non Compacted Dry<br>Activity Waste<br>Shipped to<br>Alaron Corp | 2080                      | 58.91                 | 2.50E-02 *1                 | ±25%  |
|     | for Volume<br>Reduction *                                        |                           | 6.30<br>Burial Volume | 2.50E-02<br>Buried Activity | ±25%  |

<sup>\*</sup> Waste volumes shipped for volume reduction do not reflect final burial waste volumes unless otherwise stated.

<sup>\*1</sup> Activity determined by estimations.

<sup>\*2</sup> Activity determined by measurements.

TABLE 3 (2 of 8)

## SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

|     | ASTE<br>YPE                                       | CONTAINER<br>VOLUME (ft³) | WASTE<br>VOLUME (m³) | TOTAL<br>ACTIVITY (Ci) | ERROF |
|-----|---------------------------------------------------|---------------------------|----------------------|------------------------|-------|
| (B) | Non Compacted Dry<br>Activity Waste<br>Shipped to | 2080                      | 58,91                | 1.88E-02 *1            | ±25%  |
|     | ATG Group for                                     |                           | 7.54                 | 1.88E-02               | ±25%  |
|     | Volume                                            |                           | Burial Volume        | Buried Activity        |       |
|     | Reduction *                                       |                           |                      |                        |       |
| B)  | Non Compacted Dry                                 | 2080                      | 58.91                | 9.39E-02 *1            | ±25%  |
|     | Activity Waste                                    |                           |                      |                        |       |
|     | Shipped to                                        |                           |                      |                        |       |
|     | Quadrex for                                       |                           |                      |                        |       |
|     | Volume                                            |                           | 0.00                 | 0.00E+00               | ±25%  |
|     | Reduction *                                       |                           | Burial Volume        | Buried Activity        |       |

<sup>\*</sup> Waste volumes shipped for volume reduction do not reflect final burial waste volumes unless otherwise stated.

<sup>\*1</sup> Activity determined by estimations.

<sup>\*2</sup> Activity determined by measurements.

# TABLE 3 (3 of 8)

# SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

|     | ASTE<br>YPE                                                                              | CONTAINER<br>VOLUME (ft³) | WASTE<br>VOLUME (m³) | TOTAL    | (Ci) | ERROR |
|-----|------------------------------------------------------------------------------------------|---------------------------|----------------------|----------|------|-------|
| (A) | Resin Waste Managemen<br>Resin Dewatered in a<br>High Integrity<br>Container (Bead Resin |                           | 4.84                 | 9.04E+01 | *2   | ±25%  |
| (A) | Liquid Waste Manageme<br>Resin Dewatered in a<br>High Integrity Contai<br>Resin)         |                           | 10.49                | 1.22E+01 | *2   | ±25%  |

<sup>\*</sup> Waste volumes shipped for volume reduction do not reflect final burial waste volumes unless otherwise stated.

<sup>\*1</sup> Activity determined by estimations.

<sup>\*2</sup> Activity determined by measurements.

TABLE 3 (4 of 8)

# SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

| NUMBE         | R OF SHIPMENTS       | MODE                 | OF TRANSPORTATION                          |                         | DESTINATION                               |
|---------------|----------------------|----------------------|--------------------------------------------|-------------------------|-------------------------------------------|
|               | 3                    | So1                  | e Use Cask                                 |                         | Barnwell, SC                              |
|               | 3                    | So1                  | e Use Flatbed                              |                         | Oakridge, TN                              |
|               |                      |                      | e Use Flatbed                              |                         | Wampum, PA                                |
|               | 1                    | So1                  | e Use Flatbed                              |                         | Hanford, WA                               |
| WASTE         | # OF                 |                      | TYPE OF                                    |                         |                                           |
| CLASS         | SHIPMENTS            | TYPE                 | CONTAINER                                  | MODE                    | DESTINATION                               |
| CLASS         | SHIPMENTS            | >A LSA               | Poly - HIC                                 | MODE                    |                                           |
|               | SHIPMENTS  1 1       |                      |                                            |                         |                                           |
| В             | SHIPMENTS  1 1 1     | >A LSA               | Poly - HIC                                 | Truck                   | Barnwell, SC                              |
| B<br>AU       | SHIPMENTS  1 1 1 1   | >A LSA<br>LSA        | Poly - HIC<br>Strong-Tight                 | Truck<br>Truck          |                                           |
| B<br>AU<br>AU | SHIPMENTS  1 1 1 1 3 | >A LSA<br>LSA<br>LSA | Poly - HIC<br>Strong-Tight<br>Strong-Tight | Truck<br>Truck<br>Truck | Barnwell, SC<br>Wampum, PA<br>Hanford, WA |

# SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

#### SUMMARY BY MAJOR WASTE TYPES

- (A) Spend Resins, Filter Sludges, Evaporator Bottoms, etc.
- (B) Dry Compressible Waste, Contaminated Equipment, etc.
- (C) Irriaded Components, Control Rods, etc.
- (D) Other (N/A)

| WASTE<br>TYPE | WASTE<br>VOLUME (M <sup>3</sup> ) | TOTAL<br>ACTIVITY (Ci) | ERROR |
|---------------|-----------------------------------|------------------------|-------|
| (A)           | 15.33                             | 1.03E+02               | ±25%  |
| (8)           | 235.70*                           | 3.07E-01               | ±25%  |
| (C)           | NONE                              | N/A                    | N/A   |
| (D)           | NONE                              | N/A                    | N/A   |

<sup>\*</sup> Includes all Type (B) waste volume.

TABLE 3 (6 of 8)

# SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

## SUMMARY BY MAJOR WASTE TYPE (Cont'd)

| WASTE TYPE | NUCLIDE NAME | % ABUNDANCE | CURIES   |
|------------|--------------|-------------|----------|
|            |              |             |          |
| (A)        | Co-58        | 3.70E+01    | 3.80E+01 |
|            | Co-60        | 8.32E+00    | 8.53E+00 |
|            | Cs-134       | 4.18E+00    | 4.29E+00 |
|            | Cs-137       | 6.14E+00    | 6.30E+00 |
|            | Fe-55        | 1.01E+01    | 1.04E+01 |
|            | Mn-54        | 4.96E+00    | 5.09E+00 |
|            | Ni-63        | 2.74E+01    | 2.81E+01 |
|            | Ni-59        | 1.51E-02    | 1.55E-02 |
|            | Sb-125       | 1.28E+00    | 1.32E+00 |
|            | Sr-90        | 3.81E-03    | 3.91E-03 |
|            | Ce-144       | 9.19E-02    | 9.42E-02 |
|            | H-3          | 3.04E-01    | 3.12E-01 |
|            | C-14         | 2.19E-01    | 2.24E-01 |
|            | Pu-238       | 1.15E-04    | 1.18E-04 |
|            | Pu-239/240   | 4.84E-05    | 4.96E-05 |
|            | Pu-241       | 1.70E-02    | 1.74E-02 |
|            | Am-241       | 2.16E-05    | 2.21E-05 |
|            | Cm-242       | 5.50E-04    | 5.64E-04 |
|            | Cm-243/244   | 5.93E-04    | 6.08E-04 |

W21419HP 38

TABLE 3 (7 of 8)

# SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THEU 12/31/93

## SUMMARY BY MAJOR WASTE TYPE (Cont'd)

| WASTE TYPE | NUCLIDE NAME | % ABUNDANCE | CURIES   |
|------------|--------------|-------------|----------|
| (B)        | Co-57        | 6.92E-01    | 2.13E-03 |
| 107        | Co-58        | 3.44E+01    | 1.06E-01 |
|            | Co-60        | 2.04E+01    | 6.25E-02 |
|            | Cs-134       | 4.03E+00    | 1.24E-02 |
|            | Cs-137       | 8.18E+00    | 2.51E-02 |
|            | Fe-55        | 1. ** +01   | 3.56E-02 |
|            | Mn-54        | 4.03E+00    | 1.24E-02 |
|            | Ni-63        | 3.43E+00    | 1.05E-02 |
|            | Fe-59        | 1.03E+00    | 3.15E-03 |
|            | Ni-59        | 2.62E-02    | 8.05E-05 |
|            | Sb-125       | 1.18E-01    | 3.63E-04 |
|            | Nb-95        | 9.97E-01    | 3.06E-03 |
|            | Zr-95        | 5.12E-01    | 1.57E-03 |
|            | Sr-89        | 3.19E-03    | 9.80E-06 |
|            | Sr-90        | 1.34E-03    | 4.10E-06 |
|            | Ce-141       | 1.33E-01    | 4.08E-04 |
|            | Sn-113       | 2.31E-01    | 7.10E-04 |
|            | Ce-144       | 8.99E-02    | 2.76E-04 |
|            | Cr-51        | 9.99E+00    | 3.04E-02 |
|            | H-3          | 3.28E-02    | 1.01E-04 |
|            | C-14         | 2.17E-01    | 6.66E-04 |
|            | Pu-238       | 1.18E-04    | 3.63E-07 |
|            | Pu-241       | 4,43E-04    | 1.36E-06 |
|            | Am-241       | 1.48E-04    | 4.54E-07 |
|            | Cm-242       | 2.66E-03    | 8.17E-06 |
|            | Cm-243/244   | 6.94E-04    | 2.13E-06 |

TABLE 3 (8 of 8)

# SOLID WASTE SHIPPED OFFSITE FOR DISPOSAL DURING PERIOD 1/1/93 THRU 12/31/93

NOTES

NOTE 1: Scientific Ecology Group sent a combined total of 1.70E-01 M<sup>3</sup> of Type B waste with a total of 5.82E-05 Curies of activity for burial. Estimates of the major nuclide composition are included the previous Effluent Release Reports. This waste was generated in 1992.

TABLE 4

(1 of 4)

JOINT FREQUENCY DISTRIBUTION OF METEOROLOGICAL DATA

|                 |       |       |         | Wind S | peed (M/S | ) at 10 | -m Level  |         |        |           |           |       |       |
|-----------------|-------|-------|---------|--------|-----------|---------|-----------|---------|--------|-----------|-----------|-------|-------|
| Wind<br>rection | .3550 | .5175 | .76-1.0 | 1.1-1. | 5 1.6-2.0 | 2,1-3.  | 0 3.1-5.0 | 5.1-7.0 | 7.1-10 | 10.1-13 1 | 13.1-18.0 | >18.0 | Total |
|                 | 0     | 0     | 0       | 1      | 8         | 29      | 34        | 10      | 1      | 0         | 0         | 0     | 83    |
|                 | 0     | 0     | 0       | 1.1    | 11        | 23      | 44        | 7       | 0      | 0         | 0         | 0     | 86    |
| NE              | . 0   | 0     | 0       | 0      | 8         | 64      | 139       | 10      | 0      | 0         | 0         | 0     | 221   |
| ENE             | 0     | 0     | 0       | 1      | 1         | 19      | 23        | 1       | 0      | 0         | 0         | 0     | 45    |
| E               | 0     | 0     | 0       | 0      | 2         | 5       | 6         | 0       | 0      | 0         | 0         | 0     | 13    |
| ESE             | 0     | 0     | 0       | 0      | 0         | - 4     | 10        | 3       | .0     | 0         | 0         | 0     | 17    |
| SE              | 0     | 0     | 0       | 1      | . 0       | 3       | 15        | 9       | 0      | 0         | 0         | 0     | 28    |
| SSE             | 0     | 0     | 0       | 0      | 0         | 8       | 13        | 15      | 0      | 0         | 0         | 0     | 36    |
| S               | 0     | 0     | 0       | 0      | 1         | 12      | laka      | 24      | - 8    | 0         | 0         | . 0   | 89    |
| SSW             | 0     | 0     | 0       | . 2    | 3         | 5       | 26        | 6       | 0      | 0         | 0         | 0     | 42    |
| SW              | 0     | 0     | - 0     | 2      | 3         | 17      | 46        | 4       | 0      | 0         | 0         | 0     | 72    |
| WSW             | 0     | 0     | 0       | 1 1    | 7         | 18      | 18        | 4       | 0      | 0         | 0         | 0     | 48    |
| W               | 0     | 0     | 0       | 0      | 6         | 18      | 14        | 8       | - 1    | 0         | 0         | 0     | 47    |
| MMM             | 0     | 0     | 0       | 0      | 5         | 12      | 25        | 8       | 0      | 0         | 0         | 0     | 50    |
| NW              | 0     | 0     | 0       | 1      | 3         | 19      | 34        | 5       | 1      | 0         | 0         | 0     | 63    |
| NNW             | 0     | 0     | 0       | 2      | 3         | 25      | 48        | 23      | . 5    | 0         | 0         | 0     | 106   |
| Total           | 0     | 0     | 0       | 12     | 61        | 281     | 539       | 137     | 16     | 0         | 0         | 0     | 1046  |

| All Control   |       |       |         | Wind Sp | eed (M/S | ) at 10- | m Level |         |        |         |           |       |       |
|---------------|-------|-------|---------|---------|----------|----------|---------|---------|--------|---------|-----------|-------|-------|
| ind<br>ection | .3550 | .5175 | .76-1.0 | 1.1-1.5 | 1.6-2.0  | 2.1-3.0  | 3.1-5.0 | 5.1-7.0 | 7.1-10 | 10.1-13 | 13.1-18.0 | >18.0 | Total |
| N             | 0     | 0     | 0       | 3       | 8        | 12       | 4       | 8       | 0      | 0       | 0         | 0     | 35    |
| NNE           | 0     | 0     | . 0     | 1       | 4        | 13       | 9       | 4       | 0      | 0       | 0         | 0     | 31    |
| NE            | 0     | 0     | . 0     | 3       | 4        | 29       | 2.3     | 0       | 0      | 0       | 0         | 0     | 59    |
| ENE           | 0     | 0     | . 0     | 0       | 1        | 8        | 8       | 1       | 0      | 0       | 0         | 0     | 18    |
| E             | 0     | 0     | 0       | 0       | 2        | 5        | 3       | 1       | 0      | 0       | 0         | 0     | 11    |
| ESE           | 0     | 0     | 0       | 0       | 0        | 2        | 4       | 1       | 1      | 0       | 0         | 0     | 8     |
| SE            | 0     | 0     | 0       | 0       | 0        | 3        | 10      | 9       | 0      | 0       | 0         | 0     | 22    |
| SSE           | 0     | 0     | 0       | 0       | 1        | 2        | 19      | 3       | 1      | 0       | 0         | 0     | 26    |
| S             | 0     | 0     | 0       | 0       | - 0      | 4        | 15      | 10      | 3      | 0       | 0         | 0     | 32    |
| SSW           | 0     | 0     | 0       | 1       | 2        | 5        | 7       | 3       | 0      | 0       | 0         | 0     | 18    |
| SW            | 0     | 0     | 0       | 3       | 1        | 5        | 7       | 1       | 0      | 0       | 0         | 0     | 17    |
| WSW           | 0     | 0     | 0       | 3       | 4        | 5        | 8       | 0       | 0      | 0       | 0         | 0     | 20    |
| W             | 0     | 0     | 0       | 1       | 4        | 8        | 6       | 1       | 0      | 0       | 0         | 0     | 20    |
| WNW           | 0     | 0     | 0       | 1       | 2        | 11       | 4       | 0       | 0      | 0       | 0         | 0     | 18    |
| NW            | 0     | 0     | 0       | 2       | 2        | 4        | . 3     | 1       | 1      | 0       | 0         | 0     | 13    |
| NNW           | 0     | 0     | 0       | 1       | 6        | 11       | 11      | 6       | 2      | 0       | 0         | 0     | 37    |
| Total         | 0     | 0     | 0       | 19      | 41       | 127      | 141     | 49      | 8      | 0       | 0         | 0     | 385   |

W21419HP

TABLE 4
(2 of 4)

JOINT FREQUENCY DISTRIBUTION OF METEOROLOGICAL DATA

| la.   |      |         |           | Wind S  | beed (M/S | ) at 10 | -m Level  |        |          |         |          |       |       |
|-------|------|---------|-----------|---------|-----------|---------|-----------|--------|----------|---------|----------|-------|-------|
| Wind  | .355 | 50 .517 | 5 .76-1.0 | 1,1-1,5 | 1.6-2.0   | 2.1-3.  | 0 3.1-5.0 | 5.1-7. | 0 7.1-10 | 10.1-13 | 3.1-18.0 | >18.0 | Total |
| N     | 0    | 0       | 0         | 1       | 8         | 10      | 8         | 6      | 1        | 0       | 0        | 0     | 34    |
| NNE   | 0    | 0       | 0         | - 1     | 6         | 15      | 15        | 2      | 1        | 0       | 0        | 0     | 40    |
| NE    | 0    | 0       | .0        | 2       | 9         | 16      | 26        | 1.1    | 0        | 0       | 0        | 0     | 54    |
| ENE   | 0    | 0       | 0         | 3       | 5         | 6       | 9         | 1      | 1.1      | - 0     | 0        | 0     | 25    |
| E     | 0    | 0       | 0         | . 5     | 1         | 1       | 5         | 3      | 0        | 0       | 0        | - 0   | 12    |
| ESE   | 0    | 0       | 0         | 0       | - 1       | 3       | 3         | 3      | 2        | 0       | 0        | 0     | 12    |
| SE    | 0    | .0      | 0         | - 0     | 2         | 6       | 11        | 14     | 2        | 0       | 0        | 0     | 35    |
| SSE   | 0    | 0       | 0         | 0       | 3         | 11      | 15        | 4      | 0        | 0       | 0        | 0     | 33    |
| S     | 0    | 0       | 0         | 0       | 2         | 5       | 23        | . 5    | 1        | 0       | 0        | 0     | 36    |
| SSW   | 0    | Q.      | - 1       | 1       | . 1       | 7       | 9         | 4      | 0        | 0       | 0        | 0     | 23    |
| SW    | 0    | 0       | 1         | 0       | 2         | 3       | 9         | 2      | 0        | 0       | 0        | 0     | 17    |
| WSW   | 0    | 0       | 0         | 2       | 6         | 5       | 10        | 1      | 0        | 0       | 0        | 0     | 24    |
| W     | 0    | .0      | 0         | 1.      | - 6       | 4       | 8         | 3      | 0        | 0       | 0        | 0     | 22    |
| WNW   | 0    | 0       | 0         | 2       | 2         | 6       | 5         | . 0    | 0        | 0       | 0        | 0     | 15    |
| HW    | . 0  | 0       | 0         | 1       | 2         | 4       | . 5       | 1      | 0        | 0       | 0        | 0     | 13    |
| NNW   | 0    | 0       | . 0       | 0       | - 5       | 4       | 15        | 17     | - 5      | 0       | 0        | 0     | 46    |
| Total | 0    | 0       | 2         | 16      | 61        | 106     | 176       | 67     | 13       | 0       | 0        | 0     | 441   |

| 117.00          |       |       |         | Wind Sp | seed (M/ | S) at 10- | m Level |         |        |         |           |       |       |
|-----------------|-------|-------|---------|---------|----------|-----------|---------|---------|--------|---------|-----------|-------|-------|
| Wind<br>rection | .3550 | .5175 | .76-1.0 | 1.1-1.5 | 1.6-2.0  | 2.1-3.0   | 3.1-5.0 | 5-1-7.0 | 7.1-10 | 10.1-13 | 13.1-18.0 | >18.0 | Total |
| N               | 0     | 0     | 3       | 6       | 22       | 51        | 145     | 62      | 10     | 1       | 1         | 0     | 301   |
| NNE             | 0     | 0     | - 1     | 11      | 19       | 41        | 80      | 29      | 5      | 3       | 0         | 0     | 189   |
| ME              | 1     | 0     | 3       | 13      | 22       | 52        | 92      | 12      | 3      | 0       | 0         | 0     | 198   |
| ENE             | 0     | . 1   | 3       | 2       | 10       | 28        | 58      | 20      | 4      | 0       | 0         | 0     | 124   |
| E               | 0     | 0     | 3       | 2       | 4        | 9         | 37      | 17      | 2      | 0       | 0         | 0     | 74    |
| ESE             | 0     | 0     | 1.5     | 1.1     | 4        | 12        | 75      | 43      | 2      | 0       | 0         | 0     | 138   |
| SE              | 0     | 0     | 5       | 3       | 2        | 29        | 71      | 31      | 8      | 0       | 0         | 0     | 146   |
| SSE             | 0     | 0     | 1       | 11      | 12       | 41        | 93      | 31      | 1      | 0       | 0         | 0     | 190   |
| S               | 0     | . 0   | 1       | 10      | 19       | 49        | 66      | 28      | 15     | 0       | 0         | 0     | 188   |
| SSW             | . 1   | 1     | 6       | 6       | 16       | 34        | 30      | 14      | 0      | 0       | 0         | 0     | 108   |
| SW              | . 1   | 2     | 5       | 9       | 19       | 33        | 33      | 5       | 0      | 0       | 0         | 0     | 104   |
| WSW             | 0     | 0     | 7       | 7       | 10       | 17        | 19      | 1       | 0      | 0       | 0         | 0     | 61    |
| W               | 0     | 0     | 6       | 19      | 18       | 18        | 13      | 7       | 0      | 0       | 0         | 0     | 81    |
| MMM             | 0     | 0     | 1       | 5       | 12       | 15        | 9       | 1       | 0      | 0       | 0         | 0     | 43    |
| NW              | 0     | 1     | 3       | 6       | 6        | 24        | 27      | 12      | 1      | 0       | 0         | 0     | 80    |
| HNW             | 0     | 0     | 0       | 8       | 13       | 45        | 111     | 45      | 5      | 0       | 0         | 0     | 227   |
| Total           | 3     | 5     | 41      | 119     | 208      | 498       | 959     | 358     | 56     | 4       | 4         | 0     | 2252  |

TABLE 4
(3 of 4)

JOINT FREQUENCY DISTRIBUTION OF METEOROLOGICAL DATA

|         |       |         |         |         |          |         |         |         |        |           |          |       | quill Class |
|---------|-------|---------|---------|---------|----------|---------|---------|---------|--------|-----------|----------|-------|-------------|
| Wind    |       |         |         |         | eed (M/S |         |         |         |        |           |          |       |             |
| rection | .3550 | .51-,75 | .76-1.0 | 1.1-1.5 | 1.6-2.0  | 2.1-3.0 | 3.1-5.0 | 5.1-7.0 | 7.1-10 | 10.1-13 1 | 3.1-18.0 | >18.0 | Total       |
|         |       |         |         |         | ******   |         |         |         |        |           |          |       |             |
| N       | . 0   | 0       | 6       | 17      | 35       | 8.7     | 107     | 15      | . 1    | 5         | 0        | 0     | 270         |
| NNE     | 1     | 1       | 4       | 21      | 26       | 52      | 77      | 8       | 1      | 0         | 0        | 0     | 191         |
| NE      | 0     | 2       | 3       | 24      | 33       | 91      | 99      | 8       | 7      | .0        | 0        | 0     | 267         |
| ENE     | 1     | 1       | 2       | 10      | 22       | 55      | 66      | 13      | 1      | 1         | 0        | 0     | 172         |
| E       | 0     | 3       | 3       | 9       | 8        | 40      | 54      | 9       | 0      | 1         | 0        | 0     | 127         |
| ESE     | 1     | - 1     | 5       | 8       | 9        | 39      | 70      | 10      | 1      | 0         | 0        | 0     | 144         |
| SE      | 1     | 0       | 2       | 7       | 27       | 63      | 6.4     | 13      | 0      | 0         | 0        | 0     | 157         |
| SSE     | 4     | 5       | 4       | 28      | 59       | 93      | 54      | 6       | U      | 0         | 0        | 0     | 253         |
| S       | . 1   | 6       | 14      | 35      | 46       | 44      | 3.2     | 3       | 5      | 0         | 0        | 0     | 186         |
| SSM     | 1     | 6       | 14      | 38      | 23       | 33      | 24      | 4       | 0      | 0         | 0        | 0     | 143         |
| SW      | 2     | 7       | 16      | 37      | 31       | 23      | 20      | 2       | 0      | 0         | 0        | 0     | 138         |
| WSW     | 0     | 8       | 17      | 41      | 25       | 3.5     | 16      | 0       | 0      | 0         | 0        | 0     | 143         |
| W       | 2     | 4       | 14      | 47      | 21       | 17      | 8       | 2       | D      | 0         | 0        | 0     | 115         |
| WNW     | 2     | 5       | 6       | 35      | 21       | 15      | 3       | 0       | 0      | 0         | 0        | 0     | 87          |
| NW      | 0     | 4       | 5       | 18      | 17       | 21      | 14      | 1       | 0      | 0         | 0        | 0     |             |
| NNW     | .0    | 2       | 8       | 8       | 17       | 39      | late    | 3       | 5      | 1         | 0        | 0     | 80<br>127   |
| Total   | 16    | 55      | 102     | 707     | /20      | 77.6    |         |         | ****** |           |          |       |             |
| intar   | 10    | 32      | 123     | 383     | 420      | 748     | 732     | 97      | 21     | 5 .       | 0        | 0     | 2600        |

| Wind  |       |     |          | Wind Sp   | eed (M/S) | ) at 10-s | Level   |         |          |          |          |       |       |
|-------|-------|-----|----------|-----------|-----------|-----------|---------|---------|----------|----------|----------|-------|-------|
|       | .3550 | 517 | 5 .76-1. | 0 1.1-1.5 | 1.6-2.0   | 2.1-3.0   | 3.1-5.0 | 5.1-7.0 | 7.1-10 1 | 0.1-13 1 | 3.1-18.0 | >18.0 | Total |
| N     | 1     | 9   | 10       | 14        | 8         | 10        | 0       | 1       | Ö        | 0        | D        | 0     | 53    |
| NNE   | . 1   | 6   | 4        | 16        | 9         | 12        | 3       | 0       | 0        | 0        | 0        | 0     | 51    |
| WE    | 1     | 2   | 6        | 10        | 18        | 23        | 6       | 0       | 0        | 0        | 0        | 0     | 66    |
| ENE   | 1     | 1.1 | 3        | 9         | 10        | 10        | 5       | 0       | 0        | 0        | 0        | 0     | 39    |
| E     | 2     | . 1 | 1        | 4         | 1.        | 4         | 4       | 0       | 0        | 0        | 0        | 0     | 17    |
| ESE   | 1     | 2   | 3        | 3         | 2         | 0         | 1       | 0       | 0        | 0        | 0        | 0     | 12    |
| SE    | 2     | 4   | 6        | 14        | 6         | 14        | 3       | 1       | 0        | 0        | 0        | 0     | 50    |
| SSE   | - 3   | 7   | . 17     | 45        | 51        | 26        | 3       | 0       | 0        | 0        | 0        | 0     | 152   |
| S     | 4     | 50  | 41       | 94        | 30        | 5         | 0       | 2       | 0        | 0        | 0        | 0     | 196   |
| SSW   | - 1   | 29  | 54       | 72        | 15        | 7         | 1       | 0       | 0        | 0        | 0        | 0     | 179   |
| SW    | 6     | 24  | 50       | 40        | 9         | 2         | 0       | 0       | 0        | 0        | 0        | 0     | 131   |
| MSM   | 11    | 21  | 34       | 49        | 17        | 4         | 0       | 0       | 0        | 0        | 0        | 0     | 136   |
| W     | 2     | 9   | 31       | 34        | 11        | 2         | 0       | 0       | 3        | 0        | 0        | 0     | 89    |
| MMM   | 4     | 6   | 16       | 16        | 7         | 1.1       | 0       | 0       | 0        | 0        | 0        | 0     | 50    |
| NW    | 5     | 1   | 8        | 12        | 17        | 7         | 0       | 0       | 0        | 0        | 0        | 0     | 50    |
| NNW   | 2     | 6   | 10       | 15        | 10        | 9         | 1 .     | 1       | 0        | 0        | 0        | 0     | 54    |
| Total | 47    | 148 | 294      | 447       | 221       | 136       | 27      | 5       | 0        | 0        | 0        | 0     | 1325  |

W21419HP

TABLE 4

(4 of 4)

JOINT FREQUENCY DISTRIBUTION OF METEOROLOGICAL DATA

| Wind    |       |       |         |         | eed (M/S) |         |         |         |          |          |          |       |          |
|---------|-------|-------|---------|---------|-----------|---------|---------|---------|----------|----------|----------|-------|----------|
| rection | .3550 | .5175 | .76-1.0 | 1.1-1.5 | 1.6-2.0   | 2.1-3.0 | 3.1-5.0 | 5.1-7.0 | 7,1-10 1 | 0.1-13 1 | 3.1-18.0 | >18.0 | Total    |
| N       | 6     | 0     | 6       | 5       | 3         | 4       | 4       | 0       | 0        | 0        | 0        | ^     | ******** |
| NNE     | 0     | 3     | 5       | 10      | 5         | 0       | n       | 0       | 0        | Ď.       | 0        | 0     | 31       |
| NE      | 0     | 2     | 3       | 8       | 6         | 3       | 0       | 0       | 0        | 0        | 0        | 7)    | 20       |
| ENE     | 2     | 1     | 0       | 2       | 0         | 2       | 0       | 0       | 0        | 0        | 0        | 0     | 22       |
| E       | 0     | 4     | - 1     | 2       | 0         | 7       | 5       | 0       | 0        | 0        | 0        | 0     | 16       |
| ESE     | 0     | 2     | 2       | 1       | 2         | 1.00    | 5       | 0       | 0        | 0        | 0        | 0     | 13       |
| SE      |       | 3     | 0       | 3       | 5         | 2       |         | 0       | 0        | 0        | 0        | 0     | 16       |
| SSE     | . 2   | 2     | 4       | 12      | 0         | 2       | 0       | 0       | 0        | 0        | 0        | 0     |          |
| 8       | 3     | 8     | 19      | 35      | 7         | 0       | 0       | 0       | 0        | n        | 0        | 0     | 31       |
| SSW     | - 2   | 12    | 32      | 29      | 7         | 0       | 0       | 0       | 0        | 0        | 0        | 0     | 72<br>82 |
| SW      | 6     | 22    | 43      | 17      | 1         | 0       | 0       | 0       | 0        | 0        | 0        | 0     | 89       |
| WSW     | 1     | 23    | 28      | - 8     | 1         | 0       | n       | 0       | D        | 0        | 0        | 0     | 70.0     |
| W       | 9     | 25    | 16      | 7       | 0         | 0       | 0       | 0       | 0        | 0        | 0        | 0     | 61<br>57 |
| WNW     | 3     | 12    | 12      | 6       | 0         | 0       | 0       | 0       | 0        | 0        | 0        | 0     | 33       |
| NW      | 8     | 11    | 5       | 3       | 0         | 0       | 0       | 0       | 0        | 0        | 0        | 0     | 27       |
| ним     | 3     | 12    | 7       | 11      | 3         | 0       | 0       | 0       | 0        | 0        | 0        | 0     | 36       |
| Total   | 46    | 148   | 183     | 159     | 46        | 18      | - 13    | 0       | 0        | 0        | 0        | 0     | 613      |

Total vaild hours for all stabilities = 8760
Total invaild hours for all stabilities = 0

# TABLE 5 (1 of 2)

# DOSE CALCULATION RESULTS FOR 1993 (DOSES DUE TO GASEOUS RADIOACTIVE EFFLUENTS)

\*\* UNIT 1 \*\* QUARTER 3 OF 1993 \*\*

| ** UNIT 1 ** QUARTER 1 OF 1993 TO DOSE FROM RADIOIODINES, PARTICULATES, AT CONTROLLING LOCATION: TOTAL DOSE (MREM) FOR BONE TOTAL DOSE (MREM) FOR LIVER TOTAL DOSE (MREM) FOR TOTAL BODY TOTAL DOSE (MREM) FOR GI-LLI | ** AND TRITIUM  : 2.6648E-09 : 2.8246E-02 : 2.8247E-02 : 2.8246E-02 : 2.8246E-02 : 2.8246E-02 | DOSE FROM RADIOIONES, PARTICULATES, AND TRITIUM AT CONTROLLING LOCATION:  TOTAL DOSE (MREM) FOR BONE : 0.0000E-0'  TOTAL DOSE (MREM) FOR LIVER : 1.4824E-0;  TOTAL DOSE (MREM) FOR TOTAL BODY : 1.4824E-0;  TOTAL DOSE (MREM) FOR THYROID : 1.4824E-0;  TOTAL DOSE (MREM) FOR KIDNEY : 1.4824E-0;  TOTAL DOSE (MREM) FOR LUNG : 1.4824E-0;  TOTAL DOSE (MREM) FOR GI-LLI : 1.4824E-0;  NOBLE GAS DOSE AT SITE BOUNDARY:  TOTAL BODY DOSE TOTAL (MREM) : 2.2655E-0;  NOBLE GAS AIRDOSE AT SITE BOUNDARY:  TOTAL GAMMA AIRDOSE (MRAD) : 1.2272E-0;  TOTAL BETA AIRDOSE (MRAD) : 2.1390E-0;                          | NNNNNN |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| HOBLE GAS DOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | TOTAL BOOK DOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| TOTAL BODY DOSE TOTAL (MREM)                                                                                                                                                                                                                                                                                                                                                               | : 6.7678E-02                                                                                  | CKIN DOSE TOTAL (MREM) : 1.1023E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| SKIN DOSE TOTAL (MREM)                                                                                                                                                                                                                                                                                                                                                                     | : 1.5793E-01                                                                                  | NOBLE CAS AIRDOSE AT SITE SCHOOLS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| NOBLE GAS AIRDOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | NOBLE GAS AIRDOSE AT SITE BOUNDARY;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| TOTAL GAMMA AIRDOSE (MRAD)                                                                                                                                                                                                                                                                                                                                                                 | : 7.9124E-02                                                                                  | TOTAL GAMMA AIRDOSE (MRAD) : 1.2272E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| TOTAL BETA AIRDOSE (MRAD)                                                                                                                                                                                                                                                                                                                                                                  | : 2.0774E-01                                                                                  | TOTAL BETA ATROOSE (MRAD) : 2.1390E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| ** UNIT 1 ** QUARTER 2 OF 1993 * DOSE FROM RADIOIODINES, PARTICULATES, AT CONTROLLING LOCATION:                                                                                                                                                                                                                                                                                            | AND TRITIUM                                                                                   | ** UNIT 1 ** QUARTER 4 OF 1993 **  DOSE FROM RADIOIODINES, PARTICULATES, AND TRITIUM  AT CONTROLLING LOCATION:  TOTAL DOSE (MREM) FOR BONE : 0.0000E-0  TOTAL DOSE (MREM) FOR LIVER : 3.4717E-0  TOTAL DOSE (MREM) FOR TOTAL BODY : 3.4717E-0  TOTAL DOSE (MREM) FOR THYROID : 3.4717E-0  TOTAL DOSE (MREM) FOR KIDNEY : 3.4717E-0  TOTAL DOSE (MREM) FOR LUNG : 3.4717E-0  TOTAL DOSE (MREM) FOR GI-LLI : 3.4717E-0  NOBLE GAS DOSE AT SITE BOUNDARY:  TOTAL BODY DOSE TOTAL (MREM) : 2.6676E-0  SKIN DOSE TOTAL (MREM) : 6.3317E-0  NOBLE GAS AIRDOSE AT SITE BOUNDARY:  TOTAL GAMMA AIRDOSE (MRAD) : 9.5271E-0 |        |
| TOTAL DOSE (MREM) FOR BONE                                                                                                                                                                                                                                                                                                                                                                 | : 1.6116E-06                                                                                  | TOTAL DOSE (MREM) FOR BONE : 0.0000E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |
| TOTAL DOSE (MREM) FOR LIVER                                                                                                                                                                                                                                                                                                                                                                | : 4.5887E-02                                                                                  | TOTAL DOSE (MREM) FOR LIVER : 3.4717E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3      |
| TOTAL DOSE (MREM) FOR TOTAL BODY                                                                                                                                                                                                                                                                                                                                                           | : 4.5886E-02                                                                                  | TOTAL DOSE (MREM) FOR TOTAL BODY : 3.4717E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3      |
| TOTAL DOSE (MREM) FOR THYROID                                                                                                                                                                                                                                                                                                                                                              | : 4.6504E-02                                                                                  | TOTAL DOSE (MREM) FOR THYROID : 3.4717E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3      |
| TOTAL DOSE (MREM) FOR KIDNEY                                                                                                                                                                                                                                                                                                                                                               | : 4.5888E-02                                                                                  | TOTAL DOSE (MREM) FOR KIDNEY : 3.4717E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3      |
| TOTAL DOSE (MREM) FOR LUNG                                                                                                                                                                                                                                                                                                                                                                 | : 4.5885E-0Z                                                                                  | TOTAL DOSE (NREM) FOR LUNG : 3.4717E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      |
| TOTAL DOSE (MREM) FOR GI-LLI                                                                                                                                                                                                                                                                                                                                                               | : 4.5885E-02                                                                                  | TOTAL DOSE (MREM) FOR GI-LLI : 3.4717E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3      |
| NOBLE GAS DOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | NOBLE GAS DOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| TOTAL BODY DOSE TOTAL (MREM)                                                                                                                                                                                                                                                                                                                                                               | : 7.7224E-02                                                                                  | TOTAL BODY DOSE TOTAL (MREM) 2 6676F-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      |
| SKIN DOSE TOTAL (MREM)                                                                                                                                                                                                                                                                                                                                                                     | : 1.7846E-01                                                                                  | SKIN DOSE TOTAL (MREM) : 6.3317F-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2      |
| NOBLE GAS AIRDOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | NOBLE GAS AIRDOSE AT SITE BOUNDARY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| TOTAL GAMMA AIRDOSE (MRAD)                                                                                                                                                                                                                                                                                                                                                                 | : 8.9147E-02                                                                                  | TOTAL GARMA AIRDOSE (MRAD) 3 2020F-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2      |
| TOTAL BETA AIRDOSE (MRAD)                                                                                                                                                                                                                                                                                                                                                                  | : 2.1812E-01                                                                                  | TOTAL BETA AIRDOSE (MRAD) 9.5271E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      |
|                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               | 7 71/6/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200    |

\*\* UNIT 1 \*\* TOTALS FOR 1993 \*\* DOSE FROM RADIOIODINES, PARTICULATES, AND TRITIUM AT CONTROLLING LOCATION: TOTAL DOSE (MREM) FOR BONE : 1.6143E-06 TOTAL DOSE (MREM) FOR LIVER : 9.2429E-02

TOTAL DOSE (MREM) FOR TOTAL BODY : 9.2428E-02

TOTAL DOSE (MREM) FOR THYROID : 9.3046E-02

TOTAL DOSE (MREM) FOR KIDNEY : 9.2429E-02

TOTAL DOSE (MREM) FOR LUNG : 9.2427E-02

TOTAL DOSE (MREM) FOR GI-LLI : 9.2427E-02 TOTAL DOSE (MREM) FOR LIVER TOTAL DOSE (MREM) FOR GI-LLI HOBLE GAS DOSE AT SITE BOUNDARY: TOTAL BODY DOSE TOTAL (MREM) : 2.8181E-01 SKIN DOSE TOTAL (MREM) : 6.26268-01 NOBLE GAS AIRDOSE AT SITE BOUNDARY: TOTAL GAMMA AIRDOSE (MRAD) : 3.2302E-01 TOTAL BETA AIRDOSE (MRAD) : 7.3503E-01

\*\* UNIT 1 \*\* QUARTER 1 OF 1993 \*\*

# TABLE 5 (2 of 2)

# DOSE CALCULATION RESULTS FOR 1993 (DOSES DUE TO LIQUID RADIOACTIVE EFFLUENTS)

| ** UNIT 1 ** QUAL                        | RTER | 1 OF 1993     | **  |              |
|------------------------------------------|------|---------------|-----|--------------|
| TOTAL DOSE (MREM)                        | FOR  | BONE          |     | : 1.0031E-02 |
| TOTAL DOSE (MREM)                        | FOR  | LIVER         |     | : 1.7300E-02 |
| TOTAL DOSE (MREM)                        | FOR  | TOTAL BODY    |     | 1.2665E-02   |
| TOTAL DOSE (MREM)                        | FOR  | THYROID       |     | 1.7643E-02   |
| TOTAL DOSE (MREM)                        | FOR  | KIDNEY        |     | : 5.8142E-03 |
| TOTAL DOSE (MREM)                        | FOR  | LUNG          |     | 1.9995E-03   |
| TOTAL DOSE (MREM)                        | FOR  | GI-LLI        |     | 1.0014E-03   |
|                                          |      |               |     |              |
| ** UNIT 1 ** QUAR                        | RTER | 2 OF 1993     | **  |              |
| TOTAL DOSE (MREM) F                      |      | 120 100 0 mm. |     | : 2.5477E-02 |
| TOTAL DOSE (MREM)                        |      |               |     | 4.8603E-02   |
| TOTAL DOSE (MREM) I                      | FOR  | TOTAL BODY    |     | 3.6873E-02   |
| TOTAL DOSE (MREM) F                      | FOR  | THYROID       |     | 3.3643E-02   |
| TOTAL DOSE (MREM)                        | FOR  | KIDNEY        |     | 1.9674E-02   |
| TOTAL DOSE (MREM) F                      |      |               |     | 9.9608E-03   |
| TOTAL DOSE (MREM) F                      | FOR  | GI-LLI        |     | 7.2308E-03   |
|                                          |      |               |     |              |
| ** UNIT 1 ** QUAR                        |      |               | **  |              |
| TOTAL DOSE (MREM) F                      |      |               |     | 8.0728E-02   |
| TOTAL DOSE (MREM) F                      |      |               |     | 1.3205E-01   |
| TOTAL DOSE (MREM) F                      |      |               |     | 9.4257E-02   |
| TOTAL DOSE (MREM) F                      | FOR  | THYROID       |     | 4.7652E-02   |
| TOTAL DOSE (MREM) F                      |      |               |     | 4.9969E-02   |
| TOTAL DOSE (MREM) F                      |      |               |     | 2.2094E-02   |
| TOTAL DOSE (MREM) F                      | OR   | GI-LLI        |     | 1.2763E-02   |
|                                          |      |               |     |              |
| ** UNIT 1 ** QUAR                        | TER  | 4 OF 1993     |     |              |
| TOTAL DOSE (MREM) F                      | OR   | BONE          |     | 1.4759E-02   |
| TOTAL DOSE (MREM) F                      | OR   | LIVER         |     | 3.1.43E-02   |
| TOTAL DOSE (MREM) F                      |      |               | - 1 | 2.4300E-02   |
| TOTAL DOSE (MREM) F                      | OR   | THYROID       |     | 6.7423E-03   |
| TOTAL DOSE (MREM) F                      |      |               |     | 1.4796E-02   |
| TOTAL DOSE (MREM) F                      |      |               |     | 9.3605E-03   |
| TOTAL DOSE (MREM) F                      | OR   | GI-LLI        | - 1 | 8.1838E-03   |
| ** 10/17 1 ** ***                        | 1.0  | FOR 4007 44   |     |              |
| ** UNIT 1 ** TOTA<br>TOTAL DOSE (MREM) F |      |               |     |              |
|                                          |      |               |     | 1.3099E-01   |
| TOTAL DOSE (MREM) F                      |      |               | . 1 |              |
| TOTAL DOSE (MREM) F                      | UK   | TUTAL BODY    |     | 1.6809E-01   |
| TOTAL DOSE (MREM) F                      | UK   | THTKOID       |     | 1.0568E-01   |
| TOTAL DOSE (MREM) F                      |      |               |     | 9.0253E-02   |
| TOTAL DOSE (MREM) F                      |      |               |     | 4.3415E-02   |
| TOTAL DOSE (MREM) F                      | UR   | GI-LLI        |     | 2.9179E-02   |
|                                          |      |               |     |              |

ATTACHMENT 10.1 (8 PAGES)

CHANGES TO RW-001-210,

PROCESS CONTROL PROGRAM (PCP)

January 1, 1993 To December 31, 1993

## PORC/PORC SG &

RW-001-210
REVISION 6
EFFECTIVE DATE

W-3 RECORDS

# UNCONTROLLED COPY

DO NOT USE IN ANY SAFETY - RELATED TESTING, MAINTENANCE, OR OPERATIONAL ACTIVITY.

# SAFETY-RELATED

ADMINISTRATIVE PROCEDURE
PROCESS CONTROL PROGRAM

| PORC AND PORC - S/C<br>REVIEW AND APPROVAL SHEE | T         |           |  |
|-------------------------------------------------|-----------|-----------|--|
| Process Control Program                         | PORC - S/ | Xb<br>C D |  |

The PORC or PORC S/C has reviewed this item and determined that a Safety/ Commitment Review was performed (if applicable), that a Safety Evaluation was performed (if applicable), that an unreviewed safety question does not exist, and that nuclear safety is/was not adversely affected.

| PORC<br>MEMBER                       | MEMBER SIGNATURE   | RECOMMENDED<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FOR APPROVAL NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintenance<br>Superintendent        | and the            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operations<br>Superintendent         | Palethate          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Radiation Protection Superintendent  | VANZ RAMES         | and a separation of the separate process and a separate process of the separat |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quality Assurance<br>Member          | Richard J. Pellich | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mgmt Knowledgeable<br>in Engineering | P) September       | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manager Operations &<br>Maintenance  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PORC-S/C Member                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PORC-S/C Member                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and make the same of the same and the same a |
| PORC-S/C Member                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Meeting No. 93-054 Item No. VI- 0 Date: 8/5/93 This item is recommended for approval? TX YES D NO This item requires SRC/NRC review prior to implementation? D YES NO If yes, ensure documentation supporting review is attached.

|                   | SIGNATURE | RECOMMENDED |    |       |
|-------------------|-----------|-------------|----|-------|
|                   |           | YES         | NO | DATE  |
| PORC-S/C Chairman | 1         |             |    |       |
| PORC Chairman     | an ARdal  | ~           |    | 8/5/5 |

Comments:

Approved by

General Manager Plant Operations

Attachment 6.1 (1 of 1)

REVIEW OF: RW-001-210 -

(Rev. 6)

| Check | Block:   |
|-------|----------|
|       | PORC     |
|       | PORC-S/C |

# WATERFORD 3 SES PLANT OPERATING MANUAL CHANGE/REVISION/DELETION REQUEST

| Procedure No.: 14-001-210                                                                                | Title: Administrative Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                          | Process Control Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Effective Date: (if of COMPLETE A, B and C; A. Change No.: V/A Perma B. Revision: (e) C. Deletion: Yes N | different from approval date) anent Deviation Expiration Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.1.6,21.7,21.8. Del                                                                                     | DELETION: Added References Leted Kendor Controlled Solidification part for expenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EASON FOR CHANGE, REVISION, OR DE                                                                        | LETION: All vendor solidification  I be approved as plant procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| riginator: MA Clark                                                                                      | Outrene Date: 6-30-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ochnical Review January                                                                                  | Dete: 7-8-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| roup Head Review ACLU                                                                                    | Date: 7/20/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EMPORARY APPROVAL (SRO):                                                                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EMPORARY APPROVAL:                                                                                       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| efer to paragraphs 3.2.18 and 5.3.2.10c for te                                                           | ABSTRACTOR BROWN TO THE STATE OF THE STATE O |

UNT-001-003 Revision 16

Attachment 6.4 (1 of 1)

### TABLE OF CONTENTS

- 1.0 PURPOSE
- 2.0 REFERENCES
- 3.0 DEFINITIONS
- 4.0 RESPONSIBILITIES
- 5.0 PROCEDURE
  - 5.1 Program Description
  - 5.2 Solidification Process Parameters
  - 5.3 Administrative Controls
  - 5.4 Waste Characterization and Classification
  - 5.5 Quality Assurance
- 6.0 ATTACHMENTS

LIST OF EFFECTIVE PAGES

Title

Revision 6

1-11

Revision 6

### 1.0 PURPOSE

1.1 The purpose of Waterford Steam Electric Station - Unit Number 3 (Waterford 3) Process Control Program (PCP) is to describe the program which provides reasonable assurance of the complete stabilization and/or solidification, as applicable of radioactive "wet waste" which may include resin slurries are in accordance with applicable Department of Transportation (DOT), Nuclear Regulatory Commission (NRC), State and licensed burial facilities acceptance criteria for packaging and shipment to an approved burial site. Compliance with these criteria will be achieved through implementation of the PCP and related Waterford 3 and vendor supplied procedures. Containers engineered and built to comply with the stability requirement may be used. Waterford 3 SES typically relies on Vendor supplied systems and/or services for stabilization and solidification services.

## 2.0 REFERENCES

- 2.1 Waterford 3 Documents
  - 2.1.1 FSAR Chapter 11.4, Solid Waste Management System
  - 2.1.2 FSAR Chapter 13.4, Review and Audit
  - 2.1.3 FSAR Chapter 13.2, Training
  - 2.1.4 FSAR Chapter 13.5, Plant Procedures
  - 2.1.5 Quality Assurance Program Manual (Special Scope) Chapter 5
  - 2.1.6 RW-002-401 Use of Radman Operating Program

- 2.1.7 RW-002-411 Use of Radman Data Base Manager and Recover
- 2.1.8 RW-002-110 Waste Sample Collection and Isotope Evaluation

#### 2.2 Other Documents

- 2.2.1 10CFR61, Licensing Requirements for Land Disposal of Radioactive Waste
- 2.2.2 10CFR20.311, Transfer for disposal and manifests
- 2.2.3 10CFR71.91, Records

### 3.0 DEFINITIONS

- 3.1 Stability means structural stability as per 10CFR61.2
- 3.2 Solidification means the immobilization of wet radioactive wastes such as spent resins, sludges, and reverse osmosis concentrates as a result of a process of mixing the waste type with a solidification agent(s) to meet the requirements of the licensed disposal site and 10CFR61.

## 4.0 RESPONSIBILITIES

- 4.1 Radiation Protection Superintendent
  - 4.1.1 The Radiation Protection Superintendent is responsible for the overall effective management of the plant Process Control Program. The Radiation Protection Superintendent ensures that changes are initiated to the Process Control Program procedures when necessary and that appropriate Health Physics support is provided.

### 4.2 Radwaste Foreman

- 4.2.1 The Radwaste Foreman who reports to the Radiation Protection Superintendent holds key responsibilities for implementation of the Process Control Program such as:
  - 4.2.1.1 The preparation, review and approval of the Process Control Program procedures pertaining to the processing and packaging, of radioactive materials;
  - 4.2.1.2 Data collection, trend analysis, long-term planning, and problem solving for the plant Process Control Program;
  - 4.2.1.3 Managing radwaste stabilization, dewatering and packaging;
  - 4.2.1.4 Preparing procedures for stabilization, dewatering and packaging;
  - 4.2.1.5 Interfacing with other groups as necessary to analyze and resolve problems relating to the Process Control program such as the design of Radwaste Systems and Equipment;
  - 4.2.1.6 Preparing periodic reports summarizing the Process Control Program;
  - 4.2.1.7 Procurement of materials and supplies required for implementation and maintenance of the Process Control Program;

- 4.2.1.8 That personnel receive appropriate training and are qualified for their respective duties;
- 4.2.1.9 Adequate staffing and sufficient resources for efficient and economic operation of the Process Control Program.
- 4.3 Operations Superintendent
  - 4.3.1 The Operations Superintendent is responsible for the effective operations of permanent plant radwaste systems and will coordinate radwaste activities with the radwaste department.
- 4.4 Chemistry Superintendent
  - 4.4.1 The Chemistry Superintendent is responsible for interfacing with the Radwaste Foreman on items or problems relating to radwaste processes and chemistry controls or chemical reactions and performing chemical and radiochemical analyses of samples of radioactive waste or materials.
- 4.5 Quality Assurance
  - 4.5.1 Quality Assurance is responsible for:
    - 4.5.1.1 Assessing the implementation and effectiveness of the quality assurance aspects of the Process Control Program through regular audits and selective monitoring of activities.

### 5.0 PROCEDURE

- 5.1 Program Description
  - 5.1.1 Solidification System Description: Waterford 3 utilizes vendor supplied portable solidification equipment for radioactive waste solidification. All vendor solidification process procedures will be approved as plant procedures by Plant Operating Review Sub-Committee. Reference 2.1.1 through 2.1.5 are Waterford 3 documents which either implement or describe activities which provide reasonable assurance that wastes are solidified or dewatered in accordance with all applicable regulations and criteria.
  - 5.1.2 Sources of Waterford 3 Stabilization/Solidification Feeds:
    The Cement solidification will be used to stabilize resins,
    if needed. During resin stabilization, vendor equipment
    will be connected to the Resin Waste Management System
    outlet to allow for the transfer of resin. Solidification
    using Aquaset/Petroset media will be used to process
    resins, oil, and water/acid. This process will not be
    connected to any plant waste systems and will be processed
    on a batch basis.

#### 5.2 Solidification Process Parameters:

- 5.2.1 Solidification formulas and solidification process parameters are incorporated into the applicable vendor process control program. No exceptions or deviations from vendor supplied procedures or topical reports are anticipated for stabilized waste. The formulas are used to calculate the ratio of waste, cement, water and other reagents required to achieve an acceptable solidified product. Compatibility requirements of the waste stream with respect to the solidification media are described in the vendor process controls program. Waste stream parameters are adjusted as necessary to meet these requirements.
- 5.2.2 Test solidifications are performed on waste stream samples to verify vendor calculated solidification formulas.

### NOTE

Vendor PCP along with applicable procedures will be approved as plant procedures prior to use.

5.2.3 Radioactive wastes shall be solidified or dewatered in accordance with the process control program to meet shipping and transportation requirements during transit, and disposal site requirements when received at the disposal site.

- 5.2.4 With solidification or dewatering not meeting disposal site and shipping and transportation requirements, suspend shipment of the inadequately processed wastes and correct the process control program, the procedures, and/or the solid waste system as necessary to prevent recurrence.
- 5.2.5 With solidification or dewatering not performed in accordance with the process control program, test the improperly processed waste in each container to ensure that it meets burial ground and shipping requirements and perform appropriate corrective action if required.
- 5.2.6 Solidification of at least one representative test specimen from at least every tenth batch of each type of wet radioactive wastes (e.g., filter sludges, spent resins), shall be verified in accordance with the vendor's process control program.
- 5.2.7 If the initial test specimen from a batch of waste fails to verify solidification, the process control program shall provide for the collection and testing of representative test specimens from each consecutive batch of the same type of wet waste until at least three consecutive initial test specimens demonstrate solidification. The process control program may be modified if practical to assure solidification of subsequent batches of waste.

5.2.8 If any test specimen fails to verify solidification, the solidification of the batch under test shall be suspended until such time as additional test specimens can be obtained, alternative solidification parameters can be determined in accordance with the vendors process control program, and a subsequent test verifies solidification. Solidification of the batch may then be resumed using the alternative solidification parameters determined by the process control program.

#### 5.3 Administrative Controls

5.3.1 Administrative controls utilized to insure compliance with applicable state and federal regulations and burial site criteria are detailed in the radioactive waste solidification surveillance procedure(s). These implementing document(s) for radioactive waste solidification and dewatering describes the requirements which must be met prior to processing radioactive waste, as well as the condition of the solidified or dewatered waste. Test solidifications, full scale calculations and operation of the solidification equipment are performed by vendor personnel. Dewatering operations will be performed by vendor personnel or by qualified Plant staff. Plant staff provides Health Physics and Quality Assurance coverage, operates plant radioactive waste systems. collects waste stream samples and performs isotopic analyses. Copies of all referenced documents are available on site for use by personnel engaged in solidification activities.

- 5.3.2 Changes to this Process Control Program shall be described in the semi-annual Radioactive Effluent Release Report for the period in which the change is made.
- 5.4 Waste Characterization and Classification
  - 5.4.1 Waste Classification
    - 5.4.1.1 Solidified wastes are classified in accordance with the requirements of 10CFR61.55, as implemented by reference 2.1.6 and plant waste classification and characterization procedure(s).
    - 5.4.1.2 Annual analysis will be performed on the waste streams to determine the isotopic abundance of gamma emitting isotopes in the streams as described in Reference 2.1.8.

      Scaling factors for the non-gamma emitting and transuranic constituents will be developed from this annual analysis using References 2.1.6 and 2.1.7. The activity of each radionuclide in the solidified waste will be determined by a core sample or a calculational method employing the percent abundance and scaling factors with a dose to curie conversion factor as described in Reference 2.1.6.

#### 5.4.2 Waste Characteristics

- 5.4.2.1 Solidified wastes will meet the characteristics of 10CFR61.56(a).

  Stabilized wastes will meet the characteristics of 10CFR61.56(b). Waste containers will be labeled to identify the waste class.
- 5.4.2.2 The manifesting requirements of 10CFR20.311 are implemented and records are maintained in accordance with 10CFR71.91.

### 5.5 Quality Assurance

5.5.1 Quality Assurance Program Manual (Special Scope)
Chapter 5.

#### 6.0 ATTACHMENTS

NONE

ATTACHMENT 10.2

() PAGES)

CHANGES TO UNT-005-014,

OFFSITE DOSE CALCULATION MANUAL (ODCM)

January 1, 1993 To December 31, 1993

## PORC/PORC-SC

| UNT-      | 005-0 | 14 |
|-----------|-------|----|
| REV       | ISION | 3  |
| EFFECTIVE | DATE  |    |

W-3 RECORDS

# UNCONTROLLED COPY

DO NOT USE IN ANY SAFETY — RELATED TESTING, MAINTENANCE, OR OPERATIONAL ACTIVITY.

# SAFETY-RELATED

ADMINISTRATIVE PROCEDURE

OFFSITE DOSE CALCULATION MANUAL

|                                                                                          |                                      | D PORC - S/C<br>APPROVAL SH    | EET                               |                           |
|------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|-----------------------------------|---------------------------|
| REVIEW OF: <u>UNT- 00</u><br>Calculation Manual                                          |                                      | Dose .                         | PORC - S/C                        |                           |
| The PORC or PORC S/<br>Commitment Review w<br>was performed (if a<br>not exist, and that | as performed (in pplicable), that    | f applicable)<br>t an unreview | , that a Safet<br>yed safety ques | y Evaluation<br>tion does |
| PORC                                                                                     |                                      |                                | RECOMMENDED F                     | OR APPROVAL               |
| MEMBER                                                                                   | MEMBER :                             | SIGNATURE                      | YES                               | NO                        |
| Maintenance<br>Superintendent                                                            | 01+                                  | 184                            |                                   |                           |
| Operations<br>Superintendent                                                             | DIM                                  | /w                             |                                   |                           |
| Radiation Protection<br>Superintendent                                                   | n JAMP                               | RAMZY                          |                                   |                           |
| Quality Assurance<br>Member                                                              | Richard                              | Pelled                         |                                   |                           |
| Mgmt Knowledgeable<br>in Engineering                                                     | Valla                                | Lhoms                          | 7                                 |                           |
| Manager Operations<br>Maintenance                                                        | &                                    | 1-9                            |                                   |                           |
| PORC-S/C Member                                                                          |                                      |                                |                                   |                           |
| PORC-S/C Member                                                                          |                                      |                                |                                   |                           |
| PORC-S/C Member                                                                          |                                      |                                |                                   |                           |
| Meeting No. 93-10<br>This item is recomm<br>This item requires<br>If yes, ensure docu    | ended for approv<br>SRC/NRC review ; | val? 🗷 YES<br>prior to impl    | □ NO<br>ementation? □             |                           |
|                                                                                          | SIGNATURE                            | RECOMMENDED                    | FOR APPROVAL                      |                           |
|                                                                                          |                                      | YES                            | NO                                | DATE                      |
| PORC-S/C Chairman                                                                        | 1                                    |                                |                                   | -                         |
| PORC Chairman                                                                            | A) Horaday                           | 1                              | 1                                 | 12/21/20                  |
| Comments:                                                                                | (-/)                                 | 1                              |                                   |                           |
|                                                                                          | 1 1                                  |                                | D-A-                              | 2/22/10-                  |
| Approved by                                                                              | MACH                                 |                                | _ Date/                           | -1 = 3/72                 |
|                                                                                          | al Manager Plant                     |                                |                                   |                           |
| UNT-001-004 Revisi                                                                       | on 14                                | 23                             | Attachmen                         | t 6.1 (1 of               |

| Check | Block:   |
|-------|----------|
|       | PORC     |
|       | PORC-S/C |

# WATERFORD 3 SES PLANT OPERATING MANUAL CHANGE/REVISION/DELETION REQUEST

| Procedure No .: UNT-005-014 Title: OFFSITE DOSE CALCULATION MANUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Effective Date: 1194 (if different from approval date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A. Change No.: N/A Permanent Deviation Expiration Date: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B. Revision: 3  C. Deletion: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DESCRIPTION OF CHANGE PEVISION OF DELETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REMP sample locations, changed person responsible for REMP to reduct correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Significant at appeared 5 facility of "Motor Curacian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| waste system clarified when table 5.6-3 pertonny to MES reposes added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| the things of th |
| Selection to Sellin content of select Reports addled contract all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Release Apthis corrected some more typographical error, respectful what the part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MENTIONED AND MENTIONED AND MENTION OF THE MENTION  |
| Sample (action in the BEMP (GONS Milk), deleted mith goals from depension deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inder table on AH. 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| THE RESIDENCE OF THE PROPERTY  |
| REASON FOR CHANGE, REVISION, OR DELETION: This specedul putision magaintes some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| recommendations (esulfing form inspection and and adictor 1/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| simple cocasins and 75 consistant with the all a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| the west with intermediately of or nother extressionally bed a free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURES ARE Still greened by the toxo" WFR30 At this time, until A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Technical specification change is appoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Originator: Sury of Hood Date: Q-15-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Technical Review: Date: 12-16-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Group Head Review: Date: 12/16/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *TEMPORARY APPROVAL (SRO):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *TEMPORARY APPROVAL: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *Refer to paragraphs 3.2.18 and 5.3.2.10c for temporary approval requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

UNT-001-003 Revision 16

#### TABLE OF CONTENTS

| 3   | 0 | 1   | 81.1 | rs. | D | PS | ph. | r |
|-----|---|-----|------|-----|---|----|-----|---|
| 1 . | U | - 7 | U    | K   | r | u  | 3   | ŀ |

#### 2.0 REFERENCES

#### 3.0 DEFINITIONS

#### 4.0 RESPONSIBILITIES

#### 5.0 PROCEDURE

- 5.1 Site Characteristics
- 5.2 Specifications and Surveillance Requirements
- 5.3 Liquid Effluents
- 5.4 Gaseous Effluents
- 5.5 Total Dose
- 5.6 Instrumentation
- 5.7 Liquid and Gaseous Radwaste Processes
- 5.8 Radiological Environmental Monitoring Program Requirements
- 5.9 Technical Specification Cross-References
- 5.10 Routine Effluent Release Reports
- 5.11 Special Effluent Reports
- 5.12 Secondary Release Paths

#### 6.0 ATTACHMENTS

- 6.1 Site Boundary for Radioactive Gaseous and Liquid Effluents
- 6.2 Historical Average Dispersion and Deposition Parameters for Areas at or Beyond the Unrestricted Area Boundary
- 6.3 Site Related Liquid Ingestion Dose Commitment Factors  $(A_i)$  for Individual Nuclides
- 6.4 Dose Factors for Exposure to a Semi-Infinite Cloud of Noble Gases
- 6.5 Inhalation Pathway Doses Due to Radionuclides Other Than Noble Gases,  $R_{\hat{i}}$

- 6.6 Ground Plane Deposition Pathway Dose Factors Due to Radionuclides Other Than Noble Gases, Ri
- 6.7 Cow's Milk Pathway Dose Factors Due to Radionuclides Other Than Noble Gases, Ri
- 6.8 Meat Pathway Dose Factors Due to Radionuclides Other Than Noble Gases,  $R_{\rm i}$
- 6.9 Leaf Vegetable Pathway Dose Factors Due to Radionuclides Other
  Than Noble Gases, Ri
- 6.10 Goat's Milk Pathway Dose Factors Due to Radionuclides Other Than Noble Gases, R<sub>i</sub>
- 6.11 Liquid Waste Management System Effluent Sources and Release Pathways and Points
- 6.12 Gaseous Effluent Sources, Gaseous Waste Management Systems Effluent Sources and Exhaust Release Points
- 6.13 Radiological Environmental Monitoring Program
- 6.14 Sample Location Table
- 6.15 Sector and Zone Designators for Radiological Sampling and Monitoring Points
- 6.16 REMP Sampling Locations Within 2 Miles of Waterford 3
- 6.17 REMP Sampling Locations Within 10 Miles of Waterford 3
- 6.18 REMP Sampling Locations Within 50 Miles of Waterford 3
- 6.19 Specifications Cross-Reference Table
- 6.20 Technical Specification Cross-Reference Table
- 6.21 Specific Factors Used to Determine  $A_{\dot{1}}$  and  $R_{\dot{1}}$  Values for the Offsite Dose Calculation Manual

#### LIST OF EFFECTIVE PAGES

Title

Revision 3

1-250

Revision 3

### 1.0 PURPOSE

- The offsite Dose Calculation Manual (ODCM) is a supporting 1.1 document of the Waterford 3 Technical Specifications. This document provides (1) The Radiological Effluent Specifications and Radiological Environmental Monitoring Program required by Technical Specification 6.8.3: (2) the general characteristics of the Waterford 3 site; (3) the detailed Radiological Environmental Monitoring Program (REMP); (4) the description of the Radiological Environmental Monitoring Interlaboratory Comparison Program; (5) the liquid and gaseous radwaste block flow diagram: (6) the Radioactive Liquid and Gaseous Waste Sampling and Analysis Programs; (7) the general methodology to be used to calculate dose to individuals due to releases of radioactive gaseous and liquid effluents from the Waterford 3 site; (8) the general methodology to be used to calculate effluent monitor setpoints and allowable release rates to ensure compliance with the Radiological Effluent Controls, 10CFR20, and 10CFR50 criteria; (9) the methodology to be used to ensure representative sampling of liquids; and (10) the methodology to be used to comply with 40CFR190 criteria.
- 1.2 The Offsite Dose Calculation Manual (ODCM) follows the general models suggested by NUREG 0133 and Regulatory Guide 1.109. However, alternate calculation methods from those presented may be used provided the overall methodology is acceptable and consistent with regulation or provided the alternate methodology is conservative. In addition, the most up-to-date dose conversion factors and bioaccumulation factors may be substituted in lieu of Regulatory Guide 1.109 values.
- 1.3 Actual step-by-step dose calculations will be performed by inplant procedures which are consistent with the methodology presented in this document.

### 2.0 REFERENCES

- 2.1 Waterford 3 SES Technical Specifications, Chapter 16 of Waterford 3 FSAR.
  - 2.1.1 Technical Specification 6.14.1
  - 2.1.2 Technical Specification 6.14.2
- 2.2 USNRC Regulatory Guide 1.111, Methods for Estimating
  Atmospheric Transport and Dispersion of Gaseous Effluents in
  Routine Releases from Gaseous-Effluents from Light-Water-Cooled
  Reactors, July 1977.
- 2.3 USNRC Regulatory Guide 1.113, Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I, April 1977.
- 2.4 USNRC Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I, Revision 1, October, 1977.
- 2.5 USNRC NUREG 0133, Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants, October 1978.
- 2.6 Code of Federal Regulations: Title 10, Parts 20, 40, 50 and 100; Title 40, Part 190.

- 2.7 USNRC Generic Letter 89-01, implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program.
- 2.8 UNT-006-010, Event Notification and Reporting
- 2.9 International Atomic Energy Agency (IAEA) Safety Series No.57, Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Exposures of Critical Groups.
- 2.10 USNRC Regulatory Guide 1.21, Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June, 1974.
- 2.11 UNT-006-011, Condition Report

## 3.0 DEFINITIONS

3.1 ACTION shall be that part of a Specification which prescribes remedial measures required under designated conditions.

- 3.2 CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds within the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions, and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping, and total channel steps such that the entire channel is calibrated.
- 3.3 A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

## 3.4 A CHANNEL FUNCTIONAL TEST shall be:

- a. Analog channels the injection of a simulated signal into channel as close to the sensor as practicable to verify OPERABILITY including alarm and/or trip functions.
- b. Bistable channels the injection of a simulated signal into the sensor to verify OPERABILITY including alarm and/or trip functions.
- c. Digital computer channels the exercising of the digital computer hardware using diagnostic programs and the injection of simulated process data into the channel to verify OPERABILITY including alarm and/or trip function.

3 5 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the following intervals.

| NOTATION | FREQUENCY                        |  |  |  |  |
|----------|----------------------------------|--|--|--|--|
| S        | At least once per 12 hours.      |  |  |  |  |
| D        | At least once per 24 hours.      |  |  |  |  |
| W        | At least once per 7 days.        |  |  |  |  |
| М        | At least once per 31 days.       |  |  |  |  |
| P        | Completed prior to each release. |  |  |  |  |
| Q        | At least once per 92 days        |  |  |  |  |
| SA       | At least once per 184 days.      |  |  |  |  |
| R        | At least once per 18 months.     |  |  |  |  |
| S/U      | Prior to each reactor startup.   |  |  |  |  |
| N.A.     | Not applicable.                  |  |  |  |  |

- 3.6 MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the licensee, its contractors, or vendors. Also excluded from this category are persons who enter the site to service equipment or make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.
- 3.7 A system, subsystem, train, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, electrical power, required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related support function(s).

## 3.0 DEFINITIONS (cont'd)

3.8 An OPERATIONAL MODE (i.e. MODE) shall correspond to any one inclusive combination of core reactivity condition, power level and average reactor coolant temperature as specified.

| ĺ  | DPERATIONAL MODE | REACTIVITY CONDITION, Keff | % OF RATED THERMAL POWER* | AVERAGE COOLANT<br>TEMPERATURE |
|----|------------------|----------------------------|---------------------------|--------------------------------|
| 1. | POWER OPERATION  | ≥ 0.99                     | > 5%                      | ≥ 350°F                        |
| 2. | STARTUP          | ≥ 0.99                     | ≤ 5%                      | ≥ 350°F                        |
| 3, | HOT STANDBY      | < 0.99                     | 0                         | ≥ 350°F                        |
| 4. | HOT SHUTDOWN     | < 0.99                     | 0                         | 350°F> Tavg>200°F              |
| 5. | COLD SHUTDOWN    | < 0.99                     | 0                         | ≤ 200°F                        |
| 6. | REFUELING**      | ≤ 0.95                     | 0                         | ≤ 140°F                        |
|    |                  |                            |                           |                                |

<sup>\*</sup>Excluding decay heat.

- 3.9 PURGE or PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.
- 3.10 The SITE BOUNDARY shall be that line beyond which the land is neither owned, nor leased, nor otherwise controlled by the licensee.
- 3.11 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a source of increased radioactivity.

<sup>\*\*</sup>Fuel in the reactor vessel with the vessel head closure bolts less than fully tensioned or with the head removed.

# 3.0 DEFINITIONS (cont'd)

- 3.12 An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY, access to which is not controlled by the licensee for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and/or recreation purposes. This definition is applicable to areas established for effluent release limits. See Attachment 6.1.
- 3.13 A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous raciolodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents.

  Engineered Safety Feature (ESF) (atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.
- 3.14 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

# 3.0 DEFINITIONS (cont'd)

- 3.15 A WASTE GAS HOLDUP SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.
- 3.16 A MAJOR CHANGE to a radioactive waste system shall be any alteration or modification to the system that causes waste characteristics (e.g. chem form, pH, etc.), waste form or waste activity in liquid gaseous or solid effluents to significantly deviate.

## 4.0 RESPONSIBILITIES

- 4.1 General Manager, Plant Operations has lead responsibility for ensuring implementation of the Radiological Effluent Specifications and Radiological Environmetal Monitoring Program as required by Technical Specification 6.8.3 and as set forth in this procedure.
- 4.2 The Radiation Protection Superintendent is responsible for ensuring Radiological Effluent Specifications and the Radiological Effluent Monitoring Program are performed as required according to procedures and methodologies established by this document. He is also responsible for ensuring the Annual Effluent Release Report is performed and issued as required.
- 4.3 Manager, Security and General Support is responsible for ensuring the Radiological Environmental Monitoring Program is performed as required according to procedures and methodologies established by this document. He is also responsible for issuance and submittal of the Annual Environmental Report as required by this document. He is also responsible for the negotiation and maintenance of vendor contracts to supply Sample Analyses and Reports as required by the Radiological Environmental Monitoring Program. He is also responsible for ensuring the Land Use Census is performed as required.

## 5.0 PROCEDURE

#### 5.1 SITE CHARACTERISTICS

Waterford 3 SES is located on the west (right descending) bank of the Mississippi River at River Mile 129.6 between Baton Rouge, Louisiana, and New Orleans, Louisiana. The site is in the northwestern section of St. Charles Parish, Louisiana, near the towns of Killona and Taft.

The geographic coordinates for the Waterford 3 reactor are Latitude 29° 59' 42" North, and Longitude 90° 28' 16" West. Based on the UTM (Universal Transverse Mercator) Zone 15, the UTM coordinates are Northing 3,320,743 meters and Easting 743,962 meters.

The Mississippi River is the closest prominent natural feature to Waterford 3, while other important nature features include Lac des Allemands, about 5.5 miles southwest of the site, and Lake Pontchartrain, about 7 miles northeast of the site. The land slopes gently from its high points near the Mississippi (10-15 ft. above mean sea level) to extensive wetlands located 1.5 to 2.5 miles inland from the river.

Most of the man-made features are located on the narrow strip of dry land between the Mississippi River and the matlands. Near the Waterford 3 site are several large industrial facilities, including Waterford 1 and 2 (0.4 miles northwest of the site), Little Gypsy Steam Electric Station (0.8 miles northeast of the site, across the river from Waterford 3), Agrico, a fertilizer manufacturer (0.6 miles east-southeast), Occidental Chemical Company (0.8 miles east-southeast), and Union Carbide, a chemical manufacturer (1.2 miles east-southeast). Louisiana Power & Light Company (LP&L) owns and Entergy Operations, Inc. operates the above-mentioned steam electric stations.

# 5.1 SITE CHARACTERISTICS (cont'd)

Attachment 6.1 provides a map of the UNRESTRICTED AREA and SITE BOUNDARY for radioactive effluents. LP&L will have full control of all activities conducted within the exclusion area boundary of the Waterford 3 site. All of the property within the designated exclusion area is owned by LP&L with the exception of the bottom lands below mean low water of the Mississippi River.

LP&L owns, in title, all surface rights within the exclusion area boundary of the plant. There is presently no intention to allow exploration for subsurface minerals from points on the surface of the exclusion area.

The Mississippi River, Louisiana Highway 18, the Missouri Pacific Railroad right-of-way, and the west (right descending) bank levee of the Mississippi River constitute traversals of the site exclusion area as allowed by 10CFR100.3 (a). Refer to the Waterford 3 Emergency Plan Implementing Document for the arrangements which have been made to give LP&L authority and control over these traversals. (Note that Louisiana Highway 3127 does traverse the SITE BOUNDARY but not the exclusion area. However, LP&L does have the authority to control this traversal in accordance with the Waterford 3 Emergency Plan Implementing Document.)

In addition to Waterford 3, there are two fossil-fueled units, Waterford SES Units 1 and 2, which are owned by LP&L and which are within the site exclusion area. The plant staff for these two units consists of about 60 people. Since this includes workers assigned to shifts, it is a conservative estimate of the maximum number of fossil plant personnel that would be within the exclusion area at any given time. Evacuation procedures for Waterford SES Units 1 and 2 are described in the Waterford 3 Emergency Plant Implementing Document.

# 5.1 SITE CHARACTERISTICS (cont'd)

A portion of the land within the SITE BOUNDARY is utilized for agricultural activities. Farmers presently work the land but can be expected to actually be in the field less than 10 percent of the time.

Fishing in the Mississippi River from the batture is a rare practice in the Waterford area. An estimated maximum of 2 people may be expected to be engaged in this activity for a period less than 10 percent of the time within the exclusion area.

Texaco maintains a gas valve station east-southeast of the Waterford 3 SES island structure just within the radius of the exclusion area. This valve station is automated and requires only periodic monthly maintenance involving, typically, two persons. Evacuation procedures for these maintenance workers are described in the Waterford 3 Emergency Plan Implementing Document.

The Waterford property is shown in Figure 5.1-3 of the Waterford 3 Site Technical Specifications (STS) and includes 3,561.3 acres. The plant area is about 48 acres and is defined as including the fenced area immediately adjacent to Waterford 3. The site area is shown in Figure 5.1-3 of the STS along with principal station structures and nearby features. The site includes only station structures and does not include any residential, recreational, or other industrial structures. There is a visitor center and adjacent recreational area approximately 1.0 mile SSW of the plant.

The SITE BOUNDARIES for establishing effluent release limits along with radioactive effluent release points are given in Attachment 6.1. The nearest distances to the boundary line are shown in Attachment 6.2 of this procedure. The release point elevations for gaseous effluents are provided in Attachment 6.1.

## 5.1 SITE CHARACTERISTICS (cont'd)

The restricted area, defined for the purpose of controlling access for the purpose of protecting individuals against undue risks from radiation and radioactive materials, coincides with the current or future Security Protected Area fence.

For the purpose of establishing effluent release limits in accordance with 10CFR20 and Appendix I to 10CFR50, the concept of the restricted area, as defined above, is not applicable. The effluent release limits are established in order to ensure that: (1) the concentrations of the radionuclides in gaseous effluents discharged from the plant stack and exhaust systems do not result in exceeding the limits at the site boundary, with limits set forth in Table II, Column 1 of Appendix B to 10CFR20; (2) the concentration of radionuclides in liquid effluent at the unrestricted area boundary does not exceed the limits set forth in Table II, Column 2 of Appendix B to 10CFR20; and (3) the cumulative liquid and gaseous radionuclide releases do not result in exposures to individuals within the UNRESTRICTED AREA or at the SITE BOUNDARY in excess of the limits set forth in Appendix I to 10CFR50.

1980 population by annular sectors within 5 miles or Waterford 3 can be found in the Environmental Report. Population was estimated for 1977 and projected for 1980. The methodology for estimating and projecting population is described in detail in section 6.1.4.2 of the Environmental Report. The closest town to Waterford 3 is Killona, 0.9 miles west-northwest. Other towns near the plant include Norco 2.5 miles east; Hahnville, 3.7 miles east-southeast; and LaPlace, 4.7 miles north. There are also smaller settlements and homes along both banks of the river, the nearest such place to Waterford 3 being Montz, 1.0 mile northeast.

# 5.2 SPECIFICATIONS AND SURVEILLANCE REQUIREMENTS

- 5.2.1 Compliance with the SPECIFICATIONS contained in the succeeding sections is required during the OPERATIONAL MODES or other conditions specified therein; except that failure to meet the SPECIFICATIONS requires that the associated ACTION requirements shall be met.
- 5.2.2 Noncompliance with this procedure shall exist when the requirements of the SPECIFICATION and/or associated ACTION requirements are not met within the specified time intervals. If the SPECIFICATION is restored prior to expiration of the specified time intervals, completion of the ACTION requirements is not required.
- 5.2.3 Surveillance Requirements shall be applicable during all OPERATIONAL MODES or other conditions specified for individual systems unless otherwise stated in an individual Surveillance Requirement.
- 5.2.4 Each Surveillance Requirement shall be performed within the specified time interval with:
  - 5.1.4.1 A maximum allowable extension not to exceed 25% of the surveillance interval.

# 5.2 SPECIFICATIONS AND SURVEILLANCE REQUIREMENTS Cont'd

- 5.2.5 Failure to perform a Surveillance Requirement within the specified time interval shall constitute a failure to meet the OPERABILITY requirements for a Specific System for Operation. Exceptions to these requirements are stated in the individual specifications.

  Surveillance Requirements do not have to be performed on inoperable equipment.
- 5.2.6 Failure to comply with the compensatory ACTION requirements or failure to complete the surveillance requirements within the specified time shall be documented and evaluated in accordance with UNT-006-011 and UNT-006-010 procedures.

### 5.3 LIQUID EFFLUENTS

### 5.3.1 Concentration Specification

The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (see Attachment 6.1) shall be limited to the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2 x 10<sup>-4</sup> microcurie/ml total activity.

APPLICABILITY: At all times

#### ACTION:

With the concentration of radioactive material relased in liquid effluents to UNRESTRICTED AREAS exceeding above limits, immediately restore the concentration to within the above limits, and describe the events leading to this condition in the next Annual Radioactive Effluent Release Report.

#### SURVEILLANCE REQUIREMENTS

a. Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 5.3-1.

b. The results of the radioactivity analyses shall be used in accordance with the methodology and parameters in section 5.3.5 to assure that the concentrations at the point of release are maintained within the limits of Specification 5.3.1.

TABLE 5.3-1

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

| L101 | UID<br>TYP                                | RELEASE                                   | SAMPLING<br>FREQUENCY | MINIMUM<br>ANALYSIS<br>FREQUENCY | TYPE OF ACTIVITY ANALYSIS                            | LOWER LIMIT<br>OF DETECTION<br>(LLD)a<br>(µCi/mL) |
|------|-------------------------------------------|-------------------------------------------|-----------------------|----------------------------------|------------------------------------------------------|---------------------------------------------------|
| Α.   | Batch Waste<br>Release<br>Tanks b,f,g,h,i |                                           | P<br>Each Batch       | P<br>Each Batch                  | Principal Gamma<br>Emitters <sup>C</sup>             | 5×10 <sup>-7</sup>                                |
|      | 1.                                        | Boric Acid                                |                       |                                  | I-131                                                | 1x10 <sup>-6</sup>                                |
|      |                                           | Condensate Waste Condensate               | P<br>One Batch/       | М                                | Dissolved and<br>Entrained Gases<br>(Gamma Emitters) | 1×10 <sup>-5</sup>                                |
|      |                                           |                                           | p<br>Fach Ratch       | M<br>Composited                  | H-3                                                  | 1×10 <sup>-5</sup>                                |
|      | 3.                                        | Laundry<br>Waste                          | Eden Daven            | Composite                        | Gross Alpha                                          | 1×10 <sup>-7</sup>                                |
|      | 4.                                        | Turbine                                   | P<br>Each Batch       | Q<br>Composited                  | Sr-89, Sr-90                                         | 5×10 <sup>-8</sup>                                |
|      |                                           | Building<br>Industrial<br>Waste<br>Sumps* |                       |                                  | Fe-55                                                | 1×10 <sup>-6</sup>                                |
|      | 5.                                        | Ory Cooling<br>Tower Sumps<br>#1 and #2*  |                       |                                  |                                                      |                                                   |
|      | 6.                                        | Regenerative<br>Waste                     |                       |                                  |                                                      |                                                   |
|      |                                           | Filter Flush<br>Waste                     |                       |                                  |                                                      |                                                   |

<sup>\*</sup>When release from this source is batch in nature.

TABLE 5.3-1 (Continued)

| LIQI | UID RELEASE<br>TYPE                              |               | LING   | MINIMUM<br>ANALYSIS<br>FREQUENCY | TYPE OF ACTIVITY ANALYSIS                            | LOWER LIMIT OF DETECTION (LLD)a (µCi/mL) |
|------|--------------------------------------------------|---------------|--------|----------------------------------|------------------------------------------------------|------------------------------------------|
| В.   | Continuous<br>Release <sup>e</sup> , f           | W<br>Grab     | Sample | W                                | Principal Gamma<br>Emitters <sup>C</sup>             | 5×10 <sup>-7</sup>                       |
|      | 1. Turbine<br>Building<br>Industria<br>Waste Sun |               |        |                                  | I-131                                                | 1×10-6                                   |
|      | 2. Dry Cooli<br>Tower<br>Sump #1**               | M<br>ing Grab | Sample | М                                | Dissolved and<br>Entrained Gases<br>(Gamma Emitters) | 1×10 <sup>-5</sup>                       |
|      | 3. Dry Cooli<br>Tower                            |               | Sample | M<br>Composite <sup>d</sup>      | H-3                                                  | 1×10 <sup>-5</sup>                       |
|      | Sump #2**                                        | -1            |        |                                  | Gross Alpha                                          | 1×10 <sup>-7</sup>                       |
|      | 4. Circulati<br>Water                            | w<br>ng Grab  | Sample | Q<br>Composite <sup>d</sup>      | Sr-89, Sr-90                                         | 5×10 <sup>-8</sup>                       |
|      | Discharge<br>Steam Gen<br>rator Blo<br>down HXi  | e-            |        |                                  | Fe-55                                                | 1×10-6                                   |
|      | 5. Auxiliary<br>Cooling<br>Water<br>Pumpsi       | Componen      | t      |                                  |                                                      |                                          |

<sup>\*\*</sup>When release from this source is continuous in nature.

# TABLE 5.3-1 (Continued)

| LIQ | UID RELEASE<br>TYPE                     | MINIMUM<br>SAMPLING ANALYSIS<br>FREQUENCY FREQUENCY   | TYPE OF ACTIVITY ANALYSIS                            | LOWER LIMIT<br>OF DETECTION<br>(LLD)a<br>(µCi/mL) |
|-----|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|
| В.  | Continuous<br>Release <sup>e</sup> , f  | W W Continuous <sup>k</sup> Composite <sup>d</sup>    | Principal Gama<br>Emitters <sup>C</sup>              | 5×10 <sup>-7</sup>                                |
|     | 6. Steam Generator Blowdown Dischargej, |                                                       | I-131                                                | 1×10 <sup>-6</sup>                                |
|     |                                         | M M<br>Grab Sample                                    | Dissolved and<br>Entrained Gases<br>(Gamma Emitters) | 1×10 <sup>-5</sup>                                |
|     |                                         | W M<br>Continuous <sup>k</sup> Composite <sup>d</sup> | H-3                                                  | 1x10 <sup>-5</sup>                                |
|     |                                         |                                                       | Gross Alpha                                          | 1×10 <sup>-7</sup>                                |
|     |                                         | W Q<br>Continuous <sup>k</sup> Composite <sup>d</sup> | Sr-89, Sr-90                                         | 5×10 <sup>-8</sup>                                |
|     |                                         |                                                       | Fe-55                                                | 1×10 <sup>-6</sup>                                |

# TABLE 5.3-1 (Continued) TABLE NOTATION

aThe LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22 \times 10^{6} \cdot \text{Y} \cdot e^{-\lambda \Delta t}}$$

Where:

LLD is the "a priori" lower limit of detection as defined above, as microcuries per unit mass or volume,

Sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, as counts per minute,

E is the counting efficiency, as counts per disintegration,

V is the sample size in units of mass or volume,

 $2.22 \times 10^6$  is the number of disintegrations per minute per microcurie,

Y is the fraction radiochemical yield, when applicable,

 $\boldsymbol{\lambda}$  is the radioactive decay constant for the particular radionuclide, and

 $\Delta t$  for plant effluents is the elapsed time between the midpoint of sample collection and the time of counting.

Typical values of E, V, Y, and  $\Delta t$  should be used in the calculation.

# TABLE 5.3-1 (Continued) TABLE NOTATIONS

It should be recognized that the LLD is defined as an a <u>priori</u> (before the fact) limit representing the capability of a measurement system and not as an a <u>posteriori</u> (after the fact) limit for a particular measurement.

- <sup>b</sup>A batch release is the discharge of liquid wastes of a discrete volume.

  Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed by a method described in Section 5.3.6 to assure representative sampling.
- CThe principal gamma emitters for which the LLD specification applies include the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report pursuant to Specification 6.9.1.8.
- dA composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.
- <sup>e</sup>A continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release.
- fprior to analyses, all samples taken for the composite shall be thoroughly mixed in order for the composite sample to be representative of the effluent release

# TABLE 5.3-1 (Continued) TABLE NOTATIONS

9If the contents of the filter flush tank or the regenerative waste tank contain directable radioactivity, no discharges from these tanks shall be made to the UNRESTRICTED AREA and the contents of these tanks shall be directed to the liquid radwaste treatment system.

hTurbine Building Industrial Waste Sump (TBIWS)

The TBIWS shall be required to be sampled and analyzed in accordance with this table if any of the following conditions exist:

- (1) Primary to secondary leakage is occurring; or,
- (2) Activity is present in the secondary system as indicated by either the SGB monitors or secondary sampling and analysis; or,
- (3) Activity was present in the TBIWS during the previous 4 weeks.

If none of the above situations exists, then the sampling and analysis of this stream need not be performed.

Sampling and analysis of the dry cooling tower sumps and the auxiliary component cooling water pump discharge will be required only when detectable activity exists in the CCW.

Sampling and analysis of the circulating water discharge-steam generator blowdown heat exchanger discharge (CWD-SGB) will be required only when detectable activity exists in the secondary system.

JSampling and analysis of the steam generator blowdown will be required only when the blowdown is directed to the circulating water system or Waterford 3 waste pond.

# TABLE 5.3-1 (Continued) TABLE NOTATIONS

Steam generator blowdown to the Waterford 3 waste pond will be limited to situations requiring secondary chemistry control where the Circulating Water System is not available or the secondary chemistry is outside the requirements for Circulating Water System discharge. Blowdown to the waste pond will be terminated upon detection of sample activity greater than the LLD levels of Table 5.3-1.

kTo be representative of the quantities and concentration of radioactive materials in liquid effluents, samples shall be collected continuously in proportion to the rate of flow of the effluent stream.

Steam generator blowdown discharge to the waste pond is not available unless radiation monitoring and automatic isolation capabilities are added to the waste pond discharge path.

## 5.3.2 Dose Specification

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released to UNRESTRICTED AREAS (see Attachment 6.1) shall be limited:

- a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
- b. During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

APPLICABILITY: At all times.

### ACTION:

a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identified the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits. This Special Report shall also include (1) the results of radiological analyses of the drinking water source and (2) the radiological impact on finished drinking water supplies with regard to the requirements of 40 CFR Part 141.

## SURVEILLANCE REQUIREMENTS:

a. Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with methodology and parameters in Section 5.3.7 at least once per 31 days.

# 5.3.3 Liquid Radwaste Treatment System Specification

The liquid radwaste treatment system shall be OPERABLE and appropriate portions of the system shall be used to reduce releases of radioactivity when the projected doses due to the liquid effluent to UNRESTRICTED AREAS (see Attachment 6.1) would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in a 31 day period.

APPLICABILITY: At all times.

### ACTION:

- with radioactive liquid waste being discharged without treatment and in excess of the above limits and any portion of the liquid radwaste treatment system not in operation, prepare and submit to the Commission within 30 days pursuant to Technical Specification 6.9.2 a Special Recort that includes the following information.
  - Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability,
  - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
  - Summary description of action (s) taken to prevent a recurrence.

# SURVEILLANCE REQUIREMENTS

- a. Doses due to liquid releases to UNRESTRICTED AREAS shall be projected at least once per 31 days in accordance with the methodology and parameters in Section 5.3.7.
- b. The installed Liquid Radwaste Treatment System shall be demonstrated OPERABLE by meeting Specifications 5.3.1 and 5.3.2.

# 5.3.4 Liquid Effluent Dose Calculation

5.3.4.1 The dose commitment to an individual from radioactive materials in liquid effluents released to unrestricted areas are calculated for the purpose of implementing Section 5.3.2 using the following expression:

$$D_{t\ell} = Dt_{\ell} F_{\ell} \sum_{i=1}^{n} A_{it} C_{i\ell}$$
 (1)

$$D_{t} = \sum_{\ell=1}^{m} D_{t,\ell} \tag{2}$$

- Dtℓ = the cumulative dose commitment to the total body or any organ (t) from the liquid effluents for each liquid release in mrem during time period (ℓ);
- $D_t$  = the cumulative dose commitment to the total body or any organ (t) from the liquid effluents for all ( $\ell$ ) time periods;
- $\Delta t_{\ell}$  = the length of the  $\ell^{th}$  time period over which the release is made, in hours;
- Cil = the concentration of radionuclide (i) in undiluted liquid effluent during time period  $\Delta t_{\ell}$  from any liquid release, in  $\mu \text{Ci/ml}$ ;

- Ait = the site-related liquid ingestion dose commitment factor to the total body or any organ (t) for each identified nuclide (i) in mrem-ml/hr-  $\mu$ Ci (Attachment 6.3), and;
- F<sub>ℓ</sub> = the near field average dilution factor for C<sub>iℓ</sub> during any liquid effluent release. Defined as the ratio of the undiluted liquid waste flow during release to the average flow from the site discharge structure to site boundary receiving waters.

# $F_t = \frac{\text{liquid radioactive waste flow}}{\text{discharge structure exit flow}}$

The liquid radioactive waste flow is the maximum flow from the effluent release. The discharge structure exit flow is the flow during disposal from the discharge structure release point into the receiving water body. For radionuclides not determined in each batch or weekly composite, the dose contribution to the current calendar quarter cumulative summation may be approximated by using a ratio of concentrations based on the previous monthly or quarterly composite analyses.

5.3.4.2 Equation (1) above for calculating the dose contributions required the use of a dose factor, A<sub>it</sub>, for each nuclide (i) which embodies the dose factors and dilution factors for the points of pathway origin.

The adult total body dose factor and the adult organ dose factor for each radionuclide will be used from Table E-11 of Regulatory Guide 1.109; thus the list contains critical organ dose factors for various organs. The dose factor is written:

$$A_{j\pm} = K_{o} \left( \frac{U_{w}}{D_{w}} + U_{f}BF_{i} \right) DCF_{j\pm}$$
 (3)

where:

 $U_W = 730 \text{ l/yr adult water consumption;}$ 

 $D_W$  = Dilution factor from near field area to potable water intake;

- = 220 for discharges from the circulating water discharge into the Mississippi River (based on the ratio of the average Mississippi River flow to the maximum discharge flow);
- = 1 for discharges into the 40 Arpent Canal (based on the assumption that dilution from the near field area to a potable water intake is negligible);

- Ait = Composite dose parameter for the total
  body or critical organ (t) of an adult for
  nuclide (i) for all appropriate pathways
   (mrem-ml/hr-μCi);
- Ko = Unit conversion factor;

= 1.14e + 5 = 
$$10^6 \frac{pCl}{\mu Cl} \cdot 10^3 \frac{ml}{kg} \div 8760 \frac{hl^2}{yr}$$

 $U_f = 21 \text{ kg/yr}$ , adult fish consumption;

- BF<sub>i</sub> = Bioaccumulation factor for nuclide (i) in fish (pCi/kg per pCi/l) from Attachment 6.21 and;
- DCF<sub>it</sub> = Dose conversion factor for nuclide (i) and organ (t) for adults (mrem/pCi). Values are from Table E-11 of Regulatory Guide 1.109.

#### NOTE

For other liquid pathways the appropriate dose factors will be utilized.

# 5.3.5 Liquid Effluent Monitor Setpoint Calculation Methodology

Specifications 5.3.1 and 5.6.1 require that the liquid effluent monitoring instrumentation alarm/trip setpoints be set so that the concentration of radioactive material released from the site is limited to 10CFR20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. (For dissolved or entrained noble gases, the concentration shall be limited to  $2E-4~\mu\text{Ci/ml}$  total activity). This section presents the method to be used for determining setpoints in accordance with Surveillance Requirements 5.3.1 and 5.6.1.

5.3.5.1 The calculated setpoints for the liquid effluent monitors satisfy the following equation:

$$c = \frac{(SF)(RF)(F+f)\sum_{j=1}^{n}C_{j}}{TMPC(f)}$$
(4)

where;

 $\sum_{i=1}^{n} C_{i} = \text{ the undiluted effluent gamma}$  concentration  $\mu\text{Ci/ml}$  for all radionuclides i). The value will be derived from radioanalysis of liquid effluent to be released. This value will be supplied for each liquid release;

- the setpoint, in μCi/ml, of the liquid effluent monitor measuring the radioactivity concentration in the effluent line prior to dilution and subsequent release. This setpoint represents a value which, if exceeded would result in concentrations exceeding the limits of 10CFR20, Appendix B, Table II. Column 2, to an UNRESTRICTED AREA;
- f = the liquid effluents flow as measured at
   the liquid effluent monitor location in
   gpm;
- F = the dilution water flow as determined via pump curves or other appropriate measures that determine correct plant operating configuration in gpm;

#### NOTE

If F is large compared to f then F + f = F.

SF = Safety factor to ensure that the effluent
limit is not exceeded. Actual value is
set by procedure (in the range 0.5 - 0.9);

RF = Release fraction allocated to this release
 (to be used only in situations of
 simultaneous or concurrent release);

$$TMPC = \sum_{i=1}^{n} \frac{C_i}{MPC_i} + \sum_{j=1}^{m} \frac{C_j}{MPC_j}$$

- $\frac{C_j}{\text{MPC}_j}$  = the undiluted nongamma MPC, fraction for all nongamma emitting radionuclides (j);
- $\frac{C_1}{\text{MPC}_1}$  = undiluted gamma MPC, fraction for all gamma emitting radionuclides (1):

5.3.5.2 The values of  $C_i$  and  $C_j$  will be measured for each release as appropriate and the parameters for f and F will be supplied based on current plant operating configurations. The setpoint will be calculated in terms of  $\mu$ Ci/ml and the liquid effluent monitor will be adjusted as necessary to ensure that liquid releases are secured prior to exceeding limits specified in 10CFR20, Appendix B, Table II, Column 2 to an UNRESTRICTED AREA.

### 5.3.6 Representative Liquid Sampling

Prior to grab sampling liquid waste tanks, methods should be used to guarantee representative sampling. Large volumes of liquid waste should be mixed in as short a time as possible and uniformly distributed prior to sampling. To determine the minimum mixing time for tanks from which releases are made, the following tests were performed prior to initial use for release purposes.

- a. The tank was filled to a known volume.
- b. A specific quantity of a selected chemical and/or sediments was added to the tank.
- c. Recirculation was initiated through the normal path.
- d. Periodic samples were taken until equilibrium was reached.
- e. The time observed to completely mix the tank is used as a minimum recirculation time prior to effluent sampling. Records of the test will be maintained.

# 5.3.7 Dose Projection for Liquid Effluents

Specification 5.3.3 requires that appropriate subsystems of the liquid radwaste treatment system be used to reduce releases of radioactivity when the projected doses due to the liquid effluent from each reactor unit to UNRESTRICTED AREAS would exceed 0.06 mrem total body or 0.2 mrem to any organ in a 31-day period. The following calculational method is provided for performing this dose projection.

At least once every 31 days, the total dose from all liquid releases for the quarter-to-date will be divided by the number of days into the quarter and multiplied by 31. If this projected dose exceeds 0.06 mrem total body or 0.2 mrem any organ, and the Liquid Waste Management System has not been operating, it shall be operated, if operation would reduce the monthly projected doses below 0.06 mrem total body or 0.2 mrem any organ. (This is performed in accordance with the Surveillance Requirements of 5.3.3.)

# 5.3.8 Liquid Effluent Bases

## a. CONCENTRATION (Section 5.3.1)

This specification is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table II, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR Part 20.106(e) to the population. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

The sampling and analysis of the contents of the regenerative waste tank and the filter flush tank is performed if primary to secondary leakage occurs in a steam generator. The contents of these tanks cannot be discharged to the UNRESTRICTED AREA if any radioactivity is detected in these tanks since the discharge from these tanks is unmonitored. When radioactivity is detected in these tanks, the contents from these tanks must be discharged to the liquid radwaste system where the contents may then be monitored upon discharge.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, HASL-300 (revised annually), Currie, L.A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," Anal. Chem. 40, 586-93 (1968), and Hartwell, J.K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Handford Company Report ARH-SA-215 (June 1975).

#### b. DOSE (Section 5.3.2)

This specification is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR 141.16.

b. DOSE (Section 5.3.2) (cont'd) The dose calculation methodology and parameters implement the requirement in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

c. LIQUID RADWASTE TREATMENT SYSTEM (Section 5.3.3) The OPERABILITY of the liquid radwaste treatment system ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable." This specification implements the requirements of 10CFR Part 50.36a. General Design Criterion 60 of Appendix A 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents.

#### 5.4 GASEOUS EFFLUENTS

#### 5.4.1 Dose Rate Specification

The dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the SITE BOUNDARY (see Attachment 6.1) shall be limited to the following:

- a. For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
- b. For iodine-131, iodine-133, for tritium, and for all radionuclides in particulate form with halflives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

APPLICABILITY: At all times

#### ACTION:

With the dose rate(s) exceeding the above limits, immediately restore the release rate to within the above limit(s), and describe the events leading to this condition in the next Annual Radioactive Effluent Release Report.

#### SURVEILLANCE REQUIREMENTS:

- a. The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in Section 5.4.5.
- b. Representative samples and analysis of gaseous effluents shall be obtained in accordance with the sampling and analyses program specified in Table 5.4-1.
- c. Based upon the sampling and analysis performed in Table 5.4-1 the dose rate due to I-131, I-133, H-3, and all other radionuclides in particulate form with half-lives greater than 8 days shall be determined to be within the above limits in accordance with the methodology and parameters in Section 5.4.5.

Administrative Procedure
Offsite Dose Calculation Manual

UNT-005-014 Revision 3

TABLE 5.4-1

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

|     | GASEOUS RELEASE TYPE               | SAMPLING<br>FREQUENCY                       | MINIMUM<br>ANALYSIS<br>FREQUEMNCY | TYPE OF<br>ACTIVITY ANALYSIS                       | LOWER LIMIT OF<br>DETECTION (LLD) <sup>2</sup><br>(μCi/mL) |
|-----|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------------------|------------------------------------------------------------|
| Α.  | Waste Gas Holdup<br>Tanks          | P<br>Each Tank<br>Grab Sample               | P<br>Each Tank                    | Principal Gamma Emittersb                          | 1×10 <sup>-4</sup>                                         |
| В.  | Containment PURGE<br>(Plant Stack) | P<br>Each PURGE <sup>C</sup><br>Grab Sample | P<br>Each PURGE <sup>C</sup><br>M | Principal Gamma Emitters <sup>b</sup><br>H-3       | 1×10 <sup>-4</sup>                                         |
| C.1 | Plant Stack                        | Mc,d,i<br>Grab Sample                       | М                                 | Principal Noble Gas Gamma<br>Emitters <sup>b</sup> | 1×10 <sup>-6</sup><br>1×10 <sup>-4</sup>                   |
|     |                                    |                                             |                                   | H-3                                                | 1×10-6                                                     |
| C.2 | Fuel Handling<br>Building          | M <sup>e</sup> ,j<br>Grab Sample            | М                                 | Principal Noble Gas Gamma<br>Emitters <sup>b</sup> | 1×10 <sup>-4</sup>                                         |
|     | Ventilation<br>(Normal)<br>Exhaust |                                             |                                   | H-3                                                | 1x10 <sup>-6</sup>                                         |

UNT-005-014 Revision 3

TABLE 5.4-1
RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

| -   | GASEOUS RELEASE TYPE                           | SAMPLING<br>FREQUENCY       | MINIMUM<br>ANALYSIS<br>FREQUEMNCY       | TYPE OF<br>ACTIVITY ANALYSIS       | LOWER LIMIT OF<br>DETECTION (LLD) <sup>2</sup><br>(µCi/mL) |
|-----|------------------------------------------------|-----------------------------|-----------------------------------------|------------------------------------|------------------------------------------------------------|
| D.1 | All Release Types as<br>listed in B., C.1, and | Continuous <sup>f,h,j</sup> | W <sup>g</sup><br>Charcoal              | I-131                              | 1×10 <sup>-12</sup>                                        |
|     | C.2 above                                      |                             | Sample                                  | I-133                              | 1×10 <sup>-10</sup>                                        |
| 1.2 | Main Condenser                                 |                             | w <sup>g</sup>                          | Principal Noble Gas                |                                                            |
|     | Evacuation and Turbine<br>Gland Sealing System | Continuous <sup>f,h,j</sup> | Particulate<br>Sample                   | Gamma Emittersb                    | 1x10 <sup>-11</sup>                                        |
|     |                                                | Continuous <sup>f,h,j</sup> | M<br>Composite<br>Particulate<br>Sample | Gross Alpha                        | 1×10 <sup>-11</sup>                                        |
|     |                                                | Continuous <sup>f,h,j</sup> | Q<br>Composite<br>Particulate<br>Sample | Sr-89, Sr-90                       | 1×10 <sup>-11</sup>                                        |
|     |                                                | Continuous <sup>f,h,j</sup> | Noble Gas<br>Monitor                    | Noble Gases<br>Gross Beta or Gamma | 1×10 <sup>-6</sup>                                         |

# 5.4-1 (Continued) TABLE NOTATION

<sup>a</sup>The LLD is defined, for purpose of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{4.66 \text{ s}_{D}}{E \cdot V \cdot 2.22 \times 10^{6} \cdot \text{Y} \cdot \text{e}^{-\lambda \Delta t}}$$

Where:

LLD is the "a priori" lower limit of detection as defined above, as microcuries per unit mass or volume,

sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, as counts per minute,

E is the counting efficiency, as counts per disintegration,

V is the sample size in units of mass or volume,

 $2.22 \times 10^6$  is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield, when applicable,

 $\boldsymbol{\lambda}$  is the radioactive decay constant for the particular radionuclide, and

# 5.4-1 (Continued) TABLE NOTATION

 $\Delta t$  for plant effluents is the elapsed time between the midpoint of sample collection and the time of counting.

Typical values of E, V, Y, and  $\Delta t$  should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

bThe principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 in noble gas releases and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-59, I-131, I-133, Cs-134, Cs-137, Ce-141, and Ce-144 in iodine and particulate releases. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report pursuant to Technical Specification 6.9.1.8.

<sup>C</sup>Sampling shall also be performed within 24 hours following shutdown, startup, or a THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1-hour period. Analysis for principle gamma emitters as defined in (b) above shall be completed within 48 hours of sampling.

dTritium grab samples shall be taken at least once per 24 hours when the refueling canal is flooded.

eTritium grab samples shall be taken at least once per 7 days from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool.

# 5.4-1 (Continued) TABLE NOTATIONS

fThe ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Section 5.4.1, 5.4.2, and 5.4.3.

9Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing, or after removal from sampler. Sampling shall also be performed at least once per 24 hours for at least 7 days following each shutdown, startup or THERMAL POWER change exceeding 15% of RATED THERMAL POWER in 1 hour and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement does not apply if (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.

hif no primary to secondary leakage exists, then only the gross beta or gamma noble gases analysis need be performed for the main condenser evacuation and turbine gland sealing system. If a primary to secondary leak exists and the release from the main condenser evacuation and turbine gland sealing system has not been released via the plant stack, then the sampling and analysis must be performed.

Note (c) above is not applicable for the plant stack unless the noble gas monitor shows that effluent activity has increased by a factor of 3.

JFuel Handling Building sampling is required whenever irradiated fuel is in the storage pool.

#### 5.4.2 Dose-Noble Gas Specification

The air dose due to noble gases released in gaseous effluents to areas at and beyond the SITE BOUNDARY (see Attachment 6.1) shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
- b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

APPLICABILITY: At all times.

#### ACTION:

With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

# SURVEILLANCE REQUIREMENTS:

Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology and parameters in Section 5.4.6 at least once per 31 days.

# 5.4.3 <u>Dose - Iodine-131, Iodine-133, Tritium, and</u> Radionuclides in Particulate Form Specification

The dose to MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at and beyond the SITE BOUNDARY (see Attachment 6.1) shall be limited to the following:

- During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
- During any calendar year: Less than or equal to
   15 mrems to any organ.

APPLICABILITY: At all times

#### ACTION:

With the calculated dose from the release of iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

#### SURVEILLANCE REQUIREMENTS:

Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-liver greater than 8 days shall be determined in accordance with the methodology and parameters in Section 5.4.7 at least once per 31 days.

#### 5.4.4 Gaseous Radwaste Treatment Specification

The VENTILATION EXHAUST TREATMENT SYSTEM and the WASTE GAS HOLDUP SYSTEM shall be OPERABLE and appropriate portions of these systems shall be used to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases to areas at and beyond the SITE BOUNDARY (see Attachment 6.1) would exceed either:

- a. 0.2 mrad to air from gamma radiation, or
- b. 0.4 mrad to air from beta radiation, or
- c. 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

APPLICABILITY: At all times.

#### ACTION:

With radioactive gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that includes the following information:

- a. Identification of any inoperable equipment or subsystems, and the reason for the inoperability,
- Action(s) taken to restore the inoperable equipment to OPERABLE status, and

c. Summary description of action(s) taken to prevent a recurrence.

#### SURVEILLANCE REQUIREMENTS:

- a. Doses due to gaseous releases to areas at and beyond the SITE BOUNDARY shall be projected at least once per 31 days in accordance with the methodology and parameters in Section 5.4.9.
- b. The installed Gaseous Radwaste Treatment System shall be demonstrated operable by meeting Specifications 5.4.1, 5.4.2 and 5.4.3.

# 5.4.5 <u>Calculational Methodology for Gaseous Effluent Dose Rate</u>

This section presents the calculational methods used for calculating gaseous effluent doses in fulfillment of Specification 5.4.1.

5.4.5.1 The <u>dose rate</u> due the radioactive materials released in gaseous effluents from the site to areas at and beyond the SITE BOUNDARY shall be limited to the following values and expressions:

Release rate limit for noble gases:

$$K'(\frac{x}{\sqrt{n}})_{v} \sum_{i=1}^{n} K_{i} Q_{iv} \leq 500 \frac{mrem}{yr} total body$$
 (5)

$$K' \overline{\left(\frac{y}{\sqrt{q}}\right)_{V}} \sum_{i=1}^{n} (L_{i} + 1.1M_{i})Q_{iV} \leq 3000 \frac{mrem}{yr} skin$$
 (6)

Release rate limit for Iodine-131, Iodine-133, tritium and for all radionuclides in particulate form with half-lives greater than 8 days:

$$\overline{(\frac{y}{0})_{V}} \sum_{i=1}^{n} P_{it}Q_{iV} \leq 1500 \frac{mrem}{yr} \text{ any organ}$$
 (7)

Where:

- K' = a constant of unit conversion, 1E6 pCi/ μCi;
- K<sub>i</sub> = the total body dose factor due to
   gamma emissions for each identified
   radionuclide (i) in units of mrem/yr
   per pCi/m³ (Attachment 6.4);
- Li = the skin dose factor due to beta
   emissions for each identified
   radionuclide (i) in units of mrad/yr
   per pCi/m³ (Attachment 6.4);
- M; = the air dose factor due to gamma emissions for each identified radionuclide (i) in units of mrad/yr per pCi/m³ (Attachment 6.4). The constant 1.1 converts air dose to skin dose;

- The thyroid dose parameter for Iodine-131, Iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days (i) for the inhalation pathway only, in mrem/yr per  $\mu$ Ci/m³ (Same as R<sub>i</sub> values for the child receptor listed in Attachment 6.5). The dose factor is based on the most restrictive age group (child) and most restrictive organ (thyroid) at the SITE BOUNDARY;
- Pit = (child breathing rate of 3700 m<sup>3</sup>/yr)(DFA<sub>i</sub>) (K') where DFA<sub>i</sub> is the inhalation dose factor for each radionuclide from Table E-9, Reference 2.4;
- $\sum_{i=1}^{n}$  = summation for all identified radionuclides;

 $Q_{iv}$  = the average release rate of radionuclides (i) (either noble gas or Iodine-131, Iodine-133, tritium, and radionuclides in the particulate form with half-lives greater than 8 days, as appropriate) during the time of release from all vent releases (v). Value is averaged over one hour and is in units of  $\mu$ Ci/sec; and

(X/Q)<sub>V</sub> = 1.1E-5 sec/m³ in the ESE sector at 0.6
 mile for all vent releases (v) (the
 highest calculated annual average
 dispersion factor at the SITE BOUNDARY
 based on historical data). The actual
 X/Q for the time of release may be
 determined and used under certain
 circumstances.

NOTE

All radioiodines are assumed to be released in elemental form.

5.4.6 Calculational Methodology for Noble Gas Doses

This section presents the calculational methods used for calculating noble gas effluent dose in air in accordance with Surveillance Requirement 5.4.2.

- 5.4.6.1 The air dose due to noble gases released in gaseous effluents to areas at or beyond the SITE BOUNDARY will be determined by the following expressions:
  - a. During any calendar quarter, for gamma radiation:

$$D_{y} = (1.14e + 2)\overline{(\frac{y}{0})}_{v} \sum_{i=1}^{n} M_{i} \sum_{j=1}^{m} \Delta t_{j} Q_{ijv}$$
 (8)

and for beta radiation:

$$D_{\beta} = (1.14e + 2)\overline{(\frac{y}{0})}_{v} \sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \Delta t_{j} Q_{ijv}$$
 (9)

b. During any calendar year, for gamma radiation:

$$D_{y} = (1.14e + 2)\overline{(\frac{y}{Q})}_{v} \sum_{j=1}^{n} M_{j} \sum_{j=1}^{m} \Delta t_{j} Q_{ijv}$$
 (10)

and for beta radiation:

$$D_{\beta} = (1.14e + 2)\overline{(\frac{x}{\sqrt{q}})}_{v} \sum_{i=1}^{n} N_{i} \sum_{j=1}^{m} \Delta t_{j} Q_{ijv}$$
 (11)

Where:

- $D_{\gamma}$  = the total gamma ( $\gamma$ ) air dose from gaseous effluents for the total time period and not to exceed 5 mrad quarterly and 10 mrad yearly;
- $D_{\beta}$  = the total beta (B) air dose from gaseous effluents for the total time period and not to exceed 10 mrad quarterly and 20 mrad yearly;
- $Q_{ijv}$  = the average release rate of radionuclides (i) in gaseous effluent from all vent releases (v) in  $\mu C_i/sec$  during the time period  $\Delta t_j$ ;
- (%), = 1.1E-5 sec/m³ in the ESE sector at 0.6 mile for all vent releases (v). The actual X/Q for the time of release may be determined and used under certain circumstances;

- $\Delta t_j$  = the length of the j<sup>th</sup> time period over which  $Q_{ijv}$  are accumulated for all gaseous releases in hours; and
- $M_{ij}$  and  $N_{ij}$  = the gamma and beta air dose factors (respectively) for a uniform semi-infinite cloud of radionuclide (i) in mrad/yr per pCi/m³ (Attachment 6.4).
  - 1.14E2 = a constant of units conversion
    - =  $(1 \text{ yr/8760 hr}) (10^6 \text{ pCi/}\mu\text{Ci})$

5.4.7 Calculational Methodology for Doses Due to
Radiolodines, Tritium, and Radioactive Materials in
Particulate Form

This section presents the calculational methods used for calculating doses due to iodine-131, iodine-133, tritium, and radionuclides in particulate form in accordance with Surveillance Requirement.

5.4.7.1 The dose to an individual from iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at and beyond the SITE BOUNDARY will be determined by the following expressions:

During any calendar quarter:

$$D_{ita} = 1.14e - 4 \Delta t \sum_{i=1}^{n} R_{ita} W_{\nu} Q_{i\nu}$$
 (12)

During any calendar year:

$$D_{ita} = 1.14e - 4 \Delta t \sum_{i=1}^{n} R_{ita} W_{v} Q_{iv}$$
 (13)

Where:

1.14E-4 = a constant of units conversion

= 1 yr/8760 hr;

Dita = the cumulative dose to an organ (t), age group (a), due to radionuclides (i) in gaseous effluents; not to exceed 7.5 mrem quarterly or 15 mrem yearly;

W<sub>V</sub> = the dispersion parameter for estimating
 the dose to an individual at the
 controlling location for long term vent
 releases (v);

 $W_v = \overline{(\frac{v}{0})_v}$  for the inhalation pathway from vent releases (v) in  $\sec/m^3$ , from historical data, at the location of the critical receptor (Attachment 6.2);

 $W_v = \overline{( \slashed w)}_v$  for the food and ground plane pathways from vent releases (v) in m², from historical data at the location of the critical receptor (Attachment 6.2), with the exception of tritium, which shall use  $W_v = \overline{(\slashed w)}_v$ ;

- Rita = the dose factor from each identified radionuclide (i), for each applicable organ (t), and age group (a), in mrem/yr per uCi/m³ for the inhalation pathway (Attachment 6.5) and in mrem/yr per uCi/m2-sec for the food and ground plane pathways (Attachments 6.6, 6.7, 6.8, 6.9, and 6.10). For sectors with real pathways within 5 miles of the plant, the values of R; are used based on these real pathways; for sectors with no real pathways within 5 miles from the plant. R<sub>i</sub> is used assuming that the cow-grassmilk pathway exists at the 5-mile distance. (Ri's were calculated using the methodology found in Reference 2.5, pages 31-36.);
- $Q_{iv}$  = the average release rate of radionuclides (i) in gaseous effluent from all vent releases (v) in  $\mu Ci/sec$ ; and
- $\Delta t$  = the time required for the release in hours for all releases per quarter or per year.

#### 5.4.8 Gaseous Effluent Monitor Setpoint Calculational Methodology

- 5.4.8.1 Specification 5.6.2 requires that the radioactive gaseous effluent monitoring instrumentation alarm/trip setpoints be set to ensure the limits of Specification 5.4.1 are not exceeded.
- 5.4.8.2 The calculated high alarm/flow termination setpoint is the maximum value for that particular release. For conservatism, an administrative safety factor (SF) of usually 10% will be utilized in the setpoint calculation. To allow for simultaneous releases from common or different release points a Release Fraction (RF) may be used to allocate percentages of the total allowable release.
- 5.4.8.3 Since the noble gas dose rates are more limiting than the radioiodine dose rate, gaseous setpoints will be based on noble gas dose rates (less than or equal to 500 mrem/yr total body, and less than or equal to 3000 mrem/yr skin). Specifically, gaseous setpoints will be based on the most limiting of the following equations:

a. Total body  $(Q_{tb})$ :

Where:

$$Q_{t,b} = \frac{(500 \frac{mrem}{yr})(RF)(SF)}{(\frac{1}{100})_{v}(1.0e + 6 \frac{pC1}{\mu C1}) \frac{\sum_{i=1}^{n} K_{i}Q_{iv}}{\sum_{i=1}^{n} Q_{iv}}$$
(14)

$$\sum_{i=1}^{n} = \text{summation of all nuclides considered};$$

- $Q_{tb}$  = maximum release rate allowed to give a limiting total body dose rate of 500 mrem/yr in  $\mu$ Ci/sec;
- K<sub>i</sub> = the total body dose factor due to gamma emissions for each identified radionuclide (i) in units of mrem/yr per pCi/m³ (Attachment 6.4);

- $Q_{iv}$  = average release rate of isotope (i) from the release point (v) in  $\mu$ Ci/sec;
- RF = release fraction allotted to release
   point in consideration;
- (%) = 1.1E-5 sec/m³ (in the ESE sector at 0.6 mile). The sector with highest value of annual average atmospheric dispersion factor at the site boundary for the release point (v) in question; and
- SF = administrative safety factor to account
   for uncontrollable variables (sampling,
   monitoring errors, etc.). Usually, the
   SF takes on a value of 0.9.

b. For Skin (Q skin):

$$Q_{skin} = \frac{(3000 \frac{mrem}{yr})(RF)(SF)}{(\frac{1}{y_0})_v (1.0e + 6 \frac{pCi}{\mu Ci}) \frac{\sum_{i=1}^{n} (L_i + 1.1M_i)Q_{iv}}{\sum_{i=1}^{n} Q_{iv}}$$
(15)

where all terms are as defined as above except:

- $Q_{skin}$  = maximum release rate allowed to give a limiting skin dose of 3000 mrem/yr in  $\mu Ci/sec;$ 
  - Li = skin dose factor due to beta emissions for each identified radionuclide (i) in units of mrem/yr per pCi/m³ (Attachment 6.4);

  - $M_i$  = air dose factor due to gamma emissions for identified noble gas isotope (i) in units of mrad/yr per pCi/m<sup>3</sup> (Attachment 6.4).

5.4.8.4 The monitor setpoint is calculated is the following manner:

$$SN = \frac{Q}{F_{\text{max}}} \tag{16}$$

Where:

SN = maximum monitor setpoint in  $\mu$ Ci/cm;

F<sub>max</sub> = maximum effluent flow rate (cm<sup>3</sup>/sec); and

Q = Minimum value of  $Q_{tb}$  or  $Q_{skin}$ .

5.4.8.5 Since Kr-88 is the noble gas with the highest dose rate conversion factors, for conservatism, the preceding calculations may be computed using Kr-88 only. Total body dose becomes more limiting than skin and the release limit is:

$$Q_{Kr-88} = \frac{(500 \frac{mrean}{yr})(RF)(SF)}{(\frac{X}{Q})_{y}(1.0e + 6 \frac{pCt}{\mu Ct})(K_{Kr-88})}$$
(17)

where:

 $Q_{Kr-88}$  = the maximum release rate, based on Kr-88, allowed to give a limiting total body dose rate of 500 mrem/yr in  $\mu$ ci/sec; and

 $K_{Kr-88}$  = the total body dose factor due to Kr-88 in units of mrem/yr per pCi/m<sup>3</sup> (Attachment 6.4).

All other terms are as previously defined.

The monitor setpoint can be calculated as:

$$SN = \frac{Q_{Kr-88}}{F_{\text{max}}} \tag{18}$$

and all terms are previously defined

# 5.4.9 Dose Projection due to Gaseous Effluents

5.4.9.1 Specification 5.4.4 requires that appropriate subsystems of the Gaseous Radwaste Treatment System be used to reduce releases of radioactivity when the projected doses due to the gaseous effluent to areas at and beyond the SITE BOUNDARY would exceed, in a 31-day period, any of the following:

0.2 mrad to air from gamma radiation; or0.4 mrad to air from beta radiation; or0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

5.4.9.2 The following calculational method is provided for performing this dose projection.

At least once every 31 days the gamma air dose, beta air dose and the maximum organ dose for the month-to-quarter will be divided by the number of days into the quarter and multiplied by 31. If these projected doses exceed any of the values listed above and the Gaseous Waste Management System has not been operating, it shall be operated to reduce radioactivity levels prior to release. (This is performed in accordance with the Surveillance Requirements of Specification 5.4.4.)

#### 5.4.10 Gaseous Effluent Bases

#### a. DOSE RATE (Section 5.4.1)

This specification is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. The annual dose limits are the doses associated with the concentrations of 10 CFR Part 20. Appendix B. Table II, Column 1. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in a UNRESTRICTED AREA, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the limits specified in Appendix B, Table II of 10 CFR Part 20 (10 CFR Part 20.106(b)). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrem/year to the total body and 3000 mrem/yr to the skin.

These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrem/year.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, HASL-300 (revised annually), Currie, L.A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," Anal. Chem. 40, 586-93 (1968), and Hartwell, J.K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report ARH-SA-215 (June 1975).

# b. <u>DOSE - NOBLE GASES</u> (Section 5.4.2)

The Specification is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. It implements the guides set forth in Section II.B of Appendix I.

The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I." Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors." Revision 1, July 1977.

Sections 5.4.2 and 5.4.3 equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

Grab sampling of effluents from the main condenser evacuation and turbine gland sealing system is not required when this source has been continuously discharging to the plant stack over the past 30 days. If no primary to secondary leakage in the steam generator exists, then there should be no radioactive release from the main condenser evacuation and turbine gland sealing system and the gross beta or gamma monitoring for noble gases will be sufficient to determine if any radioactivity is present in the release. If a primary to secondary leak exists, then the release from the main condenser evacuation and turbine gland sealing systems will be sampled and analyzed in accordance with Table 5.4-1.

IN PARTICULATE FORM (Section 5.4.3)

This specification is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Specifications are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

The calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions.

The release rate specifications for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat-producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure of man.

#### d. GASEOUS RADWASTE TREATMENT (Section 5.4.4)

The OPERABILITY of the WASTE GAS HOLDUP SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The discharge from the main condenser evacuation and turbine gland sealing system shall be required to be directed to the plant stack when the release rate of I-131 from this source is > 2 x  $10^{-4} \mu \text{Ci/s}$ . The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Section II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

#### 5.5 TOTAL DOSE

#### 5.5.1 TOTAL DOSE SPECIFICATION

The annual (calander year) dose or dose commitment to any MEMBER OF THE PUBLIC due to release of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

APPLICABILITY: At all times.

#### ACTION:

With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Specification 5.3.2.a, 5.3.2.b, 5.4.2.a, 5.4.2.b, 5.4.3.a, or 5.4.3.b calculations shall be made including direct radiation contributions from the reactor units and from outside storage tanks to determine whether the above limits of Specification 5.5.1 have been exceeded. This evaluation should be done in accordance with guidance in Section 5.5.2. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits.

This Special Report, as defined in 10 CFR 20.405c, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request, and a variance is granted until staf, action on the request is complete.

### SURVEILLANCE REQUIREMENTS:

a. Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Specification 5.3.2, 5.4.2, and 5.4.3 and in accordance with the methodology and parameters in the ODCM.

b. Cumulative dose contributions from direct radiation from the reactor units and from radwaste storage tanks shall be determined in accordance with the methodology and parameters in the ODCM. This requirements is applicable only under condition set forth in Specification 5.5.1.

#### 5.5.2 40 CFR 90 DOSE EVALUATION

This section demonstrates compliance with Specification 5.5.1 Surveillance Requirements. Specifically, the dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the total body or any organ (except the thyroid, which shall be limited to less than or equal to 75 mrem) over 12 consecutive months.

Dose evaluations to demonstrate compliance with the above dose limits need to be performed only if quarterly doses exceed:

- (1) 3 mrem to the total body (liquid releases).
- (2) 10 mrem to any organ (liquid releases).
- (3) 15 mrem to the thyroid or any organ from radioiodines and particulates (gaseous releases).

otherwise no evaluations are required.

For the evaluation of doses to real individuals from liquid releases, the same calculational methods as employed in Section 5.3.4 will be used. However, more encompassing and realistic assumptions will be made concerning the dilution and ingestion of radionuclides by individuals who live and fish in the Waterford 3 area.

The results of the Radiological Environmental Monitoring Program will be used in determining the realistic dose based on actual measured radionuclide concentrations. For the evaluation of doses to real individuals from gaseous releases, the same calculational methods as employed in sections 5.4.6 and 5.4.7 will be used. The total body dose factor should be substituted for the gamma air dose factor (Mi) to determine the total body dose. Otherwise, the same calculational sequence applies. More realistic assumptions will be made concerning the actual location of real individuals, the meteorological conditions, and the consumption of food. Data obtained from the latest land use census should be used to determine locations for evaluating doses. The results of the Radiological Environmental Monitoring Program will be included in determining more realistic doses based on actual measured radionuclide concentrations.

Cumulative dose contributions from direct radiation, from the reactor unit, and from Radwaste Storage Tanks shall be determined utilizing the results of routine plant perimeter surveys, TLD data, or a combination of both when necessary.

### 5.5.3 Total Dose Bases

The specification is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The specification requires the preparation and submittal of a Special Report whenever the calculated doses from plant generated radioactive effluents and direct radiation exceed 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives if Appendix I, and if direct radiation doses from the reactor units and outside storage tanks are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered.

#### 5.5.3 <u>Total Dose Bases</u>

If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and 10 CFR 20.405c, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed.

The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Specifications 5.3.1 and 5.4.1. An individual is not considered a MEMBER OF THE PUBLIC during in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

#### 5.6 INSTRUM PITATION

## 5.6.1 Radioactive Liquid Effluent Monitoring Instrumentation Specification

The radioactive liquid effluent monitoring instrumentation channels shown in Table 5.6-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 5.3.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in Section 5.3.5.

APPLICABILITY: At all times.

#### ACTION:

a. With radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Specification, immediately suspend the release of radioactive liquid effluents monitored by the affected channel, or declare the channel inoperable.

## 5.6 INSTRUMENTATION (Cont'd)

b. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 5.6-1.

Restore the inoperable instrumentation to OPERABLE status within 30 days or, if unsuccessful, explain in the next Annual Radioactive Effluent Release Report, pursuant to Technical Specification 6.9.1.8, why this inoperability was not corrected within the time specified. Releases need not be terminated after 30 days provided the specified ACTIONS are continued.

#### SURVEILLANCE REQUIREMENT

Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 5.6-2.

UNT-005-014 Revision 3

TABLE 5.6-1

## RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

| INSTRUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MINIMUM<br>CHANNELS<br>OPERABLE | ACTION |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|
| 1. RADIOACTIVITY MONITORS PROVIDING ALARM AND AUTOMATIC TERMINATION OF RELEASE a. Boric Acid Condensate Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |        |
| The second of th |                                 | 28     |
| b. Waste, Waste Condensate and Laundry Discharge c. Dry Cooling Tower Sumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                               | 28     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/sump                          | 29     |
| e. Circulating Water Discharge (Blowdown Heat Exchanger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                               | 29     |
| and Auxiliary Component Cooling Water Pumps) #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                               | 29     |
| 2. CONTINUOUS COMPOSITE SAMPLERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |        |
| a. Steam Generator Blowdown Effluent Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                               | 29     |
| 3. FLOW RATE MEASUREMENT DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |        |
| a. Boric Acid Condensate Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 30     |
| b. Waste, Waste Condensate and Laundry Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | 30     |
| c. Turbine Building Industrial Waste Sump*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N.A.                            | N.A.   |
| d. Dry Cooling Tower Sumps*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.A.                            | N.A.   |
| e. Circulating Water Discharge* (Blowdown and Blowdown Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M.A.                            | n.A.   |
| Exchanger and Auxiliary Component Cooling Water Pumps)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N.A.                            | N.A.   |

<sup>#</sup>Automatic termination of blowdown discharge only

#### TABLE 5.6-1 (Continued)

#### TABLE NOTATIONS

\*Pump performance curves generated in place shall be used to estimate flow.

#### ACTION STATEMENTS

- ACTION 28 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided best efforts are made to repair the instrument and that prior to initiating a release:
  - a. At least two independent samples are analysed in accordance with Specification 5.3.1, and
  - b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge line valving;
- ACTION 29 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided best efforts are made to repair the instrument and that grab samples are collected and are analyzed within 24 hours of collection time for radioactivity at a lower limit of detection of at least 10-7 microcurie/ml. The sample collection frequency is:
  - a. At least once per 12 hours when the specific activity of the secondary coolant is greater than 0.01 microcurie/gram DOSE EQUIVALENT I-131, or

## TABLE 5.6-1 (Continued)

#### TABLE NOTATIONS

- b. At least once per 24 hours when the specific activity of the secondary coolant is less than or equal to 0.01 microcurie/gram DOSE EQUIVALENT I-131.
- ACTION 30 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided best efforts are made to repair the instrument and that the flow rate is estimated at least once per 4 hours during actual releases. Pump performance curves generated in place may be used to estimate flow.

UNT-005-014 Revision 3

TABLE 5.6-2

| INSTRUMENT                                                                                        | CHECK | CHANNEL SOURCE CHECK | CALIBRATION | FUNCTIONAL<br>TEST |
|---------------------------------------------------------------------------------------------------|-------|----------------------|-------------|--------------------|
| RADIOACTIVITY MONITORS PROVIDING ALARMS AND AUTOMATIC TERMINATION OF RELEASE                      |       |                      |             |                    |
| a. Boric Acid Condensate Discharge                                                                | р     | Р                    | R(3)        | Q(1)               |
| b. Waste, Waste Condensate and Laundry Discharge                                                  | P     | P                    | R(3)        | Q(1)               |
| c. Dry Cooling Tower Sumps                                                                        | D     | М                    | R(3)        | Q(5)               |
| d. Turbine Building Industrial Waste Sump e. Circulating Water Discharge (Blowdown Heat Exchanger | D     | M                    | R(3)        | Q(5)               |
| Auxiliary Component Cooling Water Pumps) #                                                        | D     | М                    | R(3)        | Q(5)               |
| . CONTINUOUS COMPOSITE SAMPLERS                                                                   |       |                      |             |                    |
| a. Steam Generator Blowdown Effluent Line                                                         | D(6)  | N.A.                 | R           | 0                  |
| . FLOW RATE MEASUREMENT DEVICES                                                                   |       |                      |             |                    |
| a. Boric Acid Condensate Discharge                                                                | D(4)  | N.A.                 | R           | Q                  |
| b. Waste, Waste Condensate and Laundry Discharge                                                  | D(4)  | N.A.                 | R           | 0                  |
| c. Turbine Building Industrial Waste Sump                                                         | N.A.  | N.A.                 | N.A.        | N.A.               |
| d. Dry Cooling Tower Sumps                                                                        | N.A.  | N.A.                 | N.A.        | N.A.               |
| e. Circulating Water Discharge (Blowdown and Blowdown Heat Exchangers and Auxiliary               |       |                      |             |                    |
| Component Cooling Water Pumps)                                                                    | N.A.  | N.A.                 | N.A.        | N.A.               |

<sup>#</sup>Automatic termination of Blowdown discharge only

### TABLE 5.6-2 (Continued)

#### TABLE NOTATION

- The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation occur if any of the following conditions exists.
  - 1. Instrument indicates measured levels above the alarm/trip setpoint.
  - 2. Circuit failure
  - 3. Instrument indicates a downscale failure.
- The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
  - 1. Instrument indicates measured levels above the alarm setpoint.
  - 2. Circuit failure.
- 3. The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system for over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.
- 4. CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once per 24 hours on days on which continuous, periodic, or batch releases are made.
- 5. The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway occurs if the instrument indicates measured levels above the alarm/trip setpoint and that control room alarm annunciation occurs if any of the following conditions exists:
  - 1. Instrument indicates measured levels above the alarm set.
  - 2. Circuit failure.
  - 3. Instrument controls not set in operate mode.
- CHANNEL CHECK shall be made at least once per 24 hours on days on which continuous releases are made to the Circulating Water System or Waterford 3 waste pond.

#### 5.6 INSTRUMENTATION (cont'd)

## 5.6.2 <u>Radioactive Gaseous Effluent Monitoring Instrumentation</u> <u>Specifications</u>

The radioactive gaseous effluent monitoring instrumentation channels shown in Table 5.6.3 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 5.4.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in Section 5.4.8.

APPLICABILITY: As shown in Table 5.6-3

#### ACTION:

a. With a radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Specification, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.

### 5.6 INSTRUMENTATION (cont'd)

b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 5.6-3. Restore the inoperable instrumentation to OPERABLE status within 30 days or, if unsuccessful, explain in the next Annual Radioactive Effluent Release Report, pursuant to Technical Specification 6.9.1.8, why this inoperability was not corrected within the time specified. Releases need not be terminated after 30 days provided the specified ACTIONS are continued.

#### SURVEILLANCE REQUIREMENTS:

Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 5.6-4.

UNT-005-014 Revision 3

TABLE 5.6-3
RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

| INSTRUMENT                                    | MINIMUM CHANNELS OPERABLE | <u>APPLICABILITY</u> | ACTION |
|-----------------------------------------------|---------------------------|----------------------|--------|
| WASTE GAS HOLDUP SYSTEM                       |                           |                      |        |
| a. Noble Gas Activity Monitor Providing Alarm |                           |                      |        |
| and Automatic Termination of Release          | 1                         | **                   | 35     |
| b. Effluent System Flow Rate                  |                           |                      |        |
| Measuring Device                              | 1                         | **                   | 36     |
| MAIN CONDENSER EVACUATION AND TURBINE         |                           |                      |        |
| GLAND SEALING SYSTEM                          |                           |                      |        |
| a. Noble Gas Activity Monitor                 | 1                         | ****                 | 37     |
| b. Iodine Sampler#                            | 1                         | ***                  | 39     |
| c. Particulate Sampler#                       |                           | ****                 | 39     |
|                                               |                           |                      | 39     |
| d. Sampler Flow Rate Monitor                  | 1                         | ***                  | 36     |
|                                               |                           |                      |        |

<sup>#</sup>If a primary to secondary leak exists or if the noble gas monitors in the main condenser evacuation and turbine gland sealing system or if the steam generator blowdown monitor indicates the presence of radioactivity in the secondary system, the flow from this release point shall be diverted immediately to the plant stack. These instruments are in the plant stack and sampling for radioiodines and particulates shall occur at the plant vent when this occurs. Effluent flow may be redirected to the normal exhaust path with activity in the secondary system provided that the requirements of specifications 5.4.1, 5.4.2, 5.4.3, 5.4.4, 5.6.1, 5.6.2 are satisfied. When any of the limits in in specification 5.4.4 will be exceeded and effluent flow is via the normal exhaust path, effluent flow should be diverted to the plant stack for treatment.

UNT-005-014 Revision 3

## TABLE 5.6-3 (Continued) RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

| INSTRUMENT                                                                                  | MINIMUM CHANNELS<br>OPERABLE | APPLICABILITY | ACTION |
|---------------------------------------------------------------------------------------------|------------------------------|---------------|--------|
| REACTOR AUXILIARY BUILDING VENTILATION SYSTEM (PLANT STACK)                                 |                              |               |        |
| a. Noble Gas Activity Monitor -<br>Providing Alarm and Automatic<br>Termination of Release# |                              | *             | 37     |
| b. Iodine Sampler                                                                           |                              | *             | 39     |
| c. Particulate Sampler                                                                      |                              | *             | 39     |
| d. Flow Rate Monitor                                                                        |                              | *             | 36     |
| e. Sampler Flow Rate Monitor                                                                |                              | *             | 36     |
| FUEL HANDLING BUILDING VENTILATION SYSTEM (NORMAL)                                          |                              |               |        |
| a. Noble Gas Activity Monitor                                                               | 1                            | ***           | 37     |
| b. Iodine Sampler                                                                           | 1                            | ***           | 39     |
| c. Particulate Sampler                                                                      | 1                            | ***           | 39     |
| d. Flow Rate Monitor                                                                        | 1                            | ***           | 36     |
| e. Sampler Flow Rate Monitor                                                                | 1                            | ***           | 36     |
|                                                                                             |                              |               |        |

<sup>#</sup>Automatic termination of containment purge only.

## TABLE 5.6-3 (Continued) TABLE NOTATIONS

\*At all times.

\*\*During gas waste decay tank discharge.

\*\*\*With irradiated fuel in the storage pool.

\*\*\*\*When the main condenser is under a vacuum.

#### ACTION STATEMENTS

- ACTION 35 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided best efforts are made to repair the instrument and that prior to initiating the release:
  - a. At least two independent samples of the tank's contents are analyzed, and
  - b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup;

# TABLE 5.6-3 (Continued) TABLE NOTATIONS

- ACTION 36 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided best efforts are made to repair the instrument and that the flow rate is estimated at least once per 4 hours. For the waste gas holdup tank this action item is applicable only during periods of release. For the main condenser evacuation and turbine gland sealing systems, this action item applies only during release via the discharge silencer and only during turbine gland sealing operations and/or vacuum pump operation.
- ACTION 37 With the number of creanels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided best efforts are made to repair the instrument and that grab samples are taken at least once per 12 hours and these samples are analyzed for gross activity within 24 hours. However, containment purging of radioactive effluents must be immediately suspended during this condition for the plant stack only.
- ACTION 39 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the affected pathway may continue provided best efforts are made to repair the instrument and that samples are continuously collected with auxiliary sampling equipment as required in Table 5.4-1.

UNT-005-014 Revision 3

TABLE 5.6-4

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

|    | INSTRUMENT                                                                           | CHANNEL CHECK | SOURCE<br>CHECK   | CHANNEL<br>CALIBRATION | CHANNEL<br>FUNCTIONAL<br>TEST | MODES IN WHICH<br>SURVEILLANCE IS<br>REQUIRED |
|----|--------------------------------------------------------------------------------------|---------------|-------------------|------------------------|-------------------------------|-----------------------------------------------|
| 1. | WASTE GAS HOLDUP SYSTEM                                                              |               |                   |                        |                               |                                               |
|    | a. Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release | p             | р                 | R(3)                   | Q(1)                          | *                                             |
|    | b. Effluent System Flow Rate<br>Measuring Device                                     | p             | N.A.              | R                      | Q                             | *                                             |
| 2. | MAIN CONDENSER EVACUATION AND<br>TURBINE GLANDS SEALING SYSTEM                       |               |                   |                        |                               |                                               |
|    | a. Noble Gas Activity Monitor b. Iodine Sampler c. Particulate Sampler               | D<br>W<br>W   | M<br>N.A.<br>N.A. | R(3)<br>N.A.<br>N.A.   | Q(2)<br>N.A.<br>N.A.          | * * *                                         |
|    | d. Sampler Flow Rate Monitor                                                         | D             | N.A.              | R                      | Q                             | *                                             |

TABLE 5.6-4

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

|    | INSTRUMENT                                                     | CHANNEL _CHECK | SOURCE<br>CHECK | CHANNEL<br>CALIBRATION | CHANNEL<br>FUNCTIONAL<br>TEST | MODES IN WHICH<br>SURVEILLANCE IS<br>REQUIRED |
|----|----------------------------------------------------------------|----------------|-----------------|------------------------|-------------------------------|-----------------------------------------------|
| 4. | REACTOR AUXILIARY BUILDING<br>VENTILATION SYSTEM (PLANT STACK) |                |                 |                        |                               |                                               |
|    | a. Noble Gas Activity Monitor - Providing Alarm and Automatic  |                |                 |                        |                               |                                               |
|    | Termination of Release                                         | D              | M               | R(3)                   | Q(6)                          | *                                             |
|    | b. Iodine Sampler                                              | W              | N.A.            | N.A.                   | N.A.                          | *                                             |
|    | c. Particulate Sampler                                         | W              | N.A.            | N.A.                   | N.A.                          | *                                             |
|    | d. Flow Rate Monitor                                           | D              | N.A.            | R                      | 0                             | * 1                                           |
|    | e. Sampler Flow Rate Monitor                                   | D              | N.A.            | R                      | Q                             | *                                             |
| 5. | FUEL HANDLING BUILDING<br>VENTILATION SYSTEM (NORMAL)          |                |                 |                        |                               |                                               |
|    | a. Noble Gas Activity Monitor                                  | D              | М               | R(3)                   | Q(2)                          | ***                                           |
|    | b. Iodine Sampler                                              | W              | N.A.            | N.A.                   | N.A.                          | ***                                           |
|    | c. Particulate Sampler                                         | W              | N.A.            | N.A.                   | N.A.                          | ***                                           |
|    | d. Flow Rate Monitor                                           | D              | N.A.            | R                      | 0                             | ***                                           |
|    | e. Sampler Flow Rate Monitor                                   | D              | N.A.            | R                      | Q                             | ***                                           |

<sup>#</sup>Automatic termination of containment purge only.

### TABLE 5.6-4 (Continued) TABLE NOTATIONS

\*At all times. \*\*\*When irradiated fuel is in the spent fuel pool.

- 1. The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation occurs if any of the following conditions exists:
  - 1. Instrument indicates measured levels above the alarm/trip setpoint.
  - 2. Circuit failure.
  - 3. Instrument indicates a downscale failure.
- 2. The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
  - 1. Instrument indicates measured levels above the alarm setpoint.
  - 2. Circuit failure.
- 3. The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.
- The CHANNEL FUNCTION TEST shall also demonstrate that automatic isolation of this pathway occurs if the instrument indicates measured levels above the alarm/trip setpoint and that control room alarm annunciation occurs if any of the following conditions exists:
  - 1. Instrument indicates measured levels above the alarm set.
  - 2. Circuit failure.
  - 3. Instrument controls not set in operate mode.

## 5.6 INSTRUMENTATION (Cont'd)

### 5.6.3 <u>Instrumentation Bases</u>

# a. RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION (5.6.1)

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in Section 5.3.5 to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50.

## 5.6 INSTRUMENTATION (Cont'd)

# b. RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION (5.6.3)

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in Section 5.4.8 to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. This instrumentation also include provisions for monitoring (and controlling) the concentrations of potentially explosive gas mixtures in the WASTE GAS HOLDUP SYSTEM. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50.

#### 5.7 LIQUID AND GASEOUS RADWASTE PROCESSES

The block flow diagrams of the radwaste systems are shown in Attachments 6.11 and 6.12. In order to obtain a more detailed description, see the appropriate sections of the FSAR.

## 5.8 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS

## 5.8.1 Radiological Environmental Program Specification

The radiological environmental monitoring program shall be conducted as specified in Table 5.8-1.

APPLICABILITY: At all times.

#### ACTION:

- a. With the radiological environmental monitoring program not being conducted as specified in Table 5.8-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report required by Technical Specification 6.9.1.7, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 5.8-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose\* to a MEMBER OF THE PUBLIC is less than the calendar year limits of Specifications 5.3.2, 5.4.2, and 5.4.3.

5.8 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS (Cont'd)

When more than one of the radionuclides in Table 5.8-2 are detected in the sampling medium, this report shall be submitted if:

concentration (1) + concentration (2) +  $\dots \ge 1.0$  reporting level (1) reporting level (2)

<sup>\*</sup>The methodology and parameters used to estimate the potential annual dose to A MEMBER OF THE PUBLIC shall be indicated in this report.

# 5.8 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS (Cont'd)

When radionuclides other than those in Table 5.8-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose to A MEMBER OF THE PUBLIC is equal to or greater than the calendar year limits of Specifications 5.3.2, 5.4.2, and 5.4.3. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

c. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 5.8-1, identify locations for obtaining replacement samples and add them to the radiological environmental monitoring program within 30 days.

The specific locations from which samples were unavailable may then be deleted from the monitoring program. Pursuant to Technical Specification 6.9.1.8, identify the cause of the unavailability of samples and identify the new location(s) for obtaining replacement samples in the next Semiannual Radioactive Effluent Release Report and also include in the report revisions of Attachments 6.13, 6.14, 6.16, 6.17 and 6.18 reflecting the new location(s).

## 5.8 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS (Cont'd)

#### SURVEILLANCE REQUIREMENTS:

The radiological environmental monitoring samples shall be collected pursuant to Table 5.8-1 from the specific locations given in Attachments 6.13 and 6.14, and shall be analyzed pursuant to the requirements of Table 5.8-1 and the detection capabilities required by Table 5.8-3.

UNT-005-014 Revision 3

## TABLE 5.8-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM\*

EXPOSURE PATHWPY

AND/OR SAMPLE

1. DIRECT RADIATION<sup>b</sup>

NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS<sup>a</sup>

31 routine monitoring stations either with 2 or more dosimeters or with one instrument for measuring and recording dose rate continuously, placed as follows:

an inner ring of stations, one in each meteorological sector in the general area of the SITE BOUNDARY,

an outer ring of stations, 1 in 10 of the meteorological sectors in the 6 - to 8-km range from the site;

the balance of the stations to be placed in special interest areas such as population centers, nearby residences, schools, and in 1 or 2 areas to serve as control stations SAMPLING AND
COLLECTION FREQUENCY
Quarterly

TYPE AND FREQUENCY
OF ANALYSIS
Gamma dose quarterly.

<sup>\*</sup>The number, media, frequency, and location of samples may vary from site to site. This table presents an acceptable minimum program for a site at which each entry is applicable. Local site characteristics must be examined to determine if pathways not covered by this table may significantly contribute to an individual's dose and should be included in the sampling program.

UNT-005-014

#### TABLE 5.8-1 (Continued)

## RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM\*

# EXPOSURE PATHWAY AND/OR SAMPLE

2. AIRBORNE Radioiodine and Particulates NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS a

Samples from 5 locations:

3 samples from close to the 3 SITE BOUNDARY locations, in different sectors, of the highest calculated annual average ground-level D/Q.

1 sample from the vicinity of a community having the highest calculated annual average ground-level D/Q.

I sample from a control location, as for example 15-30 km distant and in the least prevalent wind direction. C

SAMPLING AND COLLECTION FREQUENCY

Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading.

TYPE AND FREQUENCY
OF ANALYSIS

Radioiodine Canister
I-131 analysis weekly.

Particulate Sampler:
Gross beta radioactivity
analysis following
filter change;
Gamma isotopic analysise
of composite (by
location) quarterly.

## TABLE 5.8-1 (Continued)

|                                  | IABLE 5.8-1                                                                                                | (Lontinued)                                                                                         |                                                                                                                                                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | NUMBER OF RADIOLOGICAL ENVIRONMENT                                                                         | TAL MONITORING PROGRAM*                                                                             |                                                                                                                                                                                                                                         |
| EXPOSURE PATHWAY AND/OR SAMPLE   | REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS a                                                              | SAMPLING AND COLLECTION FREQUENCY                                                                   | TYPE AND FREQUENCY OF ANALYSIS                                                                                                                                                                                                          |
| 3. WATERBORNE                    |                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                         |
| a. Surface <sup>f</sup>          | 1 sample upstream<br>1 sample downstream                                                                   | Composite sample over 1-month period <sup>9k</sup> .                                                | Gamma isotopic analysisek<br>monthly. Composite for<br>tritium analysis quarterly.                                                                                                                                                      |
| b. Ground                        | Samples from 1 or 2 sources only if likely to be affected <sup>h</sup> .                                   | Quarterly                                                                                           | Gamma isotopic <sup>e</sup> and tritium analysis quarterly.                                                                                                                                                                             |
| c. Drinking                      | 1 sample of each of 1 to 3 of<br>the nearest water supplies that<br>could be affected by its<br>discharge. | Composite sample over 2-week period9 when I-131 analysis is performed, monthlyk composite otherwise | I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year. i Composite for gross beta and gamma isotopic analysese monthlyk. Composite for tritium analysis quarterly. |
| d. Sediment<br>from<br>shoreline | I sample from downstream area with existing or potential recreational value.                               | Semiannually                                                                                        | Gamma isotopic analysise semiannually.                                                                                                                                                                                                  |
|                                  |                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                         |

### TABLE 5.8-1 (Continued)

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM\*

EXPOSURE PATHWAY SAMPLES AND SAMPLE LOCATIONS a

SAMPLING AND COLLECTION FREQUENCY

TYPE AND FREQUENCY
OF ANALYSIS

4. INGESTION

a. Milk

Samples from milking animals in 3 locations within 5 km distance having the highest dose potential. If there are none, then, 1 sample from milking animals in each of 3 areas between 5 to 8 km distant where doses are calculated to be greater than 1 mrem per yr.

l sample from milking animals at a control location 15-30 km distant and in the least prevalent wind direction.

I sample of each commercially and recreational important species in vicinity of plant discharge area.

1 sample of same species in areas not influenced by plant discharge.

Semimonthly when animals are on pasture; monthly at other times.

Gamma isotopic<sup>e</sup> and I-131 analysis semimonthly when animals are on pasture; monthly at other times.

Sample in season, or semiannually if they are not seasonal

Gamma isotopic analysise on edible portions.

b. Fish and Invertebrates

#### TABLE 5.8-1 (Continued)

## RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM\*

| EXPOS | URE | PATHWAY |
|-------|-----|---------|
| AND/  | OR  | SAMPLE  |

c. Food Products NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS <sup>a</sup>

1 sample of each principal class of food products from any area that is irrigated by water in which liquid plant wastes have discharged.

Samples of 1 to 3 different kinds of broad leaf vegetation grown nearest each of two different offsite locations of highest predicted annual average ground-level D/Q if milk sampling is not performed.

1 sample of each of the similar broad leaf vegetation grown 15-30 km distant in the least prevalent wind direction if milk sampling is not performed. SAMPLING AND COLLECTION FREQUENCY

At time of harvestj

Monthly when

available

Monthly when available

TYPE AND FREQUENCY
OF ANALYSIS

Gamma isotopic analysis<sup>e</sup> on edible portion.

Gamma isotopic<sup>e</sup> and I-131 analysis.

Gamma isotopic<sup>e</sup> and I-131 analysis.

# TABLE 5.8-1 (Continued) TABLE NOTATIONS

aspecific parameters of distance and direction sector from the centerline of one reactor, and additional description where pertinent, shall be provided for each and every sample location in Attachments 6.14, 6.16, 6.17 and 6.18. Refer to NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Flants," October 1978, and to Radiological Assessment Branch Technical Position, Revision 1, November 1979. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, corrective action shall be completed prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7. It is recognized that, at times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the radiological environmental monitoring program. Pursuant to Specification 6.9.1.8, identify the cause of the unavailability of samples for that pathway and identify the new location(s) for obtaining replacement samples in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table reflecting the new location(s).

# TABLE 5.8-1 (Continued) TABLE NOTATIONS

bone or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation. The frequency of analysis or readout for TLD systems will depend upon the characteristics of the specific system used and should be selected to obtain optimum dose information with minimal fading.

CThe purpose of this sample is to obtain background information. If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites that provide valid background data may be substituted.

dAirborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than 10 times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.

eGamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.

# TABLE 5.8-1 (Continued) TABLE NOTATIONS

fThe "upstream sample" shall be taken at a distance beyond significant influence of the discharge. The "downstream" sample shall be taken in an area beyond but near the mixing zone. "Upstream" samples in an estuary must be taken far enough upstream to be beyond the plant influence. Salt water shall be sampled only when the receiving water is utilized for recreational activities.

9A composite sample is one in which the quantity (aliquot) of liquid sampled is proportional to the quantity of flowing liquid and in which the method of sampling employed results in a specimen that is representative of the liquid flow. In this program composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.

hGroundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.

<sup>1</sup>The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in this document.

JIf harvest occurs more than once a year, sampling shall be performed during each discrete harvest. If harvest occurs continuously, sampling shall be monthly. Attention shall be paid to including samples of tuberous and root food products.

kComposite samples for surface and/or Drinking Water gross beta and gamma isotopic analysis should be performed every four weeks. The maximum frequency is monthly.

UNT-005-014 Revision 3

TABLE 5.8-2
REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

#### Reporting Levels

| ANALYSIS  | WATER<br>(pC1,ℓ) | OR GASES (pCi/m³) | FISH<br>(pCi/kg, wet) | MILK<br>(pCi/ℓ) | FOOD PRODUCTS (pCi/kg, wet) |
|-----------|------------------|-------------------|-----------------------|-----------------|-----------------------------|
| H-3       | 20,000           |                   |                       |                 |                             |
| Mn-54     | 1,000            |                   | 30,000                |                 |                             |
| Fe-59     | 400              |                   | 10,000                |                 |                             |
| Co-58     | 1,000            |                   | 30,000                |                 |                             |
| Co-60     | 300              |                   | 10,000                |                 |                             |
| Zn-65     | 300              |                   | 20,000                |                 |                             |
| Zr-Nb-95  | 400              |                   |                       |                 |                             |
| I-131     | 2                | 0.9               |                       | 3               | 100                         |
| Cs-134    | 30               | 10                | 1,000                 | 60              | 1,000                       |
| Cs-137    | 50               | 20                | 2,000                 | 70              | 2,000                       |
| Ba-La-140 | 200              |                   |                       | 300             |                             |

TABLE 5.8-3

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

Lower Limits of Detection (LLD) bc

| ANALYSIS   | n.<br>(pc,/ℓ)  | AIRBORNE PARTICULATE OR GASES (pCi/m³) | FISH (pCi/kg, wet) | MILK<br>(pCi/ℓ) | FOOD PRODUCTS (pCi/kg, wet) | SEDIMENT<br>(pCi/kg,dr) |
|------------|----------------|----------------------------------------|--------------------|-----------------|-----------------------------|-------------------------|
| gross beta | 4              | 0.01                                   |                    |                 |                             |                         |
| H-3        | 2000           |                                        |                    |                 |                             |                         |
| Mn-54      | 15             |                                        | 130                |                 |                             |                         |
| Fe-59      | 30             |                                        | 260                |                 |                             |                         |
| Co-58,60   | 15             |                                        | 130                |                 |                             |                         |
| Zn-65      | 30             |                                        | 260                |                 |                             |                         |
| 2r-Nb-95   | 15             |                                        |                    |                 |                             |                         |
| [-131      | 1 <sup>d</sup> | 0.07                                   |                    | 1               | 60                          |                         |
| s-134      | 15             | 0.05                                   | 130                | 15              | 60                          | 150                     |
| s-137      | 18             | 0.06                                   | 150                | 18              | 80                          | 180                     |
| 8a-La-140  | 15             |                                        |                    | 15              |                             |                         |

# TABLE 5.8-3 TABLE NOTATIONS

aThis list does not mean that only these nuclides are to be considered.

Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 6.9.1.7.

bRequired detection capabilities for thermoluminescent dosimeters used for environmental measurements shall be in accordance with the recommendations of Regulatory Guide 4.13.

CThe LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{4.66 \text{ s}_b}{E \text{ V} \cdot 2.22 \times 10^6 \cdot \text{Y} \cdot \text{e}^{-\lambda \Delta t}}$$

Where:

LLD is the "a priori" lower limit of detection as defined above, as microcuries per unit mass or volume,

Sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, as counts per minute,

# TABLE 5.8-3 TABLE NOTATIONS

E is the counting efficiency, as counts per disintegration,

V is the sample size in units of mass or volume,

 $2.22 \times 10^6$  is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield, when applicable,

 $\boldsymbol{\lambda}$  is the radioactive decay constant for the particular radionuclide, and

 $\Delta t$  for environmental samples is the elapsed time between sample collection, or end of the sample collection period, and time of counting

Typical values of E, V, Y and  $\Delta t$  should be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular meas, ement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 6.9.1.7.

 $^{
m d}$ LLD for drinking water samples. If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used.

# 5.8.2 Interlaboratory Comparison Program Specification

Analyses shall be performed on all radioactive materials supplied as part of an Interlaboratory Comparison Program that has been approved by the Commission.

APPLICABILITY: At all times.

#### ACTION:

a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 6.9.1.7.

#### SURVEILLANCE REQUIREMENTS

The Interlaboratory comparison Program shall be described in Section 5.8.5. A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 6.9.1.7.

#### 5.8.3 Land Use Census Specification

A land use census shall be conducted and shall identify within a distance of km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence, and the nearest garden\* of greater than 50 m² (500 ft²) producing broad leaf vegetation.

APPLICABILITY: At all times.

#### ACTION:

a. With a land use census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Specification 5.4.3, identify the new location(s) in the next Annual Radioactive Effluent Release Report, pursuant to Specification 6.9.1.8.

With a land use census identifying a location(s) b. that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Specification 5.8.1, add the new location(s) to the radiological environmental monitoring program within 30 days. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may be deleted from this monitoring program after October 31 of the year in which this land use census was conducted. Pursuant to Technical Specification 6.9.1.8 identify the new location(s) in the next Semiannual Radioactive Effluent Release Report and also include in the report revision of Attachments 6.13, 6.14, 6.16, 6.17, and 6.18 reflecting the new locations(s).

#### SURVEILLANCE REQUIREMENTS

The land use census shall be conducted during the growing season at least once per 12 months using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities. The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 6.9.1.7.

<sup>\*</sup>Broad leaf vegetation sampling of different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 5.8-1 Part 4.c. shall be followed, including analysis of control samples.

# 5.8.4 <u>Discription of the Radiological Environmental Monitoring</u> Program

The Radiological Environmental Monitoring Program (REMP) is expounded on in Attachment 6.13, and the Sample Location Table, Attachment 6.14. Attachment 6.15 explains the sector and zone designations for the sample locations. Attachments 6.16, 6.17 and 6.18 show the sample locations within the 2,10, and 50 mile radius of Waterford 3.

Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, every effort shall be made to complete corrective action prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report. It is recognized that, at times, it may not be possible or practical continue to obtain samples of the media of choice at the most desired location or time. In these instances, suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the Radiological Environmental Monitoring Programs.

#### 5.8.5 Description of the Interlaboratory Comparison Program

As described in Section 5.8.2 the quality assurance in radiological environmental sampling will be maintained through participation in the Environmental Protection Agency's Radiological Laboratory Quality Assurance Program. The summary of results will be presented in tabular form and will include the type of analysis, the preparation (collection) date, the date the results are returned, the mean of the analyses (usually triplicate), the standard deviation, the date the values are released for information, he known value, the three standard deviation limit, and a two standard deviation/three standard deviation warning/action flag. If the sample analysis indicates results outside the three standard deviation range, then the corrective actions taken to prevent a recurrence will be documented and submitted along with all results when the Annual Radiological Environmental Operating Report is submitted.

# 5.8.6 Dispersion Parameters For Critical Locations

As per Requirements 5.8.3, the dispersion parameters for the site boundary and where necessary, as identified by the Annual Land Use Census, are listed in Attachment 6.2. This table will be subject to changes based on the Annual Land Use Census and historical data.

#### 5.8.7 Radiological Environmental Monitoring Bases

a. INTERLABORATORY COMPARISON PROGRAM (Section 5.8.2)

The requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

#### b. LAND USE CENSUS (Section 5.8.3)

This specification is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the radiological environmental monitoring program are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m² provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/yr) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/m2.

#### 5.9 TECHNICAL SPECIFICATION CROSS-REFERENCES

Changes to the Technical Specifications (TS) recommended by Generic Letter 89-01 (Reference 2.8) resulted in programmatic controls for radiological effluents, radiological environmental monitoring, and effluent radiation monitoring instrumentation being relocated to the Offsite Dose Calculation Manual. All references of the former version of the TS that are contained in current plant operating procedures shall be cross-referenced to specifications contained in the ODCM using Attachment 6.20. Relocated requirements set forth in the ODCM should be incorporated into current plant operating procedures as they undergo routine review and revision.

#### 5.10 ROUTINE EFFLUENT RELEASE REPORTS

# 5.10.1 Annual Radioactive Effluent Release Report

A routine radioactive effluent release report covering the operation of the unit during the previous Twelve months shall be submitted as specified in Waterford 3 SES, Technical Specification 6.9.1.8.

- 5.10.1.1 The radioactive effluent release report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the units as outlined in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants", Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.
- 5.10.1.2 The Annual Radioactive Effluent Release
  Report shall include an annual summary of
  hourly meteorological data collected over
  the previous year. This annual summary may
  be either in the form of an hour-by-hour
  listing of wind speed, wind direction, and
  atmospheric stability, and precipitation (if
  measured) on magnetic tape, or in the form
  of joint frequency distributions of wind
  speed, wind direction, and atmospheric
  stability.

In lieu of submission with the Radioactive Effluent Release Report, the summary of required meteorological data may be filed on site and provided to the NRC when requested. This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gasecus effluents to members of the public due to their activities inside the site boundary during the report period. All assumptions used in making these assessments (i.e., specific activity, exposure time and location) shall be included in these reports. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in this manual.

- Report shall also include once a year an assessment of radiation doses to the likely most exposed member of the public from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40CFR190, Environmental Radiation Standards for Nuclear Power Operation. Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109, Rev. 1, October 1977.
- 5.10.1.4 The Annual Radioactive Effluent Release
  Report shall include the following
  information for each class of solid waste (as
  defined by 10CFR 61) shipped off site during
  the report period:
  - A. Container volume
  - B. Total curie quantity (specify whether determined by measurement or estimate),
  - C. Principal radionuclides (specify whether determined by measurement or estimate),

- D. Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
- E. Type of container (e.g., Type A, Type B), and
  - F. Solidification agent or absorbent (e.g., cement, urea formaldehyde).
- 5.10.1.5 The Annual Radioactive Effluent Release
  Report shall include a list and description
  of unplanned releases from the site to
  unrestricted areas of radioactive materials
  in gaseous and liquid effluents made during
  the reporting period.
- Report shall include any changes to the Process Control Program (PCP) or the Offsite Dose Calculation Manual (ODCM), as well as a listing of new locations for dose calculations and/or environmental monitoring identified by the land use census pursuant to ODCM Specification 5.8.3. The Annual Radioactive Release Report shall include information of Major Changes to Radioactive Waste Systems if the information is not submitted as part of the annual FSAR update.

- A. The submittal providing information on ODCM changes shall contain:
  - 1. Sufficiently detailed information to totally support the rationale for the change without benefit of additional or supplemental information. Information submitted should consist of a complete legible copy of the ODCM together with appropriate analyses or evaluations justifying the change(s), if applicable.
  - A determination that the change did not reduce the accuracy or reliability of dose calculations or setpoint determinations.
  - Documentation of the fact that the change has been reviewed and found acceptable by the Plant Operations Review Committee (PORC).

- B. The submittal providing information on PCP changes shall contain:
  - Information submitted should consist of a complete legible copy of the PCP, together with appropriate analyses or evaluations, justifying the changes(s), if applicable.
  - Documentation of the fact that the change has been reviewed and found acceptable by the Plant Operations Review Committee (PORC).

#### NOTE

Radioactive Waste System change information may be submitted as part of the annual FSAR update in lieu of the Annual Radioactive Effluent Release Report.

- C. The submittal providing information on licensee initiated major changes to the radioactive waste systems (liquid, gaseous, and solid) shall contain:
  - A summary of the evaluation that led to the the determination that the change could be made in accordance with 10CFR50.59

- Sufficient detailed information to totally support the reason for the change without benefit of additional or supplemental information.
- A detailed description of the equipment, components and processes involved and the interfaces with other plant systems.
- 4. An evaluation of the change which shows the predicted releases of radioactive materials in liquid and gaseous effluents and/or quantity of solid waste that differ from those previously predicted in the license application and amendments thereto.
- 5. An evaluation of the change which shows the expected maximum exposures a member of the Public in the unrestricted area and to the general population that differ from those previously estimated in the license application and amendments thereto.

- 6. A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents and in solid waste, to the actual releases for the period before the changes are to be made.
- 7. An estimate of the exposure to plant operating personnel as a result of the change.
- 8. Documentation of the fact that the change was reviewed and found acceptable by the Plant Operating Review Committee.
- Changes to Radioactive Waste
   Systems performed using the plant design change process will be reported as per design change procedures.
- 5.10.1.7 The Annual Radioactive Effluent Release
  Report shall include, if applicable, a
  description of events which led to exceeding
  the following limiting condition for
  operation:

- A. The dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site boundary shall be limited to the following:
  - For noble gases: 500 mrem/yr or less to the total body and 3,000 mrem/yr or less to the skin, and
  - For iodine-131, iodine-133, tritium, and all radioactive materials in particulate form with half-lives greater than 8 days: 1,500 mrem/yr or less to any organ.
- 5.10.1.8 The Annual Radioactive Effluent Release
  Report shall include, if applicable, a
  description of events which led to exceeding
  the following limiting condition for
  operation:

- A. The quantity of radioactive material contained in each of the following unprotected tanks shall be limited to less than or equal to 1.57 x 10-2 curies, excluding tritium and dissolved or entrained noble gases. For outside temporary storage tanks, the curie content shall be limited such that a rupture will not result in exceeding 10CFR Part 20 limits at the unrestricted area boundary.
  - 1. PWST
  - 2. Outside temporary tank
- 5.10.1.9 The Annual Radioactive Effluent Release
  Report shall, if applicable, identify the
  cause of the unavailability of milk or fresh
  leafy vegetable samples at locations
  required by ODCM Spec. Table 5.8.1. The new
  location(s) for obtaining replacement
  samples shall be identified. Revised
  figure(s) and table for the ODCM reflecting
  the new locations shall be included in the
  report.

- 5.10.1.10 The Annual Radioactive Effluent Release
  Report shall identify the new location(s),
  if a land use census pursuant to ODCM
  Specification 5.8.3 identifies an
  environmental sampling location that yields
  a calculated dose or dose commitment greater
  than the values currently being calculated
  pursuant to ODCM Specification 5.4.3.
- 5.10.1.11 The Annual Radioactive Effluent Release
  Report shall identify the new location(s)
  and include a revised figure(s) and table
  for the ODCM reflecting the new location(s)
  if a land use census identifies an
  environmental sampling location(s) that
  yield a calculated dose or dose commitment
  (via the same exposure pathway) 20% greater
  than at a location from which samples are
  currently being obtained pursuant to ODCM
  Specification 5.7.1.
- 5.10.1.12 With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels operable as required by ODCM Specification Table 5.6-1 for 30 days or longer, explain in the next Annual Radioactive Effluent Release Report, pursuant to Specification 6.9.1.8, why this inoperability was not corrected within the time specified.

5.10.1.13 With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels operable as required by ODCM Specification Table 5.6-3 for 30 days or longer, explain in the next Annual Radioactive Effluent Release Report, pursuant to Specification 6.9.1.8, why this in operability was not corrected within the time specified.

#### NOTE

The Shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever an effluent sample is late or missing in accordance with applicable Specifications.

5.10.1.14 The Annual Radioactive Effluent Release
Report shall identify any missing or late
analysis results for radioactive effluent
samples collected during the reporting
period.

#### 5.11 SPECIAL EFFLUENT REPORTS

# 5.11.1 <u>Abnormal Operation of Radioactive Gaseous Waste</u> Treatment System

- 5.11.1.1 The Shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever the following limiting condition for operation is exceeded:
- 5.11.1.2 The VENTILATION EXHAUST TREATMENT SYSTEM and the WASTE GAS HOLDUP SYSTEM shall be OPERABLE and appropriate portions of these systems shall be used to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases to areas at and beyond the SITE BOUNDARY would exceed either:
  - a. 0.2 mrad to air from gamma radiation, or
  - b. 0.4 mrad to air from beta radiation, or
  - c. 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

#### 5.11 SPECIAL EFFLUENT REPORTS (cont'd)

- A. A Special Report shall be prepared for submittal to the NRC within 30 days if gaseous waste is being discharged without treatment and in excess of the above limits.
- B. The Special Report shall include the following information:
  - Identification of the inoperable equipment or subsystems and the reason for inoperability
  - Action(s) taken to restore the inoperable equipment to operable status, and
  - Summary description of action(s) taken to prevent a recurrence.

### 5.11 SPECIAL EFFLUENT REPORTS (cont'd)

# 5.11.2 Abnormal Operation of Radioactive Liquid Was a Treatment System

5.11.2.1 The Shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever the following limiting condition for operation is exceeded:

The LIQUID RADWASTE TREATMENT system shall be OPERABLE and appropriate portions of the system shall be used to reduce releases of radioactivity when the projected doses due to the liquid effluent to unrestricted areas would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in a 31 day period.

- A. A Special Report shall be prepared for submittal to the NRC within 30 days if radioactive liquid waste is being discharged without treatment and in excess of the above limits.
- B. The Special Report shall include the following information:
  - 1. Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability

- Action(s) taken to restore the inoperable equipment to operable status
- Summary description of action(s) taken to prevent a recurrence.

### 5.11.3 Radioactive Liquid Effluent Dose Reports

5.2.4.1 The Shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever the following limiting condition for operation is exceeded:

The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released to unrestricted areas shall be limited:

- a. During any calendar quarter, to 1.5 mrem or less to the total body and to 5 mrem or less to any organ, and
- b. During any calendar year, to 3 mrem or less to the total body and to 10 mrem or less to any organ.

- A. A Special Report shall be prepared for submittal to the NRC within 30 days.
- B. The Special Report shall identify the cause(s) for exceeding the limit(s) and define the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

#### NOTE

The following step is applicable only if drinking water supply is taken from the receiving water.

C. The Special Report shall also include the results of radiological analyses of the drinking water and the radiological impact on finished drinking water supplies with regard to the requirements of Code of Federal Regulations, title 40 part 141.

### 5.11.4 Radioactive Gaseous Effluent Dose Report - Noble Gases

5.11.4.1 The Shift Supervisor shall be immediately notified and a Condition Report initiated whenever the following limiting condition for operation is exceeded:

The air dose due to noble gases released in gaseous effluents to areas at and beyond the site boundary shall be limited to the following:

- or less gamma radiation and to 10 mrad or less for beta radiation and
- b. During any calendar year, to 10 mrad or less for gamma radiation and to 20 mrad or less for beta radiation.
- A. A Special Report shall be prepared for submittal to the NRC within 30 days.
- B. The Special Report shall identify the cause(s) for exceeding the limit(s) and define the corrective actions that have been taken to reduce the releases and the proposed actions to be taken to assure that subsequent releases will be in compliance with the above limits.

#### 5.11.5 Radioactive Gaseous Dose Report Non-Noble Gases

5.11.5.1 The Shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever the following limited condition for operation is exceeded:

The dose to a member of the public from iodine-131, iodine-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at an beyond the site boundary shall be limited to the following:

- a. During any calendar quarter, to 7.5 mrem or less to any organ and
- During any calendar year, to 15 mrem or less to any organ.
- A. A Special Report shall be prepared for submittal to the NRC within 30 days.
- B. The Special Report shall identify the cause(s) for exceeding the limit(s) and define the corrective actions that have been taken to reduce the releases and subsequent releases will be in compliance with the above limits.

#### 5.11.6 Radioactive Effluent Dose Report - Uranium Fuel Cycle

5.11.6.1 The Shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever the following limiting condition for operation is exceeded:

The annual (calendar year) dose or dose commitment to any member of the public, due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to 25 mrem or less to the total body or any organ except the thyroid, which shall be limited to 75 mrem.

A. A Special Report shall be prepared for submittal to the NRC within 30 days.

- B. The Special Report shall define the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. The Special Report, as defined in 10 CFR Part 20.405c, shall include an analysis that estimates the radiation exposure (dose) to a member of the public from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations.
- C. If the estimated doses exceed the above limits, and if the release condition resulting in violation of 40CFR190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of Code of Federal Regulations, Title 40 Part 190.

### 5.11.7 Environmental Protection Agency Reportable Quantities

5.11.7.1 If any of ODCM specifications, 5.3.1, 5.3.2, 5.4.1, 5.4.2, or 5.4.3 have been exceeded, an evaluation of the Radioactivity released verses EPA Reportable Quantities (RQ's) shall be performed as soon as practical.

The shift Supervisor shall be immediately notified and a Condition Report promptly initiated whenever any radionuclide released over a 24 hour period is greater than or equal to the EPA RQ. Notification requirements shall be performed as per UNT-006-010, Event Evaluation and Reporting. Recipients of notification are: The National Response Center, the State Emergency Response Commission, and the Local Emergency Planning Committee. Methods for determination of reportability and the Reportable Quantities values for radionuclides are contained within 40CFR302.

#### 5.12 SECONDARY RELEASE PATHS

- 5.12.1 This section addresses potential release pathways which should not contribute more than 10% of the doses evaluated in this manual. The ODCM methodology for calculation of doses will be applied to an applicable release path of a likely potential arises for contributing more than 10% of the doses evaluated in this manual.
- 5.12.2 Secondary Release Paths are expected to release trivial quantities of radionuclides. Some examples of Secondary Release Paths are listed below:
  - Unmonitored Secondary System Steam Vents/Reliefs
  - Decon Shop/Hot Machine Shop Exhaust
  - · Turbine Building Ventilation Exhaust
  - Unmonitored Tank Atmospheric Vents
  - Radioactive Waste Compactor Building
  - Radioactive Waste Solidification Building
  - Cooling Tower Atmospheric Entrainment

### 6.0 ATTACHMENTS

Refer to Table of Contents

### SITE BOUNDARY FOR RADIOACTIVE GASEOUS AND LIQUID EFFLUENTS



# HISTORICAL AVERAGE DISPERSION AND DEPOSITION PARAMETERS FOR AREAS AT OR BEYOND THE UNRESTRICTED AREA BOUNDARY

ANNUAL AVERAGE ATMOSPHERIC DISPERSION AND DEPOSITION PARAMETERS BASED ON HISTORICAL METEOROLOGICAL DATA AND CURRENT LAND USE CENSUS

| Receptor Type or | Direction       | Sector   | Dis     | tance    | X/Q        | 0/9     |
|------------------|-----------------|----------|---------|----------|------------|---------|
| Location         | from Site       | Location | from    | Site     | No Decay   |         |
|                  |                 |          |         |          | Undepleted |         |
|                  |                 |          | (miles) | (meters) | (sec/m3)   | (1/m2)  |
| Site Boundary    | N <sup>th</sup> | A        | 0.8     | 1287     | 1.0e-05    | 2.4e-08 |
|                  | NNE             | 8        | 0.6     | 966      | 1.6e-05    | 3.4e-08 |
|                  | WE a            | C        | 0.6     | 966      | 1.5e-05    |         |
|                  | ENE &           | D        | 0.6     | 966      | 1.6e-05    | 2.8e-08 |
|                  | E               | 3        | 0.8     | 1287     | 6.9e-06    | 2.5e-08 |
|                  | ESE             |          | 0.6     | 966      | 1.1e-05    | 1.3e-08 |
|                  | SE              | G        | 0.6     | 966      | 1.1e-05    | 2.3e-08 |
|                  | 382             | н        | 0.8     | 1287     | 6.3e-06    | 3.1e-08 |
|                  | 5               | J        | 1.6     | 2575     |            | 2.4e-08 |
|                  | SSW             | K        | 3.1     | 4989     | 8.9e-07    | 2.7e-09 |
|                  | SW              |          | 3.4     | 5472     | 3.0e-07    | 7.9e-10 |
|                  | WSW .           | м        | 1.5     | 2414     | 3.3e-07    | 9.1e-10 |
|                  | N.              | N        | 1.0     |          | 1.7e-06    | 4.9e 09 |
|                  | WWW             | P        | 0.8     | 1609     | 2.3e-06    | 7.3e-09 |
|                  | NW              | 0        | 0.8     |          | 7.5e-06    | 2.7e-08 |
|                  | NWW             | R        | 0.9     | 1287     | 1.0e-05    | 3.2e-08 |
| esidence         |                 |          | 0.7     | 1448     | 9.6e-06    | 2.4e-08 |
| ESTORISCE        | И               | A        | 0.9     | 1448     | 7.8e-06    | 1.8e-08 |
|                  | NXE             | B        | 1.3     | 2092     | 3.0e-06    | 5.8e-09 |
|                  | NE              | C        | 0.9     | 1448     | 6.3e-06    | 1.2e-08 |
|                  | ENE             | D        | 0.9     | 1448     | 6.8e-06    | 1.1e-08 |
|                  | E               | E        | 2.2     | 3541     | 7.40-07    | 1.0e-09 |
|                  | ESE             | F        | 3.1     | 4989     | 3.7e-07    | 4.8e-10 |
|                  | \$E             | G        | 4.0     | 6437     | 2.3e-07    | 3.6e-10 |
|                  | W               | M        | 1.0     | 1609     | 2.3e-06    | 7.3e-09 |
|                  | WWW             | P        | 0.9     | 1448     | 5.6e-06    | 2.0e-08 |
|                  | NW              | 9        | 0.9     | 1448     | 7.7e-06    | 2.3e-08 |
|                  | NWW             | R        | 3.0     | 4828     | 7.7e-07    | 1.3e-09 |
| lk Cow           | MAD             | 0        | 0.9     | 1448     | 7.7e-06    | 2.3e-08 |
|                  | MW              | 9        | 4.9     | 7886     | 2.60-07    | 4.1e-10 |
| getable Garden   | N               | A        | 1.0     | 1609     | 6.1e-06    | 1.4e-08 |
|                  | HME             | 8        | 1.3     | 2092     | 3.De-06    | 5.8e-09 |
|                  | WE              | C        | 0.9     | 1448     | 6.3e-06    | 1.2e-08 |
|                  | EME             | D        | 0.9     | 1448     | 6.8e-06    | 1.1e-08 |
|                  | £               | E        | 2.2     | 3541     | 7.4e-07    | 1-0e-09 |
|                  | ESE             |          | 2.2     | 3541     | 7.0e-07    | 1.1e-09 |
|                  | 32              | G .      | 2.3     | 3701     | 6.2e-07    | 1.3e-09 |
|                  | WSW             | H        | 1.5     | 2414     | 1.7e-06    | 4.9e-09 |
|                  | . W             | K        | 1.1     | 1770     | 1.9e-06    | 5.7e-09 |
|                  | UNU             | p        | 0.9     | 1448     | 5.6e-06    | 2.De-08 |
|                  | MM              | Q        | 0.9     | 1448     | 7.7e-06    | 2.3e-08 |
|                  | NHW             | R        | 3.0     | 4828     | 7.74-06    | 1.3e-09 |
| ef Cow           | Ε               | Ε        | 3.2     | 5150     | 3.7e-07    | 4.2e-10 |
|                  | ESE             |          | 3.5     | 5633     | 3.0e-07    | 3.6e-10 |
|                  | SE              | 6        | 4.5     | 7242     | 1.9e-07    | 2.8e-10 |
|                  | WSW             | H        | 1.2     | 1931     | 2.7e-06    | 8.6e-09 |
|                  | WW              | P        | 0.9     | 1448     | 5.60-06    | 2.0e-08 |
|                  | WW              | G .      | 0.9     | 1448     | 7.7e-06    | 2.3e-08 |
|                  | NMW             | R        | 2.3     | 3701     | 1.3e-06    | 2.4e-09 |

Notes: <sup>a</sup> The site boundary in this sector is located over water. The location cannot be occupied continuously for the life of the plant.

b The animals at this location do not produce wilk for human consumption.

# SITE RELATED LIQUID INGESTION DOSE COMMITMENT FACTORS (A $_1$ ) FOR INDIVIDUAL NUCLIDES

AGE GROUP: ADULT

DISCHARGE POINT: CIRCULATING WATER (into Mississippi River)

| HUCT IDE |                      | T                    | ORGAN DOSE     | CONVERSION                              | N FACTORS |          |          |
|----------|----------------------|----------------------|----------------|-----------------------------------------|-----------|----------|----------|
|          | BOWE                 | LIVER                | T.BODY         | THYROID                                 | KIDMEY    | LUNG     | SI-LLI   |
| н-3      | 0.00E+00             | 2.66E-01             | 2 445 01       | 3 // 6                                  |           |          |          |
| C-14     | 3.13E+04             | 6.26E+03             |                |                                         |           |          |          |
| NA-24    | 4.08E+02             | 4.08E+02             |                |                                         |           |          |          |
|          |                      |                      | *********      | 4.08E+02                                | 4.08E+02  | 4.08E+02 | 4.08E+0  |
| P-32     | 4.62E+07             | 2.87E+06             | 1.79E+06       | 0.00E+00                                | 0.00E+00  | 0.000.00 | F 400.0  |
| CR-51    | 0.00E+00             | 0.00E+00             |                |                                         |           |          |          |
| MN-54    | 0.00E+00             | 4.38E+03             |                | 100000000000000000000000000000000000000 |           |          |          |
|          | *********            |                      |                | ********                                | ********  |          | 1.34E+04 |
| MW-56    | 0.00E+00             | 1.10E+02             | 1.95E+01       | 0.00E+00                                | 1.40E+02  | 0.00E+00 | 3.52E+03 |
| FE-55    | 6.59E+02             | 4.56E+02             | 1.06E+02       |                                         | 0.00E+00  | 2.54E+02 | 2.61E+02 |
| FE-59    | 1.04E+03             | 2.45E+03             | 9.38E+02       | 0.00E+00                                | 0.006+00  | 6.83E+02 | 8.15E+03 |
| *******  |                      | ******               |                |                                         | *******   | ******** |          |
| CO-58    | 0.00E+90             | 8.95E+01             | 2.01E+02       | 0.00E+00                                | 0.00E+00  | 0.005+00 | 1.81E+03 |
| 00-60    | 0.00E+00             | 2.57E+02             | 5.67E+02       | 0.00E+00                                | 0.00E+00  | 0.00E+00 | 4.83E+03 |
| 1-63     | 3.12E+04             | 2.16E+03             | 1.05E+03       | 0.00E+00                                | 0.00E+00  | 0.00E+00 | 4.51E+02 |
|          |                      | * - * *              |                |                                         |           |          |          |
| 11-65    | 1.27E+02             | 1.64E+01             | 7.51E+00       | 0.00E+00                                | 0.00E+00  | 0.005+00 | 4.17E+02 |
| 11-64    | 0.00E+00             | 1.00E+01             | 4.70E+00       | 0.00E+00                                | 2.52E+01  | 0.00E+00 | 8.53E+02 |
| N-65     | 2.32E+04             | 7.37E+04             | 3.33E+04       | 0.00E+00                                | 4.93E+04  | 0.00E+00 | 4.64E+04 |
| N-69     | / 075.04             |                      |                | *******                                 | *****     | ******   |          |
| R-83     | 4.93E+01             | 9.43E+01             | 6.56E+00       | 0.00E+00                                | 6.13E+01  | 0.008+00 | 1.42E+01 |
| R-84     | 0.00E+00             | 0.00E+00             | 4.04E+01       | 0.008+00                                | 0.00E+00  | 0.00£+00 | 5.82E+01 |
|          | 0.00E+00             | 0.008+00             | 5.24E+01       | 0.00E+00                                | 0.008+00  | 0.00E+00 | 4.11E-04 |
| R~85     | 0.000+00             | D DDE-00             |                | ********                                |           |          | ******   |
| B-86     | 0.00E+00<br>0.00E+00 | 0.00E+00             | 2.15E+00       | 0.00E+00                                | 0.00E+00  | 0.00E+00 | 0.00E+00 |
| 8-88     | 0.002+00             | 1.01E+05             | 4.71E+D4       | 0.00E+00                                | 0.00€+00  | 0.00E+00 | 1.99E+04 |
|          | ***********          | 2.90E+02             | 1.54E+02       | 0.00E+00                                | 0.00E+00  | C.00E+00 | 4.00E-09 |
| 8-89     | 0.006+00             | 1 020.02             | 4 750.00       |                                         |           |          |          |
| R-89     |                      | 1.92E+02<br>0.00E+00 | 1.35E+02       | 0.00E+00                                | 0.00E+00  | 0.00E+00 | 1.12E-11 |
| R-90     |                      | 0.006+00             | 6.388+02       | 0.00€+00                                | 0.00E+00  | 0.00E+00 | 3.57E+03 |
|          |                      | *********            | 1.34E+05       | 0.00E+00                                | 0.00E+00  | 0.00E+00 | 1.58E+04 |
| 1-91     | 4.09E+02             | 0.00E+00             | 1 655-01       | 0.000.00                                | 0 000 00  |          |          |
| 1-92     |                      |                      |                |                                         | 0.006+00  |          | 1.95E+03 |
| 90       | F 700                |                      |                |                                         |           | 0.00E+00 | 3.08E+03 |
|          |                      |                      |                | 0.00E+00                                | 0.008+00  | 0.DOE+00 | 6.14E+03 |
| 91M      | 5.47E-03 (           | 0.00E+00             | 2.12E-04       | 0.005+00                                | 0.000.00  |          | *******  |
| 91       | 8.49E+00 (           |                      |                |                                         |           |          | 1.61E-02 |
| 92       | F 800 00             | a areas and          | w branch force |                                         |           | 0.008+00 |          |
|          |                      | 1000                 | 1.47E-03       | 0.00E+00                                | 0.00E+00  | 0.00E+00 | 8.91F+02 |

Conversion factors are in units of mrem/hr per uCi/ml

# SITE RELATED LIQUID INGESTION DOSE COMMITMENT FACTORS (A;) FOR INDIVIDUAL NUCLIDES

AGE GROUP: ADULT

DISCHARGE POINT: CIRCULATING WATER (into Mississippi 21mer)

| MUCLIDE          |          |          | ORGAN DOSE            | CONVERSION | FACTORS  |          |                      |
|------------------|----------|----------|-----------------------|------------|----------|----------|----------------------|
|                  | BONE     | LIVER    | T. BODY               | THYROID    | KIDNEY   | LUNG     | CI-LLI               |
| Y-93             | 1.618-01 | 0.00E+00 | 4.46E-03              | 0.00E+00   | 0.00E+30 | 0.005+00 | E 130.03             |
| ZR-95            | 2.52E-01 |          |                       |            |          |          |                      |
| ZR-97            | 1.39E-02 | 2.81E-03 |                       |            |          | 0.006+00 | 2.56E+02<br>8.69E+02 |
| NB-95            | 4.47E+00 | 2.49E+00 | 1.34E+00              | 0.00E+00   | 2.46E+00 | 0.006+00 | 1 515+0/             |
| MO-99            | 0.00E+00 | 1.05E+02 | 1.99E+01              | 0.006+00   | 2.37E+02 | 0.00E+00 | 1.51E+04             |
| TC-99M           | 8.968-03 | 2.536-02 | 3.23E-01              | 0.00E+00   | 3.85E-01 | 1.24E-02 | 2.43E+02<br>1.50E+01 |
| rc-101           | 9.22E-03 | 1.33E-02 | 1.30E-01              | 0.00E+00   | 2.39E-01 | 4 70E 07 | T DOE: 47            |
| RU-103           | 4.50E+00 | 0.00E+00 | 1.94E+00              | 0.002+00   | 1.72E+01 | 6.79E-03 | 3.99E-14             |
| U-105            | 3.75E-01 | 0.006+00 | 1.48E-01              | 0.00E+00   | 4.84E+00 | 0.00E+00 | 5.25E+02<br>2.29E+02 |
| 11.504           | 4 400.04 |          | *******               |            | *****    | *******  |                      |
| U-106            | 6.69E+01 | 0.00E+00 | 8.46E+00              | 0.00E+00   | 1.29E+02 | 0.00E+00 | 4.33E+03             |
| G-110M<br>E-125M | 8.27E-01 | 7.65E-01 | 4.54E-01              | 0.002+00   | 1.50E+00 | 0.006+00 | 3.12E+02             |
|                  | 2.57E+03 | 9.30E+02 | 3.44E+02              | 7.72E+02   | 1.04E+04 | 0.008+00 | 1.03E+04             |
| E-127M           | 5.49E+03 | 2.32E+03 | 7.90E+02              | 1.666+03   | 2.63E+04 | 0.002+00 | 2.17E+04             |
| E-127            | 1.05E+02 | 3.78E+01 | 2.28E+01              | 7.81E+01   | 4.29E+02 | 0.00E+00 | 8.32E+03             |
| E-129M           | 1.10E+04 | 4.11E+03 | 1.74E+03              | 3.78£+03   | 4.60E+04 | 0.00E+00 | 5.55E+04             |
| E-129            | 3.01E+01 | 1.13E+01 | 7.33E+00              | 2.31E+01   | 1.26E+02 | 0.006+00 | 2 220.01             |
| E-131M           | 1.66E+03 | 8.10E+02 | 6.75E+0Z              | 1.28£+03   | 8.215+03 | 0.00E+00 | 2.27E+D1             |
| E-131            | 1.89E+01 | 7.88E+00 | 5.96E+00              | 1.55E+01   | 8.27E+01 | 0.00E+00 | 8.05E+04<br>2.67E+00 |
|                  |          |          | * * * * * * * * * * * |            | *******  |          |                      |
| -132             | 2.41E+03 | 1.56E+03 | 1.47E+03              | 1.72E+03   | 1.50E+04 | 0.00E+00 | 7.39E+04             |
| 130              | 2.74E+01 | 8.09E+01 | 3.19E+01              | 6.86E+03   | 1.26E+02 | 0.00E+00 | 6.97E+01             |
| 131              | 1.51E+02 | 2.16E+02 | 1.24E+02              | 7.08E+04   | 3.70E+0Z | 0.00E+00 | 5.70E+01             |
| 132              | 7.37E+00 | 1.97E+01 | 6.89E+00              | 6.89E+02   | 3.14E+01 | 0.00E+00 | 3.70E+00             |
| 133              | 5.15E+01 | 8.96E+01 | 2.73E+01              |            | 1.56E+02 | 0.00E+00 |                      |
| 134              | 3.85E+00 | 1.05E+01 |                       |            | 1.668+01 | 0.00E+00 | 9.11E-03             |
|                  | *******  | ******   | ********              | *******    | *******  |          | *******              |
| 135              | 1.616+01 | 4.21E+01 | 1.55E+01              | 2.78E+03   | 6.75E+01 | 0.00E+00 | 4.75E+01             |
| -134             | 2.98E+05 | 7.09E+05 | 5.79E+05              | 0.00E+00   | 2.29E+05 | 7.61E+04 | 1.24E+04             |
| 136              | 3.12E+04 | 1.23E+05 | 8.86E+04              | 0.00E+00   | 6.85E+04 | 9.39E+03 | 1.40E+04             |
|                  | *******  | *******  | ******                |            | ******** | ******** |                      |
| -137             | 3.82E+05 | 5.22E+05 | 3.42E+05              | 0.00E+00   | 1.77E+05 | 5.89E+04 | 1.01E+04             |
| -138             | 2.64E+02 | 5.ZZE+02 | 2.59E+02              | 0.00E+00   | 3.84E+02 | 3.79E+01 | 2.23E-03             |
| -139             | 9.66E-01 | 0.88E-04 | 2.83E-02              | 0.00E+00   | 6.43E-04 | 3.90E-04 | 1.71E+00             |
|                  |          | in units | *******               | *******    | ******   |          | ~ ~ ~ ~ ~ ~ ~ ~      |

Conversion factors are in units of mrem/hr per uCi/mi

# SITE RELATED LIQUID INGESTION DOSE COMMITMENT FACTORS (A1) FOR INDIVIDUAL NUCLIDES

AGE GROUP: ADULT

DISCHARGE POINT: CIRCULATING WATER (into Mississippi River)

| NUCLIDE |          | 0        | RGAN DOSE | CONVERSION | FACTORS  |          |                      |
|---------|----------|----------|-----------|------------|----------|----------|----------------------|
|         | BONE     | LIVER    | T.800Y    | THYROID    | KIDNEY   | LUNG     | GI-LLI               |
| BA-140  | 2.02E+02 | 2.54E-01 | 1.32E+01  | 0.00E+00   | 8.63E-02 | 1.45E-01 | 4.16E+07             |
| BA-141  | 4.69E-01 | 3.54E-04 | 1.58E-02  | 0.00E+D0   | 3.29E-04 | 2.01E-04 | 2.21E-10             |
| BA-142  | 2.12E-01 | 2.18E-04 | 1.33E-02  | 0.00€+00   | 1.84E-04 | 1.23E-04 | 2.99E-19             |
| LA-140  | 1.51E-01 | 7.59E-02 | 2.01E-02  | 0.006+00   | 0.00E+00 | 0.00E+00 | 5.57E+03             |
| LA-142  | 7.71E-03 | 3.51E-03 | 8.73E-04  | 0.00E+00   | 0.00E+00 | 0.00E+00 | 2.56E+01             |
| CE-141  | 2.59E-02 | 1.75E-02 | 1.99E-03  | 0.00E+00   | 8.15E-03 | 0.006+00 | 6.71E+01             |
| CE-143  | 4.57E-03 | 3.38E+00 | 3.74E-04  | 0.00E+00   | 1.49E-03 | 0.00E+00 | 1 245.00             |
| GE-144  | 1.35E+00 | 5.66E-01 | 7.26E-02  | 0.00E+00   | 3.35E-01 | 0.006+00 | 1.26E+02<br>4.57E+02 |
| PR-143  | 5.54E-01 | 2.22E-01 | 2.758-02  | 0.00E+00   | 1.28E-01 | 0.00E+00 | 2.43E+03             |
|         |          |          |           |            |          |          |                      |
| R-144   | 1.81E-03 | 7.53E-04 | 9.21E-05  | 0.00E+00   | 4.25E-04 | 0.00E+00 | 2.61E-10             |
| 10-147  | 3.79E-01 | 4.38E-01 | 2.62E-02  | 0.00E+00   | 2.56E-01 | 0.00E+00 | 2.10E+03             |
| -187    | 2.96E+02 | 2.47E+02 | 8.656+01  | 0.00E+00   | 0.00E+00 | 0.008+00 | 8.10E+04             |
| P-239   | 2.89E-02 | 2.85E-03 | 1.57E-03  | 0.00E+00   | 8.88E-03 | D.00E+00 | 5. <i>P</i> 4E+02    |

Conversion factors are in units of mrem/hr per uCi/mi

# SITE RELATED LIQUID INGESTION DOSE COMMITMENT FACTORS (Ai) FOR INDIVIDUAL NUCLIDES

AGE GROUP: ADULT

DISCHARGE POINT: ALL OTHERS (into 40 Arpent Canal)

| NUCLIDE |           |                | ORGAN DOSE           | CONVERSION | FACTORS   |           |                      |
|---------|-----------|----------------|----------------------|------------|-----------|-----------|----------------------|
|         | BONE      | LIVER          | 7.800Y               | THYROID    | KIDNEY    | LUNG      | GI-LLI               |
| H-3     | 0.00E+00  | 8.96E+00       | 8.968+00             | 8.96E+00   | 8 045+00  | 9.045.00  |                      |
| C-14    | 3.15E+04  | 6.30E+03       |                      |            |           |           |                      |
| NA-24   | 5.486+02  | 5.48E+02       |                      |            |           |           | 6.30E+0              |
| P-32    | 4.62E+07  | 2.87E+06       | 1.79E+06             | 0.00E+00   | 0.00E+00  | 0.00E+00  | E 200.00             |
| CR-51   | 0.00E+00  | 0.00E+00       | 1.49E+00             | 8.946-01   | 3.29E-01  | 1.98E+00  | 5.20E+06             |
| MN-54   | 0.00E+00  | 4.76E+03       | 9.08E+02             | 0.00E+00   | 1.42E+03  | 0.00E+00  | 3.76E+0;             |
| MN-56   | 0.00E+00  | 1 205+02       | 2 425.04             |            |           |           |                      |
| FE-55   | 8-87E+02  | 1.20E+02       | 2.12E+01             | 0.00E+00   | 1.52E+02  | 0.00E+00  | 3.82E+03             |
| E-59    | 1.40E+03  | 6.13E+02       | 1.43E+02             | 0.00E+00   | 0.00E+00  | 3.42E+02  | 3.52E+02             |
|         | ********* | 3.29E+03       | 1.26£+03             | 0.00E+00   | 0.00E+00  | 9.19E+02  | 1.10E+04             |
| 0-58    | 0.00E+00  | 1.51E+02       | 3.39E+02             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 7 045-03             |
| 06-00   | 0.00E+00  | 4.34E+02       | 9.58E+02             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 3.06E+03             |
| 11-63   | 4.19E+04  | 2.91E+03       | 1.41E+03             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 8.16E+03<br>6.07E+02 |
| ******  | ********* |                | ******               |            | *******   | ********* |                      |
| 1-65    | 1.70E+02  | 2.21E+01       | 1.016+01             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 5.616+02             |
| U-64    | 0.00E+00  | 1.695+01       | 7.93E+00             | 0.00E+00   | 4.26E+01  | 0.00E+00  | 1.44E+03             |
| N-65    | 2.36E+04  | 7.50E+04       | 3.39E+04             | 0.00E+00   | 5.02E+04  | 0.00E+00  | 4.73E+04             |
| N-69    | 5.02E+01  | 9.60E+01       | 4 47c.nn             | 0.000.00   |           | *******   | *******              |
| R-83    | 0.00E+00  | 0.00E+00       | 6.67E+00<br>4.38E+01 | 0.00E+00   | 6.24E+01  | 0.005+00  | 1.44E+01             |
| R-84    | 0.00E+00  | 0.00E+00       | 5.67E+01             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 6.30E+01             |
|         |           | *******        | 7.0/ETU1             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 4.45E-04             |
| R-85    | 0.006+00  | 0.00E+00       | 2.33E+00             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 0.006+00             |
| 8-86    | 0.00E+00  | 1.03E+05       | 4.79E+04             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 2.036+04             |
| 8-88    | 0.00E+00  | 2.956+02       | 1.56E+02             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 4.07E-09             |
|         | ******    |                |                      |            |           |           | ******               |
| 3-89    | 0.00E+00  | 1.95E+02       | 1.37E+02             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 1.13E-11             |
| -89     | 4.78E+04  | 0.00E+00       | 1.37E+03             | 0.00E+00   | 0.006+00  | 0.00E+00  | 7.66E+03             |
| -90     | 1.18E+06  | 0.00E+00       | 2.88E+05             | 0.00E+00   | 0.00E+00  | 0.00E+00  | 3.40E+04             |
| -91     | 0 700 00  |                |                      |            |           |           |                      |
| -92     | 8.79E+02  | 0.00E+00       | 3.55E+01             | 0.00E+00   | 0.00E+D0  | 0.002+00  | 4.19E+03             |
| 90      |           |                |                      | 0.00€+00   |           | 0.0GE+00  | 6.60E+03             |
| ******* | 1.38E+00  | 0.DOE+00       | 3.69E-02             | D.00E+00   | 0.00E+00  | 0.00E+00  | 1.46E+04             |
| 91H     | 1.30E-02  | 0.00E+00       | 5 0/5-0/             | 0.005-00   | 0 000 00  |           |                      |
| 91      |           |                |                      |            | 0.00E+00  |           | 3.82E-02             |
| 92      |           |                |                      |            | 0.000+00  |           | 1.11E+04             |
|         |           | - Corner Toron | 3.53E-03             | 4-00E+00   | U. DUE+00 | U.UUE+00  | 2.12E+03             |

conversion factors are in units of mrem/hr per uCi/ml

### SITE RELATED LIQUID INGESTION DOSE COMMITMENT FACTORS (A;) FOR INDIVIDUAL NUCLIDES

AGE GROUP: ADULT

DISCHARGE POINT: ALL OTHERS (into 40 Arpent Canal)

| 3.83E-01<br>2.77E+00<br>1.53E-01 | 0.00E+00<br>8.88E-01                                                                                                                                                                                                                                                             | 1.800Y                                                                                                                                                                                                                                                                                                                                                                                                                        | THYROID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KIDNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SI-FFI   |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.77E+00                         | the second relative                                                                                                                                                                                                                                                              | 1.06E-02                                                                                                                                                                                                                                                                                                                                                                                                                      | PARTY CHIEF CHIEF CONTROL CONT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 2.77E+00                         | the second relative                                                                                                                                                                                                                                                              | 11100                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.22E+0  |
| 1.53E-01                         |                                                                                                                                                                                                                                                                                  | 6.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.39E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.82E+0  |
|                                  | 3.09E-02                                                                                                                                                                                                                                                                         | 1.41E-02                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.67E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.57E+0  |
| 4.988+00                         | 2.77E+00                                                                                                                                                                                                                                                                         | 1.49E+00                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.74E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.68£+0  |
| 0.002+00                         | 4.52E+02                                                                                                                                                                                                                                                                         | 8.79E+01                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.07E+0  |
| 2.94E-02                         | 8.32E-02                                                                                                                                                                                                                                                                         | 1.06E+00                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.26E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.07E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.92E+0  |
| 3.03E-02                         | 4.36E-02                                                                                                                                                                                                                                                                         | 4.28E-01                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.85E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.23E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.31E-1  |
| 1.98E+01                         | 0.00E+00                                                                                                                                                                                                                                                                         | 8.54E+00                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.57E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.31E+0  |
| 1.65E+00                         | 0.00E+00                                                                                                                                                                                                                                                                         | 6.52E-01                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00€+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.13E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.01E+0  |
| 2.95E+02                         | 0.00E+00                                                                                                                                                                                                                                                                         | 3.73E+01                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.69E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.91E+0  |
| 1.41E+01                         | 1.30E+01                                                                                                                                                                                                                                                                         | 7.74E+00                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.56E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.32E+0  |
| 2.79E+03                         | 1.01E+03                                                                                                                                                                                                                                                                         | 3.74E+02                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.39E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.11E+0  |
| 7.05E+03                         | 2.52E+03                                                                                                                                                                                                                                                                         | 8 50F+02                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 80F+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 RAF+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.36E+0  |
| 1.14E+02                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.03E+0  |
| 1.20E+04                         | 4.47E+03                                                                                                                                                                                                                                                                         | 1.89E+03                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.11E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00€+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.03E+0  |
| 7 770.01                         | 1 270.54                                                                                                                                                                                                                                                                         | 7 04.00                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                  |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.47E+0  |
|                                  |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.74E+0  |
|                                  | 0.372+00                                                                                                                                                                                                                                                                         | D.4/E+00                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0YE+U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.906+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.90E+0  |
| 2.62E+03                         | 1.70E+03                                                                                                                                                                                                                                                                         | 1.59E+03                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.87E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.63E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.02E+0  |
| 9.01E+01                         | 2.668+02                                                                                                                                                                                                                                                                         | 1.05E+02                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.25E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.15E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.29E+0  |
| 4.96E+02                         | 7.09€+02                                                                                                                                                                                                                                                                         | 4.06E+02                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.32E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.22E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.87E+0  |
| 2.42E+01                         | 6.47E+01                                                                                                                                                                                                                                                                         | 2.265+01                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.26E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.03F+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.22E+0  |
| 1.69E+02                         |                                                                                                                                                                                                                                                                                  | 8.97E+01                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.646+0  |
| 1.26E+01                         |                                                                                                                                                                                                                                                                                  | 1.23E+01                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 5.28E+01                         | 1.38£+02                                                                                                                                                                                                                                                                         | 5.10F+01                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.11F+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 225+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00F+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.56E+0  |
|                                  |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 3.17E+04                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                  | 5.31F+05                                                                                                                                                                                                                                                                         | 3.48F+05                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.80F+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.995+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.03E+0  |
|                                  |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                  |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                  | 0.00E+00<br>2.94E-02<br>3.03E-02<br>1.98E+01<br>1.65E+00<br>2.95E+02<br>1.41E+01<br>2.79E+03<br>1.14E+02<br>1.20E+04<br>3.27E+01<br>1.80E+03<br>2.05E+01<br>2.62E+03<br>9.01E+01<br>4.96E+02<br>1.26E+01<br>1.69E+02<br>1.26E+01<br>3.38E+01<br>3.38E+05<br>2.69E+02<br>9.00E+00 | 0.00E+00 4.32E+02 2.94E-02 8.32E-02 3.03E-02 4.36E-02 1.98E+01 0.00E+00 1.65E+00 0.00E+00 1.65E+01 1.30E+01 2.79E+03 1.01E+03 7.05E+03 2.52E+03 1.14E+02 4.11E+01 1.20E+04 4.47E+03 3.27E+01 1.23E+01 1.80E+03 8.81E+02 2.05E+01 8.57E+00 2.62E+03 1.70E+03 9.01E+01 2.66E+02 4.96E+02 7.09E+02 1.26E+01 3.43E+01 1.69E+02 2.94E+02 1.26E+01 1.38E+02 3.03E+05 7.21E+05 3.17E+04 1.25E+05 3.88E+05 5.31E+02 9.00E+00 6.41E-03 | 0.00E+00 4.32E+02 8.79E+01 2.94E-02 8.32E-02 1.06E+00 3.03E-02 4.36E-02 4.28E-01 1.98E+01 0.00E+00 8.54E+00 1.65E+00 0.00E+00 6.52E-01 2.95E+02 0.00E+00 3.73E+01 1.41E+01 1.30E+01 7.74E+00 2.79E+03 1.01E+03 3.74E+02 7.05E+03 2.52E+03 8.59E+02 1.14E+02 4.11E+01 2.48E+01 1.20E+04 4.47E+03 1.89E+03 3.27E+01 1.23E+01 7.96E+00 1.80E+03 8.81E+02 7.34E+02 2.05E+01 8.57E+00 6.47E+00 2.62E+03 1.70E+03 1.59E+03 9.01E+01 2.66E+02 1.05E+02 4.96E+02 7.09E+02 4.06E+02 2.42E+01 6.47E+01 2.26E+01 1.69E+02 2.94E+02 8.97E+01 1.26E+01 3.43E+01 1.23E+01 5.28E+01 1.38E+02 5.10E+01 3.03E+05 7.21E+05 5.89E+05 3.17E+04 1.25E+05 9.01E+04 3.88E+05 5.31E+02 2.63E+02 9.00E+00 6.41E-03 2.64E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E+00 4.32E+02 8.79E+01 0.00E+00 2.94E-02 8.32E-02 1.06E+00 0.00E+00 3.03E-02 4.36E-02 4.28E-01 0.00E+00 1.98E+01 0.00E+00 8.54E+00 0.00E+00 1.65E+00 0.00E+00 6.52E-01 0.00E+00 2.95E+02 0.00E+00 3.73E+01 0.00E+00 1.41E+01 1.30E+01 7.74E+00 0.00E+00 2.79E+03 1.01E+03 3.74E+02 8.39E+02 7.05E+03 2.52E+03 8.59E+02 1.80E+03 1.14E+02 4.11E+01 2.48E+01 8.48E+01 1.20E+04 4.47E+03 1.89E+03 4.11E+03 3.27E+01 1.23E+01 7.96E+00 2.51E+01 1.80E+03 8.81E+02 7.34E+02 1.39E+03 2.05E+01 8.57E+00 6.47E+00 1.69E+01 2.62E+03 1.70E+03 1.59E+03 1.87E+03 9.01E+01 2.66E+02 1.05E+02 2.25E+04 4.96E+02 7.09E+02 4.06E+02 2.32E+05 2.42E+01 6.47E+01 2.26E+01 2.26E+03 1.69E+02 2.94E+02 8.97E+01 4.32E+04 1.26E+01 3.43E+01 1.23E+01 5.94E+02 5.28E+01 1.38E+02 5.10E+01 9.11E+03 3.03E+05 7.21E+05 5.89E+05 0.00E+00 3.17E+04 1.25E+05 9.01E+04 0.00E+00 2.69E+02 5.31E+02 2.63E+02 0.00E+00 9.00E+00 6.41E-03 2.64E-01 0.00E+00 | 2.94E-02 8.32E-02 1.06E+00 0.00E+00 1.26E+00 2.94E-02 8.32E-02 1.06E+00 0.00E+00 1.26E+00 3.03E-02 4.36E-02 4.28E-01 0.00E+00 7.85E-01 1.98E+01 0.00E+00 8.54E+00 0.00E+00 7.57E+01 1.65E+00 0.00E+00 6.52E-01 0.00E+00 2.13E+01 2.95E+02 0.00E+00 3.73E+01 0.00E+00 5.69E+02 1.41E+01 1.30E+01 7.74E+00 0.00E+00 2.56E+01 2.79E+03 1.01E+03 3.74E+02 8.39E+02 1.13E+04 7.05E+03 2.52E+03 8.59E+02 1.80E+03 2.86E+04 1.14E+02 4.11E+01 2.48E+01 8.48E+01 4.66E+02 1.20E+04 4.47E+03 1.89E+03 4.11E+03 5.00E+04 7.05E+03 8.81E+02 7.34E+02 1.39E+03 8.92E+03 2.05E+01 8.57E+00 6.47E+00 1.69E+01 8.98E+01 1.37E+02 1.80E+03 8.81E+02 7.34E+02 1.39E+03 8.92E+03 2.05E+01 8.57E+00 6.47E+00 1.69E+01 8.98E+01 1.63E+04 4.96E+02 7.09E+02 4.06E+02 2.32E+05 1.22E+03 1.69E+02 2.94E+02 8.97E+01 4.32E+04 5.13E+02 1.69E+02 2.94E+02 8.97E+01 4.32E+04 5.13E+02 1.26E+01 3.43E+01 1.23E+01 5.94E+02 5.46E+01 1.23E+01 1.23E+01 5.94E+02 5.46E+01 1.23E+01 1.23E+01 5.94E+02 5.46E+01 1.23E+01 5.94E+02 5.36E+01 1.23E+04 5.33E+05 3.03E+05 7.21E+05 5.89E+05 0.00E+00 2.33E+05 3.17E+04 1.25E+05 9.01E+04 0.00E+00 6.97E+04 3.88E+05 5.31E+05 3.48E+05 0.00E+00 1.80E+05 2.69E+02 5.31E+05 3.48E+05 0.00E+00 1.80E+05 2.69E+02 5.31E+05 3.48E+05 0.00E+00 5.99E+03 9.00E+00 6.41E-03 2.64E-01 0.00E+00 5.99E-03 9.00E+00 6.41E-03 2.64E-01 0.00E+00 5.99E-03 | 0.00E+00 |

Conversion factors are in units of mrem/hr per uCi/ml

# SITE RELATED LIQUID INGESTION DOSE COMMITMENT FACTORS (A $_1$ ) FOR INDIVIDUAL NUCLIDES

AGE GROUP: ADULT

DISCHARGE POINT: ALL OTHERS (into 40 Arpent Canel)

| NUCLIDE |          | 0         | ORGAN DOSE CONVERSION FACTORS |          |          |                      |                      |  |  |  |  |
|---------|----------|-----------|-------------------------------|----------|----------|----------------------|----------------------|--|--|--|--|
| BON     | BONE     | LIVER     | T.BODY                        | THYROID  | KIDMEY   | LUNG                 | GI-LLI               |  |  |  |  |
| BA-140  | 1.88E+03 | 2.37E+00  | 1.23E+02                      | 0.00E+00 | 8.05E-01 | 1 755.00             | 7 600 00             |  |  |  |  |
| BA-141  | 4.37E+00 | 3.308-03  | 1.48E-01                      | 0.00E+00 | 3.07E-03 | 1.35E+00<br>1.87E-03 | 3.88E+03             |  |  |  |  |
| BA-142  | 1.98E+00 | 2.035-03  | 1.248-01                      | 0.00E+00 | 1.72E-03 | 1.15E-03             | 2.78E-18             |  |  |  |  |
| LA-140  | 3.58E-01 | 1.80E-01  | 4.76E-02                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 1 720.04             |  |  |  |  |
| LA-142  | 1.83E-02 | 8.33E-03  | 2.07E-03                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 1.32E+04<br>6.08E+01 |  |  |  |  |
| CE-141  | 8.01E-01 | 5.42E-01  | 6.15E-02                      | 0.00E+00 | 2.52E-01 | 0.00E+00             | 2.07E+03             |  |  |  |  |
| PF-4/9  |          | *******   | *******                       |          |          |                      |                      |  |  |  |  |
| CE-143  | 1.41E-01 | 1.04E+02  | 1.16E-02                      | 0.006+00 | 4.60E-02 | 0.00E+00             | 3.90E+03             |  |  |  |  |
| CE-144  | 4.18E+01 | 1.75E+01  | 2.24E+00                      | 0.002+00 | 1.04E+01 | 0.00E+00             | 1.41E+04             |  |  |  |  |
| PR-143  | 1.32E+00 | 5.288-01  | 6.52E-02                      | 0.008+00 | 3.05E-01 | 0.00E+00             | 5.77E+03             |  |  |  |  |
| PR-144  | 4.31E-03 | 1.79E-03  | 2.196-04                      | 0.005.00 |          | ********             |                      |  |  |  |  |
| D-147   | 9.00E-01 | 1.04E+00  | 6.22E-02                      | 0.006+00 | 1.01E-03 | 0.006+00             | 6.19E-10             |  |  |  |  |
| 1-187   | 3.04E+02 | 2.55E+02  |                               | 0.00E+00 | 6.08E-01 | 0.00E+00             | 4.99E+03             |  |  |  |  |
|         |          | ********* | 8.906+01                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 8.34E+04             |  |  |  |  |
| IP-239  | 1.28E-01 | 1.25E-02  | 6.91E-03                      | 0.006+00 | 3.91E-02 | 0.00E+00             | 2.57E+03             |  |  |  |  |

Conversion factors are in units of mrem/hr per uCi/ml

### DOSE FACTORS FOR EXPOSURE TO A SEMI-INFINITE CLOUD OF NOBLE GASES

| Nuclide | β-air*(N <sub>i</sub> ) | $\beta$ -Skin**( $L_1$ ) | γ-air*(M <sub>j</sub> ) | γ-Body**(K <sub>i</sub> ) |
|---------|-------------------------|--------------------------|-------------------------|---------------------------|
| Kr-83m  | 2.88E-04                |                          | 1.93E-05                | 7.56E-08                  |
| Kr-85m  | 1.97E-03                | 1.46E-03                 | 1.23E-03                | 1.17E-03                  |
| Kr-85   | 1.95E-03                | 1.34E-03                 | 1.72E-05                | 1.61E-05                  |
| Kr-87   | 1.03E-02                | 9.73E-03                 | 6.17E-03                | 5.92E-03                  |
| Kr-88   | 2.93E-03                | 2.37E-03                 | 1.52E-02                | 1.47E-02                  |
| Kr-89   | 1.06E-02                | 1.01E-02                 | 1.73E-02                | 1.66E-02                  |
| Kr-90   | 7.83E-03                | 7.29E-03                 | 1.63E-02                | 1.56E-02                  |
| Xe-131m | 1.11E-03                | 4.76E-04                 | 1.56E-04                | 9.15E-05                  |
| Xe-133m | 1.48E-03                | 9.94E-04                 | 3.27E-04                | 2.51E-04                  |
| Xe-133  | 1.05E-03                | 3.06E-04                 | 3.53E-04                | 2.94E-04                  |
| Xe-135m | 7.39E-04                | 7.11E-04                 | 3.36E-03                | 3.12E-03                  |
| Xe-135  | 2.46E-03                | 1.86E-03                 | 1.92E-03                | 1.81E-03                  |
| Xe-137  | 1.27E-02                | 1.22E-02                 | 1.51E-03                | 1.42E-03                  |
| Xe-138  | 4.75E-03                | 4.13E-03                 | 9.21E-03                | 8.83E-03                  |
| Ar-41   | 3.28E-03                | 2.69E-03                 | 9.30E-03                | 8.84E-03                  |
|         |                         |                          |                         |                           |

<sup>\*</sup>  $\frac{mrad - m^3}{pCi - yr}$ 

\* \* 
$$\frac{mrem - m^3}{pCi - yr}$$

Extracted from Table B-1 of Regulatory Guide 1.109, Revision 1, 1977

# INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: INHALATION

AGE GROUP: ADULT ( 1 OF 3 )

| MUCLIDE |                      |            | ORGAN D   | OSE CONVER | SION FACTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS       |                      |
|---------|----------------------|------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
|         | BONE                 | LIVER      | T.800Y    | THYROID    | KIDNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUNG     | GI-LLI               |
| н-3     | 0.00E+00             | 1.26E+03   | 1.26E+03  | 1 745.00   | 1 2/5-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |
| C-14    | 1.82E+04             |            |           |            | A CONTRACTOR OF THE PARTY OF TH |          | 2                    |
| NA-24   | 1.02E+04             |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 2 2 2 2 2 2          |
|         |                      | ******     | *******   | *********  | T.OSETON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02E+04 | 1.02E+04             |
| P-32    | 1.32E+06             | 7.71E+04   | 5.01E+04  | 0.00E+00   | 0.008+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0 4/6-0/             |
| CR-51   | 0.008+00             | 0.00E+00   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| MN-54   | 0.00E+00             | 3.96E+04   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3.32E+03<br>7.74E+04 |
|         | ********             |            |           |            | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ******** |                      |
| MM-56   | 0.005+00             | 1.24E+00   | 1.83E-01  | 0.00E+00   | 1.30E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.44E+03 | 2.02E+04             |
| FE-55   | 2.46E+04             | 1.70E+04   | 3.94E+03  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.21E+04 | 6.03E+03             |
| FE-59   | 1.18£+04             | 2.788+04   | 1.06E+04  | 0.006+00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.028+06 | 1.88E+05             |
|         | *                    |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| 00-58   | 0.00E+00             | 1.58E+03   | 2.07E+03  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.28E+05 | 1.06E+05             |
| 00-60   | 0.00E+00             | 1.15E+04   | 1.48E+04  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.97E+06 | 2.85E+05             |
| 11-63   | 4.32E+05             | 3.14E+04   | 1.45E+04  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.78E+05 | 1.348+04             |
|         |                      |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | *******              |
| 11-65   | 1.54E+00             | 2.10E-01   | 9.12E-02  | 0.006+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.60E+03 | 1.23E+04             |
| U-64    | 0.00E+00             | 1.466+00   | 6.15E-01  | 0.00E+00   | 4.62E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.78E+03 | 4.90E+04             |
| M-65    | 3.248+04             | 1.03E+05   | 4.66E+04  | 0.00E+00   | 6.90E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.64E+05 | 5.34E+04             |
| W-40    | * /                  | ********   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |
| N-69    | 3.46E-02             | 6.51E-02   | 4.52E-03  | 0.005+00   | 4.22E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.20E+02 | 1.63E+01             |
| R-83    | 0.00E+00             | 0.006+00   | 2.41E+02  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002+00 | 2.32E+02             |
| R-84    | 0.00£+00             | 0.00E+00   | 3.13E+02  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.64E-03             |
| R-85    |                      | ******     | ********  |            | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *******  |                      |
| 8-86    | 0.00E+00             | 0.00E+00   | 1.28E+01  | 0.006+00   | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0.00E+00             |
|         | 0.00€+00             | 1.35E+05   | 5.90E+04  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.66E+04             |
| 8-88    | 0.00E+00             | 3.87E+02   | 1.93E+02  | 0.006+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002+00 | 3.34E-09             |
| 8~89    | 0.000.00             |            |           |            | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *******  | ******               |
| 1-89    | 0.00E+00             | 2.56E+02   | 1.70E+02  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00£+00 | 9.28E-12             |
| -90     | 3.04E+05             | 0.006+00   | 8.72E+03  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.40E+06 | 3.50E+05             |
|         | 7.455+01             | U.00E+00   | 6.108+06  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.60E+06 | 7.22E+05             |
| -91     | 6 100401             | 0.000.00   | 5 FAR- 10 |            | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ******   | *****                |
| -92     | 6.19E+01             | 0.000+00   | 2.50E+00  | 0.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.65E+04 | 1.91E+05             |
| 90      | 6.74E+00<br>2.09E+03 | 0.005+00   | Z.Y1E-01  | U.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.65E+04 | 4.30E+04             |
|         | 2.09E+03             | 0.00E+00   | 2.016+01  | U.00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.70E+05 | 5.06E+05             |
| 91M     | 2.61F-D1             | 0.005+00   | 1 026 02  | 0 000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *******  |                      |
| 91      | 2.61E-D1<br>4.62E+05 | 0.000+00   | 1 3/5-02  | U.UUE+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.92E+03 | 1.33E+00             |
| 92      | 4.62E+05<br>1.03E+01 | 0.000+00   | 3 025 04  | 0.008+00   | U.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.70E+06 | 3.85E+05             |
|         |                      | U. UUE *UU | 3.UZE-01  | U-00E+00   | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.57F+04 | 7 355+04             |

# INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: INHALATION AGE GROUP: ADULT ( 2 OF 3 )

| NUCL 1DE |                      | ORGAN DOSE CONVERSION FACTORS |          |          |           |           |          |  |  |  |  |  |
|----------|----------------------|-------------------------------|----------|----------|-----------|-----------|----------|--|--|--|--|--|
|          | BONE                 | LIVER                         | T.800Y   | THYROID  | KIDNEY    | LUNG      | GI-LLI   |  |  |  |  |  |
| Y - 93   | 9,44E+01             | 0.005.00                      |          |          |           |           |          |  |  |  |  |  |
| ZR-95    |                      |                               |          |          |           | 4.85E+04  | 4.22E+0  |  |  |  |  |  |
| ZR-97    | 1.07E+05<br>9.68E+01 |                               |          |          |           |           |          |  |  |  |  |  |
| *******  | 7.005*01             | 1.96E+01                      | 9.04E+00 | 0.00E+00 | 2.97E+01  | 7.87E+04  | 5.232+0  |  |  |  |  |  |
| NB-95    | 1.41E+04             | 7.82E+03                      | / 240.04 | 0.000.00 |           | *******   | *******  |  |  |  |  |  |
| MO-99    | 0.00E+00             |                               |          |          |           |           | 1.04E+05 |  |  |  |  |  |
| TC-99M   | 1.03E-03             |                               |          | 0.00E+00 |           |           | 2.48E+05 |  |  |  |  |  |
|          | **********           | 2.918-03                      | 3.70E-02 | 0.00E+00 | 4.42E-02  | 7-64E+02  | 4.16E+03 |  |  |  |  |  |
| TC-101   | 4.18E-05             | 6.02E-05                      | 5.90E-04 | 0.005.00 |           |           | ******** |  |  |  |  |  |
| RU-103   | 1.53E+03             | 0.00E+00                      |          | 0.00E+00 | 1.088-03  |           | 1.09E-11 |  |  |  |  |  |
| RU-105   | 7.90E-01             | 0.002+00                      |          | 0.00E+00 | 5.83E+03  |           | 1.10E+05 |  |  |  |  |  |
|          |                      | *********                     | 3.11E-01 | 0.00E+00 | 1.02E+00  | 1.10E+04  | 4.82E+04 |  |  |  |  |  |
| RU-106   | 6.91E+04             | 0.00E+00                      | 8.72E+03 | 0.056+00 | 1 7/5-05  | 0.745.04  |          |  |  |  |  |  |
| 4G-110H  | 1.08E+04             | 1.00E+04                      | 5.94E+03 | 0.00E+00 | 1.34E+05  | 9.36E+06  | 9.12E+05 |  |  |  |  |  |
| E-125M   | 3.42E+03             | 1.58E+03                      | 4.67E+02 |          | 1.97E+04  | 4.63E+06  | 3.02E+05 |  |  |  |  |  |
| ******   |                      |                               |          | 1.05E+03 | 1.24E+04  | 3.14E+05  | 7.06E+04 |  |  |  |  |  |
| E-127M   | 1.266+04             | 5.77E+03                      | 1.57E+03 | 3.29E+03 | 4.58E+04  | 0 405+06  | 1 505.05 |  |  |  |  |  |
| E-127    | 1.40E+00             | 6.42E-01                      | 3.10E-01 | 1.06E+00 | 5.10E+00  | 9.60E+05  | 1.50E+05 |  |  |  |  |  |
| E-129M   | 9.76E+03             | 4.67E+03                      | 1.58E+03 | 3.440+03 | 3.66E+04  | 6.51E+03  | 5.74E+04 |  |  |  |  |  |
|          | *******              |                               | *******  | *******  | ********* | 1.16E+06  | 3.83E+05 |  |  |  |  |  |
| E-129    | 4.98E-02             | 2.39E-02                      | 1-24E-02 | 3.90E-02 | 1.87E-01  | 1.94E+03  | 1.57E+02 |  |  |  |  |  |
| E-131M   | 6.99E+01             | 4.36E+01                      | 2.90E+01 | 5.50E+01 | 3.09E+02  | 1.46E+05  | 5.56E+05 |  |  |  |  |  |
| E-131    | 1.11E-02             | 5.95E-03                      | 3.59E-03 | 9.36E-03 | 4.37E-02  | 1.39E+03  | 1.84E+01 |  |  |  |  |  |
|          |                      |                               |          | ******** | ********  | ********* | 1-045-01 |  |  |  |  |  |
| E-132    | 2.60E+02             | 2.15E+02                      | 1.62E+02 | 1.90E+02 | 1.46E+03  | 2.88E+05  | 5.10E+05 |  |  |  |  |  |
| -130     | 4.58E+03             | 1.34E+04                      | 5.28E+03 | 1.14E+06 | 2.09E+04  | 0.006+00  | 7.69E+03 |  |  |  |  |  |
| -131     | 2.52E+04             | 3.58E+04                      | 2.05E+04 | 1.19E+07 | 6.13E+04  | 0.00E+00  | 6.28E+03 |  |  |  |  |  |
| ******   | *******              |                               |          |          |           |           |          |  |  |  |  |  |
| -132     | 1.16E+03             | 3.26E+03                      | 1.16E+03 | 1.14E+05 | 5.18E+03  | 0.00E+00  | 4.06E+02 |  |  |  |  |  |
| - 133    | 8.64E+03             | 1.48E+04                      |          |          |           | 0.00E+G0  |          |  |  |  |  |  |
| 134      | 6.446+02             | 1.73E+03                      | 6.15E+02 | 2.98E+04 | 2.75E+03  | 0.00E+00  | 1.035+00 |  |  |  |  |  |
|          |                      | *********                     |          |          |           |           |          |  |  |  |  |  |
| 135      | 2.68E+03             | 6.98E+03                      | 2.57E+03 | 4.48E+05 | 1.11E+04  | 0.00E+00  | 5 25E+03 |  |  |  |  |  |
| -134     | 3.73E+05             | 8.48E+05                      | 7.288+05 | 0.00E+00 | 2.80E+05  | 9.765+04  | 1.04F+04 |  |  |  |  |  |
| -136     | 3.905+04             | 1.46E+05                      | 1.10E+05 | 0.00E+00 | 8.56E+04  | 1.20E+04  | 1.17E+04 |  |  |  |  |  |
|          |                      |                               |          |          |           |           | *******  |  |  |  |  |  |
| -137     | 4.78E+05             | 6.21E+05                      | 4.28E+05 | 0.00E+00 | 2.22E+05  | 7.52E+04  | 8.40F+03 |  |  |  |  |  |
| 130      | 3+315+05             | 6.21E+02                      | 3.24E+02 | 0.00E+00 | 4.80F+02  | 4 RAEAD1  | T BAC-NY |  |  |  |  |  |
| -139     | 9.36F-01             | 6.66E-04                      | 2.74E-02 | 0.00E+00 | 6.22E-04  | 3.76E+03  | 8 965+02 |  |  |  |  |  |
|          |                      | ******                        |          |          |           |           |          |  |  |  |  |  |

### INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: INHALATION

AGE GROUP: ADULT ( 3 OF 3 )

| NUCLIDE |            |          | ORGAN DOS | SE CONVERS | ON FACTOR | S        |          |
|---------|------------|----------|-----------|------------|-----------|----------|----------|
|         | BONE       | LIVER    | T.BODY    | THYROID    | KIDNEY    | LUNG     | GI-LLI   |
| BA-140  | 3.90E+04   | 4.90E+01 | 2.57E+03  | 0.006+00   | 1.67E+01  | 1.27E+06 | 2.18E+05 |
| BA-141  | 1.00E-01   | 7.53E-05 | 3.36E-03  | 0.00E+00   | 7.00E-05  | 1.94E+03 | 1.16E-07 |
| BA-142  | 2.63E-02   | 2.70E-05 | 1.66E-03  | 0.00E+00   | 2.29E-05  | 1.19E+03 | 1.57E-16 |
|         |            |          |           |            |           |          |          |
| LA-140  | 3.44E+02   | 1.74E+02 | 4.58E+01  | 0.00E+00   | 0.00E+00  | 1.36E+05 | 4.58E+05 |
| LA-142  | 6.83E-01   | 3.10E-01 | 7.72E-02  | 0.00E+00   | 0.00E+00  | 6.33E+03 | 2.11E+03 |
| CE-141  | 1.99E+04   | 1.35E+04 | 1.53E+03  | 1.00E+00   | 6.26E+03  | 3.628+05 | 1.20E+05 |
|         |            | ******   |           |            |           |          | ******   |
| CE-143  | 1.86£+02   | 1.38E+02 | 1.53E+01  | 0.00E+00   | 6.08E+01  | 7.98E+04 | 2.26E+05 |
| CE-144  | 3.43E * 06 | 1.43E+06 | 1.84E+05  | 0.00E+00   | 8.48E+05  | 7.78E+06 | 8.16E+05 |
| PR-143  | 9.36E+03   | 3.75E+03 | 4.64E+02  | 0.00E+00   | 2.16E+03  | 2.81E+05 | 2.00E+05 |
| PR-144  | 3.01E-02   | 1.256-02 | 1.53E-03  | 0.00E+00   | 7.05E-03  | 1.02E+03 | 2.15E-08 |
| ND-147  | 5.27E+03   | 6.10E+03 | 3.65E+02  | 0.006+00   | 3.56€+03  | 2.21E+05 | 1.73E+05 |
| W-187   | 8.486+00   | 7.08E+00 | 2.48E+00  | 0.00E+00   | 0.00E+00  | 2.905+04 | 1.55£+05 |
| NP-239  | 2.30E+02   | 2.26E+01 | 1.24E+01  | 0.002+00   | 7.00E+01  | 3.76E+04 | 1.19E+05 |

# INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: INHALATION
AGE GROUP: TEEN ( 1 OF 3 )

| NUCLIDE |                                         |             | ORGAN D   | OSE CONVER | SION FACTO                              | DRS        |          |
|---------|-----------------------------------------|-------------|-----------|------------|-----------------------------------------|------------|----------|
|         | BONE                                    | LIVER       | T.800Y    | THYROID    | KIDNEY                                  | LUNG       | 31-FF1   |
| w . 3   |                                         |             |           |            |                                         |            |          |
| N-3     | 0.00E+0                                 | 1.000       | 1.27E+03  | 1.27E+0    | 3 1.27E+0                               | 3 1.27E+03 | 1.27E+0  |
| C-14    | 2.60E+04                                |             | 4-87E+03  | 4.87E+03   | 4.87E+0                                 | 3 4.87E+03 |          |
| NA-24   | 1.38E+04                                | 1.38E+04    | 1.38E+04  | 1.38E+04   | 1.38E+04                                | 4 1.38E+04 | 1.38E+0  |
| P-32    | 1.89£+06                                | 1.10€+05    | 7 148-04  |            | ********                                |            |          |
| CR-51   | 0.00E+00                                |             |           |            |                                         |            |          |
| HN-54   | 0.00E+00                                |             |           |            |                                         |            |          |
|         | *********                               | ********    | 8.40£+03  | 0.006+00   | 1.27E+04                                | 1.98E+06   | 6.68E+04 |
| MN-56   | 0.006+00                                | 1.7DE+00    | 2.52E-01  | 0.00E+00   | 1.79E+00                                | 1 500.00   |          |
| FE-55   | 3.34E+04                                |             | 5.54E+03  | 0.00E+00   |                                         |            | 5.74E+04 |
| FE-59   | 1.596+01                                | 3.705+04    | 1.43E+04  | 0.00E+00   | 200000000000000000000000000000000000000 |            | 6.39E+03 |
|         |                                         | *******     |           | *******    | *********                               | 1.53E+06   | 1.78E+05 |
| 00-58   | 0.006+00                                | 2.07E+03    | 2.78E+03  | 0.00E+00   | 0.00€+00                                | 1.34E+06   | 0 596.00 |
| 00-60   | 0.00E+00                                | 1.51E+04    | 1.98E+04  | 0.00E+00   | 0.00E+00                                | 8.72E+06   | 9.52E+04 |
| 11-63   | 5.80E+05                                | 4.34E+04    | 1.98E+04  | 0.00E+00   | 0.00E+00                                | 3.07E+05   | 2.59E+05 |
| ******* |                                         |             |           |            |                                         |            | 1.42E+04 |
| 11-65   | 2.18E+00                                | 2.93E-01    | 1.27E-01  | 0.00F+00   | 0.00E+00                                | 9.36E+03   | 3.67E+04 |
| U-64    | 0.00E+00                                | 2.03E+00    | B.48E-01  | 0.00E+00   | 6.41E+00                                | 1.11E+04   | 6.14E+04 |
| N-65    | 3.86E+04                                | 1.34E+05    | 6.24E+04  | 0.00E+00   | 8.64E+04                                | 1.24E+06   | 4.66E+04 |
|         | ********                                | *******     |           | *******    |                                         | *********  |          |
| N-69    | 4.83E-02                                | 9.20E-02    | 6.46E-03  | 0.00E+00   | 6.02E-02                                | 1.586+03   | 2.85E+02 |
| R-83    | 0.00E+00                                | 0.006+00    | 3.44E+02  | 0.00E+00   | 0.00E+00                                | 0.00E+00   | 0.00E+00 |
| R-84    | 0.00E+00                                | 0.00E+00    | 4.33E+02  | 0.00E+00   | 0.00E+00                                | 0.00E+00   | 0.00E+00 |
|         | ********                                | *******     |           |            |                                         | ********   | *******  |
| R-85    | 0.00E+00                                | 0.00E+00    | 1.83E+01  | 0.00E+00   | 0.00E+00                                | 0.00E+00   | 0.00E+00 |
| 8-86    | 0.00E+00                                | 1.90E+05    | 8.40E+04  | 0.00E+00   | 0.00E+00                                | 0.00E+00   | 1.77E+04 |
| 8-88    | 0.00E+00                                | 5.46E+02    | 2.72E+02  | 0.00E+00   | 0.00E+00                                | 0.00E+00   | 2.92E-05 |
| -80     |                                         | *******     | *******   |            |                                         |            |          |
| 3-89    | 0.00£+00                                | 3.52E+02    | 2.33E+02  | 0.00E+00   | 0.00E+00                                | 0.00E+00   | 3.38E-07 |
| 1-89    | 4.348+05                                | 0.006+00    | 1.25E+04  | 0.00E+00   | 0.00E+00                                | 2.42E+06   | 7 715+05 |
| - 90    | 1.08E+08                                | 0.00E+00    | 6.68E+06  | 0.00E+00   | 0.00E+00                                | 1.65E+07   | 7.65E+05 |
|         |                                         |             | *****     | ********   |                                         |            |          |
| -92     | 8.80E+01                                | 0.00E+00    | 3.51E+00  | 0.00E+00   | 0.00E+00                                | 6.07E+04   | 2.59E+05 |
|         | *************************************** | U. UUE +UU  | 4. UGE-01 | 0.00E+00   | 0.00E+00                                | 2 745+04   | 1 100405 |
|         | 2.98E+03                                | U.DUE+00    | 8.00E+01  | 0.00E+00   | 0.00E+00                                | 2.93E+05   | 5.59E+05 |
|         |                                         |             | ******    | ********   |                                         |            |          |
|         | 3.70E-01                                | 0.00E+00    | 1.4ZE-02  | 0.00E+00   | 0.00E+00                                | 3.20E+03   | 3.02E+01 |
|         | 0.015.03                                | U. UUE * UU | 1.77E+04  | 0.00E+00   | 0.00E+00                                | 2 045+04   | / DOE-DE |
| -       | 1.47E+01                                | U.UUE+00    | 4.29E-01  | 0.00E+00   | D DOEADO                                | 9 /05-5/   |          |

### INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: INHALATION
AGE GROUP: TEEN ( 2 OF 3 )

| NUCLIDE       |                      | ORGAN DOSE CONVERSION FACTORS |                      |                      |                      |                      |                      |  |  |
|---------------|----------------------|-------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|
|               | BONE                 | LIVER                         | 7.800Y               | THYROID              | KIDNEY               | LUNG                 | GI-LLI               |  |  |
| Y-93          | 1,35E+02             | 0.00E+00                      | 3.72E+00             | 0.006+00             | 0.00E+00             | 8.32E+04             | 5.79E+0              |  |  |
| ZR-95         | 1.46E+05             | 4.58E+04                      | 3.15E+04             | 0.00E+00             | 6.74E+04             | 2.69E+06             | 1.49E+0              |  |  |
| 28-97         | 1.38E+02             | 2.72E+01                      | 1.26E+01             | 0.00E+00             | 4.12E+01             | 1.30E+05             | 6.30E+0              |  |  |
| NB-95         | 1.86E+04             | 1.03E+04                      | 5.66E+03             | 0.00E+00             | 1.00E+04             | 7.51E+05             | 9.68E+0              |  |  |
| MO-99         | 0.00E+00             | 1.69E+02                      | 3.22E+01             | 0.002+00             | 4.11E+02             | 1.54E+05             | 2.69E+0              |  |  |
| TC-99M        | 1.38E-03             | 3.868-03                      | 4.99E-02             | 0.00E+00             | 5.76E-02             | 1.15E+03             | 6.13E+0              |  |  |
| TC-101        | 5.92E-05             | 8.40E-05                      | 8.24E-04             | 0.00E+00             | 1.52E-03             | 6.67E+02             | 8.72E-0              |  |  |
| RU-103        | 2.10E+03             | 0.00E+00                      | 8.96E+02             | 0.006+00             | 7.43E+03             | 7.83E+05             | 1.092+0              |  |  |
| RU-105        | 1.12E+00             | 0.00E+00                      | 4.34E-01             | 0.00E+00             | 1.41E+00             | 1.82E+04             | 9.04E+04             |  |  |
| RU-106        | 9.84E+04             | 0.00E+00                      | 1.24E+04             | 0.00E+00             | 1.90E+05             | 1.61E+07             | 9.60E+0              |  |  |
| AG-110H       | 1.38E+04             | 1.31E+04                      | 7.99E+03             | 0.00E+00             | 2.50E+04             | 6.75E+06             | 2.73E+0              |  |  |
| TE-125M       | 4.88E+03             | 2.24E+03                      | 6.67E+02             | 1.406+03             | 0.00E+00             | 5.36E+05             | 7.50E+04             |  |  |
| TE-127W       | 1 805+04             | 6 145-07                      | 4 300.03             |                      |                      |                      |                      |  |  |
| TE-127        | 1.80E+04<br>2.01E+00 | 8.16E+03                      | 1.78E+03             | 4.38E+03             | 6.54E+04             | 1.66E+06             | 1.59E+0              |  |  |
| TE-129M       | 1.39E+04             | 9.12E-01<br>6.58E+03          | 4.42E-01<br>2.25E+03 | 1.42E+00<br>4.58E+03 | 7.28E+00<br>5.19E+04 | 1.12E+04<br>1.98E+06 | 8.08E+04<br>4.05E+05 |  |  |
|               |                      | ******                        | *****                |                      |                      |                      | ******               |  |  |
| E-129         | 7.10E-02             | 3.38E-02                      | 1.76E-02             | 5.18E-02             | 2.66E-01             | 3.30E+03             | 1.626+03             |  |  |
| E-131M        | 9.84E+01             | 6.01E+01                      | 4.02E+01             | 7.25E+01             | 4.39E+02             | 2.38E+05             | 6.21E+05             |  |  |
| E-131         | 1.58E-02             | 8.32E-03                      | 5.04E-03             | 1.24E-02             | 6.18E-02             | 2.34E+03             | 1.51E+01             |  |  |
| E-132         | 3.60E+02             | 2.90E+02                      | 2.19E+02             | 2.46E+02             | 1.95E+03             | 4.49E+05             | / 470 and            |  |  |
| -130          | 6.24E+03             | 1.79E+04                      | 7.17E+03             | 1.49E+06             | 2.75E+04             | 0.00E+00             | 4.63E+05<br>9.12E+03 |  |  |
| -131          | 3.548+04             | 4.91E+04                      | 2.64E+04             | 1.46E+07             | 8.40E+04             | 0.006+00             | 6.49E+03             |  |  |
| *****         |                      | * * * * * * * * * *           |                      |                      |                      |                      |                      |  |  |
| -132          | 1.59E+03             | 4.38E+03                      | 1.58E+03             | 1.51E+05             | 6.92E+03             | 0.008+00             | 1.27E+03             |  |  |
| -133          | 1.22E+04             | 2.05E+04                      | 6.22E+03             | 2.92E+06             | 3.59E+04             | 0.006+00             | 1.038+04             |  |  |
| -134          | 8.88E+02             | 2.32E+03                      | 8.40E+02             | 3.95E+94             | 3.66E+03             | 0.00E+00             | 2.04E+01             |  |  |
| .176          | 7 700.03             | A                             | * 150.00             |                      |                      |                      |                      |  |  |
| -135<br>S-134 |                      |                               | 3.49E+03             |                      |                      |                      |                      |  |  |
| S-136         |                      |                               | 5.49E+05             |                      |                      | 1.46E+05             |                      |  |  |
|               | 5.15E+04             |                               | 1.37E+05             | U.UUE+00             | 1.10E+05             | 1.78E+04             | 1.09E+04             |  |  |
| s-137         |                      |                               | 3.11E+05             | 0.005+00             | 3 046406             | 1 215405             | 8 /85+03             |  |  |
| s-138         |                      |                               | 4.46E+02             |                      |                      |                      |                      |  |  |
| A-139         |                      | 9.44E-04                      |                      |                      |                      |                      |                      |  |  |

### INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: INHALATION

AGE GROUP: TEEN ( 3 OF 3 )

| MUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |          |          |          |          |          |  |  |  |
|---------|-------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|         | BONE                          | LIVER    | T.800Y   | THYROID  | KIDNEY   | LUNG     | GI-LLI   |  |  |  |
| BA-140  | 5.47E+04                      | 6.70E+01 | 3.52E+03 | 0.00E+00 | 2.28£+01 | 2.03E+06 | 2.29E+05 |  |  |  |
| BA-141  | 1.428-01                      | 1.06E-04 | 4.74E-03 | 0.00E+00 | 9.848-05 | 3.29E+03 | 7.46E-04 |  |  |  |
| BA-142  | 3.70E-02                      | 3.70E-05 | 2.27E-03 | 0.00E+00 | 3.14E-05 | 1.916+03 | 4.79E-10 |  |  |  |
| LA-140  | 4.79E+02                      | 2.36E+02 | 6.26E+01 | 0.00E+00 | 0.00E+00 | 2.14E+05 | 4-87E+05 |  |  |  |
| LA-142  | 9-60E-01                      | 4.25E-01 | 1.06E-01 | 0.00E+00 | 0.00E+00 | 1.02E+04 | 1.20E+04 |  |  |  |
| CE-141  | 2.84E+04                      | 1.90E+04 | 2.17E+03 | 0.00E+00 | 8.88E+03 | 6.14E+05 | 1.26E+05 |  |  |  |
| CE-143  | 2.66E+02                      | 1.94E+02 | 2.16E+01 | 0.006+00 | 8.64E+01 | 1.30E+05 | 2.55E+05 |  |  |  |
| CE-144  | 4.89E+06                      | 2.02E+06 | 2.62E+05 | 0.00E+00 | 1.21E+06 | 1.348+07 | 8.64E+05 |  |  |  |
| PR-143  | 1.34E+04                      | 5.31E+03 | 6.62E+02 | 0.006+00 | 3.09E+03 | 4.83E+05 | 2.14E+05 |  |  |  |
| PR-144  | 4.30E-02                      | 1.76E-02 | 2.18E-03 | 0.00E+00 | 1.01E-02 | 1.75E+03 | 2.35E-04 |  |  |  |
| ND-147  | 7.86E+03                      | 8.56E+03 | 5.138+02 | 0.008+00 | 5.02E+03 | 3.72E+05 | 1.82E+05 |  |  |  |
| V-187   | 1.20E+01                      | 9.76E+00 | 3.43E+00 | 0.00E+00 | 0.008+00 | 4.74E+04 | 1.77E+05 |  |  |  |
|         |                               | *******  | ******   |          |          | *****    |          |  |  |  |
| NP-239  | 3.38E+02                      | 3.19E+01 | 1.77E+01 | 0.00E+00 | 1.00E+02 | 6.498+04 | 1.32E+05 |  |  |  |

### INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, Ri

PATHWAY: INHALATION

AGE GROUP: CHILD ( 1 OF 3 )

| NUCLIDE |                      |                      | ORGAN DO             | SE CONVERS           | ION FACTOR           |                      |                    |  |  |  |  |
|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|--|--|--|--|
|         | BONE                 | LIVER                | T.BODY               | THYROID              | KIDNEY               | LUNG                 | SI-LLI             |  |  |  |  |
| н-3     | 0.005+00             | 1 125.07             | 1 120 02             |                      |                      |                      |                    |  |  |  |  |
| C-16    | 0.00E+00<br>3.59E+04 | 1.12E+03<br>6.73E+03 | 1.12E+03             | 1.12E+03             | 1.12E+03             | 1.126+03             | 1.12E+0            |  |  |  |  |
| NA-24   | 1.61E+04             | 1.616+04             | 6.73E+03<br>1.61E+04 | 6.73E+03<br>1.61E+04 | 6.73E+03<br>1.61E+04 | 6.73E+03<br>1.61E+04 | 6.73E+0<br>1.61E+0 |  |  |  |  |
| P-32    | 2.60E+06             | 1.14E+05             | 9.88E+04             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 4.22E+0            |  |  |  |  |
| CR-51   | 0.00E+00             | 0.00E+00             | 1.54E+02             | 8.55E+01             | 2.43E+01             | 1.70E+04             | 1.08E+0            |  |  |  |  |
| MN-54   | 0.00E+00             | 4.29E+04             | 9.51E+03             | 0.00E+00             | 1.00E+04             | 1.58E+06             | 2.296+0            |  |  |  |  |
|         |                      |                      | *******              |                      |                      |                      |                    |  |  |  |  |
| MN-56   | 0.00E+00             | 1.66E+00             | 3.12E-01             | 0.008+00             | 1.67E+00             | 1.315+04             | 1.23E+0            |  |  |  |  |
| FE-55   | 4.74E+04             | 2.52E+04             | 7.77E+03             | 0.00E+00             | 0.00E+00             | 1.11E+05             | 2.87E+0            |  |  |  |  |
| FE-59   | 2.07E+04             | 3.34E-04             | 1.67E+04             | 0.00E+00             | 0.00E+00             | 1.27E+06             | 7.07E+0            |  |  |  |  |
| 00-58   | 0.000.00             | 4 770.44             | *                    | ********             | *******              | ****                 | *****              |  |  |  |  |
| 00-60   | 0.00E+00             | 1.77E+03             | 3.16E+03             | 0.00E+00             | 0.00E+00             | 1.11E+06             | 3.44E+0            |  |  |  |  |
| 11-63   | 8.21E+05             | 1.31E+04<br>4.63E+04 | 2.26E+04<br>2.80E+04 | 0.00€+00             | 0.006+00             | 7.07E+06             | 9.62E+0            |  |  |  |  |
| ******* |                      | ********             | E-OVE-DH             | 0.00E+00             | 0.00E+00             | 2.75E+05             | 6.33E+0            |  |  |  |  |
| 11-65   | 2.99E+00             | 2.96E-01             | 1.64E-01             | 0.00E+00             | 0.00E+00             | 8.18E+03             | 8.40E+04           |  |  |  |  |
| U-64    | 0.00E+00             | 1.99E+00             | 1.07E+00             | 0.00E+00             | 6.03E+00             | 9.58E+03             | 3.67E+04           |  |  |  |  |
| N-65    | 4.26E+04             | 1.13E+05             | 7.03E+04             | 0.00E+00             | 7.14E+04             | 9.95E+05             | 1.63E+04           |  |  |  |  |
|         | ********             |                      | ******               | ********             |                      |                      |                    |  |  |  |  |
| N-69    | 6.70E-02             | 9.66E-02             | 8.92E-03             | 0.006+00             | 5.858-02             | 1.42E+03             | 1.02E+04           |  |  |  |  |
| 18-83   | 0.00E+00             | 0.00E+00             | 4.74E+02             | 0.00E+00             | 0.00E+00             | 0.006+00             | 0.00E+00           |  |  |  |  |
| IR-84   | 0.00E+00             | 0.00E+00             | 5.48E+02             | 0.008+00             | 0.00E+00             | 0.00E+00             | 0.00E+00           |  |  |  |  |
| R-85    | 0.605.00             | 0.000.00             |                      | ********             | *******              | ********             |                    |  |  |  |  |
| 8-86    | 0.00E+00             | 0.00E+00             | 2.53E+01             | 0.00E+00             | 0.008+00             | 0.00E+00             | 0.00E+00           |  |  |  |  |
| 8-88    | 0.00E+00             | 1.98E+05<br>5.62E+02 | 1.14E+05             | 0.00€+00             | 0.00E+00             | 0.00E+00             | 7.99E+03           |  |  |  |  |
| ******* |                      | *********            | 3.66E+02             | 0.00E+00             | 0.00E+00             | 0.00£+00             | 1.72E+01           |  |  |  |  |
| 8-89    | 0.00E+00             | 3.45E+02             | 2.90E+02             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 1.89E+00           |  |  |  |  |
| R-89    | 5.99E+05             | 0.00E+00             | 1.72E+04             | 0.00E+00             | 0.000+00             | 2.16E+06             | 1.67E+05           |  |  |  |  |
| R-90    | 1.01E+08             | 0.00E+00             | 6.44E+06             |                      |                      | 1.488+07             |                    |  |  |  |  |
|         | ********             | *******              |                      |                      |                      | *******              |                    |  |  |  |  |
| R-91    | 1.21E+02             | 0.002+00             | 4.59E+00             | 0.00E+00             | 0.006+00             | 5.33E+04             | 1.74E+05           |  |  |  |  |
| 8-92    | 1.31E+01             |                      | 5.25E-01             |                      |                      | 2.408+04             |                    |  |  |  |  |
| -90     | 4.11E+03             | 0.00E+00             | 1.11E+02             | 0.00E+00             | 0.00E+00             | 2.62E+05             | 2.685+05           |  |  |  |  |
|         |                      |                      | *******              | *******              |                      |                      |                    |  |  |  |  |
| -91M    |                      |                      |                      |                      |                      | 2.81E+03             |                    |  |  |  |  |
| -91     | 9.14E+05             |                      |                      | 0.002+00             |                      | 2.63E+06             |                    |  |  |  |  |
| -92     | 2.04E+01             | n.00E+00             | 5.81E-01             | 0.00E+00             | 0.00E+00             | 2.39E+04             | 2.39E+05           |  |  |  |  |

# INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, ${\rm R}_{\rm T}$

PATHWAY: INHALATION

AGE GROUP: CHILD ( 2 OF 3 )

| ZR-95 1.5 ZR-97 1.8 ZR-101 8.1 ZR-103 2.7 ZR-105 1.5 ZRU-105 1.5 ZRU-105 1.5 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-107 1.6 ZRU-108 1.6 ZRU-1 | 86E+02<br>P0E+05<br>88E+02<br>35E+04<br>35E+04<br>30E+00<br>3E+03<br>3E+00<br>6E+05<br>9E+04<br>1<br>3E+03<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00<br>4.18E+04<br>2.72E+01<br>9.18E+03<br>1.72E+02<br>3.48E-03<br>0.00E+00<br>0.00E+00<br>0.00E+00            | 5.11E+00<br>3.70E+04<br>1.60E+01<br>6.55E+03<br>4.25E+01<br>5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03<br>9.14E+02 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                     | 5.96E+04<br>3.88E+01<br>8.62E+03<br>3.92E+02<br>5.07E-02                                                             | 2.23E+06<br>1.13E+05<br>6.14E+05                                                                                     | 6.11E+04<br>3.51E+09<br>3.70E+04<br>1.27E+05<br>4.81E+03<br>1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| ZR-95 1.5 ZR-97 1.8 ZR-97 1.8 NB-95 2.3 MO-99 0.0 TC-99M 1.7 TC-101 8.1 RU-103 2.7 RU-105 1.5 RU-106 1.3 AG-110H 1.6 TE-125M 6.7 TE-127 2.7 TE-129M 1.9 TE-129 9.77 E-131M 1.34 E-131 2.17 E-132 4.81 -130 8.18 -131 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POE+05 88E+02 35E+04 90E+00 78E-03 36E+00 00E+00 00E+000 00E+00 00E+000 00E+000 00E+000 00E+00000000 | 4.18E+04<br>2.7ZE+01<br>9.18E+03<br>1.7ZE+02<br>3.48E-03<br>3.51E-05<br>0.00E+00<br>0.00E+00<br>1.14E+04<br>3.3E+03 | 3.70E+04<br>1.60E+01<br>6.55E+03<br>4.25E+01<br>5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                         | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 5.96E+04<br>3.88E+01<br>8.62E+03<br>3.92E+02<br>5.07E-02<br>1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04 | 2.23E+06<br>1.13E+05<br>6.14E+05<br>1.35E+05<br>9.51E+02<br>5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06 | 6.11E+04<br>3.51E+09<br>3.70E+04<br>1.27E+05<br>4.81E+03<br>1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05 |
| ZR-95 1.5 ZR-97 1.8 ZR-101 8.1 ZR-103 2.7 ZR-105 1.5 ZRU-105 1.5 ZRU-105 1.5 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-106 1.3 ZRU-107 1.6 ZRU-108 1.6 ZRU-1 | POE+05 88E+02 35E+04 90E+00 78E-03 36E+00 00E+00 00E+000 00E+00 00E+000 00E+000 00E+000 00E+00000000 | 4.18E+04<br>2.7ZE+01<br>9.18E+03<br>1.7ZE+02<br>3.48E-03<br>3.51E-05<br>0.00E+00<br>0.00E+00<br>1.14E+04<br>3.3E+03 | 3.70E+04<br>1.60E+01<br>6.55E+03<br>4.25E+01<br>5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                         | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 5.96E+04<br>3.88E+01<br>8.62E+03<br>3.92E+02<br>5.07E-02<br>1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04 | 2.23E+06<br>1.13E+05<br>6.14E+05<br>1.35E+05<br>9.51E+02<br>5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06 | 6.11E+04<br>3.51E+09<br>3.70E+04<br>1.27E+05<br>4.81E+03<br>1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05 |
| ZR-97 1.8  NB-95 2.3  MO-99 0.0  TC-99M 1.7  TC-101 8.1  RU-103 2.7  RU-105 1.5  RU-106 1.3  AG-110M 1.6  TE-125M 6.7  TE-127 2.7  TE-129M 1.9  E-131 1.34  E-131 2.17  E-132 4.81  -130 8.18  -131 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35E+04 5<br>35E+04 5<br>30E+00 7<br>3E-03 3<br>3E+03 0<br>3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.72E+01<br>9.18E+03<br>1.72E+02<br>3.48E-03<br>8.51E-05<br>0.00E+00<br>0.00E+00<br>14E+04<br>1.33E+03              | 1.60E+01<br>6.55E+03<br>4.25E+01<br>5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 8.62E+03<br>3.92E+02<br>5.07E-02<br>1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04                         | 1.13E+05<br>6.14E+05<br>1.35E+05<br>9.51E+02<br>5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06             | 3.51E+0! 3.70E+04 1.27E+05 4.81E+03 1.63E+01 4.48E+04 9.95E+04 4.29E+05 1.00E+05                                     |
| NB-95 2.3 MO-99 0.0 TC-99M 1.7 TC-101 8.1 RU-103 2.7 RU-105 1.5 RU-106 1.3 AG-110N 1.6 TE-125M 6.7 TE-127 2.7 TE-129N 1.9 TE-129 9.77 TE-131M 1.34 TE-131 2.17 TE-132 4.81 TE-130 8.18 TE-131 4.81 TE-132 4.81 TE-132 4.81 TE-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00E+00 178E-03 2<br>00E-05 8<br>79E+03 0<br>3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.72E+02<br>3.48E-03<br>3.51E-05<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>14E+04<br>3.3E+03                           | 4.25E+01<br>5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                                                             | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00             | 3.92E+02<br>5.07E-02<br>1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04                                     | 1.35E+05<br>9.51E+02<br>5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06                                     | 1.27E+05<br>4.81E+03<br>1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05                                     |
| MO-99 0.0 TC-99M 1.7 TC-101 8.1 RU-103 2.7 RU-105 1.5 RU-106 1.3 AG-110H 1.6 TE-125M 6.7 TE-127W 2.41 TE-127 2.77 TE-129W 1.92 TE-131 1.34 E-131 2.17 E-132 4.81 -130 8.18 -131 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00E+00 178E-03 2<br>00E-05 8<br>79E+03 0<br>3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.72E+02<br>3.48E-03<br>3.51E-05<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>14E+04<br>3.3E+03                           | 4.25E+01<br>5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                                                             | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00             | 3.92E+02<br>5.07E-02<br>1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04                                     | 1.35E+05<br>9.51E+02<br>5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06                                     | 1.27E+05<br>4.81E+03<br>1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05                                     |
| TC-99M 1.7 TC-101 8.1 RU-103 2.7 RU-105 1.5 RU-106 1.3 AG-110H 1.6 IE-125M 6.7 IE-127M 2.41 IE-127 2.77 IE-129W 1.92 IE-131 1.34 IE-131 2.17 IE-132 4.81 IE-130 8.18 IE-131 4.81 IE-132 2.12 IE-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78E-03 2<br>10E-05 8<br>79E+03 0<br>3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.48E-03<br>3.51E-05<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>14E+04<br>33E+03                                        | 5.77E-02<br>1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                                                                         | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                         | 5.07E-02<br>1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04                                                 | 9.51E+02<br>5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06                                                 | 4.81E+03<br>1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05                                                 |
| RU-103 2.7 RU-105 1.5 RU-106 1.3 AG-110H 1.6 IE-125M 6.7 IE-127W 2.4 IE-127 2.7 IE-129W 1.9 IE-131 1.34 IE-131 2.17 IE-132 4.81 IE-130 8.18 IE-131 4.81 IE-132 2.12 IE-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9E+03 0<br>3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E+00<br>0.00E+00<br>0.00E+00<br>14E+04<br>1.33E+03                                                              | 1.08E-03<br>1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                                                                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                     | 1.45E-03<br>7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04                                                             | 5.85E+02<br>6.62E+05<br>1.59E+04<br>1.43E+07<br>5.48E+06                                                             | 1.63E+01<br>4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05                                                             |
| RU-103 2.7 RU-105 1.5 RU-106 1.3 AG-110H 1.6 IE-125M 6.7 IE-127W 2.4 IE-127 2.7 IE-129W 1.9 IE-131 1.34 IE-131 2.17 IE-132 4.81 IE-130 8.18 IE-131 4.81 IE-132 2.12 IE-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9E+03 0<br>3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E+00<br>0.00E+00<br>0.00E+00<br>14E+04<br>1.33E+03                                                              | 1.07E+03<br>5.55E-01<br>1.69E+04<br>9.14E+03                                                                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                     | 7.03E+03<br>1.34E+00<br>1.84E+05<br>2.12E+04                                                                         | 6.62£+05<br>1.59E+04<br>1.43E+07<br>5.48£+06                                                                         | 4.48E+04<br>9.95E+04<br>4.29E+05<br>1.00E+05                                                                         |
| RU-105 1.5  RU-106 1.3  AG-110H 1.6  IE-125M 6.7  IE-127M 2.6  IE-127 2.7  IE-129M 1.9  IE-131M 1.36  IE-131 2.17  IE-132 4.81  IE-130 8.18  IE-131 4.81  IE-132 2.12  IE-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3E+00 0<br>6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00E+00<br>0.00E+00<br>.14E+04<br>.33E+03                                                                          | 5.55E-01<br>1.69E+04<br>9.14E+03                                                                                                             | 0.00E+00<br>0.00E+00<br>0.00E+00                                                 | 1.34E+00<br>1.84E+05<br>2.12E+04                                                                                     | 1.59E+04<br>1.43E+07<br>5.48E+06                                                                                     | 9.95E+04<br>4.29E+05<br>1.00E+05                                                                                     |
| RU-106 1.3<br>G-110H 1.6<br>(E-125M 6.7<br>(E-127M 2.4)<br>(E-127 2.7)<br>(E-129M 1.9)<br>(E-129M 1.9)<br>(E-131M 1.34<br>(E-131 2.17<br>(E-131 4.81<br>(E-131 4.81<br>(E-131 4.81)<br>(E-131 4.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6E+05 0<br>9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00E+00<br>.14E+04<br>.33E+03                                                                                       | 1.69E+04<br>9.14E+03                                                                                                                         | 0.00E+00<br>0.00E+00                                                             | 1.84E+05<br>2.12E+04                                                                                                 | 1.43E+07<br>5.48E+06                                                                                                 | 4.29E+05<br>1.00E+05                                                                                                 |
| AG-110H 1.6<br>(E-125M 6.7<br>(E-127M 2.4)<br>(E-127 2.7)<br>(E-127 2.7)<br>(E-129M 1.9)<br>(E-129M 1.9)<br>(E-131M 1.34<br>(E-131 2.1)<br>(E-131 2.1)<br>(E-131 4.8)<br>(E-131 4.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .14E+04<br>.33E+03                                                                                                  | 9.14E+03                                                                                                                                     | 0.00E+00                                                                         | 2.12E+04                                                                                                             | 5.48E+06                                                                                                             | 1.00E+05                                                                                                             |
| AG-110H 1.6<br>(E-125M 6.7.<br>(E-127M 2.4<br>(E-127 2.7)<br>(E-127 1.9)<br>(E-129M 1.9)<br>(E-129M 1.9)<br>(E-131 1.34<br>(E-131 2.17<br>(E-131 4.81)<br>(E-131 4.81)<br>(E-132 4.81)<br>(E-131 4.81)<br>(E-133 1.66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9E+04 1<br>3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .14E+04<br>.33E+03                                                                                                  | 9.14E+03                                                                                                                                     | 0.00E+00                                                                         | 2.12E+04                                                                                                             | 5.48E+06                                                                                                             | 1.00E+05                                                                                                             |
| E-125M 6.7.  E-127M 2.44  E-127 2.77  E-129M 1.92  E-129 9.77  E-131M 1.34  E-131 2.17  E-130 8.18  -131 4.81  -132 2.12  -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3E+03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .33E+03                                                                                                             |                                                                                                                                              |                                                                                  |                                                                                                                      |                                                                                                                      |                                                                                                                      |
| E-127M 2.41<br>E-127 2.77<br>E-129M 1.97<br>E-129M 1.34<br>E-131M 1.34<br>E-131 2.17<br>E-132 4.81<br>-130 8.18<br>-131 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                     |                                                                                                                                              | 1.725703                                                                         | U. VUE +UU                                                                                                           | # . / /E+U5                                                                                                          |                                                                                                                      |
| E-127 2.77 E-129M 1.97 E-129 9.77 E-131M 1.34 E-131 2.17 E-130 8.18 -131 4.81 -132 2.12 -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0E+0/ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EE                                                                                                                  |                                                                                                                                              |                                                                                  |                                                                                                                      | ********                                                                                                             | 3.38E+04                                                                                                             |
| E-129W 1.92 E-129 9.77 E-131W 1.34 E-131 2.17 E-132 4.81 -130 8.18 -131 4.81 -132 2.12 -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACTUA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .55E+03                                                                                                             | 3.02E+03                                                                                                                                     | 6.07E+03                                                                         | 6.36E+04                                                                                                             | 1.48E+06                                                                                                             | 7.14E+04                                                                                                             |
| E-129 9.77 E-131M 1.34 E-131 2.17 E-132 4.81 -130 8.18 -131 4.81 -132 2.12 -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7E+00 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .51E-01                                                                                                             | 6.10E-01                                                                                                                                     | 1.96E+00                                                                         | 7.07E+00                                                                                                             | 1.00E+04                                                                                                             | 5.62E+04                                                                                                             |
| E-131M 1.34<br>E-131 2.17<br>E-132 4.81<br>-130 8.18<br>-131 4.81<br>-132 2.12<br>-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2E+04 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .85E+03                                                                                                             | 3.04E+03                                                                                                                                     | 6.33E+03                                                                         | 5.03E+04                                                                                                             | 1.76E+06                                                                                                             | 1.82E+05                                                                                                             |
| E-131M 1.34<br>E-131 2.17<br>E-132 4.81<br>-130 8.18<br>-131 4.81<br>-132 2.12<br>-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pr. nn 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FOR                                                                                                                 |                                                                                                                                              |                                                                                  | *******                                                                                                              | *******                                                                                                              |                                                                                                                      |
| E-131 2.17 E-132 4.81 -130 8.18 -131 4.81 -132 2.12 -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .50E-02                                                                                                             | 2.38E-02                                                                                                                                     | 7.14E-02                                                                         | 2.57E-01                                                                                                             | 2.93E+03                                                                                                             | 2.55E+04                                                                                                             |
| E-132 4.81<br>-130 8.18<br>-131 4.81<br>-132 2.12<br>-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .92E+01                                                                                                             | 5.07E+01                                                                                                                                     | 9.77E+01                                                                         | 4.00E+02                                                                                                             | 2.06E+05                                                                                                             | 3.08E+05                                                                                                             |
| -130 8.18<br>-131 4.81<br>-132 2.12<br>-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - WE Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .44E-03                                                                                                             | 6.59E-03                                                                                                                                     | 1.70E-02                                                                         | 5.88E-02                                                                                                             | 2.05E+03                                                                                                             | 1.33E+03                                                                                                             |
| -131 4.81<br>-132 2.12<br>-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E+02 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .72E+02                                                                                                             | 2.63E+02                                                                                                                                     | 3.17E+02                                                                         | 1.77E+03                                                                                                             | 3.77E+05                                                                                                             | 1.38E+05                                                                                                             |
| -132 2.12<br>-133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .64E+04                                                                                                             | 8.44E+03                                                                                                                                     | 1.85E+06                                                                         | 2.45E+04                                                                                                             | 0.000+00                                                                                                             | 5.11E+03                                                                                                             |
| -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E+04 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81E+04                                                                                                              | 2.73E+04                                                                                                                                     | 1.62E+07                                                                         | 7.88E+04                                                                                                             | 0.000+00                                                                                                             | 2.848+03                                                                                                             |
| -133 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                              |                                                                                  | ********                                                                                                             |                                                                                                                      |                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E+03 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .07E+03                                                                                                             | 1.88E+03                                                                                                                                     | 1.94E+05                                                                         | 6.25E+03                                                                                                             | D.00E+00                                                                                                             | 3.20E+03                                                                                                             |
| 134 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E+04 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03E+04                                                                                                              | 7.70E+03                                                                                                                                     | 3.85E+06                                                                         | 3.38E+04                                                                                                             | 0.00E+00                                                                                                             | 5.48E+03                                                                                                             |
| 10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E+03 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16E+03                                                                                                              | 9.95E+02                                                                                                                                     | 5.07E+04                                                                         | 3.30E+03                                                                                                             | 0.00E+00                                                                                                             | 9.55E+02                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *****                                                                                                               |                                                                                                                                              |                                                                                  |                                                                                                                      |                                                                                                                      |                                                                                                                      |
| 135 4.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E+03 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73E+03                                                                                                              | 4.14E+03                                                                                                                                     | 7.92E+05                                                                         | 1.34E+04                                                                                                             | 0.00E+00                                                                                                             | 4.44E+03                                                                                                             |
| 5-134 6.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E+05 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1E+06                                                                                                              | 2.25E+05                                                                                                                                     | 0.00E+00                                                                         | 3.30E+05                                                                                                             | 1.21E+05                                                                                                             | 3.85E+03                                                                                                             |
| -136 6.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71E+05                                                                                                              | 1.16E+05                                                                                                                                     | 0.008+00                                                                         | 9.55E+04                                                                                                             | 1.45E+04                                                                                                             | 4.18E+03                                                                                                             |
| -137 0 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                              | 0.000                                                                            |                                                                                                                      | *******                                                                                                              |                                                                                                                      |
| -137 9.071<br>-138 6.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235.405                                                                                                             | 1.288+05                                                                                                                                     | U.00E+00                                                                         | 2.82E+05                                                                                                             | 1.04E+05                                                                                                             | 3.62E+03                                                                                                             |
| -138 6.338<br>-139 1.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E+05 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C 1785 A 15 15                                                                                                      | 5.55E+02                                                                                                                                     | 0.00E+00                                                                         | 6.22E+02                                                                                                             | 6.81E+01                                                                                                             | 2.70E+02                                                                                                             |

### INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: INHALATION

AGE GROUP: CHILD ( 3 OF 3 )

| NUCLIDE           | ORGAN DOSE CONVERSION FACTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                      |                      |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------------------|----------------------|--|--|--|
|                   | BOWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.800Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THYROID  | KIDNEY   | LUNG                 | GI-LLI               |  |  |  |
| BA-140            | 7.40E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.48E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.33E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 2.115+01 | 1 7/5-04             |                      |  |  |  |
| BA-141            | 1.96E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.09E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.366-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 9.47E-05 | 1.74E+06<br>2.92E+03 | 1.02E+05             |  |  |  |
| BA-142            | 4.99E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.60E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.79E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 2.91E-05 | 1.64E+03             | 2.75E+02<br>2.74E+00 |  |  |  |
| * * * * * * * * * |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                      | E. INCTU             |  |  |  |
| LA-140            | 6.44E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.25E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.55E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0.00E+00 | 1.83E+05             | 2.26E+05             |  |  |  |
| LA-142            | 1.29E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.11E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.29E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0.008+00 | 8.70E+03             | 7.59E+04             |  |  |  |
| CE-141            | 3.92E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.95E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.90E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 8.55E+03 | 5.44E+05             | 5.66E+04             |  |  |  |
| PE-4/7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******** |          |                      | *******              |  |  |  |
| CE-143<br>CE-144  | 3.66E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.99E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.87E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 8.366+01 | 1.15E+05             | 1.27E+05             |  |  |  |
| PR-143            | 6.77E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.12E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.61E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.17E+06 | 1.20E+07             | 3.89E+05             |  |  |  |
|                   | 1.85E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.55E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.14E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 3.00E+03 | 4.33E+05             | 9.73E+04             |  |  |  |
| PR-144            | 5.968-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.85E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 000 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |                      | *******              |  |  |  |
| VD-147            | 1.08E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.73E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.00E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 9.77E-03 | 1.57E+03             | 1.97E+02             |  |  |  |
| i-187             | 1.63E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.668+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.81E+02<br>4.33E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00E+00 | 4.81E+03 | 3.28E+05             | 8.21E+04             |  |  |  |
| *******           | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *.aac*00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0.00E+00 | 4.11E+04             | 9.10E+04             |  |  |  |
| IP-239            | 4.66E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.34E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.35E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 9.73E+01 | 5.81E+04             | 6.40E+04             |  |  |  |
| -                 | THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME | The second secon | The state of the s |          |          |                      |                      |  |  |  |

# INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\dot{1}}$

PATHWAY: INHALATION

AGE GROUP: INFANT ( 1 OF 3 )

| NUCLIDE   |           |          | ORGAN DO                | AN DOSE CONVERSION FACTORS |                      |                      |                      |  |  |  |
|-----------|-----------|----------|-------------------------|----------------------------|----------------------|----------------------|----------------------|--|--|--|
|           | BONE      | LIVER    | T.800Y                  | THYROID                    | KIDNEY               | LUNG                 | GI-LLI               |  |  |  |
| H-3       | 0.005.00  | £ 175.63 |                         |                            |                      |                      |                      |  |  |  |
| C-14      | 0.006+00  | 6.47E+0Z | 6.47E+02                | 6.47E+02                   | 6.47E+02             | 6.47E+02             | 6.47E+0              |  |  |  |
| NA-24     | 2.65E+04  | 5.31E+03 | 5.31E+03                | 5.31E+03                   | 5.31E+03             | 5.31E+03             | 5.31E+0              |  |  |  |
| ********* | 1.06E+04  | 1.06E+04 | 1.06E+04                | 1.06E+04                   | 1.06E+04             | 1.06E+04             | 1.06E+0              |  |  |  |
| P-32      | 2.03E+06  | 1.12E+05 | 7.74E+04                | 0 005+00                   | 0 005+00             | 0 005-00             | 1 410-0              |  |  |  |
| CR-51     | 0.00E+00  | 0.00E+00 | 8.95E+01                | 0.00E+00<br>5.75E+01       | 0.00E+00             | 0.00E+00             | 1.61E+0              |  |  |  |
| MN-54     | 0.006+00  | 2.535+04 | 4.98E+03                | 0.00E+00                   | 1.32E+01<br>4.98E+03 | 1.28E+04<br>1.00E+06 | 3.57E+0.<br>7.06E+0. |  |  |  |
|           | ********  | ******** | *********               |                            | *.YUCTUJ             | 1.000.700            | 7 . UGIC TU.         |  |  |  |
| MN-56     | 0.00E+00  | 1.54E+00 | 2.21E-01                | 0.00E+00                   | 1.10E+00             | 1.25E+04             | 7.17E+0              |  |  |  |
| FE-55     | 1.97E+04  | 1.17E+04 | 3.33E+03                | 0.00E+00                   | 0.00E+00             | 8.69E+04             | 1.09E+0              |  |  |  |
| FE-59     | 1.368+04  | 2.35E+04 | 9.48E+03                | 0.00E+00                   | 0.00E+00             | 1.02E+06             | 2.48E+0              |  |  |  |
|           |           |          |                         |                            | *******              | ******               |                      |  |  |  |
| CO-58     | 0.006+00  | 1.22E+03 | 1.82E+03                | 0.00E+00                   | 0.00E+00             | 7.77E+05             | 1.11E+0              |  |  |  |
| CO-60     | 0.00E+00  | 8.02E+03 | 1.18E+04                | 0.00E+00                   | 0.00E+00             | 4.51E+06             | 3.19E+0              |  |  |  |
| NJ-63     | 3.39E+05  | 2.04E+04 | 1.16E+04                | 0.00E+00                   | 0.00E+00             | 2.09E+05             | 2.42E+03             |  |  |  |
|           |           | ******   |                         |                            |                      |                      |                      |  |  |  |
| N1-65     | 2.39E+00  | 2.84E-01 | 1.23E-01                | 0.00E+00                   | 0.00E+00             | 8.12E+03             | 5.01E+04             |  |  |  |
| CU-64     | 0.00E+00  | 1.88E+00 | 7.74E-01                | 0.00E+00                   | 3.98E+00             | 9.30E+03             | 1.50E+04             |  |  |  |
| ZN-65     | 1.93E+04  | 6.26E+04 | 3.11E+04                | 0.00E+00                   | 3.25E+04             | 6.47E+05             | 5.14E+04             |  |  |  |
|           | ********  |          | *****                   |                            |                      |                      |                      |  |  |  |
| ZN-69     | 5.39E-02  | 9.67E-02 | 7.18E-03                | 0.00E+00                   | 4.02E-02             | 1.47E+03             | 1.32E+04             |  |  |  |
| BR-83     | 0.006+00  | 0.00E+00 | 3.81E+02                | 0.00E+00                   | 0.006+00             | 0.00E+00             | 0.00E+00             |  |  |  |
| 3R - 84   | 0.00E+00  | 0.00E+00 | 4.00E+02                | 0.00E+00                   | 0.00E+00             | 0.00E+00             | 0.00E+00             |  |  |  |
| ********  |           |          |                         |                            | *******              |                      |                      |  |  |  |
| 3R-85     | 0.00E+00  | 0.00E+00 | 2.04E+01                | 0.00E+00                   | 0.00E+00             | 0.00E+00             | 0.00£+00             |  |  |  |
| 88-86     | 0.00E+00  | 1.90E+05 | 8.82E+04                | 0.00E+00                   | 0.00E+00             | 0.00E+00             | 3.04E+03             |  |  |  |
| 88-88     | 0.00£+00  | 5.57E+02 | 2.87E+02                | 0.00£+00                   | 0.00E+00             | 0.00E+00             | 3.39E+02             |  |  |  |
| n . 60    |           |          | *******                 |                            |                      |                      |                      |  |  |  |
| 8-89      | 0.00E+00  | 3.21E+02 | 2.06E+02                | 0.00E+00                   | 0.006+00             | 0.00E+00             | 6.82E+01             |  |  |  |
| R-89      | 3.988+05  |          | 1.14E+04                |                            |                      | 2.03E+06             |                      |  |  |  |
| SR-90     | 4.09E+07  | 0.00E+00 | 2.59E+06                | 0.00E+00                   | 0.00E+00             | 1.12E+07             | 1.31E+05             |  |  |  |
| 0.01      | 0 545.01  | 0.000.00 |                         |                            |                      | ********             |                      |  |  |  |
| R-91      | 9.56E+01  | 0.00E+00 | 3,46E+00                |                            | 0.00E+00             |                      | 7.34E+04             |  |  |  |
| -90       | 1.05E+01  | 0.00E+00 | are account to the con- | 0.00E+00                   |                      |                      | 1.40E+05             |  |  |  |
| -40       | 3.29E+03  | 0.00E+00 | 8.82E+01                | 0.00E+00                   | 0.00E+00             | 2.69E+05             | 1.04E+05             |  |  |  |
| -91M      | 4 078-01  | 0.005+00 | 1 705 05                | 0.000.00                   | 0.000.00             | n 3000 - 00          |                      |  |  |  |
| -91       | 4.07E-01  |          |                         | 0.00E+00                   | 0.00E+00             | 2.79E+03             | 2.35E+03             |  |  |  |
| -92       |           | 0.006+00 |                         | 0.00E+00                   |                      |                      | 7.03E+04             |  |  |  |
| 76        | 1.005.001 | 0.00E+00 | 4.61E-01                | U.UUE+DO                   | U.DUE+DO             | 2.45E+04             | 1.27E+05             |  |  |  |

### INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: INHALATION

AGE GROUP: INFANT ( 2 OF 3 )

| NUCLIDE |          | ORGAN DOSE CONVERSION FACTORS |           |          |                      |           |          |  |  |
|---------|----------|-------------------------------|-----------|----------|----------------------|-----------|----------|--|--|
|         | BONE     | LIVER                         | T . BOD Y | THYROID  | KIDNEY               | LUNG      | GI-LLI   |  |  |
| Y-93    | 1.50E+02 | 0.00E+00                      | 4.07E+00  | 0.00E+00 | 0.00E+00             | 7.64E+04  | 1.67E+0  |  |  |
| ZR-95   | 1.15E+05 | 2.79E+04                      |           | 0.00E+00 |                      |           |          |  |  |
| ZR-97   | 1.50E+02 | 2.568+01                      | 1.17E+01  | 0.00E+00 |                      |           |          |  |  |
| NB-95   | 1.57E+04 | 6.43E+03                      | 3.78E+03  | 0.00E+00 | 4.72E+03             | 4.79E+05  | 1.27E+0  |  |  |
| NO-99   | 0.00E+00 | 1.656+02                      | 3.23E+01  | 0.00E+00 |                      | 1.35E+05  | 4.87E+0  |  |  |
| TC-99M  | 1.40E-03 | 2.886-03                      | 3.72E-02  | 0.00E+00 | 3.11E-02             | 8.116+02  | 2.03E+0  |  |  |
| rc-101  | 6.51E-05 | 8.23E-05                      | 8.12E-04  | 0.00E+00 | 9.79E-04             | 5.84E+02  | 8.44E+02 |  |  |
| RU-103  | 2.02E+03 | 0.008+00                      | 6.79E+02  | 0.00E+00 | 4.24E+03             | 5.52E+05  | 1.61E+04 |  |  |
| RU-105  | 1.22E+00 | 0.00E+00                      | 4.10E-01  | 0.00E+00 | 8.99E-01             | 1.57E+04  | 4.84E+04 |  |  |
| ******* |          |                               |           |          |                      |           |          |  |  |
| IU-106  | 8-68E+04 | U.00E+00                      | 1.09E+04  | 0.00E+00 | 1.07E+05             | 1.16E+07  | 1.64E+05 |  |  |
| G-110H  | 9.98E+03 | 7.22E+03                      | 5.00E+03  | 0.00E+00 | 1.09E+04             | 3.67E+06  | 3.30E+04 |  |  |
| E-125M  | 4.76E+03 | 1.99E+03                      | 6.58E+02  | 1.62E+03 | 0.006+00             | 4.47E+05  | 1.29E+04 |  |  |
| E-127M  | 1.67E+04 | 6.90E+03                      | 2.07E+03  | 4.87E+03 | 3.75E+04             | 1.31E+06  | 2.73E+04 |  |  |
| E-127   | 2.23E+00 | 9.53E-01                      | 4.89E-01  | 1.85E+00 | 4.86E+00             | 1.03E+04  | 2.44E+04 |  |  |
| E-129W  | 1.41E+04 | 6.09E+03                      | 2.23E+03  | 5.47E+03 | 3.18E+04             | 1.68E+06  | 6.90E+04 |  |  |
|         |          |                               | *****     | ******   |                      | *****     | *****    |  |  |
| E-129   | 7.88E-02 | 3.47E-02                      | 1.88E-02  | 6.75E-02 | 1.75E-01             | 3.00E+03  | 2.63E+04 |  |  |
| E-131M  | 1.07E+02 | 5.50E+01                      | 3.63E+01  | 8.93E+01 | Z.65E+02             | 1.99E+05  | 1.19E+05 |  |  |
| E-131   | 1.74E-02 | 8.22E-03                      | 5.00E-03  | 1.58E-02 | 3.99E-02             | 2.06E+03  | 8.22E+03 |  |  |
| E-132   | 3.72E+02 | 2.37E+02                      | 1.76E+02  | 2.79E+02 | 1 070.07             | 7 /00.00  | ******** |  |  |
| 130     | 6.36E+03 | 1.39E+04                      | 5.57E+03  | 1.60E+06 | 1.03E+03<br>1.53E+04 | 3.40E+05  | 4.41E+04 |  |  |
| 131     | 3.79E+04 | 4.44E+04                      | 1.96E+06  | 1.48E+07 | 4 1 1 1 1 1 1        | 0.00E+00  | 1.99E+03 |  |  |
|         |          |                               |           | ******** | 5.18E+04             | 0.00E+00  | 1.06E+03 |  |  |
| 132     | 1.69E+03 | 3.54E+03                      | 1.26E+03  | 1.69E+05 | 3.95E+03             | 0.006+00  | 1.90E+03 |  |  |
| 133     | 1.32E+04 | 1.926+04                      | 5.60E+03  | 3.566+06 | 2.24E+04             |           | 2.166+03 |  |  |
| 134     | 9.21E+02 | 1.886+03                      | 6.65E+02  | 4.45E+04 |                      |           | 1.29E+03 |  |  |
| ******* | *******  |                               |           |          |                      |           | *******  |  |  |
| 135     | 3.86E+03 | 7.60E+03                      | 2.77E+03  | 6.96E+05 | 8.47E+03             | 0.00E+00  | 1.83E+03 |  |  |
| -134    | 3.968+05 | 7.03E+05                      | 7.45E+04  | 0.00E+00 | 1.90E+05             | 7.97E+04  | 1.33E+03 |  |  |
| -136    | 4.83E+04 | 1.35E+05                      | 5.29E+04  | 0.00E+00 | 5.64E+04             | 1.18E+04  | 1.43E+03 |  |  |
|         |          | *******                       |           | *******  | ********             |           |          |  |  |
| -137    | 5.496+05 | 6.12E+05                      | 4.55E+04  | 0.00E+00 | 1.72E+05             | 7.13E+04  | 1.33E+03 |  |  |
| -138    | 5.05E+02 | 7.81E+02                      | 3.98E+02  | 0.00E+00 | 4.10E+02             | 6.54E+01  | 8.76E+02 |  |  |
| -139    | 1.48£+00 | 9-84E-04                      | 4.30E-02  | 0.00E+00 | 5 00E-06             | E OFF. DY | E 300.07 |  |  |

# INHALATION PATHWAY DOSES DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: INHALATION

AGE GROUP: INFANT ( 3 OF 3 )

| MUCLIDE |          | ORGAN DOSE CONVERSION FACTORS |          |                      |                      |                      |                      |  |  |  |
|---------|----------|-------------------------------|----------|----------------------|----------------------|----------------------|----------------------|--|--|--|
| BONE    | BONE     | LIVER                         | T.BODY   | THYROID              | KIDNEY               | LUNG                 | 21-FFI               |  |  |  |
| BA-140  | 5.60E+04 | 5.60E+01                      | 2.90E+03 | 0.005.00             |                      |                      |                      |  |  |  |
| BA-141  | 1.57E-01 | 1.08E-04                      | 4.97E-03 | 0.00E+00<br>0.00E+00 | 1.34E+01             | 1.60E+06             | 3.84E+04             |  |  |  |
| BA-142  | 3.98E-02 | 3.30E-05                      | 1.968-03 | 0.00E+00             | 6.50E-05<br>1.90E-05 | 2.97E+03<br>1.55E+03 | 4.75E+03<br>6.93E+02 |  |  |  |
| LA-140  | 5.05E+02 |                               |          |                      |                      | *********            | 0.735702             |  |  |  |
| LA-142  | 1.03E+02 | 2.00E+02                      | 5.15E+01 | 0.00E+00             | 0.00E+00             | 1.68E+05             | 8.48E+04             |  |  |  |
| CE-141  |          | 3.77E-01                      | 9.04E-02 | 0.002+00             | 0.00E+00             | 8.22E+03             | 5.95E+04             |  |  |  |
|         | 2.77E+04 | 1.67E+04                      | 1.99E+03 | 0.00E+00             | 5.25E+03             | 5.17E+05             | 2.16E+04             |  |  |  |
| CE-143  | 2.93E+02 | 1.93E+02                      | 2.21E+01 | D.00E+00             | 5.64E+01             | *********            |                      |  |  |  |
| E-144   | 3.196+06 | 1.21E+06                      | 1.76E+05 | 0.00E+00             | 5.38E+05             | 1.166+05             | 4.97E+04             |  |  |  |
| R-143   | 1.40E+04 | 5.24E+03                      | 6.99E+02 | 0.00E+00             | 1.97E+03             | 9.84E+06<br>4.33E+05 | 1.48E+05<br>3.72E+04 |  |  |  |
| R-144   |          | *******                       |          |                      |                      |                      | ********             |  |  |  |
| D-147   | 4.79E-02 | 1.85E-02                      | 2.41E-03 | 0.00E+00             | 6.72E-03             | 1.61E+03             | 4.28E+03             |  |  |  |
|         | 7.94E+03 | 8.13E+03                      | 5.00E+02 | 0.00E+00             | 3.15E+03             | 3.22E+05             | 3.12E+04             |  |  |  |
| -187    | 1.30E+01 | 9.02E+00                      | 3.12E+00 | 0.00E+00             | 0.006+00             | 3.96E+04             | 3.568+04             |  |  |  |
| P-239   | 7 740.00 | ********                      |          |                      |                      |                      |                      |  |  |  |
| 637     | 3.71E+02 | 3.32E+01                      | 1.88E+01 | 0.00E+00             | 6.62E+01             | 5.95E+04             | 2.49E+04             |  |  |  |

### 

PATHWAY: GROUND DEPOSTION AGE GROUP: ALL ( 1 OF 3 )

| NUCL 1DE | ORGAN DO             | SE CONVERSION FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | T. BODY              | SKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| н-3      | 0.00E+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C-14     |                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NA-24    |                      | 1.396+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P-32     | 0.00E+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CR-51    | 4.66E+06             | 5.51E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW-54    | 1.39E+09             | 1.63E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MN-56    | 9.03E+05             | 1.07E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FE-55    | 0.00E+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FE-59    | 2.73E+08             | 3.21E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 00-58    | 3.79€+08             | 4.44E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 00-60    | 2.15E+10             | 2.53E+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 41-63    | 0.00E+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11-65    | 2.97E+05             | 3.45E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| U-64     | 6.07E+05             | A CONTRACTOR OF THE CONTRACTOR |
| ZN-65    | 7.47E+08             | 8.59E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-69     | 0.000.00             | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R-83     | 0.00E+00<br>4.87E+03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B-84     | 2.03E+05             | 7.08E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 2.036.03             | 2.36E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R-85     | 0.006+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8-86     | 8.99E+06             | 1.03E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8-88     | 3.31E+04             | 3.78E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8-89     | 1.23£+05             | 1.48F+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R-89     | 2.16E+04             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R-90     | 0.008+00             | 2 12 13 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R-91     | 2.15E+05             | 2.51E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R-92     | 7.77E+05             | 8.635+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -90      | 4.49E+03             | 5.31E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dist     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -91M     | 1.00€+05             | 1.165+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -91      | 1.07E+06             | 1.21E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 92       | 1.80E+05             | 2.14E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Conversion factors are in units of square meter-mrem/yr per uCi/sec.

### 

PATHWAY: GROUND DEPOSTION AGE GROUP: ALL ( 2 OF 3 )

| NUCLIDE        | ORGAN DO  | SE CONVERSION FACTOR |
|----------------|-----------|----------------------|
|                | T. BODY   | SKIN                 |
| Y-93           |           |                      |
|                |           | 2.51E+05             |
| ZR-95<br>ZR-97 | 2.45E+08  |                      |
| CN-A1          | 2.96E+06  | 3.44E+06             |
| NB-95          | 1.37E+08  | 1.61E+08             |
| MO-99          | 3.99E+06  | 4.63E+06             |
| TC-99M         | 1.84E+05  | 2.11E+05             |
| TC-101         | 2.0/5-0/  |                      |
| RU-103         |           | 2.26E+04             |
| RU-105         | 1.08E+08  |                      |
| ********       | 6.36E+05  | 7.21E+05             |
| RU-106         | 4.22E+08  | 5.07E+08             |
| AG-110M        | 3.44E+09  | 4.01E+09             |
| TE-125M        | 1.55E+06  | 2.13E+06             |
|                |           |                      |
| TE-127M        | 9.16E+04  | 1.08E+05             |
| TE-127         | 2.98£+03  | 3.286+03             |
| TE-129M        | 1.98E+07  | 2.31E+07             |
| ********       |           | ********             |
| TE-129         | 2.62E+04  | 3.10E+04             |
| TE-131M        | 8.03E+06  | 9.46E+06             |
| TE-131         | 2.9ZE+04  | 3.45E+07             |
| TE-132         | 4.23E+06  | 4 085×04             |
| 1-130          | 5.51E+06  |                      |
| -131           | 1.725+07  |                      |
|                | ********* | *********            |
| -132           | 1.25E+06  | 1.46E+06             |
| -133           | 2.45E+06  |                      |
| -134           |           | 5.30E+05             |
| ******         |           |                      |
| -135           | 2.53E+06  | 2.95E+06             |
| \$-134         | 6-866+09  | 8.002+09             |
| S-136          | 1.51E+08  | 1.71E+08             |
|                |           | ******               |
| 5-137          | 1.03E+10  | 1.20E+10             |
| S-138          | 3.598+05  | 4.10E+05             |
| A-139          | 1.06E+05  | 1.19E+05             |

Conversion factors are in units of square meter-mrem/yr per uCi/sec.

# GROUND - PLANE DEPOSITION PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\rm i}$

PATHWAY: GROUND DEPOSITION
AGE GROUP: ALL ( 3 OF 3 )

| NUCLIDE | DRGAN DO | ORGAN DOSE CONVERSION FACTORS |  |  |  |  |  |  |
|---------|----------|-------------------------------|--|--|--|--|--|--|
|         | T. BODY  | SKIN                          |  |  |  |  |  |  |
| BA-140  | 2.05€+07 | 2.35E+07                      |  |  |  |  |  |  |
| BA-141  | 4.17E+04 | 4.75E+04                      |  |  |  |  |  |  |
| BA-142  |          | 5.11E+04                      |  |  |  |  |  |  |
| LA-140  | 1.926+07 | 2.18E+07                      |  |  |  |  |  |  |
| LA-142  | 7.60E+05 | 9.11E+05                      |  |  |  |  |  |  |
| CE-141  | 1.37E+07 | 1.54E+07                      |  |  |  |  |  |  |
| CE-143  | 2.31E+06 | 2.63E+06                      |  |  |  |  |  |  |
| CE-144  | 6.95E+07 | 8.04E+07                      |  |  |  |  |  |  |
| PR-143  | 0.00E+00 | 0.00E+00                      |  |  |  |  |  |  |
| PR-144  | 1.83E+03 | 2.11E+03                      |  |  |  |  |  |  |
| ID-147  | 8.39E+06 | 1.01E+07                      |  |  |  |  |  |  |
| -187    | 2.35E+06 | 2.73E+06                      |  |  |  |  |  |  |
| P-239   | 1.71E+06 | 1.98E+06                      |  |  |  |  |  |  |
|         |          |                               |  |  |  |  |  |  |

Conversion factors are in units of square meter-mrem/yr per uCi/sec.

### COW'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: ADULT ( 1 OF 3 )

| NUCLIDE |          |          | ORGAN DO            | SE CONVERS | ION FACTOR | s        |          |  |  |  |  |
|---------|----------|----------|---------------------|------------|------------|----------|----------|--|--|--|--|
|         | BONE     | LIVER    | T.800Y              | THYROID    | KIDNEY     | LUNG     | GI-LLI   |  |  |  |  |
| н-3     | 0.00E+00 | 7.63E+02 | 7.63E+02            | 7.63E+02   | 7.63E+02   | 7.63E+02 | 7 475.0  |  |  |  |  |
| C-14    | 2.63E+08 | 5.27E+07 | 5.27E+07            | 5.27E+07   | 5.27E+07   |          | 7.63E+0  |  |  |  |  |
| NA-24   | 2.44E+06 | 2.44E+06 | 2.44E+06            | 2.44E+06   | 2.44E+06   | 5.27E+07 | 5.27E+0  |  |  |  |  |
| ******* |          |          |                     | LINNETUO   | 2.445.00   | 2.44E+06 | 2.44E+0  |  |  |  |  |
| P-32    | 1.71E+10 | 1.06E+09 | 6.61E+08            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 1.92E+0  |  |  |  |  |
| CR-51   | 0.00E+00 | 0.00E+00 | 2.868+04            | 1.71E+04   | 6.30E+03   | 3.79E+04 | 7.198+0  |  |  |  |  |
| MN-54   | 0.00E+00 | 8.41E+06 | 1.61E+06            | 0.00E+00   | 2.508+06   | 0.00E+00 | 2.58E+0  |  |  |  |  |
|         |          |          |                     | ********   |            | 0.002-00 | C.20E-0  |  |  |  |  |
| MN-56   | 0.00E+00 | 4.15E-03 | 7.36E-04            | Ó.00E+00   | 5.27E-03   | 0.00E+00 | 1.32E-01 |  |  |  |  |
| FE-55   | 2.51E+07 | 1.74E+07 | 4.05E+06            | 0.00E+00   | 0.00E+00   | 9.68E+06 | 9.95E+06 |  |  |  |  |
| FE-59   | 2.97E+07 | 6.98E+07 | 2.68£+07            | 0.00E+00   | 0.00E+00   | 1.95E+07 | 2.33E+08 |  |  |  |  |
|         |          |          |                     |            |            |          |          |  |  |  |  |
| CO-58   | 0.00E+00 | 4.71E+06 | 1.06E+07            | 0.00E+00   | 0.005+00   | 0.00E+00 | 9.55E+07 |  |  |  |  |
| 06-00   | 0.00E+00 | 1.64E+07 | 3.62E+07            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 3.08E+08 |  |  |  |  |
| K1-63   | 6.73E+09 | 4.66E+08 | 2.26E+08            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 9.73E+07 |  |  |  |  |
|         |          |          |                     |            |            |          | *******  |  |  |  |  |
| NI-65   | 3.70E-01 | 4.81E-02 | 2.19E-02            | 0.00E+00   | 0.00E+00   | D.00E+00 | 1.22E+00 |  |  |  |  |
| CU-64   | 0.00E+00 | 2.38E+04 | 1.12E+04            | 0.00E+00   | 6-01E+04   | 0.00E+00 | 2.03E+06 |  |  |  |  |
| 2N-65   | 1.37E+09 | 4.37E+09 | 1.97E+09            | 0.00E+00   | 2.92E+09   | 0.00E+00 | 2.75E+09 |  |  |  |  |
|         |          |          |                     |            |            | ******** |          |  |  |  |  |
| ZN-69   | 2.09E-12 | 4.00E-12 | 2.78E-13            | 0.00E+00   | 2.60E-12   | 0.00E+00 | 6.01E-13 |  |  |  |  |
| BR-83   | 0.00E+00 | 0.00E+00 | 1.17E-02            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 1.68E-02 |  |  |  |  |
| 3R-84   | 0.00E+00 | 0.00E+00 | 1.93E-24            | 0.00E+00   | 0.00E+00   | 0.90E+00 | 1.52E-29 |  |  |  |  |
|         | *****    |          | * * * * * * * * * * |            |            | ******** |          |  |  |  |  |
| R-85    | 0.00E+00 | 0.00€+00 | 0.00E+00            | 0.002+00   | 0.00E+00   | 0.00E+00 | 0.DDE+00 |  |  |  |  |
| 18-86   | 0.00E+00 | 2.59E+09 | 1.21E+09            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 5.12E+08 |  |  |  |  |
| 8-88    | 0.006+00 | 0.00E+00 | 0.00E+00            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00 |  |  |  |  |
|         |          |          |                     | ******     |            | *******  |          |  |  |  |  |
| 8-89    | 0.00E+00 | 0.00E+00 | 0.00E+00            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00 |  |  |  |  |
| R-89    | 1.45E+09 | 0.00E+00 | 4.16E+07            | 0.00E+00   | D.00E+00   | 0.00E+00 | 2.33E+08 |  |  |  |  |
| R-90    | 4.68E+10 | 0.00E+00 | 1.15E+10            | 0.006+00   | 0.00E+00   | 0.00E+00 | 1.35E+09 |  |  |  |  |
|         |          |          |                     | ******     |            |          |          |  |  |  |  |
| R-91    | 2.89£+04 | 0.00E+00 | 1.17E+03            | 0.008+00   | 0.00E+00   | 0.00E+00 | 1.38E+05 |  |  |  |  |
| R-92    | 4.88E-01 |          |                     |            |            |          |          |  |  |  |  |
| -90     | 7.08E+01 |          |                     |            |            |          |          |  |  |  |  |
|         |          |          |                     |            |            |          |          |  |  |  |  |
| -91M    | 5.986-20 | 0.00E+00 | 2.32E-21            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 1.768-19 |  |  |  |  |
| -91     | 8.59E+03 | 0.006+00 | 2.30E+02            | 0.00E+00   | 0.00E+00   | 0.00E+00 | 4.73E+06 |  |  |  |  |
|         | 5.58E-05 |          |                     |            |            |          |          |  |  |  |  |

Conversion factors are in units of square meter-mrem/yr per uCi/sec for ell nuclides except H-3 which is in units of mrem/yr per uCi/cubic meter.

# COW'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, Ri

PATHV Y: COM'S MILK (CONTAMINATED FORACE)
ACT ...JUP: ADULT ( 2 OF 3 )

| * ICLIDE        | ORGAN DOSE CONVERSION FACTORS |                      |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |  |  |  |
|-----------------|-------------------------------|----------------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--|--|--|
|                 | BOWE                          | LIVER                | T. BOXY   | THYROID  | KIDNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUNG     | GI-LLI   |  |  |  |
| Y - 93          | 2 275 01                      |                      |           |          | Towns the Property of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |  |  |  |
| ZR-95           | 2.23E-01                      |                      |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 7.08E+0  |  |  |  |
| ZR-97           | 9.43E+02                      |                      |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 9.59E+0  |  |  |  |
| ******          | 4.33E-01                      | 8.748-02             | 4.00E-02  | 0.00E+00 | 1.32E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 2.71E+04 |  |  |  |
| NB-95           | 8.26E+04                      | 4.59E+04             | 2 /75+0/  | 0.000.00 | / E/E-A/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.00 |          |  |  |  |
| MO-99           | 0.00E+00                      |                      |           | 0.000+00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002+00 | 2.79E+08 |  |  |  |
| TC-99M          | 3.32E+00                      | 9.38E+00             | 1.20E+02  | 0.00E+00 | The last of the la | 0.00E+00 | 5.74E+07 |  |  |  |
|                 | ********                      | ********             | ********* | 0.006+00 | 1.43E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.60E+00 | 5.55E+03 |  |  |  |
| TC-101          | 0.00E+00                      | 0.00E+00             | 0.00E+00  | 0.00E+00 | 0.00£+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0 000.00 |  |  |  |
| RU-103          | 1.02E+03                      | 0.00E+00             | 4.39E+02  | 0.008+00 | 3.89E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008+00 | 0.00E+00 |  |  |  |
| RU-105          | 8.57E-04                      | 0.006+00             | 3.38E-04  | 0.000+00 | 1.116-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.19E+0; |  |  |  |
|                 |                               |                      |           | *******  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 5.24E-01 |  |  |  |
| RU-106          | 2.04E+04                      | 0.00E+00             | 2.58E+03  | 0.00E+00 | 3.94E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.32E+06 |  |  |  |
| AG-110M         | 5.82E+07                      | 5.39E+07             | 3.20E+07  | 0.00E+00 | 1.06E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 2.20E+10 |  |  |  |
| TE-125M         | 1.63E+07                      | 5.90E+06             | 2.18E+06  | 4.90E+06 | 6.63E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006+00 | 6.50E+07 |  |  |  |
|                 | *********                     |                      | *******   | ******   | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |  |  |  |
| E-127M          | 4.58E+07                      | 1.64E+07             | 5.58E+06  | 1.17E+07 | 1.86E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006+00 | 1.54E+08 |  |  |  |
| E-127           | 6.53E+02                      | 2.34E+02             | 1.41E+02  | 4.84E+02 | 2.66E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 5.15E+04 |  |  |  |
| E-129M          | 6.02E+07                      | 2.25E+07             | 9.535+06  | 2.07E+07 | 2.51E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 3.03E+08 |  |  |  |
| r 450           |                               | *******              | *******   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |  |  |  |
| E-129           | 2.82E-10                      | 1.06E-10             | 6.88E-11  | 2.17E-10 | 1.19E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 2.13E-10 |  |  |  |
| E-131M<br>E-131 | 3.61E+05                      | 1.77E+05             | 1.47E+05  | 2.80E+05 | 1.79E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.75E+07 |  |  |  |
| 6-191           | 3.608-33                      | 1.51E-33             | 1.14E-33  | 2.96E-33 | 1.58E-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 5.10E-34 |  |  |  |
| E-132           | 2.40E+06                      | 1 555.04             |           |          | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | ****     |  |  |  |
| -130            | 4.20E+05                      | 1.55E+06             | 1.46E+06  | 1.72E+06 | 1.50E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 7.35E+07 |  |  |  |
| -131            | 2.96E+08                      | 1.24E+06<br>4.23E+08 | 4.89E+05  | 1.05E+08 | 1.93E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.07E+06 |  |  |  |
|                 |                               | **E3E+NO             | 2.43E+08  | 1.39E+11 | 7.268+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 1.12E+08 |  |  |  |
| -132            | 1.64E-01                      | 4.39E-01             | 1.54E-01  | 1.54E+01 | 7 006-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.00 |          |  |  |  |
| -133            |                               |                      |           |          | 7.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 8.25E-02 |  |  |  |
| -134            | 2.02E-12                      | 5-48F-12             | 1 06F-12  | 0 406-44 | 8 74E 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008+00 | 6.05E+06 |  |  |  |
|                 | *******                       |                      | ********* | x.48E-11 | 0.715-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 4.77E-15 |  |  |  |
| -135            | 1.28E+04                      | 3.36E+04             | 1.24E+04  | 2.22E+06 | 5 305+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005+00 | T BOE+0/ |  |  |  |
| S-134           | 5.65E+09                      | 1.35E+10             | 1.10E+10  | 0.00E+00 | 4.355+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 456400 | 2 355-08 |  |  |  |
| S-136           | 2.63E+08                      | 1.04E+09             | 7.48E+08  | 0.008+00 | 5.785+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.93E+07 | 1 185+08 |  |  |  |
|                 |                               |                      |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |  |  |  |
| S-137           | 7.38E+09                      | 1.01E+10             | 6.61E+09  | 0.00E+00 | 3.43E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,146+09 | 1.95E+D8 |  |  |  |
| S-138           | 9.04E-24                      | 1.79E-23             | 8.85E-24  | 0.00E+00 | 1.31E-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.30E-24 | 7.62E-29 |  |  |  |
| A-139           | 4.42E-08                      | 7 15c-11             | 4 200 00  | 0 000 00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |  |  |  |

Conversion factors are in units of square meter-mrem/yr per uCi/sec for all nuclides except N-3 which is in units of mrem/yr per uCi/cubic meter.

# COW'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: ADULT ( 3 OF 3 )

| MUCTIDE | ORGAN DOSE CONVERSION FACTORS |          |          |          |                      |          |                      |  |  |
|---------|-------------------------------|----------|----------|----------|----------------------|----------|----------------------|--|--|
|         | BONE                          | LIVER    | T. BODY  | THYROID  | KIDNEY               | LUNG     | GI-LLI               |  |  |
| BA-140  | 2.69E+07                      | 3.38£+04 | 1.76E+06 | 0.00E+00 | 4 455 47             |          |                      |  |  |
| BA-141  | 0.00E+00                      | 0.00E+00 | 0.005+00 | 0.00E+00 | 1.15E+04             | 1.93E+04 | 5.53E+07             |  |  |
| BA-142  | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.002+00 | 0.00E+00             | 0.00E+00 | 0.00E+00             |  |  |
| LA-140  |                               | ******** |          | *******  | *******              |          |                      |  |  |
| LA-142  | 4.51E+00                      | 2.27E+00 | 6.01E-01 | 0.00E+00 | 0.00E+00             | 0.00E+00 | 1.67E+05             |  |  |
|         | 1.866-11                      | 8.45E-12 | 2.10E-12 | 0.006+00 | 0.00E+00             | 0.00E+00 | 6.17E-08             |  |  |
| CE-141  | 4.84E+03                      | 3.28E+03 | 3.72E+02 | 0.00E+00 | 1.52E+03             | 0.00E+00 | 1.25E+07             |  |  |
| CE-143  | 4.16E+01                      | 3.07E+04 | 3.40E+00 | 0.005+00 | 1 700.01             |          | *******              |  |  |
| CE-144  | 3.588+05                      | 1.50E+05 | 1.925+04 | 0.002+00 | 1.35E+01             | 0.00E+00 | 1.15E+06             |  |  |
| PR-143  | 1.58E+02                      | 6.33E+01 | 7.83E+00 | 0.00E+00 | 8.87E+04<br>3.66E+01 | 0.00E+00 | 1.21E+08<br>6.92E+05 |  |  |
|         | *********                     |          |          |          |                      |          | *******              |  |  |
| R-164   | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.008+00 | 0.00E+00             | 0.00E+00 | D.00E+00             |  |  |
| 10-147  | 9.42E+01                      | 1.09E+02 | 6.51E+00 | 0.00E+00 | 6.36E+01             | 0.00E+00 | 5.22E+05             |  |  |
| i-187   | 6.51E+03                      | 5.45E+03 | 1.90E+03 | 0.00E+00 | 0.00E+00             | 0.00E+00 | 1.78E+06             |  |  |
| P-239   | 4.60E+01                      | 4.52E+00 | 2.496+00 | 0.006+00 | 1.41E+01             | 0.00E+00 | 9.27E+05             |  |  |

Conversion factors are in units of square meter-mrem/yr per uCi/sec for all nuclides except H-3 which is in units of mrem/yr per uCi/cubic meter.

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 1 OF 3 )

| NUCLIDE |              |           | ORGAN DO                               | OSE CONVER | SION FACTOR  | ORGAN DOSE CONVERSION FACTORS |          |  |  |  |  |  |  |  |  |
|---------|--------------|-----------|----------------------------------------|------------|--------------|-------------------------------|----------|--|--|--|--|--|--|--|--|
|         | BONE         | LIVER     | T.800Y                                 | THUROID    | KIDHEY       | LUNG                          | GI-LLI   |  |  |  |  |  |  |  |  |
| н-3     | 0.000.00     |           | O TO ME A THE A REPORT OF THE STATE OF |            |              |                               |          |  |  |  |  |  |  |  |  |
| C-14    | 0.000+00     |           |                                        |            |              | 9.94E+02                      | 9.94E+0  |  |  |  |  |  |  |  |  |
| NA-24   | 4.868+08     |           |                                        |            | A SECTION OF | The second second             | 9.72E+0  |  |  |  |  |  |  |  |  |
|         | 4.26E+06     | 4.26E+06  | 4.26E+06                               | 4.26E+06   | 4.265+06     | 4.26E+06                      | 4.26E+0  |  |  |  |  |  |  |  |  |
| p-32    | 3.15E+10     | 1.95E+09  | 1.276+09                               | 0 000.00   | 0.000.00     | 0 000 00                      |          |  |  |  |  |  |  |  |  |
| CR-51   | 0.00E+00     |           | 4.99E+04                               |            |              |                               | 2.65E+09 |  |  |  |  |  |  |  |  |
| MN-54   | 0.00E+00     | 1.40E+07  | 2.78E+06                               | 2.77E+04   |              | 7.13E+04                      | 8.398+06 |  |  |  |  |  |  |  |  |
|         | ********     | 1.405.401 | ELIBETUD                               | 0.00E+00   | 4.18E+06     | 0.00E+00                      | 2.87E+07 |  |  |  |  |  |  |  |  |
| MN-56   | 0.00E+00     | 7.36E-03  | 1.31E-03                               | 0.00E+00   | 9.31E-03     | 0.00E+00                      | / B/E-01 |  |  |  |  |  |  |  |  |
| FE-55   | 4.45E+07     | 3.16E+07  | 7.36E+06                               | 0.00E+00   | 0.00E+00     | 2.00E+07                      | 4.84E-01 |  |  |  |  |  |  |  |  |
| FE-59   | 5.18E+07     | 1.21E+08  | 4.67E+07                               | 0.000+00   | 0.00E+00     | 3.81E+07                      | 2.86E+08 |  |  |  |  |  |  |  |  |
|         |              |           |                                        |            |              |                               |          |  |  |  |  |  |  |  |  |
| 00-58   | 0.00E+00     | 7.96E+06  | 1.83E+07                               | 0.00E+00   | 0.005+00     | 0.00E+00                      | 1.09E+08 |  |  |  |  |  |  |  |  |
| 00-60   | 0.00E+00     | 2.78E+07  | 6.26E+07                               | 0.002+00   | 0.002+00     | 0.00E+00                      | 3.62E+08 |  |  |  |  |  |  |  |  |
| 1-63    | 1.18E+10     | 8.35E+08  | 4.01E+08                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 1.33E+08 |  |  |  |  |  |  |  |  |
| ******  |              |           |                                        | *******    |              | ******                        | *******  |  |  |  |  |  |  |  |  |
| 11-65   | 6.77E-01     | 8.65E-02  | 3.94E-02                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 4.69E+00 |  |  |  |  |  |  |  |  |
| U-64    | 0.006+00     | 4.25E+04  | 2.00E+04                               | 0.00E+00   | 1.07E+05     | 0.00E+00                      | 3.29E+06 |  |  |  |  |  |  |  |  |
| N-65    | 2.11E+09     | 7.32E+09  | 3.41E+09                               | 0.00£+00   | 4.68E+09     | 0.00E+00                      | 3.10E+09 |  |  |  |  |  |  |  |  |
|         |              |           |                                        |            |              |                               |          |  |  |  |  |  |  |  |  |
| N-69    | 3.85E-12     | 7.34E-12  | 5.13E-13                               | 0.00E+00   | 4.79E-12     | 0.00E+00                      | 1.35E-11 |  |  |  |  |  |  |  |  |
| R-83    | 0.00E+00     | 0.006+00  | 2.15E-02                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 0.00E+00 |  |  |  |  |  |  |  |  |
| R-84    | 0.00E+00     | 0.00E+00  | 3.45E-24                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 0.00E+00 |  |  |  |  |  |  |  |  |
| ******* |              |           |                                        | *          |              |                               |          |  |  |  |  |  |  |  |  |
| R-85    | 0.00E+00     | 0.00E+00  | 0.00E+00                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 0.00E+00 |  |  |  |  |  |  |  |  |
| B-86    | 0.00E+00     | 4.73E+09  | 2.22E+09                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 7.00E+08 |  |  |  |  |  |  |  |  |
| 8-88    | 0.00E+00     | 0.00E+00  | 0.006+00                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 0.00E+00 |  |  |  |  |  |  |  |  |
|         | *********    |           |                                        |            |              |                               | ******   |  |  |  |  |  |  |  |  |
| 8-89    | 0.00E+00     | 0.00E+00  | 0.00E+00                               | 0.00E+00   | 0.008+00     | 0.00E+00                      | 0.002+00 |  |  |  |  |  |  |  |  |
| R-89    | 2.67E+09     | 0.00E+00  | 7.66E+07                               |            | 0.00E+00     |                               | 3.19E+08 |  |  |  |  |  |  |  |  |
| R-90    | 6.61E+10     | 0.00E+00  | 1.63E+10                               | 0.DDE+00   | 0.00E+00     | 0.00E+00                      | 1.86E+09 |  |  |  |  |  |  |  |  |
|         |              | ********  |                                        |            |              |                               | ******   |  |  |  |  |  |  |  |  |
| 2-91    | 5.31E+04     | 0.006+00  | 2.11E+03                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 2.41E+05 |  |  |  |  |  |  |  |  |
| 8-92    | 8.94E-01     | 0.00E+00  | 3.81E-02                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 2.28E+01 |  |  |  |  |  |  |  |  |
| 90      | 1.30E+02     | 0.00E+00  | 3.51E+00                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 1.07E+06 |  |  |  |  |  |  |  |  |
| DSW     |              |           |                                        | *******    |              | ********                      | ******   |  |  |  |  |  |  |  |  |
| 91M     | a management | a same to | 4.19E-21                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 5.17E-18 |  |  |  |  |  |  |  |  |
| 91      |              | 0.00E+00  | 4.246+02                               | 0.006+00   | 0.00E+00     | 0.006+00                      | 6.48E+06 |  |  |  |  |  |  |  |  |
| 92      | 1.036-04     | 0.00E+00  | 2.98E-06                               | 0.00E+00   | 0.00E+00     | 0.00E+00                      | 2.83E+00 |  |  |  |  |  |  |  |  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 2 OF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |            |           |                                |                      |                      |  |  |  |
|---------|-------------------------------|----------|------------|-----------|--------------------------------|----------------------|----------------------|--|--|--|
|         | BONE                          | LIVER    | T.BODY     | THYROID   | KIDNEY                         | LUNG                 | G1-FF1               |  |  |  |
| Y-93    | 4.12E-01                      | 0.00E+00 | 1 1 175 00 |           | Tel 100 a marin de 100 a marin |                      |                      |  |  |  |
| ZR-95   | 1.65E+03                      |          |            |           |                                |                      |                      |  |  |  |
| ZR-97   | 7.88E-01                      |          |            |           |                                |                      |                      |  |  |  |
| NB-95   | 1.41E+05                      | 7 015.07 |            |           |                                |                      |                      |  |  |  |
| 40-99   | 0.00E+00                      |          |            | 0.00E+00  |                                | 0.00E+00             | 3.34E+0              |  |  |  |
| TC-99M  | 5.76E+00                      |          |            | 0.00£+00  |                                | 0.00E+00             | 8.01E+07             |  |  |  |
| ******* | 7.700400                      | 1.61E+01 | 2.08E+02   | 0.00E+00  | 2.39E+02                       | 8.92E+00             | 1.05E+04             |  |  |  |
| rc-101  | 0.00E+00                      | 0.00E+00 | 0.006+00   | 0.0UE+00  | 0.00E+00                       | 0.00E+00             | 0.00E+00             |  |  |  |
| RU-103  | 1_81E+03                      | 0.006+00 | 7.74E+02   | 0.00E+00  | 6.388+03                       |                      | 1.51E+05             |  |  |  |
| tU-105  | 1.56E-03                      | 0.00E+00 | 6.07E-04   | 0.00E+00  | 1.97E-02                       |                      | 1.26E+00             |  |  |  |
| U-106   | 2.89E+04                      | 0.00E+00 | 4.73E+03   | 0.00E+00  | 7 2/5:01                       |                      |                      |  |  |  |
| G-110M  | 9.63E+07                      | 9.11E+07 | 5.54E+07   | 0.00E+00  | 7.24E+04                       | 0.00E+00             | 1.80E+06             |  |  |  |
| E-125M  | 3.00E+07                      | 1.085+07 | 4.02E+06   | 8.39E+06  | 1.74E+08<br>0.00E+00           | 0.005+00             | 2.56E+10             |  |  |  |
|         | * * * * * * * * * * *         | *******  | *******    | ********* | W.00E+00                       | 0.00E+00             | 8.86E+07             |  |  |  |
| E-1279  | 8.44E+07                      | 2.99E+07 | 1.00E+07   | 2.01E+07  | 3.42E+08                       | 0.00E+00             | 2.10E+08             |  |  |  |
| E-127   | 1.21E+03                      | 4.29E+02 | 2.60E+02   | 8.35E+02  | 4.90E+03                       | 0.00E+00             | 9.34E+04             |  |  |  |
| E-129M  | 1.10E+08                      | 4.09E+07 | 1.74E+07   | 3.55E+07  | 4.61E+08                       | 0.00E+00             | 4.13E+08             |  |  |  |
| E-129   | 5 90p co                      |          |            |           | ******                         |                      | *******              |  |  |  |
| E-131M  | 5.20E-10                      | 1.94E-10 | 1.16E-10   | 3.71E-10  | 2.18E-09                       | 0.00E+00             | 2.84E-09             |  |  |  |
| E-131   | 6.57E+05                      | 3.15E+05 | 2.63E+05   | 4.74E+05  | 3.298+06                       | 0.00E+00             | 2.53E+07             |  |  |  |
|         | 6.58E-33                      | 2.71E-33 | 2.06E-33   | 5.07E-33  | 2.88E-32                       | 0.00E+00             | 5.40E-34             |  |  |  |
| -132    | 4.29E+06                      | 2.72E+06 | 2.568+06   | 2.87E+06  | 2.61E+07                       | 0.00E+00             | 8 445.07             |  |  |  |
| 130     | 7.38E+05                      | 2.14E+06 | 8.53E+05   | 1.74E+08  | 3.29E+06                       | 0.00E+00             | 8.61E+07             |  |  |  |
| 131     | 5.37E+08                      | 7.52E+08 | 4.04E+08   | 2.19E+11  | 1.29E+09                       | 0.00E+00             | 1.54E+06<br>1.49E+08 |  |  |  |
|         |                               |          | *****      |           |                                |                      |                      |  |  |  |
| 132     | 2.91E-01                      | 7.62E-01 | 2.74E-01   | 2.57E+01  | 1.20E+00                       | 0.00E+00             | 3.32E-01             |  |  |  |
| 133     | 7.07E+06                      | 1.20E+07 | 3.66E+06   | 1.67E+09  | 2.10E+07                       | 0.00E+00             | 0.070.01             |  |  |  |
| 1.54    | 3.58E-12                      | 9.50E-12 | 3.41E-12   | 1.58E-10  | 1.50E-11                       | 0.DOE+00             | 1.25E-13             |  |  |  |
|         |                               |          | *****      | *******   | ********                       |                      |                      |  |  |  |
| -1%4    | 2.28E+04                      | 3.8/E+94 | 2.18E+04   | 3.78E+06  | 9.27E+04                       | 0.00E+00             | 6.51E+04             |  |  |  |
| 1,00    | 7.066-09                      | 5.31E+10 | 1.07E+10   | 0.DDE+00  | 7.34F+00                       | 2 805+00             | 3 R70+00             |  |  |  |
|         | 4.48E+Q8                      | 1.70E+UY | 1.18E+09   | U.00E+00  | 9.60E+08                       | 1.51E+08             | 1.42E+08             |  |  |  |
|         | 1.34E+10                      | 78E+10   | 6 205-00   | 0.000.00  |                                | ********             | ******               |  |  |  |
| 138     | 1.34E+10<br>1.64E-23          | 3.15E-23 | 1 575-33   | 0.005+00  | 0.068+09                       | 2.35E+09             | 2.53E+08             |  |  |  |
| 130     | 1.64E-23<br>8.17E-08          | 5.75E-11 | 2 386-00   | 0.005+00  | 2.33E-23                       | 2.71E-24<br>3.96E-11 | 1.43E-26             |  |  |  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 3 OF 3 )

| MUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |                                         |          |          |                               |          |  |  |  |
|---------|-------------------------------|----------|-----------------------------------------|----------|----------|-------------------------------|----------|--|--|--|
|         | BONE                          | LIVER    | T.BODY                                  | THYROID  | KIDNEY   | LUNG                          | CI-FFI   |  |  |  |
| BA-140  | 4.85E+07                      | 5.95E+04 | 3.13E+06                                | 5 505 50 |          | M. Mariana and M. M. Carrento |          |  |  |  |
| BA-141  | 0.005+00                      |          | 0.00E+00                                | 0.00E+00 |          | 4.00E+04                      | 7.48E+07 |  |  |  |
| BA-142  | 0.00E+00                      | 0.00E+00 | 100000000000000000000000000000000000000 | 0.00£+00 | 0.00E+00 | 0.00E+00                      | 0.00E+00 |  |  |  |
|         |                               | 0.006+00 | 0.00E+00                                | 0.00E+00 | 0.00E+00 | 0.00E+00                      | 0.00E+00 |  |  |  |
| LA-140  | 8.108+00                      | 3.98E+00 | 1.06E+00                                |          |          |                               |          |  |  |  |
| LA-142  | 3.35E-11                      | 1.498-11 |                                         | D.00E+00 | 0.00E+00 | 0.00E+00                      | 2.29E+05 |  |  |  |
| CE-141  | 8.88E+03                      | 5.93E+03 | 3.71E-12                                | 0.00E+00 | 0.00E+00 | 0.00E+00                      | 4.53E-07 |  |  |  |
|         | *********                     | 2.736703 | 6.81E+02                                | 0.00E+00 | 2.79E+03 | 0.00£+00                      | 1.70E+07 |  |  |  |
| E-143   | 7.64E+01                      | 5.56E+04 | 6.21E+00                                |          | ******** | *****                         |          |  |  |  |
| E-144   | 6.58E+05                      | 2.72E+05 | 3.54E+04                                | 0.00E+00 | 2.49E+01 | 0.00E+00                      | 1.67E+06 |  |  |  |
| R-143   | 2.90E+02                      | 1.16E+02 |                                         | 0.00E+00 | 1.63E+05 | 0.00€+00                      | 1.66E+08 |  |  |  |
|         |                               | 1.105702 | 1.44E+01                                | 0.00E+00 | 6.73E+01 | 0.00E+00                      | 9.54E+05 |  |  |  |
| R-144   | 0.00E+00                      | 0.00E+00 | 0.000.00                                |          | *******  |                               | ******   |  |  |  |
| 0-147   | 1.81E+02                      | 1.97E+02 | 0.002+00                                | 0.00E+00 | 0.00E+00 | 0.00E+00                      | 0.006+00 |  |  |  |
| -187    | 1.19E+04                      |          | 1.18E+01                                | 0.00E+00 | 1.16E+02 | 0.00E+00                      | 7.11E+05 |  |  |  |
| ******* | **********                    | 9.71E+03 | 3.40E+03                                | 0.00++00 | 0.00E+00 | 0.DOE+00                      | 2.63E+06 |  |  |  |
| P-239   | 8.78E+01                      | 8.28E+00 | 4.60E+00                                | 0.00E+00 | 2.60E+01 | 0.00E+00                      | 1.33E+06 |  |  |  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 1 OF 3 )

| NUCLIDES       |                              |           | ORGAN DO             | SE CONVERS           | ION FACTOR           | S                    |           |
|----------------|------------------------------|-----------|----------------------|----------------------|----------------------|----------------------|-----------|
|                | BONE                         | LIVER     | T.800Y               | THYROID              | KIDNEY               | LUNG                 | GI-LLI    |
| н-3            | 0.00E+00                     | 1.57E+03  | 1.57E+03             | 1 576.07             | 4 575.07             | 1 570.07             |           |
| C-14           | 1.19E+09                     | 2.39E+08  | 2.39E+08             | 1.57E+03<br>2.39E+08 | 1.57E+03<br>2.39E+08 | 1.57E+03<br>2.39E+08 | 1.57E+0   |
| NA-24          | 8.85E+06                     | 8.85E+07  | 8.85E+06             | 8.85E+06             | 8.85E+06             | 8.85E+06             | 8.85E+0   |
| p-32           | 7.78E+10                     | 3.64E+09  | 3.00E+09             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 2.15E+0   |
| CR-51          | 0.00E+00                     | 0.00E+00  | 1.02E+05             | 5.65E+04             | 1.54E+04             | 1.03E+05             | 5.40E+0   |
| MN-54          | 0.00E+00                     | 2.10E+07  | 5.59E+06             | 0.006+00             | 5.88E+06             | 0.00E+00             | 1.76E+0   |
| MH-56          | 0.00E+00                     | 1.28E-02  | 2.90E-03             | 0.00E+00             | 1.55E-02             | 0.00E+00             | 1.86E+00  |
| FE-55          | 1.07E+08                     | 5.93E+07  | 1.84E+07             | 0.00E+00             | 0.00E+00             | 3.35E+07             | 1.10E+07  |
| FE-59          | 1.20E+08                     | 1.95E+08  | 9.69E+07             | 0.00E+00             | 0.00E+00             | 5.64E+07             | 2.03E+08  |
| CO-58          | 0.00E+00                     | 1.21E+07  | 3.71E+07             | 0.00E+00             | 0.002+00             | 0.00E+00             | 7 076+01  |
| CO-60          | 0.002+00                     | 4.32E+07  | 1.27E+08             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 7.07E+07  |
| W1-63          | 2.96£+10                     | 1.59E+09  | 1.04E+09             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 1.07E+08  |
|                |                              |           |                      |                      | *******              |                      |           |
| -65            | 1.66E+00                     | 1.568-01  | 9.10E-02             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 1.91E+01  |
| Cu-64          | 0.002+00                     | 7.46E+04  | 4.51E+04             | 0.00E+00             | 1.80E+05             | 0.008+00             | 3.50E+06  |
| ZN-65          | 4.13E+09                     | 1 :/DE+10 | 6.85E+09             | 0.00E+00             | 6.94E+09             | 0.002+00             | 1.93E+09  |
| 74.40          | 0 /90 40                     |           | *********            |                      | ********             | *******              | ******    |
| ZN-69<br>BR-83 | 9.47E-12                     | 1.37E-11  | 1.26E-12             | 0.00E+00             | 8.30E-12             | 0.00E+00             | 8.62E-10  |
| SR-84          | 0.00E+00                     | 0.00E+00  | 5.28E-02             | 0.00E+00             | 0.00E+00             | 0.005+0              | 0.00E+00  |
|                | *********                    | 0.008+00  | 7.81E-24             | 0.00E+00             | D.00E+00             | 0.00E+00             | 0.00E+00  |
| R-85           | 0.006+00                     | 0.00E+00  | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | D. DOE+00 |
| 8-86           | 0.00E+00                     | 8.77E+09  | 5.39E+09             | 0.00E+00             | 0.00E+00             | 0.002+00             | 5.64E+08  |
| 88-88          | 0.00E+00                     | 0.00E+00  | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00  |
| *******        |                              | ******    |                      |                      | *******              |                      | ******    |
| 8-89           | 0.006+00                     | 0.00E+00  | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00  |
| R-89           | 6.6ZE+09                     | 0.00E+00  | 1.89E+08             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 2.56E+08  |
| R-90           | 1.12E+11                     | 0.00E+00  | 2.83E+10             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 1.51E+09  |
|                |                              |           | ******               |                      |                      |                      |           |
| R-91           |                              |           | 4.92E+03             |                      |                      |                      | 2.88E+05  |
| 8-92           | and the second second second |           | 8.75E-02             |                      |                      |                      | 4.13E+01  |
| -90            | 3.ZZE+02                     | U.UUE+00  | 8.62E+00             | 0.006+00             | 0.006+00             | 0.00E                | 9.17E+05  |
| -91M           | 2 685-10                     | 0.005+00  | D 7/P 34             | 0.000+00             | 0.000.00             | 0.000.0              |           |
| -91            |                              |           | 9.74E-21             |                      |                      |                      | 24E-16    |
| -92            |                              |           | 1.04E+03<br>7.24E-06 |                      |                      |                      | 70E+06    |
|                |                              |           | 116-00               | 91006100             | V-002+00             | 0.002+00             | 7.31E+00  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 2 OF 3 )

| NUCLIDES |                      | ORGAN DOSE CONVERSION FACTORS |                      |                      |                      |                 |                      |  |  |  |  |
|----------|----------------------|-------------------------------|----------------------|----------------------|----------------------|-----------------|----------------------|--|--|--|--|
|          | BONE                 | LIVER                         | T.BODY               | THYROID              | KIDNEY               | LUNG            | GI-FFI               |  |  |  |  |
| Y-93     | 1.01E+00             | 0.00E+00                      | 2.788-02             | 0.00E+00             | 0.000.00             |                 |                      |  |  |  |  |
| ZR-95    | 3.83E+03             |                               |                      |                      |                      | 700 700 700 700 |                      |  |  |  |  |
| ZR-97    | 1.926+00             |                               |                      |                      |                      |                 |                      |  |  |  |  |
| WB-95    | 3.18E+05             | 1.24E+05                      | 8.84E+04             | 0.000.00             |                      | ********        |                      |  |  |  |  |
| MO-99    | 0.008+00             |                               |                      |                      |                      |                 | 2.29E+0              |  |  |  |  |
| TC-99M   | 1.32E+01             |                               |                      | 0.00E+00             | 1.748+08             |                 | 6.73E+07             |  |  |  |  |
|          |                      | ******                        | ********             | ********             | 3.76E+02             | 1.32E+01        | 1.47E+04             |  |  |  |  |
| TC-101   | 0.00E+00             | 0.008+00                      | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00        | 0.00E+00             |  |  |  |  |
| RU-103   | 4.28E+03             | 0.00E+00                      | 1.6: E+03            | 0.00E+00             | 1.08E+04             | 0.00E+00        | 1.11E+05             |  |  |  |  |
| RU-105   | 3.82E-03             | 0.00E+00                      | 1.39E-03             | 0.006+00             | 3.368-02             | 0.00E+00        | 2.49E+00             |  |  |  |  |
| tu-106   | 9.24E+04             | 0.000.00                      |                      |                      |                      |                 |                      |  |  |  |  |
| G-110M   | 2.096+08             | 0.00E+00                      | 1.15E+04             | 0.00E+00             | 1.25E+05             | 0.00E+00        | 1.44E+06             |  |  |  |  |
| E-125H   | 7.38E+07             | 1.41E+08<br>2.00E+07          | 1.13E+08<br>9.84E+06 | 0.00E+00             | 2.63E+08             | 0.00E+00        | 1.68E+10             |  |  |  |  |
|          | *********            | ********                      | 7.045+00             | 2.07E+07             | 0.00E+00             | 0.008+00        | 7.12E+07             |  |  |  |  |
| E-127M   | 2.088+08             | 5.60E+07                      | 2.47E+07             | 4.97E+07             | 5.93E+08             | 0.000.00        |                      |  |  |  |  |
| E-127    | 2.98E+03             | 8.02E+02                      | 6.38E+02             | 2.06E+03             | 8.47E+03             | 0.005+00        | 1.68E+08             |  |  |  |  |
| E-129M   | 2.71E+08             | 7.58E+07                      | 4.21E+07             | 8.75E+07             | 7.97E+08             | 0.00E+00        | 1.16E+05<br>3.31E+08 |  |  |  |  |
| E-129    | 1 20r on             | ********                      | ********             | *******              |                      |                 |                      |  |  |  |  |
| E-131M   | 1.28E-09             | 3.588-10                      | 3.04E-10             | 9.15E-10             | 3.75E-09             | 0.00E+00        | 7.98E-08             |  |  |  |  |
| E-131    | 1.60£+06             | 5.53E+05                      | 5.89E+05             | 1.14E+06             | 5.35E+06             | 0.00E+00        | 2.24E+07             |  |  |  |  |
|          | 1.62E-32             | 4.93E-33                      | 4.81E-33             | 1.24E-32             | 4.89E-32             | 0.00E+00        | 8.49E-32             |  |  |  |  |
| E-132    | 1.02E+07             | 4.53E+06                      | 5.48E+06             | A ADE-04             |                      |                 |                      |  |  |  |  |
| 130      | 1.73E+06             | 3.49E+06                      | 1.80E+06             | 6.60E+06<br>3.84E+08 | 4.21E+07             | 0.00E+00        | 4.57E+07             |  |  |  |  |
| 131      | 1.30£+09             | 1.31E+09                      | 7.45E+08             | 4.33E+11             | 5.22E+06<br>2.15E+09 | 0.00E+00        | 1.63E+06<br>1.17E+08 |  |  |  |  |
| *******  |                      |                               | ********             |                      |                      | ********        | 7,176-00             |  |  |  |  |
| 132      | 6.89E-01             | 1.27E+00                      | 5.82E-01             | 5.87E+01             | 1.94E+00             | 0.006+00        | 1.49E+00             |  |  |  |  |
| 133      | 1.72E+07             | 2.12E+07                      | 8.03E+06             | 3.94E+09             | 3.54E+07             | 0.00F+00        | 8 56F+06             |  |  |  |  |
| 134      | 8.488-12             | 1.58E-11                      | 7.25E-12             | 3.62E-10             | 2.41E-11             | 0.00E+00        | 1.04E-11             |  |  |  |  |
| 135      | 5 40F+04             | 0 796+0/                      | / 400.01             | * *** **             | *******              |                 | ******               |  |  |  |  |
| -134     | 5.40E+04<br>2.26E+10 | 7.76E+U4                      | 4.0UE+04             | 8.61E+06             | 1.49E+05             | 0.00E+00        | 7.40E+04             |  |  |  |  |
| -136     | 2.26E+10<br>1.01E+09 | 2.866+00                      | 1 805+00             | 0.005+00             | 1.15E+10             | 4.13E+09        | 2.00E+08             |  |  |  |  |
|          | 1.01E+09             | *******                       | ********             | 0.002+00             | 1.48E+09             | Z.Z1E+08        | 9.77E+07             |  |  |  |  |
|          | 3.22E+10             |                               | 4.55E+00             | 0.005+00             | 1 015-10             | T 435.00        |                      |  |  |  |  |
| -138     | 3.988-23             | 5.53E-23                      | 3.51E-23             | 0.006+00             | 3 80E-99             | 3.02E+U9        | 1.936+08             |  |  |  |  |
| -139     | 2.01E-07             | 1 070-10                      | E 025 00             | 5.000-00             | 3.04E-53             | 4.192-24        | 2.55E-23             |  |  |  |  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 3 OF 3 )

| NUCLIDES | ORGAN DOSE CONVERSION FACTORS |          |          |          |          |                      |                      |  |  |  |
|----------|-------------------------------|----------|----------|----------|----------|----------------------|----------------------|--|--|--|
|          | BONE                          | LIVER    | T.B00Y   | THYROID  | KIDWEY   | LUNG                 | GI-LLI               |  |  |  |
| BA-140   | 1.17E+08                      | 1.03E+05 | 6.84E+06 | 0.00E+00 | 3.34E+04 | 4 175.07             |                      |  |  |  |
| BA-141   | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.002+00 | 0.00E+00 | 6.12E+04<br>0.00E+00 | 5.93E+07             |  |  |  |
| BA-142   | 0.008+00                      | 0.00E+00 | 0.00€+00 | 0.002+00 | 0.00E+00 | 0.006+00             | 0.00E+00             |  |  |  |
| LA-140   | 1.94E+01                      | 6.78E+00 | 2.11E+00 | 0.002+00 | 0.00E+00 | 0.00E+00             | 1 000 00             |  |  |  |
| LA-142   | 8.10E-11                      | 2.58E-11 | 8.08E-12 | 0.000+00 | 0.008+00 | 0.006+00             | 1.89E+05             |  |  |  |
| CE-141   | 2.19E+04                      | 1.096+04 | 1.62E+03 | 0.00E+00 | 4.78E+04 | 0.00E+00             | 5.11E-06<br>1.36E+07 |  |  |  |
| CE-143   | 1.87E+02                      | 1.02E+05 | 1.47E+01 | 0.COE+00 | 4.26E+01 | 0.008+00             | 1 /05.0/             |  |  |  |
| CE-144   | 1.62E+06                      | 5.09E+05 | 8.66E+04 | 0.00E+00 | 2.82E+05 | 0.00E+00             | 1.49E+06             |  |  |  |
| PR-143   | 7.18E+02                      | 2.16E+02 | 3.56E+01 | 0.00E+00 | 1.17E+02 | 0.00E+00             | 1.33E+08<br>7.75E+05 |  |  |  |
| R-144    | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.005.00             |                      |  |  |  |
| D-147    | 4.45E+02                      | 3.60E+02 | 2.798+01 | 0.00E+00 | 1.986+02 | 0.00E+00             | 0.002+00             |  |  |  |
| - 187    | 2.89E+04                      | 1.71E+04 | 7.68E+03 | 0.002+00 | 0.00E+00 | 0.006+00             | 5.70E+05<br>2.40E+06 |  |  |  |
| P-239    | 2.16E+02                      | 1.55E+01 | 1.09E+01 | 0.00E+00 | 4.48E+01 | 0.00E+00             | 1.15E+06             |  |  |  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: INFANT ( 1 OF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |           |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |  |
|---------|-------------------------------|----------|-----------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
|         | BOWE                          | LIVER    | T.800Y    | THYROID   | KIDNEY               | LUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CI-FFI   |  |  |  |
| н-3     | 0.00E+00                      | 2.38E+03 | 2.38£+03  | 7 700.03  | 3 720 . 02           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |  |
| C-14    | 2.34E+09                      |          |           |           | 11 - 11-11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |  |
| NA-24   | 1.54E+07                      |          |           |           |                      | The state of the s |          |  |  |  |
| ******  | ********                      | ******** | ********  | 1.54E+07  | 1.54E+07             | 1.54E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.54E+07 |  |  |  |
| P-32    | 1.608+11                      | 9.43E+09 | 6.21E+09  | 0.00E+00  | 0 005.00             | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |  |
| CR-51   | 0.00E+00                      |          |           | 1.05E+05  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |  |
| MN-54   | 0.006+00                      |          | 8.84E+06  | 0.00E+00  |                      | 2.05E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.70E+06 |  |  |  |
|         |                               | ******** | ********* | 0.002+00  | B.64E+06             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.43E+07 |  |  |  |
| MH-56   | 0.00E+00                      | 3.14E-02 | 5.42E-03  | 0.006+00  | 2.70E-02             | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |  |
| FE-55   | 1.35E+08                      |          | 2.33E+07  | 0.00E+00  |                      | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.85E+00 |  |  |  |
| FE-59   | 2.24E+08                      |          | 1.54E+08  | 0.00E+00  | 0.00E+00<br>0.00E+00 | 4.27E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.11E+07 |  |  |  |
|         | ********                      |          |           |           | 0.002+00             | 1.16E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.87E+08 |  |  |  |
| 0-58    | 0.00E+00                      | 2.42E+07 | 6.05E+07  | 0.00€+00  | 0.00E+00             | 0.000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |  |
| 00-60   | 0.00E+00                      | 8.82E+07 | 2.08E+08  | 0.00E+00  | 0.00E+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.04E+07 |  |  |  |
| 11-63   | 3.49E+10                      | 2.16E+09 | 1.21E+09  | 0.00E+00  | 0.002+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10E+08 |  |  |  |
| *****   |                               |          | ********  |           | 0.006+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07E+08 |  |  |  |
| 1-65    | 3.50E+00                      | 3.97E-01 | 1.80E-01  | 0.00E+00  | 0.008+00             | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 000.01 |  |  |  |
| 11-64   | 0.00E+00                      | 1.86E+05 | 8.59E+04  | 0.00E+00  | 3.14E+05             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.02E+01 |  |  |  |
| N-65    | 5.55E+09                      | 1.90E+10 | 8.78E+09  | 0.00E+00  | 9.23E+09             | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.81E+06 |  |  |  |
|         |                               |          | ********  | ********* | A. 535.0A            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.616+10 |  |  |  |
| N-69    | 2.02E-11                      | 3.63E-11 | 2.70E-12  | 0.00E+00  | 1.51E-11             | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 200 00 |  |  |  |
| R-83    | 0.006+00                      | 0.00E+00 | 1.12E-01  | 0.00E+00  | 0.00E+00             | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.96E-09 |  |  |  |
| R-84    | 0.00E+00                      | 0.00E+00 | 1.51E-23  | 0.00E+00  | 0.00E+00             | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 |  |  |  |
|         | ******                        | ******** | ********  | ********  | 0.005+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 |  |  |  |
| R-85    | 0.00E+00                      | 0.00E+00 | 0.00E+00  | 0.006+00  | 0.00E+00             | 0 005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.00 |  |  |  |
| 8-86    | 0.00E+00                      | 2.23E+10 | 1.10E+10  | 0.00E+00  | 0.00E+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008+00 |  |  |  |
| 8-88    | 0.006+00                      | 0.00E+00 | 0.008+00  | 0.006+00  | 0.00E+00             | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.69E+08 |  |  |  |
|         |                               |          |           |           | 0.005+00             | 0.006+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006+00 |  |  |  |
| 8-89    | 0.006+00                      | 0.00E+00 | 0.00E+00  | 0.00E+00  | 0.00E+00             | 0.000+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.00 |  |  |  |
| 7-89    | 1.26E+10                      | 0.00E+00 | 3.61E+08  | 0.00E+00  | 0.006+00             | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 |  |  |  |
| -90     | 1.22E+11                      | 0.00E+00 |           | 0.00E+00  |                      | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.59E+08 |  |  |  |
| ******  |                               |          | ********  | ********  | 0.005-00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.52E+09 |  |  |  |
| -91     | 2.72E+05                      | 0.00E+00 | 9.83E+03  | 0.00E+00  | 0.00E+00             | 0.000+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 546.05 |  |  |  |
| -92     | 4.64E+00                      | 0.00E+00 |           | 0.00E+00  | 0.00E+00             | 0.005+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.216+05 |  |  |  |
| 90      | 6.81E+02                      | 0.00E+00 |           |           |                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.006+01 |  |  |  |
| ******  |                               | *******  | *******   | *******   | *********            | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.41E+05 |  |  |  |
| 91M     | 5.67E-19                      | 0.00E+00 | 1.93E-20  | 0.006+00  | 0.008+00             | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |  |
| 91      | 7                             | 0.00E+00 |           |           |                      | a had been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.89E-15 |  |  |  |
| 92      |                               |          |           |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.25E+06 |  |  |  |
|         |                               |          | 1.215-03  | 0.00E+00  | 0.006+00             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.03E+01 |  |  |  |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: INFANT ( 2 OF 3 )

| NUCLIDE |          |                      | ORGAN DO             | SE CONVERS           | ION FACTOR           | s                    |                      |
|---------|----------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|         | BONE     | LIVER                | T.800Y               | THYROID              | KIDNEY               | LUNG                 | GI-LLI               |
| y-93    | 2.16E+00 | 0.00E+00             | 5.87E-02             | 0.00E+00             | 0.006+00             | 0.00E+00             | 1 705.0              |
| ZR-95   | 6-80E+03 | 1.66E+03             |                      | 0.00E+00             |                      | 0.002+00             |                      |
| ZR-97   | 4.06E+00 |                      | 3.18E-01             | 0.002+00             | 7.038-01             | 0.008+00             | 4.45E+0              |
| NB-95   | 5.938+05 | 2.44E+05             | 1.41E+05             | 0.00E+00             | 1 755+05             | 0.005+00             | 2 045-0              |
| MO-99   | 0.00E+00 | 2.08E+08             | 4.06E+07             | 0.00E+00             | 1.75E+05             | 0.00E+00             | 2.06E+0              |
| TC-99M  | 2.75E+01 | 5.67E+01             | 7.308+02             | 0.00E+00             | 3.11E+08<br>6.10E+02 | 0.00E+00<br>2.96E+01 | 6.85E+0              |
| TC-101  | 0.006+00 | 0.008+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | D.00E+00             |
| RU-103  | 8.67E+03 | 0.00E+00             | 2.90E+03             | 0.00E+00             | 1.80E+04             | 0.006+00             | 1.05E+05             |
| RU-105  | 8.05E-03 | 0.00E+00             | 2.71E-03             | 0.00E+00             | 5.92E-02             | 0.00E+00             | 3.20E+00             |
| RU-106  | 1.90E+05 | 0.00E+00             | 2.38E+04             | 0.00E+00             | 2.25E+05             | 0.00E+00             | 1.44E+06             |
| AG-110M | 3.86€+08 | 2.82E+08             | 1.86E+08             | 0.00E+00             | 4.03E+08             | 0.00E+00             | 1.46E+10             |
| TE-125M | 1.51E+08 | 5.04E+07             | 2.04E+07             | 5.07E+07             | 0.00E+00             | 0.00E+00             | 7,18E+07             |
| TE-127M | 4.21E+08 | 1.40E+08             | 5.10E+07             | 1.22E+08             | 1.04E+09             | 0.00E+00             | 1.70E+08             |
| E-127   | 6.32E+03 | 2.12E+03             | 1.36E+03             | 5.14E+03             | 1.54E+04             | 0.00E+00             | 1.33E+05             |
| TE-129M | 5.57E+08 | 1.91E+08             | 8.58£+07             | 2.148+08             | 1.39E+09             | 0.00E+00             | 3.33E+08             |
| E-129   | 2.72E-09 | 9.37E-10             | 6.35E-10             | 2.28E-09             | 4 77F .00            | 0.005-00             | 2 479 07             |
| E-131M  | 3.38E+06 | 1.36E+06             | 1.12E+06             | 2.75E+06             | 6.77E-09             | 0.008+00             | 2.17E-07             |
| E-131   | 3.436-32 | 1.27E-32             | 9.628-33             | 3.06E-32             | 9.35E+06<br>8.76E-32 | 0.00E+00             | 2.29E+07<br>1.38E-30 |
| E-132   | 2.11E+07 | 1 0/0,07             | 0.755.04             |                      |                      | ********             |                      |
| -130    | 3.558+06 | 1.04E+07             | 9.75E+06             | 1.54E+07             | 6.53E+07             | 0.00E+00             | 3.87E+07             |
| -131    | 2.72E+09 | 7.81E+06<br>3.20E+09 | 3.13E+06<br>1.41E+09 | 8.75E+08<br>1.05E+12 | 8.58E+06<br>3.74E+09 | 0.00E+00             | 1.67E+06<br>1.14E+08 |
|         |          | ********             | ********             | ******               | ********             |                      |                      |
| -132    | 1.43E+00 | 2.90E+00             | 1.03E+00             | 1.36E+02             | 3.24E+00             | 0.00E+00             | 2.35E+00             |
| -133    | 3.63E+07 | 5.28E+07             | 1.55E+07             | 9.60E+09             | 6.21E+07             | 0.00E+00             | 8.93E+06             |
| -134    | 1.76E-11 | 3.60E-11             | 1.28E-11             | 8.40E-10             | 4.03E-11             | 0.00E+00             | 3.738-11             |
| -135    | 1.12E+05 | 2.23F+05             | R 14F+04             | 2 005+07             | 5 / OC+05            | 0.005.00             | 0.000.07             |
| 5-134   | 3.65E+10 | 6.80F+10             | 6.87E+00             | 0.005+00             | 1.75E+10             | 7 195+00             | 1 855.00             |
| s-136   | 1.98E+09 | 5.81E+09             | 2.17E+09             | 0.00E+00             | 2.32E+09             | 4.74E+08             | 8.82E+07             |
|         |          |                      |                      |                      |                      |                      |                      |
| S-137   | 5.15E+10 | 6.02E+10             | 4.27E+09             | 0.00E+00             | 1.62E+10             | 6.55E+09             | 1.88E+08             |
| S-138   | 8.39E-23 | 1.36E-22             | 6.61E-23             | 0.008+00             | 6.80E-23             | 1.06E-23             | 2.18E-22             |
| A-139   | 4.27E-07 | 2.83E-10             | 1.24E-08             | J.00E+00             | 1.70E-10             | 1 72F-10             | 2 71E-05             |

PATHWAY: COW'S MILK (CONTAMINATED FORAGE)

AGE GROUP: INFANT ( 3 OF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |          |          |          |          |                      |  |  |  |
|---------|-------------------------------|----------|----------|----------|----------|----------|----------------------|--|--|--|
|         | BONE                          | LIVER    | T.BODY   | THYROID  | KIDNEY   | LUNG     | C:-LLI               |  |  |  |
| BA-140  | 2.41E+08                      | 2.41E+05 | 1.24E+07 | 0.00E+00 | 5.72E+04 | 1.48£+05 | 5.92E+07             |  |  |  |
| BA-141  | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.000+00             |  |  |  |
| BA-142  | 0.006+00                      | 0.00E+00 | 0.006+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00             |  |  |  |
| LA-140  | 4.05E+01                      | 1.600+01 | 4.11E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.88E+05             |  |  |  |
| LA-142  | 1.70E-10                      | 6.24E-11 | 1-49E-11 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.06E-05             |  |  |  |
| CE-141  | 4.34E+04                      | 2.64E+04 | 3.11E+03 | 0.008+00 | 8.15E+03 | 0.00E+00 | 1.37E+07             |  |  |  |
| CE-143  | 3.97E+02                      | 2.63E+05 | 3.00E+01 | 0.005+00 | 7.67E+01 | 0.00E+00 | 1 545.04             |  |  |  |
| CE-144  | 2.33E+06                      | 9.52E+05 | 1.30E+05 | 0.008+00 | 3.85E+05 | 0.00E+00 | 1.54E+06<br>1.33E+08 |  |  |  |
| PR-143  | 1.496+03                      | 5.55E+02 | 7.36E+01 | 0.00E+00 | 2.06E+02 | 0.00E+00 | 7.84E+05             |  |  |  |
|         |                               |          |          |          |          | *******  | *******              |  |  |  |
| PR-144  | 0.006+00                      | 0.008+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00             |  |  |  |
| ND-147  | 8.816+02                      | 9.05E+02 | 5.55E+01 | 0.00E+00 | 3.49E+02 | 0.00E+00 | 5.74E+05             |  |  |  |
| J-187   | 6.08E+04                      | 4.23E+04 | 1.46E+04 | 0.00E+00 | 0.008+00 | 0.00E+00 | 2.48E+06             |  |  |  |
| ******  |                               | ******   | *******  |          | ******   |          |                      |  |  |  |
| IP-239  | 4.57E+02                      | 4.08E+01 | 2.316+01 | 0.00E+00 | 8.15E+01 | 0.008+00 | 1.18E+06             |  |  |  |

#### MEAT PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, P.;

PATHWAY: MEAT (CONTAMINATED FORAGE)
AGE GROUP: ADULT ( 1 OF 3 )

| NUCLIDE |          |                      | ORGAN DO             | SE CONVERS           | ION FACTOR | s        |          |
|---------|----------|----------------------|----------------------|----------------------|------------|----------|----------|
|         | BONE     | LIVER                | T.800Y               | THYROID              | KIDNEY     | LUNG     | GT-LLI   |
| н-3     | 0.00E+00 | 3.25E+02             | 3.25E+02             | 3.25£+02             | 3.25E+02   | 3.25E+02 | 3.25E+02 |
| C-14    | 2.41E+08 | 4.83E+07             |                      | 4.83E+07             |            | 4.83E+07 |          |
| NA-24   | 1.36€-03 | 1.36E-03             | 1.36E-03             | 1.368-03             | 1.36E-03   | 1.36E-03 |          |
| -32     | 4.66E+09 | 2.90E+08             | 1.80E+08             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 5.24E+08 |
| CR-51   | 0.006+00 | 0.00E+00             | 7.05E+03             | 4.21E+03             | 1.55E+03   | 9.35E+03 | 1.77E+06 |
| 4N-54   | 0.00E+00 | 9.18E+06             | 1.75E+06             | 0.006+00             | 2.73E+06   | 0.00E+00 | 2.81E+07 |
| 4N-56   | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| E-55    | 2.93E+08 | 2.03E+08             | 4.72E+07             | 0.00E+00             | 0.00E+00   | 1.13E+08 | 1.16E+08 |
| E-59    | 2.66E+08 | 6.24E+08             | 2.396+08             | 0.00E+00             | 0.00E+00   | 1.74E+08 | 2.08E+09 |
| 0-58    | 0.00E+00 | 1.82E+07             | / 00e+07             | 0.005.00             |            |          |          |
| 0-60    | 0.002+00 | 7.52E+07             | 4.09E+07<br>1.66E+08 | 0.00E+00             | 0.00E+00   | 0.005+00 | 3.69E+08 |
| 1-63    | 1.89E+10 | 1.312+09             | 6.33E+08             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 1.41E+09 |
| ******  |          | *******              | *******              | 0.00E+00             | 0.00E+00   | 0.00E+00 | 2.73E+08 |
| 1-65    | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| U-64    | 0.00E+00 | 2.71E-07             | 1.27E-07             | 0.00E+00             | 6.84E-07   | 0.00E+00 | 2.31E-05 |
| N-65    | 3.56E+08 | 1.13E+09             | 5.12E+08             | 0.002+00             | 7.57E+08   | 0.00E+00 | 7.13E+08 |
| ******* |          |                      |                      | * * * * * * * * * *  | *******    |          |          |
| N-69    | 0.00E+00 | 0.00E+00             | 0.000+00             | 0.00E+00             | 0.00E+00   | 0.006+00 | 0.008+00 |
| R-83    | 0.00£+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.008+00   | 0.00E+00 | 0.00E+00 |
| R-84    | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| R-85    | 0.00E+00 | 0.000+00             | 0.000.00             |                      | *********  |          |          |
| 8-86    | 0.00E+00 | 0.00E+00<br>4.87E+08 | 0.00E+00             | 0.006+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| 1-88    | 0.00E+00 | 0.00E+00             | 2.27E+08<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.005+00   | 0.00E+00 | 9.60E+07 |
|         |          | ********             | *********            | 0.002+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| 8-89    | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.006+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| 8-89    | 3.02£+08 | 0.00E+00             | 8.66E+06             | 0.00E+00             | 0.006+00   | 0.00€+00 | 4.84E+07 |
| -90     | 1.24E+10 | 0.006+00             | 3.05E+09             | 0.00E+00             | 0.00E+00   | 0.006+00 | 3.59E+08 |
|         | ******   |                      |                      |                      |            |          |          |
| 1-91    | 1.52E-10 | 0.00E+00             | 6.14E-12             | 0.00E+00             | 0.002+00   | 0.00E+00 | 7.23E-10 |
| 1-92    | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00   | 0.006+00 | 0.00E+00 |
| 90      | 1.03E+02 | 0.00E+00             | 2.89E+00             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 1.14E+06 |
| O1N     | 0.000.00 | 0.000.00             |                      | *******              |            |          |          |
| 91M     | 0.00E+00 | 0.006+00             | 0.002+00             | 0.00E+00             | 0.00£+00   | 0.00E+00 | 0.002+00 |
| 92      | 1.13E+06 | 0.00E+00             | 3.03E+04             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 6.23E+08 |
| 7.96    | 0.00E+00 | 0.00E+00             | 0.006+00             | 0.00E+00             | 0.00E+00   | 0.00E+00 | 0.00E+00 |

PATHWAY: MEAT (CONTAMINATED FORAGE)
AGE GROUP: ADULT ( 2 OF 3 )

| NUCLIDE  | ORGAN DOSE CONVERSION FACTORS |          |          |                      |                      |                      |                      |  |  |  |
|----------|-------------------------------|----------|----------|----------------------|----------------------|----------------------|----------------------|--|--|--|
|          | BONE                          | LIVER    | 7.800Y   | THYROID              | KIDNEY               | LUNG                 | GI-FFI               |  |  |  |
| Y - 93   | 4.69E-12                      | 0.00E+00 | 1.30E-13 | 0.00E+00             | 0.005+00             | 0.005.00             | 1 / OF 0             |  |  |  |
| ZR-95    | 1.87E+06                      |          | 175.00   | 0.00E+00             | 0.00E+00<br>9.42E+05 | 0.00E+00             | 1.49E-01             |  |  |  |
| ZR-97    | 2.07E-05                      |          |          |                      | 6.30E-06             |                      | 1.90E+00             |  |  |  |
| NB-95    | 2.30E+06                      | 1.28E+06 | 6.87E+05 | 0 005+00             | 4 245-04             | 0.000.00             | * ****               |  |  |  |
| MO-99    | 0.00E+00                      | 1.00E+05 | 1.90E+04 | 0.00E+00             | 1.26E+06             | 0.00E+00             | 7.76E+09             |  |  |  |
| TC-99M   | 4.45E-21                      | 1.26E-20 | 1.60E-19 | 0.00E+00             | 2.26E+05<br>1.91E-19 | 0.00E+00<br>6.16E-21 | 2.32E+05<br>7.44E-18 |  |  |  |
| TC-101   | 0.006+00                      | 0.00E+00 | 0.000+00 | 0.008+00             | 0.00E+00             | 0 005+00             | 0.005+00             |  |  |  |
| RU-103   | 1.05E+08                      | 0.00E+00 | 4.53E+07 | 0.00E+00             | 4.01E+08             | 0.008+00             | 0.00E+00             |  |  |  |
| RU-105   | 5.78E-28                      | 0.00E+00 | 2.28E-28 | 0.002+00             | 7.46E-27             | 0.00E+00             | 1.23E+10<br>3.53E-25 |  |  |  |
| RU-106   | 2.80E+09                      | 0.00E+00 | 3.54E+08 | 0.00E+00             | 5 /05-00             | 0.005.00             |                      |  |  |  |
| AG-110M  | 6.68E+06                      | 6.18E+06 | 3.67E+06 | 0.00E+00             | 5.40E+09             | 0.00E+00             | 1.81E+11             |  |  |  |
| TE-125M  | 3.59E+08                      | 1.306+08 | 4.81E+07 | 1.08E+08             | 1.22E+07<br>1.46E+09 | 0.00E+00             | 2.52E+09<br>1.43E+09 |  |  |  |
| TE-127M  | 1.12E+09                      | 3.99E+08 | 1.36E+08 | 2 855.08             |                      |                      |                      |  |  |  |
| TE-127   | 2.12E-10                      | 7.62E-11 | 4.59E-11 | 2.85E+08             | 4.53E+09             | 0.00E+00             | 3.74E+09             |  |  |  |
| TE-129M  | 1.13E+09                      | 4.23E+08 | 1.79E+08 | 1.57E-10<br>3.90E+08 | 8.64E-10<br>4.73E+09 | 0.00E+00             | 1.67E-08<br>5.71E+09 |  |  |  |
|          |                               |          |          |                      |                      |                      |                      |  |  |  |
| E-129    | 0.00E+00                      | 0.00E+00 | 0.008+00 | 0.006+00             | 0.00£+00             | 0.00E+00             | 0.008+00             |  |  |  |
| E-131M   | 4.51E+02                      | 2.21E+02 | 1.84E+02 | 3.49E+02             | 2.236+03             | 0.00E+00             | 2.19E+04             |  |  |  |
| (6-131   | 0.006+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.008+00             |  |  |  |
| E-132    | 1.42E+06                      | 9.186+05 | 8.62E+05 | 1.01E+06             | 8.84E+06             | 0.00E+00             | 4.34E+07             |  |  |  |
| -130     | 2.11E-06                      | 6.22E-06 | 2.45E-06 | 5.27E-04             | 9.71E-06             | 0.00E+00             | 5.35E-06             |  |  |  |
| -131     | 1.07E+07                      | 1.54E+07 | 8.80E+06 | 5.036+09             | 2.63E+07             | 0.00E+00             | 4.05E+06             |  |  |  |
| ******** |                               | *******  |          |                      |                      |                      |                      |  |  |  |
| -132     | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.008+00             |  |  |  |
| -133     | 3.65E-01                      | 6.35E-01 | 1.94E-01 | 9.34E+01             | 1.11E+00             | 0.00E+00             | 5.71E-01             |  |  |  |
| -134     | 0.00E+00                      | 0.008+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             |  |  |  |
| -135     | 4.43E-17                      | 1.16E-16 | 4.28E-17 | 7.64E-15             | 1.86E-16             | 0.00E+00             | 1.31E-16             |  |  |  |
| s-134    | a service of the              |          | 1.28E+09 | G.00E+00             | 5.06E+08             | 1.68E+08             | 2.748+07             |  |  |  |
| s-136    | 1.21E+07                      | 4.76E+07 | 3.43E+07 | D.00E+00             | 2.65E+07             | 3.63E+06             | 5.41E+06             |  |  |  |
| *******  |                               |          |          |                      |                      |                      |                      |  |  |  |
| S-137    | 8.725+08                      | 1.19E+09 | 7.81E+08 | 0.00E+00             | 4.05E+08             | 1.35E+08             | 2.31E+07             |  |  |  |
| S-138    | 0.00E+00                      | 0.006+00 | 0.00E+00 |                      | 0.00E+00             | 0.00E+00             | 0.006+00             |  |  |  |
| A-139    | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.005+00             | 0.00E+00             |  |  |  |

PATHWAY: MEAT (CONTAMINATED FORAGE)
AGE GROUP: ADULT ( 3 OF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |          |          |          |          |          |  |  |  |
|---------|-------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|         | BONE                          | LIVER    | T.800Y   | THYROID  | KIDNEY   | LUNG     | GI-LLI   |  |  |  |
| BA-140  | 2.87E+07                      | 3.61E+04 | 1.88E+06 | 0.00E+00 | 1.23E+04 | 2.07E+04 | 5.92E+07 |  |  |  |
| 8A-141  | 0.006+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| BA-142  | 0.000+00                      | 0.00E+00 | 0.00E+00 | 0.008+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
|         |                               |          | *******  |          | *******  |          |          |  |  |  |
| LA-140  | 3.71E-02                      | 1.87E-02 | 4.94E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.37E+03 |  |  |  |
| LA-142  | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| CE-141  | 1.40E+04                      | 9.50E+03 | 1.08E+03 | 0.00E+00 | 4.41E+03 | 0.00E+00 | 3.63E+07 |  |  |  |
|         |                               |          |          |          |          | ******** |          |  |  |  |
| CE-143  | 2.01E-02                      | 1.48E+01 | 1.64E-03 | 0.00E+00 | 6.53E-03 | 0.00E+00 | 5.55E+02 |  |  |  |
| CE-144  | 1.46E+06                      | 6.09E+05 | 7.83E+04 | 0.00E+00 | 3.61E+05 | 0.00E+00 | 4.93E+08 |  |  |  |
| PR-143  | 2.10E+04                      | 8.41E+03 | 1.04E+03 | 0.00E+00 | 4.85E+03 | 0.00E+00 | 9.18E+07 |  |  |  |
|         |                               |          |          | ******   |          |          |          |  |  |  |
| PR-144  | 0.00E+00                      | 0.00E+00 | 0.002+00 | 0.008+00 | 0.000+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| ND-147  | 7.07E+03                      | 8.17E+03 | 4.89E+02 | 0.00E+00 | 4.78E+03 | 0.00E+00 | 3.92E+07 |  |  |  |
| W-187   | 2.07E-02                      | 1,73E-02 | 6.04E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 5.66E+00 |  |  |  |
|         | ********                      |          |          |          | *******  |          |          |  |  |  |
| WP-239  | 6.53E+02                      | 6.42E+01 | 3.54E+01 | 0.00E+00 | 2.00E+02 | 0.008+00 | 1.32E+07 |  |  |  |
|         |                               |          |          |          |          |          |          |  |  |  |

PATHWAY: MEAT (CONTAMINATED FORAGE)
AGE GROUP: TEEN ( 1 OF 3 )

| NUCLIDE             |          |                       | ORGAN D  | OSE CONVER | SION FACTO | RS        |          |
|---------------------|----------|-----------------------|----------|------------|------------|-----------|----------|
|                     | BONE     | LIVER                 | T.BODY   | THYROID    | KIDNEY     | LUNG      | GI-LLI   |
| н-3                 | 0.00E+00 | 1.94E+02              | 1.94E+02 | 1 0/5.03   | 4.0/2.03   |           |          |
| C-14                | 2.04E+08 |                       |          |            |            |           |          |
| NA-24               | 1.08E-03 |                       |          |            |            |           | 4.08E+07 |
| ******              | ******** | ********              |          |            |            |           |          |
| P-32                | 3.93E+09 | 2.44E+08              | 1.53E+08 | 0.008+00   | 0.006+00   | 0.00E+00  | 3.315+08 |
| CR-51               | 0.00E+00 | 0.00E+00              | 5.64E+03 | 3.13E+03   | 1.24E+03   | 8.05E+03  | 9.47E+05 |
| MN-54               | 0.00E+00 | 7.00E+06              | 1.39€+06 | 0.00E+00   | 2.09E+06   | 0.00E+00  | 1.44E+07 |
| MN-56               | 0.00E+00 | 0.00E+00              | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| FE-55               | 2.38E+08 | 1.69E+08              |          | 0.00E+00   | 0.00E+00   | 1.07E+08  | 7.31E+07 |
| FE-59               | 2.12E+08 | 4.95E+08              |          | 0.006+00   | 0.00E+00   | 1.566+08  | 1.17E+09 |
| *******             |          |                       |          |            | ********   | 11206-00  | 1.175709 |
| CO-58               | 0.00E+0U | 1.41E+07              | 3.24E+07 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 1.94E+08 |
| 00-60               | 0.00E+00 | 5.83E+07              | 1.31E+08 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 7.60E+08 |
| M1-63               | 1.52E+10 | 1.07E+09              | 5.156+08 | 0.006+00   | 0.00E+00   | 0.00E+00  | 1.71E+08 |
| *****               |          | *******               |          | *******    |            | 0.006+00  | 1.716700 |
| N1-65               | 0.00E+00 | 0.00E+00              | J.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| CU-64               | 0.00E+00 | 2.21E-07              | 1.04E-07 | 0.00E+00   | 5.60E-07   | 0.00E+00  | 1.72E-05 |
| ZN-65               | 2.50E+08 | 8.69E+08              | 4.05E+08 | 0.00E+00   | 5.56E+08   | 0.00E+00  | 3.68E+08 |
|                     |          |                       | *******  |            |            | ********  | ******** |
| ZN-69               | 0.00€+00 | 0.00E+00              | 0.006+00 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| BR-83               | 0.000+00 | 0.00E+00              | 0.00E+00 | 0.006+00   | 0.00£+00   | 0.00E+00  | 0.00E+00 |
| BR-84               | 0.00E+00 | 0.00E+00              | 0.002+00 | 0.00E+00   | 0.006+00   | 0.00E+00  | 0.00E+00 |
| * * * * * * * * * * | ******   | * * * * * * * * * * * |          |            |            | ********  |          |
| BR-85               | 0.00E+00 | 0.006+00              | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| RB-86               | 0.00E+00 | 4.07E+08              | 1.91E+08 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 6.02E+07 |
| R9-88               | 0.00E+00 | 0.00E+00              | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| ********            | *******  |                       | *******  |            |            | ********* |          |
| RB-89               | 0.00E+00 | 0.008+00              | 0.008+00 | 0.00€+00   | 0.00E+00   | 0.00E+00  | 0.002+00 |
| SR-89               | 2.55E+08 | 0.00E+00              | 7.29E+06 | 0.00E+00   | 0.002+00   | 0.00E+00  | 3.03E+07 |
| SR-90               | 8.05E+09 | 0.00E+00              | 1.99E+09 | 0.00E+00   | 0.UGE+00   | 0.00E+00  | 2.268+08 |
|                     |          |                       |          |            | ******     | *******   | ******   |
| SR-91               | 1.28E-10 | 0.00E+00              | 5.08E-12 | 0.00E+00   | 0.00E+00   | 0.00E+00  | 5.79E-10 |
| SR-92               | 0.00E+00 | 0.00E+00              | 0.00E+00 | 0.00£+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| 7-90                | 9.06E+01 | 0.00E+00              | 2.44E+00 | 0.00E+00   | 0.005+00   | 0.008+00  | 7.47E+05 |
|                     |          | *******               | ******   | *******    |            | *******   |          |
| -91M                | 0.00E+00 | 0.00E+00              | 0.00E+00 | 0.00€+00   | 0.00E+00   | 0.00E+00  | 0.00E+00 |
| -91                 | 9.54E+05 | 0.008+00              | 2.56E>04 | 0.00E+00   | 0.008+00   |           | 3.91E+08 |
| -85                 | 0.00E+00 | 0.00E+00              | 0.00E+00 | 0.00E+00   | 0.006+00   |           | 0.00E+00 |

### MEAT PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\rm i}$

PATHWAY: MEAT (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 2 OF 3 )

| NUCLIDE  |            | ORGAN DOSE CONVERSION FACTORS |          |          |                      |                      |          |  |  |  |  |
|----------|------------|-------------------------------|----------|----------|----------------------|----------------------|----------|--|--|--|--|
|          | SONE       | LIVER                         | T.800Y   | THYROID  | KIDNEY               | LUNG                 | GI-LLI   |  |  |  |  |
| Y-93     | 3.96E-12   | 0.00E+00                      | 1.09E-13 | 0.00E+00 | 0.005+00             | 0.005+00             |          |  |  |  |  |
| ZR-95    | 1.50E+06   |                               |          |          |                      |                      |          |  |  |  |  |
| ZR-97    | 1.72E-05   |                               |          |          |                      | 0.00E+00<br>0.00E+00 |          |  |  |  |  |
|          |            |                               |          |          | ********             |                      | 9.23E-0  |  |  |  |  |
| N8-95    | 1.79E+06   | 9.95E+05                      | 5.48E+05 | 0.00E+00 | 9.65E+05             | 0.00E+00             | 4.26E+0  |  |  |  |  |
| MO-99    | 0.00E+00   | 8.27E+04                      | 1.58E+04 | 0.00E+00 |                      | 0.00E+00             | 1.48E+0  |  |  |  |  |
| TC-99M   | 3.53E-21   | 9.86E-21                      | 1.28E-19 |          |                      | 5.47E-21             | 6.47E-1  |  |  |  |  |
|          | ********   |                               |          |          |                      |                      |          |  |  |  |  |
| TC-101   | 0.00E+00   | 0.006+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+0  |  |  |  |  |
| RU-103   | 8.57E+07   | 0.00E+00                      | 3.66E+07 | 0.00E+00 | 3.02E+08             | 0.00E+00             | 7.16E+09 |  |  |  |  |
| RU-105   | 4.83E-28   | 0.00E+00                      | 1.87E-28 | 0.00E+00 | 6.09E-27             | 0.00E+00             | 3.90E-25 |  |  |  |  |
| ******** | *********  |                               |          |          |                      |                      |          |  |  |  |  |
| RU-106   | 1.82E+09   | 0.006+00                      | 2.97E+08 | 0.00E+00 | 4.55E+09             | 0.00E+00             | 1.13E+1  |  |  |  |  |
| AG-110M  | 5.06E+06   | 4.79E+06                      | 2.91E+06 | 0.00E+00 | 9.13E+06             | 0.00E+00             | 1.34E+09 |  |  |  |  |
| TE-125M  | 3.03E+08   | 1.091+08                      | 4.05E+07 | 8.47E+07 | 0.006+00             | 0.00E+00             | 8.94E+08 |  |  |  |  |
|          |            | ****                          |          |          | ******               |                      |          |  |  |  |  |
| TE-127W  | 9.41E+08   | 3.34E+08                      | 1.12E+08 | 2.24E+08 | 3.826+09             | 0.00E+00             | 2.35E+09 |  |  |  |  |
| TE-127   | 1.80E-10   | 6.38E-17                      | 3.88E-11 | 1.24E-10 | 7.29E-10             | 0.00E+00             | 1.39E-08 |  |  |  |  |
| E-IEYM   | 9.50E+08   | 3.53E+08                      | 1.50E+08 | 3.07E+08 | 3.97E+09             | 0.00E+00             | 3.57E+09 |  |  |  |  |
| E-129    | 0.006+00   | 0.000+00                      | 0.000.00 |          | *******              | ******               | *******  |  |  |  |  |
| E-131H   | 3.76E+02   | 0.00E+00<br>1.80E+02          | 0.00E+00 | 0.00E+00 | 0.00£+00             | 0.00E+00             | 0.00E+00 |  |  |  |  |
| E-131    | 0.00E+00   | 0.00E+00                      | 1.50E+02 | 2.71E+02 | 1.88E+03             | 0.00E+00             | 1.45E+04 |  |  |  |  |
|          | ********** | 0.005+00                      | 0.008+00 | 0.002+00 | 0.00E+00             | 0.00E+00             | 0.00E+00 |  |  |  |  |
| E-132    | 1.16E+06   | 7.36E+05                      | 6.92E+05 | 7.76E+05 | 7 045.04             | 0.000.00             |          |  |  |  |  |
| -130     | 1.70E-06   | 4.91E-06                      | 1.96E-06 | 4.00E-04 | 7.06E+06<br>7.56E-06 | 0.00E+00             | 2.33E+07 |  |  |  |  |
| -131     | 8.92E+06   | 1.25E+07                      | 6.71E+06 | 3.65E+09 | 2.15E+07             | 0.00E+00             | 3.77E-06 |  |  |  |  |
|          |            | ******                        | *******  | ******** |                      | 0.00E+00             | 2.47E+06 |  |  |  |  |
| - 132    | 0.00E+00   | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00 |  |  |  |  |
| -133     | 3.05E-01   | 5.18E-01                      | 1.58E-01 | 7.23E+01 | 9.09E-01             | 0.00E+00             | 3.92E-01 |  |  |  |  |
| -134     | 0.002+00   | 0.DOE+00                      | 0.00E+00 |          | 0.006+00             |                      | 0.00E+00 |  |  |  |  |
| *****    |            |                               |          |          | ********             |                      |          |  |  |  |  |
| -135     | 3.60E-17   | 9.27E-17                      | 3.44E-17 | 5.96E-15 | 1.46E-16             | 0.00E+00             | 1.03E-16 |  |  |  |  |
| s-134    | 5.23E+08   | 1.23E+09                      | 5.71E+08 | 0.00E+00 | 3.91E+08             |                      | 1.53E+07 |  |  |  |  |
| s-136    | 9.40E+06   | 3.70E+07                      | 2.48E+07 | 0.006+00 | 2.01E+07             | 3.17E+06             | 2.98E+06 |  |  |  |  |
| *******  |            | *******                       | ******   |          |                      | *******              | ******   |  |  |  |  |
| S-137    |            | 9.63E+08                      | 3.366+08 | 0.008+00 | 3.28E+08             | 1.27E+08             | 1.37E+07 |  |  |  |  |
| s-138    | 0.00E+00   | 0.00E+00                      | 0.008+00 | 0.008+00 | 0.00E+00             | 0.U0E+00             | 0.008+00 |  |  |  |  |
| 4-139    | 0.00E+00   | 0.00E+00                      | 0.006+00 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.002+00 |  |  |  |  |
| ******   |            | *******                       | ******   | ******** |                      |                      |          |  |  |  |  |

PATHWAY: MEAT (CONTAMINATED FORAGE)
AGE GROUP: TEEN ( 3 OF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |          |          |                      |          |                      |  |  |  |  |
|---------|-------------------------------|----------|----------|----------|----------------------|----------|----------------------|--|--|--|--|
|         | BONE                          | LIVER    | T.800Y   | THYROID  | KIDNEY               | LUNG     | GI-FFI               |  |  |  |  |
| BA-140  | 2.38E+07                      | 2.91E+04 | 1.53E+06 | 0.006+00 | 9.87E+03             | 1.96E+04 | 3.66E+07             |  |  |  |  |
| BA-141  | 0.006+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00 | 0.00E+00             |  |  |  |  |
| BA-142  | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.008+00 | 0.005+00             | 0.00E+00 | 0.00E+00             |  |  |  |  |
| LA-140  | 3.056-02                      | 1.50E-02 | 3.99E-03 | 0.00E+00 | 0 45e+00             | 0.00E+00 | 8.61E+02             |  |  |  |  |
| LA-142  | 0.008+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00             | 0.00E+00 | 0.00E+00             |  |  |  |  |
| CE-141  | 1.18E+04                      | 7.87E+03 | 9.04E+02 | 0.008+00 | 3.71E+03             | 0.00E+00 | 2.25E+07             |  |  |  |  |
| CE-143  | 1.69E-02                      | 1.23E+01 | 1.37E-03 | 0.00E+00 | 6 F1F 07             | 0.000.00 |                      |  |  |  |  |
| CE-144  | 1,23E+06                      | 5.08E+05 | 6.60E+04 | 0.000+00 | 5.51E-03<br>3.04E+05 | 0.00E+00 | 3.69E+02             |  |  |  |  |
| PR-143  | 1.766+04                      | 7.04E+03 | 8.78E+02 | 0.00E+00 | 4.09E+03             | 0.00E+00 | 3.09E+08<br>5.80E+07 |  |  |  |  |
|         |                               |          | *******  |          |                      | *******  |                      |  |  |  |  |
| PR-144  | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00€+00             | 0.00E+00 | 0.00E+00             |  |  |  |  |
| ID-147  | 6.23E+03                      | 6.77E+03 | 4.06E+02 | 0.00E+00 | 3.98E+03             | 0.00E+00 | 2.44E+07             |  |  |  |  |
| J-187   | 1.73E-02                      | 1.41E-02 | 4.95E-03 | 0.00E+00 | 0.00E+00             | 0.002+00 | 3.828+00             |  |  |  |  |
| IP-239  | 5.708+02                      | 5.38E+01 | 2.99€+01 | 0.00E+00 | 1.69E+02             | 0.00E+00 | 8.65E+06             |  |  |  |  |

# MEAT PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $\ensuremath{\mathtt{R}}_1$

PATHWAY: MEAT (CONTAMINATED FORAGE)
AGE GROUP: CHILD ( 1 OF 3 )

| H-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NUCLIDES | ORGAN DOSE CONVERSION FACTORS |          |            |                    |          |          |          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|----------|------------|--------------------|----------|----------|----------|--|--|--|
| C-14 3.83E+08 7.67E+07 7.67E+08 7.51E+07 7.67E+07 7.67E+07 7.67E+07 7.67E+07 7.67E+07 7.67E+0 |          | BONE                          | LIVER    | T.BQDY     | THYROID            | KIDNEY   | LUNG     | GI-LLI   |  |  |  |
| C-14  3.83E+08  7.67E+07  7.67E+03  1.7ZE-03   | н-3      | 0.00E+00                      | 2.34F+0  | 2 7 345+02 | 2 3/5+01           | 3 7/2-0  |          |          |  |  |  |
| NA-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-14     | the second of                 |          |            |                    |          |          |          |  |  |  |
| P-32 7.42E+09 3.47E+08 2.86E+08 0.00E+00 0.00E+00 0.00E+00 2.05E+00 0.00E+00 0.00E+00 8.79E+03 4.88E+03 1.33E+03 8.91E+03 4.66E+0 0.00E+00 8.01E+06 2.13E+06 0.00E+00 2.25E+06 0.00E+00 | NA-24    | 1.72E-03                      |          |            | 2 1 20 1 20 2 20 1 |          |          |          |  |  |  |
| CR-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -32      | 7.425+09                      | 3.47E+08 | 2 86F+08   | 0.005+00           | 0.005.00 |          |          |  |  |  |
| MN-54  0.00E+00  8.01E+06  2.13E+06  0.00E+00  1.37E+08  4.49E+  5.51E+07  0.00E+00  0.00E+00  0.00E+00  1.77E+08  6.34E+  | CR-51    |                               |          |            |                    |          |          |          |  |  |  |
| MM-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-54     |                               |          |            |                    |          |          |          |  |  |  |
| FE-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                               | ******** | *******    | *******            |          | 0.002+00 | 0.72E+00 |  |  |  |
| FE-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                               |          | 0.00E+00   | 0.00E+00           | 0.00E+00 | 0.00F+00 | 0.005+00 |  |  |  |
| 3.76E+08 6.09E+08 3.03E+08 0.00E+00 0.00E+00 1.77E+08 6.34E+  CO-58 0.00E+00 1.64E+07 5.02E+07 0.00E+00 0.00E+00 0.00E+00 9.58E+  CO-60 0.00E+00 6.93E+07 2.04E+08 0.00E+00 0.00E+00 0.00E+00 3.84E+1  41-63 2.91E+10 1.56E+09 1.02E+09 0.00E+00 0.00E+00 0.00E+00 1.05E+1  41-65 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.05E+1  41-65 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.40E+1  41-65 3.75E+08 1.00E+09 6.22E+08 0.00E+00 6.30E+08 0.00E+00 1.40E+1  41-65 3.75E+08 1.00E+09 6.22E+08 0.00E+00 6.30E+08 0.00E+00 1.40E+1  41-65 3.75E+08 1.00E+09 6.22E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.40E+1  41-65 3.75E+08 1.00E+09 0.00E+00 0.00E |          | 4.37E+08                      | 2.42E+08 | 7.51E+07   |                    |          |          |          |  |  |  |
| 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E-59     | 3.76E+08                      | 6.09E+08 | 3.03E+08   |                    |          |          | 6.34E+08 |  |  |  |
| 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                               | *******  | ********   |                    |          |          |          |  |  |  |
| 1-63   2.91E+10   1.56E+09   1.02E+09   0.00E+00   0.   |          |                               |          | 5.02E+07   | 0.00E+00           | 0.00E+00 | 0.00E+00 | 9.58E+07 |  |  |  |
| 2.91E+10 1.55E+09 1.02E+09 0.00E+00 0.00E+00 0.00E+00 1.05E+01 1.05E+10 0.00E+00 1.40E+00 0.00E+00 1.40E+00 0.00E+00 0.0 |          |                               | 2        | 2.04E+08   | 0.00E+00           | 0.00E+00 | 0.00E+00 | 3.84E+08 |  |  |  |
| 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 2.916+10                      | 1.56E+09 | 1.02E+09   | 0.00E+00           | 0.00E+00 | 0.00E+00 | 1.05E+08 |  |  |  |
| 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-65     | 0.005+00                      | 0.000.00 |            |                    |          |          |          |  |  |  |
| N-65 3.75E+08 1.00E+09 6.22E+08 0.00E+00 6.30E+08 0.00E+00 1.76E+0 N-69 0.00E+00 0.0 |          |                               |          |            | Action Control     |          | 0.006+00 | 0.008+00 |  |  |  |
| N-69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | and the same of the same of   |          | a man or   |                    | 7.19E-07 | 0.00E+00 | 1.40E-05 |  |  |  |
| R-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | ********                      | 1.006+09 | 0.222+08   | 0.00E+00           | 6.30E+08 | 0.005+00 | 1.76E+08 |  |  |  |
| R-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-69     | 0.002+00                      | 0.00E+00 | 0.005+00   | 0 000-00           | 0.000.00 | ******** | ******   |  |  |  |
| R-84  0.00E+00   | -83      |                               |          |            |                    |          |          | 0.00E+00 |  |  |  |
| R-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -84      |                               |          |            |                    |          |          | 0.00E+00 |  |  |  |
| 3-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                               | *******  | ********   | *********          | 0.006+00 | 0.00E+00 | 0.00E+00 |  |  |  |
| 8-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -85      | 0.00E+00                      | 0.00E+00 | 0.008+00   | 0.005+00           | 0.005+00 | 0 005+00 | 0.000+00 |  |  |  |
| 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -86      | 0.00E+00                      | 5.77E+08 |            |                    |          |          |          |  |  |  |
| 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -88      | 0.00£+00                      | 0.00E+00 |            |                    |          |          |          |  |  |  |
| -89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                               |          |            |                    |          | *******  | ******** |  |  |  |
| 4.82E+08 0.00E+00 1.38E+07 0.00E+00 0.00E+00 0.00E+00 1.87E+07  -90 1.04E+10 0.00E+00 2.64E+09 0.00E+00 0.00E+00 0.00E+00 1.40E+00  -91 2.40E-10 0.00E+00 9.05E-12 0.00E+00 0.00E+00 0.00E+00 5.29E-10  -92 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  1.71E+02 0.00E+00 4.59E+00 0.00E+00 0.00E+00 0.00E+00 4.88E+05  91M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00  91 1.80E+06 0.00E+00 4.82E+04 0.00E+00 0.00E+00 0.00E+00 2.40E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                               | 0.006+00 | 0.008+00   | 0.00E+00           | 0.00E+00 | 0.00E+00 | 0.00F+00 |  |  |  |
| -91 2.40E-10 0.00E+00 2.64E+09 0.00E+00 0.00E+00 0.00E+00 1.40E+00 -91 2.40E-10 0.00E+00 9.05E-12 0.00E+00 0.00E+00 0.00E+00 5.29E-10 -92 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.71E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.88E+05 91M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 91 1.80E+06 0.00E+00 4.82E+04 0.00E+00 0.00E+00 0.00E+00 2.40E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                               |          |            |                    | 0.00E+00 |          |          |  |  |  |
| 90 1.71E+02 0.00E+00  | - 90     | 1.04E+10                      | 0.008+00 | 2.64E+09   | 0.00E+00           |          |          | 1.40E+08 |  |  |  |
| 90 1.71E+02 0.00E+00  | . 94     | 2 /05 40                      |          |            |                    | *****    |          |          |  |  |  |
| 90 1.71E+02 0.00E+00 4.59E+00 0.00E+00  |          |                               |          |            |                    |          | 0.00E+00 | 5.29E-10 |  |  |  |
| 91M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                               |          |            |                    |          | 0.00E+00 | 0.00E+00 |  |  |  |
| 91M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 91 1.80E+06 0.00E+00 4.82E+04 0.00E+00 0.00E+00 0.00E+00 2.40E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.716702                      | 0.00E+00 | 4.59E+00   | 0.00E+00           | 0.00E+00 | 0.00E+00 | 4.88E+05 |  |  |  |
| 91 1.80E+06 0.00E+00 4.82E+04 0.00E+00 0.00E+00 0.00E+00 2.40E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 0.00F+00                      | 0 005-00 | D DOF- DO  | ********           | ******** | *******  | *****    |  |  |  |
| 4.82E+04 0.00E+00 0.00E+00 0.00E+00 2.40E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                               |          |            | 0.00€+00           |          |          | 0.00E+00 |  |  |  |
| 92 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.00E+00                      | 0.002+00 | 4.82E+04   | 0.00E+00           | 0.0GE+00 | 0.00E+00 | 2.40E+08 |  |  |  |

# MEAT PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\rm 1}$

PATHWAY: MEAT (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 2 OF 3 )

| MUCLIDES |                             |           | ORGAN (   | OSE CONVE | RSION FACTO                             | ORS        |                      |
|----------|-----------------------------|-----------|-----------|-----------|-----------------------------------------|------------|----------------------|
|          | BONE                        | LIVER     | T.800Y    | THYROIC   | KIDNEY                                  | LUNG       | GI-FFI               |
| Y-93     | 7.44E-1                     | 2 0.00E+0 | 0 2 0/5 4 |           | *************************************** | -          |                      |
| ZR-95    | 2.666+0                     |           |           |           |                                         | 0.006+0    | 0 1.11E-07           |
| ZR-97    | 3.21E-0                     |           |           | 0.000     |                                         |            |                      |
| *******  |                             | *******   |           | 0.002+0   | 0 6.65E-0                               | 6 0.00£+00 | 7.02E-01             |
| NB-95    | 3.10E+0                     | 6 1.21E+0 | 6 8.62E+0 | 0.00E+0   | 0 1 170.0                               |            | ********             |
| MO-99    | 0.00E+00                    |           |           |           |                                         |            |                      |
| 7C-99M   | 6.208-2                     |           |           |           |                                         |            |                      |
| ******   |                             |           |           | ********  |                                         | 6.17E-21   | 6.91E-18             |
| TC-101   | 0.00E+00                    | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00                                | 0 005+00   | 0.000.00             |
| RU-103   | 1.55E+08                    | 0.00E+00  | 5.96E+07  |           |                                         |            |                      |
| RU-105   | 9.02E-28                    | 0.00E+00  |           |           |                                         |            |                      |
|          |                             |           |           | ********  | ******                                  | 0.002+00   | 5.88E-25             |
| RU-106   | 4.44E+09                    |           | 5.54E+08  | 0.00E+00  | 5.996+09                                | 0.00E+00   | A 008.40             |
| AG-110M  | 8.39E+06                    | 5.67E+06  | 4.53E+06  | 0.00E+00  |                                         |            | 6.90E+10             |
| E-125M   | 5.69E+08                    | 1.54E+08  | 7.59E+07  | 1.60E+08  | 0.00E+00                                |            | 6.74E+08<br>5.49E+08 |
|          | *****                       | ******    |           | ******    | ********                                |            |                      |
| E-127M   | 1.77E+09                    | 4.78E+08  | 2.11E+08  | 4.24E+08  | 5.06E+09                                | 0.00E+00   | 1.44E+09             |
| E-127    | 3.39E-10                    | 9.13E-11  | 7.26E-11  | 2.34E-10  | 9.63E-10                                | 0.00E+00   | 1.32E-08             |
| E-129M   | 1.79E+09                    | 5.00E+08  | 2.78E+08  | 5.77E+08  | 5.26E+09                                | 0.00E+00   | 2.18E+09             |
| E-129    | 0 000.00                    |           |           |           | *******                                 |            |                      |
| E-131M   | 0.00E+00                    | 0.00E+00  | 0.006+00  | 0.00E+00  | 0.00E+00                                | 0.002+00   | 0.006+00             |
| E-131    | 7.00E+02                    | 2.42E+02  | 2.58E+02  | 4.98E+02  | 2.34E+03                                | 0.00E+00   | 9.82E+03             |
|          | 0.00€+00                    | 0.00E+00  | 0.00E+00  | 0.00E+00  | 0.00E+00                                | 0.00E+00   | 0.00E+00             |
| E-132    | 2 425+04                    | 0 700 00  | *****     | *******   | *****                                   |            | ******               |
| 130      | 2.12E+06                    | 9.38E+05  | 1.13E+06  | 1.37E+06  | 8.71E+06                                | 0.00E+00   | 9.45E+06             |
| 131      | 3.04E-06<br>1.65E+07        | 6.13E-06  | 3.16E-06  | 6.76E-04  | 9.17E-06                                | 0.00E+00   | 2.87E-06             |
| *******  | 1.035*01                    | 1.66E+07  | 9.46E+06  | 5.50E+09  | 2.73E+07                                | 0.008+00   | 1.48E+06             |
| 132      | 0.00E+00                    | 0.000.00  |           |           | ******                                  |            | *******              |
| 133      | 5.67E-01                    | 0.00E+00  | 0.002+30  | 0.006+00  | 0.00E+00                                | 0.00E+00   | 0.00E+00             |
|          | and the same of the same of | 7.02E-01  | 2.66E-01  |           | 1.17E+00                                | 0.00E+00   | 2.83E-01             |
| *******  | 0.00E+00                    | U.UUE+00  | 0.U0E+00  | 0.00E+00  | 0.00E+00                                | 0.006+00   | 0.00E+00             |
| 135      | 6.52E-17                    | 1 170 14  |           | ********  | *********                               |            | ******               |
|          |                             | 1.17E-16  |           |           |                                         | 0.006+00   |                      |
| -136     | 9.22E+08<br>1.62E+07        |           |           |           | 4.69E+08                                | 1.68E+08   | 8.16E+06             |
|          |                             | ********* | 2.88E+07  | 0.00£+00  | 2.37E+07                                | 3.54E+06   | 1.57E+06             |
| 137      | 1.33E+09                    | 1.28E+09  | 1 885-00  |           | ******                                  | *******    | *****                |
|          | A ADD - AD                  |           | 1.88E+08  | 0.00E+00  |                                         | 1.50E+08   | 7.996+06             |
|          |                             | 0.006+00  | 0.008+00  | U.00E+00  | 0.00E+00                                | 0.00E+00   | 0.00E+00             |
|          |                             | 0.00E+00  | 0.008+00  | 0.008+00  | 0.00E+00                                | 0.008+00   | 0.00E+00             |

### MEAT PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\rm i}$

PATHWAY: MEAT (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 3 OF 3 )

| NUCLIDES | ORGAN DOSE CONVERSION FACTORS |          |          |          |                   |          |                      |  |  |  |
|----------|-------------------------------|----------|----------|----------|-------------------|----------|----------------------|--|--|--|
|          | BONE                          | LIVER    | T.800Y   | THYROID  | KIDNEY            | LUNG     | GI-LLI               |  |  |  |
| BA-140   | 4.38E+07                      | 3.84E+04 | 2.56E+06 | 0.00E+00 | 1.25E+04          | 2.29E+04 | 2.22E+07             |  |  |  |
| BA-141   | 0.008+00                      | 0.00E+00 | 0.00E+00 | 0.006+00 | 0.00E+00          | 0.00E+00 | 0.000+00             |  |  |  |
| BA-142   | 0.00E+00                      | 0.005+00 | 0.006+00 | 0.00E+00 | 0.00E+00          | 0.00E+00 | 0.00E+00             |  |  |  |
| LA-140   | 5.59E-02                      | 1.95E-02 | 6.08E-03 | 0.00£+00 | 0.00E+00          | 0.00E+00 | 5.44E+02             |  |  |  |
| LA-142   | 0.00E+00                      | 0.00E+00 | 0.008+00 | 0.00E+00 | 0.00E+00          | 0.00E+00 | 0.000+00             |  |  |  |
| CE-141   | 2.22E+04                      | 1.11E+04 | 1.64E+03 | 0.00E+00 | 4.86E+04          | 0.00E+00 | 1.38E+07             |  |  |  |
| CE-143   | 3.17E-02                      | 1.72E+01 | 2,49E-03 | 0.00E+00 | 7.21E-03          |          |                      |  |  |  |
| CE-144   | 2.32E+06                      | 7.26E+05 | 1.246+05 | 0.00E+00 | 4.0ZE+05          | 0.00E+00 | 2.52E+02<br>1.89E+08 |  |  |  |
| PR-143   | 3.34E+04                      | 1.00E+04 | 1.66E+03 | 0.00E+00 | 5.43E+03          | 0.00E+00 | 3.60E+07             |  |  |  |
| R-144    | 0.000.00                      |          | ******** | ******   | * = 0 + + + + + + |          |                      |  |  |  |
|          | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00          | 0.00E+00 | G.00E+00             |  |  |  |
| ID-147   | 1.17E+04                      | 9.47E+03 | 7.33E+02 | 0.00E+00 | 5.19E+03          | 0.00E+00 | 1.50E+07             |  |  |  |
| ł-187    | 3.21E-02                      | 1.90E-02 | 8.53E-03 | 0.00E+00 | 0.00E+00          | 0.006+00 | 2.67E+00             |  |  |  |
| (P-239   | 1.07E+03                      | 7.71E+01 | 5.42E+01 | 0.00E+00 | 2.23E+02          | 0.00E+00 | 5.70E+06             |  |  |  |

# LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, Ri

PATHWAY: LEAFY VEGETABLES
AGE GROUP: ADULT ( 1 OF 3 )

| MUCLIDE  |                 |                          | ORGAN (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OSE CONVE     | RSION FACTO | ORS        |           |
|----------|-----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|-----------|
|          | BONE            | LIVER                    | T. BODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THYROI        | D KIDNEY    | LUNG       | CI-FFI    |
| н-3      | 0.00E+0         | 0 3 345.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | -          |           |
| C-14     | 2.28E+0         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2.268+0     | 3 2.26E+0  | 3 2.26E+0 |
| NA-24    | 2.69E+0         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 07 4.558+0  | 7 4.55E+0  | 7 4.55E+0 |
|          | ×-076-0         | 5 2.69E+0                | 5 2.69E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 2.69E+0     | 75 2.69E+0  | 5 2.69E+0! | 2.698+0   |
| P-32     | 1.40E+0         | 9 8.73E+0                | 7 5 /75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | *******     |            |           |
| CR-51    | 0.00E+0         |                          | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             | 0.00E+00   | 1.58E+0   |
| MN-54    | 0.00E+00        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W 2 2 2 2 2 2 |             | 6.16E+04   | 1.17E+07  |
| *******  | *********       | 3.13E+08                 | 5.97E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+0       | 0 9.31E+07  | 0.00E+00   | 9.59E+08  |
| MN-56    | 0.008+00        | 1.59E+01                 | 2 020.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |            |           |
| FE-55    | 2.10E+08        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | 0.00E+00   | 5.072+02  |
| FE-59    | 1.26E+08        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | 8.08E+07   | 8.31E+07  |
|          | ********        | *********                | 1.14E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 8.28E+07   | 9-88E+08  |
| CO-58    | 0.00E+00        | 3.07E+07                 | 4 BOF-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             | *******    |           |
| CO-60    | 0.00E+00        | 7.7.1.1.7.1.7.1.7.1.7.1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | 0.00E+00   | 6.23E+08  |
| NI-63    | 1.04E+10        |                          | 3.69E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      |             | 0.00E+00   | 3.14E+09  |
| ******** | ********        | 00-31311                 | 3.49E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.006+00    | 0.00E+00   | 1.50E+08  |
| N1-65    | 6.15E+01        | 7.99E+00                 | 7 410.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |            | *****     |
| CU-64    | 0.008+00        | 9.206+03                 | 3.64E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      |             | 0.00E+00   | 2.03E+02  |
| ZN-65    | 3.17E+08        | 1.01E+09                 | 4.32E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      |             | 0.00E+00   | 7.84E+05  |
|          |                 | 1.015+04                 | 4.56E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 6.75E+08    | 0.00E+00   | 6.36E+08  |
| ZW-69    | 5.49E-06        | 1.05E-05                 | 2 240 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * ***         |             |            |           |
| R-83     | 0.00E+00        | 0.00E+00                 | 7.318-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 6.83E-06    | 0.00E+00   | 1.58E-06  |
| 3R - 84  | 0.008+00        |                          | 3.115+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.008+00   | 4.47E+00  |
| *******  | *********       | 0.005+00                 | 2.48£-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.00E+00   | 1.94E-16  |
| IR-85    | 0.00E+00        | 0.00E+00                 | 0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | *******     |            | *****     |
| 8-86     | 0.00E+00        | 2.196+08                 | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.00E+00   | 0.00E+00  |
| 8-88     | 0.00E+00        |                          | 1.026+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.00E+00   | 4.33E+07  |
| ******** | *******         | 3.43E-22                 | 1.82E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.00E+00   | 4.74E-33  |
| 8-89     | 0.00E+00        | 3.89E-26                 | 2 224 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | ********    | ********   | *****     |
| R-89     | 9.97E+09        | 0.006+00                 | 2.73E-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.00E+00   | 0.00E+00  |
| R-90     | 6.05€+11        |                          | The second secon | 0.006+00      |             | 0.00E+00   | 1.606+09  |
|          | *********       | V-00E+00                 | 1.48E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006+00      | 0.00E+00    | 0.00E+00   | 1.75E+10  |
| 1-91     | 3.05E+05        | 0.000.00                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *******       | ********    | ******     |           |
| -92      |                 | 0.005+00                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00E+00      |             | 0.00€+00   | 1.45E+06  |
| 90       | 4 990.00        | B 2.88 8.4               | 7 5 300 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E+00      | 0.00E+00    | 0.00E+00   | 8.45E+03  |
| *******  | TO THE PARTY OF | 0.COE+00                 | 3.57E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00      | 0.00E+00    | 0.00E+00   | 1.41E+08  |
| 91M      | 5.22E-09        | 0.000.00                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *******       | *******     | *******    | ******    |
| 91       |                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00E+00      | 0.008+00    | 0.00E+00   | 1.53E-08  |
| 92       | 0 455 01        | A SHARLING THE           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00€+00      | 0.00E+00    |            | 2.81E+09  |
|          | 9.15E-01        | 0.00E+00                 | 2.68E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.005+00      |             |            | 1.6UE+04  |

# LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: LEAFY VEGETABLES
AGE GROUP: ADULT ( 2 DF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |                        |               |           |                              |                               |                                         |  |  |  |  |
|---------|-------------------------------|------------------------|---------------|-----------|------------------------------|-------------------------------|-----------------------------------------|--|--|--|--|
|         | BONE                          | LIVER                  | T. BODY       | THYROID   | KIDNEY                       | LUNG                          | GI-LLI                                  |  |  |  |  |
| Y-93    | 1.70€+0                       | 2 0 000.0              |               |           |                              |                               |                                         |  |  |  |  |
| ZR-95   | a second                      |                        |               |           | 0 0.00E+0                    | 0.00E+00                      | 5.38E+0                                 |  |  |  |  |
| ZR-97   | 1.17E+06<br>3.37E+02          | 3.12.1.51.51.51        |               | 71774     | 0 5.91E+0                    | 0.00E+00                      | 0 1.19E+0                               |  |  |  |  |
| ******* | **********                    | 6.81E+0                | 3.11E+01      | 0.00E+0   | 0 1.03E+02                   | 0.00E+00                      | 2.11E+0                                 |  |  |  |  |
| KB-95   | 1.42E+05                      | 7.92E+04               | 4 74F+04      | 0.000.00  |                              | *******                       |                                         |  |  |  |  |
| HO-99   | 0.00E+00                      | 1 1 2 3 3 3            |               |           |                              |                               |                                         |  |  |  |  |
| TC-99M  | 3.10E+00                      |                        | 11110000      |           |                              |                               |                                         |  |  |  |  |
|         |                               | *******                |               | 0.00E+00  | 1.33E+02                     | 4.30E+00                      | 5.198+03                                |  |  |  |  |
| TC-101  | 8.22E-31                      | 1.18E-30               | 1.16E-29      | 0.006+00  | 2 176 20                     |                               | ********                                |  |  |  |  |
| RU-103  | 4.77E+06                      |                        |               |           |                              |                               |                                         |  |  |  |  |
| RU-105  | 5.39E+01                      | 0.00E+00               |               |           |                              |                               | The second second                       |  |  |  |  |
|         |                               |                        | *******       | ********  | 6.96E+02                     | 0.00E+00                      | 3.29E+04                                |  |  |  |  |
| tu-106  | 1.93E+08                      | 0.00E+00               | 2.44E+07      | 0.008+00  | 3.72E+08                     | 0.000.00                      |                                         |  |  |  |  |
| IG-110M | 1.05E+07                      | 9.75E+06               | 5.79E+06      | 0.00E+00  |                              | 0.00E+00                      | 1.25E+10                                |  |  |  |  |
| E-125H  | 9.66E+07                      | 3.50E+07               | 1.296+07      | 2.906+07  |                              | 0.00E+00                      | 3.98E+09                                |  |  |  |  |
|         | ********                      | ******                 |               |           | *********                    | 0.006+00                      | 3.86E+08                                |  |  |  |  |
| E-127M  | 3.49E+08                      | 1.25E+08               | 4.26E+07      | 8.92E+07  | 1.42E+09                     | 0.00E+00                      | 1 170.00                                |  |  |  |  |
| E-127   | 5.66E+03                      | 2.03E+03               | 1.22E+03      | 4.196+03  | 2.31E+04                     | 0.00E+00                      | 1.17E+09                                |  |  |  |  |
| E-129W  | 2.51E+08                      | 9.38E+07               | 3.98E+07      | 8.63E+07  | 1.05E+09                     | 0.00E+00                      | 4.47E+05<br>1.27E+09                    |  |  |  |  |
|         | *******                       | *******                | ******        |           |                              | ********                      | 1.676709                                |  |  |  |  |
| E-129   | 7.62E-04                      | 2.87E+04               | 1.86E-04      | 5.85E-04  | 3.20E-03                     | 0.00E+00                      | 5.75E-04                                |  |  |  |  |
| E-131M  | 9.12E+05                      | 4.46E+05               | 3.72E+05      | 7.06E+05  | 4.52E+06                     | 0.00E+00                      | 4.43E+07                                |  |  |  |  |
| -131    | 1.50E-15                      | 6.27E-16               | 4.74E-16      | 1.23E-15  | 6.57E-15                     | 0.002+00                      | 2.138-16                                |  |  |  |  |
| . 195   | *******                       | *******                | *******       |           |                              | *******                       | ********                                |  |  |  |  |
| -132    | 4.30E+06                      | 2.78E+06               | 2.61E+06      | 3.07E+06  | 2.68E+07                     | 0.00E+00                      | 1.32E+08                                |  |  |  |  |
| 130     | 3.92E+05                      | 1.16E+06               | 4.57E+05      | 9.81E+07  | 1.81E+06                     | 0.00E+00                      | 9.968+05                                |  |  |  |  |
| 131     | 8.08E+07                      | 1.16E+08               | 6.62E+07      | 3.79E+10  | 1.986+08                     | 0.00E+00                      | 3.05E+07                                |  |  |  |  |
| 132     | F 744                         |                        | *******       |           |                              |                               |                                         |  |  |  |  |
| 133     | 5.76E+01                      | 1.54E+02               | 5.39E+01      | 5.39E+03  | 2.45E+02                     | 0.00E+00                      | 2.89E+01                                |  |  |  |  |
|         | 2.09E+06                      | 3.63E+06               | 1.11E+06      | 5.33E+08  | 6.33E+06                     | 0.008+00                      |                                         |  |  |  |  |
| 1.34    | 9.65E-05                      | 2.62E-04               | 9.38E-05      | 4.54E-03  | 4.17E-04                     | 0.00E+00                      | 2.29E-07                                |  |  |  |  |
|         |                               |                        | *****         |           | and the second second second |                               |                                         |  |  |  |  |
| -134    | 3.90E+04<br>4.67E+00          | 1.02E+05               | 3.77E+04      | 6.735+06  | 1.64E+05                     | 0.00E+00                      | 1.15E+05                                |  |  |  |  |
|         |                               | 1 - 1 15 - 10          | Y . USE +179  | O DOE 400 | 3 ECHELINA                   | A ARM DAY                     |                                         |  |  |  |  |
| 130     |                               | 1.68E+08               | 1.216+08      | 0.00E+00  | 9.38E+07                     | 1.29E+07                      | 1.91E+07                                |  |  |  |  |
|         |                               |                        |               |           |                              | Andrew Control of the Control |                                         |  |  |  |  |
|         | 6.36E+09                      | 8.70E+09               | 5.70E+09      | 0.00E+00  | 2.95E+09                     | 9.81E+08                      | 1.68E+08                                |  |  |  |  |
|         | Sec. 2 4 5 1 1 1              | 1 - 1 - 10 - 1 - 1 - 1 | 3 - 6.56 - 13 | D CONEADO | E ABP AA                     | St. of St. or other           | 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - |  |  |  |  |
| 107     | 2.86E-02                      | 2.03E-05               | 8 36F-D4      | 0 000-00  | 1 000 00                     |                               |                                         |  |  |  |  |

# LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: LEAFY VEGETABLES
AGE GROUP: ADULT ( 3 OF 3 )

| NUCLIDE |          | ORGAN DOSE CONVERSION FACTORS |          |          |                      |                      |                      |  |  |  |  |  |
|---------|----------|-------------------------------|----------|----------|----------------------|----------------------|----------------------|--|--|--|--|--|
|         | BONE     | LIVER                         | T.800Y   | THYROID  | KIDWEY               | LUNG                 | GI-LLI               |  |  |  |  |  |
| BA-160  | 1.28E+08 | 1.618+05                      | 8.42E+06 | 0.00E+00 | 5 /pr.p/             | 0.2/5.0/             |                      |  |  |  |  |  |
| BA-141  | 1.15E-21 | 8.70E-25                      | 3.89E-23 | 0.00E+00 | 5.49E+04<br>8.09E-25 | 9.24E+04             | 2.65E+08             |  |  |  |  |  |
| BA-142  | 0.00E+00 | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.008+00             | 4.94E-25<br>0.00E+00 | 5.43E-31             |  |  |  |  |  |
| LA-140  | 1.98E+03 | 9.97E+02                      | 2.63E+02 | 0.00E+00 | 0.00E+00             | 0.00E+00             | * *******            |  |  |  |  |  |
| LA-142  | 2.02E-04 | 9.19E-05                      | 2.29E-05 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 7.32E+07             |  |  |  |  |  |
| CE-141  | 1.97E+05 | 1.33E+05                      | 1.51E+04 | 0.00E+00 | 6.19E+06             | 0.00E+00             | 6.71E-01<br>5.10E+08 |  |  |  |  |  |
| CE-143  | 9.98E+02 | 7.38E+05                      | 8.16E+01 | 0.00E+00 | 3.25E+02             | 0.306+00             | 2 240.02             |  |  |  |  |  |
| ZE-144  | 3.29E+07 | 1.38E+07                      | 1.77E+06 | 0.00E+00 | 8.168+06             | 0.00E+00             | 2.76E+07<br>1.11E+10 |  |  |  |  |  |
| R- 143  | 6.26E+04 | 2.51E+04                      | 3.10E+03 | 0.008+00 | 1.45E+04             | 0.00E+00             | 2.74E+08             |  |  |  |  |  |
| R-144   | 3.09E-26 | 1.28E-26                      | 1 570 00 |          | ********             | *******              |                      |  |  |  |  |  |
| D-147   | 3.33E+04 | 3.85E+04                      | 1.57E-27 | 0.00E+00 | 7.23E-27             | 0.00E+00             | 4.44E-33             |  |  |  |  |  |
| -187    | 3.80E+04 | 3.18E+04                      | 2.31E+03 | 0.00E+00 | 2.25E+04             | 0.00E+00             | 1.85E+08             |  |  |  |  |  |
| ******* | ******** | J. IDCTUM                     | 1.11E+04 | 0.00E+00 | 0.00E+00             | 0.00E+00             | 1.04E+07             |  |  |  |  |  |
| P-239   | 9.54E+04 | 9.38E+03                      | 5.17E+03 | 0.00E+00 | 2.93E+04             | 0.008+00             | 1.92E+09             |  |  |  |  |  |

#### LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: LEAFY VEGETABLES AGE GROUP: TEEN ( 1 OF 3 )

| NUCLIDE  |           |           | ORGAN DO             | SE CONVERS | SION FACTOR | RS         |              |
|----------|-----------|-----------|----------------------|------------|-------------|------------|--------------|
|          | BONE      | LIVER     | Y.800Y               | THYROID    | KIDHEY      | LUNG       | GI-LLI       |
| н-3      | 0.00E+00  | 2.59E+03  | 2.59E+03             | 2.59E+03   | 2.59E+03    | 2.596+03   | 2 505+07     |
| C-14     | 3.69E+08  | 7.38E+07  |                      |            |             |            |              |
| NA-24    | 2.39E+05  | 2.39E+05  |                      |            |             |            |              |
| P-32     | 1.61E+09  | 9.97E+07  | 6.24E+07             | 0.00E+00   | 0.00E+00    | 0.005+00   | 1.35E+08     |
| CR-51    | 0.00E+00  | 0.00E+00  | 6.17E+04             | 3.43E+04   | 1.35E+04    | 8.81E+04   | 1.04E+07     |
| MN-54    | 0.00E+00  | 4.54E+08  | 9.01E+07             | 0.00E+00   | 1.36E+08    |            | 9.32E+08     |
| MW-56    | 0.00E+00  | 1.43E+01  | 2.55E+00             | 0.00€+00   | 1.81E+01    | 0.00E+00   | 9.44E+02     |
| FE-55    | 3.26E+08  | 2.31E+08  | 5.39E+07             | 0.00E+00   | 0.006+00    | 1.47E+08   | 1.00E+08     |
| FE-59    | 1.79E+08  | 4.19E+08  | 1.62E+08             | 0.00E+00   | 0.00E+00    | 1.32E+08   | 9.90E+08     |
| 00-58    | 0.00E+00  | 4.36E+07  | 1.00E+08             | 0.00E+00   | 0.00E+00    | 0.000.00   | 4 045.00     |
| 00-60    | 0.00E+00  | 2.49E+08  | 5.60E+08             | 0.00E+00   |             | 0.00E+00   | 6.01E+08     |
| N1-63    | 1.61E+10  | 1.13E+09  | 5.45E+08             | 0.002+00   | 0.00E+00    | 0.00E+00   | 3.24E+09     |
|          | ******    | ********  | ********             | ********   | *********   | 0.002+00   | 1.81E+08     |
| 11-65    | 5.72E+01  | 7.31E+00  | 3.33E+00             | 0.008+00   | 0.00E+00    | 0.008+00   | 3.97E+02     |
| CU-64    | 0.00E+00  | 8.34E+03  | 3.92E+03             | 0.00E+00   | 2.11E+04    | 0.00E+00   | 6.47E+05     |
| N-65     | 4.24E+08  | 1.47E+09  | 6.875+08             | 0.00E+00   | 9.42E+08    | 0.00E+00   | 6.23E+08     |
|          | ********* |           | *******              |            |             | ******     | *******      |
| N-69     | 5.15E-06  | 9.80E-06  | 6.86E-07             | 0.00E+00   | 6.41E-06    | 0.002+00   | 1.81E-05     |
| 12-83    | 0.00E+00  | 0.00E+00  | 2.91E+00             | 0.00E+00   | 0.006+00    | 0.00E+00   | 0.00E+00     |
| IR-84    | 0.00E+00  | 0.00E+00  | 2.25E-11             | 0.00£+00   | 0.00E+00    | 0.00E+00   | 0.00E+00     |
| R-85     | 0.000.00  |           | *******              | *******    | ********    |            |              |
| 8-86     | 0.00E+00  | 0.00E+00  | 0.00E+00             | 0.00E+00   | 0.00E+00    | 0.00E+00   | 0.006+00     |
| B-88     | 0.00E+00  | 2.74E+08  | 1.295+08             | 0.008+00   | 0.00E+00    | 0.002+00   | 4.05E+07     |
| 0-00     | 0.00E+00  | 3.17E-22  | 1.696-22             | 0.00E+00   | 0.00E+00    | 0.00E+00   | 2.71E-29     |
| 8-89     | 0.00E+00  | 3.50E-26  | 5 / 90 . 5/          | 0.000.00   |             | *********  | ********     |
| R-89     | 1.516+10  | 0.00E+00  | 2.47E-26             | 0.00E+00   | 0.00E+00    | 0.008+00   | 5.36E-35     |
| R-90     |           |           | 4.34E+08<br>1.85E+11 | 0.000+00   | 0.00E+00    | 0.00€+00   | 1.80E+09     |
| ******** |           | ********* | 1.035*11             | 0.002+00   | U.UUE+00    | 0.00E+00   | 2.11E+10     |
| R-91     | 2.85E+05  | 0.00E+00  | 1.136+04             | 0.005+00   | 0.00E+00    | 0.000+00   | 1 20e.07     |
| R-92     | 1.97E+02  | 0.00E+00  | 1.69E+01             |            | 0.00E+00    | 0.005+00   | 1.29E+06     |
| -90      | 1.24E+04  | 0.006+00  |                      |            | 0.00E+00    |            | 1.01E+04     |
| ******   |           |           | ******               | ********   | *********   | ********** | 1.02E+08     |
| 91M      | 4.86E-09  | 0.00E+00  | 1.86E-10             | 0.00E+00   | 0.00E+00    | 0.00£+00   | 2.298-07     |
| -91      |           |           | 2.10E+05             |            | 0.00E+00    |            | 3.21E+09     |
| 92       |           |           | N 180 AN             | 0.008+00   | 0.00E+00    |            | 2.36E+04     |
| *******  | ********  | *******   | *******              | ********   |             |            | E I MUSE TON |

### LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: LEAFY VEGETABLES AGE GROUP: TEEN ( 2 OF 3 )

| NUCLIDE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORGAN DOSE CONVERSION FACTORS |           |          |           |                  |          |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|----------|-----------|------------------|----------|--|--|--|--|
|             | BONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIVER                         | T.800Y    | THYROID  | KIDWEY    | LUNG             | GI-LLI   |  |  |  |  |
| Y-93        | 1.59E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                      | 4.36E+00  | 0.00E+00 | 0.00E+00  | 0.008+00         | / 8/5-04 |  |  |  |  |
| ZR-95       | 1.72E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |           | 0.00E+00 |           |                  |          |  |  |  |  |
| ZR-97       | 3.12E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |           | 0.00E+00 |           | 0.00E+00         |          |  |  |  |  |
| N8-95       | 1.92E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07E+05                      | 5.87E+04  | 0.00E+00 | 1.03E+05  | 0.002+00         | 4.56E+08 |  |  |  |  |
| HO-99       | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.65E+06                      | 1.08E+06  | 0.00E+00 |           | 0.000+00         | 1.01E+07 |  |  |  |  |
| TC-99M      | 2.74E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.63E+00                      | 9.89E+01  | 0.00E+00 |           | 4.24E+00         | 5.01E+03 |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           |          |           |                  |          |  |  |  |  |
| TC-101      | 7.64E-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.09E-30                      | 1.07E-29  | 0.00E+00 | 1.97E-29  | 6.62E-31         | 0.00E+00 |  |  |  |  |
| RU-103      | 6.82E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                      | 2.92E+06  | 0.00E+00 | 2.40E+07  | 0.00E+00         | 5.70E+08 |  |  |  |  |
| RU-105      | 5.00E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                      | 1.94E+01  | 0.00E+00 | 6.31E+02  | 0.008+00         | 4.04E+04 |  |  |  |  |
| *******     | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *******                       |           |          | *******   |                  | *******  |  |  |  |  |
| RU-106      | 2.38E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                      | 3.90E+07  | 0.00E+00 | 5.97E+08  | 0.00E+00         | 1.48E+10 |  |  |  |  |
| AG-110M     | 1.52E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.43E+07                      | 8.72E+06  | 0.00E+00 | 2.74E+07  | 0.008+00         | 4.03E+09 |  |  |  |  |
| E-125M      | 1.48E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.34E+07                      | 1.98E+07  | 4.14E+07 | 0.00E+00  | 0.006+00         | 4.37E+08 |  |  |  |  |
| E-127M      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ********                      | *******   | *******  | ******    | *****            | ******   |  |  |  |  |
| E-127       | 5.518+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.96E+08                      | 6.56E+07  | 1.31E+08 | 2.24E+09  | 0.006+00         | 1.37E+09 |  |  |  |  |
| E-129M      | 5.34E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.89E+03                      | 1.15E+03  | 3.68£+03 | 2.16E+04  | 0.00E+00         | 4.12E+05 |  |  |  |  |
| *******     | 3.62E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.34E+08                      | 5.73E+07  | 1.17E+08 | 1.51E+09  | 0.00E+00         | 1.36E+09 |  |  |  |  |
| E-129       | 7.146-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.66E-04                      | 1 Enc. 0/ | E 100 0  | * ***     | ********         | *******  |  |  |  |  |
| E-131H      | 8.44E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.05E+05                      | 1.59E-04  | 5.10E-04 | 3.00E-03  | 0.00E+00         | 3.90E-03 |  |  |  |  |
| E-131       | 1.39E-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.75E-16                      | 3.388+05  | 6.09E+05 | 4.225+06  | 0.00E+00         | 3.25E+07 |  |  |  |  |
|             | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21125-10                      | 4.36E-16  | 1.07E-15 | 6.10E-15  | 0.00E+00         | 1.14E-16 |  |  |  |  |
| E-132       | 3.91E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.47E+06                      | 2.33E+06  | 2 615404 | 2 220.00  | **************** |          |  |  |  |  |
| -130        | 3.51E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01E+06                      | 4.05E+05  | 8.28E+07 | 2.37E+07  | 0.00E+00         | 7.84E+07 |  |  |  |  |
| 131         | 7.69E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08£+08                      | 5.78E+07  | 3.146+10 | 1.56E+06  | 0.00E+00         | 7.80E+05 |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           | 2.196-10 | 1.85E+08  | 0.00E+00         | 2.13E+07 |  |  |  |  |
| -132        | 5.19E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.36E+02                      | 4.88E+01  | 4.58E+03 | 2.14E+02  | 0.00E+00         | 5.92E+01 |  |  |  |  |
| 133         | 1.94E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.29E+06                      | 1.00E+06  | 4.59E+08 | 5.76E+06  | 0.00E+00         |          |  |  |  |  |
| 134         | 8.73E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |           |          |           | 0.002+00         | 2.49E+06 |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           |          | ********  | ********         | 3.036.00 |  |  |  |  |
| 135         | 5.52E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.07E+04                      | 3.366+04  | 5.83E+06 | 1.43E+05  | 0.546+30         | 1.008+05 |  |  |  |  |
| 5-134       | 7.10E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.67E+10                      | 7.75E+09  | 0.00E+00 | 5.31F+//9 |                  | 2.08E+08 |  |  |  |  |
| -136        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1.16E+08  |          | 9.37E+07  |                  | 1.38E+07 |  |  |  |  |
| *******     | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | ******    |          |           | *******          | *******  |  |  |  |  |
| -137        | 1.01E+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35E+10                      | 4.69E+09  | 0.00E+00 | 4.59E+09  | 1.78E+09         | 1.92E+08 |  |  |  |  |
| -138        | THE THE SECOND STATE OF TH |                               | 3.47E-11  |          |           | 5.96E-12         |          |  |  |  |  |
| -139        | 2.69E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 7.83E-04  |          |           | 1.30E-05         |          |  |  |  |  |
| *******     | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |           |          | *******   | *******          | ******   |  |  |  |  |
| musera i no | factors are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In output                     |           |          |           |                  |          |  |  |  |  |

#### RADIONUCLIDES OTHER THAN NOBLE GASES, Ri

PATHWAY: LEAFY VEGETABLES AGE GROUP: TEEN ( 3 OF 3 )

| NUCLIDE  | ORGAN DOSE CONVERSION FACTORS |          |          |          |          |          |          |  |  |  |  |
|----------|-------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|--|
|          | BONE                          | LIVER    | T.BODY   | THYROID  | KIDNEY   | LUNG     | G1-FF1   |  |  |  |  |
| BA-140   | 1.38E+08                      | 1.69E+05 | 8.90E+06 | 0.DOE+00 | 5.74E+04 | 1.146+05 | 2.13E+08 |  |  |  |  |
| BA-141   | 1.08E-21                      | 8.04E-25 | 3.596-23 | 0.00E+10 | 7.46E-25 | 5.50E-25 | 2.29E-27 |  |  |  |  |
| BA-142   | 0.006+00                      | 0.00E+00 | 0.00E+00 | 0.008+00 | 0.00E+00 | 0.008+00 | 0.00E+00 |  |  |  |  |
|          |                               |          |          |          |          |          |          |  |  |  |  |
| LA-140   | 1.81E+03                      | 8.88E+02 | 2.36E+02 | 0.00E+00 | 0.00E+00 | 0.008+00 | 5.10E+07 |  |  |  |  |
| LA-142   | 1.85E-04                      | 8.23E-05 | 2.058-05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 2.51E+00 |  |  |  |  |
| CF-141   | 2.83£+05                      | 1.89E+05 | 2.17E+04 | 0.00E+00 | 8.89E+04 | 0.002+00 | 5.40E+08 |  |  |  |  |
| ******** | ******                        |          |          |          |          | *******  |          |  |  |  |  |
| CE-143   | 9.33E+02                      | 6.79E+05 | 7.58E+01 | 0.00E+00 | 3.04E+02 | 0.00E+00 | 2.04E+07 |  |  |  |  |
| CE-144   | 5.27E+07                      | 2.18E+07 | 2.83E+06 | 0.006+00 | 1.30E+07 | 0.006+00 | 1.33E+10 |  |  |  |  |
| PR-143   | 7.00E+04                      | 2.80E+04 | 3.49E+03 | 0.00E+00 | 1.63E+04 | 0.DOE+00 | 2.30E+08 |  |  |  |  |
|          |                               |          |          |          |          |          |          |  |  |  |  |
| PR-144   | 2.89E-26                      | 1.18E-26 | 1.47E-27 | 0.00E+00 | 6.80E-27 | 0.00E+00 | 3.19E-29 |  |  |  |  |
| ND-147   | 3.62E+04                      | 3.94E+04 | 2.36E+03 | 0.00E+01 | 2.31E+04 | 0.00E+00 | 1.42E+08 |  |  |  |  |
| J-187    | 3.54E+04                      | 2.88E+04 | 1.01E+04 | 0.008+00 | 0.008+00 | 0.00E+00 | 7.80E+06 |  |  |  |  |
| ep-239   | 1.60E+05                      | 1.51E+04 | 8.38E+03 | 0.000+00 | 4.74E+04 | 0.006+00 | 2.43E+09 |  |  |  |  |

#### LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: LEAFY VEGETABLES
AGE GROUP: CHILD ( 1 OF 3 )

| NUCLIDES |               |           | DRGAN DO             | SE CONVERS           | ION FACTOR           | S                    |          |
|----------|---------------|-----------|----------------------|----------------------|----------------------|----------------------|----------|
|          | BONE          | LIVER     | T.BCDY               | THYROID              | KIDNEY               | LUNG                 | GI-LLI   |
| н-3      | 0.00E+00      | 4.01E+03  | / 015-07             | / 015.03             | / 025.07             | / 015.07             |          |
| C-14     | 8.89E+08      |           | 4.01E+03<br>1.78E+08 | 4.01E+03             |                      |                      |          |
| NA-24    | 3.73E+05      | 3.73E+06  | 3.73E+05             | 1.78E+08<br>3.73E+05 | 1.78E+08<br>3.73E+05 | 1.78E+08<br>3.73E+05 | 1.78E+0  |
| ******** | ********      |           | *******              | ********             | 2.726.42             | 2.136103             | 3.73E+0  |
| P-32     | 3.37E+09      | 1.588+08  | 1.30E+08             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 9.31E+0  |
| CR-51    | 0.00E+00      | 0.00E+00  | 1.17E+05             | 6.50E+04             | 1.78E+04             | 1 19E+05             | 6.21E+0  |
| MN-54    | 0.00E+00      | 6-65E+08  | 1.77E+08             | 0.006+00             | 1.86E+08             | .00E+00              | 5.58E+0  |
|          |               |           |                      | ******               |                      |                      |          |
| MN-56    | 0.006+00      | 1.88E+01  | 4.24E+00             | 0.00E+00             | 2.27E+01             | D.00E+00             | 2.72E+0  |
| FE-55    | 7.66E+08      | 4.25E+08  | 1.32E+08             | 0.00E+00             | 0.00E+00             | 2.406+08             | 7.87E+0  |
| FE-59    | 3.98£+08      | 6.43E+08  | 3.20E+08             | 0.000+00             | 0.00E+00             | 1.86E+08             | 6.70E+0  |
|          |               |           |                      | *******              |                      |                      | *******  |
| CO-58    | 0.002+00      | 6.44E+07  | 1.97E+08             | 0.00E+00             | 0.006+00             | 0.00E+00             | 3.76E+0  |
| 00-60    | 0.00E+00      | 3.78E+08  | 1.12E+09             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 2.106+0  |
| 11-63    | 3.95E+10      | 2.11E+09  | 1.38E+09             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 1.42E+08 |
|          |               |           |                      |                      | *******              |                      |          |
| 11-65    | 1.05E+02      | 9.89E+00  | 5.77E+00             | 0.008+00             | 0.00E+00             | 0.00€+00             | 1.21E+03 |
| 71-64    | 0.00€+00      | 1.10E+04  | 6.64E+03             | 0.00E+00             | 2.66E+04             | 0.00E+00             | 5.16E+0  |
| N-65     | 8.13E+08      | 2.16E+09  | 1.35E+09             | 0.002+00             | 1.36E+09             | 0.00E+00             | 3.80E+08 |
| N-69     | 0 /06-04      | 4 770 or  | 4 220 44             |                      |                      |                      | *******  |
| IR-83    | 9.49E-06      | 1.37E-05  | 1.27E-06             | 0.00E+00             | 8.32E-06             | 0.00E+00             | 8.65E-04 |
| IR-84    | 0.00E+00      | 0.005+00  | 5.37E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00 |
|          | 0.000         | 0.00E+00  | 3.82E-11             | 0.0GE+00             | 0.00E+00             | 0.00E+00             | 0.00E+00 |
| IR-85    | 0.00E+00      | 0.00E+00  | 0.00E+00             | 0.000+00             | 0.000.00             | C 00F-00             | 0 000.00 |
| 8-86     | 0.00E+00      | 4.52E+08  | 2.78E+08             | 0.00E+00             | 0.005+00             | 0.006+00             | 0.00E+00 |
| 8-88     | 0.002+00      | 4.37E-22  | 3.04E-22             | 0.008+00             | 0.00E+00             | 0.008+00             | 2.91E+07 |
| ******** | ********      | ********* | 3.046.EE             | 0.000+00             | 0.006+00             | 0.DOE+00             | 2.15E-23 |
| 8-89     | 0.00E+00      | 4.61E-26  | 4.10E-26             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 4.02E-28 |
| R-89     | 3.60E+10      | 0.00E+00  | 1.03E+09             |                      |                      | 0.008+00             |          |
| R-90     | 1.24E+12      |           | 3.15E+11             |                      | 0.00£+00             |                      | 1.67E+10 |
| ******** |               | ********  | ********             |                      |                      | *********            | ******** |
| R-91     | 5.24E+05      | 0.00E+00  | 1.98E+04             | 0.00E+00             | 0.00E+00             | 0.006+00             | 1.16E+06 |
| R-92     | 7.28E+02      | 0.00E+00  | 2.92E+01             | 0.00E+00             | 0.00E+00             |                      | 1.38E+04 |
| -90      | 2.31E+04      | 0.00E+00  | 6.188+02             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 6.57E+07 |
|          |               |           |                      |                      |                      | *******              |          |
| -91M     | 8.91E-09      | 0.00E+00  | 3.24E-10             | 0.008+00             | 0.00E+00             | 0.00E+00             | 1.74E-05 |
| -91      | a second disa | 0.008+00  |                      |                      | 0.00E+00             |                      | 2.48E+09 |
| -92      | 1.58E+00      | 0.00E+00  | 4.53E-02             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 4.58E+04 |

# LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_1$

PATHWAY: LEAFY VEGETABLES
AGE GROUP: CHILD ( 2 OF 3 )

| MUCLIDES         |              |                      | ORGAN D   | OSE CONVER           | SION FACTO                              | ORGAN DOSE CONVERSION FACTORS |                      |  |  |  |  |  |  |  |  |
|------------------|--------------|----------------------|-----------|----------------------|-----------------------------------------|-------------------------------|----------------------|--|--|--|--|--|--|--|--|
|                  | BONE         | LIVER                | T.800Y    | THYROID              | KIDNEY                                  | LUNG                          | GI-LLI               |  |  |  |  |  |  |  |  |
| Y-93             | 2.93E+02     | 0.00E+0              | 2 2 2/2 2 |                      |                                         |                               |                      |  |  |  |  |  |  |  |  |
| ZR-95            | 3.86E+06     |                      |           |                      |                                         |                               |                      |  |  |  |  |  |  |  |  |
| ZR-97            | 5.70E+02     |                      |           |                      |                                         |                               |                      |  |  |  |  |  |  |  |  |
| *******          |              |                      |           |                      |                                         | **********                    | 1.25E+07             |  |  |  |  |  |  |  |  |
| NB-95            | 4.10E+05     | 1.60E+05             | 1.14E+05  | 0.00E+00             | 1.50E+05                                | 0.00E+00                      | 2.96E+08             |  |  |  |  |  |  |  |  |
| HO-99            | 0.00E+00     | 7.71E+06             | 1.91E+06  | 0.00E+00             |                                         |                               |                      |  |  |  |  |  |  |  |  |
| TC-99M           | 4.71E+00     | 9.24E+00             | 1.53E+02  | 0.00E+00             |                                         |                               |                      |  |  |  |  |  |  |  |  |
| TC. 101          |              |                      |           |                      |                                         | *******                       |                      |  |  |  |  |  |  |  |  |
| TC-101           | 1.41E-30     | 1.47E-30             |           | 0.00E+00             | 2.51E-29                                | 7.78E-31                      | 4.68E-30             |  |  |  |  |  |  |  |  |
| RU-103<br>RU-105 | 1.53E+07     | 0.00E+00             |           | 0.00E+00             | 3.86E+07                                | 0.00E+00                      |                      |  |  |  |  |  |  |  |  |
|                  | 9.16E+01     | 0.00E+00             | 3.32E+01  | 0.008+00             | 8.05E+02                                | 0.00E+00                      | 5.98E+04             |  |  |  |  |  |  |  |  |
| RU-106           | 7.45E+08     | 0.005.00             |           |                      |                                         | ******                        |                      |  |  |  |  |  |  |  |  |
| 4G-110M          | 3.21E+07     | 0.00€+00             | 9.30E+07  | 0.006+00             | 1.01E+09                                | 0.00E+00                      | 1.16E+10             |  |  |  |  |  |  |  |  |
| E-125M           | 3.51E+08     | 2.17E+07<br>9.50E+07 | 1.73E+07  | 0.00E+00             | 4.04E+07                                | 0.00E+00                      | 2.58E+09             |  |  |  |  |  |  |  |  |
|                  | *********    | 7.3UE7U/             | 4.67E+07  | 9.84E+07             | 0.00E+00                                | 0.00E+00                      | 3.38E+08             |  |  |  |  |  |  |  |  |
| E-127M           | 1.32E+09     | 3.568+08             | 1.57E+08  | 7 140.00             | * ********                              | ********                      | ******               |  |  |  |  |  |  |  |  |
| E-127            | 9.85E+03     | 2.65E+03             | 2.116+03  | 3.16E+08             | 3.77E+09                                | 0.00E+00                      | 1.07E+09             |  |  |  |  |  |  |  |  |
| E-129M           | 8.41E+08     | 2.35E+08             | 1.31E+08  | 6.81E+03<br>2.71E+08 | 2.80E+04                                | 0.00E+00                      | 3.85E+05             |  |  |  |  |  |  |  |  |
| *******          | *********    |                      | ********* | E-11E+U0             | 2.47E+09                                | 0.00E+00                      | 1.03E+09             |  |  |  |  |  |  |  |  |
| E-129            | 1.32E-03     | 3.69E-04             | 3.148-04  | 9.438-04             | 3.87E-03                                | 0.000-00                      | 0 570 00             |  |  |  |  |  |  |  |  |
| E-131M           | 1.54E+06     | 5.33E+05             | 5.68E+05  | 1.10E+06             | 5.16E+06                                | 0.005+00                      | 8.23E-02             |  |  |  |  |  |  |  |  |
| E-131            | 2.57E-15     | 7.83E-16             | 7.64E-16  | 1.97E-15             | 7.77E-15                                | 0.005+00                      | 2.16E+07<br>1.35E-14 |  |  |  |  |  |  |  |  |
|                  |              |                      | *******   |                      | *******                                 | ********                      | 1.225-14             |  |  |  |  |  |  |  |  |
| E-132            | 7.00E+06     | 3.10E+06             | 3.74E+06  | 4.51E+06             | 2.88E+07                                | 0.00E+00                      | 3.12E+07             |  |  |  |  |  |  |  |  |
| 130              | 6.16E+05     | 1.24E+06             | 6.41E+05  | 1.37E+08             | 1.86E+06                                | 0.00E+00                      | 5.82E+05             |  |  |  |  |  |  |  |  |
| 131              | 1.43E+08     | 1.44E+08             | 8.17E+07  | 4.75E+10             | 2.36E+08                                | 0.00E+00                      | 1.28E+07             |  |  |  |  |  |  |  |  |
| 179              |              | ******               |           | ******               |                                         |                               |                      |  |  |  |  |  |  |  |  |
| 132              | 9.22E+01     | 1.69E+02             | 7.79E+01  | 7.86E+03             | 2.59E+02                                | 0.00E+00                      | 1.99E+02             |  |  |  |  |  |  |  |  |
| 133              | 3.53E+06     | 4.37E+06             | 1.65E+06  | 8.11E+08             | 7 205+04                                | 0.000.00                      |                      |  |  |  |  |  |  |  |  |
| 1.54             | 1.55E-04     | 2.88E-04             | 1.32E-04  | 6.62E-03             | 4.40E-04                                | 0.00E+00                      | 1.91E-04             |  |  |  |  |  |  |  |  |
|                  |              |                      | ******    |                      | A S S S S S S S S S S S S S S S S S S S |                               |                      |  |  |  |  |  |  |  |  |
| -134             | 6.26E+04     | 1.13E+05             | 5.33E+04  | 9.97E+06             | 1.73E+05                                | 0.00E+00                      | 8.58E+04             |  |  |  |  |  |  |  |  |
|                  | 1.000-10     | 2,030+10             | 5.55E+U9  | 0.00F+00             | 8 155+00                                | 2 075.00                      | 4 450 00             |  |  |  |  |  |  |  |  |
|                  | 8.24E+07     | 2.33E+08             | 1.47E+08  | 0.00E+00             | 1.21E+08                                | 1.80E+07                      | 7.96E+06             |  |  |  |  |  |  |  |  |
|                  |              |                      | ********* | ********             |                                         |                               |                      |  |  |  |  |  |  |  |  |
| -138             | 2.39E+10     | 176 11               | 3.38E+09  | 0.00E+00             | 7.468+09                                | 2.68E+09                      | 1.43E+08             |  |  |  |  |  |  |  |  |
| 1.00             | A. S.E. 11 . | A-175-11             | 5.79E-11  | 0.00F+00             | A 485-11                                | A Dir en                      |                      |  |  |  |  |  |  |  |  |
|                  | 4.95E-02     | CARGO MA             | 1.44E-03  | 0.00E+00             | 2.318-05                                | 1.56E-05                      | 2 845+00             |  |  |  |  |  |  |  |  |

#### LEAFY VEGETABLE PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, Ri

PATHWAY: LEAFY VEGETABLES
AGE GROUP: CHILD ( 3 OF 3 )

| MUCLIDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          | ORGAN DO | SE CONVERS | ION FACTOR           | s        |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|------------|----------------------|----------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BONE     | LIVER    | T.800Y   | THYROID    | KIDNEY               | LUNG     | GI-LLI               |
| BA-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.77E+08 | 2.42E+05 | 1.61£+07 | 0.000+00   | 7.89E+04             | 1.45E+05 | 1.40E+08             |
| BA-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.99E-21 | 1.11E-24 | 6.47E-23 | 0.00E+00   | 9.62E-25             | 6.53E-24 | 1.13E-21             |
| BA-142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00£+00   | 0.006+00             | 0.006+00 | 0.00E+00             |
| LA-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.25E+03 | 1.13E+03 | 3.53E+02 | 0.00E+00   | 0.00E+00             | 0.006+00 | 7 145-07             |
| LA-142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.36E-04 | 1.07E-04 | 3.35E-05 | 0.002+00   | 0.002+00             | 0.00E+00 | 3.16E+07<br>2.12E+01 |
| CE-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.56E+05 | 3.27E+05 | 4.86E+04 | 0.00E+00   | 1.43E+06             | 0.00E+00 | 4.08E+05             |
| CE-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.72E+03 | 9.31E+05 | 1.35E+02 | 0.00E+00   | 7 015.00             | 0.004.00 |                      |
| CE-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.27E+08 | 3.98E+07 | 6.78E+06 | 0.00E+00   | 3.91E+02<br>2.21E+07 | 0.006+00 | 1.368+07             |
| PR-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.46E+05 | 4.37E+04 | 7.23E+03 | 0.00E+00   | 2.37E+04             | 0.00E+00 | 1.04E+10<br>1.57E+08 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          | *******    | ********             | ******** |                      |
| PR-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.37E-26 | 1.668-26 | 2.70E-27 | 0.006+00   | 8.79E-27             | 0.00E+00 | 3.58E-23             |
| ID-147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.15E+04 | 5.79E+04 | 4.48E+03 | 0.00E+00   | 3.18E+04             | 0.00E+00 | 9.17E+07             |
| -187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.43E+04 | 3.81E+04 | 1.71E+04 | 0.006+00   | 0.006+00             | 0.00E+00 | 5.35E+06             |
| IP-239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.86E+05 | 2.77E+04 | 1.95E+04 | 0.00E+00   | 8.01E+04             | 0.00E+00 | 2.05E+09             |
| AND DESCRIPTION OF THE PARTY OF | -        |          |          |            |                      |          |                      |

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: ADULT ( 1 OF 3 )

| NUCLIDE                                 |                      |           | ORGAN DO | SE CONVERS | ION FACTOR | S                    |                      |
|-----------------------------------------|----------------------|-----------|----------|------------|------------|----------------------|----------------------|
|                                         | BONE                 | LIVER     | T.BODY   | LHAMOID    | KIDNEY     | LUNG                 | GI-LLI               |
| *************************************** |                      |           |          |            |            |                      |                      |
| н-3                                     | 0.00E+00             | 1.568+03  | 1.56E+03 | 1.56E+03   | 1.56E+03   | 1.56E+03             | 1.566+0              |
| C-14                                    | 2.63E+08             | 5.27E+07  | 5.27E+07 | 5.27E+07   | 5.27E+07   | 5.27E+07             | 5.27E+0              |
| NA-24                                   | 2.93E+05             | 2.93E+05  | 2,93E+05 | 2.93E+05   | 2.93E+05   | 2.93E+05             | 2.93E+0              |
| P-32                                    | 2 055+10             | 1 300.00  | 7 070.00 |            |            |                      |                      |
| CR-51                                   | 2.05E+10<br>0.00E+00 | 1.28E+09  | 7.93E+08 | 0.00€+00   | 0.00E+00   | 0.00E+00             | 2.31E+09             |
| MN-54                                   | 0.00E+00             | 0.00E+00  | 3.43E+03 | 2.05E+03   | 7.55E+02   | 4.55E+03             | 8.62E+05             |
|                                         | **********           | 1.01E+06  | 1.93E+05 | 0.00E+00   | 3.00E+05   | 0.00E+00             | 3.09E+06             |
| MN-56                                   | 0.00E+00             | 4.98E-04  | 8.84E-05 | 0.00E+00   | 6.32E-04   | 0.005+00             | 1 Ene no             |
| FE-55                                   | 3.26E+05             | 2.26E+05  | 5.26E+04 | 0.008+00   | 0.00E+00   | 0.00E+00<br>1.26E+05 | 1.59E-02             |
| FE-59                                   | 3.86E+05             | 9.07E+05  | 3.48E+05 | 0.00E+00   | 0.00E+00   | 2.54E+05             | 1.29E+05<br>3.02E+06 |
|                                         |                      | *******   | ******** | *********  | *********  | E.246+02             | 2.025*00             |
| 00-58                                   | 0.00E+00             | 5.66E+05  | 1.27E+06 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 1.15E+07             |
| 00-60                                   | 0.00E+00             | 1.97E+06  | 4.34E+06 | U.DOE+00   | 0.00E+00   | 0.00E+00             | 3.70E+07             |
| 11-63                                   | 8.07E+08             | 5.60E+07  | 2.71E+07 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 1.17E+07             |
|                                         |                      | *******   |          |            | ********   |                      | *******              |
| 11-65                                   | 4.44E-02             | 5.77E-03  | 2.63E-03 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 1.46E-01             |
| U-64                                    | 0.00E+00             | 2.66E+03  | 1.25E+03 | 0.00E+00   | 6.70E+03   | 0.00E+00             | 2.26E+05             |
| N-65                                    | 1.65E+08             | 5.24E+08  | 2.37E+08 | 0.00E+00   | 3.50E+08   | 0.00€+00             | 3.30E+08             |
| ******                                  | ********             |           |          |            |            |                      |                      |
| N-69                                    | 2.51E-13             | 4.80E-13  | 3.34E-14 | 0.00E+00   | 3.12E-13   | 0.00E+00             | 7.21E-14             |
| R-83                                    | 0.00E+00             | 0.008+00  | 1.40E-03 | 0.00€+00   | 0.00E+00   | 0.00E+00             | 2.02E-03             |
| R-84                                    | 0.00E+00             | 0.00E+00  | 2.32E-25 | 0.008+00   | 0.00E+00   | 0.00E+00             | 1.82E-30             |
| ******                                  | ********             | *******   |          |            | ******     |                      |                      |
| R-85                                    | 0.006+00             | 0.006+00  | 0.00E+00 | 0.008+00   | 0.00E+00   | 0.00E+00             | 0.00E+00             |
| 8-86                                    | 0.00E+00             | 3.11E+08  | 1.45E+08 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 6.14E+07             |
| 8-88                                    | 0.00E+00             | 00E+00    | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 0.006+00             |
|                                         | ********             | *** ***** | ******** | *******    | ********   | *******              |                      |
| 8-89                                    | 0.00€+00             | 0.00E+00  | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 0.00E+00             |
| 8-89                                    | 3.05E+09             | 0.00E+00  | 8.75E+07 | 0.006+00   | 0.00E+00   | 0.00E+00             | 4.89E+08             |
| R-90                                    | 7.83E+10             | 0.00E+00  | 2.41E+10 | 0.00E+00   | 0.00E+00   | 0.00E+00             | 2.84E+09             |
| 0.01                                    |                      | * *** *** |          | ********   | *******    |                      |                      |
| R-91                                    | 6.07E+04             | 0.006+00  | Z.45E+03 | 0.00E+00   | 0.002+00   | 0.006+00             | 2.89E+05             |
| R-92                                    | 1.036+00             | 0.00E+00  | 4.44E-02 | 0.00£+00   | 0.00E+00   | 0.00E+00             | 2.03E+01             |
| -90                                     | 8.50E+00             | 0.00E+00  | 2.28E-01 | 0.00€+00   | 0.00E+00   | 0.00E+00             | 9.01E+04             |
| -91M                                    | 7 100.31             | 0.000.00  | 2 700 22 | 0.000.00   | D 000 00   |                      |                      |
| -91                                     | 7.186-21             | 0.00€+00  | 2.78E-22 | 0.00E+00   | 0.00E+00   | 0.008+00             | 2.11E-20             |
| -92                                     | 1.03E+03             | 0.00E+00  | 2.76E+01 | 0.00£+00   | 0.00E+00   | 0.00€+00             | 5.67E+05             |
| 76                                      | 6.69E-06             | 0.00E+00  | 1.968-07 | 0.006+00   | 0.00E+00   | 0.00E+00             | 1.17E-01             |

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: ADULT ( 2 OF 3 )

| MUCTIDE |                      |                      | ORGAN DO             | SE CONVERS           | ION FACTOR           | S        |          |
|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------|----------|
|         | BONE                 | LIVER                | T.BODY               | THYROID              | KIDNEY               | LUNG     | GI-LLI   |
| Y - 93  | 2.686-02             | 0.00E+00             | 7.40E-04             | 0.00E+00             | 0.00E+00             | 0.00E+00 | 8.50E+0  |
| ZR-95   | 1.13E+02             | 3.63E+01             | 2.46E+01             | 0.00E+00             | 5.70E+01             | 0.00E+00 | 1.15E+05 |
| ZR-97   | 5.20E-02             | 1.05E-02             | 4.80E-03             | 0.00E+00             | 1.58E-02             | 0.00E+00 | 3.25E+03 |
|         |                      |                      |                      |                      |                      |          |          |
| NB-95   | 9.91E+03             | 5.51E+03             | 2.96E+03             | 0.00E+00             | 5.45E+03             | 0.00E+00 | 3.34E+07 |
| MO-99   | 0.00E+00             | 2.97E+06             | 5.668+05             | 0.00E+00             | 6.73E+06             | 0.00E+00 | 6.89E+06 |
| TC-99M  | 3.98E-01             | 1.13E+00             | 1.43E+01             | 0.00E+00             | 1.71E+01             | 5.52E-01 | 6.66E+02 |
| ******  |                      |                      |                      |                      |                      |          |          |
| TC-101  | 0.006+80             | 0.00E+00             | 0.00E+00             | 0.008+00             | 0.00E+00             | 0.00E+00 | 0.00E+00 |
| RU-103  | 1.22E+02             | 0.006+00             | 5.26E+01             | 0.00E+00             | 4.66E+02             | 0.00E+00 | 1.43E+04 |
| RU-105  | 1.03E-04             | 0.00E+00             | 4.06E-05             | 0.00E+00             | 1.33E-03             | 0.00E+00 | 6.29E-02 |
| RU- 106 | 3 /EF-NY             | 0.000.00             | T 400.00             | 0.000.00             |                      |          |          |
| AG-110N | 2.45E+03<br>6.99E+06 | 0.00E+00<br>6.46E+06 | 3.10E+02             | 0.00E+00             | 4.73E+03             | 0.00E+00 | 1.58E+05 |
| TE-125M | 1.95E+06             | 7.08E+05             | 3.84E+06<br>2.62E+05 | 0.00E+00<br>5.88E+05 | 1.27E+07<br>7.95E+06 | 0.00E+00 | 2.64E+09 |
|         |                      |                      | *********            |                      | 7.726700             | 0.00E+00 | 7.80E+06 |
| TE-127M | 5.49E+06             | 1.96E+06             | 6.696+05             | 1.40E+06             | 2.23E+07             | 0.00E+00 | 1.84E+07 |
| TE-127  | 7.83E+01             | 2.81E+01             | 1.70E+01             | 5.80E+01             | 3.19E+02             | 0.00E+00 | 6.18E+03 |
| TE-1294 | 7.22E+06             | 2.69E+06             | 1.14E+06             | 2.48E+06             | 3.02E+07             | 0.00E+00 | 3.64E+07 |
|         |                      |                      |                      |                      |                      | *******  | ******   |
| TE-129  | 3.39E-11             | 1.27E-11             | 8.25E-12             | 2.60E-11             | 1.42E-10             | 0.00E+00 | 2.56E-11 |
| FE-131M | 4.33E+04             | 2.12E+04             | 1.77E+04             | 3.368+04             | 2.15E+05             | 0.00E+00 | 2.10E+06 |
| E-131   | 4.32E-34             | 1.81E-34             | 1.37E-34             | 3.56E-34             | 1.89E-33             | 0.90E+00 | 6.1ZE-35 |
| E-132   | 7 800.00             | 4 840.05             | 4 1964               |                      | ********             |          |          |
| -130    | 2.88E+05<br>5.04E+05 | 1.868+05             | 1.75E+05             | 2.06E+05             | 1.80E+06             | 0.006+00 | 8.82E+06 |
| -131    | 3.55E+08             | 1.49E+06<br>5.08E+08 | 5.87E+05<br>2.91E+08 | 1.26E+08<br>1.67E+11 | 2.32E+06             | 0.000+00 | 1.28E+06 |
|         | *********            | 0.006-00             | E.71E*U0             | 1.076+11             | 8.71E+08             | 0.00E+00 | 1.34E+08 |
| -132    | 1.97E-01             | 5.27E-01             | 1.84E-01             | 1.84E+01             | 8.40E-01             | 0.006+00 | 9.90E-02 |
| -133    | 4.64E+06             | 8.08E+06             | 2.46E+06             | 1.19E+09             | 1.41E+07             | 0.006+00 | 7.26E+06 |
| -134    | 2.42E-12             | 6.57E-12             | 2.35E-12             | 1.14E-10             |                      |          |          |
|         |                      |                      |                      |                      | *******              | ******   |          |
|         | 1.548+04             |                      |                      |                      |                      |          |          |
|         | 1.70E+10             |                      |                      |                      |                      |          |          |
|         | 7.90E+08             |                      |                      |                      |                      | 2.38E+08 | 3.54E+08 |
|         |                      |                      |                      |                      |                      |          |          |
|         | 2.21E+10             |                      |                      |                      |                      |          |          |
|         | 2.71E-23             |                      |                      |                      |                      |          |          |
| A-139   | 5.30E-09             | 3.788-12             | 1.55E-10             | U.DUE+00             | 3.53E-12             | 2.14E-12 | 9.40E-09 |

### GOAT'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\mbox{\scriptsize f}}$

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: ADULT ( 3 OF 3 )

| NUCLIDE |          |          | ORGAN DOS | SE CONVERS | ION FACTOR           | S        |                      |
|---------|----------|----------|-----------|------------|----------------------|----------|----------------------|
|         | BONE     | LIVER    | T.800Y    | THYROID    | KIDNEY               | LUNG     | GI-LLI               |
| BA-140  | 3.23E+06 | 4.05E+03 | 2.11E+05  | 0.00E+00   | 1.386+03             | 2.32E+03 | 6.66E+06             |
| BA-141  | 0.006+00 | 0.006+00 | 0.00E+00  | 0.00E+00   | 0.00E+00             | 0.00E+00 | 0.00E+00             |
| BA-142  | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00   | 0.00E+00             | 0.002+00 | 0.00E+00             |
| LA-140  | 5.41E-01 | 2.73E-01 | 7.215-02  | 0.005-00   | 0.000.00             |          | 2 205 0              |
| LA-142  | 2.23E-12 | 1.01E-12 | 2.53E-13  | 0.00E+00   | 0.00E+00             | 0.00E+00 | 2.00E+04             |
| CE-141  | 5.816+02 | 3.93E+02 | 4.46E+01  | 0.00E+00   | 0.00E+00<br>1.83E+02 | 0.006+00 | 7.40E-09<br>1.50E+06 |
|         |          |          | *******   |            |                      | ******   |                      |
| CE-143  | 4.99E+00 | 3.69E+03 | 4.08E-01  | 0.00E+00   | 1.62E+00             | 0.00E+00 | 1.38E+05             |
| CE-144  | 4.29E+04 | 1.79E+04 | 2.30E+03  | 0.00E+00   | 1.06E+04             | 0.00E+00 | 1.45E+07             |
| PR-143  | 1.89E+01 | 7-60E+00 | 9.39E-01  | 0.00E+00   | 4.39E+00             | 0.008+00 | 8.30E+04             |
| PR-144  | 0.006+00 | 0.006+00 | 0.00E+00  | 0.00E+00   | 0.00E+00             | 0.00E+00 | 0.00E+00             |
| ND-147  | 1.13E+01 | 1.31E+01 | 7.81E-01  | 0.00E+00   | 7.63E+00             | D.00E+00 | 6.27E+04             |
| W-187   | 7.82E+02 | 6.53E+02 | 2.28E+U2  | 0.002+00   | 0.00E+00             | 0.002+00 | 2.14E+05             |
|         |          |          |           | *******    |                      | ******   |                      |
| NP-239  | 5.52E+00 | 5.43E-01 | 2.99E-01  | 0.00E+00   | 1.69E+00             | 0.00E+00 | 1.11E+05             |
|         |          |          |           |            |                      |          |                      |

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 1 OF 3 )

| MUCLIDE      | ORGAN DOSE CONVERSION FACTORS |              |          |                   |           |          |                   |  |  |  |
|--------------|-------------------------------|--------------|----------|-------------------|-----------|----------|-------------------|--|--|--|
|              | GOME                          | LIVER        | T.BODY   | THYROID           | KIDNEY    | LUNG     | 31-FF1            |  |  |  |
| н-3          | 0.00E+00                      | 2.038+03     | 2.03E+03 | 2.03E+03          | 2.03E+03  | 2.03E+03 | 2.03£+0           |  |  |  |
| C-14         | 4.86E+08                      | 9.72E+07     | 9.72E+07 | 9.72E+07          | 9.72E+07  | 9.726+07 | 9.72E+0           |  |  |  |
| NA-24        | 5.11E+05                      | 5.11E+05     | 5,11E+05 | 5.11E+05          | 5.11E+05  | 5.11E+05 | 5.11E+0           |  |  |  |
| P-32         | 3.78E+10                      | 2.34£+09     | 1.47E+09 | 0.00E+00          | 0.002+00  | 0.00E+00 | 3.18E+0           |  |  |  |
| CR-51        | 0.00E+00                      | 0.00E+00     | 5.99E+03 | 3.33E+03          | 1.31E+03  | 8.55E+03 | 1.01E+0           |  |  |  |
| MN-54        | 0.008+00                      | 1.68£+06     | 3.34E+05 | 0.00E+00          | 5.02E+05  | 0.00E+00 | 3.45E+0           |  |  |  |
| MN-56        | 0.00E+00                      | 8.83E-04     | 1.57E-04 | 0.006+00          | 1.12E-03  | 0.00E+00 | 5.816-0           |  |  |  |
| FE-55        | 5.79E+05                      | 4.11E+05     | 9.57E+04 | 0.00E+00          | 0.006+00  | 2.60E+05 | 1.78E+0           |  |  |  |
| FE-59        | 6.74E+05                      | 1.57E+06     | 6.07E+05 | 0.002+00          | 0.006+00  | 4.96E+05 | 3.72E+0           |  |  |  |
| CO-58        | 0.00€+00                      | 9.52E+05     | 2.19E+06 | 0.005+00          | 0.00E+00  | 0.002+00 | 1.31E+0           |  |  |  |
| 00-60        | 0.00E+00                      | 3.34E+06     | 7.52E+06 | 0.006+00          | 0.008+00  | 0.00E+00 | 4.35E+0           |  |  |  |
| NI-63        | 1.42E+09                      | 1.00€+08     | 4.81E+07 | 0.00E+00          | 0.G0E+00  | 0.00E+00 | 1.59E+0           |  |  |  |
| 11-65        | 8.128-02                      | 1.048-02     | 4.73E-03 | 0.00E+00          | 0.006+00  | 0.006+00 | 5.63E-0           |  |  |  |
| CU-64        | 0.00E+00                      | 4.73E+03     | 2.23E+03 | 0.008+00          | 1.208+04  | 0.00E+00 | 3.67E+1           |  |  |  |
| ZN-65        | 2.53£+08                      | 8.78E+08     | 4.10E+08 | 0.00E+00          | 5.62E+08  | 0.00E+00 | 3.72E+0           |  |  |  |
| ZN-69        | 4.628-13                      | 8.80E-13     | 6.16E-14 | 0.006+00          | 5.75E-13  | 0.00E+00 | 1.62E-1           |  |  |  |
| BR-83        | D.00E+00                      | 0.006+00     | 2.58E-03 | 0.00E+00          | 0.00E+00  | 0.00E+00 | 0.00E+0           |  |  |  |
| BR-84        | 0.00E+00                      | 0.00E+00     | 4.14E-25 | 0.00E+00          | 0.00E+00  | 0.00E+00 | 0.00E+0           |  |  |  |
|              |                               |              |          |                   |           |          |                   |  |  |  |
| BR-85        | 0.00E+00                      | 0.00E+00     | 0.00E+00 | 0.00E+00          | 0.00E+00  | 0.00E+00 | 0.008+0           |  |  |  |
| RB-86        | 0.006+00                      | 5.67E+08     | 2.67E+08 | 0.00E+00          | 0.00E+00  | 0.00E+00 | 8.40E+0           |  |  |  |
| RB-88        | 0.00E+00                      | 0.00E+00     | 0.00E+00 | 0.00E+00          | 0.006+00  | 0.00E+00 | 0.00E+0           |  |  |  |
|              |                               |              |          |                   |           |          |                   |  |  |  |
| RB-89        | 0.00E+00                      | 0.00E+00     | 0.00E+00 | 0.00E+00          | 0.008+00  | 0.00E+00 | 0.00E+0           |  |  |  |
| SR-89        | 5.62E+09                      | 0.00€+00     | 1.61E+08 | 0.00E+00          | 0.00E+00  | 0.006+00 | 6.69E+0           |  |  |  |
| SR-90        | 1.396+11                      | 0.000+00     | 3.436+10 | 0.000+00          | D. OUE*UU |          | 3.7007            |  |  |  |
| SR-91        | 1.12E+05                      | 0.00E+00     | 4.44E+03 | 0.00E+00          | 0.00E+00  | 0.00E+00 | 5.06E+0           |  |  |  |
| SR-92        |                               | 0.00E+00     |          |                   |           | 0.DOE+00 |                   |  |  |  |
| Y-90         | 1.56E+01                      | 0.00E+00     | 4.21E-01 | 0.006+00          | 0.006+00  | 0.00E+00 | 1.29E+0           |  |  |  |
|              | 4 746 56                      | and the same |          |                   |           |          |                   |  |  |  |
| Y-91M        | 1.31E-20                      |              |          | The second second |           | 0.00E+00 | and management of |  |  |  |
| Y-91<br>Y-92 | 1.24E-05                      | 0.00E+00     |          | 0.00E+00          |           | 0.00E+00 | 7.77E+0           |  |  |  |

PATHWAY: "MAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 2 OF 3 )

| NUCLIDE |           |                      | ORGAN DO | SE CONVERS | ION FACTOR           | es.                  |                      |
|---------|-----------|----------------------|----------|------------|----------------------|----------------------|----------------------|
|         | BONE      | LIVER                | T.BODY   | THYROID    | KIDNEY               | LUNG                 | CI-FFI               |
| Y-93    | 4.94E-02  | 0.00E+00             | 1.36E-03 | 0.005+00   | 0.005.00             |                      |                      |
| ZR-95   | 1.98E+02  | 6.25E+01             | 4.30E+01 | 0.00E+00   |                      |                      | -                    |
| ZR-97   | 9.46E-02  | 1.87E-G2             | 8.62E-03 | 0.00E+00   |                      |                      |                      |
| (8-95   | 1.69E+04  | 9.37E+03             | 5.16E+03 | 0.00E+00   | 9.08E+03             | 0.00E+00             | 4.01E+01             |
| 10-99   | 0.00E+00  | 5.37E+06             | 1.02E+06 | 0.006+00   | 1.23E+07             | 0.00E+00             |                      |
| C-99M   | 6.91E-01  | 1.93E+00             | 2.50E+01 | 0.00E+00   | 2.87E+01             | 1.07E+00             | 1.27E+03             |
| C-101   | 0.002+00  | 0.00£+00             | 0.006+00 | 0.00E+00   | 0.00E+00             | 0.00E+00             | 0.00E+00             |
| U-103   | 2.17E+02  | 0.00E+00             | 9.29E+01 | 0.00E+00   | 7.66E+02             | 0.00E+00             | 1.81E+04             |
| U-105   | 1.88E-04  | 0.00E+00             | 7.29E-05 | 0.00E+00   | 2.37E-03             | 0.00E+00             | 1.52E-01             |
| U-106   | 3.47E+03  | 0.00E+00             | 5.67E+02 | 0.00E+00   | 8.68E+03             | 0.00E+00             | 2.16E+05             |
| G-110H  | 1.16E+07  | 1.09E+07             | 6.65E+06 | 0.00E+00   | 2.08E+07             | 0.00E+00             | 3.07E+09             |
| E-125M  | 3.60€*06  | 1.30E+06             | 4.82E+05 | 1.01E+06   | 0.00£+00             | 0.00E+00             | 1.06E+07             |
| E-127H  | 1.01E+07  | 3.59E+06             | 1.205+06 | 2.41E+06   | 4.10E+07             | 0.00E+00             | 2.52E+07             |
| E-127   | 1.45E+02  | 5.15E+01             | 3.12E+01 | 1.00E+02   | 5.88E+02             | 0.00E+00             | 1.12E+04             |
| E-129N  | 1.32E+07  | 4.90E+06             | 2.09E+06 | 4.26E+06   | 5.53E+07             | 0.008+00             | 4.96E+07             |
| E-129   | 6.24E-11  | 2.33E-11             | 1.39E-11 | 4.46E-11   | 2.62E-10             | 0.00E+00             | 3.41E-10             |
| E-131M  | 7.88E+04  | 3.78E+04             | 3.15E+04 | 5.69E+04   | 3.94E+05             | 0.00E+00             | 3.03E+06             |
| E-131   | 7.90E-34  | 3.26E-34             | 2.47E-34 | 6.09E-34   | 3.45E-33             | 0.008+00             | 6.49E-35             |
| -132    | 5.15E+05  | 3.26E+05             | 3.07E+05 | 3.44E+05   | 3 175+04             | 0.005+00             | 4 070.07             |
| 130     | 8.86E+05  | 2.56E+06             | 1.02E+06 | 2.09E+08   | 3.13E+06<br>3.95E+06 | 0.00E+00             | 1.03E+07             |
| 131     | 6.456+08  | 9.03E+08             | 4.85E+08 | 2.63E+11   | 1.55E+09             | 0.00E+00             | 1.79E+06<br>1.79E+08 |
| 132     | 3.50E-01  | 0.480.04             | 7 700 04 | 7 000 00   |                      |                      | *******              |
| 133     | 8.48E+06  | 9.15E-01<br>1.44E+07 | 3.288-01 | 3.08E+01   | 1.44E+00             | 0.00E+00             | 3.98E-01             |
| 134     |           |                      | 4.39E+06 | 2.01E+09   | 2.52E+07             | 0.00E+00             | 1.09E+07             |
|         | ********* | 7.195-11             | 4.UYE-12 | 1.90E-10   | 1.80E-11             | 0.00E+00             | 1.50E-13             |
| 135     | 2.74E+04  | 7.04E+04             | 2.61E+04 | 4.53E+06   | 1.11E+05             | 0.00E+00             | 7.81E+04             |
| -134    | 2.94E+10  | 6.93E+10             | 3.22E+10 | 0.00E+00   | 2.20E+10             | 8.41E+09             | 8.62E+08             |
| -136    | 1.34E+09  | 5.29E+09             | 3.55E+09 | 0.00E+00   | 2.88E+09             | 4.54E+08             | 4.26E+08             |
|         |           | ********             |          |            |                      |                      |                      |
| -137    | 4.0ZE+10  | 5.14E+10             | 1.86E+10 | 0.008+00   | 1.82E+10             | 7.06E+09             | 7.60E+08             |
| -138    | 4.9ZE-Z3  | V.45E-23             | +.72E-23 | 0.00E+00   | 6.988-23             | 8.12E-24<br>4.75E-12 | 4.298-26             |
| -110    |           |                      |          |            |                      |                      |                      |

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: TEEN ( 3 OF 3 )

| MUCLIDE                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ORGAN DO | SE CONVERS | ION FACTOR | S        |          |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|------------|----------|----------|
|                                              | BOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIVER    | T.800Y   | THYROID    | KIDNEY     | LUNG     | GI-LLI   |
| BA-140                                       | 5 000.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 424 45 |          |            |            |          |          |
| BA-141                                       | 5.82E+06<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.13E+03 | 3.75E+05 | 0.00E+00   | 2.42E+03   | 4.80E+03 | 8.98E+06 |
| BA-142                                       | 2 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00E+00 | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| DM-192                                       | 0.002+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0.00£+00 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| LA-140                                       | 9.72E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.78E-01 | 1.27E-01 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 2.74E+04 |
| LA-142                                       | 4.02E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.79E-12 | 4.45E-13 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 5.44E-08 |
| CE-141                                       | 1.07E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.12E+02 | 8.17E+01 | 0.00E+00   | 3.35E+02   | 0.00E+00 | 2.042+06 |
| PC - 1/7                                     | 0.470.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |            |            |          |          |
| CE-143                                       | 9.17E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.67E+03 | 7.45E-01 | 0.00E+00   | 2.99E+00   | 0.00E+00 | 2.00E+05 |
| CE-144                                       | 7.90E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.27E+04 | 4.24E+03 | 0.00E+00   | 1.95E+04   | 0.00E+00 | 1.99E+07 |
| PR-143                                       | 3.48E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.39E+01 | 1.73£+00 | 0.00E+00   | 8.08E+00   | 0.00E+00 | 1.15E+05 |
| PR-144                                       | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00 | 0.00£+00 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.006+00 |
| ND-147                                       | 2.17E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.36E+01 | 1.42E+00 | 0.00E+00   | 1.39E+01   | 0.00E+00 | 8.53E+04 |
| W-187                                        | 1.43E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.17E+03 | 4.08E+02 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 3.15E+05 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |            |            | ******   |          |
| NP-239                                       | 1.05E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.938-01 | 5.52E-01 | 0.00E+00   | 3.12E+00   | 0.006+00 | 1.60E+05 |
| Personal line of the last bulleting the last | AND DESCRIPTION OF THE PARTY OF |          |          |            |            |          |          |

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 1 OF 3 )

| NUCLIDES |          |                      | ORGAN DO             | SE CONVERS           | ION FACTOR | S         |                      |
|----------|----------|----------------------|----------------------|----------------------|------------|-----------|----------------------|
|          | BOME     | LIVER                | T.800Y               | THYROID              | KIDNEY     | LUNG      | GI-LLI               |
| н-3      | 0.00E+00 | 7 205.07             | 7 700.07             | 7 200 47             |            |           |                      |
| C-14     | 1.19E+09 | 3.20E+03<br>2.39E+08 | 3.20E+03             | 3.20E+03             | 3.208+03   | 3.20E+03  | 3.20E+0              |
| NA-24    | 1.06€+06 | 1.06E+07             | 2.39E+08<br>1.06E+06 | 2.39E+08<br>1.06E+06 | 2.39E+08   | 2.39€+08  | 2.39E+0              |
|          |          |                      | 1.002+00             | 1.000+00             | 1.06E+06   | 1.06E+06  | 1.06E+0              |
| P-32     | 9.33E+10 | 4.37E+09             | 3.60E+09             | 0.00E+00             | 0.00E+00   | 0.002+00  | 2.58E+0              |
| CR-51    | 0.002+00 | 0.00E+00             | 1.22E+04             | 6.785+03             | 1.85E+03   | 1.24E+04  | 6.48E+0              |
| ми-54    | 0.00E+00 | Z_52E+06             | 6.70E+05             | 0.00E+00             | 7.06E+05   | 0.00E+00  | 2.11E+0              |
|          |          |                      |                      |                      | *******    |           |                      |
| MN-56    | 0.006+00 | 1.546-03             | 3.48E-04             | 0.00E+00             | 1.86E-03   | 0.00E+00  | 2.238-0              |
| FE-55    | 1.39E+06 | 7.716+05             | 2.39E+05             | 0.00E+00             | 0.006+00   | 4.36E+05  | 1.43E+05             |
| FE-59    | 1.56E+06 | 2.53E+06             | 1.26E+06             | 0.00E+00             | . 0.00E+00 | 7.33E+05  | 2.63E+0              |
|          |          |                      |                      |                      |            |           |                      |
| CO-58    | 0.006+00 | 1.45E+06             | 4.45E+06             | 0.005+00             | 0.00E+00   | 0.00E+00  | 8.49E+06             |
| 00-60    | 0.008+00 | 5.18E+06             | 1.53E+07             | 0.00E+00             | 0.005+00   | 0.006+00  | 2.87E+0              |
| 11-63    | 3.566+09 | 1.90E+08             | 1.24E+08             | 0.006+00             | 0.00E+00   | 0.00E+00  | 1.28E+0              |
|          |          |                      |                      | *****                |            |           | * * * * * * * *      |
| 11-65    | 1.99E-01 | 1.87E-02             | 1.09E-02             | 0.00E+00             | 0.00E+00   | 0.00E+00  | 2.29E+00             |
| JU-64    | 0.00E+00 | 8.32E+03             | 5.02E+03             | 0.00E+00             | 2.01E+04   | 0.006+00  | 3.90E+05             |
| N-65     | 4.96E+08 | 1.32E+09             | 8.22E+08             | 0.00€+00             | 8.33E+08   | 0.00E+00  | 2.32E+08             |
|          |          | ********             |                      |                      | *******    | ******    |                      |
| IN-69    | 1.14E-12 | 1.64E-12             | 1.52E-13             | 0.00E+00             | 9.96€-13   | 0.00E+00  | 1.03E-10             |
| IR-83    | 0.00E+00 | 0.00E+00             | 6.34E-03             | 0.006+00             | 0.00E+00   | 0.00E+00  | 0.00E+00             |
| IR - 84  | 0.00E+00 | 0.006+00             | 9.37E-25             | 0.00E+00             | 0.002+00   | 0.00E+00  | 0.00E+00             |
| R-85     | 0 005-00 | 0.000.00             |                      | ********             |            | *******   | *******              |
| 8-86     | 0.00E+00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00   | 0.00E+00  | 0.00E+00             |
| 8-58     | 0.00E+00 | 1.05E+09             | 6.47E+08             | 0.00£+00             | 0.00E+00   | 0.00£+00  | 6.77E+07             |
|          | 0.000-00 | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00   | 0.00E+UU  | 0.00E+00             |
| 8-89     | 0.00E+00 | 0.00E+00             | 0.000+00             | 0.000,00             | 0.000.00   |           |                      |
| R-89     | 1.39E+10 | 0.002+00             | 0.00E+00             | 0.00E+00             | 0.006+00   | 0.00E+00  | 0.00E+00             |
| R-90     |          |                      | 3.97E+08<br>5.95E+10 |                      | 0.005+00   |           | 5.38E+08             |
| ******** | ******** | ********             | 2.735-10             | 0.006+00             | 0.006+00   | U. CUE+UU | 3.10E+U9             |
| R-91     | 2.74E+05 | 0.00F+00             | 1.03E+04             | 0.005+00             | 0.000+00   | 0.000+00  | 4 0/F+0E             |
| R-92     |          |                      | 1.84E-01             |                      |            |           | 6.04E+05<br>8.68E+01 |
| -90      |          |                      | 1.03E+00             |                      |            |           | 1.10E+05             |
|          |          |                      |                      |                      |            |           |                      |
| -91M     | 3.21E-20 | 0.00E+00             | 1.17E-21             | 0.006+00             | 0.00F+00   | 0.005+00  | 6.206-12             |
| -91      |          |                      | 1.25E+02             |                      |            |           |                      |
| -92      | 3.048-05 |                      |                      |                      |            |           | 0.545-03             |

### GCAT'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\mbox{\scriptsize f}}$

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 2 OF 3 )

| WUCLIDES |          |          | ORGAN DO  | SE CONVERS                              | ION FACTOR           | s        |                      |
|----------|----------|----------|-----------|-----------------------------------------|----------------------|----------|----------------------|
|          | BONE     | LIVER    | T. BCDY   | THYROID                                 | KIDNEY               | LUNG     | GI-LLI               |
| Y-93     | 1.21E-01 | 0.00E+00 | 3.33E-03  | 0.00E+00                                | 0.00E+00             | 0.005+00 | 1 045.0              |
| ZR-95    | 4.60E+02 | 1.01E+02 | 9.00E+01  | 1 - 1 - 2 - 2 - 2                       | 1.45E+02             |          |                      |
| ZR-97    | 2.30E-01 | 3.33E-02 | 1.96E-02  | 100000000000000000000000000000000000000 | 4.78E-02             |          | 1.05E+0              |
| NS-95    | 3.81E+04 | 1.49E+04 | 1.06E+04  | 0.00E+00                                | 1.40E+04             | 0.00E+00 | 2.75E+0              |
| HO-99    | 0.00E+00 | 9.76E+06 | 2.42E+06  | 0.00E+00                                | 2.09E+07             | 0.00E+00 | 8.08E+06             |
| TC-99M   | 1.59E+00 | 3.11E+00 | 5.15E+01  | 0.005+00                                | 4.52E+01             | 1.58E+00 | 1.77E+03             |
| TC-101   | 0.00E+00 | 0.005+00 | 0.00E+00  | 0.00€+00                                | 0.00E+00             | 0.006+00 | 0.00E+00             |
| RU-103   | 5.148+02 | 0.00E+00 | 1.98E+02  | 0.006+00                                | 1.295+03             | 0.00E+00 | 1.33E+04             |
| RU-105   | 4.58E-04 | 0.00E+00 | 1.66E-04  | 0.00E+00                                | 4.03E-03             | 0.00E+00 | 2.99E-01             |
| RU-106   | 1.11E+04 | 0.00E+00 | 1.38E+03  | 0.008+00                                | 1.50E+04             | 0.005+00 | 1 776-00             |
| AG-110M  | 2.51E+07 | 1.69E+07 | 1.35E+07  | 0.00E+00                                | 3.15E+07             | 0.00E+00 | 1.72E+05             |
| TE-125M  | 8.85E+06 | 2.406+06 | 1.18E+06  | 2.48E+06                                | 0.00E+00             | 0.00E+00 | 2.01E+09<br>8.54E+06 |
| TE-127M  | 2.505+07 | 6.72E+06 | 2.96E+06  | 5.97E+06                                | 7.12E+07             | 0.00E+00 | 2 020-02             |
| TE-127   | 3.57E+02 | 9.63E+01 | 7.66E+01  | 2.47E+02                                | 1.02E+03             | 0.00E+00 | 2.02E+07<br>1.40E+04 |
| TE-129M  | 3.26E+07 | 9.098+06 | 5.06E+06  | 1.05E+07                                | 9.568+07             | 0.00E+00 | 3.97E+07             |
| TE-129   | 1.54E-10 | 4.30E-11 | 3.65E-11  | 1.10E-10                                | 4.50E-10             | 0.006+00 | 9.58E-09             |
| TE-131M  | 1.92E+05 | 6.64E+04 | 7.06E+04  | 1.36E+05                                | 6.42E+05             | 0.00E+00 | 2.69E+06             |
| E-131    | 1.94E-33 | 5.91E-34 | 5.77E:34  | 1.486-33                                | 5.868-33             | 0.00E+00 | 1.02E-32             |
| E-132    | 1.23E+06 | 5.44E+05 | 6.57E+05  | 7 035.05                                | E 050.04             |          |                      |
| -130     | 2.07E+06 | 4.19E+06 | 2.168+06  | 7.93E+05                                | 5.05E+06             | 0.00E+00 | 5.48E+06             |
| -131     | 1.56E+09 | 1.57E+09 | 8.94E+08  | 4.61E+08<br>5.20E+11                    | 6.26E+06<br>2.58E+09 | 0.00E+00 | 1.96E+06<br>1.40E+08 |
| ***      |          |          |           |                                         | *******              |          |                      |
| -132     | 8.27E-01 | 1.52E+00 | 6.99E-01  | 7.05E+01                                | 2.33E+00             | 0.00E+00 | 1.79E+00             |
| -133     | 2.06E+07 | 2.55E+07 | 9.64E+06  | 4.73E+09                                | 4.25E+07             | 0.00E+00 | 1.037-07             |
| -134     | 1.02E-11 | 1.69E-11 | 8.70E-12  | 4.35E-10                                | 2.89E-11             | 0.00E+00 | 1.25E-11             |
| -135     | 6.48E+04 | 1.17E+05 | 5 526404  | 1 075407                                | 1 200-02             | 5 66r.60 |                      |
|          | 6.79E+10 | 1.115+11 | 2.355410  | 0.005+00                                | 3 /55-10             | 1.006+00 | 6.008+04             |
| S-136    | 3.03E+09 | 8.58E+09 | 5.40E+09  | 0.006+00                                | 4.44E+09             | 6.63E+08 | 2.93E+08             |
|          |          |          |           |                                         |                      |          |                      |
| S-137    | 9.67E+10 | 9.26E+10 | 1.37E+10  | 0.00E+00                                | 3.02E+10             | 1.09E+10 | 5.80E+08             |
| 5-138    | 1.19E-22 | 1.66E-22 | 1.05E-22  | 0.00E+00                                | 1.17E-22             | 1.268-23 | 7.64E-23             |
| A-139    | 2.41E-08 | 1.29E-11 | 6.98E-10  | 0.006+00                                | 1.12E-11             | 7.57E-12 | 1.39E-06             |
|          |          |          | of source |                                         | *******              |          | *****                |

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: CHILD ( 3 OF 3 )

| NUCLIDES |            |          | ORGAN DO | SE CONVERS | ION FACTOR | S        |          |
|----------|------------|----------|----------|------------|------------|----------|----------|
|          | BONE       | LIVER    | T.BODY   | THYROID    | KIDMEY     | LUNG     | GI-LLI   |
| BA-140   | 1.41E+07   | 1.23E+04 | 8.20£+05 | 0.00£+00   | 4.01E+03   | 7.346+03 | 7.12E+06 |
| BA-141   | 0.00E+00   | 0.00E+00 | 0.00E+00 | 0.00E+00   | 0.006+00   | 0.00E+00 | D.00E+00 |
| BA-142   | 0.00E+00   | 0.006+00 | 0.006+00 | 0.006+00   | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| LA-140   | 2.33E+00   | 8.14E-01 | 2.54E-01 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 2.27E+04 |
| LA-142   | 9.72E-12   | 3.10E-12 | 9.70E-13 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 6.14E-07 |
| CE-141   | .1.62E+03  | 1.31E+03 | 1.94E+02 | 0.00€+00   | 5.74E+03   | 0.00E+00 | 1.63E+06 |
|          | *** ****** |          |          |            | ********   | ******** | ******** |
| CE-143   | 2.25E+01   | 1.22E+04 | 1.77E+00 | 0.00E+00   | 5.12E+00   | 0.008+00 | 1.79E+05 |
| CE-144   | 1.956 -05  | 6.11E+04 | 1.04E+04 | 0.00E+00   | 3.38E+04   | 0.00E+00 | 1.59E+07 |
| PR-143   | 8.626+61   | 2.59E+01 | 4.28E+00 | 0.00E+00   | 1.40E+01   | 0.00E+00 | 9.30E+04 |
| *******  | *****      |          |          |            |            | ******** | ******   |
| PR-144   | 0.006+00   | 0.00E+00 | 0.00E+00 | 0.00E+00   | 0.00E+00   | 0.00E+00 | 0.00E+00 |
| ND-147   | 5.33E+01   | 4.32E+01 | 3.35E+00 | 0.00E+00   | 2.37E+01   | 0.00E+00 | 6.85E+04 |
| v-187    | 3.47E+03   | 2.05E+03 | 9.21E+02 | 0.00E+00   | 0.006+00   | 0.00E+00 | 2.88E+05 |
| P-239    | 2.59E+01   | 1.86E+00 | 1.31E+00 | 0.00E+00   | 5.38E+00   | 0.00E+00 | 1.38E+05 |

# GOAT'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, $R_{\rm i}$

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: INFANT ( 1 OF 3 )

| NUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |            |          |                                         |                      |           |
|---------|-------------------------------|----------|------------|----------|-----------------------------------------|----------------------|-----------|
|         | BONE                          | LIVER    | T.BODY     | THYROID  | KIDNEY                                  | LUNG                 | CI-FFI    |
| н-3     | 0.00€+00                      | 4.86E+0  | 3 4.86E+03 | / 945+00 |                                         |                      |           |
| C-14    | 2.346+09                      | 17.00    |            |          |                                         |                      |           |
| NA-24   | 1.85E+06                      |          |            |          |                                         |                      |           |
|         |                               |          |            | ******** | 1.036400                                | 1.85E+06             | 1.85E+0   |
| P-32    | 1.92E+11                      | 1.13E+10 | 7.46E+09   | 0.00E+00 | 0.00E+00                                | 0 005-00             |           |
| CR-51   | 0.00E+00                      | 0.00E+00 |            |          | 202000000000000000000000000000000000000 |                      |           |
| MN-54   | 0.00E+00                      | 4.68E+06 |            |          |                                         | 2.46E+04<br>0.00E+00 |           |
|         | ********                      |          |            |          |                                         | 0.002+00             | 1.72E+0   |
| HN-56   | 0.00E+00                      | 3.77E-03 | 6.50E-04   | 0.00E+00 | 3.24E-03                                | 0.00E+00             | 3.43E-0   |
| FE-55   | 1.76E+06                      | 1.13E+06 | 3.03E+05   | 0.00E+00 | 0.00E+00                                | 5.55E+05             | 1.44E+05  |
| FE-59   | 2.92E+06                      | 5.10E+06 | 2.01E+06   | 0.00E+00 | 0.006+00                                | 1.518+06             | 2.43E+06  |
| ******  | * * * * * * * * * * * * *     |          |            |          | *******                                 |                      | ********* |
| 0-58    | 0.00E+00                      | 2.91E+06 | 7.26E+06   | 0.00E+00 | 0.00E+00                                | 0.006+00             | 7.25E+06  |
| 0-60    | 0.00E+00                      | 1.06E+07 | 2.50E+07   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 2.525+07  |
| 1-63    | 4.19E+09                      | 2.59E+08 | 1.45E+08   | 0.00E+00 | 0.00E+00                                | 0.008+00             | 1.29E+07  |
| ******* |                               |          |            |          | *******                                 | ********             | ********  |
| 1-65    | 4.21E-01                      | 4.76E-02 | 2.17E-02   | 0.00E+00 | 0.00E+00                                | 0.006+00             | 3.62E+00  |
| U-64    | 0.00E+00                      | 2.07E+04 | 9.57E+03   | 0.00E+00 | 3.50E+04                                | 0.002+00             | 4.24E+05  |
| N-65    | 6.666+08                      | 2.2BE+09 | 1.05E+09   | 0.00E+00 | 1.11E+09                                | 0.00E+00             | 1.938+09  |
| N-69    |                               | ******** | *******    |          |                                         | *******              | *******   |
| R-83    | 2.42E 12                      | 4.36E-12 | 3.24E-13   | 0.006+00 | 1.81E-12                                | 0.00E+00             | 3.55E-10  |
| R-84    | 0.00E+00                      | 0.00E+00 | 1.34E-02   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 0.00E+00  |
|         | 0.00£+00                      | 0.00E+00 | 1.81E-24   | 0.00E+00 | 0.008+00                                | 0.00E+00             | 0.00E+00  |
| 2-85    | 0.000.00                      |          | *******    |          |                                         | ******               | ******    |
| 8-86    | 0.00E+00                      | 0.00E+00 | 0.00E+00   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 0.00E+00  |
| 1-88    | 0.006+00                      | 2.67E+09 | 1.32E+09   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 6.83E+07  |
| ******  | 0.008+00                      | 0.00£+00 | 0.00E+00   | 0.00E+00 | 0.005+00                                | 0.00E+00             | 0.008+00  |
| -89     | 0.005+00                      | 0.000.00 |            |          |                                         |                      | *****     |
| -89     | 0.00E+00                      | 0.00E+00 | 0.00E+00   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 0.00E+00  |
| -90     | 2.64E+10                      | 0.00E+00 | 7.58E+08   | C.00E+00 | 0.00£+00                                | 0.00E+00             | 5.43E+08  |
| ******  | E-23E+11                      | U.UUE+00 | 6.50E+10   | 0.006+00 | 0.006+00                                | 0.00E+00             | 3.19E+09  |
| -91     | 5 705+05                      | 0 000.00 |            |          | *******                                 |                      | ******    |
| -92     | 5.70E+05                      | 0.005-00 | Z.06E+04   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 6.75E+05  |
| 90      | 9.75E+00<br>8.17E+01          | 0.005+00 | 3.0ZE-01   | U.00E+00 | 0.00E+00                                | 0.00E+00             | 1.05E+02  |
|         | ********                      |          | 2.19E+00   | 0.00E+00 | 0.00E+00                                | 0.00E+00             | 1.13E+05  |
| 91M     | 6.81F-20                      | 0.000+00 | 2 725 24   | D DOU    |                                         | *******              | ******    |
| 91      | 6.81E-20                      | 0.006+00 | 2.32E-21   | 0.00£+00 | 0.00E+00                                | 0.00E+00             | 2.27E-16  |
|         | 8.79E+03                      | 0.000.00 | 2.342+02   | U.00E+00 | 0.00£+00                                | 0.00E+00             | 6.30E+05  |
|         | 6.452-05                      | 1-005+00 | 1.51E-06   | 0.00E+00 | 0.00E+00                                | 0.006400             | 1.23E+00  |

Communication factors are in units of square meter-mrem/yr per uCi/sec for all nuclides except N-3 which is in units of mrem/yr per uCi/cubic meter.

# GOAT'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)
AGE GROUP: INFANT ( 2 OF 3 )

| NUCLIDE           | ORGAN DOSE CONVERSION FACTORS |          |                      |           |           |            |           |
|-------------------|-------------------------------|----------|----------------------|-----------|-----------|------------|-----------|
|                   | BONE                          | LIVER    | T.800Y               | THYROID   | KIDNEY    | LUNG       | GI-LLI    |
| Y-93              | 2.59E-01                      | 0.006+00 | 7.05E-03             | 0.00E+00  | 0.005+00  | 0.005+00   | 2 0/5.00  |
| 2R-95             | 8.17E+02                      |          |                      |           |           |            |           |
| ZR-97             | 4.87E-01                      |          |                      |           |           |            |           |
| ******            |                               |          | ********             | *******   | *******   | ********   | ********* |
| NB-95             | 7-12E+04                      | 2.93E+04 | 1.70E+04             | 0.00E+00  | 2.10E+04  | 0.00E+00   | 2.48E+07  |
| MO-99             | 0.00E+00                      | 2.50E+07 |                      | 0.00E+00  |           | 0.00E+00   | 8.22E+06  |
| TC-99H            | 3.30E+00                      | 6.80E+00 |                      | 0.00£+00  |           | 3.56E+00   | 1.98E+03  |
| *****             | ********                      |          |                      | *******   |           |            |           |
| TC-101            | 0.00E+00                      | 0.00E+00 | 0.00E+00             | 0.00E+00  | 0.00E+00  | 0.00E+00   | 0.00E+00  |
| RU-103            | 1.04E+03                      | 0.00E+00 | 3.48E+02             | 0.00E+00  | 2.17E+03  | 0.00E+00   | 1.27E+04  |
| RU-105            | 9.66E-04                      | 0.00E+00 | 3.25E-04             | 0.002+00  | 7.11E-03  | 0.00E+00   | 3.846-01  |
| ******            | *********                     |          |                      |           |           |            |           |
| RU-106            | 2.288+04                      | 0.00E+00 | 2.85E+03             | 0.00E+00  | 2.70E+04  | 0.00E+00   | 1.73E+05  |
| AG-110M           | 4.63E+07                      | 3.38E+07 | 2.24E+07             | 0.00E+00  | 4.83E+07  | 0.00E+00   | 1.75E+09  |
| TE-125M           | 1.81E+07                      | 6.05E+06 | 2.45E+06             | 6.09E+06  | 0.00E+00  | 0.00E+00   | 8.62E+06  |
|                   |                               | ******** | *******              |           |           | *******    |           |
| TE-127M           | 5.05E+07                      | 1.68E+07 | 6.12E+06             | 1.46E+07  | 1.24E+08  | 0.006+00   | 2.04E+07  |
| TE-127<br>TE-129M | 7.58E+02                      | 2.54E+02 | 1.63E+02             | 6.17E+02  | 1.85E+03  | 0.00E+00   | 1.598+04  |
| e ieam            | 6.69E+07                      | 2.29E+07 | 1.03E+07             | 2.57E+07  | 1.67E+08  | 0.00E+00   | 3.99E+07  |
| E-129             | 7 265.10                      |          | *********            |           |           | *******    | *******   |
| E-131M            | 3.268-10                      | 1.12E-10 | 7.62E-11             | 2.73E-10  | 8.12E-10  | 0.00E+00   | 2.61E-08  |
| E-131             | 4.05E+05                      | 1.63E+05 | 1.35E+05             | 3.31E+05  | 1.12E+06  | 0.008+00   | 2.75E+06  |
|                   | 4.11E-33                      | 1.52E-33 | 1.15E-33             | 3.67E-33  | 1.05E-32  | 0.00E+00   | 1.66E-31  |
| E-132             | 2.53E+06                      | 5 250.04 |                      | ********  | ********  |            |           |
| -130              | 4.26E+06                      | 1.25E+06 | 1.17E+06             | 1.85E+06  | 7.848+06  | 0.00E+00   | 4.64E+06  |
| -131              | 3.26£+09                      | 9.37E+06 | 3.76E+06             | 1.05E+09  | 1.03E+07  | 0.00€+00   | 2.01E+06  |
| *******           |                               | 3.85E+09 | 1.69E+09             | 1.26E+12  | 4.49E+09  | 0.00E+00   | 1.37E+08  |
| -132              | 1.72E+00                      | 3.48E+00 | 1 2/5-00             | 4 470.00  |           |            |           |
| -133              | 4.35E+07                      | 6.348+07 | 1.24E+00<br>1.86E+07 | 1.63E+02  | 3.89E+00  | 0.008+00   | 2.82E+00  |
| -134              |                               |          |                      | 1.15E+10  | 7.45E+07  | 0.00E+00   | 1.07E+07  |
|                   |                               | ******** | 1.296-11             | 1.016-09  | 4-84E-11  | D.00E+00   | 4.47E-11  |
| 135               | 1.35E+05                      | 2.68E+05 | 0 775+04             | 2 405407  | 2 000+00  | 0.000.00   | 0.700.07  |
| 5-134             | 1.09E+11                      | 2.04E+11 | 2.06F+10             | 0.005400  | 5 25C+10  | 0.00E+00   | Y. 7UE+U4 |
| S-136             | 5.93E+09                      | 1.74E+10 | 6.51E+09             | 0.006+00  | A 95E+00  | 1 425+00   | 2 485-06  |
|                   | ******                        |          | *******              | ********* | U. 73ETUY |            | 2.65E+08  |
| 9-137             | 1.54E+11                      | 1.81E+11 | 1.28E+10             | 0.006+00  | 4 RSE440  |            |           |
| -138              | 2.52E-22                      | 4.09E-22 | 1.986-22             | 0.00000   | 2 045-22  | 3 10c-23   | 4 5/5 22  |
| -139              | 5.136-08                      | 3 40E-11 | 1 (00 00             | 0.000-00  | 2.00E.EE  | 3. IAE. 53 | 0.245-22  |

Conversion factors are in units of square meter-mrem/yr per uCi/sec for all nuclides except H-3 which is in units of mrem/yr per uCi/cubic meter.

# GOAT'S MILK PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES, R;

PATHWAY: GOAT'S MILK (CONTAMINATED FORAGE)

AGE GROUP: INFANT ( 3 OF 3 )

| MUCLIDE | ORGAN DOSE CONVERSION FACTORS |          |          |          |          |          |                      |
|---------|-------------------------------|----------|----------|----------|----------|----------|----------------------|
|         | BOWE                          | LIVER    | T.800Y   | THYROID  | KIDNEY   | LUNG     | GI-LLI               |
| BA-140  | 2.89E+07                      | 2.89E+04 | 1.49E+06 | 0.000+00 | 6.87E+03 | 1.78£+04 | 7.10E+06             |
| BA-141  | 0.005+00                      | 0.00E+00 | 0.00E+00 | 0.008+00 | 0.00E+00 | 0.002+00 | 0.00E+00             |
| 8A-142  | 0.00£+00                      | 0.00E+00 | 0.008+00 | 0.008+00 | 0.00€+00 | 0.002+00 | 0.00E+00             |
| LA-160  | 4.86E+00                      | 1.92E+00 | 4.93E-01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 2.25E+04             |
| LA-142  | 2.04E-11                      | 7.49E-12 | 1.79E-12 | 0.00E+00 | 0.008+00 | 0.00E+00 | 1.27E-06             |
| CE-141  | 5.20E+03                      | 3.17E+03 | 3.74E+02 | 0.00E+00 | 9.79E+02 | 0.00E+00 | 1.64E+06             |
| CE-143  | 4.76E+01                      | 3.16E+06 | 3.60E+00 | 0.00E+00 | 9.20E+00 | 0.00E+00 | * *******            |
| CE-144  | 2.79E+05                      | 1.14E+05 | 1.566+04 | 0.00E+00 | 4.62E+04 | 0.00E+00 | 1.84E+05<br>1.60E+07 |
| PR-143  | 1.78£+02                      | 6.67E+01 | 8.84E+00 | 0.00E+00 | 2.48E+01 | 0.00E+00 | 9.41E+04             |
| ******* |                               |          |          |          |          |          | *******              |
| PR-144  | 0.00E+00                      | 0.00E+00 | 0.00E+00 | 0.00€+00 | 0.00E+00 | 0.00E+00 | 0.00E+00             |
| ND-147  | 1.06E+02                      | 1.09E+02 | 6.65E+00 | 0.006+00 | 4.19E+01 | 0.00E+00 | 6.88E+04             |
| W-187   | 7.30E+03                      | 5.07E+03 | 1.75E+03 | 0.00E+00 | 0.00E+00 | 0.006+00 | 2.98£+05             |
| NP-239  | 5.48E+01                      | 4.90E+00 | 2.77E+00 | 0.00E+00 | 9.77E+00 | 0.00E+00 | 1.42E+05             |

Conversion factors are in units of square meter-mrem/yr per uCi/sec for all nuclides except N-3 which is in units of mrem/yr per uCi/cubic meter.

# LIQUID WASTE MANAGEMENT SYSTEM EFFLUENT SOURCES AND RELEASE PATHWAYS AND POINTS



UNT-005-014 Revision 3

Attachment 6.11 (1 of 2)

# LIOUID WASTE MANAGEMENT SYSTEM EFFLUENT SOURCES AND RELEASE PATHWAYS AND POINTS



UNT-005-014 Revision 3

Attachment 6.11 (2 of 2)

#### GASEOUS EFFLUENT SOURCES, GASEOUS WASTE MANAGEMENT SYSTEM EFFLUENT SOURCES AND EXHAUST RELEASE POINTS



UNT-005-014 Revision 3

Attachment 6.12 (1 of 1)

|                                 | RADIOLOGICA                                                                                                                                                         | AL ENVIRONMENTAL MONITOR                            | ING PROGRAM                                                                     |                         |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|
| SAMPLE<br>TLD                   | LOCATION  A-2, B-1, C-1, D-2, E-1, F-2, G-2, H-2, J-2, K-1, L-1, M-1, N-1, P-1, Q-1, R-1, A-5, B-4, D-5, E-5 F-4, G-4, H-6, P-6, Q-5 R-6, F-9, G-9, E-15, J-15 E-30 | ANALYSIS                                            | FREQUENCY<br>Quarterly                                                          | VOLUME<br>N/A           |
| Radioiodine and<br>Particulates | APP-1, APQ-1, APG-1,<br>APC-1, APE-30                                                                                                                               | Gross beta, I-131<br>y isotopic <sup>b</sup>        | Weekly<br>Quarterly composite                                                   | 285m³/wk<br>3700m³/gr   |
| Ground Water <sup>f</sup>       | GWK-1                                                                                                                                                               | γ ISOTOPIC, H-3                                     | Quarterly                                                                       | 4 liters                |
| Drinking Water <sup>C</sup>     | DWG-2, DWE-5d, DWP-7                                                                                                                                                | H-3<br>Gross beta, γ isotopic<br>I-131 <sup>9</sup> | Quarterly composite<br>Monthly composite <sup>k</sup><br>Semi-monthly composite | Homogeneous<br>4 liters |
| Surface Water <sup>C</sup>      | SWG-2, SWE-5 <sup>d</sup> , SWP-7                                                                                                                                   | H-3<br>γ isotopic                                   | Quarterly composite<br>Monthly composite <sup>k</sup>                           | Homogeneous<br>4 liters |
| Shoreline Sediment              | SHWE-3, SHWK-1                                                                                                                                                      | y isotopic                                          | Semi-annually                                                                   | 2 Kilograms             |
| Milk                            | MKQ-5, MKQ-45, MKQ-1                                                                                                                                                | γ isotopic, I-131                                   | Semi-monthly/monthly <sup>h</sup>                                               | 4 liters                |
| Fish                            | FH-1, FH-2                                                                                                                                                          | γ isotopic                                          | In season or semi-annuallyi                                                     | 500 grams               |
| Food Products                   | *FPP-1, FPG-1                                                                                                                                                       | γ isotopic                                          | At harvest time <sup>j</sup>                                                    | 500 grams               |
| Broad Leaf                      | BLQ-1, BLB-1, BLK-15                                                                                                                                                | γ isotopic, I-131                                   | Monthly<br>When milk samples not<br>collected                                   | 500 grams               |

<sup>\*</sup> Irrigated Food Pathway does not exist. However, food products grown within the site boundary are sampled and analyzed.

UNI-005-014 Revision 3

Attachment 6.13 (1 of 3)

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Continued)

- a. One or more instrument, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. A TLD is considered one phosphor, two or more phosphors in a packet are considered two or more dosimeters. Geographical limitations affect siting of dosimeters.
- b. Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than ten times the yearly mean of control samples, gamma isotopes analysis shall be performed on the individual samples. Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- c. Drinking Water and Surface Water samples are identical samples.
- d. The downstream sample is beyond the mixing zone.
- e. A composite sample will contain aliquots of sample taken proportional to the quantity of flowing liquid that results in a specimen representative of the liquid flow.
- f. Ground water samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- g. This analysis will be performed when the dose calculated for the consumption of water is greater than 1 mrem per year as calculated for maximum organ and age group.
- h. Milk will be collected semimonthly when animals are on pasture, monthly otherwise. If milk sampling is not performed, broad leafy vegetation will be sampled.
- Striped mullet, gizzard shad, freshwater drum, and catfish will be collected. If they are not available, substitute species will be collected and identified in reporting.

UNT-005-014 Revision 3

Attachment 6.13 (2 of 3)

### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Continued)

- j. One sample of each principal class of food products will be sampled in an area irrigated by water in which plant wastes have been inadvertently discharged. If harvest occurs more than once a year, sampling shall be performed during each discrete harvest. If harvesting occurs continuously, sampling shall be monthly. Tuberous and root products will be sampled when available.
- k. An anaylsis frequency of Every 4 Weeks satisfies this requirement. The maximum frequency is monthly.

#### SAMPLE LOCATION TABLE

| LOCA | TION LOCATION  BER DESCRIPTION                                                                                                                                                                                                                                                  | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| DIRE | CT RADIATION (TLD)                                                                                                                                                                                                                                                              |                     |                     |
| A-2  | (Eastbank) Located on a utility pole on River Road (La. 628) at the south corner of the Zephrin L. Perriloux Fire Station (Station 5) in Montz, La.                                                                                                                             | 1.1                 | N                   |
| B-1  | (Eastbank) On fence enclosing the transmission tower 0.3 miles west (up-river) from Little Gyspy. Access from River Road (LA 628). TLD's are located at SW corner of fence enclosure.                                                                                           | 0.8                 | NNE                 |
| C-1  | (Eastbank) On fence enclosing the Little Gyspy Cooling Water Intake. Access is from River Road (LA 628) across from Little Gypsy Power Station entrance. TLD's are on the south side (inside) of the Cooling Water Intake fence enclosure, directly opposite the entrance gate. | 0.8                 | NE                  |
| D-2  | (Eastbank) Located approximately 0.3 miles east of Little Gypsy Power Station.  Access from River Road (LA 628) near the west end of the Bonne Carre Spillway.  TLD's are on the fence at the West entrance to the spillway (located on levee).                                 | 1.1                 | ENE                 |

| LOCA | TION LOCATION  BER DESCRIPTION                                                                                                                                                                                                               | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| E-1  | (Westbank) Located on utility pole along<br>River Road (LA 18) approximately 0.3 miles<br>east of Waterford 3 plant entrance. Access<br>from LA 18. TLD's are on the third utility<br>pole east of the construction entrance road.           | 0.2                 | E                   |
| F-2  | (Westbank) Located on fence enclosure surrounding the LP&L substation on LA 3142. Access from LA 3142 approximately 0.2 miles south of LA 18. TLD's are on the southeast corner of the fence enclosure.                                      | 1.1                 | ESE                 |
| i-2  | (Westbank) Located on fence near utility pole on East side of LA 3142 (Next to Union Carbide Star Plant Gate 3). Access from LA 3142 approximately 0.2 miles north of railroad overpass.                                                     | 1.2                 | SE                  |
| 1-2  | (Westbank) Located on fence enclosure to shell road off of LA 3142. Access from LA 3142 south of railroad overpass on east side of LA 3142. TLD's are on the south side of the gate for shell road. (Just south of Texaco pipeline station). | 1.2                 | SSE                 |

| LOCATION<br>NUMBER                                        | LOCATION<br>DESCRIPTION                                                                                                                                                               | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| of fence e<br>south of L<br>approxmiat                    | Located on northeast corner enclosing Texaco valve station  A 3127. Access from LA 3127, cely 0.6 miles west of 42 intersection.                                                      | 1.3                 | S                   |
| entrance o<br>LA 3127, a<br>of LA 3127<br>is the acc      | Located on fence at Gate 92 off of LA 3127. Access from approximately 1.3 miles west /3142 intersection. (Gate 92 ess to the Waterford 3 station and Training Center).                | 1.0                 | SSW                 |
| sign at Ga<br>approximte<br>LA 3127/31                    | Located next to "Private Road" te 97 entrance off of LA 3127, ly 1.6 miles west of 42 intersection. (Gate 97 ss road for Waterford 3).                                                | 1.0                 | SW                  |
| the Waterform<br>enclosure.<br>Gate 92, Ga<br>access road | Located on south gate of and 1 and 2 fuel oil storage tank Access is either thru LP&L ate 97 off of LA 3127, the shell from LA 18 between Waterford 3, waterford 1 and 2 access road. | 0.7                 | WSW                 |
| sign off or                                               | Located behind the "No Trespassing'<br>Short Street, in Killona just<br>ne Killona Elementary School.                                                                                 | 0.9                 | W                   |
| NT-005-014 Revi                                           |                                                                                                                                                                                       | Attachment 6.14     | (3 of 11)           |

| LOCA |                                                                                                                                                                                                                                                                                     | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| P-1  | (Westbank) Located on Short Street, TLD is inside fence at air sample station APP-1.                                                                                                                                                                                                | 0.8                 | WNW                 |
| 0-1  | (Westbank) Located on fence enclosing air<br>sample station approximately 0.5 miles<br>west of Waterford 1 and 2 on River Road (LA 1                                                                                                                                                |                     | NW                  |
| R-1  | (Westbank) Located on fence enclosure for Waterford I and 2 Cooling Water Intake Structure. Access is from River Road (LA 18) opposite Waterford I and 2. TLD's are on the southwest corner of fence.                                                                               | 0.5                 | NNW                 |
| A-5  | (Eastbank) Located on utility pole just<br>east of the Shady Nook Trailer Park on<br>Hwy 61 in LaPlace. TLD's are on second<br>utility pole east of trailer park on<br>north side of Hwy 61 (eastern end of LaPlace).                                                               | 4.5                 | N                   |
| B-4  | (Eastbank) Located on utility pole guidewire west of shell access road to South Central Bell transmission tower on south side of Hwy 61. Transmission tower is just east of Weigh Station at St. John/St. Charles Parish line. TLD's are on first utility pole west of access road. | 3.8                 | NNE                 |

| LOCATION NUMBER                                        | LOCATION<br>DESCRIPTION                                                                                                                                                                                                                                                                        | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| acces<br>Shell<br>miles<br>(at b<br>on fe              | bank) Located on fence gate on shell s road to Big 3 Chemical Plant. access road is approximately 0.1 west of Hwy 61/48 intersection lack and yellow gate). TLD's are nce gate 0.1 miles north on shell s road from Hwy 61.                                                                    | 4.2                 | ENE                 |
| fence<br>(LA 4)<br>Shell<br>to the                     | bank) Located on the Norco Substation enclosure. Access from River Road B) onto Wesco St. (adjacent to Norco Chemical Plant), take Wesco St. e dead end. TLD's are located on beside of the north substation gate.                                                                             | 4.2                 | E                   |
| blonds<br>Hahnv<br>and to<br>Hickon<br>follow<br>brick | bank) Located on utility pole behind brick house on Aquarius St. in ille. Access from River Road (LA 18) arn onto Oak St. Follow Oak St. to ry St., turn right on Hickory St. and w to Aquarius St. and turn left. Blonda house is second house on right (west) of Aquarius St. heading south. | 3.5                 | ESE                 |
| northw<br>inters                                       | pank) Located on railroad sign<br>west side of LA 3160/railroad track<br>section. Access from either LA 3127<br>wer Road (LA 18) onto LA 3160.                                                                                                                                                 | 3.2                 | SE                  |

235

Attachment 6.14 (5 of 11)

UNT-005-014 Revision 3

| LOCA | TION LOCATION . BER DESCRIPTION                                                                                                                                                                                                                           | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| H-6  | (Westbank) Located on a road<br>sign on the Northwest side of the second<br>canal bridge east of LA 3160 along LA 3127                                                                                                                                    | 5.7                 | SSE                 |
| P-6  | (Westbank) Located on a fence surrounding<br>the Union Pacific communications tower<br>at the LA 640/railroad track intersection.<br>Tower is located approximately 500 feet we<br>of LA 640.                                                             |                     | WNW                 |
| 0-5  | (Westbank) Located on fence<br>surrounding (green) river marker on<br>levee just east of Edgard. Fence post is<br>located along River Road (LA 18) across<br>from the Webre's house.                                                                      | 5.0                 | NW                  |
| R-6  | (Eastbank) Located on fence enclosing LP&L Laydown Yard on LA 3223 in LaPlace. Access from Hwy 61 onto Elm St. (LA 3223), take Elm St. to the northeast corner of LA 3223/railroad intersection. TLD's are located at the entrance of the fence enclosed. |                     | NNW                 |
| F-9  | (Eastbank) Located on entrance gate to Destrehan Substation. Access from River Road (LA 48), approximate 1.5 miles east of Luling-Destrehan Bridge, onto Jona Street (west of Bunge Corp. Grain Elevator and proceed to substation gate.                  |                     | ESE                 |
| UNT- | 005-014 Revision 3                                                                                                                                                                                                                                        | Attachment 6.       | 14 (6 of 11)        |

| LOCAT |                                                                                                                                                                                                               | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| G-9   | (Westbank) Located on back fence of<br>LP&L District Office in Luling. Access<br>via Ellington St. from either River Road<br>(LA 18); or Second or Third S. from Paul<br>Mallard Rd. (LA 52) to Ellington St. | 8.1                 | SE                  |
| E-15  | (Eastbank) Located on Kenner Substation fence enclosure. Access from either River Road (LA 48) or Hwy 61, turn onto Alliance Ave. TLD's are located at the entrance of the fence enclosure.                   | 11.8                | E                   |
| J-15  | (Westbank) Located on fence enclosure surrounding LP&L switchyard at LA 631/Hwy 90 intersection in Des Allemands. TLD's are on the northwest corner of fence. Access from LA 631 via shell road.              | 12.0                | S                   |
| E-30* | (Westbank) Located at LP&L General Office or Delaronde St. in Algiers. TLD's are on a tree in the courtyard at the south entrance to the building.                                                            | 27.0                | E                   |

| LOCAT<br>NUMBI |                                                                                                                                                                                   | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| Airbo          | rne                                                                                                                                                                               |                     |                     |
| APP-1          | (Westbank) Located in soybean/sugarcane field at northwest corner of Short St. in Killona.                                                                                        | 0.8                 | WNW                 |
| APQ-1          | (Westbank) Located at northwest corner of soybean/sugarcane field on east side of Killona Access from River Road (LA 18) approximately 0.6 miles east of LA 18/3141 intersection. | 0.8                 | NW                  |
| APG-1          | (Westbank) Located at the north side of the Secondary Meteorological Tower.                                                                                                       | 0.5                 | SE                  |
| APC-1          | (Eastbank) Located inside the Little Gypsy<br>Cooling Water Intake Structure fence enclosu                                                                                        | 0.8<br>re.          | NE                  |
| APE-30         | * (Westbank) Located on the roof of the LP&L General Office building on Delaronde St. in Algiers.                                                                                 | 27.0                | E                   |
| Food P         | roducts                                                                                                                                                                           |                     |                     |
| FPP-1          | (Westbank) Located in field on eastern edge of Killona, between air sample stations APP-1 and APQ-1. The crops grown alternate between soybeans and sugar cane.                   | 0.8                 | WNW                 |

Attachment 6.14 (8 of 11)

UNT-005-014 Revision 3

| LOCATIO<br>NUMBER |                                                                                      | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|-------------------|--------------------------------------------------------------------------------------|---------------------|---------------------|
| FPG-1             | (Wostbank) Incated in Field and of U.L.                                              |                     |                     |
| 170-1             | (Westbank) Located in field east of Water-<br>ford 3 near the Back-up Meteorological | 0.4                 | SE                  |
|                   | Tower and air sample station APG-1.                                                  |                     |                     |
|                   | The crops grown alternate between                                                    |                     |                     |
|                   | soybeans and sugar-cane.                                                             |                     |                     |
|                   |                                                                                      |                     |                     |
| Broad L           | eaf                                                                                  |                     |                     |
| BLQ-1             | (Westbank) Located between LA 18 and                                                 | 0.8                 | NW                  |
|                   | soybean field on eastern edge Killona,                                               |                     |                     |
|                   | near air sample station APQ-1.                                                       |                     |                     |
| BLB-1             | (Eastbank) Located at wooded area at the                                             | 0.8                 | NNE                 |
|                   | southwestern corner of the LP&L Little                                               |                     |                     |
|                   | Gypsy plant along River Road.                                                        |                     |                     |
| BLK-15*           | (Westbank) Located 3.5 miles SSW of                                                  | 15.0                | SSW                 |
|                   | Des Allemands on Hwy. 90.                                                            |                     |                     |
| Ingestic          | on                                                                                   |                     |                     |
| Milk              |                                                                                      |                     |                     |
| WVO E             | Walter 17 1                                                                          |                     |                     |
| MKQ-5             | (Westbank) Located at the Webre's house,                                             | 5.0                 | NW                  |
|                   | just across LA 18 from river marker, at the eastern end of Edgard.                   |                     |                     |
|                   | the castern end of Eugard.                                                           |                     |                     |

| LOCATIO |                                                                                                                                                                                                                              | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| MKQ-45* | (Eastbank) Located off of I-12 in Denham Springs. Take LA 3002 south of LA 1034 then right to LA 1032. Turn left and go to farm 1 mile on the right.                                                                         | 42                  | NW                  |
| MKQ-1   | (Westbank) 1.0 miles west of Waterford 3 at the corner of River Road and Post Street in Killona.                                                                                                                             | 1.0                 | NW                  |
| Fish    |                                                                                                                                                                                                                              |                     |                     |
| FH-1*   | Upstream of the plant intake structure.                                                                                                                                                                                      | N/A                 | N/A                 |
| FH-2    | Downstream of the plant discharge structure.                                                                                                                                                                                 | N/A                 | N/A                 |
| Materbo | cne                                                                                                                                                                                                                          |                     |                     |
| GWK-1   | (Westbank) Located at 40 Arpent Canal south of the plant. Access from LA 3127 through LP&L Gate 92 which is at the Waterford-3 Training Center. The canal is northwest of the shell access road/railroad track intersection. | 0.5                 | SSW                 |
|         | (Westbank) Located at the Union Carbide<br>drinking water canal. Access from<br>LA 3142 through Gate 28.                                                                                                                     | 2.0                 | SE                  |

UNT-005-014 Revision 3

Attachment 6.14 (10 of 11)

| LOCATIO          |                                                                                                   | MILES FROM<br>PLANT | SECTOR<br>DIRECTION |
|------------------|---------------------------------------------------------------------------------------------------|---------------------|---------------------|
| SHWE-3           | (Westbank) Located at the Foot Ferry<br>Landing off of LA 18 in Taft.                             | 3.0                 | E                   |
| SHWK-1           | (Westbank) Located at 40 arpent canal south of plant. Access thru LP&L gate 92 off of LA 3127.    | 0.5                 | SSW                 |
| DWE-5<br>SWE-5   | (Eastbank) Located at the St. Charles Parish Waterworks off of River Road (LA 48) near New Sarpy. | 4.5                 | E                   |
| DWP-7*<br>SWP-7* | (Westbank) Located at the St. John Paris<br>Waterworks off of LA 18 in Edgard.                    | h 6.5               | WNW                 |

<sup>\*</sup> DENOTES CONTROL LOCATIONS

N/A - Not Applicable for this sampling location.

# SECTOR AND ZONE DESIGNATORS FOR RADIOLOGICAL SAMPLING AND MONITORING POINTS

| SECTOR NOMENCLATURE                                      |                   | ZONE NOMENO         | LATURE |
|----------------------------------------------------------|-------------------|---------------------|--------|
| CENTERLINE OF SECTOR IN DEGREES TRUE NORTH FROM FACILITY | 22 1/2°<br>SECTOR | MILES FROM FACILITY | ZONE   |
| 0 & 360                                                  | *A N              | 0-1                 | 1      |
| 22 1/2                                                   | B NNE             | 1-2                 | 2      |
| 45                                                       | C XE              | 2-3                 | 3      |
| 67 1/2                                                   | D ENE             | 3-4                 | 4      |
| 90                                                       | E E               | 4-5                 | 5      |
| 112 1/2                                                  | F ESE             | 5-6                 | 6      |
| 135                                                      | G SE              | 6-7                 | 7      |
| 157 1/2                                                  | H OR SSE          | 7-8                 | 8      |
| 180                                                      | J S               | 8-9                 | 9      |
| 202 1/2                                                  | K SSW             | 9-10                | 10     |
| 225                                                      | L SW              | 10-15               | 15     |
| 247 1/2                                                  | M WSW             | 15-20               | 20     |
| 270                                                      | N W               | 20-25               | 25     |
| 292 1/2                                                  | P. WNW            | 25-30               | 30     |
| 315                                                      | Q NW              | 30-35               | 35     |
| 337 1/2                                                  | R NNW             | 35-40               | 40     |
|                                                          |                   | 40-45               | 45     |
|                                                          |                   | 45-50               | 50     |

AREA SEGMENT — An area is identified by a Sector and Zone designator. Thus, area N-1 is that area which lies between 348 3/4 and  $11\frac{1}{4}$  degrees true north from the facility out to a radius of 1 mile. Area G-4 would be that area between 123 3/4 to 146 $\frac{1}{4}$  degrees and the 3- and 4-mile arcs from the facility. For Airborne, Ingestion (milk), and Food Products pathways, the sector designator will be preceded by acronyms AP, MK, and FP, respectively.

UNT-005-014 Revision 3

Attachment 6.15 (1 of 1)

<sup>\*</sup> The letters I and O have been omitted from these sector designators so as to eliminate possible confusion between letters and numbers.

REMP SAMPLING LOCATIONS

WITHIN 2 MILES OF WATERFORD 3



UNT-005-014 Revision 3

Attachment 6.16 (1 of 1)

REMP SAMPLING LOCATIONS
WITHIN 10 MILES OF WATERFORD 3



UNT-005-014 Revision 3

Attachment 6.17 (1 of 1)

# REMP SAMPLING LOCATIONS WITHIN 50 MILES OF WATERFORD 3



UNT-005-014 Revision 3

Attachment 6.18 (1 of 1)

#### SPECIFICATION CROSS REFERENCE TABLE

| Specification<br>Section | Requirement                                                                                    | Methodology<br>Section |
|--------------------------|------------------------------------------------------------------------------------------------|------------------------|
| 5.3.1                    | Liquid Effluent Concentration                                                                  | 5.3.5 & 5.3.6          |
| 5.3.2                    | Dose due to Liquid Effluents                                                                   | 5.3.4                  |
| 5.3.3                    | Dose Projections for Liquid Releases                                                           | 5.3.7                  |
| 5.4.1                    | Dose Rate Due to Noble Gases                                                                   | 5.4.5 & 5.4.8          |
| 5.4.1                    | Dose Rate Due to Iodine, Tritum<br>And Particulates with Half Lives<br>Greater than Eight Days | 5.4.5 & 5.4.8          |
| 5.4.2                    | Air Doses due to Noble Gases                                                                   | 5.4.6                  |
| 5.4.3                    | Doses Due to Iodines, Tritium and Particulates with Half-Lives Greater than Eight Days.        | 5.4.7                  |
| 5.4.4                    | Dose Projections for Gaseous Releases                                                          | 5.4.9                  |
| 5.5.1                    | Total Dose                                                                                     | 5.5.2                  |
| 5.6.1                    | Radioactive Liquid Effluent Monitoring<br>Channels Alarm/Trip Setpoints                        | 5.3.5                  |
| 5.6.2                    | Radioactive Gaseous Effluent<br>Monitoring Channels Alarm/Trip<br>Setpoints                    | 5.4.8                  |
| 5.8.1                    | Radiological Environmental<br>Monitoring Program                                               | 5.8.4                  |
| 5.8.2                    | Interlaboratory Comparison Program                                                             | 5.8.5                  |
| 5.8.3                    | Land Use Census                                                                                | 5.8.3                  |

#### TECHNICAL SPECIFICATION CROSS REFERENCE TABLE

| Specification Section | Requirement                                                                                    | Methodology<br>Section                                 |
|-----------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 5.3.1                 | Liquid Effluent Concentration                                                                  | 3.11.1.1,<br>4.11.1.1.1,<br>4.11.1.1.2                 |
| 5.3.2                 | Dose due to Liquid Effluents                                                                   | 3.11.1.2 & 4.11.1.2                                    |
| 5.3,3                 | Dose Projections for Liquid Releases                                                           | 3.11.1.3,<br>4.11.1.3.1 &<br>4.11.1.3.2                |
| 5.4.1                 | Dose Rate Due to Noble Gases                                                                   | 3.11.2.1,<br>4.11.2.1.1,<br>4.11.2.1.2 &<br>4.11.2.1.3 |
| 5.4.1                 | Dose Rate Due to Iodine, Tritum<br>And Particulates with Half Lives<br>Greater than Eight Days | 3.11.2.1,<br>4.11.2.1.1,<br>4.11.2.1.2 &<br>4.11.2.1.3 |
| 5.4.2                 | Air Doses due to Noble Gases                                                                   | 3.11.2.2 & 4.11.2.2                                    |
| 5.4.3                 | Doses Due to Iodines, Tritium and Particulates with Half-Lives Greater than Eight Days.        | 3.11.2.3 & 4.11.2.3                                    |
| 5.4.4                 | Dose Projections for Gaseous<br>Releases                                                       | 3.11.2.4,<br>4.11.2.4.1 &<br>4.11.2.4.2                |

### TECHNICAL SPECIFICATION CROSS REFERENCE TABLE

| Specification Section | Requirement                                                                 | Methodology<br>Section      |
|-----------------------|-----------------------------------------------------------------------------|-----------------------------|
| 5.5.1                 | Total Dose                                                                  | 3.11.4, 4.11.4.1 & 4.11.4.2 |
| 5.8.1                 | Radiological Environmental  Monitoring Program                              | 3.12.1 & 4.12.1             |
| 5.8.2                 | Interlaboratory Comparison Program                                          | 3.12.3 & 4.12.3             |
| 5.8.3                 | Land Use Census                                                             | 3.12.2 & 4.12.2             |
| 5.6.1                 | Radioactive Liquid Effluent<br>Monitoring Channels<br>Alarm/Trip Setpoints  | 3.3.3.10 &<br>4.3.3.10      |
| 5.6.2                 | Radioactive Gaseous Effluent<br>Monitoring Channels Alarm/Trip<br>Setpoints | 3.3.3.11 &<br>4.3.3.11      |

# SPECIFIC FACTORS USED TO DETERMINE A; and R; VALUES FOR THE OFFSITE DOSE CALCULATION MANUAL

Values for  $A_i$  and  $R_i$  were calculated as per NUREG-0133. Recommended values for various factors in the calculations were as specified in NUREG-0133. The location of most of the recommended factors are contained in Regulatory Guide 1.109. All factors used in Waterford-3 SES's calculations are for the maximum individual and are not site specific. The various factors are discussed below.

- Stable element transfer coefficients for vegetation, cow's milk, and meat were obtained from Regulatory Guide 1.109 Table E-1.
- Stable element transfer coefficients for goat's milk were obtained from Regulatory Guide 1.109 Table E-2.
- \* Animal consumption rates were obtained from Regulatory Guide 1.109 Table E-3.
- Usage or consumption rates for adult, teen, child, and infant age groups were obtained from Regulatory Guide 1.109 Table E-5. These values are for the maximum exposed individual.
- External dose factors for standing on contaminated ground were obtained from Regulatory Guide 1.109 Table E-6.
- Inhalation and ingestion dose factors for adult, teen, child, and infant age groups were obtained from Regulatory Guide 1.109 Tables E-7 through E-14.
- Other factors used were obtained from Regulatory Guide 1.109 Table E-15 for various parameters.
- Bioaccumulation factors for freshwater and saltwater vertebrates and invertebrates are listed on the following page.

# SPECIFIC FACTORS USED TO DETERMINE A; and R; VALUES FOR THE OFFSITE DOSE CALCULATION MANUAL

BIGACCUMULATION FACTORS FOR VARIOUS ELEMENTS
IN AN AGUATIC ENVIRONMENT

| lement | Fresh-water<br>Fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fresh-water<br>Inverterbrates          | Salt-water<br>Fish | Salt-water<br>Inverterbrates |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|------------------------------|
|        | The second secon | ************************************** |                    |                              |
| Н      | 9.00e-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00e-1                                | 9.00e-1            | 9.30e-1                      |
| C      | 4.60e+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.10e+3                                | 1.80e+3            | 1.40e+3                      |
| Na     | 1.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00e+2                                | 6.70e-2            | 1.90e-1                      |
| P      | 1.00e+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00**4                                | 2.90e+4            | 3.00e+4                      |
| Cr     | 2.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00e+3                                | 4.00e+2            | 2.00e+3                      |
| Mn     | 4.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00e+4                                | 5.50e+2            | 4.00e+2                      |
| Fe     | 1.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.20e+3                                | 3.00e+3            | 2.00e+4                      |
| Co     | 5.00e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00e+2                                | 1.00e+2            | 1.00e+3                      |
| Hi     | 1.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+2                                | 1.00e+2            | 2.50e+2                      |
| Cu     | 5.00e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00e+2                                | 6.70e+2            | 1.70e+3                      |
| Zn     | 2.00e+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+4                                | 2.00e+3            | 5.00e+4                      |
| Br     | 4.20e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.30e+2                                | 1.50e-2            | 3.10e+0                      |
| Rh     | 2.00e+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 8.30e+0            | 1.70e+1                      |
| Sr     | 3.00e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+2                                | 2.00e+0            | 2.00e+1                      |
| Y      | 2.50e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 2.50e+1            | 1.00e+3                      |
| Zr     | 3.30e+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.70e+0                                | 2.00e+2            | 8.00507                      |
| Mb     | 3.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+2                                | 3.00e+2            | 1.00e+2                      |
| Мо     | 1.00e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+1                                | 1.00e+1            | 1.00e+1                      |
| Tc     | 1.50e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00e+0                                | 1.00e+1            | 5.00e+1                      |
| Ru     | 1.00e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.00e+2                                | 3.00e+0            | 1.00e+3                      |
| Ag     | 2.00e+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.00e+2                                | 3.00e+3            | 3.00e+3                      |
| Te     | 4.00e+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.10e+3                                | 1.00e+1            | 1.00e+2                      |
| 1      | 1.50e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00e+0                                | 1.00e+1            | 5.00e+1                      |
| Cs     | 2.00e+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 4.00e+1            | 2.50e+1                      |
| Ba     | 4.00e+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00e+2                                | 1.00e+1            | 1.00e+2                      |
| La     | 2.50e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 2.50e+1            | 1.00e+3                      |
| Ce     | 1.00e+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 1.00e+1            | 6.00e+2                      |
| Pr     | 2.50e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 2.50e+1            | 1.00e+3                      |
| Nd     | 2.50e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+3                                | 2.50e+1            | 1.00e+3                      |
| W      | 1.20e+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e+1                                | 3.00e+1            | 3.00e+1                      |
| Np     | 1.00e+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00e+2                                | 1.00e+1            | 1.00e+1                      |

Data obtained from Regulatory Guide 1.109 Table A-1 for all elements except Silver(Ag) which is from "Models and Parameters for Environmental Radiological Assessments" (DOE/TIC-11468) and Miobium(Nb) which is from the International Atomic Energy Agency(IAEA) Safety Sories No. 57, Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Exposures of Critical Groups.