NUREG/CR-5529 EGG-2594

An Assessment of BWR Mark III Containment Challenges, Failure Modes, and Potential Improvements in Performance

Prepared by J. A. Schroeder, D. J. Pafford, D. L. Kelly, K. R. Jones, R. J. Dallman

Idaho National Engineering Laboratory EG&G Idaho, Inc.

Prepared for U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DO 20055
- 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box \$7082, Washington, DC 20015-7082
- 5. The National Technical Information Service, Shringfield, VA 22161

Although the listing that follows represents the majority of documents olted in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notice? Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant conserves documents and correspondence.

The following documents in the NUREQ series are availaded another from the GPO Sales Program: formal NRC staff and pointrator reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuences.

Documents available from the National Technical Information Service Include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open intersture items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference probeedings are available for purchase from the organization sponsoring the publication ofted.

Single copies of NRC draw reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-5529 EGG-2594 RX, XA, 1S

An Assessment of BWR Mark III Containment Challenges, Failure Modes, and Potential Improvements in Performance

Manuscript Completed: December 1990 Date Published: January 1991

Prepared by J. A. Schroeder, D. J. Pafford, D. L. Kelly, K. R. Jones, F. J. Dallman

Idaho National Engineering Laboratory Managed by the U.S. Department of Energy

EG&G Idaho, Inc. Idaho Falls, ID 83415

Prepared for Division of Safety Issue Resolution Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FINS A6885 Under DOE Contract No. DE-AC07-76ID01570

ABSTRACT

This report describes risk-significant challenges posed to Mark III containment systems by severe accidents as identified for Grand Gulf. Design similarities and differences between the Mark III plants that are important to containment performance are summarized. The accident sequences responsible for the challenges and the postulated containment failure modes associated with each challenge are identified and described. Improvements are discussed that have the potential either to prevent or delay containment failure, or to mitigate the offsite consequences of a fission product release. For each of these potential improvements, a qualitative analysis is provided. A limited quantitative risk analysis is provided for selected potential improvements.

FIN No. A6885---BWR Mark II and Mark III Venting/Enhancements

CONTENTS

AB	STRA	СТ	***************************************	iii
FO	REWC	RD	******	xi
AC	RONY	'MS	*****	xiii
EX	ECUT	IVE SUN	1MARY	1
1.	INT	RODUCI	TION	7
2.	MAR	RK III PL	ANT FEATURES	8
	2.1	Reacto	r Design	8
	2.2	Contai	nment Design	14
3.	DON	INANT	CORE DAMAGE SEQUENCES	21
	3.1	Plant D	Damage State Groupings	21
4.	CON	TAIN!/I	ENT CHALLENGES AND FAILURE MODES	24
	4.1	Inadeq	uate Containment Heat Removal	24
		4.1.1 4.1.2 4.1.3	Definition of Challenge Potential Failure Modes Potential for Mitigation	24 26 26
	4.2	Hydrog	gen-Related Challenges	26
		4.2.1 4.2.2 4.2.3	Definition of Challenge Potential Failure Modes Potential for Mitigation	26 29 30
	4.3	Rapid	Steam Pressure, Missiles, and Direct Containment Heating	32
		4.3.1 4.3.2 4.3.3	Definition of Challenge Potential Failure Modes Potential for Mitigation	33 35 35
	4.4	Core(Concrete Interaction	36
		4.4.1 4.4.2 4.4.3	Definition of Challenge Potential Failure Modes Potential for Mitigation	36 36 37
5.	POT	ENTIAL	IMPROVEMENTS	38
	5.1	Enhand	ced Reactor Depressurization Capability	38

	5.2	Backup	Water Supply System	43
	5.3	Hydrog	en Control by Improved Ignition Systems	44
	5.4	Modific	cations to Ensure a Dry Cavity at Vessel Breach	45
	5.5	Cavity	Flooding	46
	5.6	Contain	ment Venting	46
6.	QUA	NTITAT	IVE ANALYSIS METHODOLOGY	48
7.	BAS	ECASE	BENCHMARK ANALYSIS	51
	7.1	Results	of Accident Progression Analysis	51
	7.2	Results	of Risk Analysis	51
8.	QUA HYD	NTITATI ROGEN	IVE RISK ANALYSIS OF STAND-ALONE IMPROVED IGNITION SYSTEM	65
	8.1	Effects	of Improved HIS On Containment Response	65
9.	QUA DAM	NTITATI IAGE DE	IVE RISK ANALYSIS OF STAND-ALONE POST-CORE	72
	9.1	Effects	of Post-Core Damage Depressurization on Containment Response	72
10.	QUA VAC	NTITATI UUM BR	IVE RISK ANALYSIS OF STAND-ALONE ENHANCED EAKER OPERABILITY (no weir wall overflow)	76
	10.1	Effects	of No Weir Wall Overflow on Containment Response	76
11.	QUA VEN	NTITATI TING .	IVE RISK ANALYSIS OF STAND-ALONE CONTAINMENT	79
	11.1	Effects	of Venting on Containment Response	79
	11.2	Risk Re	sults	79
12.	QUA	NTITAT	IVE RISK ANALYSIS OF ST/	82
	12.1	Effects	on Containment Response	82
13.	QUA	NTITAT	IVE RISK ANALYSIS OF COMBINED IMPROVEMENTS	85
	13.1	Combin	ned Improvements with No Weir Wall Overflow	85
		$13.1.1 \\ 13.1.2$	Effects on Containment Response	85 87
	13.2	Combir	ned Improvement Sensitivity Permitting V/eir Wall Overflow	89

		$13.2.1 \\ 13.2.1$	Effects on Containment Response	89 91
	13.3	Combir Steam I	ed Sensitivity with No Weir Wall Overflow and No Ex-Vessel Explosions	93
		$\begin{array}{c}13.3.1\\13.3.2\end{array}$	Effects on Containment Response	93 93
14.	SUM	MARY	OF TECHNICAL FINDINGS FROM QUANTITATIVE ANALYSIS	96
	14.1	1mprov	ed HIS	96
	14.2	Post-C	ore Damage Reactor Vessel Depressurization	96
	14.3	Enhane	ed Vacuum Breaker Operability (No Weir Wall Overflow)	97
	14.4	Contain	ment Venting	97
	14.5	Upper (Containment Pool Dump	97
	14.6	Improv	ement Combinations	98
	14.7	Summa	ry	99
15.	REFI	ERENCE	S	101
APF	ENDI	X A—DI	TAILS OF QUANTITATIVE ANALYSIS METHODOLOGY	A-1
APF	ENDI	X BCC	MPUTER FILES LISTINGS	B-1
APF	ENDI	x c—sc	URCE CODE LISTINGS	C-1
APF	PENDI	X D—AI ROVEMI	PET MODIFICATIONS USED IN MODELING POTENTIAL	D-1

FIGURES

2-1.	Clinton containment layout	15
2-2.	Grand Gulf containment layout	16
2-3.	Perry containment layout	17
2-4.	River Bend containment layout	18
6-1.	Flowchart of accident analysis process	49

TABLES

ES	1.	Qualitative assessment of benefits and drawbacks of potential Mark III	
		containment improvements	2

ES-2.	Grand Gulf combined improvements risk comparison	5
2-1.	United States nuclear power plants with Mark III containments	8
2-2.	Comparison of BWR Mark III reactor design characteristics	9
2-3.	Comparison of BWR Mark III primary containment design characteristics	10
3-1.	Grand Gulf dominant accident sequence contributions to core damage frequency	21
3-2.	Grand Gulf plant damage states	22
5-1.	Qualitative assessment of benefits and drawbacks of potential Mark III containment improvements	39
5-2.	Calculated timing of significant events for two ADS actuation strategies for the short-term station blackout accident sequence at Grand Gulf	44
7-1.	Results of the accident progression analysis for PDS 1	52
7-2.	Results of the accident progression analysis for PDS 2	53
7-3.	Results of the accident progression analysis for PDS 3	54
7-4.	Results of the accident progression analysis for PDS 4	55
7-5.	Results of the accident progression analysis for PDS 5	56
76.	Results of the accident progression analysis for PDS 6	57
7-7.	Results of the accident progression analysis for PDS 7	58
7-8.	Results of the accident progression analysis for PDS 8	59
7-9.	Results of the accident progression analysis for PDS 9	60
7-10.	Results of the accident progression analysis for PDS 10	61
7-11.	Results of the accident progression analysis for PDS 11	62
7-12.	Results of the accident progression analysis for PDS 12	63
7-13.	Grand Gulf base case risk comparison	64
8-1.	Conditional probability of accident progression bins at Grand Gulfimproved HIS case (initial run)	66
8-2.	Effect of diffusion burn efficiency on base case containment failure probabilitiesPDS 1	69
8-3.	Effect of diffusion burn efficiency on containment failure probabilities—improved HIS case	70

8-4.	Weighted average accident progression bin probabilitiesimproved HIS	71
9-1.	Conditional probability of accident progression bins at Grand Gulf post-core damage reactor depressurized case	73
9-2.	Weighted average accident progression bin probabilitiesenhanced depressurization	75
10-1.	Conditional probability of accident progression bins at Grand Gulf	77
10-2.	Weighted average accident progression bin probabilities-no weir wall overflow	78
11-1.	Conditional probability of accident progression bins at Grand Gulf-vented case	80
11-2.	Weighted average accident progression bin probabilitiescontainment venting	81
11-3.	Risk results for containment venting (stand-alone sensitivity)	81
12-1.	Conditional probability of accident progression bins at Grand Gulf	83
12-2.	Weighted average accident progression bin probabilitiespool dump case	84
13-1.	Conditional probability of accident progression bins at Grand Gulfcombined sensitivity with no weir wall overflow	86
13-2.	Weighted average accident progression bin probabilities—contbined improvements with no weir wall overflow	88
13-3.	Grand Gulf combined improvements with no weir wall over "ow risk comparison	88
13-4,	Conditional probability of accident progression bins at Grand Gulf	90
13-5.	Weighted average accident progression bin probabilities—combined improvements with and without permitting weir wall overflow	91
13-6.	Weighted average accident progression bin probabilities—combined improvements with weir wall overflow	92
13-7.	Grand Gulf combined improvement permitting weir wall overflow risk comparison	92
138.	Conditional probability of accident progression bins at Grand Gulf—combined sensitivity with no weir wall c/erflow and no ex-vessel steam explosion	94
13-9,	Weighted average accident progression bin probabilitiesno wier wall overflow and no exvessel steam explosion	95
13-10,	Grand Gulf dry combined improvement with no weir wall overflow and no ex-vessel steam explosion risk comparison	95
14-1.	Grand Gulf combined improvement risk comparison	99

FOREWORD

SECY-88-147, dated May 25, 1988, presented the NRC staff's program plan to evaluate generic severe accident containment vulnerabilities via the Containment Performance Improvement (CPI) program. This effort was predicated on the assumption that there are generic severe accident challenges for each light water reactor (LWR) containment type that should be assessed to determine whether additional regulatory guidance or requirements concerning needed containment features are warranted, and to confirm the adequacy of the existing Commission policy. The bases for the presumption that such assessments were needed included the uncertainty in the ability of LWR containments to successfully survive sectors severe accident challenges, as indicated by Draft NUREG-1150. All LWR containment types have been assessed beginning with the boiling water reactors (BWRs) with Mark I containments. This effort was closely integrated with the Individual Plant Examination (IPE) program and is intended to focus on resolution of hardware and procedural issues related to generic containment challenges.

This report documents the results of NRC-sponsored research related to severe accident challenges and potential enhancements that could improve containment performance. The purpose of this report is to provide boiling water reactor (BWR) Mark III containment owners with information they may find useful in their IPE. No requirements are contained in this report; it is provided for information only. Generic letter 88–20, Supplement 3, dated July 6, 1990 provides specific guidance to the industry on the use of this and similar reports.

ACRONYMS

ас	Alternating current	HCTL	Heat capacity temperature limit
ADS	Automatic depressurization system	HEP	Human error probability
ARI	Alternate rod insertion	HIS	Hydrogen ignition system
ATWS	Anticipated transient without scram	HPCS	High-pressure core spray
BWR	Boiling water reactor	HVAC	Heating, ventilation, and air conditioning
BWROG	BWR Owners Group	INEL	Idaho National Engineering
CCI	Core-concrete interaction		Laboratory
CDF	Core damage frequency	IPE	Individual Plant Examination
CLWG	Containment Loads Working Group	KWU	Kraftwerk Union
CPI	Containment performance	LFL	Lower flammability limit
cri	improvement	LOCA	Loss-of-coolant accident
CRD	Control rod drive	LOSP	Loss of offsite power
CS	Core spray	LPCI	Low-pressure coolant injection
CST	Condensate storage tank	LPCS	Low-pressure core spray
DBA	Design basis accident	LTSB	Long-term station blackout
dc	Direct current	MAAP	Modular Accident Analysis Program
DCH	Direct containment heating	MACCS	MELCOR Accident Consequence Code System
DF	Decontamination factor	MSCWL	Minimum steam cooling water level
ECCS	Emergency core cooling systems	MSIV	Main steam solation valve
EDG	Emergency diesel generator	MVSS	Multi-Venturi Scrubber System
EOP	Emergency operating procedures	NPSH	Net positive suction head
EPG	Emergency Procedure Guidelines	NRC	Nuclear Regulatory Commission
ESF	Engineered safety feature	ORNL	Oak Ridge National Laboratory
FCI	Fuel-coolant interaction	PCPL	Primary containment pressure limit
FSAR	Final Safety Analysis Report	PCS	Power conversion system

٦

PDS	Plant damage state	SGTS	Standby gas treatment system
PRA	Probabilistic risk assessment	SLCS	Standby liquid control system
RCIC	Reactor core isolation cooling	SNL	Sandia National Laboratory
RHR	Residual heat removal	SRV	Safety/relief valve
RPS	Reactor protection system		
RPT	Recirculation pump trip	STCP	Source Term Code Package
RPV	Reactor pressure vessel	STSB	Short-term station blackout
SARRP	Severe Accident Risk Reduction Program	TAF	Top of active fuel
SBO	Station blackout	TW	Loss of long-term containment heat removal

AN ASSESSMENT OF BWR MARK III CONTAINMENT CHALLENGES, FAILURE MODES, AND POTENTIAL IMPROVEMENTS IN PERFORMANCE

EXECUTIVE SUMMARY

This report concerns boiling water reactor (BWR) plants with a Mark III containment design, of thich there are four in the U.S.: Grand Gulf, Clinton, Riverbend, and Perry. This report focuses on the identification of potential challenges to containment integrity that can arise from a severe accident and the potential improvements that could reduce the probability of containment failure or mitigate the offsite consequences in the event that a severe accident should occur. The impact of these improvements upon core damage frequency, containment failure probability, or risk is examined both qualitatively and quantitatively. The quantitative portion of the analysis used models and data specific to the Grand Gulf plant, and may not be generic to the romaining Mark III plants. The estimated costs for selected improvements were taken from previously published information and are not meant to be interpreted as final estimates.

The most recent NUREG-1150 analysis of Grand Gulf (dated June 1989) has identified the dominant containment failure challenges to be the result of station blackout (SBO) accident sequences. The most significant challenges arising from these sequences are due to potential hydrogen deflagrations and detonations, fuel-coolant interactions (FCI), and containment overpressurization by noncondensible gases from coreconcrete interactions (CCI).

Potential improvements to reduce the risk from station blackout include enhanced reactor pressure vessel (RPV) depressurization capability, the installation of a backup power supply for the existing hydrogen ignition systems or the installation of powerless ignitors, improvements to the existing fire water system, enhanced operator control over the upper containment pool dump valves, a means of preventing weir wall overflow prior to vessel breach, and a method of venting the containment through a hardened pipe that is independent of normal and emergency ac power sources. The backup power supply for the ignitors could also be sized to provide power for the upper containment pool dump valves. The backup power supply would provide an "uninterruptible" hydrogen ignition system that would burn the hydrogen in a controlled manner before it could reach concentrations capable of threatening containment integrity. Providing enhanced operator control over the upper containment pool dump valves would permit dumping of the water at potentially advantageous times when the normal pool dump initiation signals were not available. and would also provide the operators with the ability to prohibit dumping at other times. Venting the containment at the primary containment pressure limit (PCPL) via "soft" HVAC ductwork can result in a failure of the ductwork and thus raises concerns about the habitability of the auxiliary building and the survivability of the equipment in the affected area. A hardened vent would climinate these potential concerns. An external filter could reduce the offsite consequences of venting that occur in the Mark III as a result of drywell-to-wetwell leakage and other suppression pool bypass paths.

Table ES-1 summarizes the potential qualitative benefits, as well as any identified negative aspects, of each of the proposed improvements.

A quantitative accident progression analysis was performed for selected potential improvements to estimate the impact of the improvement on containment response. The impact on offsite consequences was evaluated for selected

Improvements				
Potentic! Improvement	Potential Benefits	Potential Drawbacks		
Enhanced reactor depressurization system (\$0.5M-1.4M)	Reduces frequency of some core damage sequences Reduces amount of hydrogen generated in-vessel	Increases likelihood of ex–vessel FCI		
	Reduces likelihood of direct containment heating (DCH)			
	Increases the ability to add water to the RPV			
Post-core damage reactor depressurization system (\$0.5M-1.4M)	Reduces likelihood of DCH	Increases likelihood of ex-vessel FCI		
	Increases the ability to add water to the RPV	Does not change frequency of core damag		
		Increases amount of hydrogen generated in-vessel		
Backup water supply system (\$0.81M2.4M)	Reduces frequency of some core damage sequences	New hardware may be expensive		
	Increases likelihood of cavity flooding (see below)			
	Relatively low cost if fire protection system is used			
Hydrogen control by improved ignition system—backup power to the ignitors (\$300K)	Reduces containment failures due to hydrogen deflagrations and detonations [short-term station blackout (ST-SBO) sequences]	Increases likelihood of containment failure for [long-term station blackout (LT-SBO) sequences]		
Prevention of weir wall overflow	Reduces likelihood of ex-vessel FCI	May increase likelihood of suppression pool bypass		
		Increases likelihood of dry CCI		

Table ES-1. Qualitative assessment of benefits and drawbacks of potential Mark III containment improvements

Potential Improvement	Potential Benefits	Potential Drawbacks	
Cavity flooding via upper pool dump	Reduces likelihood of dry CCI	Increases likelihood of FCI	
	Provides scrubbing of fission products should suppression pool bypass occur	Increases likelihood of hydrogen burn if dump occurs after core damage	
Containment venting			
Hard-pipe vent system with dedicated power source (\$0.69M-6.1M)	Prevents late overpressure failures for transients with scram	High likelihood of suppression pool bypass may lead to increase in risk	
	Preemptive venting reduces containment base	Moderately high cost	
	pressure prior to core damage	May not prevent thermal failure or FCI	
	Reduces probability of ex-vessel steam explosion by reducing weir wall overflow	Can lead to inadvertent release	
Filtered containment vent	See above	See above	
source (\$5M-50M)	Ensures scrubbing of releases	High cost	

Table ES-1. (continued)

improvements. Full use was made of the tools developed for the June 1989 Draft NUREG-1150 analysis of Grand Gulf. Thus, no attempt was made to develop independent or simplified containment event trees for analyzing containment response; the accident progression analysis in this report contains the same level of detail as the Draft NUREG-1150 analysis of Grand Gulf, with the exception that no uncertainty analysis way performed for this report. No analysis was made of front-end risk reductions, that is, improvements that could reduce core damage frequency.

In terms of reducing the probability of containment failure, the only *individual* improvements

found to be of benefit were backup power to the hydrogen ignition system and early containment venting. Enhanced depressurization (following core damage) increased the probability of an invessel steam explosion as the probability of a steam explosion at low pressure (100-200 psi) is greater than at high pressure (1000 psi). This offset the increased probability of recovering injection in the dominant plant damage state. Preventing water from overflowing the weir wall was found to increase dry CCI that significantly increased the late threat to containment. Enhancements to ensure the availability of upper pool dump during blackout sequences were found to increase the probability of early containment failure with suppression pool bypass, because pool dump results in a higher probability of a flooded or wet cavity at the time of vessel breach. This increases the probability of a large ex-vessel steam explosion at the time of vessel breach, which increases the impulse loads on the drywell. An exvessel steam explosion also produces large quantities of hydrogen because debris fragmentation markedly increases the rate of ex-vessel oxidation. The additional hydrogen can ignite, further increasing the probability of containment failure at the time of vessel breach.

Detailed offsite consequence calculations were performed for early containment venting. A significant increase in all consequence measures was seen in comparison with the base case.

Three improvement combinations were evaluated in detail, both in terms of containment response and offsite consequences. The first combination evaluated was an improved hydrogen ignition system with 100% diffusion burn efficiency, enhanced reactor depressurization following core damage prevention of water from flowing over the weir wall, and an increased probability that the operators get the fire water system aligned so that low-pressure injection into the reactor vessel occurs in fast station blackout sequences with the fire water system available, no power recovery, and failure of all other emergency injection systems. The second combination was identical to the first except that water was permitted to flow over the weir wall. The third combination was like the first, except that ex-vessel steam explosions were eliminated.

The early containment venting and upper pool dump modifications were not included in any of these combinations because of the detrimental effects that were observed for these modifications in the individual sensitivity analyse. However, the analysis of these improvements did not reflect the findings of deterministic analyses performed since the publication of Draft 1150. These other analyses indicate that containment venting can be very important in prevention of ex-vessel steam explosions. Both combined improvement cases with no weir wall overflow reduced the early tareat to containment integrity (early threats occur prior to or at the time of reactor vessel failure). However, these combinations of improvements significantly increased the late threat (late threat occur a number of hours after vessel failure) to the containment, primarily as a result of the CCI that occurs in the dry cavity. However, to cent MELCOR calculations for the depressurized shortterm SBO sequence performed at Oak Ridge National Laboratory indicate that the containment threat from CCI may be of less significance than identified in Draft NUREG-1150.

Calculations were performed to determine the effect of the dry cavity combined improvements on offsite consequences. Table ES-2 presents these results along with those of the base case. The table shows that dry cavity combined improvements result in a small reduction in the offsite doses. In general, the conditional probabilities of the releases were reduced, but the severity of the releases was increased from the base case; the dry cavity modifications increase the severity of a given release, because there is little or no scrubbing of the release. As forementioned, the late threat to the containment in a depressurized SBO sequence could be less severe than was modeled in Draft NUREG-1150. Therefore, the risk reduction for a dry cavity may be larger than the results from this analysis would suggest. However, the benefits of scrubbing through an overlying pool of water could be lost if no water injection system to the reactor vessel is ever recovered.

In the case of the combined improvements where water is permitted to overflow the weir wall (i.e., the cavity is wet in some cases and dry in others, rather than always dry), there is a reduction in the probability of late containment failure and an increase in the probability of containment survival as compared to the case with no weir wall overflow. Although the probability of early containment failure is virtually the same in both cases, there is a decrease in the probability of late and no suppression pool bypass, and an increase in the probability of early suppression pool

	Mean Early Fatalities (per ry ^a)	Mean Latent Fatalities (per ry)	Mean 50–Mile Dose (man–rem/ry)	Mean 1000–Mile Dose (man–rem/ry)	Mean Offsite Costs (\$/ry)
Base case	6.2E-09	1.7E-03	7.8E-01	10.4	2.2E+03
Combined improvement with no weir wall overflow	6.8E09	1.7E03	7.6E01	10.3	2.7E+03
Combined improvement with weir wall overflow permitted	2.7E09	1.2E-03	6.2E-01	7.66	1.5E+03
Combined improvement with no wear wall overflow, no EVSE ^b	5.3E09	1.6E03	7.4E01	10.0	2.5E+03
a. Reactor year.					

Table ES-2. Grand Gulf combined improvement risk comparison

b. Ex-vessel steam explosion.

bypass. When the combined improvements with weir wall overflow are compared to the base case, the net effects are decreases in every early containment failure mode and increases in the conditional probabilities of late containment failure, venting, containment survival, and in-vessel recovery. However, as in the case of the containment venting analysis, this analysis did not reflect the results of deterministic analyses performed since the publication of Draft 1150. Important factors missing from this analysis are deterministic analysis of potential steam explosions effects, suppression pool bypass, or lack of pool bypass.

Table ES-2 presents the results for the base case and the combined improvement cases. As indicated in the table, the risk measures for the combined case with weir wall overflow are all smaller than those for any other case. Compared with the base case values, the mean early fatalities decreased 56%, the mean latent fatalities decreased 29%, the mean 50-mile and 1000-mile doses decreased 21% and 23%, respectively, and the mean offsite costs decreased 30%. However, for Grand Gulf, the base case is already very small and includes a wide uncertainty range. Other plants may observe more significant changes in risk.

These results indicate that the modification to prevent weir wall overflow may reduce the overall benefits of the other combined improvements, because the reduced probability of flooding in the cavity increases the probability that dry CCI will occur. A comparison of the two combined improvements indicates that the effects on risk of the increased probability of dry CCI outweigh those brought about by the decrease in the probability of ex-vessel steam explosions.

These results should not be used without careful consideration to the underlying assumptions and implications in the suite of NUREG-1150 analysis codes. For example, when corium enters the in-pedestal area and no water is initially present. there is an 80% chance that no CCI will occur if vessel breach occurs at high pressure and an injection source is present. This probability drops to 16% if vessel breach occurs at low pressure. These probabilities imply that vessel breach at low pressure is not as likely to result in a coolable debris bed geometry as a high-pressure breach. Another implication is that a low-pressure injection source is not likely to prevent CCl (although it will cause scrubbing of the resulting release); CCI will initiate under water and become as vigorous as if no water had been present, only delayed. Other possible implications are that the water overlying the corium will never touch the corium and thereby will not provide any significant cooling, or that an insulating crust will develop and separate the corium from the water. The final result, that there is only a 16% chance that injection will prevent CCI after a low-pressure vessel breach, results from consideration of research completed at the time the study was performed.

This suite of codes does not always permit easy transfer of new results from other analyses, experiments, or experiences into the current research. As a minimum, these results should be compared against experiments and analyses completed after the June 1989 NUREG-1150 effort. For example, the recent Oak Ridge MELCOR calculations indicate that in at least one depressurized ST-SBO sequence, the late threat to containment from CCI may be less severe than was modeled in Draft NUREG-1150.

Each of the potential improvements can have an impact on the others and thus the potential benefits of the combined improvements can have greater benefit. The combinations of improvements that have been discussed in this report are not necessarily the only or best combinations for Grand Gulf or any other Mark III facility, but were those that seemed to have the greatest potential for reducing containment failure probability or risk. The offsite risk and core damage frequency at Grand Gulf are low and are made up of many small contributors. Therefore, the potential benefits from these improvements are small.

This analysis should not be viewed as a final evaluation of the benefits (reductions in containment challenges and offsite consequences) for any BWR/6 with a Mark III containment. However, it should be considered when preparing or conducting an Individual Plant Examination (IPE).

1. INTRODUCTION

This report discusses dominarat severe accident challenges, as identified by current severe accident research, which can threaten the integrity of boiling water reactors (BWRs) with Mark III containments. Potential improvements are identified and evaluated as to their ability to arrest or delay core damage, prevent or delay containment failure, or mitigate the offsite consequences of a fission product release.

The containment challenges identified in this report involve many phenomenological issues that are still the subject of considerable uncertainty. The material in this report relies primarily on the findings of NRC-sponsored research. Controversial and highly uncertain issues are described to provide a reference for further discussion.

The BWR Mark III plants and their important safety design features, along with the differences and similarities among the various plants, are discussed in Section 2. Section 3 discusses the important accident sequences that could challenge containment integrity. Section 4 describes the containment challenges and failure modes resulting from the dominant accident sequences. Section 5 describes improvements that have the potential to prevent core damage or mitigate containment failure and offsite consequences. A qualitative assessment is provided to identify the benefits and drawbacks associated with each potential improvement. Sections 6-13 describe the quantitative assessment performed to estimate the benefit for each potential improvement.

2. MARK III PLANT FEATURES

A general summary of design information for the BWRs with Mark III containments is presented in this section. As indicated in Table 2–1, there are presently four nuclear power plants with Mark III containments, located at tour different sites. Different architectural/engineering and construction firms were used to build the four plants. Design similarities and differences are presented in Tables 2–2 and 2–3.

2.1 Reactor Design

BWR plants with Mark III containments feature the General Electric Company (GE) BWR/6 reactor product line. Table 2–2 summarizes some of the important reactor design and emergency core cooling system (ECCS) information.

The ECCS for the BWR/6 reactors includes a high-pressure core spray (HPCS) system, a lowpressure core spray (LPCS) system, the lowpressure coolant injection (LPCI) function of the residual heat removal (RHR) system, and the automatic depressurization system (ADS). These systems are segregated into three divisions to provide separation of redundant functions. Division I comprises one train of LPCI, LPCS, Division 1 of ADS, an independent standby ac-power source, and an independent dc battery to provide emergency dc power to vital loads. Division II is composed of the remaining two LPCI trains of RHR, Division II of ADS, and independent ac and dc power sources analogous to those in Division I. Division III consists of HPCS, a dedicated diesel generator as an independent standby ac power source, and an independent dc power source.

	the second data was a first one over the lower was a data and and an an excited by the second data in the lower	CALL STREET, ST	many of the summaries o
Jtility/Plant Name	Architectural Engineer	Construction Firm	Date of Commercial Operation
Cleveland Electric Illuminating	Gilbert	Utility	11/87
Perry 1			
Gulf States Utilities	Stone & Webster	Stone & Webster	6/86
Riverbend 1			
Illinois Power	Sargent & Lundy	Baldwin	11/87
Chin.on 1			
System Energy Resources	Bechtel	Bechtel	7/85
Grand Gulf 1			

Table 2-1. United States nuclear power plants with Mark III containments^a

a. "World List of Nuclear Power Plants," Nuclear News, February 1989.

	Plant				
Parameter	Clinton	Grand Gulf	Perry	River Bend	
Reactor Design					
Model	BWR/6	BWR/6	BWR/6	BWR/6	
Vessel ID (in.)	218	251	238	218	
Number of fuel bundles	624	800	748	624	
Rated power (MWth)	2894	3833	3579	2894	
Power density (kW/L)	52.4	54.1	54.1	52.4	
Turbine bypass (%)	35	35	35	10	
ECCS					
HPCS					
Flow (gpm) at 1147 psid at 200 psid Minimum	1400 5010 5	1650 7115 4	1550 6000 5	1400 5010 5	
NPSH (ft)					
Design	ac motor	ac motor	ac motor	ac motor	
Injection location	Above core sparger	Above core sparger	Above core sparger	Above core sparger	
LPCS					
Flow (gpm)	5010	7115	6000	5010 128 psid	
Design	ac motor	ac motor	ac motor	ac motor	
Injection location	Above core sparger	Above core sparger	Above core sparger	Above core sparger	

Table 2-2. Comparison of BWR Mark III reactor design characteristics

1

ł

	Plant			
Parameter	Clinton	Grand Gulf	Perry	River Bend
LPCI				
Flow (gpm)	5050*3 24 psid	7450*3 24 psid	6500*3 20 psid	5050*3 24 psid
Design	ac motor	ac motor	ac motor	ac motor
Injection location	core shroud	core shroud	core shroud	
ADSdesignated SRVs	7	8	8	7
RCIC				
Flow (gpm)	600	800	700	600
Design	Turbine	Turbine	Turbine	Turbine
Injection location	RPV head	Feedwater	RPV head	RPV head

Table 2-3. Comparison of BWR Mark III primary containment design characteristics

		Pia	nt	
Parameter	Clinton	Grand Gulf	Perry	River Bend
Containment Design				
Total free volume (Mft ³)	1.80	1.67	1.42	1.43
Pool volume (Mfft ³)	0.136	0.14	0.12	0.13
Containment volume/thermal power rating (ft ³ /kW)	0.62	0.44	0.34	0.41

The second secon	Table	2-3.	(cont	inued)
--	-------	------	-------	--------

	Plant				
Parameter	Clinton	Grand Gulf	Perry	River Bend	
Containment Design					
Containment pool volume/ thermal power rating (ft ³ /kW)	0.047	0.037	0.034	0.045	
Drywell/wetwell vents					
Number	102	135	120	129	
Design pressure (psig)					
Internal External	15 3	15	15 0.8	15 0.6	
Drywell design pressure (psig)					
Internal External	30 17	30 21	30 21	25 20	
Maximum leakage (%vol/day)	0.65	0.35	0.20	0.26	
RHR HXs					
Removal rate (MBtu/hr)	37.8*2	50.0*2	46.9*2	37.8*2	
% of core thermal power	0.765	0.764	0.768	0.765	
Containment spray flow rate (gpm)	3800*2	5650*2	5250*2	N/A	
DBA peak response					
Drywell (psig)	18.9	22.0	22.1	19.2	
Containment (psig)	8.7	11.5	11.3	7.6	

Table 2-3. (continued)

	Plant				
Parameter	Clinton	Grand Gulf	Perry	River Bend	
ontainment Design					
Combustible gas control					
H ₂ mixing drywell to containment (scfm)	800*2	1000*2	500*2	2600*2	
Containment purge to SGTS (scfm)	300*2	65*2	50	2500	
H ₂ recombiner (scfm)	70*2	100*2	100*2	100*2	
H ₂ ignitors (no.)	115	90		104	
Secondary containment	1.71	3.64	0.393	0.357	
Volume (Mft ³)					
Annulus Auxiliary building Enclosure building Fuel building		3.04 0.60	0.393	0.357 1.15 	
Operating pressure (in wg)					
Annulus Auxiliary building Enclosure building Fuel building	0.25 	-0.40 -0.125 0.0	-3.0 0.0 —	0.0 -0.55	
In—leakage rate (%vol/day)	0.65		100	-	
Fission product control systems					
Capacity (ft ³ /min)	4000*2	12,500*2	700*2	12,500*2	

The ECCS systems associated with the BWR/6 plants are designed with sufficient net positive suction head (NPSH) to ensure pumping capability with the suppression pool water at saturated conditions. This feature becomes significant during accident sequences that challenge the heat capacity limits of the suppression pool. It is also important for sequences that involve containment venting or containment failure before vessel failure, conditions that could result in rapid containment depressurization with accompanying flashing of the suppression pool water.

The HPCS system delivers water to the reactor core through a peripheral ring spray sparger mounted inside the core shroud and above the core. The system is capable of supplying coolant over the entire range of reactor system operating pressures. The primary purpose of the system is to maintain reactor water inventory after small breaks that do not depressurize the reactor vessel. It also provides spray cooling heat transfer during sequences involving core uncovery. The HPCS system can draw a suction from either the condensate storage tank (CST) or the suppression pool. The transfer of suction from the CST to the suppression pool is fully automatic; it occurs on either the low CST or high suppression pool level. HPCS is automatically actuated on either lower reactor vessel water level (Level 2, which is well above the top of active fuel) or high drywell pressure (~2 psig).

Other high-pressure injection systems include the condensate/feedwater system, the reactor core isolation cooling (RCIC) system, and the control rod drive (CRD) hydraulic system. The RCIC and CRD systems are not part of the ECCS and have a lower makeup flow rate than the ECCS. However, in postulated high-pressure severe accidents, these systems may be important sources of makeup flow. The RCIC makeup flow rates are included in Table 2-2. The turbine-driven RCIC system delivers approximately 10% of the maximum HPCS flow rate. Although a survey of plant-specific CRD flow rates was not made, it is expected that the CRD injection rate during normal operations would be approximately 65 gpm. With optimum manual valve lineup, each CRD pump could probably deliver more than 100 gpm to the reactor vessel.

All of the Mark III plants include an automatic depressurization system (ADS) as part of the ECCS to depressurize the reactor vessel and allow low-pressure ECCS injection. Upon receipt of an ADS initiation signal, the ADS opens a subset of the safety/relief valves (SRVs). Vessel effluent is piped through the SRVs to spargers located near the bottom of the suppression pool. Discharging effluent into the bottom of the suppression pool maximizes the condensation of steam and the scrubbing of any nonnoble gas fission products in the effluent.

The SRVs are grouped into banks of valves that operate in unison to protect the vessel from overpressurization. Each SRV bank has a successively increasing pressure setpoint to provide graduated pressure relief with increasing reactor system pressure.

Two low-pressure injection systems, LPCS and LPCI, are provided as part of the ECCS. LPCS is an independent loop similar to the HPCS, except that LPCS is a low-pressure system, it does not have a dedicated independent power supply, and no suction path from the CST is available. LPCI is an operational mode of the residual heat removal (RHR) system and is a large capacity, low-pressure system.

RCIC is steam turbine driven and is capable of taking suction from either the CST or the suppression pool to supply high pressure makeup flow. Alternatively, a suction path from the RHR system can be established to support the steam-condensing mode of RHR. Unlike the ECCS, RCIC is only designed to operate with suction emperatures up to 140°F. Automatic actuation of RCIC occurs on a low reactor water level signal (Level 2) to provide makeup flow to the vessel. As with HPCS, suction transfer from the CST to the suppression pool occurs automatically.

The RCIC connection to RHR allows RCIC to pump condensate discharge from the RHR heat exchangers, produced during the RHR steamcondensing mode of operation, back to the vessel. The steam-condensing mode of RHR, in conjunction with the RCIC return, is designed to condense all of the steam generated 1.5 h following a scram from 100% power. Except at Grand Gulf, the discharge line of RCIC injects into the vessel head spray connection. The head spray injection produces a steam-quenching effect, which depressurizes the reactor vessel. At Grand Gulf, RCIC injects into a feedwater line. A comparison of RCIC systems is provided in Table 2–2.

Reactivity control is provided by cruciformshaped bottom entry control rods. The reactor protection system (RPS) monitors several system parameters and, if necessary, generates a reactor scram signal to rapidly insert the control rods into the core. Anticipated transient without scram (ATWS) protection is provided by the alternate rod insertion (ARI) and recirculation pump trip (RPT) functions. The ARI system provides a backup scram signal should the electrical portion of the RPS fail. The ATWS RPT function trips the field breakers to the recirculation pump motors, rapidly increasing the core void fraction, and thus reducing core thermal power to the natural circulation rod une limits. Redundant reactivity control is provided by the standby liquid control system (SLCS). The SLCS is manually initiated from the control room to pump a sodium pentaborate solution into the reactor if the reactor cannot be shut down, or be kept shut down with the control rods.

2.2 Containment Design

The BWR Mark III containment consists of two regions, the drywell and the weiwell (see Figure 2–1). The wetwell consists of an annular region around the drywell and is separated from the drywell by the drywell and weir walls. The drywell atmosphere is in contact with the suppression pool water surface in the annular region between the weir wall and the drywell wall. When the drywell airspace is pressurized, the suppression pool water is depressed in the drywell and gases from the drywell are forced through submerged holes in the drywell wall into the suppression pool. Because the holes in the drywell wall are below the normal water level of the pool, all effluent entering the wetwell passes through the water in the suppression pool, except for the normal suppression pool bypass leakage. The benefits of the suppression pool include (a) scrubbing of the non-noble gas fission products, (b) a source of water for the ECCS, (c) cooling of the noble gases, and (d) a large heat sink for steam condensation. For example, a 140,000 ft³ pool is capable of absorbing 100 MW-hr of energy with only a 40°F rise in temperature.

Table 2–3 summarizes the general containment design information for the four Mark III plant sites. The Mark III containment has a much larger free volume (1.8 x 10^6 ft³) than previous BWR designs (0.5 x 10^6 ft³ for Mark IIs and 0.2 x 10^6 ft³ for Marks Is). Because of the larger size of the Mark III containment, containment inerting was not included in its design, and systems are provided for hydrogen control during design basis accidents.

Figures 2-1 through 2-4 show the general containment layout at each of the Mark III units studied. Two basic containment construction types are employed. At Perry and River Bend the containment boundary is a free-standing steel shell that is contained within a concrete reactor building. The Clinton and Grand Gulf containments are both constructed from a steel-lined reinforced concrete shell. Grand Gulf, which was chosen as the Mark III NUREG-1150 study plant, has a concrete containment boundary consisting of the foundation mat, the cylindrical wall, and the reactor building dome. The flat circular foundation mat is 9 ft 6 in. thick and has an outside diameter of 134 ft. The foundation mat supports a right circular cylindrical wall 3 ft 6 in. thick. with an inner radius of 62 ft, and a height of 144 ft 9 in. from the top of the foundation mat to the springline. Located above the cylindrical wall is the hemispherical shell of the containment dome; 2 ft 6 in. thick with an inside radius of 62 ft. The inner surface of the concrete wall and dome is completely lined with welded steel plate to form a gas-tight barrier. The volume within the containment boundary consists of the drywell, the wetwells, and suppression pool. The drywell is connected to the wetwell by 28--in. diameter vents in the cylindrical drywell wall (made of reinforced concret

Figure 2-1. Clinton containment layout.

Also Available On Aperture Card

9102060148-01-

Figure 2-2. Grand Gulf containment layout.

1

1

SI APERTURE CARD

Also Available On Aperture Card

17

9102060148-02

٠

.

....

located below the surface of the suppression pool. A water seal is maintained over the vents by a 17-ft weir wall located inside of the drywell wall. Steam released within the drywell boundary is generally relieved through the annulus between the weir wall and drywell wall, out through the submerged vents, and into the wetwell water volume, where the remainder of the steam is condensed.

The SRVs discharge through quenchers located at the bottom of the suppression pool. Vacuum breakers located in the drywell on the SRV tailpipes prevent the tailpipes from drawing water up from the suppression pool as the steam in the lines condenses following SRV closure.

The Grand Gulf reactor vessel is supported by a 5.75-ft thick cylindrical pedestal. Exterior to the pedestal is a 9-ft thick concrete support mat that sits above the foundation mat and extends from the reactor support pedestal to the base of the drywell weir wall. The cavity within the pedestal is 21 ft 2 in. in diameter and 6 ft 3 in. deep from the basemat to the top of the reactor pressure vessel (RPV) pedestal mat. Molten core debris from a postulated failure of the RPV bottom head would likely be contained within the pedestal cavity. Should corium attack cause the pedestal to fail, a resulting vessel movement would likely initiate a suppression pool bypass because of seal failures of attached piping at the drywell and containment boundaries.

During normal plant operations at Grand Gulf, equipment and floor drains in the drywell drain to sumps located in the in-pedestal cavity. There are two 460-gal sumps, each of which is equipped with two 50-gpm ac-powered level control pumps. Each sump has a single 4-in. discharge line common to the two level control pumps. This discharge line is equipped with a pair of normally open, air-operated isolation valves in series. These valves will automatically close during certain conditions, namely, reactor vessel low water level---Level 2, high drywell pressure, loss of control air, or loss of power to the solenoid pilot valve, and can also be closed by remote manual operation from the control room. Fluid from the

two active sumps is normally discharged to two 5000--gal auxiliary building drain transfer tanks, and from there to equipment and floor drain collection tanks in the radwaste building. The drywell floor drain collection sump has four floor drain lines from the 100 ft 9 in. level of the drywell. The floor drains are each 4-in, lines that feed two 8-in. drain headers, one of which is reduced to 6 in, before discharging to the floor drain sump. During severe accidents, the sump discharge lines will isolate and the sump pumps may experience loss of power, allowing the sumps to overflow. The drain lines into the sump will provide a flow path for water accumulating on the drywell floor. Because the sumps are equipped with well-fitted, but not water-tight steel plate access covers, flooding of the pedestal will be possible before water levels on the drywell floor reach the pedestal access and CRD removal opening. The rate at which flooding of the pedestal cavity occurs is limited by the rate of leakage from the sump vent (approximately a 1/2-in. line) or from around the sump cover. There should also be a flow path from the pedestal cavity floor into the sump, but it is not shown in the Grand Gulf FSAR. As discussed later in this report, the rate at which the cavity can be filled through the floor drain lines is an important consideration in determining the potential for a steam explosion should a severe accident progress to the point of RPV failure.

The containment internal design pressure is 15 psig for all Mark IIIs. There is a significant margin between the design pressure and the maximum design basis accident (DBA) pressure for both the containment and drywell structures. The peak containment pressures calculated for design basis accidents occur during the long-term phase of a main steamline break when the peak suppression pool temperatures are reached. Several analyses have estimated the Mark III ultimate containment pressures to be significantly higher than the design pressure, with values ranging from 55 to 100 psig.¹ The higher ultimate strengths are associated with the free-standing steel designs of Perry and River Bend.

All of the Mark III plants, with the exception of River Bend, have a containment spray operating mode for their residual heat removal (RHR) systems. In addition to the LPCI mode discussed earlier, RHR can also be used to remove energy from containment when aligned in either the suppression pool cooling mode or the containment spray mode. Two RHR pump trains circulate suppression pool water through two heat exchangers and back to either the suppression pool or the containment spray nozzles. Containment sprays are initiated automatically during a loss-of-coolant accident (LOCA) ten minutes ".5ter the containment pressure exceeds the spray initiation setpoint. The containment sprays will condense steam in the containment and scrub non-noble gas fission products. Vacuum breakers are installed in the drywell, which communicate with the suppression pool air space to control rapid weir wall overflow in a large break LOCA. Drywell vacuum relief is not required to assist in hydrogen dilution or to protect the structural integrity of the drywell following a large break LOCA.² (River Bend has neither a containment spray system nor drywell vacuum breakers. However, it does have a unique safety-grade fan cooler system.) The Perry FSAR specifies elemental and particulate iodine removal rates of 2.5/h and 0.88/h, respectively for the containment spray system. The Grand Gulf containment spray system elemental and particulate iodine removal rates are stated as 6.7/h and 1.66/h, respectively. The Clinton FSAR did not address the use of containment sprays for fission product control.

Combustible gas control is provided by hydrogen mixing systems, containment purge systems, post-LOCA hydrogen recombiners, and hydrogen ignition systems (HIS). Hydrogen mixing systems are installed in each of the four Mark III plants, although the specific designs vary from plant to plant. At Grand Gulf and Perry, containment air is forced into the drywell where it mixes with hydrogen in the drywell volume. Return air flow to the containment passes through the suppression pool vents. At Clinton, air from the drywell is exhausted to spargers located below the suppression pool surface and return air flows through the containment vacuum breakers into the drywell. At River Bend, fans in the upper drywell exhaust to the containment air space while return air enters through two lines located just above the suppression pool. Containment purge is provided at each of the plants. The purge system utilizes the filter trains of the standby gas treatment systems (SGTS) (annulus exhaust gas treatment system at Perry) to filter releases from containment. Containment makeup air is provided by air compressors that draw from outside air.

The post-LOCA hydrogen recombiners, which are present at each of the plants, are designed to control long-term containment hydrogen concentrations produced as a result of:

- Metal-water reactions involving the zirconium fuel cladding and the reactor coolant
- Radiolytic decomposition of the postaccident emergency cooling solutions
- Corrosion of metals by solutions used for emergency cooling or containment spray.

If ac power is available, the recombiners can be used from the onset of an accident in which severe core damage has resulted. The recombiners cannot, however, control the large–scale generation of hydrogen that would be expected to occur during a core degradation event.³ Their recombination rate of 100 scfm was designed to protect against the hydrogen generation rates occurring during and after a design basis LOCA, not against the higher rates occurring during the core degradation phase of a severe accident. At these higher rates, hydrogen production will overwhelm the recombiners, allowing flammable concentrations to be reached, and the recombiners to become a nondistributed ignition source.

Hydrogen control at the rate required during postulated degraded core accidents relies, instead, on distributed ignition systems that are installed at each of the plants. There are acpowered ignitors distributed throughout the containment and drywell, designed to burn the hydrogen in such a manner that containment overpressurization from hydrogen combustion does not occur.

3. DOMINANT CORE DAMAGE SEQUENCES

In this section, dominant accident sequences leading to core damage are discussed, with Grand Gulf being used as the Maik III reference plant. The latest NUREG/CR-4550 analysis of Grand Gulf (July 1989) has defined the dominant sequence classes to be those with a frequency greater than $1.0 \ge 10^{-8}$ per reactor-year.⁴ Four classes of sequences have been identified that meet this criterion. They are short-term station blackout (SBO), long-term SBO, anticipated transients without scram (ATWS), and transients with loss of the power conversion system (PCS).

The importance of each class of sequence with respect to total core damage frequency is shown in Table 3–1. The largest contributors to core damage frequency are clearly those sequences involving SBO. Next in importance are the ATWS sequences (designated as TCUX). Least significant among the dominant sequences are those that result from transients with a loss of the PCS, designated as TQUX. Together these sequence classes contribute more than 99% of the total Grand Gulf core damage frequency. Note that the Draft NUREG–1150 Grand Gulf core damage profile differs significantly from past Grand Gulf risk assessments (RSSMAP and IDCOR studies), because of the predominance of SBO as a con-

ä.

tributor to core damage instead of non-blackout sequences.

3.1 Plant Damage State Groupings

For the purpose of the accident progression analysis, it is convenient and useful to group accident sequences with similar characteristics into plant damage states (PDSs). Reference 5 used 12 PDSs to encompass all of the Grand Gulf dominant accident sequences, as identified in Table 3-2. For more details, refer to Reference 5.

There are five dominant PDSs that together comprise 98% of the total core damage frequency (CDF) at Grand Gulf. The dominant PDS (PDS 1, contributing 79% of CDF) is initiated when a loss of offsite power (LOSP) generates a successful reactor scram, followed by a loss of all three divisions of onsite ac power. The SRVs function to relieve the pressure transient caused by the closure of the turbine stop valves, and reactor water level drops below Level 2 as a result of decay hearinduced boiling. The automatic depressurization system (ADS) fails. RCIC fails to start and the core is uncovered, resulting in core damage with the reactor at high pressure.

Accident Class	Sequence Designator	Mean Frequency (per ry ^a)	Contribution to Core Damage Frequency (%)
Short-term SBO	TBU or TBUX	3.8E06	94,2
Long-term SBO	TB	1.1E-07	2.6
ATWS	TCUX	1.1E-07	2.6
Loss of PCS	TQUX	1.3E-08	<1
Reactor year.			

Table 3-1. Grand Gulf dominant accident sequence contributions to core damage frequency

PDS Group	Sequence Type	Mean Frequency (per ry ^a)	Contribution to CDF (%)
PDS 1	Short-term SBO	3.2E-06	79
PDS 7	Short-term SBO	4.3E07	11
PDS 3	Short-term SBO	1.8E-07	4
PDS 8	Long-term SBO	6.6E-08	2
PDS 10	Long-term ATWS	6.3E08	2
PDS 9	Short-term ATWS	5.0E08	1
PDS 2	Short-term SBO	4.8E08	1
PDS 4	Long-term SBO	3.9E-08	1
PDS 11	Short-term loss of PCS	1.2E08	<1
PDS 6	Long-term SBO	2.0E-09	<<1
PDS 5	Long-term SBO	1.2 ~ -09	<<1
PDS 12	Long-term loss of PCS	2.7E-10	<<1

Table 3-2. Grand Gulf plant damage states

The second most significant PDS (PDS 7) is a short-term SBO and is responsible for 11% of the total CDF. In this PDS, offsite power is not recoverable because of common mode failure of the station batteries, which also prevents operation of the diesel generators. Core damage occurs in the short term with the reactor at high pressure; depressurization and RCIC operation are not possible because of the loss of dc power.

a.

The third larg ... contributor to CDF, PDC 3, another short-term SBO (LOSP and failure of the diesel generators), contributes 4% of the total CDF. Core damage occurs at high pressure and containment heat removal via the containment sprays is not available in the event that ac power is recovered. Core damage results because RCIC and ADS fail. By using the available dc power, the fire water system (FWS) can be used for injection if the reactor can be depressurized.

The next most significant PDS (PDS 8) is a long-term SBO that contributes 2% of the total CDF. RCIC operates properly in this PDS until the RCIC turbine trips on high backpressure. During this time, the SRVs are properly limiting reactor pressure. After the RCIC turbine trip, the reactor is depressurized and firewater is connected as a source of reactor water makeup. The SRVs eventually fail due to battery depletion, but the reactor is able to be depressurized by using the RCIC steam line. However, the operators fail
to maintain pressure below the firewater shutoff head, and core damage results when firewater injection is lost. Core damage occurs at high pressure and offsite power is not recovered within 12 hours and then is not recoverable because of the subsequent loss of dc power caused by battery depletion.

The fifth largest contributor to CDF is PDS 10, a 'ong-term ATWS involving closure of the main

steam isolation valves (MSIVs), contributes 2% of the total CDF. Coolant injection is lost late because of HPCS failure. Top cutsets involve mechanical failures of the pump and faults related to room heatup. Core damage occurs in the long term and with the vessel at high pressure because of operator failure to depressurize.

The remaining PDSs contribute <2% of the total CDF and are not discussed further.

4. CONTAINMENT CHALLENGES AND FAILURE MODES

This section provides a discussion of the containment challenges and failure modes resulting from the PDSs described in Section 3. These challenges include gradual (quasistatic) overpressurization, hydrogen-induced overpressurization, steam spike-induced overpressurization, and overpressurization as a result of gases generated by core-concrete interaction (CCI).

4.1 Inadequate Containment Heat Removal

Inadequate containment heat removal will cause the containment to pressurize gradually over a period of several hours to several days. Pressurization occurs because the containment heat removal capability is inadequate for the rate at which energy is being added, resulting in eventual saturation of the suppression pool and loss of the pressure suppression function. The associated containment failure mode is leakage or rupture that is sufficient to prevent further pressurization. The potential for mitigation is dependent on (a) reducing the rate of energy addition to containment, (b) enhancing containment venting capabilities, or (c) increasing containment heat removal capability.

4.1.1 Definition of Challenge. Overpressure challenges due to an imbalance between the energy addition rate to containment and the energy removal rate from containment typically are the result of either loss of long-term heat removal (TW) or ATWS sequences. The most recent Draft NUREG/CR-4550 analysis of Grand Gulf found TW to be a nondominant sequence, principally because early containment failure does not present a challenge to core integrity at Grand Gulf.⁴ In this respect. Grand Gulf differs from the earlier Mark I and Mark II designs, in which containment failure can lead to a loss-of-coolant injection. This result may be generic to the Mark III plants, because the BWR/6 ECCS pumps are capable of pumping saturated water, and because the likely containment failure location may not present an operability threat to equipment located

in the auxiliary building. However, ATWS is significant and results in both long- and short-term plant damage states. The long-term plant damage state, by definition, will result in suppression pool heating of sufficient duration to cause an early overpressure challenge, i.e., before core degradation. However, the CDF associated with ATWS at Grand Gulf may have been overestimated, as discussed below.

In the ATWS sequences analyzed for Grand Gulf in Draft NUREG/CR-4550,4 failure to actuate the SLCS was combined in the human factors analysis with failure to depressurize the RPV; these two events, although separate on the event tree, were treated as one dependent event in the sequence cut sets. If failure to actuate the SLCS were to be treated as a separate event in the sequence cut sets, the mean ATWS sequence frequency could decrease by approximately one order of magnitude from the curren' NUREG/ CR-4550 result.4 As a result of combining the SLCS actuation failure with failure to depressurize, no SLCS hardware failures appear in the sequence cut sets. Table 4.8-4 in the 1989 draft of NUREG/CR-4550 indicates that these probabilities are dependent, although treating them as independent (i.e., multiplied together) may be more accurate.4 If SLCS initiation failure were separated from failure to depressurize, and a larger human error probability were used, the SLCS hardware failures could become more important

The two dominant cut sets in the long-term ATWS plant damage state involve failure of the HPCS suction transfer from the CST to the suppression pool (sequence 74–B in Reference 4). The fault tree model used to generate these cut sets appears to be excessively conservative and, although the HPCS fault tree does not explicitly show it, the discussion in Reference 4 indicates that this transfer is questioned at the point of low level in the CST, not high level in the suppression pool (which occurs first).⁴ With a *minimum* of 100,000 gal in the CST reserved for HPCS, and with HPCS injecting at ~1000 gpm (the reactor is not depressurized in this sequence), low level in the CST would not be reached for at least 100 min. With continued steaming to the suppression pool at 18–20% of rated power [level assumed to be controlled at top of active fuel (TAF)], the containment will be overpressurized or vented before the CST is depleted (this assumes that the automatic HPCS transfer to the suppression pool on high pool level either failed or was overridden). Therefore, the findings presented in this report conclude that sequence 74–B is not a contributor to CDF. It may contribute to early containment overpressurization but should not result in core damage, because neither venting nor containment failure (failure assumed to be at the containment springline) should impair injection.

Another failure that appears in the cut sets for long-term ATWS is loss of HPCS room cooling, specifically, from failures in the standby service water (SSW) system. However, the text of Reference 4 states that HPCS will continue to operate for 12 hours following a loss of room cooling. Again, the containment would be overpressurized long before this time or the reactor would be successfully shut down. Neither of these outcomes would result in core damage. Also, it is not credible that an ATWS sequence could continue for 12 hours without the reactor being shut down by either manual rod insertion or by SLCS injection (even with failure of the SLCS pumps, boron can be injected via alternate means, or repairs can be made to the SLCS).

Based on prior understanding of the long-term ATWS sequence, and upon discussions with personnel from Sandia National Laboratory,^a a dominant mode of HPCS failure was thought to be failure of the operator to override the automatic suction transfer to the suppression pool on high pool level. Failure to override this transfer would be postulated to fail HPCS, because the hot suppression pool water would provide inadequate lube oil cooling. However, this failure does not appear in *any* ATWS cut sets; indicating the high probability that it was not modeled. Mary Drouin of Science Applications International Corporation, who performed the Grand Gulf front-end analysis described in Reference 4, later confirmed this assumption during a telephone conversation. She indicated that this transfer was not modeled as a HPCS failure, because the HPCS motor bearings could withstand a fluid temperature of 350°F for up to 24 hours; seal failure would occur prior to bearing failure, but seal failure was not postulated to fail HPCS.

Furthermore, the existing analysis is based on Revision 3 of the BWR Owners Group Emergency Procedure Guidelines (EPGs). Revision 4 would require significant revisions to the ATWS event trees. Under the new EPGs, injection would be maintained from the CST and RPV level control would first be attempted using CRD flow and systems that inject outside the core shroud (this assumes that the feed pumps are unavailable due to closure of the MSIVs) At Grand Gulf, this implies use of only the RCIC, CRD, and condensate systems. Because the condensate system is a lowpressure system, and RCIC and CRD are inadequate to maintain level above the minimum steam cooling water level (MSCWL) defined in the EPG, the result is that depressurization would be called for early in the sequence, even if HPCS and RCIC were available. After depressurization, several systems would be available for level control. Because of the high injection flow rates available at low pressure, control of flow rate and reactor power would be more difficult, hence human error probabilities should also change because of the increased complexity of actions required to maintain level control. The result is that the existing ATWS sequences are expected to be out of context with Revision 4 of the EPGs.

Thus, the Reference 4 estimate of ATWS core damage frequency appears to be overly conservative. Requantification could eliminate ATWS as a dominant core melt challenge and, in turn, the associated containment failure mode of overpressure prior tc core damage. However, for the present, this mode of failure must be considered as a significant containment challenge, especially in light of the Grand Gulf-specific nature of the analysis in this report.

a. Informal meeting between Sandia NUREG/ CR-4551 analysts and CPI contractors, June 1989.

4.1.3 Potential Failure Modes. The specific containment failure mode associated with inadequate containment heat removal will be leakage or rupture caused by quasistatic overpressurization. The most likely failure location is at the head knuckle for steel containments, although both the cylinder wall and the personnel airlock have also been identified as possible failure locations.¹ (Reference 1 summarizes the probable containment failure locations for quasistatic overpressurization.) Estimated failure pressures range from 55 to 100 psig, depending on analysis technique and failure criteria used. The Perry containment, with its free-standing steel construction, is predicted to have an ultimate pressure of 100 psig. with failure occurring at the head knuckle. The Grand Gulf containment, with its reinforced concrete design, is predicted to fail at 55 psig. with failure occurring at the cylinder near the springline.

4.1.3 Potential for Mitigation. Containment venting could be used to protect the containment from inadequate heat removal. Venting procedures that arc in accordance with the EPGs are in place at Grand Gulf, and the existing vent path could reasonably be expected to prevent over-pressurization during ATWS scenarios. The vent path is composed of two 20-in. lines made up of hard pipe and heating, ventilating, and air conditioning (HVAC) ducting. Failure of the HVAC duct portion of the path would not necessarily create adverse environmental conditions in the auxiliary building that would force an end to recovery efforts.

4.2 Hydrogen–Related Challenges

Hydrogen deflagrations and detonations could lead to containment failure from both quasistatic and dynamic overpressurization. Prolonged diffusion burns can cause failure of sealing materials in the drywell, and at the containment boundaries. The consequences of failures resulting from hydrogen combustion are aggravated by the possibility of simultaneous failure of both the containment and drywell. This creates the possibility of a highly energetic release that is unfiltered by suppression pool scrubbing. The probability that combustion will occur and create a pressure load capable of failing containment is relatively high for the dominant Grand Gulf plant damage states.⁶ Because of the relatively high probability of combustion-induced overpressure failures, and because of the severity of the resulting releases, hydrogen-related challenges are the most risk-significant category of containment challenge at Grand Gulf.

Hydrogen-induced overpressurization is prominent at Grand Gulf because the containment is not inerted, and because the ac-powered HIS will not function during SBO sequences, which dominate the core damage and risk profiles. During short-term SBOs, hydrogen deflagrations and detonations can occur as the result of spontaneous ignition. During some long-term SBOs, the containment is postulated to become steam-inerted. However, should the plant recover power after the onset of core damage, hydrogen deflagrations and detonations can still occur, because containment spray operation (if available) will ondense steam from the containment atmosphere. An ignition under these circumstances is likely and could have severe consequences due to the large amount of hydrogen available for combustion.

Actions with the potential to reduce the consequences of combustion are: (a) ensuring ignition occurs while hydrogen concentrations are within the range of 4-6 v/o, (b) post-accident inerting of the containment, and (c) removal of hydrogen and oxygen (along with fission products) via containment venting.

4.2.1 Definition of Challenge. Oxidation of Zircaloy and stainless steel core components during core damage produces the hydrogen that threatens containment integrity in severe accidents. The source of Zircaloy is the fuel cladding and channel boxes. The stainless steel in the control rod sheaths may also react to generate hydrogen, but to a much lesser extent. Several analyses have been documented that predict the amount of hydrogen generated during postulated core damage events at Grand Gulf. The results obtained differ widely depending on the analytical tool and

key assumptions used in developing the analytical model.

IDCOR published (in March of 1985) the results of MAAP calculations for T₁QUV, AE, T23OW, and T23C sequences.7 These sequences. as defined by IDCOR, differ substantially from the current Draft NUREG-1150 dominant core damage sequences, making useful comparisons difficult. However, the T₁QUV sequence is similar enough to the Draft NUREG-1150 short-term SBO sequence to provide useful insights into the kinds of results that are obtained with the MAAP code. The IDCOR T₁QUV sequence assumes -m initiator that results in the complete loss of injection when both the main feedwater and condensate systems are unavailable. Thus, neither the primary injection system nor containment heat removal is available. The key difference between the IDCOR sequence and the Draft NUREG-1150 short-term SBO sequence is that the IDCOR analysis assumes the operators depressurize the reactor when reactor water level drops to Level 1 (~20-30 in. above TAF). Core damage occurs at low pressure, resulting in the release of up to 0.05 lbm/sec of hydrogen gas. Because MAAP assumes channel blockage by molten fuel and cladding, the reaction is predicted to become limited by steam starvation, and to result in the release of only 10 lbm of hydrogen from in-vessel production sources. A total release of 3000 lbm is predicted, nearly all of which results from reactions occurring in the debris bed after vessel failure.

IDCOR ran a variation of the T₁QUV sequence to study the effects of failure to depressurize on the amount of hydrogen generated. This sequence, in which core damage occurs at high pressure, is very similar to the short-term SBO sequences currently responsible for 94% of the core damage frequency at Grand Gulf. With no depressurization before vessel failure, MAAP predicts 430 lbm of hydrogen will be generated by in-vessel oxidation, as opposed to 10 lbm when the vessel is depressurized at Level 1. The total amount of hydrogen produced in this case is also higher, at 3,200 lbm as opposed to 3000 lbm when the vessel is depressurized at Level 1.

Battelle has published the results of STCP calculations for short-term SBO, long-term SBO, and ATWS sequences.8 Their short-term SBO analysis (TBS in their nomenclature), which is very similar to the IDCOR T1QUV sequence with depressurization at Level 1, shows 39% of the active fuel cladding will oxidize before vesse? breach. The referenced report does not state the mass of hydrogen released, either before vessel breach or later, during reactions in the debris bed. However, the long-term SBO sequence is stated to result in the oxidation of 32% of the active fuel clad, 12% of the Zircaloy in the channel boxes, and 10% of the stainless steel in the control blade sheaths, for a total of 26% of the Zircaloy in the core. With only 32% of the clad reacted, this sequence resulted in the generation of 2000 lbm of hydrogen by the time of vessel breach. Because the long-term SBO sequence assumes injection from RCIC until battery failure at 6 hours, and subsequent core damage at high pressure due to failure to depressurize, this sequence is not directly comparable to any of the IDCOR analyses described above.

The Draft NUREG 1150 analysis of the shortterm SBO sequence is based on preliminary MELCOR and BWR-LTAS calculations.^a These calculations have not yet been published, but results have been made available to CPI personnel in the form of a pre-draft report. The MELCOR portion of the analysis, used to determine containment response after core uncovery, predicts an average hydrogen production rate of 0.24 lbm/ sec from the onset of Zircaloy oxidation until vessel breach, which occurs approximately 3 hours later. A total of 2700 lbm of hydrogen is generated before vessel breach. Another 1320 lbm is predicted to be generated during CCI.

The SNL MELCOR analysis utilizes a hybrid BWR/6 model that was scaled up from an existing La Salle BWR/5 input deck. In addition, the containment model was designed with a

a. S. E. Dingman et al., *MELCOR Analyses for Ac*cident Progression Issues, to be issued.

relatively coarse nodalization scheme in the interest of time.

Most of the hydrogen generated from in-vessel oxidation is transported to the suppression pcol through the SRVs. Hydrogen is noncondensible and has minimal solubility in water; therefore, hydrogen released into the suppression pool will generally relocate into the containment air spaces. Hydrogen leaving the suppression pool will tend to stratify in the upper regions of the containment in the absence of a mixing force. Quarter Scale Test Facility results have provided some evidence that enough mixing occurs in the containment to prevent this stratification. Therefore, if the ignitors have been turned on and are operational during core degradation, hydrogen should ignite as it evolves from the pool surface, as was evidenced in the Quarter Scale Tests. The result would be a diffusion flame that may persist at locations above the SRV discharge into the suppression pool. The nature of the containment challenge resulting from a diffusion flame will depend very strongly on the rate and duration cf the hydrogen release through the SRVa. If the burn persists long enough, elastomeric seals in both the containment and drywell could be threatened by overtemperature. In addition, there is a chance that the weiwell-to-drywell vacuum breakers could be failed by the hot gases that result from the diffusion burns. This failure would create a large suppression pool bypass path. This failure mechanism was modeled in the latest Draft NUREG-1150 accident progression analysis for Grand Gulf.5 Analysis by ORNL for the CPI program indicates that this is an unlikely failure mode at Grand Gulf.ª Finally, containment overpressurization is not considered to be a likely result of a diffusion burn.

In sequences where there is some probability of an SRV tailpipe vacuum breaker sticking open, some of the hydrogen generated in-vessel will relieve through the stuck-open vacuum breaker to the drywell. Pre-draft NUREG-1150 MELCOR

analyses (S.E. Dingman et al. draft report) indicate that blowdown of steam and hydrogen to the drywell will tend to push air out into the wetwell through the suppression pool vents, leaving the drywell atmosphere inert to hydrogen burns. A stuck-open tailpipe vacuum breaker could, if it failed open during peak release, cause flammable conditions in the drywell for approximately 20 min before the drywell inerted from either steam buildup or oxygen depletion The referenced analysis states that, under these conditions, the hydrogen released from the RPV would be hot enough to autoignite and would burn as a jet at the release point. Calculations predict that it would take 500 sec for the hydrogen burn to deplete the oxygen in the drywell and that the resulting pressure rise would not challenge containment integrity. Therefore, while there is some chance of a hydrogen burn in the drywell prior to vessel breach, containment integrity is not likely to be challenged as a result.

During SBO, none of the installed hydrogen control systems will be operable because of the unavailability of ac power, and the possibility exists that hydrogen may accumulate in the wetwell in explosive concentrations before a random ignition trigger occurs. However, the absence of an assured ignition source creates a very uncertain situation in these sequences. Hydrogen burns have occurred in systems with no moving parts or electrical components. However, there is no guarantee that spontaneous ignition will occur at hydrogen concentrations low enough for the resulting burn to be benign. If either a deflagration or detonation occurred, it would likely occur in the wetwell and both the drywell and containment would be vul, erable to overpressure failure.

In long-term SBO sequences, the SRV discharge will heat the suppression pool to its saturation temperature prior to the onset of core degradation. This makes steam-inerting of the wetwell likely. Assuming recovery of offsite power after the onset of core damage, operation of containment sprays could potentially deinert the containment atmosphere after large amounts of hydrogen have accumulated in the wetwell. Should this happen, both the containment and drywell could be failed by a deflagration or

a. S. R. Greene et al., The Response of BWR Mark III Containment to Short-Term Station Blackout Severe Accident Sequences, to be issued.

detonation. Note that if the operators at Grand Gulf cannot verify that power has not been lost to the ignitors, procedures instruct them to prevent power from being restored to the ignitors. Furthermore, during site visits to Grand Gulf as part of the NUREG-1150 effort and separately, as part of the CPI program, no trigger sources for hydrogen ignition could be identified. Therefore, ignition under blackout conditions would have to be either spontaneous or the result of operator error. Finally, it should be noted that containment sprays are unavailable in the dominant long-term SBO PDS at Grand Gulf as a result of failures in the service water system. Therefore, recovery of sprays is not possible. However, this may not be applicable to the other two Mark III plants with containment sprays, Perry and Clinton.

When the accident progresses to the point of vessel failure, ny hydrogen remaining within the reactor vessel will be released to the drywell, where the molten core material will provide an ignition source, but the hydrogen will be released along with any water or steam remaining in the vessel. This may result in immediate inerting of the drywell atmosphere as air, steam, and hydrogen are pushed out of the drywell through the suppression pool vents. Furthermore, the molten fuel will likely be released into a flooded reactor cavity. Sufficient water is likely to be present to quench the fuel and slow any oxidation processes. However, the presence of water in the inpedestal area at the time of vessel failure presents the possibility of an energetic FCI (steam spike or steam explosion).

After vessel breach, hydrogen production may continue, both in core debris remaining in the vessel, and in debris scattered about the drywell and in-pedestal cavity. However, the main source of hydrogen production will be the thermal decomposition of concrete floors and walls in the drywell. CCI generates large amounts of carbon dioxide and steam. When these gases pass through partially molten core debris, they oxidize the zirconium and other metals in the debris, producing hydrogen gas and carbon. Later, the carbon will react with steam and carbon dioxide, evolving more hydrogen along with carbon monoxide.⁷ The MAAP calculations in Reference 7 predict hydrogen production after vessel breach to be the dominant source of hydrogen during short-term SBO sequences. The abovereferenced STCP and MELCOR calculations both indicate that hydrogen production after vessel breach is secondary in importance to in-vessel production.

4.2.2 Potential Failure Modes. The Containment Performance Working Group (CPWG) analyzed local pressure and temperature histories during diffusion-type hydrogen burns.⁹ Their analysis covered the case where hydrogen is released to the wetwell through the SRVs during core degradation. Local heat fluxes on the drywell and containment walls were calculated and the impact on elastomeric sealing materials was assessed. The CPWG concluded that local heat fluxes caused by diffusion burns at the suppression pool surface do not degrade either the drywell or containment seals.

The containment response to the slow pressurization caused by a diffusion burn was also analyzed. The CPWG analysis assumed that 65% of the zirconium in the cladding was oxidized, and that the resulting hydrogen was burned continuously as it was released into the wetwell. The resulting pressure increase was calculated to be no more than 15 psi. The CPWG assessed the probability of containment failure by this mecnanism to be extremely low.⁹

More recent SNL MELCOR studies (S. E. Dingman et al. draft report) generally confirm the CPWG conclusions for diffusion burns and provide additional insight into the likelihood of containment failure from the more rapid burns that characterize deflagration or detonation. MEL-COR will identify detonable mixtures based on user- supplied detonation limits, but cannot predict hydrogen detonation or the pressure spike caused by a detonation. Only rapid hydrogen burns at user-specified concentrations and flame speeds can be analyzed. Note, also, that MELCOR cannot accurately model diffusion burns because it is a control volume code that assumes a uniform concentration throughout the control volume. Again, it should be noted that the

Mark III MELCOR containment model used by SNL was coarsely nodalized, which means that more hydrogen would be required to be inside containment before the code would predict burning (or pseudo-detonation), thus resulting in larger than anticipated pressure spikes. A more detailed model should allow burning at the pool surface. MELCOR calculation performed by ORNL used a finer nodalization for Mark III containment analysis. The ORNL calculations showed a significantly lower containment pressure for diffusion burns. The ORNL results compare favorably with the HCOG Quarter Scale Test. Some SBO sensitivity calculations by SNL indicated that wetwell hydrogen deflagrations are capable of simultaneously failing both the containment and drywell by overpressure. These high-pressure burns correspond to relatively high values for initial containment pressure, hydrogen concentration, flame speed, and percent burn completion, and are characteristic of deflagrations or detonations rather than diffusion burns.

The results from the MELCOR analyses, as well as the HECTR, MARCH2, MARCH3, and MAAP analyses published in a number of separate reports, were evaluated by an expert panel. The panelists estimated the probability of hydrogen combustion generating enough of a pressure load to threaten containment integrity.⁶ The issue was defined both in terms of the probability that hydrogen combustion will occur prior to vessel breach, and in terms of the probability that, given combustion occurs, either the containment or the drywell will fail from the resulting pressure load. The panelists did not address the possibility of ignition, or the probability of containment failure after vessel breach. They presented their results in terms of cumulative probability distributions for the expected containment load resulting for each of four distinct ranges of hydrogen concentration. These curves, reflecting the experts' degree of belief that a particular combustion event would be cap-ble of failing containment, were used in quantifying the Draft NUREG-1150 Grand Gulf accident progression event trees.

The findings of the expert panel indicate that the probability of ignition in the wetwell can be as high as 0.8 when core damage occurs with the reactor at high pressure. For hydrogen concentrations between 4 and 8 v/o, the probability of the containment surviving the maximum deflagration is essentially 1.0. At concentrations above 16 v/o, the probability that the containment will survive the maximum deflagration drops to nearly 0, and the probability that the drywell will survive drops to less than 0.20. These numbers are for high initial steam concentrations in the containment. At low initial steam concentrations, these numbers vary somewhat but are still indicative of a high probability of containment and drywell failure for high hydrogen concentrations.

4.2.3 Potential for Mitigation. Mitigating the consequences of hydrogen-related challenges is dependant on the ability to burn the hydrogen in a controlled manner as it is formed, so that dangerous concentrations are avoided. This approach has a high probability of success as long as power is maintained to the HIS. It is during SBO, when the normal ignitor power supply is lost, that this approach fails. Possible solutions include providing uninterruptible backup power that will be available during SBO, or relying on catalytic ignition systems that do not require electric power.

During some long-term SBO sequences, the potential for the accumulation of dangerous concentrations of hydrogen exists even with the ignitors turned on. In these sequences, the containment is inert during hydrogen generation due to the presence of large amounts of steam. Containment deinerting can result from containment spray actuation when power is restored. A solution to the steam-inerting aspect of the hydrogen challenge might be to ensure that the containment can be inerted intentionally and kept inert for the duration of any postulated severe accident. This could be accomplished by postaccident inerting with gas injection systems, Halon injection systems, or water fog systems, all of which have been considered in previous studies.

Post-accident inerting by gas injection was studied in the April 1987 draft of NUREG/ CR-4551 for Grand Gulf.¹⁰ The system studied relied on the injection of carbon dioxide gas to dilute oxygen to below flammability limits. The system would be supplied with dc power to ensure that actuation would be possible during SBO, when normal hydrogen control systems would be unavailable. Actuation would be required, by procedure, in place of the ignitors during these sequences. The containment would require venting when the system was first actuated, and the vent path would be secured after the gas had been discharged.

The hardware required by this system would consist of carbon dioxide tanks stored outside of containment, the piping and spray headers required to distribute the gas to locations within containment below the level of the upper containment pool, isolation valves and controls, and safety interlocks to prevent inadvertent operation. Problems with this system include the possibility of actuation during a design basis accident, when containment venting would be undesirable, and the possibility of inadvertent actuation when personnel are inside containment. Total cost for installation of this system was estimated to range from \$12,000,000 to \$34,000,000.

A paper published at the Second International Conference on the Impact of Hydrogen on Water Reactor Safety elaborated on the shortcomings of a system similar to the one in the NUREG/ CR-4551 study.^{10,11} Among the shortcomings identified were: (a) the high likelihood of human error involved in initiating the system, (b) the long-term containment pressurization (as high as 37 psia) above design pressure should actuation occur without simultaneous venting, (c) the higher offsite dose caused by the higher leak rates associated with the elevated pressures, (d) the requirement to inhibit sprays when the inerting system is actuated to prevent even higher containment pressures, the reverse of present safety logic, and (e) the difficulty of ensuring high system reliability.

Halon gas, which has also been proposed as a post-accident inerting agent, interferes with the combustion process itself. While the exact mechanism by which this occurs is not completely understood, the result is that inerting can be achieved with significantly smaller amounts of Halon than would be required for inerting by dilution (as with the carbon dioxide system). The operational advantages of Halon are that a system can be installed that has few moving parts, minimal power requirements, high reliability, relative hardware economy, storage convenience, and ease of testing. The design of a Halon injection system would be very similar to that of the carbon dioxide system discussed above. One disadvantage of Halon injection is the decomposition of Halon to extremely toxic halogenic acids and carbonyl halides at temperatures over 900°F. Halon and its decomposition products are also very corrosive and could cause potential long-term degradation of safety systems. Halon is also expensive. It will increase containment pressure at initiation, and must remain at a concentration above the required inertion level at all times or it could become an aid to combustion. Finally, it could be impractical for Mark III containments because of the large amount of equipment required.

Reference 11 also describes a report issued by the Tennessee Valley Authority (TVA) rejecting the use of Halon as a permanent mitigation scheme for Sequoyah (a PWR with an ice condenser containment). TVA's objections were based on the uncertainty about the radiolytic decomposition of Halon and subsequent metal corrosion, uncertainty concerning suitable postaccident water chemistry control, Halon's toxicity at the concentrations required, and the difficulty in finding room for and installing the required tanks and components.

Laboratory tests of water fog inerting systems have demonstrated that water fogs applied to hydrogen--air mixtures cause only a marginal increase in the hydrogen lower flammability limit (LFL) at room temperature.¹¹ Increases noted were 4.0 v/o to 4.4–5.3 v/o. Fogs generated from an air-driven nozzle resulted in a slightly higher LFL of 7.2 v/o at 20°C. Higher gas temperatures were found to increase the LFL, and the fog density required to achieve a given level of inerting was found to be strongly dependent upon droplet size. In addition to increasing the LFL, fogs are thought to reduce the pressure rise associated

with burning hydrogen at a given concentration. While laboratory tests have shown that this concept is viable, the practical application is limited. For fog systems to be fully advantageous, they should be used in conjunction with the HIS. because their function is more to reduce the pressure rise associated with combustion than to prevent ignition. Therefore, it is not likely that the dominant short-term SBO sequences would benefit from the installation of a fog generating system unless it was designed with an independent power supply that was also capable of powering the HIS. However, with the ignitors powered, the fog system would provide little additional benefit, because a controlled burn of hydrogen will not threaten containment even without the fog system. In the long-term SBO sequence, in which the containment is likely to be steam-inerted at the time of power recovery, actuation of a water fog system would have a similar effect to actuating the containment sprays, namely deinerting of the containment due to steam condensation. As discussed earlier, this is an undesirable effect, because it could lead to a hydrogen burn when the ignitors are recovered.

Containment anting also has the potential to prevent hydrogen-related overpressurization by removing both oxygen and hydrogen from the containment. If venting were accomplished during the long-term SEO sequences, sufficient oxygen could be removed to maintain an inerted containment, even given the condensation of steam from the containment atmosphere caused by spray recovery. Condensation of steam in a vented containment could lead to sufficient depressurization to pall oxygen back into the containment from the outside atmosphere. Condensation of steam in a vented, and then sealed, containment could lead to dangerous negative pressure differentials between the containment and outside atmosphere. An alternative would be to have a nitrogen gas supply system to maintain containment pressure by injecting nitrogen into the containment as the steam is condensed. This would prevent oxygen from being pulled back into containment and would prevent the containment from being deinerted. However, a system car able of this would have many of the disadvantages of the carbon dioxide inerting system previously discussed. It would be costly, and could be a personnel hazard in the event of inadvertent actuation.

ORNL has analyzed the effectiveness of preemptive venting in removing hydrogen from containment during a short-term SBO sequence (addressed in the S.R. Greene et al. draft report, *The Response of BWR MARK III Containment to Short-Term Station Blackout Severe Accident Sequences*). The results of this calculation indicate that venting (via two 20-in. wetwell vents to the environment) is not effective at reducing the hydrogen detonation threat to containment during the first 7.5 h of the accident. In fact, the preemptive venting strategy appears to *aggravate* the wetwell detonation problem.

This result is explained by considering the details of the Mark III design. The wetwell is relatively open above the upper containment pool. However, the drywell-wetwell annular region has many obstructions to upward flow, causing the upward flow to be very turbulent and wellmixed. Therefore, any gaseous material vented from the containment will be well-mixed. Thus, while venting does remove large amounts of hydrogen, it also removes large amounts of other gases, leaving the relative wetwell gas concentrations unchanged. In addition, the increased drywell-to-wetwell leakage of gaseous material as the result of higher drywell-to-wetwell differential pressure (the drywell hydrogen concentration is even higher than that in the wetwell) causes a net increase in the wetwell hydrogen concentration. ORNL concluded that venting would not be useful in removing hydrogen from containment. The effects of containment venting on the radionuclide release from containment will be examined in Section 11.

Finally, minimizing the quantity of hydrogen generated in-vessel can reduce the amount of hydrogen entering the containment prior to vessel failure. This latter mitigation approach, for station blackout events, means that the reactor should be depressurized at an optimum water level, which current calculations for the Mark II CPI program indicate to be when the core is approximately two-thirds uncovered, in accordance with Revision 3 of the EPG.

4.3 Rapid Steam Pressure, Missiles, and Direct Containment Heating

The containment challenges described in this section all occur very near the time of vessel failure and belong to the broader classification of early containment failure challenges. Included are in-vessel phenomena such as rapid steam pressurization and missiles generated at the time of core collapse, and ex-vessel phenomena occurring at the time of vessel failure, such as direct containment heating (DCH) and ex-vessel steam explosions. Because the creation of missiles with sufficient energy to fail the containment is not considered likely,¹² the predominant containment failure mechanism in this category is dynamic overpressurization.

4.3.1 Definition of Challenge. Rapid steam pressurizations and steam explosions, both within and external to the reactor vessel, are characterized by rapid fragmentation of molten fuel as it is quenched in water, resulting in a large and rapid transfer of thermal energy to the coolant. This in turn leads to steam generation, shock waves, and possible mechanical damage. The Severe Accident Risk Reduction Program (SARRP) analysis of these phenomena relied on expert opinion to quantify the vessel failure mode, the amount of core participating in the reaction, and the resulting pressure rise from both in-vessel and ex-vessel reactions.¹⁰

Experts determined from the NUREG-1150 analyses that the status of the in-pedestal cavity at the time of vessel breach has a major impact on the probability of a rapid steam pressurization event. They agreed that it is statistically certain that the Mark III drywell will be flooded at the time of vessel failure during ATWS sequences with upper containment pool dump, and that the probability of flooding is greater than 80% during SBO sequences that preclude upper pool dump. The primary cause of drywell flooding is the manometer effect that results from quasistatic pressurization of the wetwell. This flooding occurs when the pressure in the wetwell becomes high enough to lift the suppression pool level in the drywell over the top of the weir wall. The pressure differential required is at a minimum when both the suppression pool and the upper containment pool are both filled to the top of their respective operating ranges, and the upper containment pool is then dumped into the suppression pool. The Grand Gulf FSAR states that, under these conditions, a wetwell pressure 0.16 psi higher than the drywell pressure will cause overflow of the weir wall. The required pressure will be higher when the respective pool levels are at their lower limits, or when the imper containment pool has not been dumped, is would be the case in SBO sequences. The amount of water in the suppression pool prior to vessel breach, and hence the differential pressure required to cause flooding, is sequence-specific. During sequences in which core damage occurs in the long term, a significant volume of water may have been injected into the reactor vessel from the CST, or from other sources such as fire water. Most of this water will be boiled off to the suppression pool before the onset of core damage. In addition to the extra inventory from reactor vessel blowdown through the SRVs, the suppression pool water will be undergoing volumetric expansion caused by energy addition from condensation of the SRV discharge.

The extent to which the wetwell is pressurized with respect to the drywell is also sequencespecific. During SBO accident sequences, the wetwell-to-drywell vacuum breakers will not be functional, because the motor-operated damper is normally closed, and would require ac power to open. Leakage from the wetwell back to the drywell can still occur but only at Technical Specification-allowed leakage rates, which are estimated to be too low to offset wetwell pressurization from evaporation of the suppression pool, and from the accumulation of hydrogen released throug 1 the SRVs during core degradation.

A number of calculations have been performed to determine the extent of drywell flooding. Calculations performed with BWR-LTAS did not

predict drywell flooding, perhaps because the drywell-to-weiwell leakage area used was four times the nominal value determined from leak rate tests at Grand Gulf. A second calculation performed using the HECTR code with the same assumed leakage area and drywell heat load did predict drywell flooding (to a depth of 3 ft in the drywell and 9 to 10 ft in the up ped: stal cavity). SNL MELCOR calculations in the draft report by Dingman have confirmed the HECTR resulty and have indicated that flooding during SBO is very dependent upon the rate of in-vessel hydrogen production, with higher generation rates making flooding more likely. These calculations have also shown that hydrogen burns in the wetwell can cause a sufficient pressure differential to flood the drywell. MELCOR calculations performed by ORNL for the CPI program also predict drywell flooding as a result of hydrogen diffusion burns when no or inadequate mit gative actions are taken (see S.R. Greene et al. draft report).

In addition to the above mechanisms for drywell flooding, some experts thought the suppression pool level would oscillate as a result of the release of noncondensible gases through the SRVs.¹⁰ The level oscillations were thought to be sufficient to cause drywell flooding regardless of the amount of wetwell pressurization from the noncondensibles.

With flooding of the drywell virtually ensured, a secondary issue becomes the path by which water can flow into the in-pedestal cavity. Flow is expected to pass through the in-pedestal access doorway or through the drain lines to the drywell floor drain sump. Three feet of water on the drywell floor (predicted by HECTR calculations) will not reach the access doorway. This leaves sump overflow as the primary mechanism for filling the in-pedestal cavity. It is anticipated that drainage from the drywell floor into the cavity via sump overflow will occur with sufficient speed to ensure cavity flooding prior to vessel breach.

Given that the cavity is flooded at vessel breach, the possibility of an ex-vessel steam explosion has to be considered. If a steam explosion occurs, the potential exists to create a pressure impulse sufficient to collapse the reactor vessel pedestal. Pedestal collapse coold cause the reactor vessel to relocate, pother by damaging the drywell wall, or damaging so at piping penetrations through the drywell or containment. The result would be the creation of a large suppression pool bypass path with the potential for a high sequence fission product release.

The likelihood of an ex-vessel steam explosion sufficient to challenge containment integrity was evaluated in terms of three parameters: (a) the probability that the explosion will occar, contingent on a flooded in-pedestal cavity, (b) the probability that the pedestal will fail, contingent on the occurrence of an explosion, and (c) the probability of drywell failure due to collapse of the pedestal.1 In Reference 6, the conditional probability of an explosion was evaluated as 0.86, based on intermediate-scale tests using molten thermite and water. The conditional probability of pedestal failure, given an explosion, was assigned a uniform distribution over the interval 0.0 to 1.0 (i.e., a point estimate probability of 0.50). The conditional probability of drywell failure given failure of the pedestal was estimated as 0.17. The probability of containment failure resulting from the explosion was not stated in Reference 6. Recent work on Mark II containments, using state-of-the-art corium discharge computations to estimate the pressure response in Mark II containments, indicates that steam pressure spikes at vessel breach due to fuel-coolant interactions will not fail containment.13 While this work is not directly applicable to the Mark III containment, it does provide data that suggest the threat from steam explosions may be conservatively overstated in the Draft NUREG-1150 analvses. A July 1983 report specific to Mark III containments also concluded that direct failure by steam explosion would be extremely anlikely.14 Corraclini has also concluded in his 1981 report that steam explosions are extremely unlikely.15

In-vessel steam explosions can result in two types of vessel failures, both of which could lead to sudden containment pressurization. In the α mode steam explosion, upper head failure occurs with sufficient energy to fail containment directly. The second mode postulates catastrophic failure of both the upper and lower vessel heads. Neither of these failure modes was considered likely by the majority of NUREG-1150 experts. In a BWR, the reactor vessel internals located above the core, namely the steam separators and dryers, would tend to absorb the impact of an upwardly directed in-vessel steam explosion. The control * ve and instrumentation supports in BW' = J like wise tend to minimize the pote. ** ttom head failure.

Direct containment heating (DCH) refers to the high pressure ejection of molten core materials from a breach in the vessel. Under certain conditions, the material could be rapidly dispersed out of the pedestal into the drywell volume as fine particles. The combination of direct heat transfer and rapid exothermic chemical reactions between the melt and the drywell atmosphere can lead to rapid containment pressurization and possible containment failure. In addition, the chemical reactions can result in significant hydrogen production, increasing the probability of hydrogen burns. The NUREG-1150 expert panel has indicated that DCH would be unlikely to occur with a flooded in-pedestal cavity.10 Therefore, because of the high probability of a flooded cavity at Grand Gulf, DCH may not be a significant generic threat to Mark III containments. Alternatively, the high pressure ejection of molten debris can only occur if the reactor is at high pressure; therefore, depressurizing the reactor before vessel failure will preclude DCH.

P

4.3.2 Potential Failure Modes. The potential containment failure modes associated with challenges from ex-vessel steam explosions include gross failure of either the concrete reactor vessel pedestal or the vessel supports, resulting in movement of the reactor vessel. The vessel movement causes seal failure of attached piping at the drywell wall, resulting in suppression pool bypass.

Potential containment failure from quasistatic or dynamic overpressurization at vessel breach is possible, but this failure mode is not adequately documented in existing Draft NUREG-1150 supporting documents.

4.3.3 Potential for Mitigation. Some reduction in the probability of drywell failure could be achieved by minimizing the hydrogen generated in-vessel prior to reactor vessel failure, resulting in the release of unoxidized zirconium to the containment, thus postponing the hydrogen threat relative to the time of fission product release. This minimization of the in-vessel hydrogen release might be accomplished by revising the EPGs to call for depressurization only when twothirds of the core has been uncovered, as was stipulated in Revision 3. Further reductions might be achieved by timing upper containment pool dump so that it occurs only after vessel breach, thus lessening the probability of an ex-vessel steam explosion in the reactor cavity at the time of vessel failure. However, this will not ensure that the drywell is dry prior to vessel breach. Venting containment would ensure that a positive drywellto-wetwell differential pressure exists. This pressure differential would prevent water from refluxing over the weir wall, and thus, would ensure a dry cavity at the time of vessel breach. However, in the absence of an external filter, containment venting is likely to lead to an increase in offsite consequences, because of the likelihood of suppression pool bypass. It is not clear that any mechanism currently exists to flood the drywell after vessel breach, if flooding is prevented before vessel breach. However, when power is recovered or an ac-independent water supply is available, water can be injected into the reactor vessel; the molten debris and water will end up in the same place. Thus, any core materials still in the reactor vessel when injection is recovered would be cooled, preventing further in-vessel core degradation. In addition, injecting into a failed reactor vessel should allow an overlying pool of water to be established for debris outside the vessel.

DCH can be prevented by ensuring the reactor is depressurized before vessel failure. Because failures to depressurize in the Grand Gulf accident sequence analysis are mostly the result of operator errors, any actions taken to reduce the chance of operator error would be beneficial in reducing the likelihood of DCH, and would have the added benefit of reducing the amount of hydrogen generated in-vessel during core degradation. However, the probability of an ex-vessel steam explosion is increased when the vessel is breached at low pressure and there is water in the reactor cavity.

The balance between actions taken to mitigate DCH and actions taken to mitigate ex-vessel steam explosions cannot be resolved qualitatively.

4.4 Core-Concrete Interaction

The containment challenges described in this section occur extremely late in the accident sequence and are the result of CCI. Included are gradual over essurization from noncondensible gases, quasistatic and dynamic overpressurization as the result of hy sogen deflagrations and detonations, pedestal failure, and seal failure.

4.4.1 Definition of Challenge, Following melt-through of the vessel bottom head, core debris would collect in the in-pedestal area, where it would interact with and ablate the concrete in the reactor cavity. The consequences of CCI depend on the concrete composition and whether the cavity is initially flooded. If sufficient water is present at the time of vessel failure, corium entering the cavity may be quenched and a coolable debris bed may be formed. In this case, concrete attack may be reduced significantly by maintaining an adequate coolant flow to the debris bed to compensate for boiloff. Cooling could be provided by firewater injection to the breached vessel, or by recovery of one of the higher capacity systems. In the case of a dry in-pedestal cavity, corium entering the pedestal would react with the concrete, liberating steam and noncondensible gases. Steam generated in the process would react with zirconium in the melt to release heat and combustible gases, such as hydrogen and carbon monoxide. Noncondensible gas generation could lead to gradual overpressurization and eventual failure of containment, while ignition of the combustible gases in the dry case could result in a pressure spike that could contribute to the probability of drywell or containment failure.

The other major concern from CCI is the loss of structural integrity of the reactor vessel pedestal as a result of concrete ablation. If CCI ablates a significant portion of the pedestal, a loss of structural integrity could potentially lead to relocation of the vessel. As discussed in Section 4.3, relocation of the reactor vessel could result in suppression pool bypass. The impact of CCI on the structural integrity of the pedestal has not been fully investigated and many of the assumptions regarding its effects are based on expert opinion.10 The Reference 10 analysis listed several important points brought out by the reviewers. Dehydration of the concrete, which is enhanced by heat conduction in the metal rebar, will likely make the loss of structural integrity greater than might be predicted from the actual ablation depth. The ablation would preferentially be directed downward rather than radially, lessening the impact on pedestal integrity. Structural integrity might also be maintained by the rebar even if nearly all the concrete in the pedestal region were ablated. Because of the design of the basemat and the pedestal wall in the Mark III containments, most of the concrete ablation is taken in the basemat, both axially and radially. Only a few inches of the 3.5 ft thick pedestal wall have been predicted to be ablated by CC? (see draft report by Greene et al.) Therefore, it seems unlikely that sufficient pedestal wall ablation will result to cause in reactor vessel relocation in the short term.

The drywell temperature is expected to approach 600-1000°F during dry CCI. Under these conditions, the elastomeric seals separating the drywell from the wetwell are expected to degrade over about a 5-hour period, resulting in a suppression pool bypass area of 0.9 ft2.9 Given the relatively slow rate of gas production during CCI. a 0.9 ft² opening may be sufficient to prevent drywell pressure from being relieved through the suppression pool. The result is that fission prodacts released after about 5 hours of CCI may not be scrubbed by the suppression pool. This bypass is not expected to have inificant impact on the time at which the ultimate containment pressure is reached. The dominant contributor to containment pressure during CCI is the buildup of noncondensible gases (and steam depending on the sequence) in the containment, which occurs regardless of whether the suppression pool is bypassed. If the CCI initially occurs under an overlying pool of water, no seal damage would be expected. However, the water will be boiled away without a source of makeup.

4.4.2 Potential Failure Modes. Potential containment failure modes from CCI include gradual overpressurization from the production of noncondensibles, rapid overpressurization from combustion of hydrogen and carbon monoxide, pedestal failure resulting in vessel relocation, and drywell seal failure resulting in suppression pool bypass.

4.4.3 Potential for Mitigation. Potential actions to mitigate the threat to the containment from CCI include increasing the likelihood that the interior of the drywell pedestal is flooded, ensuring that adequate venting of noncondensible gases is provided, and providing a source of water to ensure that any CCI occurs with an overlying pool of water. Flooding of the drywell and inpedestal cavity during severe accident sequences

is likely and this probability can be increased by ensuring operator control of the upper containment pool dump valves during SBO sequences. However, any action to ensure flooding must be balanced against the increased likelihood of steam explosions. When the cavity is filled with molten core debris, the availability of one of the two paths for flooding becomes questionable. It appears likely that the mass of coriun, covering the containment drain sump would prevent the drainage of water into the pedestal from the drywell floor drains. Should this occur, the drywell water level will have to be higher than the pedestal access doorway before flooding can occur. It is not clear that any mechanism exists, after vessel breach, to cause this much flooding even if the upper containment pool has dumped. Recovery of injection after vessel breach can provide flooding.

The benefits associated with venting after vessel breach are questionable because of the high likelihood that suppression pool bypass will produce an unscrubbed release in the absence of an external filter.

5. POTENTIAL IMPROVEMENTS

Improvements for the Mark III plants can be obtained by reducing the likelihood of core damage, by increasing the containment's capability for resisting challenges, or by reducing the offsite consequences of containment failure. The basic event importance analysis performed as part of draft NUREG/CR-4550 identified those events most capable of lowering CDF if reduced or eliminated.⁴ The top CDF reduction events identified are as follows:

- Failure to recover diesel generators
- Failure to recover offsite power
- Failure of the RCIC turbine pump to run.

These events and a number of other diesel generator-related faults dominate the CDF reduction potential for Grand Gulf. Note that these events are specific to Grand Gulf; evaluations of other Mark III plants would probably identify a different set of events. Therefore, in the discussion that follows, or se attention will be given to systems that, while not important at Grand Gulf, might be of importance at other Mark III plants.

A comprehensive strategy to reduce offsite risk should address the timing and reliability of reactor vessel depressurization. First, depressurizing the reactor allows injection from low-pressure systems. At Grand Gulf, a significant portion of the SBO CDF could be eliminated if a backup source of dc power were available to the SRV solenoids. In this respect, depressurization is tied to the backup water supply to be discussed later, because depressurization could also greatly reduce the short-term SBO CDF if an alternative source of vessel injection, such as the fire water system (FWS), were available within a short period of time following depressurization. Secondly, the reactor should be depressurized at a water level that minimizes the in-vessel production of hydrogen. Revision 4 of the EPGs requires depressurization at approximately one-third core uncovery. However, BWRSAR calculations performed by ORNL for the Mark II CPI Program indicate that the reactor should be depressurized when the core is approximately two-thirds uncovered if invessel hydrogen generation during SBO is to be minimized. Two-thirds core uncovery is the depressurization level specified in Revision 3 of the EPG, a lower level than in Revision 4.^a

Next, the installed hydrogen ignition system (HIS) should function throughout a SBO in order to prevent the accumulation of a quantity of hydrogen in the containment that could threaten containment integrity in the event of an uncontrolled burn. This would provide a large reduction in the likelihood of the most risk-significant containment challenge at Grand Gulf.

The in-pedestal floor should also be dry *before*, and kept flooded *after* vessel breach. This will reduce the likelihood of FCl and CCl, and will enhance fission product retention should CCl occur.

The above actions are those expected to provide the most economical reduction in offsite risk. The following section. Also include discussions of alternative injection systems, improved vacuum breaker operation, and containment venting (with and without an external filter). These improvements partially address issues already covered by previous potential improvements, and provide small, or highly uncertain benefits at Grand Gulf. They are included because the plant risk profile, and hence the value of the improvements may be different at other Mark III facilities. The benefits and drawbacks of each of the proposed improvements are summarized in Table 5–1 and discussed in following sections.

5.1 Enhanced Reactor Depressurization Capability

If no high-pressure injection is available for coolant makeup, the vessel must be depressurized

a. S. R. Greene et al., The Response of BWR Mark III Containment to Short-Term Station Blackout Severe Accident Sequences, to be issued.

Table 5–1. Qualitative ass improvements	sessment of benefits and drawbacks of p	otential Mark III containment
Potential Improvement	Potential Benefits	Potential Drawbacks
Enhanced reactor depressurization system	Reduces frequency of some core damage sequences	Increases likelihood of ex-vessel FCI
(\$0.5M-1.4M)	Reduces amount of hydrogen generated in-vessel	
	Reduces likelihood of Direct containment heating (DCH)	
	Increases the ability to add water to the RPV	
Post-core damage reactor depressurization system (\$0.5M-1.4M)	Reduces likelihood of DCH	Increases likelihood of ex-vessel FCI
	Increases the ability to add water to the RPV	Does not change frequency of core damag
		Increases amount of hydrogen generated in-vessel
Backup water supply system (\$0.81M-2.4M)	Reduces frequency of some core damage sequences	New hardware may be expensive
	Increases likelihood of cavity flooding (see below)	
	Relatively low cost if fire protection system is used	
Hydrogen control by improved ignition system—backup power to the ignitors (\$300K)	Reduces containment failures due to hydrogen deflagrations and detonations [short-term station blackout (ST-SBO) sequences]	Increases likelihood of containment failure for [long-term station; blackout (LT-SBO) sequences]

Potential Improvement	Potential Benefits	Potential Drawbacks
Prevention of weir wall overflow	Reduces likelihood of ex-vessel FCI	May increase likelihood of suppression pool bypass
		Increases likelihood of dry CCI
Cavity flooding via upper pool_dump	Reduces likelihood of dry CCI	Increases likelihood of FCI
	Provides scrubbing of fission products should suppression pool bypass occur	Increases likelihood of hydrogen burn if dump occurs after core damage
Containment venting		
Hard-pipe vent system with dedicated power source (\$0.69M-6.1M)	Prevents late overpressure failures for transients with scram	High likelihood of suppression pool bypass may lead to increase in risk
	Preemptive venting reduces containment base	Moderately high cost
	pressure prior to core damage	May not prevent thermal failure or FCI
	Reduces probability of ex-vessel steam explosion by reducing weir wall overflow	Can lead to inadvertent release
Filtered containment vent	See above	See above
source (\$5M~50M)	Ensures scrubbing of releases	High cost

to allow injection from low-pressure systems This can be done using the ADS, with manual depressurization by the operator as a backup, should ADS fail. Since the issuance of the TMI Action Plan in NUREG-0737, the initiation logic for the ADS has been modified at some plants to increase the likelihood that the reactor will be depressurized

Table 5.1

Wassess Kings and V

when needed. A dedicated source of dc power to the SRV solenoids would increase the operability of the SRVs during severe accidents. Because of the possibility of concurrent failure of both the ac and dc power systems, the addition of a dedicated dc power supply for the SRV solenoids could potentially reduce the core damage frequency. Revision 4 of the EPGs discusses various alternative means of depressurizing the vessel. For example, interlocks could be hypassed to allow the MSIVs to be opened. This would allow use of the turbine bypass valves to reject steam to the main condenser, assuming that the main condenser was available to condense the steam. The use of these alternative methods is indicated if less than the minimum number of SRVs required for emergency depressurization is open, and the differential pressure between the vessel and the suppression chamber is above the minimum pressure required to open an SRV (50 psig is a typical value).

Once the vessel has been depressurized, a number of systems can be used for low-pressure makeup. Examples include: the condensate system, the RHR system in the LPCI mode, the LPCS system, the condensate transfer system, the fire protection system, and the service water system. Each of these sources is discussed below, along with possible difficulties that might have to be overcome before the source can be used:

> 1. Condensate system: Use of the condensate system may be limited by two basic interrelated considerations. First, if the MSIVs were closed, condenser vacuum would be required if makeup to the condenser were via a "vacuum drag" line from the CST. The available flow rate from the condensate pumps would then be limited to this makeup rate, because condenser hotwell inventory is only sufficient for a few minutes of operation at full flow although only a fraction of the full flow rate is needed in most sequences. Maintaining condenser vacuum could be difficult if auxiliary steam were not available as a motive force for the steam jet air ejectors. Steam from the auxiliary boiler could be used, but this would of course be dependent upon the availability of the auxiliary boiler. The mechanical air removal pumps could also be used, but these pumps discharge directly to the turbine build

ing exhaust plenum, bypassing the offgas treatment system. Plant-specific design differences in the balance-ofplant may also affect the condensate pump availability. During SBO, the condensate pumps would be unavailable, because they require ac power.

- 2. RHR system in LPCI mode: The RHR pumps get a signal to start upon receipt of either a low vessel level signal (30 to 36 in. above TAF) or a high drywell pressure signal (approximately 2 psig). These signals also cause the RHR system to realign to the LPCI mode; the LPC1 injection valves do not open, however, until vessel pressure decreases below a set value. Typical LPCI flow rates are on the order of 10,000 gpm per loop. The operator cannot throttle the '.PCI injection flow or realign the RHR system to any other operating mode during the first few minutes of LPCI operation. However, LPCI flow can be terminated by stopping the RHR pumps. This might be an action taken during an ATWS to prevent injection of cold water into a critical reactor. Again, during SBO, the RHR pumps would be unavailable because of the loss of ac power.
- LPCS system: The LPCS pump generally receives a signal to start at approximately the same time as the RHR pumps. Either LPCS or LPCI is capable of mitigating a design basis LOCA. The LPCS pump may also be capable of taking suction from the CST at some plants. Again, like the RHR pumps, LPCS would be unavailable during SBO.
- 4. Condensate transfer system: The above systems constitute what might be called the "normal" means of low-pressure injection. The remaining systems are sometimes referred to as "alternative" means of injection. The first of these is the condensate transfer

system. Interconnections between the condensate transfer system and the RHR and LPCS systems could allow the condensate transfer pumps to be used to inject water into the vessel via the RHR or LPCS piping. Two restrictions apply, however. First, the connections are via manual valves in the auxiliary building; an operator would have to be dispatched to the auxiliary building to open these valves. Under some circumstances, the environment in the auxiliary building could prohibit doing this. Second, the lines are rather small (on the order of 4 in, in diameter), thus limiting the injection flow rate. However, this is a source that should be considered when evaluating the overall failure probability of lowpressure injection. As for the above systems, the condensate transfer pumps would be unavailable during SBO.

Fire protection system: Plants typical-5. ly have both motor-driven and dieseldriven fire pumps, which are used to supply water to the fire mains for fire protection. However, via a hose or spoolpiece connection from the fire main to the service water system or some other system, they could also be used to inject water into the reactor vessel or the containment. The above restrictions on the use of the condensate transfer pumps also apply to the fire pumps. An operator must manually connect the fire main to some other system, like the service water system, and the flow rate is limited by the size of the hose or spoolpiece used to make the connection. Note that ac power is required, even if the diesel fire pumps are used, unless the MOVs connecting the service water system to the RHR system can be opened manually. Manual operation of these valves would require cherator entry into the auxiliary building.

Service water system: As a last-ditch effort, plant EOPs direct the operator to line up the service water system to inject into the vessel from the ultimate heat sink connection to the RHR system. These two systems are isolated from one another by two MOVs, which are operated from keylock switches in the main control room. The valves could also be opened locally, using a manual handwheel attached to the valve operator. This means of injection would also be unavailable during SBO, because ac power is needed to operate the service water pumps.

6.

Typical PRAs only give credit to the first three of these systems when evaluating the availability of low-pressure injection. The lack of operator familiarity with using the systems for this purpose is the reason the other systems are not included. This is not felt to be a valid reason for excluding them from consideration, because operators receive extensive training on potential sources of water to be used in an emergency. The use of these systems is spelled out in Revision 4 to the EPGs, further reducing the likelihood that operators would overlook them in an emergency. Inclusion of these sources would result in a reduction in the CDF contribution from TQUV seguences. At Grand Guif, this sequence was not a dominant contributor to CDF or risk. However, it might be found to be a more important contributor at some other Mark III plant.

The collowing information is provided from the ORNL work documented in the S.R. Greene et al. draft report:

"The BWRSAR calculations were performed, however, with one very important difference in assumed operator action as opposed to the procedures currently in effect at Grand Gulf. This difference has to do with the time in the short-term station blackout accident sequence at which the operators would manually actuate the ADS. Grand Gulf has implemented Revision 4 of the BWR Owners Group Emergency Procedure Guidelines (EPGs), which provide [Contingency #3 (Steam Cooling) and WS-10 (RPV Variables Worksheet)] for manual ADS actuation at a water level equivalent to 71.33% of core height, or 323 in, above vessel zero. In contrast, the Susquehanna (Mark II) procedures are based upon Revision 3 of the EPGs and call for manual ADS actuation under station blackout conditions at a water level of 28% of core height.

"In considering the question of the optimum time to manually actuate the ADS under conditions in which the core is partially uncovered and no reactor vessel water injection systems are available, it is important to consider both the temporary core cooling to be achieved and the effect upon the subsequent metal-water reactions when the core has reheated to runaway oxidation temperatures. With the core partially uncovered at the time of ADS actuation, the flashing attendant to vessel depressurization will cause the water level to fall below the core plate so that the core will later be in a steam-starved condition during the period of runaway metal-water reaction.

"Although actuation of the ADS with the reactor vessel water level at either 71% or 33% of core height will result in rapid dryout of the core region, there is a significant difference in the amount of core cooling that is achieved during the blowdown. By the time that coolant boilaway has reduced the reactor vessel water level to 33% of core height, BWRSAR predicts the highest clad temperature in the uncovered portion of the core to be about 1650°F. Three min later, the steam cooling provided by the ADS actuation is predicted to have reduced the maximum clad temperature to about 950°F. The ADS maneuver thus delays the onset of core degradation, buying time for the operators to continue efforts to restore reactor vessel water injection capability. The maximum clad temperature does not again reach 1650°F until about 15 min after the time of ADS actuation.

"If the ADS is actuated with the reactor vessel water level at 71% of core height, the maximum clad temperature in the uncovered portion of the core at the time is only about 700°F. Therefore, only a small temperature reduction is achieved by steam cooling. Table 5-2 provides a comparison of the times at which major core damage events occur for the two ADS strategies. As indicated, delaying the manual ADS actuation until the water level has decreased to about one-third core height results in a corresponding delay of 25 to 30 min in the onset of debris relocation and the subsequent core degradation events. Obviously, the delay should not be too long; it would be very undesirable to have the core already in the process of runaway metal-water reaction at the time that ADS was actuated."

5.2 Backup Water Supply System

To arrest the SBO sequences with the reactor depressurized, a low pressure source of water that is independent of ac power is needed. One such source of water is the diesel-driven fire pump. The fire pumps could be manually connected to the RHR system as outlined above. Some plants, such as Grand Gulf, may already have such a connection; others may have only a small diameter spoolpiece or a hose connection, which would severely limit the flow rate into containment. Note that the June 1989 Draft NUREG-1150 analysis of Grand Gulf (see Reference 6) did not take credit for fire water injection for preventing core damage during short-term SBC. An improvement that allows rapid align went of firewater injection could be of great benefit. This improvement would involve training and hardware modifications to produce a high probability of successful alignment of the system in the time frame required for preventing core damage during short-term SBO. Drawbacks to using the fire puraps include the manual connection that must be made to align the system, and the limited flow rates and lower discharge head that the fire pumps can produce in comparison with the RHR pumps. Also, ac power or local manual operation would

	Tir (m	ne in)
	ADS at 33% Core Height	ADS at 71% Core Height
Station blackout-initiated scram from 100% power. Independent loss of the steam turbine-driven HPCI and RCIC injection systems	0.0	0.0
Swollen water level falls below top of core	42.0	42.0
ADS system actuation	75.0	48.2
Core plate dryout	75.6	50.3
Relocation of core debris begins	106.9	79.0
First local core plate failure	111.0	82.8
Collapse of fuel pellet stacks in central core	184.2	153.1

 Table 5–2.
 Calculated timing of significant events for two ADS actuation strategies for the short-term station blackout accident sequence at Grand Gulf

be required to operate valves, unless the valve operators are de-powered, which is typically not the case.

The other identified improvement would be to ensure that power is available to the valves that must be operated. This could be done by utilizing an uninterruptible power source (a large one), or by using dc-powered motor operators for these valves

If the reactor vessel has been depressurized when the backup water supply becomes available, the backup water could be directed into the reactor vessel. For accident sequences where the reactor has been successfully shut down, the backup water supply would only have to remove the decay heat and thus could prevent core degradation or terminate core failure. For ATWS sequences, the reactor is still producing between 10 and 30% of rated steam flow (following recirculation pump trip) and thus the backup water supply could only delay core failure. If backup injection failed to prevent core damage and vessel failure, it still could be used to some benefit for reducing the threat from CCI by providing an overlying pool of water, and for adding water to the suppression pool.

5.3 Hydrogen Control by Improved Ignition Systems

This option involves either backfitting the current ac-powered HIS with an independent power supply or installing advanced hydrogen ignition devices that will operate without power. This potential improvement would ensure hydrogen control during the SBO sequences that currently dominate the Grand Gulf core damage profile. These improvements are primarily aimed at mitigating the consequences of short-term SBO sequences, because the likelihood of steaminerting during long-term SBO sequences would reduce the effectiveness of any enhanced ignition system. There is some possibility that a continuously operating ignition system could aggravate the consequences of some long-term SBO sequences by triggering a detonation should recovery of offsite power lead to containment deinerting through containment spray actuation. Two possibilities exist for this case. First, the Emergency Operating Procedures (EOPs) could

instruct the op . ators to turn off the power to the ignitors for the long-term SBO before initiation of containment sprays (i.e., deinerting containment). This would allow the burning of the hydrogen until the containment became inerted and would prevent detonations when the containment became deinerted (due to operation of the sprays) from the operation of the ignitors. While this would not ensure that there would be no detonation from other ignition sources, it would minimize the hydrogen available and the potential for detonation. The second possibility could be to operate only selected ignitors. For example, operation of the drywell ignitors could burn the hydrogen until the oxygen had been consumed. thereby reducing the amount of hydrogen available for participation in later deflagrations or detonations. Additional analysis or experimentation might reveal a potential pattern of operable ignitors and sprays that could gradually deinert containment and burn the hydrogen without any deflagration or detonation. The possibility of detonation under these circumstances is uncertain. According to Draft NUREG-1150, the shortterm SBO sequences clearly dominate the offsite risk so it is expected that the decrease in risk from short-term SBO will be significantly greater than any increase in risk for the long-term SBO.6 Again, these conclusions are specific to Grand Gulf and may not apply to other Mark III plants with a different core damage profile.

A 10–15 kW(e) generator would be needed to power the existing hydrogen ignitors. A non– Class IE generator of this size would have the advantage of being able to supply other emergency loads if desired. A dc system capable of supplying the required load could also be installed, and would have the advantage of increased reliability. However, a dc system would pose additional installation and maintenance problems.

The use of powerless catalytic ignitors is a very promising means of mitigating the threat from short-term SBO. During long-term SBO, slow ATWS, and TW sequences, steam-inerting of the containment would reduce the effectiveness of the ignitors. However, at Grand Gulf, these sequences are much less significant to risk than

short-term SBO. The risk reduction is therefore expected to be significant even though inert sequences are not affected. Such a system would be relatively inexpensive, simple, passive, and independent of any power system. However, because the powerless catalytic ignitors are larger and therefore heavier than the existing ignitors, a seismic re-analysis of the containment may be required. Further, hanging these powerless catalytic ignitors from the existing structures (such as the containment dome) poses a new potential threat to equipment below from a gravitational missile. and would thus require additional analysis. Sandia National Laboratories at Livermore has developed a prototype --- ilytic ignitor that is capable of burning hydrogen-air mixtures at hydrogen concentrations as low as 5.1 v/o.16 The Sandia design is a wetproof improvement to an earlier design that was impaired by steamcondensing environments. Also reported is the development of a low-power design that uses a fraction of the power currently required by installed systems, and that would be well suited to battery-backed operation. Siemens/Kraftwerk Union (KWU) in West Germany has also developed a passive ignitor. The KWU design has been fully tested and qualified for use in German reactors, and would presumably be available in the United States. Reference 16 provides a comparison of the KWU and Sandia designs. Either would be suitable for use in the Mark III containment and the passive design is potentially less expensive to install than an additional power supply.

5.4 Modifications to Ensure a Dry Cavity at Vessel Breach

Drywell-to-wetwell vacuum breake- ac installed at three out of four of the Mark III plants. Operation of the vacuum breakers would allow hydrogen from the wetwell to flow into the drywell and would create the potential for suppression pool bypass should they fail open or partially open. However, operation of the vacuum breakers could reduce the pressure transient from hydrogen diffusion burns and deflagrations (and one detonations, depending on the length of the pressure pulse as compared to the operating time of the vacuum breaker). This could prevent the hydrogen burns from pushing the suppression pool water over the drywell weir wall and thus flooding the drywell in-pedestal cavity. As discussed previously, this would reduce the potential for steam spikes or explosions when the reactor vessel fails. The resulting potential risk benefit from this improvement is discussed in Section 13.

During sequences with the vacuum breakers operable and open, the check valves in series with the large motor-operated vacuum breakers may cycle open and shut repeatedly. Should this occur, there is a chance that one or more of these check valves could stick open, creating a suppression pool bypass path.

The major uncertainty associated with extending vacuum breaker operation to SBO is whether the available vacuum breaker flow area is sufficient to prevent weir wall overflow. Current Draft NUREG-1150 MELCOR predictions suggest that the area is inadequate as indicated in the S.E. Dingman et al. draft report. The CPI program calculations also support this prediction, although the pressure rise calculated by MELCOR for a diffusion burn is larger than was observed in the Quarter Scale Test.

5.5 Cavity Flooding

This option would extend the operation of the upper containment pool dump valves to SBO sequences by providing backup power for valve control. By ensuring operator control of the upper pool dump valves during SBO, it should be possible to reduce the probability of dry CCI. Dumping the upper containment pool water volume to the suppression pool does not, of itself, ensure flow over the weir wall and flooding of the drywell. The weir wall is designed to hold the normal maximum suppression pool water plus the water in the upper containment pool. However, upper pool dump will increase the likelihood that other mechanisms will cause flooding, as discussed in Section 4.3.1. The Draft NUREG-1150 analysis has estimated the amount of water that would be expected to overflow the weir wall. The ORNL MELCOR analysis will provide additional information on the level of the water in the drywell inpedestal area, and the timing of the weir wall overflow. Given that sufficient water enters the drywell in-pedestal area, any CCI that occurs will occur under water. However, the chance of steam explosion will be increased if the drywell is flooded when the reactor vessel fails.

There is a potential drawback to providing a backup source of power to the upper containment pool dump valves and that is the threat that operation of the valves late in the sequence could result in an uncontrolled hydrogen burn inside the containment. This could be a particular problem if the valves were backfitted with dc-powered motor operators, because the brushes and commutators in the dc motor would provide a very good ignition source. Therefore, it is important that procedural guidance be provided to ensure the valves are operated very early during SBO, before core damage occurs, so that the threat to the containment from uncontrolled hydrogen burns is minimized and the probability of flooding is maximized. Unfortunately, this also maximizes the potential for a steam explosion.

5.6 Containment Venting

Containment venting to prevent overpressurization or to control hydrogen concentration in the wetwell is currently only considered as a last resort, when other means are unavailable or ineffective. By deliberately venting the containment, instead of allowing it to fail at its ultimate pressure capacity, it may be possible to reseal the containment at some later point in the accident and thereby reduce releases. Venting, when performed from the containment wetwell airspace, also helps reduce releases by scrubbing the effluent through the suppression pool, as long as the suppression pool has not been bypassed. The non-noble gas fission products will be scrubbed, but fission product noble gases will only be cooled. Venting may also be useful in controlling the buildup of hydrogen in the drywell, but current ORNL MELCOR calculations (S.R. Greene et al. draft report) indicate that venting would be ineffective in reducing the hydrogen threat to containment, and may actually increase the wetwell hydrogen concentration.

Venting the containment is not without potential negative consequences, also. Given an assumed drywell-to-wetwell leakage area, the Draft NUREG-1150 MELCOR calculations (S.E. Dingman et al. draft report) show the generation of gases will not occur at a high enough rate to clear the wetwell vents. The result will be releases that are unfiltered by suppression pool scrubbing if the containment is vented.

There is concern in some BWRs with Mark 1 and Mark II containments that saturated suppression pool water conditions could lead to injection failure following venting. In BWRs with Mark III containments, the ECCS pumps can pump saturated water, thus injection will continue even with a saturated pool. Therefore, sequences that are vented will not lead automatically to core damage.

The vent path at Grand Gulf is considered to be a hard-pipe system. It consists of 20-in, diameter containment supply and purge exhaust lines. The exhaust line discharges to the roof after passing through approximately 20 ft of the auxiliary building. Most of this path consists of 20-in. diameter hard pipe, with about 10 ft of HVAC ducting midway along the path. Should the HVAC ducting segment fail, the compartment at the failure location would be filled with steam. This compartment is connected to the blowout tunnels via a vent that would probably be capable of relieving enough pressure to prevent failure of the compartment door. This compartment pressure relief capability and the location of ECCS pumps in separate watertight compartments provide a measure of assurance that failure of the ductwork will not result in environmental conditions that would fail the injection systems. This venting arrangement is most likely different at each Mark III plant.

Hardened vent modifications have been considered at other BWR facilities. However, it is doubtful that the risk reduction provided by the improved systems would be sufficient to justify the cost. A minimal upgrade could consist of replacing the short segment of HVAC pipe with piping capable of handling containment pressures of 17.24 psig (the current venting limit). The addition of ac-independent vent valves that can be remotely operated would increase the usefulness of the system during SBO sequences, as the existing valves would have to be opened manually during SBO and would require entry into containment to complete the valve lineup. This would have to be done in anticipation of a severe containment challenge, because the only guidance provided in Re vision 4 of the EPGs is to vent before reaching the PCPL and environmental conditions in the containment would likely preclude entry into containment after the onset of severe core damage.

Venting could encompass the use of an external filter, such as the Filtra system proposed by the Long Island Lighting Company (Lilco) for Shoreham or the Multi-Venturi Scrubbing System (MVSS). Briefly, the Filtra system would be a gravel-filled concrete structure separate from the secondary containment, but connected to the primary containment by a high capacity hardened vent line. The system would be actuated by operator action. The gravel bed would scrub nonnoble gas fission products and the height of the structure would provide for an elevated release. Reference 17 analyzed the proposed Shoreham installation ar found that reductions in both core melt frequency and risk could be achieved. The decontamination factor (DF) for the Filtra design could be on the order of 1000 for fission product particulates, as compared to a DF of 10 to 100 for the suppression pool. Such a system is currently in use at the Barseback Nuclear Power Station in southern Sweden. The MVSS (Asea-Atom design) is being incorporated at the Oskarshamm, Forsmark, and Ringhals reactor facilities. This design uses approximately 80,000 gal of water and does not ... Iy on ac or dc power. This design is less expensive than the gravel bed Filtra design (approximately \$5M as compared to \$10-\$50M for Filtra). Given that there is normally some amount of suppression pool bypass in the Mark III containment because of drywell-towetwell leakage, and that venting exacerbates the release of fission products from containment, the external filter could significantly reduce the release of non-noble gas fission products.

6. QUANTITATIVE ANALYSIS METHODOLOGY

This section of the report describes the process used to analyze the severe ancident response of the containment. The June 1989 Draft NUREG-1150 models for Grand Gulf were used for the quantitative analysis. The Grand Gulfspecific computer codes, databases, and inputs were provided on tape from Sandia National Laboratory (SNL).

The process begins at core damage, with the response of the containment modeled using an accident progression event tree (APET). The APET models relevant severe accident phenomenology up until the point at which the sequence is terminated, either by a release of fission products from containment or by recovery of the sequence. The end states of the APET describe the possible final conditions of the containment, that is, failed, vented, or intact. Also contained in the APET end states is information describing the fission product release from containment. if there is a release. This information is used to proup APET end states with similar characteristics into accident progression bins. For each of the accident progression bins, a source term is parametrically generated. These source terms are then used to calculate the offsite consequences of the release. A flowchart of the overall analysis process is provided in Figure 6-1.

The APETs constructed for the June 1989 Grand Gulf Draft NUREG-1150 analysis were used to model containment response in this report. Each APET contains 125 questions, or top events, with many questions having several possible outcomes or branches. Therefore, the APET cannot easily be visualized; it is too large for graphical representation and the large number of end states makes it amenable only to computer manipulation.

In the Draft NUREG-1150 analysis of Grand Gulf, an APET was constructed for each of the 12 plant damage states (PDSs) identified in the front-end accident sequence analysis.⁴ The APETs themselves were analyzed using the EVNTRE event progression analysis computer code,¹⁸ which was provided, along with the necessary input data files, by SNL.

Because the APETs are so large, there are generally thousands of end states produced for each PDS that is evaluated. This is particularly true when evaluating an APET in the EVNTRE sampling mode (mode 4), where several hundred observations of the same APET produce extremely large output files. Because it is not practicable to calculate a fission product source term and offsite consequences for each end state that is generated, end states with similar characteristics are grouped into a smaller number of accident progression bins prior to performing the source term calculations. This grouping is done with the PSTEVNT computer code.19 The output from PSTEVNT consists of a set of accident progression bins associated with each PDS, along with the conditional probability of occurrence of each bin.

Source terms are then calculated for each a cident progression bin using the GGSOR param tric source term generation code.⁵ GGSOR's output consists of the isotopic release fractions and release information (timing, energy, etc.) associated with each accident progression bin.

The MELCOR Accident Consequence Code System (MACCS) is used to calculate the offsite consequences of a release.²⁰ However, because of the large number of accident progression bins involved, consequence calculations could not be performed for each bin. To reduce the required number of MACCS calculations, the PARTITION code was used to map the accident progression bins into source term groups.²¹ The output of PARTITION is a set of source term groups, along with their associated characteristics. The mapping assignments of the APET accident progression bins are also contained in the PARTITION output. This information has to be retained for input into the final risk calculation.

The next step in the analysis is to calculate conditional offsite consequences for each source term group generated by PARTITION. The following consequence measures are used in this report: (a) mean number of early fatalities, (b) mean number of latent fatalities, (c) mean population dose within a 50-mile radius of the plant, (d) mean population dose over the entire calculational grid 1000-mile radius), and (e) mean offsite cos sted with the release. Only item (c) is use. Sigulatory analysis of a potential plant improvement. The Draft NUREG-1150 MACCS input deck for Grand Gulf provided the required meteorological data, emergency response information, etc.

The final step in the analysis is to combine the plant damage state frequencies with the PARTITION source term group conditional probabilities and the conditional offsite consequences from MACCS to produce an annual risk (risk per reactor-year of operation) for each of the reported consequence measures.

The above discussion has presented a brief overview of the analysis process. Appendix A provides more details of the individual steps in the process, with the objective of tracking the flow of information through the analysis. Some of the computer files discussed in these sections are listed in Appendix B; however, some of the larger files are not listed because of space limitations. Furthermore, some details of the process are omitted, either because of lack of detailed knowledge or a decision that the information was not especially pertinent to the report.ª Current plans call for a revision to these codes by SNL to simplify the analytical process, and for these codes to be available from the National Energy Software Center at the Argonne National Laboratory in Argonne, Illinois.

a. Computer models and data not provided in this report may currently be obtained by sending a formal request to the Director, Division of Systems Research. Office of Nuclear Regulatory Research, USNRC, Washington, D.C. 20555.

7. BASE CASE BENCHMARK ANALYSIS

The initial portion of the quantitative analysis focused on benchmarking the computer codes and data files obtained from SNL, as well as those the authors wrote or modified. The objective of this benchmark exercise was to reproduce the containment failure mode probabilities and offsite risk measures reported for Grand Gulf in the June 1989 draft of NUREG-1150.⁶ Success in reproducing the Draft NUREG-1150 results would be a good indication that the various computer codes were working correctly and that the input files were correct.

7.1 Results of Accident Progression Analysis

This section presents the results of the APET analysis for each PDS and compares the results to the published results in Reference 5. Because Reference 5 presents only a limited subset of the accident progression information that is available, a full comparison could not be made. The tables in the following sections present the results of the calculations performed for this report and compare them to the published information in Reference 5.

Tables 7–1 through 7–12 present the accident progression analysis results for PDSs 1–12. For a more detailed discussion of these results, refer to Sections 2.5.1.1 through 2.5.1.12 of Reference 5.

The results from these tables agree to within 1% with those in Tables 2.5.1-1 through 2.5.1-12 in Reference 5. Thus, the base case accident progression analysis has succeeded in reproducing the results published in Reference 5.

7.2 Results of Risk Analysis

As discussed in Appendix A, the final risk calculation for this report was performed using the RISK program (see source code listing in Appendix C). This code combines the conditional consequences from MACCS with the conditional probabilities of a release from containment and the PDS frequencies from the front-end analysis.

As discussed in Appendix A, two MACCS consequence calculations were performed for the base case benchmark exercise. This was necessary because the current version of MACCS reflects significant revisions from the version used for the June 1989 draft of NUREG-1150. The revised base case uses reference time points for dispersion and radioactive decay of 0.5 for both the first and second plumes. The original case used values of 0.0 and 0.5, corresponding to the head and midpoint of the respective plume segments. Also, the revised base case specified that the growing season actions are independent of long-term actions. The original case specified that these two actions were coupled. Also, the protective action guides (permissible surface concentration) for the direct deposition pathway to milk and crops and their products by food ingestion have been corrected in the revised case. In the original analysis, the permissible surface concentrations were overly restrictive. Finally, the revised base case utilizes a corrected dose conversion file, because of a problem identified in the lung conversion dose.

Table 7-13 illustrates the base case Grand Gulf risk as published in Reference 5, the base case Grand Gulf risk that was calculated with the MACCS Version 1.5.5 input deck, and the base case Grand Gulf risk as calculated with the corrected MACCS input deck. This input deck is for MACCS 1.5.11, which is the version of MACCS that is to be released to the public. As this table indicates, the calculated results with the MACCS 1.5.5 input deck agree quite well with the values published in Draft NUREG-1150. The consequences calculated by MACCS 1.5.11 differ from those calculated by MACCS 1.5.5, but the differences are not great. As this table indicates, the base case calculations have succeeded in reproducing the Draft NUREG-1150 results. These results provide confidence that the converted NUREG-1150 code suite is running correctly with the correct input files. The following sections of the report will quantitatively evaluate the benefits of several potential containment performance improvements.

		Conditional									
Order	Bin	Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten me	ost probable bins										
1	ABBDDGCCB	3.2038E-02	Fst-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBE0L3	CL-Rpt	LCS	FLDCCI	cSRVBkr
2	ABEEAICEB	2.9264E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CnFail	LCS	noCCI	cSRVBkr
3	ABEEAGCEB	2.7369E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CL-Rpt	LCS	noCCI	cSRVBkr
4	ABEEAFCEB	2.6079E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBEOLO	CL-Lk	LCS	noCCI	cSRVBkr
5	ABEEAHCER	1.9375E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CL-VENT	LCS	noCCI	cSRVBkr
6	AAEEAFCEB	1.3074E-02	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBE0L0	CL-Lk	LCS	noCCI	cSRVBkr
7	AAEEABAEB	1.2814E-02	Fst-SB	HiZrOx	aVB	nDCH-SE	SPBE0L0	CE-Rpt	noCS	noCCI	cSRVBkr
8	AAEEAICEB	1.2597E-02	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBEOLO	CnFail	LCS	noCCI	cSRVBkr
9	ABDDDGCCB	1.1660E-02	Fst-SB	LoZrOx	LoP-LPI	LOEXSE	SPBE0L3	CL-Rpt	LCS	FLDCCI	cSRVBkr
10	AAEEEBAEB	1.1197E-02	Fst-SB	HiZrOx	nVb	nDCH-SE	SPBE2L2	CE-Rpt	noCS	noCCI	cSRVBkr
Five m	ost probable bins t	hat have VB									
1	ABBDDGCCB	3.2038E-02	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L3	CL-Rpt	LCS	FLDCCI	cSRVBkr
9	ABDDDGCCB	1.1660E-02	Fst-SB	LoZrOx	LoP-LPI	LoEXSE	SPBE0L3	CL-Rpt	LCS	FLDCCI	cSRVBkr
12	ABBDDGACB	1.0164E-02	Fst-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	cSRVBkr
13	ABBDDGCCA	1.0150E-02	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L3	CL-Rpt	LCS	FLDCCI	oSRVBkr
14	ABBDAICEB	8.5953E-03	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L0	CnFail	LCS	noCCI	cSRVBkr
Five m	ost probable bins t	that have early (TF								
7	AAEEABAEB	1.2814E-02	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBEOLO	CE-Rpt	noCS	noCCI	cSRVBkr
10	AAEEEBAEB	1.1197E-02	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBE2L2	CE-Rpt	noCS	noCCI	cSRVBkr
15	AAEEAACEB	7.8431E-03	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBE0L0	CE-Lk	LCS	noCCI	cSRVBkr
18	AAEEHBAEB	7.1341E-03	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBE3L3	CE-Rpt	neCS	noCCI	cSRVBkr
31	AABDABACB	4.2698E-03	Fst-SB	HiZrOx	LoP-nLP1	LoEXSE	SPBEOLO	CE-Rpt	noCS	FLDCCI	cSRVBkr

Table 7-1. Results of the accident progression analysis for PDS 1

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

	· 1	

Order	Bin	Conditional Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten me	ost probable bins										
1	ARRDINGACR	4.2840E-02	Fst-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	cSRVBkr
2	ARFFAIAFR	3 4970E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CnFail	noCS	BOCCI	cSRVBkr
2	AREFAGAER	3.4538E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CL-Rpt	noCS	noCCI	cSRVBkr
4	AREFAFAFR	3 1825E-02	Est-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CL-Lk	noCS	BOCCI	cSRVBkr
4	ARFEAHAFR	2 0970E-02	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBEOLC	CL-VENT	noCS	noCCI	cSRVBkr
6	AAFFAFAFR	1.6668E-02	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBE0L0	CL-Lk	noCS	noCCI	cSRVBkr
7	ABDDDCACR	1.5021E_02	Fst_SB	LoZrOx	LoP-1.PI	LOEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	cSRVBkr
9	AAFEARAFR	1 3645E_02	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBEOLO	CE-Rpt	noCS	noCCI	cSRVBkr
0	AACEALAER	1 3506F_02	Fst_SR	HiZrOx	nVB	nDCH-SE	SPBE0L0	CnFail	noCS	noCCI	cSRVBkr
10	ABBDDGACA	1.2610E-02	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	oSRVBkr
Five m	ost probable bins t	hat have VB									
1	ARRDDGACB	4.2840E-02	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	cSRVBkr
7	ARDDDGACB	1.5021E-02	Fst-SB	LoZrOx	LoP-LPI	LoEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	cSRVBkr
10	ARRDINGACA	1.2610E-02	Fst-SB	L.ZrOx	LoP-nLP1	LoEXSE	SPBE0L3	CL-Rpt	noCS	FLDCCI	oSRVBkr
13	ARBDAIAFR	1.0565E-02	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L0	CnFail	noCS	noCCI	cSRVBkr
14	ABBDAFAEB	1.0261E-02	Fst-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBEOLO	CL-Lk	noCS	noCCI	cSRVBkr
Five m	ost probable bins t	hat have early (TF								
8	AAFFARAFR	1 3645E-02	F-t-SB	HiZrOx	nVB	nDCH-SE	SPBEOLO	CE-Rpt	noCS	noCCI	cSRVBkr
13	AAEEERAER	1.1778E_02	SB.	HiZrOx	nVB	nDCH-SE	SPBE2L2	CE-Rpt	noCS	noCCI	cSRVBkr
17	AAFEHRAFR	9 1099F_03	I-SB	HiZrOx	nVB	nDCH-SE	SPBE3L3	CE-Rpt	noCS	BOCCI	cSRVBkr
19	AAFEAAAFR	8 8185E-03	Fst-SB	HiZrOx	nVB	nDCH-SE	SPBE0L0	CE-Lk	noCS	noCCl	cSRVBkr
30	ABEEAAAEB	4.7237E-03	Fst-SB	LoZrOx	nVB	nDCH-SE	SPBE0L0	CE-Lk	noCS	noCCI	cSRVBkr

Table 7–2. Results of the accident progression analysis for PDS 2

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

\$

100

e

.

Order	Bin	Conditional Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten mo	st probable bins										
1 2 3 4 5 6 7 8 9 10	ABBDDGACB ABEEAGAEB ABEEAGAEB ABEEAGAEB ABDDDGACB ABABAEAEB ABBDDGACA ABEEAGAEB AAEEAGAEB ABBDAGAEB	4.0622E-02 2.4206E-02 2.1870E-02 1.9836E-02 1.4050E-02 1.3065E-02 1.2753E-02 1.2753E-02 1.0789E-02 1.0067E-02	Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB	LoZrOx LoZrOx LoZrOx LoZrOx LoZrOx LoZrOx LoZrOx HoZrOx HiZrOx LoZrOx	LoP-nLPI nVB nVB LoP-LPI HiP-nLPI LoP-nLPI nVB LoP-nLPI	LoEXSE nDCH-SE nDCH-SE nDCH-SE LoEXSE LoDCH LoEXSE nDCH-SE nDCH-SE LoEXSE	SPBEOLO SPBEOLO SPBEOLO SPBEOLO SPBEOLO SPBEOLO SPBEOLO SPBEOLO SPBEOLO	CL-Rpt CL-Rpt CnFail CL-Lk CL-Rpt CL-Rpt CL-Rpt CL-VENT CL-Lk CnFail	noCS noCS noCS noCS noCS noCS noCS noCS	PLDCCI noCCI noCCI FLDCCI noCCI FLDCCI noCCI noCCI noCCI noCCI	cSRVBkr cSRVBkr cSRVBkr cSRVBkr cSRVBkr cSRVBkr cSRVBkr cSRVBkr
Five m	ost probable bins t	hat have VB								-	CRU7DL-
1 5 6 7 10	ABBDDGACB ABDDDGACB ABABAEAEB ABBDDGACA ABBDAIAEB	4.0622E-02 1.4050E-02 1.3065E-02 1.2753E-02 1.0067E-02	Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB	LoZrOx LoZrOx LoZrOx LoZrOx LoZrOx	LoP-nLPI LoP-LPI HiP-nLPI LoP-nLPI LoP-nLPI	LoEXSE LoEXSE LoDCH LoEXSE LoEXSE	SPBE0L3 SPBE0L3 SPBE0L0 SPBE0L3 SPBE0L0	CL-Rpt CL-Rpt CVB-Rpt CL-Rpt CnFail	noCS noCS noCS noCS noCS noCS	FLDCCI FLDCCI FLDCCI noCCI	cSRVBkr cSRVBkr oSRVBkr cSRVBkr
Five m	ost probable bins	that have early (CF								
6 16 18 20 22	ABABAEAEB AAEEABAEB AAEEEBAEB ABABBEAEB AAEEHBAEB	1.3065E-02 7.2484E-03 6.8120E-03 6.7908E-03 6.3324E-03	Fst-SB Fst-SB Fst-SB Fst-SB Fst-SB	LoZrOx HiZrOx HiZrOx LoZrOx HiZrOx	HiP-nLPI nVB nVB HiP-nLPI nVB	LoDCH nDCH-SE nDCH-SE LoDCH nDCH-SE	SPBE0L0 SPBE0L0 SPBE2L2 SPBE013 SPBE3L3	CVB-Rpt CE-Rpt CE-Rpt CVB-Rpt CE-Rpt	noCS noCS noCS noCS noCS	noCCI noCCI noCCI noCCI noCCI	cSRVBkr cSRVBkr cSRVBkr cSRVBkr cSRVBkr

 Table 7-3.
 Results of the accident progression analysis for PDS 3

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

Order	Bin	Conditional Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten m	ost probable bias										
1	BABDAGACB	3.2412E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBE0L0	CL-Rot	noCS	FLDCCI	CSEVEL
2	BABDAEACB	3.0998E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBEOLO	CVB_Rot	noCS	FLDCCI	-SPVRL-
3	BABDHBACB	2.6422E-02	Slw-SB	HiZ:Ox	LoP-nLPI	LOEXSE	SPBE3L3	CE-Rnt	noCS	FLDCCI	CSRVBL
4	BBBDAGACB	2.5715E-02	Slw-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBE0L0	CL-Rpt	noCS	ADCCI	CSRVBL
5	BABDAEAEB	2.1786E-02	Siw-SB	HiZrOx	LoP-nLP1	LOEXSE	SPBE0L0	CVB-Ret	noCS	noCCI	-SRVBL-
6	BABDBEACB	1.9932E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBE013	CVB-Rnt	noCS	FLDCCI	CSPVRL.
7	BABDAGAEB	1.9923E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBE0L0	CL_Rot	noCS	noCCI	-SPVRL-
8	BABDHBAEB	1.7605E-02	SIw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE3L3	CE-Rot	noCS	noCCI	SRVBL
9	BBBDAEACB	1.6412E-02	SIw-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBE0L0	CVB_Rot	noCS	FLDCCI	CRURE
10	BBBDAGAEB	1.5118E-02	Slw-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBEOLO	CL-Rpt	noCS	noCCI	cSRVBkr
Five n	ost probable bins t	hat have early C	F and ear	ly suppres	sion pool by	pass					
3	BABDHBACB	2.6422E-02	SIw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPRE313	CE_Rot	2300	EDCCI	CDVDL
6	BABDBEACB	1.9932E-02	Slw-SB	HiZrOx	LoP-nI PI	LOEXSE	SPREOD	CVR Ret	2200	ELDCCI	CORVEN
8	BABDHBAEB	1.7605E02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPRE31 3	CF_Rnt	noCS	noCCI	CORVER
11	BABDBEAEB	1.3284E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBEOD	CVR_Ret	noCS	noCCI	CORVEN
12	BBBDBEACB	1.1899E-02	SIw-SB	LoZrOx	Loi'-nLPI	LoEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr

Table 7-4. Results of the accident progression analysis for PDS 4

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 obse ins of the APET.

		Conditional									
Order	Bin	Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten me	ost probable bins										
1	BABDAGACB	3.6004E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPREGLO	CL-Rpt	noCS	FLDCCI	cSRVBkr
2	BABDAEACE	3.3705E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBEOLO	CVB-Rpt	noCS	FLDCCI	cSRVBkr
3	BABDHBACB	3.0306E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBE313	CE-Rpt	noCS	FLDCCI	cSRVBkr
4	BBBDAGACB	2.8669E-02	Slw-SB	LoZrOx	LoP-nLP1	LOEXSE	SPBE0L0	CL-Rpt	noCS	FLDCCI	cSRVBkr
5	BBBDAEACB	2.7144E-02	Slw-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L0	CVB-Rpt	noCS	FLDCCI	cSRVBkr
6	BABDAEAEB	2.3639E-02	Slw-SB	HiZrOx	LoP-nLP1	LOEXSE	SPBE0L0	CVB-Rpt	noCS.	noCCl	cSRVBkr
7	BABDAGAEB	2.2245E-02	Slw-SB	HiZrOx	LoP-nLPI	LOEXSE	SPBEOLO	CL-Rpt	noCS	noCCi	cSRVBkr
8	BABDBEACB	2.2193E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr
9	BABDHBAEB	2.0194E-02	Slw-SB	HiZrOx	LoP-nLP1	LoEXSE	SPBE 4L3	CE-Rpt	noCS	noCCI	cSRVBkr
10	BBBDAGAEB	1.9726E-02	Slw-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBEOLO	CL-Rpt	noCS	noCCI	cSRVBkr
Five m	ost probable bins t	that have early (F and ear	ly suppres	sion pool by	pass					
3	BABDHBACB	3.0306E-02	SIw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE3L3	CE-Rpt	noCS	FLDCCI	cSRVBkr
8	BABDBEACB	2.2193E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr
9	BABDHBAEB	2.0194E-02	SIw-SB	HiZrOx	LoP-nLP1	LOEXSE	SPBE3L3	CE-Rpt	noCS	noCCI	cSRVBkr
12	BBBDBEACB	1.5054E-02	Slw-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr
13	BABDBEAEB	1.4790E-02	slw-SB	HiZrOx	LoP-nLPI	LOEXJE	SPBE013	CVB-Rpt	noCS	noCCI	cSRVBkr

T	-	The second second		the local second s	and the second second	- FRENCE C
1able	1-0.	Refails of	the accident	progression	analysis I	OF FILD 3

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

		Conditional									
Order	Bin	Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SEVBkr
Ten mo	ost probable bins										
1	BABDHBACB	4.4345E-02	Siw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE3L3	CE-Rpt	noCS	FLDCCI	cSRVBkr
2	BABDAGACB	4.1411E-02	Slw-SB	HiZrOx	LoP-nLPi	LOEXSE	SPELOLO	CL-Rpt	noCS	FLDCCI	cSRVBkr
3	BABDAEACB	3.6972E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBEOLO	CVB-Rpt	noCS	FLDCCI	cSRVBkr
4	BBBDAGACB	3.2926E-02	Slw-SB	LoZrOx	LoP-nLPI	LOEXSE	SPBEOLO	CL-Rpt	noCS	FLDCCI	cSRVBkr
5	BABDHBAEB	2.9551E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE3L3	CE-Rpt	noCS	noCCI	cSRVBkr
6	BABDAEAEB	2.5964E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE0L0	CVB-Rpt	noCS	noCCI	cSRVBkr
7	BABDAGAEB	2.5961E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE0L0	CL-Rpt	noCS	noCCI	cSRVBkr
8	BBBDAEACB	2.5750E-02	Slw-SB	LoZrOx	LoP-nLPI	LoEXSE	SPBE0L0	CVB-Rpt	noCS	FLDCCI	cSRVBkr
9	BABDBEACB	2.4213E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr
10	BBBDAGAEB	2.0052E-02	Slw-SB	LoZrOx	LoP-nLPI	LoEver	SPBE0L0	CL-Rpt	noCS	noCCI	cSRVBkr
Five m	ost probable bins t	hat have early (F and ear	ly suppres	sion pool by	pass					
1	BABDHEACB	4.4345E-02	SIw-SB	HiZrOx	LoP-nL'/I	LOEXSE	SPBE3L3	CE-Rpt	noCS	FLDCCI	cSRVBkr
5	BABDHBAEB	2.95515-02	Slw-SB	HiZrOx	LoP-n/_P1	LoEXSE	SPBE3L3	CE-Rpt	noCS	noCCI	cSRVBkr
9	BABDBEACB	2.4213E-02	Slw-SB	HiZrOx	LoP aLPI	LOEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr
12	BBBDBEACB	1.6483E-02	SIw-SB	LoZrOx	LCP-nLPI	LOEXSE	SPBE013	CVB-Rpt	noCS	FLDCCI	cSRVBkr
13	BABDBEAEB	1.6138E-02	Slw-SB	HiZrOx	LoP-nLPI	LoEXSE	SPBE013	CVB-Rpt	noCS	noCCI	cSRVBkr

 Table 7-6.
 Results of the accident progression analysis for PDS 6

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

Order	Bin	Conditional Probabilities*	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten mo	st probable bins										
	ADADAEAED	4 1552E_02	Fst_SR	LoZrOx	HiP-nLPI	LoDCH	SPBE0L0	CVB-Rpt	noCS	noCCI	cSRVBkr
1	ADADACACD	3 8170E 02	Fet_SR	HiZrOx	HiP_nLPI	LoDCH	SPBE0L0	CVB-Rpt	noCS	noCCI	cSRVBkr
2	AAABAEACD	2.51/9E-02	Fet_SR	HiZrOx	HiP-nl Pl	LoDCH	SPBE0L0	CnFail	noCS	noCCL	cSRVBkr
2	AAABAIAEB	2.32400-02	Ect SR	HiZrOx	HiP-nl Pl	LoDCH	SPBE0L0	CL-Lk	noCS	noCCI	cSRVBkr
4	AAABAFAEB	1 9332E 02	Fet_SR	LoZrOx	HiP-nLPI	LeDCH	SPBE013	CVB-Rpt	noCS	neCCI	cSRVBkr
2	ABABBEAEB	1.622.30-02	Ect SE	Hi7rOx	HiP_nl Pl	LoDCH	SPBE2L2	CE-Rpt	noCS	noCCI	cSRVBkr
6	AAABEBAEB	1.34146-02	Est SR	LoZeOx	HiP_nI PI	LoDCH	SPBE0L0	CL-Rpt	noCS	noCCI	cSRVBkr
7	ABABAGAEB	1.32096-02	Est CD	LoZiOx	HiP nl Pl	LeDCH	SPBEOLO	CL-Lk	noCS	noCCi	cSRVBkr
8	ABABAFAEB	1.42336-6.	Eat CD	LUZION UT-	H.P. al PI	LODCH	SPBE0L0	CE-Rpt	noCS	neCCl	cSRVBk
9	AAABABAEB	1.58(4)E-02	rst-op	H TOX	HID I DI	LoDCH	SPRE010	CL-Lk	noCS	neCCI	cSRVBkr
10	AACBAFAEB	1.32036-02	FSI-3D	HIZIOX	nir-Lri	Loben	CH LICOLOG				
Five m	ost probable bins t	hat have early (TF and ear	dy suppres	sion pool by	pass					
	ADADDCACD	1 8222E 02	Eet SR	1.07:0x	HiP-nLPI	LoDCH	SPBE013	CVB-Rpt	noCS	noCCI	cSRVBkr
2	ABABBEAEB	1.622.3E-02	Eet SR	Hi7rOx	HiP-al Pl	LoDCH	SPBE2L2	CE-Rpt	noCS	noCCI	cSRVBkr
6	AAABEBAEB	1.0414E-02	Ect CR	HiZrOx	HiP_nI PI	LoDCH	SPBE013	CVB-Rpt	noCS	noCCI	cSRVBkt
1.5	AAABBEAEB	1.2330E-02	Eet SR	HiZrOx	HiP_nI PI	LoDCH	SPBE3L3	CE-Rpt	noCS	noCCI	cSRVBk
16	AAABHBAEB	1.0740E-02	Eet CD	HiZrOx	HIP_I PI	LoDCH	SPBE3L3	CE-Rpt	BOCS	noCCI	cSRVBkr
18	AACBHBAEB	9.8298E-03	131-30	THEFUA	1111 1.1.1						

 Table 7-7.
 Results of the accident progression analysis for PDS 7

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

88

.
Order	Bin	Conditional Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten me	ost probable bins										
	DAADAAAER	6.7501E_02	Slw-SE	HiZrOx	HiP-nLPI	LoDCH	SPBEOLO	CE-Lk	noCS	noCCI	cSRVBkr
	PRARAAAER	4.0410E-02	Slw-SB	LoZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Lk	noCS	noCCI	cSRVEkr
2	BAABAFAFR	2 9744E-02	Slw-SB	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CVB-Rpt	noCS	noCCI	cSRVBkr
3	BACRAAAFR	2.9640E_02	Slw-SB	HiZrOx	HiP-LPI	LoDCH	SPBE0L0	CE-Lk	noCS	noCCI	cSRVBkr
-+	DRABAFAFR	2.7446E-02	SIW-SB	LoZrOx	HiP-nLPI	LoDCH	SPBE0L0	CVB-Rpt	noCS	noCCI	cSRVBkr
6	BAABABAER	2.6864E_02	Slw-SB	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Rpt	noCS	noCCI	cSRVBkr
7	RAARAAAFA	2 0833E-02	Slw-SB	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Lk	noCS	noCCI	oSRVBkr
	BAABAAACR	1.6874E-02	SIw-SB	HiZrOx	HiP-nLPI	LoDCH	SPBE9L0	CE-Lk	noCS	FLDCCI	cSRVBkr
0	RAARRADR	1.6202E-02	Slw-SB	HiZrOx	HiP-nLPI	LoDCH	SPBE013	CE-Rpt	noCS	DłyCCł	cSRVBkr
10	BAABAGAEB	1.5858E-02	SIw-SB	HiZ.Ox	HiP-nLPI	LoDCH	SPBE0L0	CLRpt	noCS	noCCI	cSRVBkr
Five m	ost probable bins t	that have early (CF and ear	ly suppres	sion pool by	pass					
	DAADDDADD	1 62025 02	Sin SR	Hi7rOx	HiP-nI PI	LoDCH	SPBE013	CE-Rpt	noCS	DIyCCI	cSRVBkr
9	BAABBBADB	1.0202E-02	Siw_SD	HiZrOx	HiP-nI PI	LoDCH	SPBE013	CE-Lk	noCS	DIVCCI	cSRVBkr
15	BAABBAADD	1.4372E-02	Siw-SD Siw-SD	HiZrOx	HiP_nLPI	LoDCH	SPBE2L2	CE-Lk	noCS	noCCI	cSRVBkr
18	BAABEAAEB	0.0005E 02	Stw SD	LoZrOx	HiP-nl Pl	LoDCH	SPBE013	CE-Lk	noCS	DlyCCI	cSRVBkr
24	BBABBAADB	9.00036-03	SIW-3D	LoZor	HiP_ni PI	LoDCH	SPBE013	CE-Rpt	noCS	DIyCCI	cSRVBkr
23	BBABBBBADB	8.9209E-03	21M-2D	LOUGA	THE THE P	LAND CAR					

			and an an an an an and a second se		and the second se	E TYPE O
Tabla	70	Darmite of	the annual set	moorpector)	anatysis	107 103 8
1 262 2860	1-0	P.C. N1212 N 232	HR BULREAR	DINER COOPERAT	and some 2 second	Contraction 1 and the second second

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

65

Order	Bin	Conditional Probabilities ^a	ASeq_	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten me	ost probable bins										
	EAABAECER	8.7130F_02	Fst-TC	HiZrOx	HiP-oLPI	LoDCK	SPBE0L0	CVB-Rpt	LCS	noCCI	cSRVBkr
	ERABAECER	5 5191F_02	Hst-TC	LoZrOx	HiP-nLPI	LoDCH	SPBEOLO	CVB-Rpt	LCS	noCCI	cSRVBkr
2	EACRAFCER	3 5098E-02	Fst-TC	HiZrOx	HiP-LPI	LoDCH	SPB50L0	CVB-Rpt	LCS	noCCI	cSRVBkr
4	FAARRECER	3.2721E-02	Fst-TC	HiZrOx	HiP_nLP!	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBk?
5	FRARRECER	2.8106E-02	Fst-TC	LoZrOx	HiP-nLPI	LoDCH	SPBE013	CVB-Rpi	LCS	noCCI	cSRVBkr
6	FRCRAFCER	2.1369E-02	Fst-TC	LoZrOx	HiP-LPI	LoDCE	SPBE0L0	CVB-Rpt	LCS	noCCI	cSRVBkr
7	FAABAFCCB	2.1191E-02	Fst-TC	HiZrOx	HiP-nLPI	LoDCH	SPBEOLO	CVB-Rpt	LCS	FLDCCI	cSRVBkr
8	FAADAFCEB	1.7610E-02	Fst-TC	HiZrOx	HiP-nLPI	LOEXSE	SPBE0L0	CVB-Rpt	LCS	IDDen	cSRVBkr
0	FAABAFCEB	1 7548E-02	Fst-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CL-Lk	LCS	noCCI	SRVBkr
10	EACBBECEB	1.7120E-02	Fst-TC	HizrOx	HiP-LPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBk;
Five m	ost probable bins	that have early (CF and ear	rly suppres	ssion pool by	pass					
A	FAARBECER	3 2721E-02	Fst-TC	HiZrOx	HiP-nl.Pl	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
4	ERABRECER	2 \$106E-02	Fst-TC	LoZrOx	HiP-nLPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
10	EACRRECER	1 7120E-02	Fst-TC	HiZrOx	HiP-LPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
15	EACBGECEB	1.2181E-02	Est-TC	HiZrOx	HiP-LPi	LoDCH	SPBE3L3	CVB-Rpt	LCS	noCC?	cSRVBkr
20	EAABEECEB	8.3463E-03	Fst-TC	HiZrOx	HiP-nLP1	LoDCH	SPBE2L2	CVBRpt	LCS	noCCI	cSRVBkr

Table	7 0	Doculte of	the act	rident	monression	analys	as for PLa 9
1 24 1 1 24 1	A	ALL N. 19111 N. 191	2.2.25. 225.3	C TEPC 11	1021033101	CALLS NO. 7	TAIL ROOM & PLANE 1

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

.

Order	Bin	Conditional Probabilities ^a	ASeq	ZrOxid	VB	DCH-SE	SPB	CF	Sprays	MCCI	SRVBkr
Ten mo	ost probable bins										
1	FAABAADEB	4.7479E-02	Slw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Lk	ECS	noCCI	cSRVBkr
2	FACBAADEB	2.6238E-02	Slw-TC	HiZrOx	HiP-LPI	LoDCH	SPBE0L0	CE-Lk	ECS	noCCI	сSRVБkr
3	FACBABDEB	2.5470E-02	Slw-TC	HiZrOx	HiP-LPI	LoDCH	SPBE0L0	CE-Rpt	ECS	noCCI	cSRVBkr
4	FAABABBEB	2.4590E-02	SIW-TC	HiZrOx	HiP_nLPI	LoDCH	SPBEOLO	CE-Rpt	ECSnoL	noCCI	cSRVBkr
5	FBABAADEB	1.6100E-02	Slw-TC	LoZrOx.	HiP-nLPI	LoDCH	SPBEOLO	CE-Lk	ECS	noCCI	cSRVBkr
6	FACBBADEB	1.6055E-02	Slw-TC	HiZrOx	HiP-LPI	LoDCH	SPBE013	CE-Lk	ECS	noCCI	cSRVBkr
7	FAABAADDB	1.5188E-02	Slw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Lk	ECS	DlyCCI	cSRVBkr
8	FAABABDEB	1.5020E-02	Slw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Rpt	ECS	noCCI	cSRVBkr
9	FBABABDEB	1.4284E-02	SIW-TU	LoZrOx	HiP-nLPI	LoDCH	SPBE0L0	CE-Rpt	ECS	noCCI	cSRVBkr
10	FAABABBDB	1.3589E-02	Slw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBEOLO	CE-Rpt	ECSnoL	DIyCCI	cSRVBkr
Five m	ost probable bins	that have early (F and ear	ly suppres	sion pool by	pass					
6	FACEBADEB	1.6055E-02	Słw-TC	HiZrOx	HiP-LPI	LoDCH	SPBE013	CE-Lk	ECS	noCCI	cSRVBkr
13	FBABBADED	1.1330E-02	Slw-TC	LoZrOx	HiP-nLPi	LøDCH	SPBE013	CE-Lk	ECS	noCCI	cSRVBkr
16	FAABBBBBB	1.0086E-02	Slw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE013	CE-Rpt	ECSnoL	noCCI	cSRVBkr
17	FAABBADEB	9.7688E-03	SIw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE013	CE-Lk	ECS	10CC1	cSRVBkr
22	FAABBBDEB	8.0123E-03	Slw-TC	HiZrOx	HiP-nLPI	LoDCH	SPBE013	CE-Rpt	ECS	noCCI	cSRVBkr

Table 7-10. Results of the accident progression analysis for PDS 10

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

Order	Bin	Conditional Probabilities*	ASea	ZrOxid	VB	DCH-SE	SPR	CF	Sprays	MCCL	SRVB
									- sprays		
Ten mo	ost probable bins										
1	CAABAECEB	5.9874E-02	Fst-T2	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CVB-Rpt	LCS	noCCI	cSRVBkr
2	CEABAECEB	2.9842E-02	Fst-T2	LoZrOx	HiP-nLPI	LoDCH	SPBECLO	CVB-Rpt	LCS	noCCI	cSRVBkr
3	CACBAECEB	2.5372E-02	Fst-T2	HiZrOx	HiP-LPI	LoDCH	SPBE0L0	CVB-Rpt	LCS	neCCI	cSRVBkr
4	CBABBECEB	1.8297E-02	Fst-T2	LoZrOx	HiP-nLPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
5	CAABBECEB	1.8139E-02	Fst-T2	HiZrOx	HiF PI	LoDCH	SPDE013	CVB-Rpt	LCS	BOCCI	cSRVBkr
6	CBCBAECEB	1.6248E-02	Fst-T2	LoZrOx	HiP 1	LoDCH	SPBEOLO	CVB-Rpt	LCS	noCCI	cSRVBkr
7	CAABAECEA	1.5046E-02	Fst-T2	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CVB-Rpt	LCS	noCCI	oSRVBkr
8	CAABAECCB	1.4554E-02	Fst-T?	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CVB-Rpt	LCS	FLDCCI	cSRVBkr
9	CAABAFCEB	1.4449E-02	Fst-T2	HiZrOx	HiP-nLPI	LoDCH	SPBE0L0	CL-Lk	LCS	noCCI	cSRVBkr
10	CAABAICEB	1.2698E-02	Fst-T2	HiZiOx	HiP-nLPI	LoDCH	SPBE0L0	CnFaiL	LCS	noCCI	cSRVBkr
Five m	ost probable bins	that have early 6	CF and ea	rly suppres	ision pool by	pass					
4	CBABBECEB	1.8297E-02	Fst-T2	LoZrOx	HiP-nLPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
5	CAABBECEB	1.8139E-02	Fst-T2	HiZrOx	HiP-nLPI	LeDCH	SPBE0I	CVB-Rpt	LCS	noCCI	cSRVBkr
13	CAC6BECEB	1.1169E-02	Fst-T2	HiZrOx	HiP-LPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVB kr
18	CAABBECEA	9.0260E-03	Fst-T2	HiZrOx	Hir-nLP1	LoDCH	SPBE013	CVB-Rot	LCS	noCCI	oSRVBkr
20	CACBHECEB	7.9503E-03	Fst-T2	HiZrOx	HiP-LPI	LoDCH	SPBE3L3	CVB-Rpt	LCS	noCCI	cSRVBkr

Table 7-11. Results of the accident progression analysis for PDS 11

a. Probability of occurrence given the occurrence of the PDS, reraged over 250 observations of the APET.

Ten most pro 1 DA 2 DB 3 DA 4 DB 5 DA 6 DB	ABAECEB										
1 DA. 2 DB. 3 DA(4 DB) 5 DA. 6 DB(ABAECEB										
1 DA 2 DB 3 DA 4 DB 5 DA 6 DB	ADAELED	5 09745 02	Slw-T2	Hi7rOx	HiP-uLPI	LoDCH	SPBE0L0	CVB-P.pt	LCS	roCCI	cSRVBkr
2 DB 3 DA 4 DB 5 DA 6 DB	ADADCED	3.98/4L-02	Slw_T2	LoZrOx	HiP-nLPI	LoDCH	SPBEOLO	CVB-Rpt	LCS	17. N	cSRVBkr
4 DB/ 5 DA/ 6 DB/	CDAECED	2.50426-02	Slw_72	HiZrOx	HiP_LPI	LoDCH	SPBEOLO	CVB-Rpt	LCS	1	cSRVBkr
4 DB 5 DA 6 DB	CBAECER	1.93976 02	Cia T2	LoZrOx	HiP-nl Pl	LoDCH	SPPE013	CV3-Rpt	LCS	noCCI	cSRVBkr
6 DB	ABBECED	1.81305 02	Slw_T2	HiZrOx	HiP-nLPI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
0 DBG	ABBELEB	1.61396-02	Shy_T2	LoZrOx	Hip. T.PI	LoDCH	SPBEOLO	CVB-Rpt	LCS	noCCI	cSRVBkr
	CBAECEB	1.5046E 02	Shw T2	Hi7rOv	HiP-n(Pl	LoDCH	SPBE0L0	CVB-Rpt	LCS	noCCI	oSRVBkr
7 DA	ABAECEA	1.3040E-02	Shw-12 Shw_T2	HiZah	HiP_nl Pl	LoDCH	SPBE0L0	CVB-Rpt	LCS	FLDCCI	cSRVBkr
8 DA	ABAELLB	1.43346-02	Cha TT	High	HiP_nl Pl	LoDCH	SPBE0L0	CL-Lk	LCS	noCCI	cSRVBkr
9 DA. 10 DA.	ABAICEB	1.2698E-02	SIw-T2	HEZrOx	HiP-nLPI	LoDCH	SPBE0L0	CnFaiL	LCS	noCCI	cSRVBkr
Five most pr	robable bins t	hat have early (CF and ear	ly enppres	sicn pool by	pass					
		1 0000TE 00	Cl	1.70	HiP of PI	LoDCH	SPBE013	CVB-Rpt	LCS	noCCI	cSRVBkr
4 DB	ABBECEB	1.3297E-02	SIW-12	LOZACE.	LiD of PI	LoDCH	SPBE013	CVB-Rpt	LCS	aoCCI	cSRVBkr
5 DA	ABBECEB	1.8139E-02	SIW-12	ID . M	HIP I DI	LoDCH	SPREOD	CVB-Rpt	LCS	noCCI	cSRVBkr
13 DA	CBBECEB	1.1169E-02	SIW-17	IE TON	MiP of PI	LoDCH	SPRE013	CVB-Rpt	LCS	noCCI	oSRVBkr
18 DA	ABBECEA	9.0260E-03	SIW-12	HI OX	LED I DI	LoDCH	SPRE313	CVB-Rot	LCS	noCCI	cSRVBkr
20 DA	CRHECER	7.95031-13	NW-12	X1 7 1X	1111 - 1.1 1	LULAII	to a the had a thick and				

0.

Table 7-12. Results of the accident progression analy is for PDS 12

清楚

a. Probability of occurrence, given the occurrence of the PDS, averaged over 250 observations of the APET.

62

. 8

. /

	Mean Early Fatalities (per ry ^a)	Mean Latent Fatalities (per ry)	Mean 50–Mile Dose (man–rem/ry)	Mean 1000–Mile Dose (man–rem/ry)	Mean Offsite Costs (\$/ry)
NUREG-1150	8.2E09	9.4E04	5.2E-01	5.8	8.5E+03
MACCS 1.5.5	7.6509	9.3E-04	5.3E-01	5.7	8.5E+03
MACCS 1.5.11	6.2E-09	1.7E-03	7.8E01	10.4	2.2E+03
a. Rtor year.					

Table 7-13.	Grand Gulf	base case	risk com	parison
-------------	------------	-----------	----------	---------

8. QUANTITATIVE RISK ANALYSIS OF STAND-ALONE IMPROVED HYDROGEN IGNITION SYSTEM

The improvement to the HIS that was modeled was installation of a backup dc power supply to the existing ignitors, so that the HIS would be operable under SBO conditions. The backup dc power supply was modeled as having an availability of 0.95. The probability that the operators fail to actuate the HIS when required was retained from the base case APETs. Only PDSs 1, 3, 7, 8, and 10 were evaluated. These PDSs contribute over 97% of the base case risk, so limiting the evaluation to these PDSs provided a good approximation of the total benefit.

8.1 Effects of Improved HIS on Containment Response

This section discusses the effects on containment response of a modification to supply backup power to the HIS, so that it is functional during SBO sequences. Refer to Appendix D for the APET modifications usc to model the improved HIS.

Continuously available laydrogen ignitors provide a distributed ignition source that burns the hydrogen released during core degradation in a diffusion flame whenever flammable conditions exist in containment. Table 8–1 shows the effects of the improved HIS on the conditional probabilities of the presentation bins used in the June 1989 draft of NUREG-1150. These bins are arranged in decreasing order of severity of failure mode (in terms of risk potential).

Table 8–1 illustrates a number of interesting effects of the improved HIS on containment response, some of which may not be intuitive. First, note that backup power to the ignitors does not affect PDSs 8 and 10. In PDS 8 (long-term SBO), the drywell and containment are inert to hydrogen burns; therefore, the ignitors cannot burn nydrogen, so there is no change from the base case. Note that containment sprays are failed in PDS 8, so the containment is not deinerted by late recovery of sprays. This is typical of all but one of the long-term SBO PDSs at Grand Gulf. However, this result may not be generically applicable to all Mark III plants. In PDS 10 (ATWS), ac power is available in the base case, so adding a backup power source has no effect.

The probability of diffusion flames consuming the hydrogen prior to vessel breach is increased in the short-term SBO PDSs. The probability of diffusion burns remains <1.0 because the ignitors are assumed to be available 95% of the time, with the human error probability for failure to turn the ignitors on remaining unchanged from the base case value. The probability of a deflagration or detonation in the wetwell prior to vessel - each is significantly reduced in the short-term SBO PDSs. Again, there is no change in PDSs 8 and 10, because there were no deflagrations or detonations in the base case. As a result of the reduction in deflagrations and detonations, the level of containment impulse loading before vessel breach is reduced. The frequency of the higher combustion pressure loads is redistributed to the two lowest pressure categories.

The amount of containment and drywell leakage induced by deflagrations and detonations prior to vessel breach is reduced in the short-term SBO PDSs. The amount of *no leakage* is increased significantly. The amount of suppression pool bypass following early combustion is also reduced from the base case.

In the short-term SBO PDSs, there is a reduced probability that the reactor cavity will be flooded (defined as >16.4 ft of water) at the time of vessel breach. However, the reduction in the frequency of flooding is redistributed to an increased probability of having a wet cavity (0–16.4 ft of water). The probability of having a dry cavity at the time of vessel breach is also reduced. The implication is that a reduction in wetwell deflagrations prior to vessel breach decreases the probability of cavity flooding, but the diffusion burns in the

					Conditio	onal Probability				
Accident Progression Bin	(S	PDS 1 F-SBO)	(S	PDS 3 T-SBO)	(5	PDS 7 T-SBO)	F (L)	PDS 8 F-SEO)	P (A	DS 10 TWS)
VB, ^a early CF, ^b early	HIS:	3.97E-02	HIS:	1.43E-01	HIS:	1.77E-01	HIS:	2.94E-01	HIS:	1.04E-03
SPB, ^c no CS ^d	Base:	9.63E-02	Base:	2.00E-01	Base:	2.84E-01	Base:	2.94E-01	Base:	1.03E-03
VB, early CF, early	HIS:	6.96E-02	HIS:	0.00E+00	HIS:	0.00E+00	HIS:	0.00E+00	HIS:	2.48E-01
SPB, CS	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	0.00E+00	Base:	2.46E-01
VB, early CF, late SPB	HIS:	9.61E-03	HIS:	1.02E-02	HIS:	4.14E-03	HIS:	1.42E-03	HIS:	3.66E-03
	Base:	7.91E-03	Base:	8.39E-03	Base:	3.15E-03	Base:	1.42E-03	Base:	3.63E-03
VB, early CF, no SPB	HIS:	1.91E-01	HIS:	2.42E-01	HIS:	3.77E-01	HIS:	6.58E-01	HIS:	5.91E-01
	Base:	1.13E-01	Base:	1.68E-01	Base:	3.04E-01	Base:	6.58E-01	Base:	5.86E-01
VB, late CF	HIS:	2.47E-01	HIS:	2.85E-01	HIS:	3.55E-01	HIS:	4.65E-02	HIS:	0.00E+00
	Base:	2.88E-01	Base:	3.10E-01	Base:	3.31E-01	Base:	4.65E-02	Base:	0.00E+00
VB, vented	HIS:	5.32E-02	HIS:	5.84E02	HIS:	0.00E+00	HIS:	0.00E+00	HIS:	1.47E-01
	Base:	4.93E-02	Base:	5.07E02	Base:	0.00E+00	Base:	0.00E+00	Base:	1.55E-01
VB, no CF	HIS:	5.56E-02	HIS:	4.30E-02	HIS:	7.48E-02	HIS:	0.00E+00	HIS:	0.00E+00
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base:	0.00E+00	Base:	0.00E+00
No VB	HIS:	3.24E-01	HIS:	2.08E-01	HIS:	1.06E-02	HIS:	0.00E+00	HIS:	8.43E-03
	Base:	3.24E-01	Base:	2.09E-01	Base:	1.05E-02	Base:	^.00E+00	Base	8.87E-03

 Table 8-1.
 Conditional probability of accident progression bins at Grand Gulf—improved HIS case (initial run)

a. Vessel breach.

b. Containment failure.

c. Suppression pool bypass.

d. Containment sprays.

wetwell result in a reflux of water over the weir wall, which decreases the probability that the cavity will be dry at the time of vessel breach.

Table 8-1 also indicates an *increase* in early containment failure in the short-term SBO PDSs. There is an especially large increase in the conditional probability of early containment failure with no suppression pool bypass. This result was unexpected, and led to a detailed investigation of the Grand Gulf APET model and the user functions used to calculate various parameters in the APET.

The investigation began with a detailed examination of the frequency output files from EVNTRE. The first event with an unexpected behavior in the improved HIS sensitivity is Question 57, which addresses the level of hydrogen in the drywell before vessel breach. In the improved HIS case, there is an increase in the probability that the drywell hydrogen concentration will be detonable or combustible at this point in the sequence. This immediately leads to two questions: (a) how is the hydrogen getting into the drywell, and (b) why isn't it burned by the drywell ignitors?

The second question is easier to answer. The hydrogen is not burned by the drywell ignitors because the Draft NUREG-1150 model for Grand Gulf did not include these ignitors. This was confirmed by discussions with Sandia personnel, who indicated that these ignitors were not thought to be important for the sequences of interest, because of the very limited time window of drywell flammability expected in the base case sequences.

The question about how the hydrogen gets into the drywell is harder to answer. The obvious place to begin looking is with those questions that address suppression pool bypass prior to vessel breach. Question 52, which addresses pool bypass following early combustion events, turns out to be the relevant question. As mentioned above, the overall conditional probability of pool bypass is lower in the improved HIS case than in the base case. However, there is an increase in Case 4 of Question 52. The mode of pool bypass in Case 4 involves failure of the large drywell-to-wetwell vacuum breakers as a result of diffusion burns in the wetwell. Recovery of ac power makes these vacuum breakers operable, and when wetwell pressure exceeds drywell pressure by a predetermined amount, these vacuum breakers are opened to eliminate the pressure differential. If diffusion burns are occurring in the wetwell when these valves open, hot combustion gases can pass through the valves, potentially causing them to fail in the open position. Although the probability of valve failure is low (mean failure probability is 0.05), the large increase in the likelihood of diffusion burns in the improved HIS case causes a significant increase in this mode of pool bypass.

The next step in the investigation was to examine how the hydrogen concentrations in the drywell and wetwell are manipulated within the APET user function. The function of interest is IBASP, which is called by Question 55 and calculates containment pressure prior to vessel breach. The portion of this user function that evaluates Case 3 of Question 55 (large pool bypass) calculates the concentration of hydrogen in the drywell by multiplying the wetwell hydrogen concentration by the ratio of drywell-to-wetwell volume. In other words, the drywell and wetwell volumes are assumed to be well-mixed and a fraction of the wetwell hydrogen is transported by the user function into 'he drywell via the bypass path afforded by the failed vacuum breaker. This "extra" hydrogen that goes back into the drywell increases the drywell flammability, leading to an increased probability of drywell failure from impulse loading at the time of vessel breach, as a result of hydrogen detonation in the drywell.

However, answering the two questions above about hydrogen concentration in the drywell does not resolve all the difficulties with the improved HIS sensitivity. Although the path by which hydrogen enters the drywell from the wetwell has been identified, a question remains ε_{1} to why this hydrogen is not consumed by the diffusion burns in the wetwell. The answer to this question, and the real deficiency with the Grand Gulf model, lies in Question 46, which asks about the efficiency with which hydrogen is burned in the containment prior to vessel breach.

There are two parameters in Question 46: the effective efficiency and the actual efficiency. The meaning of these parameters is not documented in the APET, so a discussion of these parameters was held with personnel from SNL. SNL explained that the effective efficiency is used as a non-adiabatic correction factor in calculating the pressure " sulting from a hydrogen burn. The actu actuating the amount of hydrogen (and oxygen) consumed in a burn. These parameters are inputs to user function EPBRN, which calculates the peak pressure rise in containment from a hydrogen burn prior to vessel breach. EPBRN also calculates the fraction of hydrogen consumed by the burn, based on the actual burn efficiency read in from the APET.

Case 1 of Question 46 addresses diffusion burns. Both the effective and actual burn efficiencies are set to zero in this case. Therefore, the diffusion burns consume *no* hydrogen; the molar fraction of hydrogen is the same before and after a diffusion burn. This effect was acknowledged by SNL personnel, who suggested that an actual efficiency of 100% would more closely approximate available data from the Quarter-Scale Tests.

An actual diffusion burn efficiency of 0% allows hydrogen to build up in the wetwell even in those case where the ignitors operate. When the vacuum breakers fail, a fraction of this hydrogen is transported into the drywell, where it can detonate at vessel breach. However, the larger problem is the hydrogen that remains unburned in the wetwell, because this hydrogen presents a particularly severe threat to containment integrity as a result of deflagrations and detonations following vessel breach. Because the improved HIS reduces the probability of deflagration- and detonationinduced containment failure before vessel breach (via APET logic, not via user function calculation), hydrogen that does not burn early (before vessel breach) is more likely to burn at or following vessel breach if an ignition source is available. This is the reason for the increased probability of containment failure at the time of vessel breach in the improved HIS case.

To more realistically model the HIS improvement, Question 46 was modified by replacing the actual diffusion burn efficiency of 0% with the recommended efficiency of 100%. With this change, a diffusion burn in the wetwell removes all of the hydrogen, unless the reaction becomes oxygen-limited. No attempts were made to model ignitors in the drywell, because they are not expected to have a significant effect on the progression of the sequence.

Changes were made to the improved HIS APETs and sampling files for PDSs 1, 3, and 7. No changes were made for PDSs 8 and 10, because no hydrogen burns were predicted in the base case for these sequences (containment is inert). The base case APET and sampling files for PDS 1 were also modified to ensure that the change in actual burn efficiency does not significantly alter the base case results. No significant change to the base case was observed, because the dominant PDSs are SBOs, where the HIS is generally unavailable due to a lack of ac power. Table 8–2 indicates the presentation bins for PDS 1, for the original and revised base case.

As Table 8–2 indicates, increasing the diffusion burn actual efficiency from 0% to 100% produces only slight changes in the base case conditional containment failure probabilities. There is a slight decrease in early containment failures, due to the elimination of detonations in the drywell at the time of vessel breach. The slight increase in late containment failures is the result of shifting some failures that originally would have occurred early to late failures occuring after vessel breach.

Table 8-3 shows the effects of increasing the diffusion burn efficiency in the improved HIS case. Results are presented only for PDSs 1, 3, and 7, because no hydrogen burns were predicted for PDS's 8 and 10.

The 100% efficiency values from Table 8-3 should be compared with the base case containment failure probabilities from Table 8-1 to judge the effect of the HIS improvement. This comparis indicates a significant shift from early contal iment failure to no containment failure and late containment failure. Although overall risk is not calculated for the HIS improvement, this shift away from early containment failure is expected to bring about a reduction in offsite risk.

Table 8-4 compares the weighted average accident progression bin probabilities for the improved HIS case with the base case. Figain, these results are from the improved HIS case with a 100% actual diffusion burn efficiency.

Table 8-2.	Effect of diffusion burn efficiency	on base case containment failure
	probabilities-PDS 1	

Containment Failure Bin	Conditional Probability Burn Efficiency = 0%	Conditional Probability Buth Efficiency = 100%
VB. ^a early CF, ^b early SPB, ^c no CS ^d	9.63E-02	9.63E-02
VB, early CF, early SPB, CS	4.81E02	4.48E-02
VB, early CF, late SPB	7.91E-C.	7.49E03
VB, early CF, no SPB	1.13E-01	1.07E-01
VB, late CF	2.88E-01	2.94E-01
VB, vented	4.93E-02	5.07E02
VB, no CF	5.62E-02	5.79E-02
No VB	3.24E-01	3.24E-01
Vessel breach.		
Containment failure.		
Suppression pool bypass.		
Containment sprays.		

Containment Failure Bin	P	DS 1	F	PD3 3	F	PDS 7
VB, ^a early CF, ^b early	0%: ^e	3.97E-02	0%:	1.43E-01	0%:	1.77E-01
SPB, ^c no CS ^d	100%: ^f	2.59E-02	100%:	7.47E-02	100%:	1.34E-01
VB, early CF, early	0%:	6.96E-02	0%:	0.00E+C0	0%:	0.00E+00
SPB, CS	100%:	2.10E-02	100%:	0.00E+O0	100%:	0.00E+00
VB, early CF,	0%:	9.61E-03	0%:	1.02E-02	0%:	4.14E-03
late SPB	100%:	1.90E-03	100%:	2.19E-03	100%:	3.10E-03
VB, early CF,	0%:	1.91E-01	0%:	2.42E-01	0%:	3.77E-01
no SPB	100%:	5.31E-02	100%:	9.87E-02	100%:	2.92E-01
VB, late CF	0%;	2.47E-01	0%:	2.86E-01	0%:	3.55E-01
	100%;	3.88E-01	i00%:	4.51E-01	100%:	4.54E-01
VB, vented	0%:	5.32E-02	J%:	5.84E-02	0%:	0.00E+00
	100%:	8 47E-02	100%:	9.00E-02	100%:	0.00E+00
VB, no CF	0%:	5.56E-02	0%:	4.30E-02	0%:	7.48E-02
	100%:	9.14E-02	100%;	6.61E-02	100%:	1.05E-01
No VB	0%:	3.24E-01	0%:	2.08E-01	0%:	1.06E-02
	100%;	3 24E-01	100%:	2.08E-01	100%:	1.06E-02

Table 8-3. Effect of diffusion burn efficiency on containment failure probabilities—improved HIS case

a. Vessel breach.

b. Containment failure.

c. Suppression pool bypass.

d. Containment sprays.

e. 0%: Original improved HIS case with diffusion burn efficiency of 0%

f. 100%, $\theta = \approx 1$ HIS improvement with diffusion burn efficiency of 100%

Accident Progression Bin	Base Case Conditional Probability	Improved HIS Conditional Probability
VB, ^a early CF, ^b early SFB, ^c no CS ^d	1.22E-01	4.65E02
VB, early CF, early SPB, CS	4.61E02	2.47E-C2
VB, early CF, late SPB	7.23E-03	2.24E03
VB, early CF, no SPB	1.57E01	1.06E-01
VB, late CF	2.83E01	3.80E-01
VB, vented	4.49E02	7.42E-02
VB, No CF	5.44E02	8.75E-02
No VB	2.70E-01	2.70E-01
Vessel breach.		
Containment failure.		
Suppression pool bypass.		
Containment sprays.		

Table 8-4. Weighted average accident progression bin probabilities-improved HIS

9. QUANTITATIVE RISK ANALYSIS OF STAND-ALONE POST-CORE DAMAGE REACTOR DEPRESSURIZATION

This improvement consists of a backup supply of dc power to the SRV solenoids, allowing the reactor to be depressurized during sequences in which the station batteries (the normal source of power to the SRV solenoids) are failed or depleted. There are three aspects to enhanced depressurization, as follows. (a) it can prevent core damage in those sequences where a low-pressure injection system is available, (b) it can allow sequences that have progressed to core damage to be recovered in-vessel, and (c) it can prevent high-pressure melt ejection in those cases where in-vessel recovery is not successful. It should be noted that the potential improvement, as modeled in this analysis, addresses only items (b) and (c). Item (a) was to be addressed, but calculations could not be completed because of difficulties in obtaining Level-1 PRA data in a format suitable for evaluation.

9.1 Effects of Post-Core Damage Depressurization on Containment Response

Table 9–1 presents the effects of the post-core damage depressurization system on the conditional probabilities of the accident progression presentation bins used in the June 1989 draft of NUREG-1150. These bins are arranged in decreasing order of severity of the failure mode (in terms of risk potential). Refer to Appendix D for the APET modifications used to model potential improvements.

Post-core damage depressurization has a number of effects on the progression of the accident sequence after the onset of core degradation. First, depressurization decreases the probability that an SRV tailpipe vacuum breaker will stick open. This effect is attributable to the fewer number of demands placed on the SRVs when the RPV is depressurized. This effect would be greater if the depressurization occurred *before* core damage (i.e., in accordance with Revision 3 of the EPGs). Secondly, and perheps more interesting. is the effect of depressurization on the probability of in-vessel recovery. As Table 9–1 indicates, the probability of in-vessel recovery (no VB) is higher in the depressurized case for all PDSs except 1 and 8. The increase in vessel breach probability in PDS 1 occurs in spite of the fact that the probability of recovering injection during core degradation is higher for all PDSs in the depressurized case, except PDS 8, where it is 0.0 in both the sensitivity and base case. The reason is the increased probability of in-vessel steam explosions that fail the RPV in the depressurized case.

The expert panel convened for NUREG-1150 quantified in-vessel steam explosion as a pressure-dependent phenomenon. The mean probability of an in-vessel steam explosion is approximately one order of magnitude higher at low pressure than at normal operating pressure, because the necessary trigger for the explosion is thought to be more likely at low pressures. In PDS 1, there is a significant probability of recovering injection in the base case. This probability does increase in the depressurized case, but the increase is not enough to offset the increased probability of in-vessel steam explosion in the cases where injection is not recovered. In the other PDSs (except PDS 8), the increase in the probability of recovering injection is large enough to offset the increased explosion probability; thus, the probability of vessel breach increases in PDS 1 and decreases in the other PDSs

The increased probability of in-vessel steam explosion is also the reason for the increased probability of early containment failure indicated for PDSs 1 and 8 in Table 9–1. The increased probability of in-vessel steam explosions makes α mode failure of the containment more likely in the depressurized case, resulting in an increased probability of early containment failure at the time of vessel breach. Several points need to be grasped to completely understand why these results are being observed. First, the NUREG-1150 work on Grand Gulf followed the work on other plants.

					Conditio	nal Probability					
Accident Progression Bin	(5	PDS 1 [-SBO]	(S	PDS 3 F-SBO)	(5	PDS 7 (ST-SBO)		PDS 8 (LT-SBO)		PDS 10 (ATWS)	
VB, ^a early CF, ^b	Dep.:	1.13E01	Dep.:	1.74E-01	Dep .	1.47E-01	Dep.:	3.56E01	Dep.:	4.11E-04	
early SPB, ^c no CS ^d	Base:	9.63E02	Base:	2.00E-01	Base:	2.84E-01	Base:	2.94E01	Base:	1.03E-03	
VB, early CF, early	Dep.:	5.42E-02	Dep.:	0.00E+00	Dep.:	0.00E+00	Dep.:	0.00E+00	Dep.:	1.46E-01	
SPB, CS	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	0.00E+00	Base:	2.46E-01	
VB, early CF, late SPB	Dep.:	1.23E-02	Dep.:	1.24E-02	Dep.:	1.06E-02	Dep.:	1.22E-02	Dep.:	2.25E-02	
	Base:	7.91E-03	Base:	8.39E-03	Base.	3.15E-03	Base:	1.42E-03	Base:	3.63E-03	
VB, early CF, no SPB	Dep.:	1.28E-01	Dep.:	1.33E01	Dep.:	1.59E01	Dep.:	2.69E01	Dep.:	4.35E-01	
	Base:	1.13E-01	Base:	1.68E01	Base:	3.04E01	Base:	6.58E01	Base:	5.86E-01	
VB, late CF	Dep.:	2.95E-01	Dep.:	3.08E01	Dep.:	3.66E-01	Dep.:	3.60E-01	Dep.:	0.00E+00	
	Base:	2.88E-01	Base:	3.10E01	Base:	3.31E-01	Base:	4.65E-02	Base:	0.00E+00	
VB, vented	Dep.:	4.67E-02	Dep.:	4.70E-02	Dep.:	0.00E+00	Dep.:	0.00E+00	Dep.:	1.18E-01	
	Base:	4.93E-02	Base:	5.07E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	1.55E-01	
va. no CF	Dep.:	4.86E-02	Dep.:	3.57E-02	Dep.:	4.87E-02	Dep.:	2.37E-03	Dep.:	0.00E+00	
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base:	0.00E+00	Base:	0.00E+00	
No VB	Dep.:	2.91E-01	Dep.:	2.78E-01	Dep.:	2.67E-01	Dep.:	0.00E+00	Dep.:	2.78E+01	
	Base:	3.24E-01	Base:	2.09E-01	Base:	1.05E-02	Base:	0.00E+00	Base:	8.87E-03	

Table 9-1. Conditional probability of accident progression bins at Grand Gulf-post-core damage reactor depressurized case

a. Vessel breach.

b. Containment failure.

c. Suppression pool bypass.

d. Containment sprays.

notably Peach Bottom. Thus, issues that were considered to be potentially important at Peach Bottom were carried over to Grand Gulf, at least as a starting point. Secondly, the important issues are those that were perceived to have the greatest probabilities or consequences. Once they were identified, the remaining small issues were ignored. And finally, this project is considering the effects of the "small" issues after the "large" issues have ostensibly been significantly reduced. In a Mark I plant, the reactor head is within a few feet of the containment (or drywell) head. If the reactor head in a Mark I were to be failed by invessel steam explosion, it would have a reasonable mehability of hitting the containment head, and cossibly a non-trivial probability of failing containment. In a Mark III (or a large dry containment such as at Zion), the reactor head is located approximately 100 feet below the containment. In this case, the reactor head would have to fail and travel a significant distance and still maintain sufficient energy to fail containment. In the case of Grand Gulf, this means failing the steel liner and a reinforced concrete structure. This result should not be of concern, in any event, because APET end states with alpha mode failure are of very low probability and do not have a large impact on offsis "isk.

In PDSs 3, 7, and 10, the increase in the probability of recovering injection during core degradation is large enough to offset the increased probability of in-vessel steam explosion, thus giving rise to a decrease in the probability of ves-

sel breac's, and a corresponding decrease in the probability of early containment failure.

There is also an effect on the amount of zirconium oxidized at the time of vessel breach, and thus on the amount of hydrogen produced (Question 69). This question addresses ex-vessel oxidation phenomena, namely high-pressure melt ejection and ex-vessel steam explosion. In all PDSs except PDS 1, there is a significant shift toward lower zirconium oxidation, because of the elimination of high-pressure melt ejection. In PDS 1, there is an increase in the probability of ex-vessel steam explosion because of the increase in the probability of vessel breach at low pressure (see the discussion of in-vessel steam explosion above). Additional hydrogen is generated during the ex-vessel steam explosion, so there is a shift away from the lowest oxidation category toward the next higher one. This is accompanied by a decrease in the highest oxidation category, also, because of the elimination of highpressure melt ejection in the depressurized case. Overall, there is a shift from the lighest and lowest oxidation categories to the middle categories.

Table 9–2 presents the conditional accident progression bin probabilities weighted by the PDS frequencies. Post-core damage depressurization results in a slight overall decrease in the probability of early containment failure. Late containment failures have increased slightly, as has the probability of in-vessel recovery. This latter change occurs in spite of the decreased probability of in-vessel recovery in PDS 1 as previously discussed.

Accident Progression Bin	Base Case Conditional Probability	Depressurized Case Conditional Probability
VB, ^a early CF, ^b early SPB, ^c no CS ^d	1.22E-01	1.21E01
VB, early CF early SPB, CS	4.61E-02	4.93E02
VB, early CF, late SPB	7.23E-03	1.21E-02
VB, early CF, no SPB	1.57E-01	1.44E-01
VB, late CF	2.83L-01	2.98E-01
*'B, vented	4.49E-02	4.21E-02
¥₿, no CF	5.44E02	4.68E-02
No VB	2.70E-01	2.77E-01
Vessel breach.		
Containment failure.		
Suppression pool bypass.		
Containment sprays.		

Table 9-2. Weighted average accident progression bin probabilities-enhanced depressurization

10. QUANTITATIVE RISK ANALYSIS OF STAND-ALONE ENHANCED VACUUM BREAKER OPERABILITY (NO WEIR WALL OVERFLOW)

Enhanced vacuum breaker operability was discussed earlier as a potential means of ensuring no weir wall overflow in order to mitigate the threat to containment from ex-vessel steam explosions. However, recent work by ORNL (S. R. Greene et al. draft report) indicates that enhanced vacuum breaker operability alone may not accomplish this task. Therefore, improvements to the vacuum breakers will not be examined further. The evaluated improvement is still prevention of weir wall overflow, but the means by which this could be ensured have not been examined in this analysis. Possible ways of implementing this improvement would be to increase the height of the weir wall or vent the containment prior to depressurizing the reactor vessel.

10.1 Effects of No Weir Wall Overflow on Containment Response

Table 10–1 presents the effects of not having weir wall overflow on the conditional probabilitics of the accident progression presentation bins used in the same 1989 draft of 'NUREG-1150. These bins are arranged in decreasing order of severity of the failure modes (in terms of offsite consequence potential). See Appendix D for a discussion of the APET modifications used to model this improvement.

Table 10–1 indicates that preventing weir wall overflow results in a shift in early containment failures with early suppression pool bypass to early containment failures with either late pool bypass or no bypass. This shift appears to be due to the decrease in ex-vessel steam explosions; however, ex-vessel steam explosions are not eliminated. The conditional probability of an exvessel steam explosion is still quite large, even if weir wall overflow is prevented. This is especially so in PDSs 1 and 8, where there is little or no reduction in the conditional probability of an exvessel steam explosion. Eliminating weir wall overflow does not ensure a dry cavity. Water can still accumulate as a result of recirculation pump seal leakage or drywell upper head failure. If there is no water in the reactor pedestal cavity (i.e., <656 ft3) before failure of the reactor vessel but injection is present, the assumption is made that sufficient water will come out of the reactor vessel concurrent with, or shortly after, the corium then there will be a possibility of an exvessel steam explosion.

Table 10-1 also indicates an increase in the conditional probability of late containment failure, with an accompanying decrease in the probability that the containment survives intact (VB, No CF). This increase is primarily att - buted to a large increase in the probability . APET end states in which CCI occurs in a dry cavity. In this context, dry means there is insufficient water present to prevent a prompt and vigorous CCI. The CCI generates hydrogen and noncondensible gases, which can threaten containment integrity via hydrogen combustion and gradual overpressurization, respectively. With the prevention of weir wall overflow, there is generally a significant increase in the probability of late hydrogen deflagrations and detonations, accompanied by a smaller decrease in the probability of eventual overpressurization by noncondensible gases. The net effect is an increase in the probability of late containment failure and a decrease in the probability of containment survival, as indicated in Table 10-2.

Accident Progression Bin					Condition	al Probability				
	PI (ST-	OS 1 SBO)	P (ST	DS 3 -SBO)	P (ST	DS 7 -SBO)	PDS 8 (LT-SBO)		PD (AT	S 10 WS)
VB, ^a early CF, ^b	NWWO ^c :	8.52E-02	NWWO:	1.64E-01	NWWO:	2.48E-01	NWWO:	2.94E-01	NWWO:	4.15E-04
early SPB, no CS	Base:	9.63E-02	Base:	2.00E-01	Base:	2.84E-01	Base:	2.94E-01	Base:	1.03E-03
VB, early CF,	NWWO:	3.63E-02	NWWO:	0.00E+00	NWWO:	0.00E+00	NWWO:	0.00E+00	NWWO:	1.21E-01
early SPB, ^d CS ^e	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+(s)	Base:	0.00E+00	Base:	2.46E-01
VB, early CF, late	NWWO.	2.09E-02	NWWO:	2.70E-02	NWWO:	2.80E-02	NWWO:	2.09E-03	NWWO:	3.12E-02
SPB	Base:	7.91E-03	Base:	8.39E-03	Base:	3.15E-03	Base:	1.42E-03	Base:	3.63E-03
VB, early CF, no SPB	NWWO:	1.22E-01	NWWO:	1.82E01	NWWO:	3.14E-01	NWWO:	6.57E-01	NWWO:	6.84E-01
	Base:	1.135-01	Base:	1.68E01	Base:	3.04E-01	Base:	6.58E-01	Base:	5.86E-01
VB, late CF	NWWO:	3.33E01	NWWO:	3.48E01	NWWO:	3.77E01	NWWO:	4.01E-02	NWWO:	0.00E+00
	Base:	2.88E01	Base:	3.10E01	Base:	3.31E01	Base:	4.65E-02	Base:	0.00E+00
VB, vented	NWWO:	4.43E02	NWWO:	4.73E-02	NWEO:	0.005+00	NWWO:	0.00E+00	NWWO:	1.55E-01
	Base:	4.93E02	Base:	5.07E-02	Pase	0.00E+00	Base:	0.00E+00	Base:	1.55E-01
VB, no CF	NWWO:	2.23E-02	NWWO:	1.21E02	NWWO-	2.22E-02	NWWO:	6.36E-03	NWWO:	0.00E+00
	Base:	5.61E-02	Base:	3.75E02	Base	6.53E-02	Base:	0.00E+00	Base:	0.00E+00
No VB	NWWO:	3.24E-01	NWWO:	2.10E-01	N WWO:	1.05E-02	NWWO:	0.00E+00	NWWO:	8.87E-03
	Base:	3.24E-01	Base:	2.09E-01	Base:	1.05E-02	Base:	0.00E+00	Base:	8.87E-03

Table 10-1. Conditional probability of accident progression bins at Grand Gulf-no weir wall overflow

a. Vessel breach.

b. Containment failure.

c. No weir wall overflow.

d. Suppression pool bypass.

e. Containment sprays.

77

•

Accident Progression Bin	Base Case Conditional Probability	No Weir Wall Overflow Conditional Probability
VB. ^a early CF. ^b early SPB. ^c no CS ^d	1.22E-01	1.08E-01
VB. early CF, early SPB, CS	4.61E02	3.48E02
VB, early CF, late SPB	7.23E-03	2.12E-62
VB, early CF, no SPB	1.57E-01	1.67E-01
VB, late CF	2.83E-01	3.25E-01
VB, vented	4.49E-02	4.08E02
VB, no CF	5.44E-02	2.24E-02
No VB	2.70E-01	2.70E-01
Vessel breach.		
Containment failure.		
Suppression pool bypass.		
Containment sprays.		

a.

b.

Ç.,

d,

Table 10-2. Weighted average accident progression bin probabilities---no weir wall overflow

11. QUANTITATIVE RISK ANALYSIS OF STAND-ALONE CONTAINMENT VENTING

Containment venting has been suggested in the past as a means of preventing containment overpressurization and reducing the threat from hydrogen burns during a severe accident. Venting was examined quantitatively in this report by assuming that a backup source of dc power is available to the solenoids of the containment vent valves, so that the valves can be opened remotely during SBO. The enhanced venting system is assumed to have an availability of 0.95. For shortterm SBO, the containment is assumed to be vented prior to core degradation (preemptive venting), with no later closure of the vent valves. For long-term SBO and ATWS sequences, venting is not preemptive, because containment pressure will reach the PCPL prior to core degradation.

11.1 Effects of Venting on Containment Response

Table 11–1 presents the effects of venting on the conditional probabilities of the accident progression presentation bins used in the June 1989 draft of NUREG–1150. These bins are arranged in decreasing order of the severity of the failure mode (in terms of offsite consequence potential). See Appendix D for a discussion of the APET modifications used to model containment venting. As expected, early venting greatly reduces the threat to containment integrity. Table 11–2 presents the effects of venting on the weighted average accident progression bin probabilities.

These tables do not indicate whether venting is beneficial or detrimental in terms of the resulting offsite release. Because of the way in which PSTEVNT reads the binning file used to generate the presentation bins for these tables, vented sequences involving suppression pool bypass are picked up only as vented sequences. The bypass information is passed along to GGSOR for the source term calculation, but it is not retained in the accident progression presentation bins.

11.2 Risk Results

MACCS calculations were performed using the MACCS 1.5.11 input decks to determine the effect of containment venting on offsite consequences. Table 11-3 presents these results along with those of the base case. As this table indicates, venting (without an external filter) leads to an increase in offsite risk by an approximate factor of 2 because of the relatively high probability of suppression pool bypass in the Mark III containment. These results do not reflect the results of deterministic analyses performed since the publication of Draft 1150. ORNL MELCOR calculations showing that weir wall overflow, and therefore the probability of steam explosion, could be reduced by venting were not available in time fer inclusion in this analysis.

					Conditio	mal Probability					
Accident	(5	PDS 1 (ST_SBO)		PDS 3 (ST-SBO)		PDS 7 (ST-SBO)		PDS 8 (LT-SBO)		PDS 10 (ATWS)	
VB, ^a early CF, ^b	Vent:	4.08E-03	Vent:	8.68E-03	Vent:	1.39E-02	Vent:	1.46E-02	Vent:	5.34E-05	
early SPB, ^c no CS ^d	Base:	9.63E-02	Base:	2.00E-01	Base:	2.84E-01	Base:	2.94E-01	Base:	1 998-03	
VB, early CF, early	Vent:	2.04E-03	Vent:	0.00E+00	Vent:	0.00E+00	Vent:	0.00E+00	Vent:	1	
SPB, CS	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	0.00E+00	Base:		
VB, early CF, late SPB	Vent:	3.40E-04	Vent:	3.60E-04	Vent:	1.50E-04	Vent:	6.97E-05	Vent:	2.15E-04	
	Base:	7.91E-03	Base:	8.39E-03	Base:	3.15E-03	Base:	1.42E-03	Base:	3.63E-03	
VB, early CF, 50 SPB	Vent:	4.60E-03	Vent:	7.14E-03	Vent:	1.49E-02	Vent:	3.28E-02	Vent:	3.49E -02	
	Base:	1.13E-01	Base:	1.68E-01	Base:	3.04E-01	Base:	6.58E-01	Base:	5.86E-01	
VB, late CF	Vent:	1.22E-02	Vent:	1.33E-02	Vent:	1.32E-02	Vent:	1.97E-03	Vent:	0.00E+00	
	Base:	2.88E-01	Base:	3.10E-01	Base:	3.31E-01	Base:	4.65E-02	Base:	0.00E+00	
VB, vented	Vent:	6.36E-01	Vent:	7.45E-01	Vent:	9.43E-01	Vent:	9.50E-01	Vent:	9.06E-01	
	Base:	4.93E-02	Base:	5.07E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	1.55E-01	
VB, no CF	Vent:	2.43E-03	Vent:	1.60E-03	Vent:	2.63E-03	Vent:	0.00E+00	Vent:	0.00E+00	
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base:	0.00E+00	Base:	0.00E+00	
No VB	Vent:	3.24E-01	Vent:	2.09E-01	Vent:	1.05E-02	Vent:	0.00E+00	Vent:	4.33E-02	
	Base	3.24E-01	Base:	2.09E-01	Base:	1.05E-02	Base:	0.00E+00	Base:	8.87E-03	

Table 11-1. Conditional probability of accident progression bins at Grand Gulf-vented case

a. Vessel breach.

b. Containment failure.

c. Suppression pool bypass.

d. Containment sprays.

Accident Progression Bin	Base Case Conditional Probability	Conditional Probability with Venting
VB, ^a carly CF, ^b early SPB, ^c no CS ^d	1.22E-01	9.95E-03
VB, early CF, early SPB, CS	4.61E-02	6.14E03
VB, early CF, late SPB	7.23E-03	5.61E04
VB, early CF, no SPB	1.57E01	1.72E-02
VB, late CF	2.83E-01	2.11E02
VB, vented	4.49E02	6.58E-01
VB, no CF	5.44E-02	4.17E-03
No VB	2.70E-01	2.70E-01
Vessel breach.		
Containment failure.		
Suppression pool bypass.		
Containment sprays.		

i.

 Table 11-2.
 Weighted average accident progression bin probabilities—containment venting

Table 11–3. Risk results for containment venting (stand–alone sensitivity)

d

	Mean Early Fatalities (per ry ^a)	Mean Latent Fatalities (per ry)	Mean 50Mile Dose (man-rem/ry)	Mean 1000-Mile Dose (man-rem/ry)	Mean Offsite Costs (\$/ry)
Base case	6.2E-09	1.7E-03	0.78	10.4	2.2E+03
With venting	1.4E08	3.4E03	1.3	20.4	2.7E+03
a. Reactor yea	r.				M. 1 M. 100

12. QUANTITATIVE RISX ANALYSIS OF STAND-ALONE UPPER POOL DUMP

Because the valves used to dump the Mark III upper containment pool to the suppression pool are operated by ac motors, they are not available during SBO. A potential improvement would be to supply these valves with operators which could be actuated independently of ac power, or with operators supplied from an independent source of ac power. This would allow makeup to the suppression pool from the upper containment pool during SBO.

12.1 Effects on Containment Response

Table 12-1 presents the effects of the upper pool dump modification on the conditional probabilities of the accident progression presentation bins used in the June 1989 draft of NUREG-1150. These bins are arranged in decreasing order of the severity of the failure mode (in terms of offsite consequence potential). Refer to Appendix D for the APET modifications used to model this improvement.

The upper pool dump modification causes a significant increase in the probability of early containment failure with pool bypass in the short-term SBO PDSs. Table 12–2 presents this

information in the form of a weighted average over all PDSs.

Based on the results in these tables, the upper pool dump modification does not appear to significantly reduce the threat to containment integrity. Pool dump results in a higher probability of a fleoded or wet cavity at use time of vessel breach (the probability of having a dry cavity is 0.0). This increases the probability of a large ex-vessel steam explosion at the time of vessel breach, which increases the impulse loads on the drywell. An ex-vessel steam explosion may also fragment the melt, exposing it to oxygen in the steam and the containment atmosphere. This would accelerate oxidation, producing large quantities of hydrogen, which could ignite, further increasing the probability of containment failure at the time of vessel breach.

However, this analysis was based on the models in Draft 1150. Other evaluations¹⁵ concluded that steam explosions would not occur when cotium falls into water. If this is correct, then assuring the dumping of the upper pool would not increase the challenge to containment integrity but would increase the scrubbing of releases from the expelled corium.

Accident Progression Bin					Conditio	nal Probability				
	(S	PDS 1 T-SBO)	(S	PDS 3 T-SBO)	(5	PDS 7 T-SBO)	PDS 8 (LT-SBO)		PDS 10 (ATWS)	
VB, a early CF, b	UCP:	1.02E-01	UCP:	2.08E-01	UCP:	3.11E-01	UCP:	2.94E-01	UCP:	1.03E-03
early SPB, CSd	Base:	9.63E-02	Base:	2.00E-01	Base:	2.84E-0.	Base:	2.94E-01	Base:	1.03E-03
VB, early CF, early	UCP:	5.05E-02	UCP:	0.00E+00	UCP:	0.00E+00	UCP:	0.00E+00	UCP:	2.46E-01
SPB, CS	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	0.00E+00	Base:	2.46E-01
VB, early CF,	UCP:	7.41E-03	UCP:	7.89E-03	UCP:	7.84E-04	UCP:	1.42E-03	UCP:	3.63E-03
late SPB	Base:	7.91E-03	Base:	8.39E-03	Base:	3.15E-03	Base:	1.42E-03	Base:	3.63E-03
VB, carly CF, no SPB	UCP:	1.08E-01	UCP:	1.63E-01	UCP:	2.72E-01	UCP:	6.58E-01	UCP:	5.86E-01
	Base:	1.13E-01	Base:	1.68E-01	Base:	3.04E-01	Base:	6.58E-01	Base:	5.86E-01
VB, late CF	UCP:	2.83E-01	UCP:	3.06E-01	UCP:	3.38E-01	UCP:	4.65E-02	UCP:	0.00E+00
	Base:	2.88E-01	Base:	3.10E-01	Base:	3.31E-01	Base:	4.65E-02	Base:	0.00E+00
VB, vented	UCP:	4.93E-02	UCP:	5.06E-02	UCP:	0.00E+00	UCP:	0.00E+00	UCP:	1.55E-01
	Base:	4.93E-02	Base:	5.07E-02	Base:	0.00E+60	Base:	0.00E+00	Base:	1.55E-01
VB, no CF	UCa.	5.65E-02	UCP:	3.76E-02	UCP:	6.49E-02	UCP:	0.00E+00	UCP:	0.00E+00
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base	0.00E+00	Base:	0.00E+00
No VB	UCP:	3.24E-01	UCP:	2.09E-01	UCP:	1.05E-02	UCP:	0.00E+00	UCP:	8.87E-03
	Base:	3.24E-01	Base:	2.09E-01	Base:	1.05E-02	Base:	0.00E+00	Base:	8.87E-03

Table 12-1. Conditional probability of accident progression bins at Grand Gulf-pool dump case

a. Vessel breach.

b. Containment failure.

c. Suppression pool bypass.

d. Containment sprays.

Accident Progression Bin	Base Case Conditional Probability	Conditional Probability With UCP Dump
VB, ^a early CF, ^b early SPB, ^c no CS ^d	1.22E-01	1.30E-01
VB, early CF, early SPB, CS	4.61E-02	4.79E02
VB, early CF, late SPB	7.23E03	6.56E03
VB, early CF, no SPB	1.57E-01	1.50E-01
VB, late CF	2.83E01	2.81E-01
VB, vented	4,49E-02	4.49E-02
VB, no CF	5.44E-02	5.47E-02
No VB	2.70E- J1	2.70E-01
essel breach.		
ontainment failure.		
ppression pool bypass.		
ontainment sprays.		

a.

b.

С.

d.

Table 12-2. Weighted average accident progression bin probabilities-pool dump case

13. QUANTITATIVE RISK ANALYSIS OF COMBINED IMPROVEMENTS

Three additional sensitivities were examined in which several individual improvements were combined:

- The first combined sensitivity included an improved HIS with 100% diffusion burn efficiency, post-core damage reactor depressurization capability, no weir wall overflow, and an increased probability that the operators get the fire water system (FWS) aligned so that low-pressure injection into the RPV occurs in short-term SBO sequences with the FWS available and either no power recovery or all other emergency injection systems failed
- The second combined sensitivity was identical to the first except that water was permitted to overflow the weir wall
- The third combined sensitivity was also like the first, but with the probability of ex-vessel steam explosion set equal to zero.

The enhanced containment venting and upper pool dump modifications were not included in any of the combined improvement sensitivities and only PDSs 1, 3, 7, and 10 were evaluated. PDS 8 was not evaluated in any combined improvement sensitivity, because the enhanced depressurization and improved FWS modifications should preclude core damage for this PDS on the front end, thereby eliminating this PDS from the back-end accident progression analysis.

13.1 Combined Improvements with No Weir Wall Overflow

13.1.1 Effects on Containment Response. Table 13–1 presents the effects of the combined improvements where no water is assumed to overflow the weir wall on the conditional probabilities of the accident progression bins used in the June 1989 draft of NUREG-1150. These bins are arranged in decreasing order of the severity of the failure mode (in terms of offsite consequence potential). Refer to Appendir \cap for the APET modifications used to model this combination of improvements. As this table indicates, the first combined improvement case with no weir wall overflow genera'ly reduces the early threat to containment integrity. However, this combined improvement significantly increases the late threat to the containment, primarily as a result of the vigorous CCI that occurs after vessel breach.

The percentage of sequences for which the containment is vented increased in PDSs 1 and 3 and decreased for PDS 10. In PDS 7, the percentage of vented sequences remained zero, because ac power is never recovered during the accident progression. The increase in venting for PDSs 1 and 3 (short-term SBOs) is primarily due to the decrease in the probability of early containment failure. A secondary effect is the increased build-up of noncondensibles. The decrease in venting for PDS 10 (long-term ATWS) is due to the increase in the probability of in-vessel recovery, which increased from 0.009 in the base case to 0.265 in the combined sensitivity.

The effect of the combined improvements on the probability of in-vessel recovery (No VB accident progression bin) is similar to that seen for the stand-alone post-core damage reactor depressurization sensitivity. However, there are some notable variations due to the increased probability of fire water injection in the SBO PDSs and the 5% unavailability of the post-core damage reactor depressurization system assumed for the combined sensitivity. In PDS 1, the percentage of sequences with in-vessel recovery decreased from the base case value, as it did in the stand-alone post-core reactor damage depressurization sensitivity. This decrease is due to the increased probability of in-vessel steam

				Conditional I	Probability			
Accident Progression Bin VB, ^a early CF, ^b early SPB ^d ao CS ^e	PI (ST-	DS 1 -SBO)	p (ST	DS 3 -SBO)	PI (ST-	OS 7 -SBO)	PD (AT	S 10 WS)
	NWWO: Base:	2.17E-02 9.63E-02	NWWO: Base:	3.74E-02 2.00E-01	NWWO: Base:	3.32E-02 2.84E-01	NWWO: Base:	2.21E-04 1.03E-03
VB, early CF,	NWWO:	1.31E-02	NWWO:	0.00E+00	NWWO:	0.00E+00	NWWO:	5.21E-02
early SPB, CS	Base:	4.81E-02	Dase:	0.00E+00	Base:	0.00E+00	Base:	2.46E-01
VB, early CF,	NWWO:	7.42E03	NWWO:	7.79E-03	NWWO:	7.46E-03	NWWO:	4.61E-02
late SPB	Base:	7.91E03	Base:	8.39E-03	Base:	3.15E-03	Base:	3.63E-03
VB, early CF,	NWWO:	4.14E-02	NWWO:	4.49E-02	NWWO:	6.13E-02	NWWO:	5.16E-01
no SPB	Base:	1.13E-01	Base:	1.68E-01	Base:	3.04E-01	Base:	5.86E-01
VB, late CF	NWWO:	4.79E-01	NWWO:	5.08E01	NWWO:	5.95E-01	NWWO:	0.00E+00
	Base:	2.88E-01	Base:	3.10E01	Base:	3.31E-01	Base:	0.00E+00
VB, vented	NWWO:	9.26E-02	NWWO:	9.47E-02	NWWO:	0.00E+00	NWWO:	1.20E-01
	Base:	4.93E-02	Base:	5.07E-02	Base:	0.00E+00	Base:	1.55E-01
VB, no CF	NWWO:	3.66E-02	NWWO:	1.95E-02	NWWO:	2.50E-02	NWWO:	0.00E+00
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base:	0.00E+00
No VB	NWWO:	3.01E01	NWWO:	2.81E-01	NWWO:	2.77E-01	NWWO:	2.65E-01
	Base	3.24E01	Base:	2.09E-01	Base:	1.05E-02	Base:	8.87E-03

Table 13-1. Conditional probability of accident progression bins at Grand Gulf-combined sensitivity with no weir wall overflow

a. Vessel breach.

b. Containment failure.

c. No weir wall overflow.

d. Suppression pool bypass.

e. Containment sprays.

explosion at low pressure, which offects the increased probability of recovering vessel injection prior to vessel breach. However, the decrease in in-vessel recovery was not as large for the cominsitivity as it was for the stand- alone post sore damage reactor depressurization sensitivity. The assumed 5% unavailability of postcore damage reactor depressurization causes the combined sensitivity case to behave more like the base case than the stand-alone improvement. which assumed 100% availability of post-core damage depressurization. The increased probability of aligning the FWS for vessel injection increases the percentage of sequences with injection to 97.7% from the base case percentage of 87%; for post-core damage reactor depressurization alone, the percentage was 95% (these percentages are for PDS 1 only). This increase in core injection contributes to increasing the probability of in-vessel recovery in PDS 1 to 0.301 from 0.291 for the case with post-core damage reactor depressurization alone.

In PDSs 3 and 7, the effect of the combined improvements on the probability of in-vessel recovery is somewhat different from that in PDS 1. In PDS 1, depressurization restricts in-vessel recovery because of an increased probability of steam explosions failing the vessel. In PDSs 3 and 7, the increase in core injection offsets the increased probability of steam explosions, resulting in an overall increase in the probability of in-vessel recovery. Therefore, the assumed 5% unavailability of post-core damage reactor depressurization inhibits core recovery by increasing the number of sequences that remain at high pressure without injection. However, for PDSs 3 and 7, the percentage of sequences with injection has increased a little above that of the stand-alone post-core damage depressurization sensitivity, and significantly above that for the base case. For PDS 3, the percentages of sequences with injection are 92, 91, and 69%, for the combined improvements, standalone post-core damage reactore depressurization, and base cases, respectively. For PDS 7, the corresponding percentages are 90, 87, and 3%.

Finally, for PDS 10, the effect of the combined improvements on the probability of in-vessel

recovery is different from that seen in the SBO PDSs discussed above. The percentage of sequences with in-vessel recovery is increased significantly from 0.9 to 26.5% in the base case, but is slightly less than the 27.8% seen in the stand--alone post-core damage reactor depressurization case. This PDS, a long-term ATWS, is not affected by the modifications to the fire water system, so the percentage of sequences with injection is equal to the percentage of depressurized sequences, 95%. With 100% post-core damage reactor depressurization availability, 100% of the sequences had injection and, thus, there was a greater potential for in-vessel recovery.

As indicated in Table 13–2, the net effect on the Draft NUREG-1150 presentation bins is a shift from early containment failure to late containment failure and venting. This increase in the probability of late containment failure is augmented by an increase in the overall probability of containment failure. The small increase in the probability of in-vessel recovery (No VB) helps to mitigate the increase in late containment failure. These findings would be expected to change if steam explosions were not a credible result of corium pours at vessel breach.¹⁵

13.1.2 Risk Results. MACCS calculations were performed using the MACCS 1.5.11 input decks to determine the effect of the first dry cavity combined sensitivity with no weir wall overflow on offsite consequences. Table 13-3 presents these results along with those of the base case. As this table indicates, the combined sensitivity with no weir wall overflow has mixed effects on the offsite risk measures. While the mean number of early fatalities and offsite costs increased, the mean 50- and 1000-mile doses decreased, and the mean number of latent fatalities remained the same. Considering the substantial decrease in the probability of early containment failure in the combined sensitivity, these results-insignificant decreases in dose and sharp increases in early fatalities and costs-were not expected. However, careful scrutiny of the PARTITION output files revealed that, in general, the conditional probabilities of the releases were down, but the severity of the releases was

Accident Progression Bin	Base Case Conditional Probability	Combined Case Conditional Probability
VB, ^a early CF, ^b early SPB, ^c no CS ^d	1.22E-01	2.71E-02
VB, early CF, early SPB, CS	4.61E-02	1.57E-02
VB, early CF, late SPB	7.23E-03	8.01E-03
VB, early CF, no SPB	1.57E-01	6.03E02
VB, late CF	2.83E-01	4.76E-01
VB, vented	4.49E-02	8.15E-02
VB, no CF	5.44E02	3.47E-02
No VB	2.70E-01	2.90E-01
Vessel breach.		
Containment failure.		
Suppression pool bypass.		
Containment sprays.		

Table 13–2. Weighted average accident progression bin probabilities—combined improvements with no weir wall overflow

Table 13-3. Grand Gulf combined improvements with no weir wall overflow risk comparison

a.

b.

¢.,

d,

	Mean Early Fatalities (per ry ^a)	Mean I atent Fataities (per ry)	Mean 50–Mile Dose (man–rem/ry)	Mean 1000–Mile Dose (man-rem/ry)	Mean Offsite Costs (\$/ry)
Base case	6.2E-09	1.7E-03	7.8E-01	10.4	2.2E+03
Combined improvements with no weir wall overflow	6.8E-09	1.7E-03	7.6E01	10.3	2.7E+03
a. Reactor year.					

increased from the base case. The explanation for these apparently anomalous effects was that with no weir wall overflow, the severity of a given release increases, because there is little or no scrubbing of the release for APET end states having drywell leakage. Also, the combined improvement case increased the probability of containment failure and this was partially accountable for the increase in late containment failures, given vessel breach.

It should be noted that according to the SNL APET model, preventing weir wall overflow into the drywell does not ensure a dry reactor cavity at the time of vessel breach, nor does it prevent exvessel steam explosions in sequences that have injection at or shortly after vessel breach. Drywell head failure and recirculation pump seal leakage during long-term SBO sequences can both result in a wet (water volume more than 656 ft3 and water depth less than 16.4 ft) or flooded (water depth more than 16.4 ft) drywell. The reactor cavity can be flooded at vessel breach if water remaining in the reactor vessel is released into the cavity prior to any release of corium. Alternatively, the reactor vessel failure may yield a minor release of corium followed by a substantial amount of water. A subsequent pour of corium into the now flooded cavity could result in a postulated ex-vessel steam explosion. Finally, it could conceivably exit the reactor vessel concurrently with the corium, or after release of corium to the cavity. Each of these hypotheses may have a potential for a steam explosion. Therefore, this case does not eliminate all APET end states in which the corium enters a wet or flooded cavity. Conversely, if steam explosions with corium are not considered to be credible,15 then these results could be significantly different.

13.2 Combined Improvement Sensitivity Permitting Weir Wall Overflow

13.2.1 Effects on Containment Response. Table 13–4 presents the effects of the combined improvements with weir wall overflow permitted on the conditional probabilities of the accident progression bins. Comparing these effects with those of the combined improvements in Table 13-1 indicates that the conditional probability of early containment failure is essentially the same for both cases. However, the conditional probability of late containment failure is decreased in the present case for all of the PDSs analyzed, with the exception of PDS 10, for which the probability remains zero. The decreases are 10, 7, and 8% for PDSs 1, 3, and 7, respectively. Furthermore, the conditional probability of containment survival following vessel breach has increased for all of the PDSs analyzed, with the exception of PDS 10, for which the probability remains zero. The increases are 128, 183, and 168% for PDSs 1, 3, and 7, respectively. Finally, it should be noted that the probability of late containment failure in PDSs 1, 3, and 7 is higher than in the base case. The increases above the base case values are 49, 52, and 66% for PDSs 1, 3, and 7, respectively. The probability of vessel breach with no containment failure for FOSs 1, 3, and 7 is larger than in the base case by 4 , 47, and 3%, respectively. The dominant difference between the first combined improvement case and this case is that the corium is now more likely to pour into a flooded inpedestal drywell cavity which: (a) increases the probability of an ex-vessel steam explosion, (b) provides a greater depth of water for scrubbing the fission products, and (c) reduces the energetics of CCL

Table 13-5 compares the weighted average accident progression bin probabilities for the combined improvements with and without weir wall overflow. The net effect of permitting weir wall overflow is a decrease in the conditional probability of late containment failure and a corresponding increase in the probability of containment survival. Although the probability of early containment failure is virtually the same in both cases, there is some shifting among the four early containment failure bins, with the probability of late and no suppression pool bypass decreasing, and the probability of early suppression pool bypass increasing. Table 13-6 compares the weighted average accident progression bin probabilities of the combined improvements with

				Conditiona	l Probability			
Accident Progression Bin VB, ^a early CF, ^b early SPB, ^d no CS ^e	PDS 1 (ST-SBO)		PDS 3 (ST-SBO)		rds 7 (ST-SBO)		PDS 10 (ATWS)	
	WWO: ^c Base:	2.47E-02 9.63E-02	WWO: Base:	5.05E-02 2.00E-01	WWO: Base:	4.41E-02 2.84E-01	WWO: Base:	4.33E-04 1.03E-03
VB, early CF,	WWO:	2.13E-02	WWO:	0.00E+00	WWO:	0.00E+00	WWO:	1.50E-01
early SPB, CS	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	2.46E-01
VB, early CF,	WWO:	2.47E-03	WWO	2.61E-03	WWO:	2.38E-03	WWO:	2.16E-02
late SPB	Base:	7 91E-03	Base:	8.39E-03	Base:	3.15E-03	Base:	3.63E-03
VB, early CF,	WWO:	3.55E-02	WWO:	4.02E-02	WWO:	5.89E-02	WWO:	4.42E-01
no SPB	Base:	1.13E-01	Base:	1.68E-01	Base:	3.04E-01	Base:	5.86E-01
VB, late CF	WWO:	4.30E-01	WWO:	4.70E-01	WWO:	5.49E-01	WWO:	0.90E+00
	Base:	2.88E-01	Base:	3.10E-01	Base:	3.31E-01	Base:	0.00E+00
VB, vented	WWO:	9.22E-02	WWO:	9.10E-02	WWO:	0.00E+00	WWO:	1.20E-01
	Base:	4.93E-02	Base:	5.07E-02	Base:	0.00E+00	Base:	1.55E-01
VB, no CF	WWO:	8.33E-02	WWO:	5.52E-02	WWO:	6.70E-02	WWO:	0.00E+00
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base:	0.00E+00
No VB	WWO:	3.01E-01	WWO:	2.81E-01	WWO:	2.77E-01	WWO:	2.65E-01
	Base:	3.24E-01	Base:	2.09E-01	Base:	1.05E-02	Base:	8.87E-03

Table 13-4. Conditional probability of accident progression bins at Grand Gulf-combined sensitivity permitting weir wall overflow

a. Vessel breach.

b. Containment failure.

c. Weir wall overflow.

d. Suppression pool bypass.

e. Containment sprays.

Accident Progression Bin	Conditional Probability Without Weir Wall Overflow	Conditional Probability With Weir Wall Overflow		
VB, ^a early CF, ^b early SPB, ^c no CS ^d	2.71E-02	3.12E-02		
VB, early CF, early SPB, CS	1.57E-02	2.38E-02		
VB, early CF, late SPB	8.01E-03	2.93E-03		
VB, early CF, no SPB	6.03E02	5.04E-02		
VB, late CF	4.76E-01	4.30E-01		
VB, vented	8.15E02	8.10E-02		
VB, no CF	3.47E-02	7.79E-02		
No VB	2.70E-01	2.90E-01		
Vessel breach.				
Containment failure.				
Suppression pool bypass.				
Containment sprays.				

 Table 13-5.
 Weighted average accident progression bin probabilities—combined improvements

 with and without weir wall overflow

weir wall overflow with those for the base case. Compared with the base case, as indicated in Table 13-6, the net effects are decreases in every early containment failure mode and increases in the conditional probabilities of late containment failure, venting, no containment failure, and in-vessel recovery.

13.2.2 Risk Results. MACCS consequence calculations were performed for the combined improvement sensitivity permitting weir wall overflow, again using the MACCS 1.5.11 input decks. Table 13–7 presents these results, along with those for the base case. As indicated in the table, the offsite risk for the combined sensitivity

permitting weir wall overflow is less than that for the base case.

Preventing weir wall overflow decreases, but does not eliminate, the probability of an exvessel steam explosion. In addition, preventing weir wall overflow increases the probability that dry CCI will occur. A comparison of the results in Tables 13–3 and 13–7 indicates that the effects on risk of the increased probability of dry CCI (minimal scrubbing of fission products through an overlying pool of water) in the case without weir wall overflow outweigh those brought about by the decrease in the probability of ex-vessel steam explosions. It should be remembered that this

Accident Progression Bin	Base Case Conditional Probability	Combined Case Conditional Probability
VB, ^a early CF, ^b early SPB, ^c no CS ^d	1.22E-01	3.12E-02
VB, early CF, early SPB, CS	4.61E-02	2.38E-02
VB, early CF, late SPB	7.23E-03	2.93E03
VB, early CF, no SPB	1.57E-01	5.04E02
VB, late CF	2.83E-01	4.30E-01
VB, vented	4.49E-02	8.10E-02
VB, no CF	5.44E-02	7.79E02
No VB	2.70E-01	2.90E-01
Vessel breach.		
Containmer! failure.		
Suppression pool bypass.		
Containment spray.		

Table 13-6. Weighted average accident progression bin probabilities---combined improvements with weir wall overflow

Table 13-7. Grand Gulf combined improvement permitting weir wall overflow risk comparison

b.

d.

	Mean Early Fatalities (per ry ^a)	Mean Latent Fatalities (per ry)	Mean 50–Mile Dose (man–rem/ry)	Mean 1000–Mile Dose (man-rem/ry)	Mean Offsite Costs (\$/ry)
Base case	6.2E09	1.7E-03	7.8E-01	10.4	2.2E+03
Combined improvement permitting weir wall overflow	2.7E-09	1.2E03	6.2E-01	7.66	1.5E+03
a. Reactor year.					

case allows an uncontrolled containment failure by over-pressurization (i.e., the containment is not vented) and produces increased probabilities for APET end states in which the release is neither scrubbed nor filtered (i.e, a shallow pool over the debris and drywell leakage). Also, this includes the effects of the depth of the water in the in-pedestal cavity, not just the absolute presence or absence of water.

13.3 Combined Sensitivity with No Weir Wall Overflow and No Ex-Vessel Steam Explosions

13.3.1 Effects on Containment Response.

A third combined sensitivity identical to the first was a alyzed in which the probability of ex-vessel steam explosion was set equal to zero.

Table 13-8 presents the effects of the combined improvements with no weir wall overflow and no ex-vessel steam explosions on the conditional probabilities of the Draft NUREG-1150 accident progression bins. For PDSs 1 and 3. eliminating ex-vessel steam explosion reduces the conditional containment failure probability for all categories except vessel failure with late containment failure or vessel failure with containment venting. This is as expected because the late containment failures are due to a buildup of noncondensible gases and non-condensing steam (as the result of suppression pool saturation and having heated the containment structure). PDSs 3, 7, and 10 show an increase in in-vessel recovery, as expected. The probability of in-vessel recovery decreases slightly for PDS 1 because of the increased probability of in-vessel steam explosion (see the discussion in Section 9). PDSs 7

and 10 show an increase in the probability of early containment failure with late suppression pool bypass due to the significant heatup of the containment and the suppression pool prior to reactor vessel failure.

While there is some shifting among accident progression bins, the general trend is a reduction in the probability of reactor vessel failure for all plant damage states and a shift from early containment failures to late containment failures. Thus, eliminating ex-vessel and explosions in the combined sensitivity with no weir wall overflow reduces the conditional containment failure probability from the base case and provides additional time for operator actions and evacuation of the public.

Table 13–9 compares the weighted average accident progression bin probabilities for the combined case with no weir wall overflow and no ex-vessel steam explosion with the base case. Comparison of the data in Tables 13–2 and 13-9 indicates that eliminating ex-vessel steam explosions from the combined case with no weir wall overflow provides a slight additional reduction in the probability of early containment failure, along with a corresponding increase in the probabilities of late containment failure and containment survival.

13.3.2 Risk Results. MACCS consequence calculations were performed for the no weir wall overflow and no ex-vessel steam explosion case, again using the MACCS 1.5.11 input decks. Table 13–10 presents these results, along with those for the base case. As this table indicates, preventing weir wall overflow and ex-vessel steam explosion reduces the offsite consequences in all categories.

Accident Progression Bin VB, ^a early CF, ^b early SPB, ^d no CS ^e		Conditional Probability						
	PDS 1 (ST–SBO)		PDS 3 (ST–SBO)		PDS 7 (ST-SBO)		PDS 10 (ATWS)	
	Com: ^c Base:	2.03E-02 9.63E-02	Com: Base:	3.53E-02 2.00E-01	Com: Base:	3.02E-02 2.84E-01	Com: Base:	7.82E-05 1.03E-03
VB, early CF,	Com:	1.23E-02	Com:	0.00E+00	Com:	0.00E+00	Com:	1.43E-02
early SPB, CS	Base:	4.81E-02	Base:	0.00E+00	Base:	0.00E+00	Base:	2.46E-01
VB, early CF,	Com:	5.58E-03	Com:	6.02E-03	Com:	5.64E-03	Com:	7.80E-02
late SPB	Base:	7.91E-03	Base:	8.39E-03	Base:	3.15E-03	Base:	3.63E-03
VB, early CF,	Com:	2.01E-02	Com:	2.44E-02	Com:	3.26E-02	Com:	5.23E-01
no SPB	Base:	1.13E-01	Base:	1.68E-01	Base:	3.04E-01	Base:	5.86E-01
VB, late CF	Com:	4.99E-01	Com:	5.24E01	Com:	6.20E-01	Com:	0.00E+00
	Base:	2.88E-01	Base:	3.10E01	Base:	3.31E-01	Base:	0.00E+00
VB, vented	Com:	9.63E-02	Cona.	9.89E02	Com:	0.00E+00	Com:	1.20E-01
	Base:	4.93E-02	Base:	5.07E02	Base:	0.00E+00	Base:	1.55E-01
VB, no CF	Com:	4.08E-02	Com:	2.61E-02	Com:	3.47E-02	Com:	0.00E+00
	Base:	5.61E-02	Base:	3.75E-02	Base:	6.53E-02	Base:	0.00E+00
No VB	Com:	3.01E-01	Com:	2.81E-01	Com:	2.77E-01	Com:	2.65E-01
	Base:	3.24E-01	Base:	2.09E-01	Base.	1.05E-02	Base:	8.87E-03

Table 13-8. Conditional probability of accident progression bins at Grand Gulf—combined sensitivity with no weir wall overflow and no ex-vessel steam explosion

7

a. Vessel breach.

b. Containment failure.

c. Combined sensitivity with no ex-vessel steam explosion.

d. Suppression pool bypass.

e. Containment sprays.

94
Accident Progression Bin	Conditional Probability of the Base Case	Conditional Probability With No Weir Wall Overflow and No EVSE	
VB, ^b early CF, ^c early SPB, ^d no CS ^e	1.22E01	2.56E-02	
VB, early CF, early SPB, CS	4.61E02	1.45E-02	
VB, early CF, late SPB	7.23E03	6.78E03	
VB, early CF, no SPB	1.57E-01	3.95E-02	
VB, late CF	2.83E-01	4.95E-01	
VB, vented	4.49E-02	8.46E-02	
VB, no CF	5.44E02	3.93E-02	
No VB	2.70E-01	2.90E-01	
Ex-vessel steam explosion.			
Vessel breach.			
Containment failure.			
Suppression pool bypass.			
Containment sprays.			

Table 13-9.	Weighted average accident progression bin probabilitiesno weir wall over a weighted average accident progression bin probabilitiesno weir wall over a weighted average accident progression bin probabilitiesno weighted average accident progression bin probabilities	ind
	no ex-vessel steam explosion	

 Table 13-10.
 Grand Gulf combined improvement with no weir wall overflow and no ex-vessel steam explosion risk comparison

	Mean Early Fatalities (per ry ^a)	Mean Latent Fatalities (per ry)	Mean 50–Mile Dose (man–rem/ry)	Mean 1000-Mile Dose (man-rem/ry)	Mean Offsite Costs (\$/ry)
Base case	6.2E09	1.7E-03	7.8E-01	10.4	2.2E+03
Combined improvement with no weir wall overflow and no EVSE ^b	5.3E-09	1.5E-03	7.4E-01	10.0	1.5E+03
a. Reactor year.					

b. Ex-vessel steam explosion.

a. b. c, d. e.

14. SUMMARY OF TECHNICAL FINDINGS FROM QUANTITATIVE ANALYSIS

This section summarizes the significant results of the quantitative analysis presented in Sections 8–13. The discussion in this section is organized around the potential improvements evaluated in these previous sections.

14.1 Improved HIS

Continuously available hydrogen ignitors provide a distributed ignition source that burns the hydrogen released during core degradation in a diffusion flame whenever flammable conditions exist in containment. The improvement to the HIS that was modeled was the installation of a backup dc power supply to the existing ignitors, so that the HIS would be operable under SBO conditions. The backup dc power supply was modeled as having an availability of 0.95. The probability that the operators fail to actuate the HIS when required was retained from the base case APETs.

A hydrogen burn efficiency of 100% was also used to more closely approximate available hydrogen burn data from the Quarter-Scale Tests. With this burn efficiency change, a diffusion burn in the wetwell removes all of the hydrogen present, unless the reaction becomes oxygen-limited.

The improved HIS (with high burn efficiency) produced a significant decrease in the conditional probability of early containment failure, and an increase in the probabilities of containment survival and late containment failure. Although offsite consequences were not calculated for the stand-alone HIS improvement, this shift away from early containment failure is expected to bring about a reduction in offsite risk.

14.2 Post-Core Damage Reactor Vessel Depressurization

This improvement consists of a backup supply of dc power to the SRV solenoids, allowing the reactor to be depressurized during sequences in which the station batteries (the normal source of power to the SRV solenoids) are failed or depleted. There are three aspects to this improvement. Enhanced depressurization can (a) prevent core damage in those sequences where a lowpressure injection system is available, (b) allow sequences that have progressed to core damage to be recovered in-vessel, and (c) prevent highpressure melt ejection in those cases where invessel recovery is not successful. The first of these aspects was not analyzed quantitatively.

Reactor depressurization has a number of interesting effects on the progression of the accident sequence after the onset of core degradation. First, depressurization decreases the probability that an SRV tailpipe vacuum breaker will stick open. This effect is due to the fewer number of demands placed on the SRVs when the RPV is depressurized. Secondly, the prohability of invessel recovery is higher in the depressurized case for all PDSs except PDSs 1 and 8, where it is decreased for PDS 1. The increase in vessel breach probability in PDS 1 occurs in spite of the fact that the probability of recovering injection during core degradation is higher for all PDSs in the depressurized case, except PDS 8, where it is 0.0 in both the sensitivity and base case. The reason for this occurrence is the increased probability of in-vessel steam explosions that fail the RPV in the depressurized case.

The increased probability of in-vessel steam explosion is also the reason for the increased probability of early containment failure for PDSs 1 and 8. The increased probability of in-vessel steam explosions makes α mode failure of the containment more likely in the depressurized case, resulting in an increased probability of early containment failure at the time of vessel breach. In PDSs 3, 7, and 10, the increase in the probability of recovering injection during core degradation is large enough to offset the increased probability of in-vessel steam explosion, thus giving rise to a decrease in the probability of vessel breach, and a corresponding decrease in the probability of early containment failure.

Overall, post-core damage reactor depressurization results in a slight decrease in the conditional probability of early containment failure. Late containment failures increase slightly, as does the probability of in-vessel recovery. If steam explosions are not credible, as some researchers contend, then the probabilities would be further reduced. If the reactor were depressurized *before* core damage (in accordance with Revision 3 of the EPGs), significant reductions in core melt and containment failure probabilities and risk would be expected.

14.3 Enhanced Vacuum Breaker Operability (No Weir Wall Overflow)

Enhanced vacuum breaker operability is a potential means of ensuring that no water will overflow the weir wall, thus mitigating the threat to containment from ex-vessel steam explosions. However, because recent work by ORNL (S.R. Greene et al. draft report) indicates that enhanced vacuum breaker operability alone may not accomplish this task, the improvement that was evaluated was prevention of weir wall overflow, but the means by which this could be ensured were not examined. Possible ways of implementing this improvement would be to increase the height of the weir wall or vent the containment prior to depressurizing the reactor vessel.

Preventing weir wall overflow results in a shift in early containment failures with early suppression pool bypass to early containment failures with either late pool bypass or no bypass. This shift appears to be due to the decrease in exvessel steam explosions; however, ex-vessel steam explosions are not eliminated. The conditional probability of an ex-vessel steam explosion is still quite large even if water is prevented from overflowing the weir wall.

There is also an increase in the conditional probability of late containment failure, with an accompanying decrease in the probability that the containment survives intact. This is due primarily to the very large increase in the probability of CCI if the suppression pool is prevented from flooding the drywell, and hence the reactor cavity. The CCI generates hydrogen and noncondensible gases, which can threaten containment integrity via hydrogen combustion and gradual overpressurization, respectively. The net effect was an increase in the probability of late containment failure and a decrease in the probability of containment survival.

14.4 Containment Venting

Containment venting was examined quantitatively by assuming that a backup source of dc power is available to the solenoids of the containment vent valves, so that the valves can be opened remotely during SBO. The enhanced venting system was assumed to have an availability of 0.95. For short-term SBO, the containment was assumed to be vented prior to core degradation (preemptive venting), with no later closure of the vent valves. For long-term SBO and ATWS sequences, venting was again assumed to occur prior to core degradation with a probability of 0.95; however, in this case the venting is not preemptive, because containment pressure will reach the PCPL prior to core degradation.

Containment venting was found to greatly reduce the conditional probability of containment failure. However, venting (without an external filter) leads to an increase in offsite risk because of the relatively high probability of suppression pool bypass in the Mark III containment.

14.5 Upper Containment Pool Dump

Because the valves used to dump the Mark III upper containment pool to the suppression pool are operated by ac motors, they are not available during SBO. A potential improvement would be to supply these valves with operators that could be actuated independently of ac power, or with operators supplied from an independent source of ac power. This would allow makeup to the suppression pool from the upper containment pool.

The upper pool dump modification was found to cause a significant increase in the conditional probability of early containment failure with pool bypass in the short-term SBO PDSs. Pool dump results in a higher probability of a flooded or wet cavity at the time of vessel breach (the probability of having a dry cavity is 0.0). This increases the probability of a large ex-vessel steam explosion at the time of vessel breach, which increases the impulse loads on the drywell and produces large quantities of hydrogen, which can ignite, further increasing the probability of containment failure at the time of vessel breach.

14.6 Improvement Combinations

Three sensitivities were examined in which several individual improvements were combined. The first combined sensitivity included an improved HIS with 100% diffusion burn efficiency, post-core damage reactor depressurization capability, no water refluxed over the weir wall, and an increased probability that the operators get the fire water system (FWS) aligned so that lowpressure injection into the RPV occurs in shortterm SBO sequences with the FWS available and either no power recovery or all other emergency injection systems failed. The second combined sensitivity was identical to the first except that water was allowed to reflux over the weir wall. The third combined sensitivity was also like the first, but with all ex-vessel steam explosions eliminated. The enhanced containment venting and upper pool dump modifications were not included in any of the combined improvement sensitivities because of the observations in the stand-alone analyses.

The first combined improvement case without weir wall overflow generally reduced the early threat to containment integrity. However, this combined improvement significantly increased the late threat to the containment, primarily as a result of the CCI that occurs after vessel breach. As illustrated in Table 14–1, there were mixed effects on the offsite risk measures. While the mean number of early fatalities and offsite costs increased from the base case, the mean 50- and 1000-mile doses decreased, and the mean number of latent fatalities remained the same. Considering the substantial decrease in the probability of early containment failure in this first combined sensitivity, these results---minor decreases in dose and increases in early fatalities and costs---were not expected. However, careful scrutiny of the PARTITION output files revealed that, in general, the conditional probabilities of the releases were down, but the severity of the releases was increased from the base case. Not allowing water to overflow the weir wall increases the severity of a given release, because scrubbing of the release is reduced. Also, the conditional probability of containment failure increased and this was partially responsible for the increase in late containment failures, given vessel breach.

To further investigate these results, the combined improvement sensitivity was reanalyzed permitting reflux of water over the weir wall. Compared with the effects of the first case, there was a decrease in the conditional probability of late containment failure and a corresponding increase in the probability of containment survival. Although, the probability of early containment failure remained virtually the same, there was some shifting among the four early containment failure bins, with the probability of late and no suppression pool bypass decreasing, and the probability of early suppression pool bypass increasing. Compared to the base case, the net effects were decreases in every early containment failure mode and increases in the conditional probabilities of late containment failure, venting, containment survival, and in-vessel recovery.

The offsite risk, presented in Table 14–1, for the second combined sensitivity was less than that for either the base case or the combined case with no weir wall overflow described above. Prohibiting water from overflowing the weir wall decreases, but does not eliminate, the probability of an ex-vessel steam explosion. In addition, this increases the probability that dry CCi w II occur. A comparison of these two combined sensitivities

	Mean Early Fatalities (per ry ^a)	Mean Latent Fatalities (per ry)	Mean 50Mile Dose (mar,-rem/ry)	Mean 1000Mile Dose (manrem/ry)	Mean Offsite Costs (\$/ry)
Base case	6.2E09	1.7E-03	7.8E-01	10.4	2.2E+03
Combined improvement with no weir wall overflow	6.8E09	1.7E-03	7.6E-01	10.3	2.7E+03
Combined improvement with weir wall overflow permitted	2.7E-09	1.2E-03	6.2E–01	7.66	1.5E+03
Combined improvement with no weir wall overflow, no EVSE ^b	5.3E-09	1.6E-03	7.4E-01	10.0	1.5E+03
a. Reactor year.					

 Table 14-1.
 Grand Gulf combined improvement risk comparison

indicates that the effects on risk of the increased probability of dry CCI (minimal scrubbing of fission products through an overlying pool of water) outweigh those brought about by the decrease in the probability of ex-vessel steam explosions.

A combined sensitivity was also enalyzed in which there was no weir wall overflow, and exvessel steam explosion was eliminated. In comparison with the no-weir wall overflow combination, this combination provided a slight additional reduction in the conditional probability of early containment failure, along with a corresponding increase in the conditional probabilities of late containment failure and containment survival. In comparison with the base case, however, both sensitivities with no weir wall overflow showed decreases in all early containment failure modes, at the expense of an increased probability of late containment failure and a decreased probability of containment survival. The risk results for this combination are also presented in Table 14–1. Eliminating weir wall overflow and ex-vessel steam explosion reduced all categories of risk except cost and 1000 mile dose when compared to the base case and to the case where only weir wall overflow was eliminated.

14.7 Sunimary

As can be seen from these studies, each of the potential improvements can have an effect on others and thus the potential benefits of the combined improvements can have greater benefit than individual improvements. The combinations of improvements that have been discussed in this report are not necessarily the only or best combinations for Grand Gulf or any other Mark III facility, but were those that could have the greatest potential for reduction in containment failure probability or risk. The offsite risk and core damage frequency at Grand Gulf are low and are made up of many

small contributors. Therefore, the potential benefits from these improvements are small. This analysis should not be viewed as a complete evaluation of the benefits (reductions in core damage frequency or in offsite consequences) for any BWR/6 with a Mark III containment.

15. REFERENCES

- L. Greimann et al., Final Report Containment Analysis Techniques A State-of-the-Art Summary, NUREG/CR-3653, March 1984.
- Grand Gulf Nuclear Station, "Final Safety Analysis Report," Updated System Energy Resources Inc., Rev. 4, December 1989.
- 3. A. L. Camp et al., Light Water Reactor Hydrogen Manual, NUREG/CR-2726, August 1983.
- M. T. Drouin et al., Analysis of Core Damage Frequency Grand Gulf, Unit 1 Internal Events, NUREG/CR-4550, Revision 1, Volume 6, July 1989.
- T. D. Brown et al., Evaluation of Severe Accident Risks: Grand Gulf Unit 1, NUREG/CR-4551, Vol. 6, Part 1, Rev. 1, July 1989.
- U.S. NRC, Severe Accident Risks: An Assessment of Five U.S. Nuclear Power Plants, (Draft), NUREG-1150, Revision 1, June 1989.
- 7. Mississippi Power and Light Company, Grand Gulf Nuclear Station-Integrated Containment Analysis, IDCOR-TR23.1GG, March 1985.
- R. S. Denning et al., Radionuclide Release Calculations for Selected Severe Accident Scenarios, NUREG/CR-4624-V4, July 1986.
- 9. U.S. NRC, Containment Performance Working Group Report, (Draft), NUREG-1037, May 1985, (Available from Public Document Room, Washington, D.C.).
- C. N. Amos et al., Evaluation of Severe Accident Risks and the Potential for Risk Reduction: Grand Gulf, Unit 1, NUREG/CR-4551, (Draft), April 1987.
- U.S. NRC, Proceedings of the Second International Conference on the Impact of Hydrogen on Water Reactor Safety, October 3–7, 1982, NUREG/CP–0038, pg. 1066.
- T. G. Theofanous et al., An Assessment of Steam-Explosion-Induced Containment Failure, NUREG/CR-5030, February 1989.
- U.S. NRC, Transactions of the Seventeenth Water Reactor Safety Information Meeting, NUREG/ CP-0104, October 23–25, 1989, pg. 15–11.
- T. G. Theofanous et al., LWR and HTGR Coolant Dynamics: The Containment of Severe Accidents, NUREG/CR-3306, July 1983.
- M. L. Corradini, Analysis and Modelling of Steam Explosion Experiments, NUREG/CR-2072, April 1981.
- J. V. Thorne et al., Development of a Wet-Proofed Catalytic Igniter for Lean Hydrogen-Air Mixtures, May 4, 1989.
- D. L. Kelly and W. J. Galyean, "An Analysis of Containment Venting As a Severe Accident Mitigation Strategy for the BWR Mark II Containment," *IEEE Transactions On Nuclear Science*, April 1990.

- J. M. Griesmeyer and L. N. Smith, A Reference Manual for the Event Progression Analysis Code (EVNTRE), NUREG/CR-5174, September 1989.
- S. J. Higgins, A User's Manual for the Postprocessing Program PSTEVNT, NUREG/CR-5380, November 1989.
- D. I. Chanin et al., MELCOR Accident Consequence Code System, MACCS Version 1.5 User's Manual, Draft NUREG/CR-4691, September 1988.
- R. L. Iman et al., A User's Guide for PARTITION: A Program for Defining the Source Term/ Consequence Analysis Interface in the NUREG-1150 Probabilistic Risk Assessments, NUREG/ CR-5253, November 1989.

APPENDIX A

DETAILS OF QUANTITATIVE ANALYSIS METHODOLOGY

APPENDIX A

DETAILS OF QUANTITATIVE ANALYSIS METHODOLOGY

A.1 Computer Code Compilation

Initially, five main source codes were compiled on the various computer platforms that would be used in the analysis. $EVNTRE^{A-1}$ was used to analyze the accident progression event trees (APETs); $PSTEVNT^{A-2}$ was used to process the output from EVNTRE; $GGSOR^{A-3}$ was used to parametrically generate source terms for the various releases from containment; $PARTITION^{A-4}$ was used to process the source term output from GGSOR; and $MACCS^{A-5}$ was used to calculate the offsite consequences for each source term group generated by PARTITION. There were also several translation routines used to parse output data into the format required for input into a follow-on code in the analysis. The sources for these translator codes were also compiled.

The Draft NUREG-1150 accident progression analysis codes were written in FORTRAN-77 and developed on a VAX computer, using a VMS operating system. Because the authors intended to run the codes on both personal computers using a DOS operating system, and scientific workstations using a UNIX operating system, a number of changes were necessary to compensate for differences in syntax. As previously mentioned, a number of translation routines were also compiled. These routines are discussed further in the sections below.

A.2 EVNTRE Analysis

The EVNTRE event progression analysis code is documented in Reference A-1. It is a keyword-driven code used to analyze event trees that are constructed to model the progression of a severe reactor accident. EVNTRE was developed so that distributed parameters (i.e., the parameter has an associated probability distribution) could be tracked and manipulated using user-defined coding. The processing of distributed parameters was necessary to evaluate the uncertainties involved in the complex phenomena that can occur during severe accidents. The keyword file used to control the input for the Plant Damage State (PDS) 1 base

case evaluation is listed below. The files used for the other PDSs are similar. The annotated comments in the file describe the functions of the keywords. The other required input files called out by the keyword file are listed in Appendix B. For more details on the keyword control features of EVNTRE, refer to Reference A-1.

\$ Specifies the calculational mode for MODE 4 EVNTRE. \$ Specifies the input file name for the TREEIN q1 apet.dat tree definition input file. \$ Specifies the input file name for the BININ .../ggbin.dat binning and sorting information input file. \$ Specifies the input file name for the SAMDIN gl pntr.dat sample definition information input file. SAM1IN ../temac.dat \$ Specifies the input file name for the first set of sample input vectors. \$ Specifies the input file name for the SAM2IN ../hcube.dat second set of sample input vectors. \$ \$ Turns on the binning facility. BIN STATS \$ Indicates that a branch and case frequency table report will be generated. \$ \$ Indicates that a binning result report will NWRTBIN not be generated when the paths through the tree are binned. \$ ×, SAVEBIN \$ Indicates that a binning results file will be generated for post-processing. \$ \$ \$ Indicates that the tree is to be evaluated RUN after the input data has been processed. \$ \$ \$ Specifies the path frequency below which a KEEPCUT 1.0E-5 path is terminated. PRTCUT 1.0E-5 \$ Specifies the minimum bin frequency required to report a bin. \$ STATOUT gl freq.out \$ Specifies the output file name for the branch and case frequency table. \$

A-4

SAMROUT gl_samr.pst \$ Specifies the output file name for the post-processing file. \$ ENUKEY \$ Indicates the end of keyword input.

As the file listing indicates, EVNTRE was run in the sampling mode (mode 4), with inputs from two sample vector files. The first of these, temac.dat, provides Latin Hypercube Sampling (LHS) data from the Grand Gulf front-end (accident sequence) analysis. These data were generated with the TEMAC code. The second file, hcube.dat, provides LHS data to be used in evaluating the accident progression questions in the APET. The APET split fractions and parameters that are to be sampled are specified in the sample definition input file gl_pntr.dat.

Another important input file is ggbin.dat. This file provides the information used to bin the end states of the APET into a smaller set of accident progression bins. The accident progression bins retain enough information about the accident to characterize the associated containment failure modes and the fission product source terms. For the base case analysis, the Grand Gulf Draft NUREG-1150 binning input file was used, as provided by SNL. This file is shown in Appendix B.

The output file generated by this binning process is gl_samr.pst. This file is in binary format, so it is not listed in this report. It will be mentioned again when it is used as the principal input file for running the PSTEVNT code.

EVNTRE produces several other output data files, some of which are immediately useful, others of which are primarily used with post-processor codes like PSTEVNT. One of the more useful output files is gl_freq.out, which shows the realized split fractions for each of the questions in the APET. This frequency output file allows the analyst to calculate the conditional probability of important paths through the APET. For example, the APET file listing in Appendix B, shows that the conditional probability of vessel breach is identified in Question 63, which also addresses the mode of vessel breach for those cases where in-vessel recovery is not successful. The frequency output file becomes particularly important in the analysis of improvements, where it allows the analyst to track changes effected by the improvements and compare the new conditional probabilities to those calculated for the base case.

A.3 PSTEVNT Analysis

EVNTRE was the primary tool used to evaluate the very large APETs in the back-end analysis performed for Draft NUREG-1150. However, a typical EVNTRE run for a single PDS can take 24 hours on a scientific workstation, and longer on a PC. Therefore, features were provided to save results from an EVNTRE run for later processing with a faster post-processor called PSTEVNT. The PSTEVNT post-processor code^{A-2} is used to manipulate the EVNTRE output (listing of accident progression bins) in a variety of ways to produce input files for follow-on codes in the analysis, as well as output files that are directly useful to the analyst, such as the file showing the presentation bins used in Draft NUREG-1150.

As provided by SNL, PSTEVNT does not utilize keyword-driven input to the same extent as EVNTRE. Instead, an input file is read that contains the FORTRAN unit numbers of the required input files and desired output files, as well as a listing of input parameters used to control the PSTEVNT program. Under the VMS operating system, external file connections are made to associate data files with the unit numbers provided in the keyword file. For the UNIX and DOS operating systems in use at INEL, this is not possible; so the PSTEVNT source code was modified to allow keyword-driven input similar to that used for EVNTRE.

PSTEVNT is actually run three times for each PDS group. In the first run, PSTEVNT is used to produce a set of source term bins for input into the parametric source term generation code GGSOR. The input control file listing for this run is shown as follows:

\$ Calculation Contro	1 Keywords (for logical constants)	
\$ COLLAPS 0.99999	<pre>\$ Reduce rebinned results with weighting factor</pre>	
\$		

\$ REBIN \$ Causes rebinning of accident progression \$ bins \$ RUN \$ Causes PSTEVNT to proceed with data \$ calculations \$ SAVEBIN \$ Write results of rebin to post Ś processor file ŝ NOSORT \$ Do not produce sort tables \$ Calculation Control Keywords (for assigned values) -----5 ---\$ PCUTFR 0.99999 \$ Specifies total rebinned frequency to \$ retain \$ PRTCUT 0.00001 \$ Print tolerance cutoff \$ RCUT 0.00001 \$ The relative weight cutoff minimum \$ value when collapsing bins \$ \$-- Input File Specification Keywords -----\$ ASCTRIN \$ ASCII output from EVNTRE Ś BININ ../ggrebin.dat \$ Filename for rebinning input \$ EVNTBIN gl bin.asc \$ Filename for EVNTRE output file Ś \$ SORTIN sortin \$ Filename for sort specification data \$ \$ -- Report Request Keywords ----\$ ASCSAV \$ Rebinning result is ASCII \$ \$ RPTMLST \$ Write EVNTRE master bin list to message file \$ RPTNPRB \$ Report rebinned APBs by observation \$ \$ RPTRBIN \$ Write rebinned bins to message file \$ NSPREAD \$ Discarded bins are not spread over \$ kept bins \$ **KPBYRUN** \$ Report master bin list by observation \$ \$-- Output File Spr cification Keywords ---------5 BINOUT rbin.out \$ Rebinning result data Ś INPOUT inpout \$ Annotated echo of input \$

A-7

\$ KEEPOUT	keep.out	\$ Master list of unique kept bins
\$ SBINOUT	gxx_sbin.out	<pre>\$ Rebinning results data (for additional post-processing)</pre>
\$ SORTOUT	sortout	\$ Result of requested sorts
S TABOUT	tabout	<pre>\$ Rebinning result descriptive table(s)</pre>
\$ ENDKEY		\$ Indicates the end of keyword input.

As indicated by this file listing, there are two input files for this PSTEVNT run. The first is the binned output file from EVNTRE, gl_bin.asc, which is the previously discussed binary file, gl_samr.pst, after convertion into ASCII using the conversion program BINTO. The second file is the rebinning input file ggebin.dat. This file, which is listed in Appendix B, specifies the accident pathway binning scheme required for input into GGSOR.

This first PSTEVNT run is performed on an by-observation basis, i.e., the code keeps track of each accident progression bin generated in each of the 250 samples in EVNTRE. Two output files are used: gxx_sbin.out (too large to be listed in this report) provides a listing of each accident progression bin generated in each sample observation, along with the conditional probability for each bin. This information will be combined with the PDS frequencies from gg_temac.dat in the GG-FRQ code, as described below. The other file is keep.out, which provides a list of unique accident progression bins for each sampling observation. A keep.out file is generated for each PDS, and these files form an input to the MASTERK routine, as described below.

The second PSTEVNT run is similar to the first, except that all information is aggregated; the output information is a weighted average over the 250 sampling observations made in EVNTRE. The only output file used from this run is the gxx_rbin.out file, which contains a listing of the unique accident progression bins. This file is used to compare accident progression bin results with the published information in Draft NUREG/CR-4551. The third PSTEVNT run is also made on an aggregate basis. The purpose of *this* run is to combine the accident progression bins into the higher level presentation bins used in Draft NUREG-1150. The input binning file for this run, reduce.dat, is listed in Appendix B.

A.4 MASTERK Analysis

The MASTERK code is not described in any of the currently available Draft NUREG-1150 supporting documentation. Therefore, because the only documentation is the source code listing itself, a listing is provided in Appendix C. MASTERK is used to cranslate the format of the keep.out files from PSTEVNT into the correct format for input into GGSOR and PARTITION. MASTERK takes as input the keep.out files for all PDSs, on a by-observation (by-run) basis, and generates a master list of unique bins. The output can be either by observation or not by observation, as selected by the user. The by-run output file, byr_mas.kep, is a composite listing, over all PDSs, of the unique accident progression bins on a by-observation basis. This file is used as input to the GGSOR code, as described below. The not-by-run output file, nbyr_mas.kep, is a similar file, only on an aggregate basis, and is one of the required inputs to PARTITION. Both of these output files are too large to list in this report.

A.5 gg_frq Analysis

Another code not discussed in the current Draft NUREG-1150 supporting documentation is gg_frq; therefore, a listing of this code is provided in Appendix C. Basically, gg_frq merges the PDS frequencies from the file gg_temac.dat with the accident progression bin conditional probabilities contained in the gxx_sbin.out files to provide an input file for PARTITION. This output file, gg.frq, is much too large to list in this report. As mentioned above, the input files from PSTEVNT are gxx_sbin.out (one file for each PDS). The output file, gg.frq, is used as an input to PARTITION.

A.6 GGSOR Analysis

GGSOR is the parametric code used to generate fission product source terms for the accident progression bins. GGSOR is briefly described in Reference A-3. Basically, GGSOR generates source terms based on a parametric representation of more detailed mechanistic accident progression calculations. The code also represents uncertainties in key source term issues. The input control file for GGSOR, ggsor.inp, is listed below.

BINNED \$ EXECUTION MODE SWITCH (MUST BE FIRST KEYWORD; 2ND LINE MUST BE TITLE) ALL POSSIBLE BIN COMBINATIONS WITH EXPERT OPINION MEDIAN INPUT FOR GGSOR \$ EXECUTION OPTIONS PRTIMP \$ ECHO INPUT \$ KEEP CONSEQUENCE INPUT DATA CONSFL \$SUMWGT **\$** PRODUCE REDUCED DIMENSION FILE **KPBYRUN \$ USE OBSERVATION SPECIFIC BINS** \$REPORTB \$ PRINT BIN TRANSLATION REFULTS \$ PRINT INTERMEDIATE DIAGNOSTIC VALUES \$DIAG FILE ASSIGNMENTS EXPERT \$ EXPERT CPINION TABLE DEFAULT median.dat \$ DEFAULT PARAMETER VALUES FILE \$ BIN DEFINITIONS BINFILE byr mas.kep \$ SAMPLE VECTOR POSITIONS g_vecpos.dat VECPOS 250 1 ../hcube.dat \$ SAMPLE VECTOR FILE, 250 SAMPLES STARTING WITH SAMPLE SAMPLE 1

As indicated in this listing, four input files are required by GGSOR. Three of these files, median.dat, g_vecpos.dat, and hcube.dat, were provided by SNL. These files are used in sampling the various parameters in the equation used by GGSOR to calculate the fission product source term. The fourth file, byr_mas.kep, is one of the MASTERK output files discussed above. The output file of GGSOR is an enormous file (~40 MB) called ggsor.cfl. This file is one of the input files required by PARTITION. Basically, it provides information on the isotopic release fractions, timing of the release, duration of the release, etc., for each unique source term bin produced in the PSTEVNT rebinning process, for each sampling observation.

A-10

A.7 PARTITION Analysis

The PARTITION code^{A+4} c es essentially what its name implies; it partitions the source term information generated by GGSOR into a smaller set of source term groups for which consequences can be calculated using MACCS. It does this by locating each source term on a two-dimensional grid of potential chronic (latent) fataiities vs. potential early fatalities using the isotopic release fractions from GGSOR, the frequencie. associated with each source term, and a dose factor table. The isotopic release fractions are supplied from GGSOR in a file named ggsor.cfl. The source term frequencies come from gg.frq and gg_temac.dat, and the dose factor table was supplied by SNL as file ggwgt.inp.

One of the output files from PARTITION is maccs.inp. This is the MACCS input data for each source term group generated by PARTITION. It is used in calculating the conditional consequences for each of the source term groups. It is not listed in this report, because it is fairly large and the format of the file makes it not particularly usefu? to these analyses.

More useful to the analyst is the consequence summary data file that PARTITION produces (summcom.dat). This file contains a summary of the overall source bins of the early and chronic fatality potential fall possible releases. These data are useful for estimating the consequence potential for sensitivity cases without actually performing new MACCS calculations.

PARTITION generates a number of other output files. However, these files were not used in the CPI analysis, so they will not be discussed further. Refer to Reference A-4 for more information on the capabilities of PARTITION.

A.8 MACCS Consequence Analysis

The MACCS code^{A-5} is used to calculate the conditional offsite consequences for each source term group generated by PARTITION. The required output file from PARTITION is maccs.inp. However, this file is not in the correct format for input to MACCS; therefore, it is reformatted using the translator utility STER, which was supplied by SNL. Because the only reference for the STER program is the source code, a code listing is provided in Appendix C.

Two MACCS runs were made in the base case analysis. In the first of these, the input deck was modified to reflect the input decks used for MACCS Version 1.5.5 in the Draft NUREG-1150 analyses. The MACCS code has undergone several revisions since the completion of the June 1989 druft of NUREG-1150; currently, Version 1.5.11 is in use. Therefore, the second base case run used the input deck for this later version (modifications were made to the STER program to reflect input deck differences).

Five measures of offsite risk were chosen for use in this report. They include: (a) the mean number of early (acute) fatalities, (b) the mean number of latent (chronic) fatalities, (c) the mean population dose within a 50-mile radius, (d) the mean population dose over the entire calculational grid (1000-mile radius), and (e) the mean offsite costs. Site data files were taken from the Draft NUREG-1150 Grand Gulf MACCS deck. Dose data files were supplied by SNL; however, these were the old files for Version 1.5.5. For the Version 1.5.11 run, Zion Draft NUREG-1150 dose data files were used, because of the unavailability of revised Grand Gulf dose data files. Using the Zion dose data files does not present a problem, because the dose data file is the same for each plant.

A.9 Risk Calculation

To determine the annual risk, the conditional consequences from MACCS were combined with the conditional probabilities of a release from containment and the PDS frequencies from the front-end analysis. Because of the unavailability of the code that was used to perform this calculation for Draft NUREG-1150 (RISQUE), a FORTRAN routine called RISK was written to carry out this task. This code is listed in Appendix C.

REFERENCES

- A-1. J. M. Griesmeyer and L. N. Smith, A Reference Manual for the Event Progression Analysis Code (EVNTRE), NUREG/CR-5174, September 1989.
- A-2. S. J. Higgins, A User's Manual for the Postprocessing Program PSTEVNT, NUREG/CR-5380, November 1989.
- A-3. D. Brown et al., Evaluation of Severe Accident Risks: Grand Gulf L. t 1, NUREG/CR-4551, Vol. 6, Part 1, Rev. 1, July 1989.
- A-4. R. L. Iman et al., A User's Guide for PARTITION: A Program for Defining the Source Term/Consequence Analysis Interface in the NUREG-1150 Probabilistic Risk Assessments, NUREG/CR-5253, November 1989.
- A-5. D. I. Chanin et al., *MELCOR Accident Consequence Code System*, Draft NUREG/CR-4691, September 21, 1988.

APPENDIX B COMPUTER FILE LISTINGS

APPENDIX B COMPUTER FILE LISTINGS

B.1 Grand Gulf APET for PDS 1

The file listed on the following page, gol_aprt.dat, is the input file to EVNTRE that describes the APET for PDS 1. The APETs for the other PDSs are similar.

GRAND GULF ACCIDENT PROGRESSION EVENT TREE - REV. 6.0 -125 NQ 1 1.000 CPD 1 What is the initiating event? 3 TLOSP T2 TC 10 2 . . 1,000 0,000 0,000 2 Is there a Station Blackout (Diesel Generators fail)? 2 S8 nS8 12 2 1 1,000 0,000 3 is dc Power not available? 2 E1fbC E1-bC 1 2 12 0.000 1.000 4 Do one or more S/RVs fail to reclose? 2 E1SORV E1riSORV 1 2 . 0.050 0.950 5 Does HPCS fail to inject? 3 ElfHPinj ElrHPinj El-HPinj 1 1 2 3 0.000 1.000 0.000 6 Does RCIC fail to inject initially? 2 E1FRCIC E1-RCIC 1 1 2 1,000 0,000 7 Does the CRD hydraulic system fail to inject? 3 E1fCRD E1rCRD E1-CRD 1 - 12 2 - 3 1,000 0,000 0,000 8 Does the condensate system fail? 3 ElfCond ElrCond ElaCond 1 1 2 3 0.000 1,000 0,000 9 Do the LPCS and LPC1 systems fail? 4 ETFLPC ETFLPC ETALPC ET-LPC 18 1 2 3 - L 0.006 1.000 0.006 0.008 10 Does RHR fail (heat exchangers not available)? 4 E1FRHR E1rRHR E1aRHR E1-RHR 1 1 2 3 4 0.000 1.000 0.000 0.000 11 Does the service water system or cross-tie to LPCI fail? 3 E1FSSW E1rSSW E1aSSW 1 2 3 1.000 0.000 0.000 12 Does the fire protection system cross-tie to LPCI fail? 3 E1FFWS E1oFFWS E1aFWS 10 . 2 3

SARRP

\$ TLOSP : Loss of Offsite Power \$ TPCS : Power Conversion System is lost \$ TC : Anticipated Transient without Scram (ATWS) \$ SB : Station Blackout, No ac power on Division 1 and 2. \$ nSB : Not a station blackout \$ El : power on Divisionr 1,2 and 3 wwer is available from Division 3 and either Div. 1 or Div 2. \$ E1-24 \$ EISORV : One or more S/RVs fail to reclose \$ ElnSORV : No S/RVs fail to reclose \$ ElfHPInj : HPCS fail to inject \$ ElrHPIn; : HPCS is recoverable when ac power is restored \$ E1-HPIni : HPCS is available \$ E1MRCIC : RCIC is failed during core degradation \$ E1-RCIC : RCIC is providing injection during core degradation \$ ElfCRD : CRD is failed & is not recoverable \$ E1rCRD : CRD is recoverable once ac power is restored \$ E1-CRD : CRD is delivering water to the vessel \$ ElfCond : Condensate system is failed and will remain unavailable \$ ElrCond : Condensate is recoverable when ac power is restored \$ ElaCond : Condensate system is available but not currently injecting water \$ ElfLPC : Both LPCS and LPCI are failed \$ EIRLPC : Either LPCS or LPCI are recoverable when ac power is restored \$ ElaLPC : Either LPCS or LPCI are available but there is no injection \$ E1-LPC : Either LPCS or LPCI are providing water injection to RPV \$ ElfRHR : Both SPC and CSS are failed \$ EIrRHR : Both SPC and CSS are recovera . when ac power is restored \$ ElaRHR : Either SPC or "S are available \$ E1-RHR : Either SPC or CSS is being used for containment heat removal \$ ElfSSW : SSW cross-tie is unavailable and cannot be recovered \$ ElrSSW : SSW cross-tie is recoverable when ac power is reltored * ElaSSW : Service water cross-tie is available

\$ E1fFWS : Fire Water system is unavailable and cannot be recovered \$ E1ofFWS: Operators failed to align Fire Water system

0.000 0.000 1.000 13 Are the containment (wetwell) sprays failed? 14 ElfCSS ElrCSS ElaCSS El-CSS 2 100 1 1 1. 0.000 1.000 0.000 9,000 14 What is the status of vessel depressurization? 4 ElfDep ElofDep ElnDep El-Dep 1 . . 2 0,0000 0,0000 1,0000 0,0000 15 When does core damage occur? 2 CD-Fst CD-Slw 1 2 1.000 0.000 16 What is the level of pre-existing leakage or isolation failure? 3 E1nL E1L2 E113 3 . . 2 12 0.9935 0.0065 0.000 17 What is the level of pre-existing suppression pool bypass? 3 E1nSPB E1-SPB2 E1-SPB3 1 2 3 0.9996 0.0004 0.0000 18 What is the structural capacity of the containment? Contain 1 3 1.12 1,000 4 21 334.80 22 0.20 24 19.50 25 0.50 19 What is the structural capacity of the drywell? 1 Drywell 3 1,000 5 26 528.00 36 659.00 31 +18,1,2,1 34 32.00 35 118,1,4,1 20 What type of sequence is this (summary of plant damage)? 6 Fst-SB Slw-SB Fst-T2 Siw-T2 Fst-TC Slw-TC . 2 3 4 5 6 6 2 2 15 * 1 1 SB CD-Fst 1,000 0.000 0.000 0.000 0.000 0.000 1 2 - 2 58 0.000 1,000 0.000 0.000 0.000 0.000

\$ ElaFWS : FWS is available to inject high pressure water into RPV \$ ElfCSS : Containment sprays failed \$ ElrCSS : Sprays are recoverable when ac power is restored \$ ElaCSS : Containment sprays are available \$ E1-CSS : Containment sprays are operating \$ ElfDep ; The RFV cannot be depressurized \$ Elofdep: The Operators failed to depressurize the RPV \$ EinDep ; The RPV has not been depressurized 1 E7-Dep : RPV has been depressurized \$ CD-Fst : Core damage occurs in the short term (1 hr.) \$ CD-Slw : Core damage occurs in the long term (12 hr.s) \$ Elnt : Nominal leakage (within tech spec.) - will NOT prevent long-term press \$ E1L2 : Pre-existing leakage sufficient to slowly depressurize the containment \$ E1L3 : Large pre-existing leak sufficient to depressurize the containment \$ ElnSPB : No pre-existing SPB in excess of the nominal level \$ E1-SP82 : Initial SP8 (arger than nominal - on the same order of tech spec le \$ E1-SPB3 : Large initial SPB - vents will NOT clear for slow pressurization \$ initializes the parameters that define the pressure or impulse at which \$ the containment will fail. For pressure loads, there are 3 modes of containm \$ failure: leak, rupture, and catastrophic rupture. For impulsive loads there \$ there are 2 modes: leak and rupture \$ PCFail: Containment failure pressure \$ CFRan: Random number used for containment failure mode (Pressure) \$ IMPCF: Impulse at which containment fails \$ IMRanC: Random number used for containment failure mode (Impulse) \$ Initializes the parameters that detine the pressure or impulse at which \$ the drywell head and the drywell wall fail. For both pressure and impulsive \$ Loads ther/ are 2 failure modes: leak and rupture. \$ IPDWF: Internal pressure which results in drywell failure \$ EPOWF: External pressure which results in drywell failure \$ DWFRan: Random number used for Drywell failure mode (Pressure) \$ IMPOWF: External impulse which results in drywell failure \$ IMRanD: Random number used for drywell failure mode (Impulse) \$ TBUX : Fast SB at high pressure with no injection - ac power is not recoverab \$ TOUV/FIB : Fast core melt other than TBUX and ATWS \$ 18 : Long-term station blackout \$ TC-fDeP : ATWS with failure to depressurize the RPV (TCUX) \$Case 1: Fast Station blackout sequences \$Case 2: Long-term Station blackout sequences

SCase 3: fast lost of power conversion system transient	Stase 4.: Long-term lost of power conversion system transfent	Stase 5: Fast ATWS - RPW at high pressure, no injection	SCase 6: Long-Term ATUS - RPV at high prescure, (BPCS > 5 hr.s)	<pre>% EC-MIS : MIS turned on Defore core degradation % E2/MIS : MIS is WOI turned on before core degradation</pre>	5Case 1: Not c station blackout, ac power is available. Some probability the operators will fail to turn on the HIS before core degradation.	<pre>5Case 2: Station blockout and ac power is NOT available, MIS</pre>	<pre>\$ ESNVEW1 : Containment W01 wented before core damage \$ ESNEW1 : Containment 15 wented successfully before core damage</pre>	SCase 1: ATMS where HPCS injects initially and the operators failed to 5 turn on the HIS	SCase 2: ATMS where HDCS injects initially and the operator does turn on \$ the HIS	<pre>SCase 3: ATMS where Core Damage occurs in the short term and BCIC is injecting (although insufficient to prevent CD)</pre>	Stase 4: Not a station blackout containment pressure remains below wenting 5 pressure prior to core damage for PDSs considered	Scase 5: Station blackout and ac power is not available, thus cannot vent \$ Venting requires both ac power from both divisions.	<pre>\$ oSRVBkr : At least one S/RV tailpipe vaccum breaker iS stuck open \$ cSRVBkr : NO S/RV tailpipe vaccum breakers are stuck open</pre>	SCase 1: Sturk open SRV, thus, tailpipe vacuum breaker is not repeatedly of
	0.000	0.000	0.000 1.000 Beticer2									t wide open?		
	0.000 0.000	0.006 0.000	1.000 0.000 0.000 1.000			igradation?						t) stick wide green?		
	0.000 0.000 0.000	1.000 0.006 0.000	0.000 1.000 0.000 0.000 0.000 1.000 fore core degradation?			out e core degradation?						breaker(s) stick wide goon?		
	1,000 0.000 0.000 0.000	0.000 1.000 0.000 0.000	0.0.0) 0.000 1.000 0.000 0.000 0.000 0.000 1.000 the MiS before core degradation?			tion Blackout nted before core degradation?	21	E 2meis		15 * 1 60-Fst		pe vaciam breaker(s) stick wide open?		
12 * 1 * 1	6.000 1.000 0.000 0.000 0.000	0.000 0.000 1.000 0.006 0.000 15 * 1 rn.cer	0.000 0.0.0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 sturn on the MiS before core degradation?	2	01 540	u.roo 5 Station Blackout 0.500 ent not vented before core degradation?	2 50	* 2 * 2 CD-SIW E2mHiS 0.000	15 * 2 CD-Stw 0.195	6 15 * 2 * 1 61-8CIC 20-Fst 0.000	0.000	0.000 /RV tailpipe vacuum breaker(s) stick wide open?	cSRUBAr 2	

E1SORV 0.000 1,000 34 28 28 3 6 1 + 33 -4 Fst-12 nE1-Dep Fst-S8 0.250 0.750 20 20 12 20 2 + 63 -2 + 4 1.2 Stw-TC nE1-Dep S1#-58 Ste-12 123,2,1 123,2,2 20 1 5 Fst-TC 0.055 0.945 Otherwise 123,4,1 123,4,2 24 Does ac power remain lost during core degradation? 2 E4FAC E4-AC 1 2 2 14 1 3 1.5 FIFDC 1.000 0.000 15 2 2 1 2 SB CD-SIW 0.390 0.610 1 2 12 SB 0.370 0.630 Otherwise 1,000 6.000 25 Is dc power available during core degradation? 2 E4FDC E4-DC 2 1 2 4 1 3 1 E1fbC 1.000 0.090 24 1 2 E4-AC 0.000 1,000 15 z 2 12 2 58 CD-SIN 0.800 0.200 Otherwise 0.000 1,000

\$Case 2: Fast core meit with RPV at high pressure. SRVs are cycled a macium small number of times (33 based on BWR/LTAS) and, thus, the same and 5 of tailpipe vacuum breaker failure is low 5 \$Case 3: Long-term core melt with RPV at high pressure. SRVs are cycled a large number of times (45 based on (TAS) and, thus, the probability * of tailpipe vacuum breaker failure is higher \$ \$Case 4: Very fast core melt with RPV at high pressure. Due to the rapid boilrate resulting from the ATWS the low-low-set SRV is held wide open pri \$ to core damage and its tailpipe vacuum breaker does not cycle \$ \$Case 5: RPV is depressurized, SRVs not cycled repeatedly. \$ E4fAC : ac power is not available during core damage \$ E4-AC : ac power is available during some portion of the core damage process \$ Case 1: Failure of dc power precludes AC power recovery \$ Case 2: Long-term station blackout sequence \$ none a 14.7 hr given none a 12 hr \$ Case 3: Fast station blackout accident sequence \$ none @ 3.35 hr given none @ 1 hr \$ Case 4: Power was previously available \$ E4FDC : dc power is NOT available during core damage 3 E4-DC : dc power IS available during the core damage process \$ Case 1: dc power has already been lost \$ Case 2: ac power is available, thus, dc power is available \$ Case 3: Long-term station blackout sequence - Batteries may deplete \$ If the batteries deplete before ac power is recovered, both dc and ac \$ power are lost

\$ Case 4: Fast station blackout accident sequence

26 What	is the RPN	/ pressure	during core	e degradat	ion?			
2	E4-Hip	E4-LoP					\$ FL-HiP	. Div is at high pressure (spran 1055 prist
2	1	2					R Edul of	BDV is at ingripressure (sprov, iu); psis;
6							2 E4 LOF	. APV is at tow pressure (< 30 psia)
2	16	25						and the second
		* 2					scase 1:	vessel depressurized prior to core damage and dc power is still
	£3.0m	F1 00					5	available
	c)-bep	24-DC						
	0.000	1.000						
							\$Case 2:	Vessel will depressurize prior to core damage (based on LTAS calcs.)
	E1-SORV							
	9.000	1.000						
2	14	25					\$Case 3:	RPV can not be depressurized because of hardware failure or
	1	+ 1					5	de neuer use lost and the ADC usings can an Longer he hant over
	ElfDep	E4 FDC						the point and that and the most serves can no tonger be kept open
	1,000	0.000						
2	2	14					Press for	and a second
							scase +:	station blackout in which the operators failed to verressurize prior
		Clabor .					5	to core damage with ac power recovery. Some probability that ADS fails
	0.760	e indep					5	and the operators will not depressurize the RPV
	0.200	0.740			1000	1		
0	21	1	1.1	15	55	15	\$Case 5:	ATWS or T2 sequence (operators previously failed to depressurize RFW)
	1	* (2	+ 3	* (2	* 2	+ 133	\$	and the operators fail to turn on HIS OR long term ATWS and the
	EZ-HIS	12	TC	CD-SLW	E3VENT	CD-Fst	\$	operators fail to vent.
	0.805	0.195						
1.1	Otherwise						\$Case 6:	ATMS or 12 sequence with multiple operator errors
	1.000	0.000						
27 What	4s the sta	tus of the	HIS before	vessel b	reach?			
2	E4-HIS	E4nHIS					\$ F6-H15	- NIC 10 unrhing hafors used branch
2	1	2					E Cieure	. nto is working before vessel preach
7							a Cetter12	: MIS IS NOT WORKING Defore vessel breach
1	21							the second se
	2						scase i:	his was not turned on previously, thus, will not be turned on
	EZoHIC						5	(to turn on RIS now would be an error of commission)
	0.000	1 000						
	0.000	1.000						
	2						Mase 2:	Not a SB and HiS was turned on previously, thus, still on,
	2							
	nSB							
	1.000	0.000						
1	24						Stace 3-	SR and an invest has not been recovered and RIT use on annumber
	. 1						\$	this BIS still as
	E4FAC							shop are strict un.
	1.000	0.000						
6	20	26	16	25			******	
		* 5	* 2	* 2			BLase w:	rast 58 with ac power recovery, however, the operators failed to
	Fe+-52	56.420	£100 mm	F1 00			2	to depressurize the RPV. Some probability the operators will turn
	0 129	0 973	cineep	EA-DC			5	MIS OFF when ac brought into plant.
-	0.120	0.072						
2	20	26					\$Case 5:	Fast SB with ac power recovery with no previous operator failures
		2					5	Some probability the operators will be turned
	Fst-S8	E4-LOP					\$	RIS OFF when ac brought into plant.
1.1.1	0.064	0.936						
1	20						\$Case 6:	Long-term SB with ac power recovery (operator failures resulted in
	2						\$	core melt)

		Stw-S8					
		0.160	0.840				\$Case 7: Case should not be used
		2 000	1 000				
28	10.25	PV injectio	n restored	during co	re degrada	ition?	
	3	E4nt PT	E4-LP1	E4-HPT			\$ EAnLPI: No low pressure injection into the RPV
	2	1	2	3			\$ E4-LPI: There is LOW pressure injection into the RPV
	10						\$ E4-HP1: There is HIGH pressure injection into the RPV
	Z	5	24				scase 1- MPCS was recoverable and ac power is restored, thus, there is
		C. L.	51.45				\$ high pressure injection into the RPV
		0.000	0.000	1 000			
	1.1	26	0.000	1.1000			\$Case 2: Wigh RPV pressure precludes low pressure injection
		1					
		E4-HiP					
		1.000	0.000	9.000			
	2	9	24				SCase 3: No failure of low pressure injection system and ac power is available
		-1	2				\$ injection is automatic
		nE1fLPI	E4-AC				
		0.000	1.000	0.000			the second s
	4	8	24	20	27		\$Case 4: Condensate system has not failed and ac power is available
		-1	* 2	• -1	* 2		5 and BUI a Short term say toperators have committee errors to get to up;
		nE1fCond	E4-AC	nFst-S8	EANHIS		and the operators turned the his off
	*	0.101	26	20			\$Case 5: Condensate system has not failed and ac power is available
	~	- 1	* 7	* -1			s and NOT a Short term SBO (Operators have committed errors to get to CD)
		rF1fCond	E4-AC	nFst-S8			s and the operators FAILED to turn the MIS off
		0.322	0.678	0.000			
	3	8	24	27			\$Case 6: Condensate system has not failed and ac power is available
		- 1	* 2	* 2			§ and a Short term SBO (No previous operators errors) and the
		nE1fCond	E4-AC	E4nHIS			S HIS is OFF (No operator errors)
		0.064	0.936	0.000			and the second
	2	8	24				\$Case 7; Condensate system has not failed and ac power is available
		-1	* 2				5 and a short term sau (no previous operators criters) and the state of compared failed to turn with off)
		nElfCond	E4-#C	a 114			3 ALS IS UN CODERACE FAILed to Carriers of T
		0,128	0.872	0.000		24	trace 8. East CDC commune. The the EUC available and either no numer
	2	12	20	24	+ 2	24	core of the second s
			T	51.45	ECONTE	SLEAD	s HIS is OFF. Some probability that operators get fire system aligned.
		E18775	0.972	0.000	CAURTS	CALNE	
	~	120	20	0,000			\$Case 9: Same as previous case except operators failed to turn HIS off.
	1	3	* 1				
		FIREPS	For-SR				
		0.256	0.744	0,000			
		Otherwise					\$Case 10: No low pres. inject source or slow accident with FWS (operators
		1,000	0.000	0.000			5 failed to use FWS previously, negligible probability will use it now)
25	15 5	the core in	a critical	l configura	ation follo	owing injection recovery?	a since it is a too share a second state of a second state of the
-	~	E4-Crit	E4nCrit				\$ E4-Crit : Core IS in a critical configuration following injection recovery
	2	1	2				\$ EAnCrit : Core is NOT in a critical configuration following injection recover
	3						and a state of the second second second second second
	2	1	28				Scase 1: AIWS accident sequence with low pressure injection
		3	2				restored to the Kry

	10	54-101			
	0.100	0 000			
2	20	20			
	0	c0			Scase 2: All other transients with either high or low pressure injection
	FL 101				Festored to the RPV
	E4-LPI	E4-HP1			
	0.010	0.990			
	Itherwise				<pre>\$Case 3: No injection recovery (no moderator)</pre>
	0.000	1.000			
0 What	is the st	atus of cor	ntainment sp	prays?	\$ E4FCS : Containment sprays are failed and cannot be recovered
4	E4fCS	E4rCS	E4aCS	E4-CS	\$ E4rCS : Sprays are recoverable when an owner is restored
2	1	2	3	4	\$ E4aCS : Spravs are available
5					\$ E4-CS : Containment enrous and experation
1	13				
	1				State 1. Containment encour uses Acquisably failed
	FIFCSS				acase concernment sprays were previously raited
	1.000	0.000	0 000	0.000	
	12000	26	0.000	0.000	
£.	13				\$Case 2: Sprays were previously recoverable and ac power has NOT been restored
	C				
	EIFLSS	E4TAL			
	0.000	1.000	0.009	0.000	
£.	1.1.1	15			\$Case 3: Long-term ATWS (ATWS with HPCS > 5 hr.s). RHR is insufficient to
	3	* 2			\$ to keep the pool cool for this case
	TC	CD-Stw			
	0.000	0.000	0.010	0.990	
2	20	24			\$Case 4: Long-term station blackout (thus, containment pressure is high arough
	2	* 2			\$ to trigger sprays) - some probability that automatic actuation fails
	Stw SE	E4-AC			and the state of t
	0.000	0.000	0.019	0.996	
	Otherwise				Gree 5. Sprave are quailable but not operated because costs must see a
	0.000	0.000	1,000	0.600	e.cov 2. sprays are available out not operated because containment pressure is e.cov and finite black
1 What	amount of	Oxvoen is	in the weta	Constabaneed area animation?	 Not sufficiently night
1	0244	anggart to		acts and the core begradactory	 CONT - Annual of control to con
	1				· ucaw : Aprilie of oxygen to wetwell prior to core damage
-	1.000				
-	1.000				
6	714 0				
	510.0				<pre>\$Par. 9 : 02WW - Amount of 02 in wetwell (Kg-mole)</pre>
	1141.0			and the second	\$Par. 44 : N2WAV - Amount of N2 in Jetwell (Kg-mole)
ic what	UNROUNT OT	Uxygen is	in the drys	well during core degradation?	
- 2	020W				\$ 02DW : Amount of oxygen in drywell prior to core damage
3					
	1.000				
10	61.0				\$Par, 10 : 0204 - Amount of 02 in droupil (Kn-mole)
3 What	amount of	steam is p	present in t	the containment at core damage?	
1	H20544				\$ 82/682 - Amount of stam in containment during care departs
4	3				Coar 1 - M2/Mat - Amount of stand in interact the ring core damage
-6					a contraction of pream in McCMEII (KG-MDIE)
2	16	22			Stars 1. Fisher Des salation and the
		+ 2			ecase is critici Fre existing rupture or containment vented (currently #0
	2113	ETVENT			pre-existing rupture and the only time containment will be vented
	1 000	CONCRE			a early is during a long term ATWS, thus, treat like case 2)
	1.000				

	1582.00			
2	1	15		<pre>SCase 2: Long-term ATWS (HPCS operates > 5 hr.s - pool heats up</pre>
	3	* 2		
	TC	CD-SIM		
	1,000			
÷	1582.00			
2	10	22		\$Case 3: RHR and containment sprays working. Spray temperature assumed at
<i>a</i> .		4		\$ 110 F maximum since pool would not heat.
	C1.000	E1./25		
	5 000	E1 635		
	1.000			
-	75 00			
	15.00		15	Stage 4: Very Long-Term SB - Containment Steam Inert
3	6			
	36	Einpep	CD-SIW	
	1.000			
2				
1	4235.00			trace 5, i and have station blackert without containment ensue
- 1	20			scase 5: Long term station blacking and how concentration of a
	2			
	Stw-SB			
	1.000			
1				
1	2290.00			the second state the transfer a transfer and pool
1	Otherwise			Scase 6: Fast core melt (1804, 1404/F15, & 1604) - subcooles point
	1.000			
1				
1	75.00			
what	amount of	steam is p	present in the dryweil at core damage?	
1	#200W			\$ H200W : Amount of steam in drywell during core damage
4	1			\$ Par 6: H200W: Amount of steam in drywell (kg-mole)
6				
	23			\$Case 1: Stuck open SRV tailpipe vacuum breaker
	1			\$ - Large amount of steam enters drywell through the tailpipe vacuum brea
	oSRVBirr			
	1.000			
6	305 00			
3	303.00	22		\$Case 2: Long-term ATWS (HPCS operates > 5 hr.s - pool heats up
~		* 2		
		CD. Clu		
	* 000	CD-21M		
1.1	1,000			
1	1.000			
6	223.00			times to BUD and convainment enrave working
5	10	13		avase 3. Kok elki sustansakos aprojo korking
	4	14		
	E1-RHR	E1-CSS		
	1.000			
1				
6	14.50			and the second second second second second second
3	2	14	15	Scase 4: Very Long-Term 58 - Containment Steam Inert

34

			* 2	
	58	ElfDep	CD-SIW	
	1.000			
1				
6	817.00			Place to task term station blackast
	20			scase 4: Long-term station blackout
	P1			
	1 000			
1.1	1.000			
6	424.00 \$	STHOWELL:	Amount of steam in drywell (kg-molo) from LTAS	
0	therwise			<pre>\$Case 5: Fast core melt (TBUX, TOUV/FTB, & TCUX)</pre>
	1.000			
1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5	14.50 1	SIMDWELL:	Amount of steam in drywell (kg-mole) ami-2109	
35 10C81	in-Vel/2	nyor ogen	receased in vesser our my core begradactors	\$ In-VsR2: Amount of In-Vessel hydrogen production
6	111 1 1			
6	1.1			
2	. 1	28		\$Case 1: ATWS sequence, RPV at high pressure, NO high pressure injection except
	- 3	2		\$ CRD (TOUX) and injection recovered
	TC	E4-LPI		
	1.000			
1		218050	C released in versel (Ka-Mala)	
2	261.1 1	STRAF2 - H	ic released in vesser (ky more)	SCase 2: ATWS sequence, RPV at high pressure, NO high pressure injection (TODX)
	3			\$ NO injection recovered
	TC			
	1,000			
1				
2	458.4	-	20	trace 1. Fore degradation occurs at high pressure, however
5	14	* 1 3	20	s injection is restored before vessel breach.
	nE1-DeD	F4-1 P1	F4-HP1	· · · · · · · · · · · · · · · · · · ·
	1,000	24 27 2		
1				
2	326.1			and the second
2	28	28		Scase 4: Core degradation occurs at low pressure and
	12	+ 3)		Injection to the kry before vesset breach.
	E4-LP1	E4-HP1		
	1.000			
2	277.1			
1	26			\$Case 5: Core degradation occurs at high pressure with no water injection
	1			\$ before vessel breach.
	E4-HiP			
	1.000			
1				
2	442.3			\$Case 6: Core degradation occurs at low pressure with no water injection
0	1.000			\$ before vessel breach.
1	1.1000			

.

....

B-12

ß

	1000							
Ζ.	411.0			Section and	fart i con?			
36 Whot	is the leve	el of in-V	lessel zirc	contum exte	detion/		e. 11	* Toron 75 - In unergal Tr ovidation > 75%
7	Zr0x75	Zrex50	Zr0x40	Zr0x30	Zr0x21	Zrox10 Zrox<10	2	S ZFURTS : IN VESSEL ET OKTABLING / 75% > 200% > 50%
5	- 1	2	3	- 4	5	6	e	\$ ZPOXDU : In-vessel 2F Oxidation: 724 - 204
1	2							\$ Zr0x40 : In-vessei Zr oxidation: 304 > 200x > 404
	HZINVES							\$ ZrOx30 : In-vessel Zr oxidation: 40% > ZrOx > 30%
	640							\$ Zr0x21 : In-vessel Zr oxidation: 30% > Zr0x > 21%
	OT THE OF THE		1202 7	949 5	ADL 8	521 1 366 1	R 178.7	\$ 2r0x10 : In-vessel Zr oxidation: 21% > Zr0x > 10%
	GEIMKESM	0	1392.7	000.3	074.0	JETT JUNE		
77 1000	in the con	taioment r	meetine de	mina core	damage?			
37 what	is the con	C10.7	£10×1	at ring works				\$ E1P>3 : Containment pressure greater than 3 bars
	EIPPS	EIFFE	EIFFI					\$ F1p>2 - Containment pressure greater than 2 bars but less than 3 bars
0		۷	2					E E10-1 - Containment pressure less than 2 bers
7		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						a Charle Present by reasons a second second
2	16	22						access to minimum a level & containment lask or containment vented
	3	+ 2						Scase 1: Either a tevel 3 containment text of containment texts
	E1L3	E3VENT						5 - containment can not pressurize
5	9	44	1	2	5			
	0244	87533	H20MM	H21M	EPBase			
	ELW-COACO1							
	CETHERCH		0000 00	0000 00	1 00			
	GEINKESN	3	7777.00	1111.00	1200			
								scace 2- Long-term ATMS (HPCS operates > 5 hr.s) - Hot pool
5	- 1	15						FUEL LING COMMONS OF PROPERTY
		* 2						
	TC	CD-Slw						
5	9	44	1	2	5			
	02144	HZW	HZOW	H2W	EPBase			
	FUN-FRASP1							
	CETHNESH		0000,00	9999.06	1.00			
	ACT MICHIN							
	10	52						\$Case 3: RHR and containment sprays working
~	10							s - containment not pressurized due to steam
	4							
	E1-RMR	E1-C55		1.1.1.2				
5	9	44		£	>			
	02MM	NEW	HZOW	HZWW	EPBase			
	FUN-EBASP2							
	GETHRESH	3	304.0	202.6	101.3			
								the second se
2	20	30						SCase 4: Long-term station blackout and sprays are working
	2	4						\$ - containment pressure controlled by pool temperature (boil-off)
	C14-C2	56-55						
	518.20	24-23		2				
3	4		11700.01	07.01	500-00			
	0.2WW	N/WW	MCOMM	ILC HIM	croase			
	FUN-EBASP3							
	GETHRESH	3	304.0	202.6	101.3			
								the second
3	2	14	15					Scase 5: very long term se tapprox to nr.s to core metty
	1	* 1	* 2					
	82	ElfDen	CD-SIN					
	0	44	4	2	5			
2	07.81	82.51	HOME	6244	FFRace			
	TICN'S	T C MW	HC.UMB		2. pube			
	FUN-EBASP4		704 0	202 4	101 7			
	GETHRESH	5	304.0	202.0	101.3			

	20						\$Case 6: Long-term station blackout and sprays are WOT working
	20						
	C14-50						
ε.	018-00	44		2	5		
2	0244	w2L87	H20684	H25AL	FORace		
	203403.441	HL.WW	IL OWN		C. Date:		
	CETUDEEN		10/ 0	202.6	101 3		
	GEINKESH	2	304.0	6.05.10	1411.5		
	Orbertien						Scace 7- Fast core melt (TBHX, TOUV/FTB, & TOUX)
	Otherwise	11		2	5		
2	177.01	107181	H20481	127181	COB ace		
	CUEW COACO2	RCMM	NCOWW	ncww.	Crosse		
	FUN EBASPC		704 0	202.6	101.1		
	GETHRESH	2	304.0	202.0	101.3		
70.10.0	and she had		talamat I	ankana dua	to elou	processization be	fore VR7
30 what	t is the te	vet or con	COD_CLT	eakage due	10 5108	pressurration of	SECONCI - Nominal containment leakage
4	ESPTICE	ESP-LLZ	CSP-LLS	COP-LL4			SESP-(12- Level 2 containment leakage (Leak)
0		~					SESP-013- Level 3 containment failure (Risture)
4	44						SESP-F14- Level & containment failure (Cat. Rupture)
2	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					ALS ALT ATTA A ANTAL A ANTAL ANTAL ANTAL ANTAL ANTAL ANTAL ANTAL
		+ 2					Grave 1. Containment has been vented or already had a pre-existing leak.
	EILS	EDVENI					ALGOR 1. LUMANMENT NOV VELO TUNICO OF ATTONY PER O PER OF
	200						
	EPBase						
	ANU		0000.00	0000 00	1.00		
	GETHRESH	3	9999.00	9999.00	Lod but d	stanstion	
			Dummy A	tready ta:	rea by a	econacion	Scare 2- Loon-term &TUS (RPCS runs initially), containment will fail
2		12					E from oueroraccine
	3	CD 51					
	10	CD-SIM					
2	21	CC CC					
	PCFail	Crkan					
	FUN-SLWP1		7 00	2.00	4 60		
	GETHKESH	3	3.00	2.00	ting from	a datamatian	
			Jummy x	tready tea	king mo	m Deconduitori	Stage 3- Very long term station blackout (core damage occurs 2 approx 18 hr.s)
3	6						Fight 2. First long live statistic statistic live statistics
		r t en	00.01				
	28	Eituep	CD-51W				
3	2	21	22				
	EPBase	PLFail	Crean				
	FUN-SLWP2		7.00	2 00	1.00		
	GEIMRESH		5.00	2.00	1.20		
							trace 2- tritial pressure is not high enough to threaten the containment
	Otherwise						august 4. Initiat pressure to not organized and and
4	3						
	EPBase						
	AND			000 00			
	GETHRESH	3	-1.00	222.00	AAA 00	And an Annual	
			Parameter	value trig	gers par	ticular branch	
39 What	is the max	amum hydra	ogen conce	ntration 1	n the we	well perore vs?	€ 8181-20 + 82 concentration in M8 > 20% 802-16 - 16% < 82 concent < 20%
6	HM2>20	HWW>16	HWW>12	NMM>8	HWW>4	NORM	# HALLS - 124 H2 company of 164 HALLS - 82 CH2 company of 122
6	1	2	3		2	0	A THREE IS A RECORDER. S TON COMPANY S AND

.

									The state of the s
									S HURDA : 4X < RZ CONCEN. < 0X ROMMA : RZ LURCHT, TT MA - 4M
	23	29							
	81	• •							SCase 1: Open S/RV tailpipe vacuum breaker and a Long-Term ATWS (containment
	oSRVBkr	Sta-TC			,				\$ failed from overpressure, all oxygen purged out of wetwell)
	N	- month	5	N.D	5	2441	at or		
-	2WSA-UI	HICOMM	CCMM	NCH.	2	NWW D	1018		
	ETHRESH	5	0.20	0.1	6 0	- 12	0.08	0.04	
		leakage from	tailpipe	e vacuum	i bresk	er and	contai	ment hole	
	23	16	38	-	50				\$Case 2: Open S/RV tailpipe vacuum breaker and there is a level 3 leak in
	*	* (3	m. +	* *	3				\$ contairment
	oSRVBkr	E113 E	SP-CL3	ESP-CL					
	2	**	0		m	44	34		
	In-VsH2	HZOWH	02MM	HZH	2	12MM	N101		
and the second s	FUN-H2UNZ		1						
ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE	SET NRESH	5	67-0	0.1	0	1.12	0.05	0.04	
	06	leakage from	tailpip	e vacuu	a break	ter and	conta:	ment hole	Stace 7- WO stuck open 5/8V tailpipe but iong-term AIWS failed containment
	4								
	Sla-TC								
	2	1	0		*	44	7		
	In-VSH2	HZOMM	02141	HZH	2	(2MM	1018		
- market in	FUN-H2WM3								
	GETHRESH	5	0.20	0.1	19	0.12	0.08	9.0%	
	16	38	38						SCase 4: NO stuck open S/RV tailpipe vacuum b
	(3	n *	67 +						5 containment
	E113	ESP-CL3 E	SP-CL4						
	2		0		-	44	14		
	In-VSH2	H20MM	0244	HZH HZH	20	NZW1	NTOT		
	DIN-H2MMIC						100		
1000	JE THRESH	2	0.20	0	9	0.12	0.08	0.0%	
		Vessel to poo	it but li	arge col	ntairm	ent hol			and the state of the state burdeness and first an and state
	52								acase 2. upen sink taripipe vacuum preaker and mre at the presence and \$ there is MDF a significant leak in containment
	ACDURET								
	C		0			14	14		
	In-VSH2	HZOMM	02444	12H	2	M2MM	TOTM		
	FUN-H2UNS								
	GE THRESH	5	0.20	0.	16	9.12	0.08	0.04	
		Large leakage	from t	ailpipe	vacuus	m break	er		
	17								SCase 6: Large suppression pool bypass with NO stuck open S/RV tailpipe
	m								\$ vacuum breakers
	E1-SPB3								
	2	-	0		87	44	2		
	In-VSH2	HECHAN	0204	H2	3	M2MM	NTOT		
	FUN-HZUNG						-		
-	GETHRESH	5	0.20	0.	36	0.12	9.08	0.04	
		Large initial	suppre	d uniss	oot by	Dass			Action 7. Windian and the second second frames of the MD study areas 2.200
	Otherwise	Nominal or	T Small	[eakage	1010	drywell	14		SLOSE // NONTROL OF SUBIL SUBPLESSION DOOL UPPROS WITH MU STUCK UPON J/K* & sailoina variam braskare
	2 1144		A Nat	Cm	0.2	test of	AL DAR		 Contribut waterwater at the second of the sec
	JUSA-UI	H/COMM	DCMM	24	-	NCM	1018		

		SCase 3: Open S/RV tailpipe vacuum breaker and RPV at iow pressure				animiliar 2020 teach and a state and a state to a state and a state an	Scase 4: Large suppression poor oppose with mu stach opposition of the second s					and	\$Case 5: Level 2 suppression pool bypass with NO stuck open 5/KV tartpipe	\$ vacuum breakers and NO diffusion flames in wetwell					and a start indexes into drowall with MC stark open 5/8V tailpipe	ACASE O. WORLD. LEARNING CONTRACTOR OF ACASE	S VACUUM DI CONCI >			et of scenario	e sclubet - Deflacration in wetwell before vessel breach	t schement - wo defineration in the wetwell before vessel breach		Stase 1: H2 burned as a diffusion flame or wetwell inert with no contained	\$ Sprays of Long-Lerm Alwa (No carygen to support unservice)		State 2: The average concentration of #2 in the containment is less than	5 4% and it is released at tow pressure			SCASE 31 BC DOMES BVBILBOLD LLOID OF TRUITION PORT		and an ansate invition from random tours	\$Case 4: RPV at #16# pressure and #0 ac power - ignicion tron to an and	
	0.04				0.04						10 0							0.04					0.04	ion independe															
	0.08				0.08	aker					80.0							0.08					0.08	i retent	each?														
7 MC2H	0.12			RZDN	9.12	our la's			4	moz H	0 13	Prevenses	a second days			the state	MCD.	0.12	Stedica	only	4	MO2H	0.12	& vesse	ssel bre														
01 0204	0.16	A Adda	10	Mazo	0.16	Upipe va			10	1020	24 0	ion moil	Contract Contract			0L N	MCDM.	0.16	Fign pool	to drywel	10	MARO	0 16	o drywell	ior to ve													39	
9 82004	0.20	81 80 1 8		RZCODM	02 0	e from ta			9	H200W	~ ~	L CONTRACT	in address a			0	N-CUEN	0.20	I suppresi	eakage ini	\$	H200M	00.00	ge back to	the WW pr			50	\$ +	SUM-TC	-	es •	MORINE					.4	
2 KOM	5	meilleakag	•	H2MM		erge Teskag	61	*	54m017	BRZWN		C initia	81.95 0111.012	2 *	EGridiff	1	HCMM	5	mall initia	- Nomine!	m	H-Suba		some leaka	s occur in	EAMADE	2	07	*	E4-WIN	1.000	4 2	10 L	1.000			0.000	74	
2 1n-VSH2	M-HZDW2 THRESH	2	oSRVBkr	In-VSH2	M-H2DWS	1 Internet	21	2	£1-5P85	In-VSH2	M-H2DMC	THRESH	47	2	£1-5P82	N	SHSV-n1	CMCDW-NC	8	herwise -	N	In-VSH2	9m02H-R	THRESH	[lagration	E4-WDF		2.7	+	E4-Dif	0,000	56	2 }	0.000	24	2 11	1 000	26	
ŝ	17 B	e		h	14	8	2		v		F.	3		ų		in.		1 1		0	5		a 1	5	3 po del	2	CV I	n M	×.			2			-			-1	

B-17
\$ and H2 < 42		Brass C. DDU as MICH scances and MI as rouge - inviting from rands. Dustran	DUBSE 21 MPT BIT BIT BIT BIT OF SAME AND ALL ALL DUMET - 19011 CAL THES THEMAN BUT CAL 	80 - 100 AM - 100		Scase 6: RPV at LOW pressure and NO ac power - ignition from cambon sourchs	\$ and 4% < 8%		and the second s	SLase / MPV as Much pressure and NU ac power - ignition in whom sources end	4 000 CM / 12 4		\$Case 8: RPV at LOW pressure and NO ac power - ignition from random sources	\$ and 8% < H2 < 12%		\$Case 9: RPV at HiGH pressure and NO ac power - ignition from random sources	\$ and 12% < H2 < ToX		\$Case 10: RPV at LOW pressure and RO ac power - ignition from random sources	\$ and 12% < H2 < 16%		\$Case 11: RPV at MIGH pressure and NO ac power - ignition from random sources	\$ and 16% < H2		\$Case 12: RFV at LOW pressure and NO ac power - ignition from random sources	\$ and 16% < #2		\$Case 13: Case should not be accessed		a so taken of the state of the state of the second barrand barrand	We want a finance is a deformation in the worker prior to no worker a neuro e standary - an elementarian in the underland) entire to undered frequely	The second of the second s	\$Case 1: Wetwell inert to detonation or H2 < 12%				and the determined interface the determined from	Scase of Ick on or tok and containment million into the proventions.	s a detonable mixture in containment (High steam)	
																														breach?			39	• •	NOHIM					
																						30	41. +	RUM>20						lesser o			39	+	NAMA -					
*	NORM		20	C	A NAME OF TAXABLE					39	2000	0				39	*	ST-CLANH				30	* (2	HUM-16						l prior to			30	4	8 <mm< td=""><td></td><td></td><td>* 50</td><td>E4-CS</td><td></td></mm<>			* 50	E4-CS	
(1 *	ETSORV			c1crow	C 1 DOK N					*	(1	E 1: DUM #				4	* 1)	ETSORV				4	· 1)	ETSORV						the wetwel			67	*	E4-Win3			60 1 1	E4-1112	
7 +	nE1-Dep	0.820	1	* * *	0. 770				0.790	1	4- + +	0.720			0 720	34	4 +	r£1-Dep	010.0			07970	* -4	nE1-Dep	300	• 1	HMM>20	010.0	1.000	lation in	EANNADT	N.	62	1 +	neu-cs	1.000	00.00	39	HWAP 12	0-780
1	E4-Hip	0.180	56	1)	0 240	30	5	NUM-4	0.210	26	()	0 280	39	4	0 280	56	1 2	E4-HIP	02	m	51~12H	0.380	1)	E4-Hip	0.599	23	Huns 16	0.490	0.000	re a detor	E L-MUDT		87	2	Ek-Win2	9,000	00.00	5	F4-WDF	0 220
																												10	į.,	141										

.*

9.

北市西方

B-18

7

-

5.80 0.00 20 \$Case 3: 12% < H2 < 16% and Low steam 2 43 39 + 3 1 FL-LADT HLAD-12 0.000 1,000 1 0.00 0.00 20 \$Case 4: 16% < H2 < 20% and containment initially inert to detonations, 40 30 39 4 43 \$ however, sprays are on which reduces steam concentration and forms * 2 * (2 * 4) 1 \$ a detonable mixture in containment (High steam) E4-CS E4-WOF HWW>16 E4-WIn? 0.750 0.250 1 20 144.2.1.1 0.00 \$Case 5: 16% < H2 < 20% and Low steam 39 2 43 * 2 1 HIA>16 E4-MADF 0.260 0.740 1 12.40 0.00 20 \$Case 6: H2 > 20% and containment initially inert to detonations, 40 30 43 39 14 however, sprays are on which reduces steam concentration and forms 5 * 1 * (2 * 4) 1 a detonable mixture in containment (High steam) \$ FL-WOF HWW>20 E4-WIN2 F4-CS 166,6,1 166,4,2 2 20 144,2,1,1 0.00 \$Case 7: H2 > 20% and Low steam 2 63 39 * 1 1 HAD>20 E4-WADT 0.550 0.450 1 20 144.5.1.1 0.00 \$Case 8: No combustion Otherwise -- No combustion 0.000 1.000 \$ Impload: Impulse loading to drywell structures 0.00 0.00 20 45 What is the level of containment impulse load before vessel breach? \$ E-1p>60 : Impulse > 60 KPa-S E-1p>50 : 60 > Impulse > 50 KPa-S 7 E-1p>60 E-1p>50 E-1p>40 E-1p>30 E-1p>20 E-1p>10 E-1p<10 \$ E-1p>40 : 50 > Impulse > 40 KPa-5 E-1p>30 : 40 > Impulse > 30 KPa-S 4 5 6 7 3 5 1 2 \$ E-1p>20 : 30 > Impulse > 20 KPa-s E-1p>10 : 20 > Impulse > 10 KPa-S 15 20 \$ E-1p<10 : Impulse < 10 KPa-S Impload AND 50.00 40.00 30.00 20.00 10.00 60.00 GETHRESH 6 \$ Parse load to verify result of preceeding question 46 With what efficiency is hydrogen burned prior to VB? \$ HZEFBVB : H2 burn efficiency prior to vessel breach 1 H2E FBVB 4 1 12 \$Case 1: No deflagration in the wetwall before vessel breach . 43 2 E4rAAD F 1,000 2

18 0.000 19 0.000		
2 40 2 E4-WIn2 1.000	39 * 6 NoHW	\$Case 2: Wetwell steam > 45% (Nigh Steam) and H2 ignited in Range H2 < 4%
18 0.079 19 0.275 1 39		<pre>\$ Par 18 : H2EfVE1 - Effective efficiency of H2 combustion \$ Par 19 : H2EfVB2 - Actual efficiency of H2 combustion</pre>
6 NoHWA 1.000 2		\$Case 3: Wetwell steam < 45% (Low Steam) and H2 ignited in Range H2 < 4% $^{\circ}$
18 0.000 19 146,2,2,1 2 40	10	
2 E4-Win2 1.000	* 5 Husi>4	⇒case 4: wetweit steam > 45% (High steam) and HZ ignited in Range 8% > HZ > 4%
2 18 0.28 19 146,2,2,1		
1 39 5 HMD>6 1.000		\$Case 5: Wetwell steam < 45% (low steam) and H2 ignited in Range 8% > H2 > 4% $$
2 18 0.280 19 146,2,2,1 2 40	39	Tace A- Metuell steam a (SV (bick steam) and W2 including and the steam of the
2 E4-WIn2 1.000	* 4 Hum>8	where the wetween steam r way inter steam, and no ignited in Range 12% > 82 > 82.
18 0.464 19 0.740 1 39		<pre>\$Case 7: Wetwell steam < 45% (low steam) and H2 ignited in Range 12% > H2 > 8%</pre>
HVAV>8 1.000 2		
18 0.575 19 146,6,2,1	70	
2 40 2 E4-WIn2 1.000	* 3 Huu>12	\$Case 8: Wetwell steam > 45% (high steam) and H2 ignited in Range 16% > H2 > 12
18 0.483 19 0.881		
1 39		\$Case 9: Wetwell steam < 45% (low steam) and R2 ignited in Range 16% > R2 > 12%

steam) and K2 ignited in Range K2 > 162	team) and #2 ignited in Range #2 > 16%	1	Pärno6 : 7 > Peak Press > 6 bar Pärno4 : 5 > Peak Press > 4 bar Pärno5 : Peak Press < 5 bar		or R2 burns as a diffusion flamme	efore vessel breach with WD large (Very Fast Pressure rise)
Scase 10: Wetwell steam > 45% (high	\$Case 11: Wetwell steam < 45% (low s	\$Case 12: Case should not be referen	\$ PBrnv7 : Peak Press > 7 bar \$ PBrnv5 : 6 > Peak Press > 7 bar \$ PBrnv5 : 4 > Peak Press > 5 bar	SCase 1: NO R2 burn 44 wow	SCase 2: Containment already failed ' S (Negligible pressure rise) 44 N2MM	SCase 3: Detomation in the wetwell by \$ failure in the containment 4 w2000
* 1) * 1) Huko-20			e in contairement from a nydrogen burn? PBrno5 PBrno4 PBrno5 PBrno3 3 4 5 5 6	9 5 11 15 19 0244 EP8ase P8rn #2E4481 #2E4482	709.3 608.0 506.6 405.3 504.0 c pressure for verification 38 41 4 4 * 3 4 4 4 4 * 3 4 4 4 4 * 3 4 4 4 4 * 3 4 4 4 4 * 3 4 4 4 4 * 3 4 4 1 10 10 \$ 5 5 1 10 10 10 10 \$ 5 1 1 10 10 10 10	709.3 608.0 506.6 405.3 304.0 pressure for verification 9 5 11 18 19 02WW EPBase PBrn HZEFWB1 HZEFWB2 709.3 608.0 506.6 405.3 304.0
тария 39 населе	39 (1 +		ak pressure PBrn>6	43 * 2 EGn6MDF 1 R204M	5 Parse peak 22 + 2 E3-Vent 1 R2044	Parse peak R20MM
3 HMMP-12 1.000 2 1.000 19 146,8,5,7,4 2 2 2 400 1.000	2 18 0.492 19 0.955 2 39 1.900 1.900	18 0.752 19 146,10,2,1 0therwise 2	15 0.00 19 0.00 47 What is the per 6 PBrn>7 5	2 41 2 E4e01F 8 H2MM FUN-EPBRN1	GETHRESH 5 16 5 16 5 5 8 113 7 10 7 10 7 10 7 10	1 сстикези 6 стикези 6 сс-имот 6 к2им 710и-сревиз 6 сстикези

B-21

```
Parse peak pressure for verification
      Otherwite
                                                                        $Case 4: Deflagration in the wetwell before vessel breach with NO large
    8
            3
                     . . .
                              0
                                      5 11 18 19
                                                                      44 5
                                                                                 failure in the containment
           4244
                   82044
                             02WW FPBase PBrn H2EfVB1 H2EfVB2
                                                                    8264
      FUN-EPRRNA
       GETHRESH
                     5
                            709.3 608.0 506.6 405.3 304.0
               Parse peak pressure for verification
48 What is the level of drywell leakage induced by an early detonation in containment?
    3
        EnDWDt E-DWDt2 E-DWDt3
                                                                        $ EnDWDt : No drywell failure induced by detonation
    6
            1
                     2
                             100
                                                                         $ E-DWDt2 : Drywell leakage induced by detonation (Level 2)
    2
                                                                         $ E-DWDt3 : Dryvell rupture induced by detonation (Level 3)
    - 12-
            44
             12
                                                                         $Case 1: Detonation in wetwell before vessel breach
        E4-WD1
            26
                      34
    3
                               35
        1mpload
                  IMPOWE
                           [MRanD
        FUN-EDI
       GETHRESH
                     2
                           2.00
                                      1.00
            $ Dummy parameter values used to trigger particular branch
                                                                         $Case 2: NO detonation in wetwell before vessel breach - NO failure
      Otherwise.
    3
           20
                     36
                             35
        Impl oad
                  IMPDWF
                           IMRanD
            AND
       GETHRESH
                   2 0.00 -1.00
               $ Parameter values force Branch 1
49 What is the level of containment leakage induced by an early detonation?
    3
        E4nDtF E4-DtF2 E4-DtF3
                                                                         $ E4nDtF : No Containment failure induced by detonation
    6
             1
                      2
                                                                         $ E4-DtF2 : Containment leakage induced by detonation (Level 2)
                                175
    3
                                                                         $ E4-DtF3 : Containment rupture induced by detonation (Level 3)
    2
             48
                     48
             2 + 3
                                                                         $Case 1: Detonation failed the drywell (Either Level 2 or 3)
        E-DWDt2 E-DWDt3
                                                                                 This case allows coupling between drywell and containment response
                                                                         2
    5
            20
                                         34
                     24
                               25
                                                35
        Impl oad
                   IMPCF
                            IMRanE
                                     IMPOWE IMRanD
       FUN-ECI1
       GETHRESH
                     2
                             2.00
                                      1.00
    1
             44
                                                                         $Case 2: Detonation in containment - No drywell failure from detonation
              1
        F4-MUDT
    3
                      24
           -20
                               -25
        Impload
                   IMPER
                            IMRanC
       FUN-ECI2
       GETHRESH
                      2
                             2.00
                                      1.00
      Otherwise
                                                                         $Case 3: No detonation in containment - No failure
    1
            20
        ImpLoad
            AND
       GETHRESH
                      2 -1.00 -1.00
               $ Parameter values force Branch 1
50 What is the level of containment leakage before vessel breach?
                                                                        $ ESnEL : No containment failure
```

	et	15 112	55.013	55-016	\$ ES-CL2 : Containment failure is a leak (level 2)
4	ESHEL	ED-LLZ	23-663	4	<pre>\$ E5-CL3 : Containment failed by rupture (level 3)</pre>
0		£.			<pre>\$ ES-CL4 : Containment failed by catastrophic rupture (Level 4)</pre>
4		22	3.8	78 60	
2	10			+ 4 + 3	\$Case 1: Containment either had a pre-existing rupture or was vented pr
	5	e L	F CD . C1 7	500-014 54-D+FT	\$ was ruptured by a detonar ion
	EILS	ESVENT	ESP-CLS	ESP-CLA LA DUTS	
	2				
	EPBase				
	FUN-ECBrn1		0000 00	0000 00 1.00	
	GETHKESH	2	7777.00 Dumma	Irosofy failed by de	Atoma?ion
1.4	14	78	L3	cready introd by a	<pre>\$Case 2: Container: *'.sady leaking and NO deflagration occurred</pre>
3	10		* 2		s - Thus, no additional leakage
	(2	+ 2)	Clair B.F.		
	EILZ	ESP-LLC	CALMMON		
	2				
	EPBase				
	AND		0000 00	0.00 -1.00	
	GETHRESH		9999.00	Least Leaking from	e defonation
		10	Dummy A	tready teaking this	SCase 3: Containment either had a pre-existing leak or has a leak from a
5	10				s detonation
	2	* 2	F F F F 2		
	EILZ	EG-DTFZ	ESP-LLC 21	2	
14	2	11	DEEnil	CERan	
	EPBase	PBID	PERMIT	C1880	
	FUN-EUBrnz		0000 00	2 00 1 00	
	GETHRESH		9999.00	Iready leaking from	a detonation
			ounney A	creatly reaking rise	\$Case 4: Containment intact before containment burn - No failure from detonatio
1.1	Utherwise	44	21	22	
~	500.000	00.00	preail	CFRan	
	Erease	1.01(2)	e Grant		
	FUN-ELBERG		3 00	2.00 1.00	
	GEINKESH	2	Darameter	value triggers par	ticular branch
	to the law	ml of dry	well leaka	ae induced by conti	simment pressurization?
what	is the tes	5-01042	E-NUHD F2	E-DUDES E-DUHDES	\$ EnDWDf : No drywell failure
2	CIDWUT	2	2	4 5	\$ E-DWDf2 : Drywell failure is a leak at the DW wall (Level 2)
0	1.00				\$ E-DWHDf2 : Drywell failure is a leak at the DW head (Level 2)
2	17	48			<pre>\$ E-DWDf3 : Drywell failure is a rupture at the DW wall (Level 5)</pre>
~					\$ E-DWHOF3 : Drywell failure is a rupture at the DW head (Level 3)
	C1 0007	5-000+3			
	E1-SPB3	E DWDL3			<pre>\$Case 1: Pre-existing large leak or drywell already ruptured by a detonation</pre>
	500000				\$ Drywell already failed at wall prevent head failure
	croase				
	CETHDECH	4	0000 00	0000 00 0000 00	0.00
	GEINKEDN		7777200		
1.14	17	50	50		<pre>\$Case 2: Drywell has pre-existing leak and containment ruptured</pre>
2	17	1 2	+ 13		\$ Prior drywell leakage to exclude drywell head leakage
	E1 0007	5 0 23	ES-01/		\$ Containment rupture so burn pressure could be mitigated
	£1-3P82	25-013	20	31	
4	2	00000	EDOUE	DUFPan	
	EPBase	estu:	Cruwr	Carl Hours	
	CCTURECH		0000 00	3.00 2.00	-1.00
	UE I MRE DH		7777-30	100 March 100 Ma	

\$Case 3: NO pre-existing drywell failure and containment is ruptured Containment rupture so burn pressure could be mitigated ۰. 50 50 2 3 ÷., 14 ES-013 ES-014 31 22 30 6 5 FPOUF DWFRam PBrn EPBase FUN-EOBrn2 3.00 2.00 -1.00 4.00 GETHRESH 4 \$Case 4: Pre-existing drywell leakage - Prior leakage to exclude head leakage 17 1 2 E1-SP82 30 31 11 4 5 EPDWF DUFRan EPBase PBrn FUN-EDBrn3 3.00 2.00 -1.00 9999.00 GETHRESH 4 \$Case 5: Burn or no bern case with no prior ruptures Otherwise 31 30 11 £. 5 DWFRah EPBase PBrn EPDWF FUN-EDBrn4 3.00 2.00 -1.00 GETHRESH 4 4.00 \$ Dummy parameters select fillure mode 52 What is the level of suppression pool bypess following early combustion events? \$ E5nSPB : No suppression pool bypass 3 ESISPB ES-SPB2 ES-SPB3 \$ E5-SPB2 : Suppression gool bypass level 2 (leak) 3 . . 2 2 \$ E5-SPB3 : Suppression pool bypass level 3 (Rupture) 5 48 51 51 17 6 3 + 3 + 4 . \$Case 1: Drywell rupture from combustion or pre-existing rupture E1-SP83 E-DWDt3 E-DWDf3 E-DWHDf3 0.000 1.000 \$Case 2: Pre-existing drywell leak and ac power is available and #2 combustion 0.000 -61 43 17 24 in containment - pre-existing leak exacerbated by vacuum breaker fail 4 \$ 2 (1 + 1) 2 E4-AC E4-Dif E4-WMDf E1-SPBZ 0.950 0.050 0.000 \$Case 3: Drywell leakage from either pre-existing leak, leak from detonation 51 17 48 51 4 or leak from pressure in containment. 5 + 2 + 2 + 1.2 2 E1-SPB2 E-DWDt2 E-DWDf2 E-DWHDf2 1.000 0.000 0.000 \$Case 4: ac power is available and H2 combustion in containment 43 41 24 3 - vacuum breaker fails from H2 burn \$ 1 + 15 2 6 E4-AC E4-Dif E4-WADT 0.000 152,2,3 152,2,2 \$Case 5: No burns in containment & no additional bypass Otherwise 0.000 0.000 1.000 53 Has the upper pool dumped? \$ UPDmp : Upper pool has dumped water into the suppression pool UPDmp noUPDmp 2 \$ noUPDmp : The upper containment pool dump does NOT operate 2 1.1 2 \$Case 1: ac power is available - Upper Pool Dump requires ac power 15 24 E4-AC

1 000 0.000 \$Case 2: No AC power - cannot operate upper pool dump without ac power Otherwise 0.000 1.660 54 is there water in the reactor cavity? \$ E5-DF1d : Drywell is flooded (5 M of water in the pedestal) 3 ES-DFId ES-DWet ES-DDry \$ ES-DWet : Reactor cavity wet (200 M**3 of water) 2 . 2 0 \$ ES-DDry : Reactor cavity is dry τ. 51 5 SCase 1: Drywell head rupture - shield pool leaks into drywell E-DUHDF3 0.000 1.000 0.000 6 15 38 3.8 50 50 \$Case 2: No pre-existing rupture or venting and containment failure either * 5 .2 * .3 * .4 * 13 + 41 by rupture or catastrophic rupture - combustion event failed contain ×. nF 11 3 FERVENT ESP-CL3 ESP-CL4 E5-CL3 E5-CL4 0 000 0 010 0 000 5 16 22 43 30 20 \$Case 3: 82 combustion in containment and containment intact except for - 7 1 . 1.1 * -6 * -5 possible level 2 leakage 12 nE113 E3nVENT E4-WDF nNOHUM nHUM>4 0.000 0.001 0.000 8 16 22 17 41 30 39 39 24 \$Ease 4: No containment rupture and No large suppression pool bypass and no -3 . 1 12 . -6 .5 -6-1 5 containment sprays and more than 8% of H2 burns as a diffusion flame E3nVENT nE1-SP83 EAFAC nF113 E4-Dif nE4-CS nHWD4 nNoHW 0.458 0.450 0 100 30 7 16 22 17 53 39 39 \$Case 5: No containment rupture and No large supp vssion pool bypass and .7 1 (1 + 2 + 3) 1 12 * upper pool dump and more than 12% H2 without a burn nE1L3 E3nVENT nE1-SPB3 UPDmp HWA>20 HWA>16 HWA>12 0.500 9.500 0.000 12 20 \$Case 6: Long-term station blackout - Pump seal leakage 2 SLW-SB 0.000 1.000 0.006 53 1 \$Case 7: Upper pool has dumped - 1 UPDmp 0.000 1,000 0.000 7 16 24 \$Case 8: No containment ruplure and No large suppression pool bypass and 22 17 0.5 30 50 -3 (1 + 2 + 33 -3 2 No ac power, and more than 12% H2 without a burn 12 \$ E4nAC nE1-SPB3 HIM>20 HIM>16 HIM>12 METLS ESOVENT 0.000 154,5,1 154,5,2 \$Case 9: Pre-existing containment rupture or large suppression pool bypass or Otherwise 0.000 0.000 1.000 no significant H2 generation 5 55 What is the containment pressure before vessel breach? 3 FSP>3 £5P>2 E5P>1 \$ ESP>3 : Containment pressure before vessel breach > 3 bar 6 2 2 3 \$ E5P>2 : 3 > containment pressure > 2 bar 5 \$ E5P>1 : 2 bar > containment pressure 18 50 - 2 \$Case 1: Containment has failed ES-CL \$ Pressure set to atmospheric 9 8 late. 3 6 10 Sec. 15 11 H2OM 0214 N2W HZLAU H200N 020W H2DW EPBASE FUN-IBASP1 202.6 GETHRESH 2 304.0

SCase 2: NO Containment failure with a LARGE suppression pool bypass and CS. Base Pressure changed to account for the change in total number 30 52 2 \$ of moles. (Drywell and Wetwell assumed to be well mixed) * 4 3 5 E5-SP83 E4-CS 5 10 4 3 6 44 9 - 11 8 H2DW EPBASE H2W H200W 0201 NZW H2068 W150 FUN-IBASP2 GETHRESH 2 304.0 202.6 \$Case 3: NO Containment failure with a LARGE suppression pool bypass Base Pressure changed to account for the change in total number 52 1 * of moles. (Drywell and Wetwell assumed to be well mixed) 15 E5-5P83 5 10 6 3 6 Lile 0 8 . . 0201 HZDW EPBASE HODEN HODEN NZW 02144 H20MM FUN-18ASP3 202.6 304.0 GETHRESH 2 \$Case 4: NO Containment failure and NO large suppression pool bypass and CS. Base Pressure changed to account for the change in total number 30 1 * of moles. (Drywell and Wetwell assumed to be well mixed) 4 \$ E4-CS 15 10 4 44 3 6 0 1 8 H200W 020W HZDW EPBASE N258J H2W NZCOM 02W FUN-TBASP4 304.0 202.6 2 GETHRESH \$Case 5: No containment failure and NO CS - Base pressure edjusted to account 5 \$ for change in total number of moles Otherwise 4 6 10 3 44 0 1 8 H2DW EPBASE H2WW H200W 020W NZW 02WM 32064 FUN-18ASP5 304.0 202.6 2 GETHRESH 56 To what level is the DW steam inert at vessel breach? \$ ESnDin : Drywell is not inert 3 ESmoin ES-Din2 ES-Din3 \$ E5-DIn2 : Drywell inert to detonations 3 2 \$ E5-Din3 : Drywell inert to H2 combustion 5 1 10 6 2 3 \$Case 1: Stuck open S/RV tailpipe vacuum breaker and RPV at low pressure H200W 02DWELL HZDWELL \$ Calculates dry air mole fraction in DW FUN-DWIN1 3 140,1,1 140,1,2 140,1,3 GETHRESH Det Comb. Inert 57 Is there sufficient H2 for combustion/detonation in the DW before V8? \$ EScOWDt : Enough M2 & 02 for a detonation (M2 > 16%) \$ EScDWDf : Enough H2 & D2 for a combustion (16% > H2 > 6%) 3 ESCONDI ESCONDI ESNOWC \$ ESHDWC : Not enough H2 or O2 to support combustion (H2 < 6%) 3 2 - 1 5 6 10 3 15 H200W 02DWELL H2DWELL FUN-DWCBVB 0.06 0.00 0.16 3 GETHRESH H2min -- 16%, 6% or less than 6% 58 Does an Alpha Mode Event fail both the vessel and the containment? \$ Alpha : Alpha mode event fails the RPV and containment 2 Alpha noAlpha \$ noAlpha : There is no Alpha mode failure 2 2 1 \$Case 1: RPV at HIGH Pressure when core slump occurs ž. 26 1

1 E4-Hip 0.001 8,999 Otherwise 0,010 0,990 59 What fraction of the core parti ipates in core slump? 3 HISL MedSL LowSL 2 1 2 3 7 12 58 1 Alpha 1,000 0.000 0.000 2 - 26 28 1 * 3 E4-HiP E4-HPT 0.000 0.000 1,000 24 3 26 7 1 * (-1 * 2) E4-HiP nE1fCRD E4-AC 0.000 0.000 1,000 1 -26 1 EG-HIP 1.000 0.000 0.000 2 28 28 (2 + 3) E4-LP1 E4-HP1 159,2,1 159,2,2 159,2,3 2 7 24 (-1 * 2) nE1fCRD E4-AC 159,3,1 159,3,2 159,3,3 Otherwise 159,4,1 159,4,2 159,4,3 60 Is there a large in-vessel steam explosion? 2 VesStx nVesSTx 2 1 2 3 1 58 1 Alpha 1,000 0,000 1 26 1 E4-HiP 0,100 0,900 Otherwise 0.86 0.14 61 What fraction of the core debris would be mobile at vessel breach? 2 HiligVB LoligVB 4 1 2

SCase 2: RPV is a LOW pressure when core slump occurs.

\$ Hist : >50% of Core molten at core slump \$ MedSl : Between 10% & 50% of core molten at core slump \$ LowSL : < 10% of core molten at core slump</pre>

\$Case 1: Alpha mode failure has occurred which implies large fraction molten

\$Case 2: RPV at high pressure with High pressure injection & NO alpha mode

\$Case 3: RPV at high pressure with CRD injection & NO alpha mode

\$Case 4: RPV at HIGH pressure with no injection & NO alpha mode

\$Case 5: RPV at Low pressure and there is either high or low pressure \$ injection, WO alpha mode

\$Case 6: RPV at Low pressure with only CRD injection, NO alpha mode

\$Case 7: RPV at low pressure with NO injection, NO alpha mode

\$ VesStx: There is an in-vessel steam explosion \$ nVesStx: There is no in-vessel steam explosion

\$Case 1: Large steam explosion resulted in Alpha mode failure

\$Case 2: RPV is at HIGH pressure and NO alpha mode failure

\$Case 3: RPV is at LOW pressure and NO alpha mode faiture

\$ HiliqVB: Large amount of core debris (40%) mobile at vessel breach \$ LoligVB: Small amount of core debris (10%) mobile at vessel breach

5 Par 46 - Feject : Fraction of core ejected at vessel breach state 1: Water delivered to 8PV by either CRD injection or there is either	5 high or low pressure injection	Scase 2: RPV is at high pressure and there is no injection source to the RPV	\$Case 3: RPV is at Low pressure and there is no injection source to the RPV	<pre>\$SE-Alpha : Alpha mode SE-Bt# : RPW bottom head fails \$SE-LgBrch: Large Hole SE-SmErch: Smell hole \$SE-nFail: Vessel does not fail from steam explosion</pre>	SCase 1 : Vessel has failed by Alpha Mode Failure	\$Case 2: A large In-vessel steam explosion occurred but did WDT result in an \$ Alpha mode failure		SCase 5: NO IN-VESSEL STEAM # DIOSION	Salpha: Alpha mode BN-Fail: RPV bottom head fails at VB (32 M*M)	SigBrch: Large Noie (2 M*M) SmBrch: Smail hole (0.1 M*M) SnBreach: No vessel failure	\$Case 1: Vessel has failed by Alpha Mode failure	SCase 2: Vessel's bottom head failed from a large in vessel steam explosion	SCase 3: In-vessel steam explosion failed the vessel with a LARGE hole.	SCase 4: In-vessel steam explosion failed the vessel with a SMALL hole.	\$Case 5: RPV at low pressure, water is injected into RPV, and only a LARGE
			ction	t the vessel? h SE-nFail 6 5		0 0.000	0.3000	0 1.000	h nBreach	4 5		0.0000	0,000	00.0000	90 0.0006
2	E4-HPI		vo injec	ion fai -SaBrch		0.000	0.300	00.00	Caller			0.000	0.000	0,000	1.000
82 *	1d1-13		ure with -	iam explos		0.0000	0.2000	0.000	E breach?	1		0.0000	0.0000	1.0000	0.0000
32	E4-AC 0.975	0.100	0.100 Low press 1.2,2	0.100 wussel sta sE-BtHd St		0.0000	0.2000	0,000	e of vesse	2		0,0000	1,0000	0.0000	0.0000
~ *	nE1fcx0 0.025	0.400 26 1 E4-HiP 0.100	0.400 therwise	0.400 a large in- SE-Alpha	58	Alpha 1.0000 60	VesStx 0.0000	therwise 0.000	is the mod	, pr.	85	Alpha 1.0000 62	SE-B1Hd 0.0000 62	.E-LgBrch 0.0000 62	5E - SmBrrch 0.0000
£ 3		- 9 -	- 3 -	62 Does	n r-	-		0	63 What	N OL	**		٣	-	4

<pre>\$ amount of material mobil at vessel breach - core did NOT go critical \$ after water injection, thus NO vessel breach is possibl?</pre>	SCase 6: RPV at high pressure, no injection, and an only a LARGE amount of e	a mercer rat, moutcer at, versees undertri	<pre>\$Case 7: RPV at low pressure, no injection, and only a LARGE amount of \$ material mobile at vessel breach</pre>		\$Case 8: RPV at low pressure, water injected into RPV, and only a small	5 material mobile at vessel breach		\$Case 9: RPV at high pressure, no injection, and only a weal! amount of 5 material mobile at vessel breach		After the state of the second terms of the second sec	subse lu: wry at tow pressure, is no vijection, and only a small amount of S material mobile at vessel breach		SHPME: High-pressurr melt ejection occurs at vessel breach	SNHPME: There is no high-pressure meit ejection occurs at vessel breach	SCase 1: Alpha mode failure or NO vesset breach or RPV at LOW pressure	\$ and a steam explosion did NOT fail the vessel]		Mrasa 2. DDU fails with a 1805 breach	5 with a LARGE amount of material mobile at vessel breach		American American State American	Stase 5: RFV fails with a LARGE Dreach	MITH B SMALL BROUT OF METERIAL MODILE BL VESSEL DITALN		SCase 4: R2W fails with a SMALL breach C uith a 18805 amount of material mubile at unceal hreach			SCase 5: RPV fails with a SMALL breach	\$ with a SMALL amount of material mobile at vessel breach	C 1-NuD+ - Datemation in the drawal! at uscal heauch	\$ inDuDt : NO detonation in the invwell at vessel breach		SCase 1: Drywell is NOT inert to detonation and there is sufficient HZ	A 0. TOF a DETOMATION DETAIL TO NE AND THEFE IS DREAM IN THE VESSEL	
* Z MCrit MCrit o conn	6006° A 0176°	7460 0.0000		2000 0 0972			1880 0.7450			7460 0.0000	explosion, killiection .7460 0.0000																			essel breach?					
HiliqVB E4	a acaa a	0.0650 0		0 0020 0	52	* 2 Election	0.0050 0			0 0500 0	0.0050 0	ection occur			26	5 *	E4-LoP	4.1	*	HIL IQUE										t the DW at v			63	Breach	
+ 3) E4-HPI	0, 1640 161	Rilique B. 2696		0.2400	28	+ 3)	0.0620			0.2490	0.2490	ure melt ej	SHOWE	Z	63	\$ +	nBreach	1.000	* 30	LgBrch	0.200	53	(c +)	64.2.2			64.2.2		164.2.2	TON OCCUR TH	2		25	EScount -	00~ 0
101-53 2 0 0000	92 92	E4-819	19	HiliqVB 0.0000	28	1 2	0.0960	26	E4-Hip	0.0000	0therwise 0.0000	s high-press	BWCH		58	-	Alpha	000.00	23	SH-Fail	0.800	63	RH-Fail	164,2.1	19	Hit idv8	164.2.1	Otherwise	1.2.491	s a detonat	-		56	55mbuto	1,000
	2		**		3			***				4 Doe	2	CV U	N PA			N				N			47					55 D.0e	1.13	E EN	R.		

12.00 0.00 36 Otherwise 1,000 0.000 1 12.00 0.00 36 66 Does a deflagration occur in the DW at vessel breach? 2 I-DWDf InDWDf 1 2 2 2 65 56 57 63 1 13 -3 -5 2 InDUDt nES-DWIN3 NESHDWC Breach 1.000 0.000 Otherwise 0.000 1,000 67 Does a large ex-vessel steam explosion occur? nExST 2 EXSE 2 1 3 63 54 28 58 4 + 5 + (3 * 13 1 Alpha nBreach ES-DDry nLP1 0.000 1.000 64 1 1 HPME 0.800 0.200 Otherwise 6.14 0.86 68 What amount of H2 is released at vessel breach? H2VB 1 7 2 63 63 1 + 5 A-Fail nBreach 1,000 7 0.00 2 12 28 3 2 E4-LPI TC 1,000 1 41.0 7 1 1 3 TC 1,000 1 65.0 7 24 28 14 3

\$ DW-Dtild: Impulse load from detonation in the drywell \$Case 2: No vessel breach or mixture not detonable \$ DW-DtHLd: Impulse load from detonation in the drywell \$ 1-DWDf : Deflagration occurs in DW at vessel b each \$ InDWDf : NO dellagration in DW at vessel breach Scase 1: The drywell is not inert and there is a combustible mixture in the drywell and there is a breach in the vessel and the mixture did NOT * detonate \$ \$Case 2: No hydrogen, inert, no breach, or previous detonation © FxSE : A large ex-vessel steam explosion occurs & nExSE : There is NO large ex-vessel steam explosion \$ Pd-SEILd (Par. 38): Impulse loading to pedestal from Stx \$Case 1: Either the drywell is DRY and there is NO INJECTION into the vessel at the time of VB or the vessel failed by Alpha Mode or there was \$ 5 no vessel failure \$Case 2: HPME occurs at VB \$Case 3: VB occurs at RIGH pressure (NO HPME) or VB occurs at LOW pressure \$ H2VB : H2 release during blowdown at VB \$ Par 7 - H2AVB : Amount of H2 released at vessel breach (kg-mols) \$Case 1: Either Alpha mode vessel failure or No vessel failure \$Case 2: ATWS sequence, RPV at high pressure, NO high pressure injection except CRD (TCUX) and injection recovered * \$Case 3: ATWS sequence, RPV at high pressure, NO high pressure injection (TCUX) s - NO injection recovered

\$Case 4: Core degradation occurs at high pressure, however

8-30

.

injection is restored before vessel breach. \$ * (2 + 3) -4 E4-LP1 E4-HP1 nE1-DeP 1,000 41.0 7 \$Case 5: Core degradation occurs at low pressure and 28 28 2 injection to the RPV before vessel breach. \$ + 33 1 3 E4-121 E4-HP1 1.000 15.0 \$Case 6: Core degradation & VB occur at high pressure with no water injection 26 before vessel breach. * 1 E4-HIP 1.000 121.0 \$Case 7: Core degradation & VB occur at low pressure with no water injection Otherwise -- Low Pressure no injection recovery before vessel breach. * 1,000 48.0 \$H2VB>50 : Greater than 50% of the total Zr is oxidized at VB 69 How much hydrogen is released at vessel breach? \$H2VB>25 : Between 25% & 50% of the total Zr is oxidized at VB H2VB>50 H2VB>25 H2VB>10 H2VB<10 di la \$H2V8>10 : Between 10% & 25% of the total Zr is uxidized at VB - 64 3 1 2 6 \$H2VB<10 : Less than 10% of the total Zr is oridized at VB 64 67 SPar 8 : FH2VB - Initialized in user function FUN-H2AVB 6.2 + 13 HPME EXSE \$Case 1: HPME or an ex-vessel steam explosion has occurred 8 7 45 2 H2VB FEJECT FH2VB H21NVES FUN-H2AVB1 868.5 434.25 17.37 3 GETHRESH \$Case 2: NO HPME and NO ex-vessel steam explosion Otherwise 8 7 46 FEJECT FH2VB H2VB H21NVES FUN-H2AVB2 868.5 434.25 17.37 3 **WETHRESH** 70 What is the peak drywell/wetwell pressure difference resulting from VB? \$ DPDWVB : Peak drywell/wetwell pressure difference at vessel breach **DPDWVB** 1 \$ Par 13: DPDWVB - Peak drywel!/wetwell pressure difference at VB 4 1 \$Case 1: Vessel either failed by Alpha mode and thus drywell pressurization is 14 63 63 2 irrelevant or vessel did not fail at all * 15 A-Fail nBreach 1,000 12 \$Case 2: Vessel breach at HIGH pressure with a LARGE amount of material through 13 0.00 63 54 54 26 61 63 6 a LARGE hole into a WET reactor cavity \$ (2 + 3) (1 + 2) 1 1 - Expert Case 1-HC \$ E4-HiP HiligVB BH-Fail LgBrch E5-DFld E5-DWet

8-31

	1.000				
1	122 00				
13	433.00	61	54	54	Prove 3. Mercel branch at MICH encourse with a terror series of any lit should be
	1	1	1 1	+ 73	Subsection set of each at missing pressure with a Laket amount of material through states of the state of
	E4-HIP	HiLigVB	ES-DFld	E5-DWet	S -Expert Dase 1-hC
	1.000				그는 것 같은 것 같은 것 같아요. 그는 것 같은 것 같아요. 것 같아요. 같은 것 같아요. 것 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1					
13	332.00				
4	26	61	63	63	\$Case 4: Vessel breach at HIGH pressure with a LARGE amount of material through
	51 410	1	(2	+ 3)	S a LARGE hole into a DRY reactor cavity
	1.000	HILIGKE	SH-Fall	Lgarch	Expert Lase 2-HC
1	1.000				
13	392.00				
Z	26	61			\$Case 5: Vessel breach at HIGH pressure with a LARGE amount of material through
	3	1			\$ a SMALL hole into a DRY reactor cavity
	E4-HiP	HiLiqVB			\$ -Expert Case 2-hC
	1.000				
1 1	262.00				
ŝ	242.00	63	54	54 54	trace 6. Vessel breach at HICH pressure with a SMALL amount of material through
÷.	1	(2	+ 31	(1 + 2)	s a LARGE hole into a VET reactor ravity
	E4-HiP	BH-Fail	LgBrch	E5-DFld E5-DWet	\$ -Expert Case 1-Rc
	1.000				
1					
13	425.00				
3	20	24	24		Scase 7: Vessel breach at HIGH pressure with a SMALL amount of material through
	F4-Hip	ES-DEId	ES-DUet		a SMALL hole into a WEI reactor cavity
	1.000	27 01 10	Lo once		
1					
13	312.00				
3	26	63	63		\$Case 8: Vessel breach at HIGH pressure with a SMALL amount of material through
	1	(2	+ 3)		\$ a LARGE hole into a DRY reactor cavity
	1 000	BH-Fail	garch		5 -Expert Case 2-Hc
1	1.000				
13	337.00				
1	26				\$Case 9: Vessel breach at HIGH pressure with a SMALL amount of material through
	1				\$ a SMALL hole into a DRY reactor cavity
	E4-HIP				\$ -Expert Case 2-hc
	1.000				
13	222 00				
5	61	63	63	54 54	Stase 12: Vessel breat at LOV pressure with a LADCE amount of entroined abound
	1	(2	+ 3)	(1 + 2)	\$ a LARGE hole into a VET reactor cavity
	HiLiqVB	BH-Fail	LgBrch	ES-DFLd E5-DWet	\$ - Expert Case 3-HC
12	1.000				
1	2005 000				
13	295.00				
2	01	24	34		scase II: Vessel breach at LOW pressure with a LARGE amount of material through

B-32

```
a SMALL hole into a WET reactor cavity
                                                                  5
           1 ( 1 + 2)
                                                                  $
                                                                          -Expert Case 3-hC
       HiligVB E5-DFld E5-DWet
        1.000
    1
       242.00
   13
                                                                  $Case 12: Vessel breach at LOW pressure with a SMALL amount of material through
        63
               63
                          54
                                  54
    4
                                                                          a LARGE hole into a WET reactor cavity
        (2 + 3) (1 + 2)
                                                                  5
       BM-Fail LgBrch ES-DFld ES-DWet
                                                                  5
                                                                         -Expert Case 3-Hc
        1,000
    1
       290.00
   13
                                                                  $Case 13: Vessel breach at LOW pressure with a SMALL amount of material through
    2 54
                 54
                                                                         a SMALL hole into a WET reactor cavity
        ( 1 + 2)
                                                                  $
                                                                  $
                                                                          -Expert Case 3-hc
       ES-DFld ES-DWet
        1.000
    1
   13 238.00
     Otherwise
                                                                  $Case 14: Vessel breach at LOW pressure with a dry cavity
         1.000
    1
   13
         0.00
                                                                  $ Ped-VBP : Peak pressure in pedestal at vessel breach
71 What is the peak pedestal pressure at vessel breach?
                                                                  $ Par 13: Ped-VBP - Peak pressure in pedestal at vessel breach (Bar)
   1 Ped-V8P
    4
         1
                                                                  $Case 1: Vessel either failed by Alpha mode and thus drywell pressurization is
   18
                                                                         irrelevant or vessel did not fail at all
                                                                  5
    2
           63
                 63
           1 + 5
        A-Fail nBreach
         1.000
    1
                                                                  $Case 2: Vessel breach at HIGH pressure with a LARGE amount of material through
   39
         0.00
        26
                 61 63 63 54 54
                                                                  $
                                                                      a LARGE hole into a WEI reactor cavity
    6
                  1 ( 2 + 3) ( 1 + 2)
          1
                                                                  $
                                                                          - Expert Case 1-HC
        E4-HiP HiligVB BH-Fail LgBrch E5-DFld E5-DWet
        1.000
    1
   39 3575.00
                                  54
                                                                  SCase 3: Vessel breach at HIGH pressure with a LARGE amount of material through
                          54
   4
       26
                 61
           1
                   1 ( 1 + 2)
                                                                  $
                                                                          a SMALL hole into a WE: reactor cavity
        E4-KiP HiligVB E5-DFld E5-DWet
                                                                  $
                                                                          -Expert Case 1-hC
        1.000
    1
   39 2780.00
                                                                  $Case 4: Vessel breach at HIGH pressure with a LARGE amount of material through
    4
         26
                 61
                          63
                                  63
                                                                          a LARGE hole into a DRY reactor cavity
           1
                  1 ( 2 + 3)
                                                                  $
        E4-HiP HiligVE BH-Fail LgBrch
                                                                          -Expert Case 2-HC
                                                                  $
        1.000
    1
       3080.00
   39
                                                                  $Case 5: Vessel breach at HIGH pressure with a LARGE amount of material through
    2
        26
                   61
                                                                         a SMALL hole into a DRY reactor cavity
                                                                  5
        E4-HiP HiLigVB
                                                                  $
                                                                          -Expert Case 2-hC
```

```
1.000
1
39
   1720.00
                             54 54
5
    26
               63 63
                                                            $Case 6: Vessel breach at HIGH pressure with a SMALL amount of material through
        1 ( 2 + 3) ( 1 + 2)
                                                            $ a LARGE hole into a WET reactor cavity
    E4-NiP BH-Fail LgBrch E5-DFld E5-DWet
                                                            $
                                                                   -Expert Case 1-Hc
    1.000
1
39 3245.00
            54
3
      26
                       54
                                                             $Case 7: Vessel breach at HIGH pressure with a SMALL amount of material through
       1 (1 + 2)
                                                             $ a SMALL hole into a WET reactor cavity
    E4-Hip E5-DFld E5-DWet
                                                             5
                                                                  -Expert Case 1-hc
     1.000
1
39 2175.00
3 26
            63
                       63
                                                            $Case 8: Vessel breach at HIGH pressure with a SMALL amount of material through
       1 ( 2 + 3)
                                                            $ a LARGE hole into a DRY reactor cavity
    E4-HiP BH-Fail igBrch
                                                            $
                                                                    -Expert Case 2-Hc
     1.000
1
39 2850.00
1 26
                                                            $Case 9: Vessel breach at HIGH pressure with a SMALL amount of material through
        1
                                                             *
                                                                   a SMALL hole into a DRY reactor cavity
    E4-HiP
                                                             5
                                                                    -Expert Case 2-hc
     1.000
1
39 1430.00
7
      - 36
                36
                      63 63 54 54 61
                                                            $Case 10: Vessel breach at LOW pressure with a LARGE amount of debris through
      (-6 * -7) (-2 + 3) (1 + 2) 1
                                                            S a LARGE hole into a WET cavity with a LARGE amount of zirconium exidiz
    nZrOx10 nZrOx<10 BH-Fail LgBrch E5-DFld E5-DWet HiligVB
                                                            5
                                                                  -Expert Case 3 OHC
     1.000
1
39 1120.00
 5
    36
              36
                       54
                            54
                                       61
                                                             $Case 11: Vessel breach at LOW pressure with a LARGE amount of debris through
      (-6 * -7) ( 1 + 2)
                                      1.
                                                            $ a SMALL hole into a WET cavity with a LARGE amount of zirconium exidiz
    nZrOx10 nZrOx<10 E5-DFld E5-DWet H LigVB
                                                             5
                                                                    -Expert Case 3 OhC
     1.000
 1
39
   744.00
             63
 5 63
                      54
                              54
                                      61
                                                             $Case 12: Vessel breach at LOW pressure with a LARGE amount of debris through
     ( 2 + 3) ( 1 + 2)
                                    1
                                                            S a LARGE hole into a WET cavity with a SMALL amount of zirconium oxidiz
    BK-Fail LgBrch E5-DFld E5-DWet HiligVB
                                                             $
                                                                    -Expert Case 3 oHC
     1.000
1
39 171, 10, 1, 1
              54
 3 54
                    61
                                                             $Case 13: Vessel breach at LOW pressure with a LARGE amount of debris through
     ( 1 + 2)
                       1
                                                             5
                                                                   a SMALL hole into a WET cavity with a SMALL amount of zirconium exidiz
    E5-DFld E5-DWet HiligVB
                                                                    -Expert Case 3 ohC
                                                             5
     1,000
 1
39 557.00
6 36
                36
                        63
                                63
                                       54
                                           54
                                                            $Case 14: Vessel breach at LOW pressure with a SMALL amount of debris through
```

```
(-6 + -7) (2 + 3) (1 + 2)
                                                                      5
                                                                              a LARGE hole into a WET cavity with a LARGE amount of zirconium oxidiz
        nZrOx10 nZrOx<10 BH-Fail LgBrch E5-DFld E5-DWet
                                                                      $
                                                                               -Expert Case 3 OHc
         1.000
    1
   39 1000.00
    2
          36
                     36
                            54
                                       54
                                                                      $Case 15: Vessel breach at LOW pressure with a SMALL amount of debris through
          (-6 * -7)
                         ( 1 + 2)
                                                                      $ a SMALL hole into a WET cavity with a LARGE amount of zirconium oxidiz
        nZr0x10 nZr0x<10 E5-DFld E5-DWet
                                                                      5
                                                                              -Expert Case 3 Ohc
        1.000
    1
   39
        $05.00
    4
        63
                   63
                            54
                                       54
                                                                      $Case 16: Vessel breach at LOW pressure with a SMALL amount of debris through
         (2 + 3) (1 + 2)
                                                                      $
                                                                             a LARGE hole into a WET cavity with a SMALL amount of zirconium oxidiz
        BH-Fail LgBrch E5-DFld E5-DWet
                                                                      $
                                                                              -Expert Case 3 oHc
         1,000
    1
   39 171, 15, 1, 1
    2 54
                  54
                                                                      $Case 17: Vessel breach at LOW pressure with a SMALL emount of debris through
        ( 1 + 2)
                                                                              a SMALL hole into a MET cavity with a SMALL amount of zirconium exidiz
                                                                      $
        E5-DFld E5-DWet
                                                                      5
                                                                               -Expert Case 3 ohc
         1.000
    1
   39 435.00
      Otherwise
                                                                      Scase 18: Vessel breach at LOW pressure into DRY cavity - negligible pressure
         1.000
    2
   39 100.00
72 Is the impulse loading to the drywell at VB sufficient to cause failure?
    3 InDWF1 1-DWF12 1-DWF13
                                                                      $ InDWF1 : Drywell does NOT fail from impulse loading at vessel breach
    6
           1
                     2
                             3
                                                                      $ 1-DWF12 : Impulse locding results in drywell leakage (level 2)
    2
                                                                      $ I-DWF13 : Impulse loading results in drywell rupture (Level 3)
            65
    1
            1
                                                                      $Case 1: Detonation in the drywell at vessel breach
        1-DWDt
    3
                     34
                             35
            36
                 IMPOWE
      DW-DTILM
                          1MRenD
      FUN-IDI1LD
      GETHRESH
                   2 2.00
                                    1.00
      Otherwise
                                                                      $Case 2: No impulse loading in the drywell at vessel breach
    1
          36
      DW-Dtilld
           AND
      GETHRESH
                     2 0.00 -1.00
                       $ Dummy parameters force no leakage
73 Is drywell pressurization at VB sufficient to cause failure?
                                                                      $ InDWOP : No dryweli failure
    5 INDWOP 1-DWOP2 1-DWHOP2 1-DWO23 1-DWHOP3
                                                                      S I-DWOP2 : Drywell failure is a leak at the DW wall (Level 2)
   5
           1
                    2
                            3
                                   4 5
                                                                      $ 1-DWHOP2 : Dryweil failure is a leak at the DW head (Level 2)
   3
            13
                            31
                    26
                                                                     $ 1-DWOP3 : Drywell failure is a rupture at the DW wall (Level 3)
        DPDWVB
                  190WF DWFRan
                                                                     $ I-DWHOP3 : Dryweil failure is a rupture at the DW head (Level 3)
                      $ Function returns during value depending on pressure for leak or rupture
      FUN-DWFAVE
      GETHRESH
                         4.00
                   4
                                    3.00 2.00 -1.00
```

```
5 NoFail Leak Hd. Leak Rupt.
74 Does the RFV pedestal fait due to pressurization at wessel breach?
    2 1-PeaFP InPedFP
                                                                      $ 1-PedFP : Pedestal fails due to pressure at vessel breach
    5
           1.1
                    2
                                                                      $ InPedFP : NO pedestal failure at vessel breach from pressure loading
    1
          39
       Ped-VBP
           AND
         THRESH
                      1 1300.00
                       Pressure required to fail pedestal or lift RPV
75 Does the RPV pedestal fail from an ex-vessel steam explosion (impulse loading)?
    2 1-PedF1 InPedF1
                                                                      $ 1-PedF1 : Pedestal fails due to impulse loading at vessel breach
    2
           1.1
                     2
                                                                      $ InPedF1 : NO pedestal failure at vessel breach from impulse loading
    3
    1 74
                                                                      $Case 1: Pedestal has already failed from a pedestal pressurization at VB
            1.2
        1-PedFP
         0.000
                  1.000
    1
         67
                                                                      $Case 2: Ex-vessel steam explosion has occurred in the pedestal cavity
            11
          EXSE
         0.500
                 0.500
      Otherwise
                                                                      $Case 3: No ex-vessel steam explosion
         0.000
                1,000
76 Does the RPV pedestal failure induce drywell failure?
    2 1-DWFPed InDWFPed
                                                                      $ I-DWFPed : Drywell failure induced by pedestal failure
    2
            1
                    2
                                                                      $ InDWFPed : Pedestal failure does NOT induce drywell failure
    3
    5
            52
                     58
                            72
                                    73 73
                                                                      $Case 1: Drywell is already failed
             3
                  + 1 + 3 + 4 + 5
        E5-SP83
                 Atpha I-DWF13 1-DWOP3 I-DWHOP3
         0.000
                 1.000
    2
            74
                   75
                                                                      $Case 2: Pedestal failed from either pressurization or ExSE. Some probability
             1
                   + 1
                                                                              that pedestal failure will induce drywell failure
                                                                      $
        I-PedFP I-PedF1
         0.175
                 0.825
      Otherwise
                                                                      $Case 3: NO pedestal failure
          0.000
                 1.000
77 What is the pressure in the containment at VB prior to a hydrogen burn?
         CP-VB
    1
                                                                      $ CP-VB : Containment pressure at vessel breach prior to H2 burn
    4
           1
                                                                      $ Par 40: CP-VB - Containment pressure at VB prior to H2 burn
    8
            63
                   63
                            50
    14
                                     50
                 + 5
                          + 3
            1
                                     + 4
                                                                      $Case 1: Vessel either failed by Alpha mode or did NOT fail at all
         A-Fail nBreach E5-CL3 E5-CL4
         1,003
    1
   40
          0.00
           52 72 73 73
    7
                                           54 54
                                                            26
                                                                      SCase 2: Vessel Breach occurs at HIGH pressure into a VET cavity and there
         (3, +3 + 4 + 5) (1 + 2) 1
                                                                      5
                                                                              is a LARGE suppression pool bypass
        ES-SPB3 DW-1FVB3 1-DWOP3 1-DWHOP3 E5-DFLd E5-DWet E4-Mip
         1.000
    1
```

B-36

40 50.00 5 52 72 73 73 26 \$Case 3: Vessel Breach occurs at HIGH pressure into a DRY cavity and there (3 + 3 + 4 + 5) \$ is a LARGE suppression pool bypass . . . E5-SP83 DW-1FV83 1-DW0P3 1-DWH0P3 E4-HiP 1,000 1 40 40.00 52 72 73 73 54 54 6 \$Case 4: Vessel Breach occurs at LOW pressure into a WET cavity and there (3 + 3 + 4 + 5) (1 + 2)\$ is a LARGE suppression pool bypass E5-SPB3 DW-1FVB3 1-DWOP3 1-DWHOP3 E5-DFld E5-DWet 1.000 - 2 40 35.00 52 72 73 4 73 \$Case 5: Vessel Breach occurs at LOW pressure into a DRY cavity and there (3 + 3 + 4 + 5) 2 is a LARGE suppression pool bypass E5-SP83 DW-1FV83 1-DW0P3 1-DWH0P3 \$ Negligible containment pressurization 1.000 1 40 5.00 3 64 67 61 \$Case 6: NO large suppression pool bypass with either a high pressure melt * 1 11 + 1) \$ ejection (HPME) or ex-vessel steam explosion at vessel breach which HPME ExSE HilidVB \$ involves a LARGE fraction of the core. 1.000 1 49 56.75 2 64 67 \$Case 7: NO large suppression pool bypass with either a high pressure melt € 1 + 13 ejection (HPME) or ex-vessel steam explosion at vessel breach which \$ HPME EXSE \$ involves a SMALL fraction of the core. 1.000 1 40 177,6,1,1 Otherwise \$Case 8: Nothing energtic enoungh at VB to cause significant containment 1.000 \$ pressurization * 40 0.00 78 What is the concentration of hydrogen in containment immediately after VB? 1HW>20 1HW>16 1HW>12 1HW>8 1HW>4 1-NOHW 6 \$ 1HWA>20 : H2 concentration in WA > 20% 1HWW>16 : 16% < H2 concen. < 20% 6 1 2 3 4 5 6 \$ 1HW/>12 : 12% < H2 concen. < 16% IHW>8 : 8% < H2 concen. < 12% 7 \$ THUAD-4 : 4% < H2 concen. < 8% I-NoHWW : H2 concen. in W4 < 4% 2 58 63 1 + 5 \$Case 1: Either ALPHA mode failure has occurred or there was NO vessel breach ALPHA nBreach 8 7 9 10 44 - 1 3 6 6 H2OW H2W HZDW H2VB 02DW NZW HZODW C2W FUN-IH2WWO GETHRESH 5 0.20 0.16 0.12 0.08 0.04 6 64 65 66 67 50 50 + 1) * (3 + 4) (1 + 2 * 1 \$Case 1: Either high pressure melt ejection or drywell detonation or drywell HPME 1-DWDt I-DWDf EXSE E5-CL3 E5-CL4 deflagration, or ex-vessel steam explosion - H2 consumed * 44 \$ 8 1 3 6 4 7 9 10 and pool bypassed H2OW H2W H200W H2DW H2VB W20 020W N2W

	FUN-1H2W1								
	GETHRESH	5	0.20	0.16	0.12	0.08	0.04		
4	64	65	66	67					\$Case 2: High pressure melt election or drywell detonation or drywell
	(1	+ 1	+ 1	+ 1)					\$ deflagration with NO pool bypass - H2 consumed NO pool bypass
	HPME	I-5WDt	I-DMD F	EXSE					a construction of the others of the second of the others
8	1	3	6	4	7	9	10	44	
	H20WW	KSMM	H200W	H2DW	H2VB	02W	02DW	N2W	
	FUN-1H2WW2								
	GETHRETH	5	0.20	0.16	0.12	0.08	0.04		
6	28	28	54	54	50	50			Stace 3- Mater in the drought (either injection to BOW or constant annity)
	(2	+ 3	+ 1	+ 75	* (3	+ 43			state 5. which in the drawelt (ertiler injection to key or reactor cavity s already has water) and drought hunaceed - drought purged by scene
	E4-LP1	E4-HP1	ES-DFLd	E5-DWet	E5-CL3	ES-CL4			a cricady has watery and crywert bypassed orywert porged by steam
8	1	3	6	4	7	9	10	44	
	H20M	H2WW	HZODW	H2DW	H2VB	02W	0201	N2W	
	FUN-1H2WW3								
	GETHRESH	5	0.20	0.16	0.12	0.08	0.04		
		Drywelt pu	rged by st	east and por	ol bypas	sed			
4	28	28	54	54					\$Case 4: Drywell wet - drywell purged by steam and NO pool bypass
	(2	+ 3	+ 1	+ 2)					
	E4-LP1	E4-HPI	ES-DFld	E5-DWet					
8	1	3	6	4	7	9	10	44	
	H20W	HZWW	H200W	H2DW	H2V8	0244	020W	NZW	
	FUN-TH2W44								
	GETHRESH	5	0.20	0.16	0.12	0.08	9.04		
2	50	50							SCase 5: Drywell dry and containment failed, drywell retains some H2
	(3	+ 4)							
	ED-CES	ED-CL4		1.					
0	0.200.01		6	4	1	9	10	44	
	HZUWW	H CWW	H200W	H2DW	HZVB	02WW	C59M	NZWW	
	COMPLET NUT		0.00	0.44					
	OCT NKE SH	2	0.20	0.16	0.12	0.08	0.04		
	Otherwise								\$Case 6: Drywell dry and containment intart drywell retains some #2
8	1	3	6	4	7	9	10	44	and a superior of and contained in inder, or yacts recently some inc
	HZOWN	HZWW	H20DW	H2DW	H2VB	02W	O2DW	HZW	
	FUN-1H2WW6								
	GETHRESH	5	0.20	0.16	0.12	0.08	0.04		
		Assume Leal	kage back	to drywell	& vesse	el retenti	ion indep	pendent	of scenario
15 1	ac power not	t recovere	d followin	ig vessel b	reach?				
5	IFAC	I-AC							\$ IfAC : ac power is not recovered following vessel breach
Z	1	2							\$ I-AC : ac power is recovered following vessel breach
4									
1	24								\$Case 1: ac power was never lost or has already been recovered
	5								
	E4-AC								
	0.000	1.000							
1	0								\$Case 2: Failure of dc power precludes AC power recovery
	EL EDC								
	E4TUC								

1.000 0.000 15 2 2 2 1 58 CD-Stw 0.670 0.330 Otherwise -- Short-term blackout w/ no recovery before VB 0.551 0.449 80 Is dc power available following vessel breach? I FDC. 1-00 2 2 - 1 2 4 1 25 12 E4fDC 1,000 0.000 1 24 2 E4-AC 1.000 0.000 15 2 2 2 1 CD-SIW SB 0.210 0.790 Otherwise -- Short-term blackout w/ no recovery before VB 0.010 0.990 81 what is the status of containment sprays following vessel breach? 1aCS 1-CS Ircs 1 fCS 4 - 3 - 4 1 2 2 8 30 1 1.1 E1fCSS 1.000 0.000 0.000 9.000 16 79 50 58 30 6 + 3*(-3 + 1)) 2 12 1 4 E5-CL3 nE1L3 E3nVENT 1 FAC E5-014 E1rESS 0.000 0.500 0.000 0.500 2 30 79 1 2 I FAC E1rCSS 1.000 ° 000 0.000 0.000 16 5 30 50 50 + 3 * (-3 + 1)) 4 5 6 ES-CL3 nE1L3 E3riVENT E4-CS E5-CL4 0.000 181,2,2 0.000 181,2,1 30 1 4 E4-CS 0.000 0.000 0.000 1,000 50 - 50 16 22 5 79 + 3 * (-3 + 1)) 2 6 4 E5-CL4 E5-013 nE113 E3RVENT I-AC

\$Case 3: Long-term station blackout with a FAST pour - none a 17 hr.s given none a 14.73 hr.s 5 \$ Case 4: Fast core melt - FAST pour rate from vessel (pe ' CCI 2 hr.s AVB) - none a 5.6 hr.s given none a 3.35 hr.s 2 \$ LEDC : dc power is NOT available following vessel breach \$ I-DC : dc power IS available following vessel breach \$Case 1: dc power has already been lost \$Case 2: ac power is available, thus dc power is available \$Case 3: Long-term station blackout \$ Case 4: Fast core melt \$ IfCS : Containment sprays are failed and cannot be recovered \$ IrCS : Sprays are recoverable when ac power is restored \$ laCS : Sprays are available \$ 1-CS : Containment sprays are operating \$Case 1: Containment sprays were previously failed \$Case 2: Sprays were previously recoverable and ac power has NOT been restored detonation in the wetwell or containment failure may have failed 5 the sprays \$ \$Case 3: Sprays were previously recoverable and ac power has NOT been restored thus, the sprays are still recoverable * \$Case 4: Sprays were working before vessel breach - because of detonation or containment failure sprays may not be operating now 5 \$Case 5: Sprays were working before vessel breach \$Case 6: ac power is available - because of a detonation in the wetwell or

containment failure the sprays may not be operating - also, operators 5 \$

may have failed to turn on sprays even with power available

0.500 0.000 0 450 0.050 18 70 \$Case 7: ac power is available 2 1-80 0.000 0.000 130.4.3 130.4.4 Otherw:se \$Case 8: This case should not be used 0.000 0.000 1.000 0.000 82 To what level is the wetwell inert after vesse! broach? 3 InWin I-Win2 I-Wint \$ InWin : Wetwell is not inert 5 . . 2 3 \$ 1-WWIn2 : Wetwell inert to detonations 2 1.1 3 0 64 H20M H254J 0254 N/UU FUN-WH201 GETHRESH 3 140,1,1 140,1,2 140,1,3 83 Is there sufficient oxygen in the containment to support combustion \$ 02Det20 : Enough oxygen to support a detonation with 20% H2 5 02Det20 02Det16 02Det12 15402 musin2 \$ 02Det16 : Enough oxygen to support a detonction with 16% H2 5 1 2 3 4 5 \$ O2Det12 : Enough exygen to support a detonation with 12% H2 1 1 3 0 44 H20MM H2W 0244 N2LNJ FUN-LUN2 GETHRESH - 4 4.0 3.0 2.0 1.0 84 Does ignition occur in the containment at vessel breach? 2 I-Clan InClan \$ 1-Cign : ignition occurs in the containment at vessel breach 2 1 2 \$ InCign : ignition does not occur in the containment 8 3 78 82 83 \$Case 1: Containment is either steam :nert or there is insufficient 02 6 + 3 + 5 I-NOHW I-WIN3 nW02 0.000 1.000 5 24 52 52 72 73 \$Case 2: ac power is available or leak/rupture in the d:ywell + 3 2 + 2 + -1 + -1 5 Pathway for ignition sources to pass from drywell into containment 1-AC ES-SPB2 ES-SPB3 DW-IFVB 1-DWOP 1.000 0.000 4 26 67 78 78 \$Case 3: RPV at HIGH pressure before VB or steam explosion and containment (1 + 1) (1 + 23 \$ H2 concentration > 16% E4-HiP ExSE 1HW>20 1HW>16 0_600 0.400 3 26 67 78 \$Case 4: RPV at HIGH pressure before VB or steam explosion and containment (1 + 1) 1 \$ H2 concentration range: 16% > H2 > 12% E4-HiP EXSE INMAN 12 0.550 0.450 3 26 67 78 \$Case 5: RPV at HIGH pressure before VB or steam explosion and containment (1 + 13 4 5 H2 concentration range: 12% > H2 > 8% E4-HIP EXSE 1HM>8 0.450 0.550 3 67 26 78 \$Case 6: RPV at HIGH pressure before VB or steam explosion and containment (1 + 1) 5 H2 concentration range: 8% > H2 > 4% \$ E4-HIP ExSE IHWA2>4 0.300 0.700 3 26 67 78 \$Case 7: RPV at HIGH pressure before VB or steam explosion and containment

```
H2 concentration range: H2 < 4%
                                                                $
        ( 1 + 1) 6
               EXSE 1-NOHW
        E4-HiP
        0.005 0.995
                                                                $Case 8 : Nothing energetic in drywell
     Otherwise
        0.010 0.990
85 Does ignition occur in the containment following vessel breach?
                                                                $ IgnFVB : Ignition occurs in the containment following vessel breach
    2 IgnFVB nIgnFVB
                                                                $ nIgnF8 : Ignition does not occur in the containment or it occurred at V8
                  2
         1
    2
                                                                $Case 1: Containment is either steam inert or there is insufficient 02 or
    6
                                   83
                                         84
         78
                 82
                          81
    5
                                                                       H2 or ignition has already occurred at vesse! breach
                                                                $
                        * -4 + 5 + 1
               + 3
           6
                               rsMO2 1-Cign
       I-NOHW I-WIR3
                       n1-CS
        0.000
               1.000
                                                                $Case 2: ac power is recovered following vessel breach
    1 79
           2
         I-AC
         1.000
               0.000
                                                                $Case 3: Combustible concentration > 16% - NO ac power
    2 78 75
          1 + 2
       1HW>20 1HW>16
     143, 12, 1 143, 12, 2
                                                                $Case 4: Combustible concentration in range 16% > LGWW > 12% - NO ac power
    1 78
          3
       1842>12
                                                                $Case 5: Combustible concentration in range 12% > LGAW > 8% - NO ac power
      143,10,1 143,10,2
    1 78
           4
        THM>8
      143,8,1 143,8,2
                                                                $Case 6: Combustible concentration in range 8% > LGMN > 4% - NO ac power
      Otherwise
      143,6,1 143,6,2
86 Is there a detonation in the wetwell following vessel breach?
                                                                $ I-WADt : Detrination in wetwell following vessel breach
    2 I-WADt InMADt
                                                                $ InMADt : NO detonation in wetwell following vessel breach
    4
          1
                  2
    10
                                 82 81 78 78 78 $Case 1 NO ignition or Containment inert or H2 in containment < 12%
                  85 82
    8
           84
            2 * 2 + ( 3 + 2) * - 4 + 4 + 5 + 6
        InCign nighty8 1-Win3 I-WWIn2 nI-CS IMWAD8 IMWAD4 INOMWA
         0.000 1.000
    1
                 0.00
         0.00
    20
                                                                $Case 2: HIS is on during VB and there is enough oxygen to support
                  27 83
                                  83 83
    5
           24
                                                               $ a detonation
                 * 1 * ( 3 + 2 + 1)
           2
         E4-AC E4-HIS 02Det 2 02Det16 02Det20
                0.99
          0.01
    1
    20 144,5,1,1
                 0.00
                                73 39 39 39 43 $Case 3: Suppression pool bypass during VB and enough 02 to support
                72
                           13
    8 52
         (-1 + -1 + -1 * -3) * (-1 * -2 * -3 + 1) $ a detonation
        ES-SP8 1-DWF1 1-DWOP INDWOP2 NH2WW20 NH2WW16 NH2WW12 E4-WWDF
                 0.99
         0.01
     1
```

20 144,5,1,1 0.00
 78
 82
 82
 83
 83
 83

 3
 * (
 2
 +
 3)
 * (
 3
 +
 2
 +
 1)
 \$Case 4: 12% < H2 < 16% and containment initially inert to detonations, 6 78 82 however, sprays are on which reduces steam concentration and forms 5 a detonable mixture in containment (High steam) HWA>12 1-Win2 1-Win3 02Det12 02Det16 02Det20 \$ 144,2,1 144,2.2 1 20 144,2,1,1 0.00 \$Case 5: 12% > Containment H2 > 8% and Low steam 4 78 83 83 83 3 * (3 + 2 + 1) \$ Low steam DDT IHW/>12 02Det12 02Det16 02Det20 144,3,1 144,3,2 1 20 144,3,1,1 0.00 82 \$Case 6: 16% < H2 < 20% and containment initially inert to detonations, 5 78 82 83 83 \$ however, sprays are on which reduces steam concentration and forms. 2*(2+3)*(2+1) 1HWW>16 1-WWIn2 1-WWIn3 02Det16 02Det20 \$ a detonable mixture in containment (High steam) 144,4,1 144,4,2 1 20 144,4,1,1 0.00 3 78 83 83 2 (2 + 1) \$Case 7: 20% > Containment #2 > 16% and Low steam \$ Low steam DDT 1HWA>16 C2Det16 O2Det20 144,5,1 144,5,2 1 20 144,5,1,1 0.00 4 78 82 82 \$Case 8: H2 > 20% and containment initially inert to detonations, 83 \$ however, sprays are on which reduces steam concentration and forms 1*(2+3) *1 a detonable mixture in containment (High steam) 1HWA>20 I-WWIn2 I-WWIn3 02Det20 \$ 144,6,1 144,6,2 1 20 144,6,1,1 0.00 2 78 83 1 1 \$Case 9: Containment H2 > 20% and Low steam \$ Low steam ODT 1HWW>20 02Det20 144,7,1 144,7,2 1 20 144,7,1,1 0.00 \$Case 10: No enough oxygen to support a detontion Otherwise 0 000 1.000 - 1 20 0.00 0.00 87 What is the level of containment impulse load following vessel breach? \$ 1-1p>60 : Impulse > 60 KPa-S 1-1p>50 : 60 > 1mpulse > 50 KPa-S 7 I-1p>60 I-1p>50 I-1p>40 I-1p>30 I-1p>20 I-1p>10 I-1p<10 \$ 1-1p>40 : 50 > impulse > 40 KPa-S 1-1p>30 : 40 > impulse > 30 KPa-S 2 3 4 5 6 7 5 1 \$ 1-1p>20 : 30 > Impulse > 20 KPa-s 1-1p>10 : 20 > Impulse > 10 KPa-S 1 20 \$ 1-1p<10 : impulse < 10 KPa-S ImpLoad AND 6 60.00 50.00 40.00 30.00 20.00 10.00 GETHRESH \$ Parse containment impulse load for verification 88 With what efficiency is hydrogen burned following VB? \$ H2EfaVB : Efficiency at which H2 is burned following VB 1 H2E FOVB 4 1

8-42

9 82 81 78 78 \$Case 1: Wetwell steam > 45% (High Steam) and H2 ignited in Range H2 < 8% 84 85 82 7 1 + 1) * (2 + 3 * 4) * (5 + 6) 1-Cign IgnFVB 1-WWIn2 I-WWIn3 I-CS IHWW>4 I-NOHWW 1.000 2 \$ Peak pressure from hydrogen combustion 18 146,4,1,1 \$ Combustion efficiency 19 146,4,2,1 Case 2: Wetwell steam < 45% (low steam) and "? ignited in range H2 < 8% 78 78 4 84 85 (1 + 1) (5 + 6) I-EIgn IgnFVB IHWA>4 I-NoHWA 1.000 2 \$ Peak pressure from hydrogen combustion 18 146.5,1,1 \$ Combustion efficiency 19 146,5,2,1 \$Case 3: Wetwell steam > 45% (High Steam) and H2 ignited in Range 12% > H2 > 8% 82 82 81 78 6 84 85 (1 + 1) * (2 + 3 * 4) * 4 I-Clgn IgnFVB I-WWIn2 I-WWIn3 I-CS IHWW>8 1.000 2 18 146,6,1,1 19 146.6.2.1 \$Case 4: Wetweil steam < 45% (Low Steam) and H2 ignited in Range 12% > H2 > 8% 35 78 3 84 (1 + 1) 4 I-Cign IgnFVB IHW>8 1.000 2 18 146,7,1,1 19 146,7,2,1 \$Case 5: Wetwell steam > 45% (High Steam) and H2 ignited in Kange 16% > H2 > 12 82 81 78 6 84 85 82 (1 + 1) * (2 + 3 * 4) * 3 I-Cign IgnFVB I-WWIn2 I-WWIN3 I-CS IHWW>12 1.000 2 18 146,8,1,1 19 146,8,2,1 \$Case 6: Wetwell steam < 45% (Low Steam) and H2 ignited in Range 16% > H2 > 12% 85 3 84 78 3 (1 + 1) I-Cign IgnFVB IHWW>12 1.000 2 18 146,9,1,1 19 146,9,2,1 \$Case 7: Wetwell steam > 45% (High Steam) and H2 ignited in Range H2 > 16% 82 81 78 78 82 85 7 84 (1+1)*(2+34)*(1+2) I-CIgn IgnFVB I-WWIn2 I-WWIN3 I-CS 1HWW>20 IHWW>16 1.000 2 18 146.10.1.1 19 146, 10, 2, 1 \$Case 8: Wetwell steam < 45% (Low Steam) and H2 ignited in Range H2 > 16% 78 85 78 4 84 (1 + 1) (1 + 2)

```
I-Clan
               IgnFVB IHW>20 IHW>16
         1.000
    2
   18 146, 11, 1, 1
   19 146,11,2,1
      Otherwise
                                                                   $Case 9: No burn following vessel breach
         1.000
    2
   18
         0.00
   19
          0.00
89 What would be the peak pressure in containment from a hydrogen burn at V8?
    6 1-PBrn>7 1-PBrn>6 1-PBrn>5 1-PBrn>4 1-PBrn>3 1-PBrn<3
                                                            $ 1-P8rn>3 : 4 > Peak Press > 3 bar 1-P8rn<3 : Peak Press < 3 bar
    6
           1
                    2
                            3 4 5 6
    4
    2
           84
                    85
                                                                   $Case 1: No hydrogen ignition, thus, no pressure rise
                 * 2
            2
        InCign nignFVB
    8
            3
                             0
                    1
                                    5
                                         11 18
                                                          19
                                                                 L.L.
          H2WJ
                  H20MJ
                           0254
                                 EPBase
                                          PBrn H2EfV81 H2EfV82
                                                               N7LAJ
     FUN-IPBRN1
      GETHRESH
                   5
                          709.3
                                   608.0 506.6 405.3 304.0
              Parse peak pressure for verification
    3
           50
                    50
                             58
                                                                   $Case 2: Containment already failed, negligible pressure rise
         ( 3
                  + 6
                          + 13
        E5-013
                E5-514
                          Alpha
    8
           3
                             0
                     1
                                     5
                                            11
                                                   18
                                                          19
                                                                 44
          H2W
                  H20W
                           MISC
                                 EPBase PBrn H2EfVB1 H2EfVB2
                                                               NZW
     FUN-1PBRN2
      GETHRESH
                    5
                          709.3
                                   608.0 506.6 405.3 304.0
            Parse peak pressure for verification
    1
           86
                                                                   $Case 3: Detonation in the Containment
            1
        1-MADt
    8
           3
                     1
                             0
                                    5
                                          11
                                                  18
                                                          19
                                                                 44
          H2WM
                  H2OM
                                 EPBase
                           MV50
                                         PBrn H2EfVal H2EfVB2
                                                               N2W
     FUN-1P8RN3
      GETHRESH
                    5
                         709.3
                                  608.0 506.6 405.3 304.0
              Parse peak pressure for verification
     Otherwise
                                                                   $Case 4: Hydrogen burn at or following vessel breach
    8
          3
                    1
                           9
                                    5
                                          11
                                                18
                                                        19
                                                                 L.L.
          HZWW
                 H20W
                           02WW
                                 EPBase
                                          PBrn H2EfVB1 H2EfVB2
                                                               N2W
     FUN-TPBRN4
      GETHRESH
                  5
                                  608.0 506.6 405.3 304.0
                          709.3
              Parse peak pressure for verification
90 What is the level of containment pressurization at vessel breach?
    6 1-CP>7 1-CP>6 1-CP>5 1-CP>4 1-CP>3 1-CP>2
                                                                   $ 1-CP>7 : Peak Press > 7 'ar I-CP>6 : 7 > Peak Press > 6 bar
    6
           1
                    2
                             3
                                     4
                                            5
                                                   6
                                                                   $ I-CP>5 : 6 > Peak Press > 5 bar I-CP>4 : 5 > Peak Press > 4 bar
    L
                                                                   $ 1-CP>3 : 4 > Peak Press > 3 bar I-CP<3 : Peak Press < 3 bar
    3
           50 50 58
            3 + 4 + 1
                                                                   $Case 1: Large containment leak or Alpha mode failure
        E5-CL3 E5-CL4 Alpha
                                                                   $ Containment already failed -- assign negligible pressurization
    3
           5 11
                          41
```

```
PBrn CP-VBTot
        EPBase
      FUN-CPCLOW
                                    608.0 506.6 405.3 304.0
                     5 709.3
      GETHRESH
                                                                      $Case 2: H2 is ignited in the containment at vessel breach
                                                                             Combine pressure increments from loads at V8 with H2 burn
           84
                                                                      5
             15
        1-Cign
                             40
                                     41
                    11
    X
                           CP-VB CP-VETot
        EPBase
                   PBrn
       FUN-CPC1
                           789.3 608.0 506.6 405.3 384.0
                     5
       GETHRESH
                                                                      $Case 3: H2 is burned in containment following vessel breach
                                                                             - Base pressure is lowered from value used for ignition at VB
        85
    2
                                                                      $
        IgnFVB
                                    - 41
                            40
                    11
            5
    6
                           CP-VB CP-VBTot
                   parri
        EPBase
       FUN-CPC2
                                    608.0 506.6 405.3 304.0
                     5
                           709.3
       GETHRESH
                                                                      $Case 4: No H2 burn
      Otherwise
                            40 41
                    11
          5
    4
                           CP-V8 CP-VBIot
                   PBrn
        EPBase
       FUN-CPC3
                          709.3 608.0 506.6 405.3 304.0
                    5
       GETHRESH
              $ Parse containment pressure
91 What is the level of drywell leakage induced by a detonation in containment at V8?
                                                                      $ InDWDt : No drywell failure induced by detonation
    3 InDWDt 1-DWDt2 1-DWDt3
                                                                      $ I-DWDt2 : Drywell teakage induced by detonation (Level 2)
                     2
                              3
                                                                      $ 1-DWDt3 : Drywelt rupture induced by detonation (Level 3)
            1
    6
    2
            86
                                                                      $Case 1: Detonation in wetwelt following vessel breach
    1
             1
        I-WWDt
                            35
                   34
           20
    3
                 IMPDWF IMRanD
       ImpLoad
       FUN-EDI
                     2 2.00 1.00
       GETHRESH
              $ Dummy parameter values used to trigger particular branch
                                                                      $Case 2: NO detonation in wetwell following vessel breach - NO failure
      Otherwise -- No detonation and thus no failure
                  34 35
    3
          20
                 IMPDWF IMRanD
        Impload
           MAX
                    2 0.00 -1.00
       GETHRESH
              $ Parameter values force Branch 1
92 What is the level of containment leakage induced by a detonation at VB?
                                                                      $ InDtF : No Containment failure induced by detonation
                                                                      $ 1-DtF2 : Containment leakage induced by detonation (Level 2)
    3 InDtF I-DtF2 I-DtF3
                                                                      $ 1-DtF3 : Containment rupture induced by detonation (Level 3)
                               3
           1
                      2
    6
    3
                                                                      $Case 1: Detonation failed the drywell (Either Level 2 or 3)
                     91
    2
           91
                                                                              This case allows coupling between drywell and containment response
             2
                 + 3
                                                                      5
        I-DWDt2 I-DWDt3
                                              35
                              25
                                       34
    5
           20
                 24
```

	ImpLoad FUN-ECI1	IMPCF	IMRanC	IMPOWF IMRanD	
	GETHRESH	2	2.00	1.00	
1	86 1				\$Case 2: Detonation in containment - No drywell failure from detonation
	I-WWDt				
3	20	24	25		
	ImpLoad	IMPCF	IMRanC		
	FUN-EC12				
	GETHRESH	2	2.00	1.00	
	Otherwise				\$Case 3: No detonation in containment - No failure
3	20	24			
	Imptoad MAX	IMPCF	IMRanC		
	GETHRESH	2	0.00	-1.00	
		\$ Paramet	er values	force Branch 1	
95 What	t is the le	vel of cor	itainment l	leakage following vessel breach?	\$ InCL : No containment failure
4	Incl	1-CL2	1-CL3	1-CL4	\$ I-CL2 : Containment failure is a leak (Level 2)
0	1	2		4	\$ 1-CL3 : Containment failed by rupture (level 3)
4	50				\$ 1-C14 : Containment failed by catastrophic rupture (Level 4)
2	50	28			
	55.011				<pre>\$Case 1: Containment already failed by catastrophic ruptured or Alpha mode</pre>
	ED-ULG	Alpha			
-	EDBace				
	CF SdSC AND				
	GETHRESH	-	00 000	0000 80 0000 36	
	QC + HAL SH	-	Diamo A	Uready rightured	
2	50	92	o carany P	incou; i upcurea	Frank 2. Containment alough, and and an end of the state of the
1. I.I.	3	+ 3			scase c. containment arready ruptured or ruptured from a detonation following VB
	E5-CL3	1-DtF3			
1	5				
	EPSase				
	CETUDECU	3	0000 00	2000.00 1.00	
	GET MALE SH		9999.00 Deamain 6	lrandy failed by determine	
2	50	02	willing a	circady farted by detonation	eres to execution a start to start a start to start the start to start the start to start the start to start to
	2	+ 7			scase 5: containment already leaking or leaking from r detonation following VB
	F5-012	1-D+F2			
- 4	5	41	21	22	
	EPBase	CP-V8Tot	PCFail	CFRan	
	FUN-ECBrn2				
	GETHRESH	3	9999.00	2.00 1.00	
			Dummy A	Iready leaking from detonation	
	Otherwise				\$Ease 4: Containment intact before containment hum
4	5	41	21	22	
	EPBase FUN-ECBrn2	CP-VBTot	PCFail	CFRan	
	GETHRESH	3	3.00	2.00 1.00	
			TOT GURCLET	value triggers particular branch	

94 1	hat	is the lev	rel of dry	well leaka	ge induced	d by conta	inment ;	pressurization?	
	5	InDWDf	1-DWDf2	1-DWHDf2	1-DWDf3	1-DWHDf3			\$ InDWDf : No drywell failure
	6	1	2	3	4	5			\$ 1-DWDf2 : Drywell failure is a leak at the DW wall (Level 2)
	10								\$ I-DWHD12 : Drywell failure is a leak at the DW nead (Level 2)
	5	51	72	73	76	91			\$ 1-DWDf3 : Drywell failure is a rupture at the DW wall (Level 5)
		4	+ 3	+ 4	+ 1	+ 3			\$ I-DWHDf3 : Drywell failure is a rupture at the DW head (Level 3)
		E-DWDf3	1-DWF13	I-DWOP3	1-DWFPed	1-DWDt3			
	1	5							<pre>\$Case 1: Drywell already ruptured</pre>
		EPBase							S Drywell already failed at wall prevent head failure
		AND							
		GETHRESH	4	9999.00	9999.00	9999.00	0.00		
	1	51							<pre>\$Case 2: Drywell head already ruptured</pre>
		5							
		E-DWHDf3							
	1	5							
		EPBase							
		AND							
		GETHRESH	4	9999.00	9999.00	9999.00 9	9999.00		
	7	85	51	72	73	91	93	93	\$Case 3: Drywell wall already leaking, containment is ruptured
		1	* (2	+ 2	+ 2	+ 2)	(3	+ 4)	S - Prior wall failure precludes head failure
		1gnFV8	E-DWDf2	1-DWF12	I-DWOP2	I-DWDt2	1-CL3	1-CL4	\$ - Containment ruptured so burn pressure could be mitigated
	5	5	41	30	31	40			
		EPBase	CP-VBTot	EPDWF	DWFRan	CP-VB			
	1	FUN-10Brn1							
		GETHRESH	4	9999.00	3.00	2.00	-1.00		
	5	85	51	72	73	91			\$Case 4: Dryweil wall already leaking - NU containment rupture
		1	* (2	+ 2	+ 2	+ 2)			S - Prior wall failure preclimes head failure
		IgnFVB	E-DWDf2	I-DWF12	I-DMOP2	1-DWDt2			
	5	5	41	30	31	40			
		EPBase	CP-VBTot	EPDWF	DWFRan	CP-VB			
		FUN-IDBrn2			- 1 L L				
		GETHRESH	4	9999.00	3.00	2.00	-1.00		
									trees C. Deier departi head leskage and containment runture
	4	85	51	93	93				Scase 5; Prior drywelt need teakage and containment roptore
		1	* 3	* (3	+ 4)				5 - Prior nead teakage precides to failure
		IgnFVB	E-DWHD12	1-CL3	1-014				3 - containment ruptured ao court pressure courd be intergoised
	5	5	41	.50	51	40			
		EPBase	CP-VBIOt	EPDWF	Dwikan	CP-VB			
		FUN-IDBrn3		0000 00	7 00	2 00	4 00		
		GETHRESH	4	AAAA.00	5.00	2.00	~1.00		
									trace 6. Prior drivell head leakage and NO containment runture
	2	85	51						 Prior head leakage precludes no failure
		1	5 DU 10 13						· ·····
	-	1gnFVB	E-DWHUT2	70	7.1	10			
	2	500.00	61	500115	DUICO	10-VP			
		EPBase	CP-VBIOT	EPDWF	DWERSH	CP-VB			
		FT18 - 113P5 - CM							
		CETHDECH		0000 00	3 00	2 00	-1.00		

```
1 85
                                                                 $Case 7: Burn with no prior ruptures
           1
        1gnFVB
    5
          5
                   41
                          30
                                  31
                                       40
       EPBase CP-VBIot
                         EPDUF
                                DWFRan CP-VB
     FUN-108rn5
      GETHRESH
                  4 4.00
                                 3.00 2.00 -1.00
             $ Dummy parameters select failure mode
           51
                 72
                          73
                                   91
                                                                 $Case 8: No burn - Pre-existing Level 2 leakage in drywell wall
         (2 + 2 + 2 + 2)
       E-DWDf2 I-DWF12 I-DWDf2 I-DWDf2
    EPBase
         AND
      GETHRESH
                   4 9999.00
                               0.00 -1.00 -1.00
           $ Dummy parameters select failure mode
    1
         51
                                                                 $Case 9: No burn - Pre-existing Level 2 leakage in drywell head
           3
      E-DWHDf2
    1
         5
        EPBase
         AND
      GETHRESH
                   4 9999.00 9999.00 0.00 -1.00
           $ Dummy parameters select failure mode
     Otherwise
                                                                 $Case 10: No Burn - No drywell failure
    1
          5
        EPBase
          AND
      GETHRESH 4 0.00 -1.00 -1.00 -1.00
            $ Dummy parameters select failure mode
95 What is the level of suppression pool bypass following VB?
   3 InSP8 1-SP82 1-SP83
                                                                 $ InSPB : No suppression pool bypass
    2
           1
                   2
                            3
                                                                 $ I-SPB2 : Suppression pool bypass level 2 (Leak)
    5
                                                                 $ 1-SPB3 : Suppression pool bypass level 3 (Rupture)
    4
           52
                 94
                        94
                                    58
           3 + 4 + 5
                                 + 1
       E5-SP83 1-DWDf3 1-DWHDf3
                                 Alpha
                                                                 $Case 1: Drywell rupture from combustion or pre-existing rupture
        0.000 0.000 1.000
    6
         52
                 94
                          94
                                    79
                                          84 85
                                                                 $Case 2: Pre-existing drywell leak and ac power is available and H2 combustion
       ( 2 + 2 + 3)
                                   2 ( 1 + 1)
                                                                 5 in containment - pre-existing leak exacerbated by vacuum breaker fail
       E5-SPB2 I-DWDf2 I-DWHDf2
                                  1-AC 1-Clgn lgnFVB
        0.000 152,2,2 152,2,3
    3
        52
                - 94
                       94
                                                                 $Case 3: Pre-existing drywell leak - nothing has happened to change it
               + 2
           2
                       + 3
       E5-SPB2 I-DWDf2 I-DWHDf2
        0.000
               1.000 0.000
    3
         79
                 84
                          85
                                                                 $Case 4: ac power is available and H2 combustion in containment
           2
                ( 1 + 1)
                                                                 $ - vacuum breaker fails from H2 burn
         I-AC
                1-Clan IanFVB
     152,2,2
                 0.000 152,2,3
     Otherwise
                                                                 $Case 5: No burns in containment & no additional bypass
        1.000
                0.000 0.000
```

- Cuntainment mratsure before veces breach > 3 har	2:3 > containment pressure > 2 bar	1 : 2 bar > containment pressure	. Containment has failed	Pressure set to atmospheric					2: NO Containment failure with containment sprays	- Base Pressure changed to account for the change in total mumber of mulae				1. No contairment failure and NO C5 - Race pressure adjusted to account	for change in total number of moles			tes - therefore store converting and the definition have	eat ; water mur supported to deoris tate Ma+ - tabΩts amount of water iS summitiad for dobris fate	Wat : SMALL amount of water (CRD flow) IS supplied to debris late		1: NO vessel breach - Only way is to have large injection source into RPV			the state of any sector being with the sector of the secto	c. ac power is mut avaitable, nowever, rice Frotection system is available			1: NO ac power and all remaining injection source require ac power			c. Either high or low pressure injection was being supplied to RPV	before vessel breach			i: ac power is available and at least one injection system has not failed			• All injuration customs have failed	A MAN WITCH A CONTRACT OF A CO
3 F5D>	\$ 5575	\$ 65P>	\$Case	ş	5	PBASE			SCase		5	PBASE		SLace	5 5	PBASE			* H-10	\$ 5-10		SCase				asene			\$Case			SCase	\$			SCase			SCACE	
					1	HZDU E					-1	HZDW E			3	HZDW E																								
					10	ma20					10	0204			10	0204																								
breach?					9	HZODW	A CAR	0.000			9	H200W	202.6		9	H200/H	7 CUC																			11	+ -1]	E1+SSH		
ter vessel	4				m	H2WM	207 0	0." #00			m	82WM	304.0		M	HZH	2012		(ale)																	0	•	relifier n		
ressure at	2				44	NZMM	100 2	C*C0*			24	NZWA	405.3		44	NZW	2 207		-I nauat	1				* 1000	1.000			0.250			0.000	0.000			0.334	60		relfcon	ACC.0	0.000
tainment p	2				6	02044		n			0	02MM	р		0	0200	*	and and the	aptied to	2				0.000	000.0	2 8	ElafPS	0.250			-	0.000	+ 33	IdH-73	0.335	7	+	re forb	CCC "D	0.000
15 the com	*		11	1-11		RZOWN	FUM-LBASP1	UC I BKCOM	81	1-10	-	H20MM	FUN-LBASP2 CETHRESH	Otherwice	-	H2044	CETUDECH		ater not sug	-		63	un.	nBreach A son	0.000	£ +	IfAC	0.500	\$2	-	1440	282	(2	E4-1P1	0.333	5	(2	ETCHPIN	ccc.u asianadati	1.000
16 uhat	9	n .	*		60				***		00				60			1 1 1 1	N IN	n ny	9	*			. *	v			-			~				5				

98 is t	here water	in the rea	actor cavi	ty after V	B?			
- 3	LDWFLd	LRCWet	LRCDry					\$ LOWFIG : Reactor cavity flooded after vessel breach
2	1	2	3					\$ IROUET : Reactor cavity wet after vessel breach
7								\$ IR(Dry - Reartor ravity dry after vessel breach
2	54	94						- chevity , Alactor carrity of arter resolt breach
1 . T.	1	1 5						Store 1. Seatter emitte are environly finded as weters in doubt had
	blad. 22	1-000047						scase it Reactor cavity was previously flooded or rupture in drywell head
	1 000	0 000	0.000					Support in drywell head will drain part of shield pool into drywell
-	1.000	0.000	0.000					
K	24	04	0/	00	06	95	19	<pre>\$Case 2: Drywell is already wet and NO large suppression pool bypass and NO ac</pre>
	2	(I	+ 1	+ 1	+ 1)	-3	1	\$ power and at VB either high pressure melt ejection or steam explosion
	ES-DWet	HPME	ExSE	I-DWDt	I-DWDf r	1-SP83	LFAC	\$ or H2 combustion in drywell - steam in drywell condenses and sucks
	1.000	0,000	0.000					\$ water back into drywel'
3	84	85	95					
	(1	+ 1)	-3					\$Case 3: H2 combustion in containment following VB and NO large suppression
	1-Cign	1 gnFVB	nI-SPB3					\$ pool bypass
	1.000	0.000	0.000					
3	84	85	05					Cars (- 82 combustion in containment following MD and 18000
1.1	6 1	+ 11	3					and Lakes suppression
	1-0100	LanEVA	1.007					poor bypass
	0.000	190FVB	1-5285					
1.1	0.900	0.100	0.000	100 million (1990)	-			
0	04	0/	02	00	35	19		Scase 5: Drywell is DRY and NO large suppression pool bypass and NO ac
	(1		* 1	+ 1)	-5	1		\$ power and at VB either high pressure melt ejection or steam explosion
	HPME	EXSE	I-DWDt	1-DWDf	n1-SPB3	LFAC		\$ or H2 combustion in drywell - steam in drywell condenses and sucks
	0.200	0.100	0.000					\$ water back into drywell - Not as much steam, thus, less likely flooded
1	54							
	2							\$Case 6: Reactor cavity is already wet and nothing has happened to change this
	E5-DWet							
	0.000	1.000	0.000					
	Otherwise							\$Case 7: Reactor cavity is dry and nothing has hannyoned to change this
	0.000	0.000	1.000					the set of
99 What	is the na	ture of the	e core-con	crete inte	raction?			\$ CEL : Core-Concrete interaction begin following vessel breach in a dry cavity
5	CC1	WetCC1	FEdCCI	DIVCCI	1000n			\$ VetC1 - C1 beins following vesal breach in a vet cavity
2	1	2	3	4	5			Chieff - CCL is delayed - Dass NOT basis immigration for the start
11								Contraction of the second s
1	63							s nocci : No core-concrete interactions
	5							
	-Decemb							≱Case 1: No vessel breach, thus, NU CCL.
	nor each	0.000		0.000				
	0.000	0.000	0.000	0.000	1.000			
2	97	98						\$Case 2: Cavity is dry and there is no injection into the cavity
	1	* 5						
	nLDBWat	LRCDry						
	1.000	0.000	0.000	0.000	0.000			
5	98	26	28	9	24			\$Case 3: Debris is released into a dry cavity coincident with water from
	3	* 1	* (-1	+ -1	* 2)			\$ an injection source (RPV at HIGH Pressure at VR)
	LREDRY	E4-HiP	E4-LP1	nE1fLPC	E4-AC			
	0.000	0.000	0.200	0.000	0.800			
3	98	26	28		1.258.25			\$ Case 4. Debris is released into a dry cavity coincident with the
100	3	* 2	* -1					a point of the course of the a big concludent with water from
	LRCDry	E4-LOP	F4-101					an injection source (KPV at LOW Pressure at VB)
	0.000	0.000	0.8/0	0.000	0 160			
	08	0.000	0.040	0.000	0.100			
	70							acase 5: Debris is released into a dry cavity, water from an injection source
	3							Is added to the cavity after debris has enter the cavity

	ERCORV					
	0.500	0.000	0.500	0.000	0.000	
1	QR	98	97	26		\$Case 6: Cavity is wet and there is a replenishable source of warer or the
	(1	+ 2	* -11	* 1		\$ the cavity is flooded. The RPV is at HIGH pressure at VB
	inusia	IPCUNT	DRUAT	F4-HIP		
	0.000	0.000	0 200	0 000	6 800	
1.1	0.000	0.000	07	61	0.000	scare 7- Cavity is wet and there is a replenishable source of water or the
	90	30				\$ the ravity is flocted. The RPV is at LOW pressure at VB and the
	6.3	* 6		101111-00		s debris has a LARGE and of superheat
	LDW/ LC	LREWET	LUBwat	HILIQVB	0.140	· Martin a reason a second and reason and reas
	0.000	9.000	0.840	0,000	0.100	trace & facility is unt and there is a renienishable source of water or the
3	98	98	97			BLASE C: Lavity is wet and there is a representation of processing at VB and the
	(1	* 2	* -1)			5 The cavity is thoused, the the is to be the state of th
	LOWFLO	LRCWet	LDSWat			3 Georis has a serie and it or superiver
	0.000	0.000	0.600	0.000	0.400	and a province in the We and an include the owners of upter and the
1	26					Scase 9: RPV cavity is with NO repletishable source of water and the
	1					\$ RPV was at HIGH pressure at VB
	E4-HiP					
	0.000	0.200	0.000	0.800	0.000	
1	61					\$Case 10: RPV cavity is WET with NO replenishable source of water and the
	1					\$ RPV was at LOW pressure at VB and debis has a LARGE amount of
	HitidVB					\$ superheat
	0.000	0.840	0.000	0.160	0.000	
	Orherwise					\$Case 11: RPV cavity is WET with NO replenishable source of water. RPV pressure
	0.000	0.600	0.000	0.400	0.000	\$ LOW pressure at VB and debis has a SMALL amount of superheat
Librar	fraction	of core not	particin	ating in H	PME participates in CC1?	SHIFCCI : HIGH fraction of core participates in CCI
2	wiseen	LOFFE	- paraiaip			\$LoFCCI : LOW fraction of core participates in CCI
	4	201001				\$Par 45 - FCC1 : Frac. of core not participating in HPME which participates in
	47	68				SCase 1: Either Alpha Mode failure or NO vessel bicach
2	00	5				
	a rati	- Downski				
	A-1811	nereach 1 000				
1.1	0.000	1.000				
1						
42	0.000	0.000				trace 2- Frivessel steam explosion with a LARGE amount of core debris mobile
2	67	61				e at useed hreach
	1	1				> Di Huggi e com
	ExSE	HILLIQVB				
	0.000	1,000				
1						
45	0.900	0.600				a second s
2	67	61				Scase 3: Ex-vessel steam explosion with a proce and are of our of the meeter
	1	2				\$ at vessel breach
	ExSE	LoLigVB				
	1,000	0.000				
1						
25	0.900	0.600				
	Otherwise					\$Case 4: NO ex-vessel steam explosion, thus, all material not participating in
	1 000	0.000				\$ HPME particapates in CCI.
	1.000	0.000				
15	1 000	0.000				
Here's	much #2 /2	envivalent	(0) and (co2 are pro	oduced during CC1?	
now	HOCH DE LO	HOLE12	#20012	420013		\$H2CC1 : H2 (eq. CO) produced during CC1
	116.66.14	Charles by the of the	Charles have been a fear	THE SEARCH P.		

	6 3	1	2	3	4				<pre>\$Par 16 : LH2CC - Kg-moles H2 & equivalent CO produced during CCI \$ - parameter initialized in FUN-CC1#</pre>
	3	63	63	99					SPar 42 : LCO2 - Kg-moles CO2 produced during CC1
		1	+ 5	+ 5					\$ - parameter initialized in FUN-CCI#
	A-F:	ait	nBreach	133on					
	7	2	46	8	45	16	42	17	\$Case 1: Fither Alpha mode failure occurred or there was ND vessel breach
	H2IN FUN-C	VES	FEJECT	FH2VB	FCC1	LH2CC	LCO2	FZROX	\$ or NO CC1
	GETHRE	SH 3	868.50	434.22	17.37				
	1	64 1							
	H	PME							
	7	2	46	8	45	16	42	17	<pre>\$Case 2: High pressure melt ejection has occurred (HPME)</pre>
	H2IN FUN-C	VES C12	FEJECT	FH2V8	FCC1	LH2CC	EC02	FZROX	\$ Ejected debris (material mobile at VB) blown out of cavity from HPME
	GETHRE	SH 3	868.50	434.22	17.37				
	Otherw	ise							\$Case 3: NO HPME
	7	2	46	8	45	16	42	17	\$ Possible some debris blown out of cavtiv from ex-vessel steam explosio
	H21N	VES	FEJECT	FH2VB	FCC1	EH2CC	LCO2	FZROX	
	FUN-C	C13							
	GETHRE	SH 3	868.50	434.22	17.37				
02 Wh	at is th	e leve	1 of zire	conium oxi	dation in	the nede	stal bet	fore CC12	
	7 2:0	×75	7r0x50	7r0×40	7r0x30	7r0x21	2-0x10	7r0x<10	\$ 7r0x75 - Total 7r neid (Refore CCL) > 75%
	5	1	2	3	4	5	6	7	\$ 700x50 - Lotal 2r oxid (Before CC1)- 75% > 700x > 50%
	1	17							\$ 7r0x40 : Total Zr oxid (Before CC11: 50% > 7r0x > 40%
	FZ	ROX							\$ 2r0x30 : Total Zr oxid. (Before CCI): 40% > 2r0x > 30%
		AND							\$ /r0x21 : Total Zr oxid. (Before CC1): 30% > Zr0x > 21%
	GETHR	ESH	6	0.75	0.50	0.40	0.30	0.21	0.10 \$ 2r0x10 : Total Zr oxid. (Before CCI): 21% > Zr0x > 10% \$ Zr0x510: Total Zr oxid. (Before CCI): Zr0x > 10%
03 Is	the con	tainme	int not ve	ented foll	owing VB?				
	2 InV	ENT	I-VENT						\$ InVENT : Containment is NOT vented following vessel breach
	2	1	2						\$ 1-VENT : Containment IS vented following vessel breach
	3	79	93	93					Scase 1- Fither ND ac power or containment already has LARGE leak
		1	+ 3	+ 4					server as a server as an increase and a server and the server com
	E	FAC	1-013	1-014					
	1.	000	0.000						
	4	99	63	81	95				\$Case 2: NO core-concrete interaction and either NO vessal breach or LATE
		4	(5	+ 2	+ -31				\$ containment sprays or NO LARGE suppression pool bypass
	50	CC1	nBreach	LCS	nI-SPB3				\$ i.e. pressure in containment has stabilized and venting not needed
	1.	000	0.000						5 Analysis does NOT allow errors of commission - thus no solit fraction
	Otherw 0.	ise 900	0.100						\$Case 3: Pressure rising in containment and ac power available
04 15	s ac powe	r not	recovered	d late in	the accide	nt?			
	2 1	FAC	L-AC						\$ LFAC : ac power is NOT recovered late
	2	1	2						\$ L-AC ; ac power is recovered late
	4								이는 것 같은 것 같
	1	79							\$Case 1; ac power was already recovered or never lost
		2							

1-AC 0.000 1.000 80 1 \$Case 2: Failure of dc power precludes AC power recovery 1 E1fDC 1,000 0.000 2 2 15 \$Case 3: Long term station blackout with a FAST pour. 1 2 None @ 24 hr.s given none @ 17 hr.s \$ SB CD-Stw 0.910 0.090 Otherwise \$Case 4: Fast Core Melt with HIGH pour rate from vessel 0.770 0.230 \$ None 2 24 hr.s given none 2 5.6 hr.s 105 Is dc power available late in the accident? 2 LFDC L-DC \$ LfAC : ac power is NOT recovered late 2 1 2 \$ L-AC : ac power is recovered late 80 1 \$Case 1: ac power has already been lost 1 EIFDC 1.000 0.000 79 1 \$Case 2: ac power is available, thus dc power is available 2 1-AC 0.000 1.000 2 2 15 \$Case 3: Long-term station blackout 1 2 SB CD-SLW 0.330 0.670 Otherwise \$Case 4: Fast Core Melt 0.940 0.060 \$ None a 24 hr.s given none a 5.6 hr.s 106 What is the late status of containment sprays? 4 LfCS LrCS LaCS L-CS \$ LfCS : Containment sprays are failed and cannot be recovered 2 1 2 3 4 \$ LrES : Sprays are recoverable when ac power is restored 8 \$ LaCS : Sprays are available 1 81 \$ L-CS : Containment sprays are operating 1. IfCS \$Case 1: Containment sprays were previously failed 1.000 0.000 0.000 0.600 81 104 50 6 50 93 93 \$Case 2: Sprays were previously recoverable and ac power has NOT been restored * 1 * (1 2 + 2) * (3 + 4) detonation in the wetwell or containment failure following VB may 5 Ircs LFAC ESNCL ES-CL2 1-CL3 1-CL4 \$ have failed the sprays 181,2,1 181,2,2 0.000 0.000 2 81 104 \$Case 3: Sprays were previously recoverable and ac power has NOT been restored 2 1 thus, the sprays are still recoverable 5 1rcs LTAC 0.000 1.000 0.000 0.000 5 81 50 50 93 93 \$Case 4: Sprays were working previously - because of detonation 4* (1 + 2) * (3 + 4) \$ or containment failure sprays may not be operating now 1-CS ESNCL E5-CL2 1-CL3 1-CL4 0.000 181,4,3 181,4,4 181,4,1 1 81 \$Case 5: Sprays were working previously 4
1-05 0.000 0.000 0.000 1.000 \$Case 6: ac power is available - because of a detonation in the wetwell or 50 50 93 93 5 104 \$ containment failure following VB, the sprays may not be operating 2*(1 +2)*(3+4) L-AC ESNUL ES-CL2 1-CL3 1-CL4 181,6,1 181,6,2 181,6,3 181,6,4 \$Case 7: ac power is available 104 1 2 L-AC 0.003 130,4,3 130,4,4 0.000 \$Case 8: This case should not be used Otherwise -- This case should not be used 1.000 0.000 0.000 0.000 107 What is the late concentration of combustible gases in the containment? LGW>16 : 16% < H2 concen. < 20% \$ LGWW>20 : H2 concentration in WW > 20% 6 LGWN>20 LGWN>16 LGWN>12 LGWN>8 LGWN>4 L-NOGWN LGMM>8 : 8% < 92 concen. < 12% \$ LGWW>12 : 12% < H2 concen. < 16% 4 5 6 6 1 2 3 L-NoGWN : HZ concen. in WN < 4% \$ LGWW>4 : 4% < H2 concen. < 8% 1 97 OR 106 5 63 95 \$Case 1: Suppression pool bypass with water in the reactor cavity and NO late * (-1 + -3) * -4 -5 * -1 \$ containment sprays. Steam generated from water over core debris nERCDry nL-CS 1-SP8 LDSWat Breach inerts containment. 4 10 \$ 44 42 3 9 16 8 1 H2DW MOSO LH2CC £002 H2W H7UU 0244 HOCKAL FUN-LOWN1 0.04 0.08 5 0.20 0.16 0.12 GETHRESH 103 93 2 \$Case 2: Containment failure or has been vented -5 + 2 - containment does not pressurize and, thus, some CCI releases . I-VENT 1-CL purged out of containment 10 \$ 9 16 42 44 4 3 1 8 H2DW W020 LCO2 N2WW LH2CC H2OMM HZW WW50 FUN-LGUNZ C 08 0.04 0.16 0.12 5 0.20 GETHRESH 106 1 \$Case 3: Containment NOT failed and there are containment sprays 14 - steam content reduced in containemnt 5 L-CS 4 10 44 3 9 16 42 8 02DW 1002 NZWA H2DW LH2CC 0254 H20WW H2MM FUN-LGWW3 0.12 0.08 0.04 5 0.20 0.16 GETHRESH \$Case 4: Containment is not leaking - CCI releases enter containment Otherwise 4 10 42 24 3 9 16 8 . 1 NZWW HZDW O2DW LH2CC LC02 021M 82142 H20W FUN-LGWA4 0.04 0.16 0.12 0.08 5 0.20 GETHRESH Parse the combustible gas concentration 108 To what level is the wetwell inert after vessel breach? \$ LnWIn : Wetwell is not inert 3 LnWin L-Win2 L-Win3 \$ L-WWIn2 : Wetwell inert to detonations 2 3 5 1 44 9 1.1 3 1. 02W N2W H2WM H20MJ FUN-WWH201

C 12

.

GETHRESH 3 140,1,1 140,1,2 140,1,3 109 Is there sufficient exygen in the containment to support late combustion? \$ 102Det20 : Enough exygen to support a detonation with 20% H2 5 LO2Det20 LO2Det16 LO2Det12 LWW02 LnWW02 \$ LO2Det16 : Enough oxygen to support a detonation with 16% H2 5 2 3 1 4 5 \$ LO2Det12 : Enough oxygen to support a detonation with 12% H2 4 1 3 0 44 \$ - containment does not pressurize H2OW HZWW 02141 NZWU FEIN-WWO2 GETHRESH 4 4.0 3.0 2.0 1.0 110 Does ignition occur late in the containment? 2 L-Clan EnClan \$ L-Cign : LATE ignition in the containment 2 1 2 \$ LnClgn : NO late ignition in the containment 7 4 107 108 106 109 \$Case 1: Insufficient combustible material or containment inert to conduction 6 + 3 * -4 + 5 or not enough 02 in containment to support combustion \$ L-NOGWW I-WWIN3 nL-CS 1:0002 0.000 1,000 5 82 83 84 85 104 \$Case 2: Combustible mixture in containment following VB did NOT ignite -3 -5 * 2) (2 1 \$ Therefore, mixture won't burn now unless ac on late ni-Win3 SOMM : InCign IgnFVB LEFAC 0.000 1,000 1 104 \$Case 3: ac power available late 2 L-AC 1,000 0.000 2 107 \$67 \$Case 4: Combustible concentration > 16% - NO ac power 1.1 + 2 LGM>20 LGM>16 0.510 0.490 107 1 \$Case 5: Combustible concentration in range 16% > LGW > 12% - NO ac power 3 LEMP 12 0.420 0.580 1 107 \$Case 6: Combustible concentration in range 12% > LGWW > 1% - NO ac power 4 LGMD-8 0.330 0.670 Otherwise \$Case 7: Combustible concentration in range 8% > LGWW > 4% - NO ac power 0.280 0.720 111 Is there a detonation in the wetwell following vessel breach? 2 L-WMDt LOWNDE \$ L-WWDt : Late detonation in wetwell 4 1 2 \$ LnMADt : NO late detonation in wetwell 0 8 110 108 108 106 108 107 107 107 \$Case 1: NO ignition or Containment inert or H2 in containment < 12% * -4 + 3 + 4 + 5 + 6 2 + (2 + 3) LnCign L-Win2 L-Win3 nt-CS L-WIN LGW>8 LGW>4 L-NoGW 0.000 1.000 1 0.00 20 0.00 2 27 79 \$Case 2: ac power is ON after vessel breach and the HIS is ON * 2 1

	E4-HIS 0.000	I-AC 1.000						
1	0.00	0.00						
20	107	108	108	100 100	100	SCare 3-	12% < H2 < 16% and containmen	t initially inert to detonations.
0	101	*1 2	+ 31	* (3 + 2 +	1)	\$	however, sprays are on which	reduces steam concentration and forms
	LOWN 12	1-WIn2	L-Win3	L02Det12 L02Dt16 L02	Dt20	\$	a detonable mixture in contai	nment (High steam)
	0.220	0.780						
1								
20	5.8	0.00						
4	107	109	109	109		\$Case 4:	12% < H2 < 16% and Low steam	
	3	(3	+ 2	+ 1)		\$	Low steam DD1	
	LGWW>12	LO2Det12	LO2Dt16	LO2Dt2C				
	0.000	1.000						
1								
20	0.00	0.00	100	100 100		*Case E.	16% < U2 < 20% and containmen	t initially inart to detonations
>	107	108	108	109 109		scase or	house are on which	reduces steam concentration and forms
	I CIRD 16	1 -181707	i -i Allon	1020+16 1020+20		ŝ	a detonable mixture in contai	nment (High steam)
	0.250	0.750	L WHILD	LOCOLIO LOCOLEO				
1	0.200	0.150						
20	5.8	0.00						
3	107	109	109			\$Case 6:	: 20% > Containment H2 > 16% ar	nd Low steam
	2	(2	+ 1)			\$	Low steam DDT	
	LGWN>16	LOZDT16	1020t20					
	0.260	0.740						
1								
20	12.4	0.00						and the locate an electronic local
4	107	138	108	109		stase /	: H2 > 20% and containment init	chally inert to deconations,
	10000 30	- (2	+ 3)	1020++20			a detonable mixture in contai	inment (High steam)
	0.250	0.750	L-MAILD	LOZDETZO			a deconance in Acure in conca	mane (nigh accourt
	0.230	0.150						
20	5.8	0.00						
2	107	109				\$Case 8	: Containment H2 > 20% and Low	steam
	1	1				\$	Low steam DDT	
	LGWA>20	LO2Det20						
	0.450	0.550						
1								
20	12.4	0.00						
1.1	Otherwise					\$Case 9	: Not enough oxygen to support	a detonation
	0.000	1.000						
20	0.00	0.00						
112 Ubat	ic the l	u.co	f contain	moni imputes Load?				
7	1-Insée	I-Insso	1-Instit	1-10230 1-10220 1-	10210 1-10510	\$ 1-100	60 : Impulse > 60 KPa-S	L-1p>50 : 60 > Impulse > 50 KPa-S
S	1 10-00	2 10-50	2 10-40	4 5	6 7	\$ 1-102	40 : 50 > 1mpulse > 40 KPa-S	1-1p>30 : 40 > Impulse > 30 KPa-S
1	20					\$ 1-100	20 : 30 > Impulse > 20 KPa-s	L-1p>10 : 20 > Impulse > 10 KPa-S
	ImpLoad					\$ L-1p	10 : Impulse < 10 KPa-S	
	AND							
	GETHRESH	6	60.00	50.00 40.00	30.00 20.00 10.0	00		

113 What	is the la H2EfaVB	te gas comt	sustion eff	ficiency?		\$ H2EfaVB : Efficiency at which H2 is burned following VB
4	1					
6	110 1 L-CIgn	108 * (2 L-Win2	108 + 3) L-WWIn3	106 107 * 4 (5 - L-CS LGM/>4 1	107 61 L-NoGW	\$Case 1: Wetwell stram > 45% (High Steam) and H2 ignited in Range H2 < 8%
2	1,000					
18 19 3	0.280 0.275 110	107	107	& Peak pressure fro & Combustion effic	om hydrogen combustion iency	Case 2: Wetwell steam < 45% (lc. steam) and H2 ignited in range H2 < 8%
2	1 L-Cign 1.000	(> LGMD>4	+ 6) L-NoGWW			
18 19 5	0.280 0.275 110	108	108 s	Peak pressure fro Combustion effic 106 107	om hydrogen combustion iency	\$Case 3: Wetwell steam > 45% (High Steam) and H2 ignited in Rauge 12% > H2 > 8%
	1 L-CIgn 1.000	* (2 L-WN1n2	* 3) L-Win3	* 4 * 4 L-CS LGWN>8		
18 19 2	0.464 0.740 110	107				\$Case 4: Wetwell steam < 45% (Low Steam) and H2 ignited in Range 12% > H2 > 8%
	1 L-Cign 1.000	4 LGWN>8				
2 18 19	0.575	108	108	104 107		from 5. United storm > /5% (Wick Storm) and W7 insided in Bound 14% - W7 - 17
	1 L-CIgn 1.000	* (2 L-WIn2	+ 3) L-Win3	* 4 * 3 L-CS LGMP-12		scase 5: wetweett steam > 454 (nigh steam) and n2 ignited in Kange ink > n2 > iz
2 18 19	0.483 0.881					
2	110 1 L-C1gn	107 3 LGW>12				<pre>\$Case 6: Wetwell steam < 45% (Low Steam) and H2 ignited in Range 16% > H2 > 12%</pre>
2 18 19	0.734					
6	110 1 L-CIgn	108 * (2 L-WWIn2	108 + 3) L-WVIn3	106 107 * 4 * (1 + L-CS LGM>20 1	107 2) GMD-16	case 7: Wetwell steam > 45% (High Steam) and H2 ignited in Range H2 > 16%
2 18	0.492					

19 0.935 \$Case 8: Wetwell steam < 45% (Low Steam) and H2 ignited in Range H2 > 15% 107 107 110 3 1 1 1 + 21 L-Cign cGM>20 LGM>16 1.990 2 0.752 18 0.935 20 \$Case 9: No LATE burn Otherwise 1.000 2 18 0.00 19 0.00 114 what is the peak pressure in containment from a late hydrogen burn? 6 L-PBrno7 L-PBrno6 L-PBrno5 L-PBrno4 L-PBrno3 L-PBrno2 3 4 5 6 1 2 6 6 SCase 1: No late H2 ignition 118 * - 2 EnClan 9 5 11 18 19 1.00 . . 8 3 OZWW EPBase PBrn H2EfV81 H2EfV82 8244 N7ChBJ 8200 FUN-IPERN1 5 709.3 608.0 506.6 405.3 504.0 GETHRESH Parse peak pressure for verification \$Kase 2: Containment already failed OR ac power and Kis are both working 93 93 27 79 \$ after vessel breach + 1 * 2 3 + 4 T-AC E4-HIS 1-013 1-014 5 11 18 19 2.2 0 3 1.1 8 82524 EPBase PBrn H2EfVB1 H2EfVB2 102144 H20MJ HZWW FUN-IPBRN2 5 709.3 608.0 506.6 405.3 304.0 GETHRESH Parse peak pressure for verification SCase 3: Detonation in Containment 1 111 - 15 L-MADE 9 5 11 18 19 62 . 8 3 NZWA 02WW EPBase PBrn H2E1VB1 H2E1VB2 H2WW H2OWN SUN-1PBRN5 5 709.3 608.0 506.6 405.3 304.0 GETHRESH Parse peak pressure for verification \$Case 4: Late R2 burn Otherwise 9 5 11 18 19 44 . . . 8 OZVAV EPBase PBrn HZEFVB1 HZEFVB2 NZVAV H20MAR H2WAL FUN-IFBRNG 5 709.3 508.0 506.6 405.3 304.0 GETHRESH Parse peak pressure for verification 115 What is the level of drywell leakage induced by a late detonation in containment? \$ LnDWDt : No drywell failure induced by detonation 3 LINDWOT L-DWDT2 L-DWDT3 \$ L-DWDt2 : Drywell leakage induced by detonation (Level 2) 6 1 Z 3 \$ L-DWDt3 : Drywell runture induced by detonation (Level 3) 2

30

58

\$Case 1: Late detonation in wetwell L-WADT 35 3 20 34 incload IMPOWF IMPanD GETHRECH 2 2.00 1.00 \$ Dummy parameter values used to trigger particular branch Otherwise -- No detonation and thus no failure SCase 2: NC late detonation in Wetwell - NO failure 3 20 34 35 ImpLoad CMPOWF IMRanD MAY 2 0.00 -1.00 GETHRESH \$ Parameter values force Branch 1 116 What is the level of containment leakage induced by a late detonation? 3 LnOtF L-DtF2 L-DtF3 \$ LnDtF : No Containment failure induced by detonation 6 1 2 - 3 \$ L-DtF2 : Containment leakage induced by detonation (Level 2) 3 \$ i-DtF3 : Containment rupture induced by detonation (Level 3) 2 115 115 2 + 3 \$Case 1: Late detonation failed the drywell (Either Level 2 or 3) 1-DWDt2 L-DWDt3 5 This case allows coupling between drywell and containment response 5 20 24 34 35 25 Impl cad IMPEF IMRANE IMPOUF IMPAND F110-F6111 GETHRESH 2 2.00 1.00 1 111 \$Case 2: Late detonation in containment - No drywell failure from detonation 1 1-14517 3 20 24 - 25 Impl oad IMPCF IMRanC FUM-FC12 GETHRESH 2 2.00 1.00 Otherwise \$Case 3: No late detonation in containment - No failure 3 20 24 25 Impl cad IMPCF IMRANC 利西米 2 0.00 -1.00 GETHRESH \$... ter values force Branch 1 117 Shat is the level of containment leakage induced by late combustion events? \$ LnCL : No containment failure 4 LOCI L-CL2 L-CL3 L-CL4 \$ 1-C12 : Containment failure is a leak (Level 2) 6 1 2 3 - E. \$ L-EL3 : Containment failed by rupture (Level 3) 2. \$ 1-CL4 : Containment failed by catastrophic rupture (Level 4) 12. 93 10 \$Case 1: Containment already failed by catastrophic rupture 1-CL4 2 5 1.11 EPBase PBre FUN-LCPLOW GETHRESH 3 9999.00 9999.00 9999.00 Dummy -- Already ruptured 3 93 103 116 \$Case 2: Containment already ruptured or ruptured from a late detonation or

\$ vented late					the second se	Slase 5: Contarrent arready leaking or reaking from a late on							Cross &. Containment intact before containment burn	and a second contract the star water and the second of the Scond						\$ [r@wDf : No drywell faiture	\$ L-DWDF2 : Drywell failure is a leak at the DW wall (level a	\$ L-DWHDFZ : Drywell failure is a leak at the DW head (Level a	C L-DWDF3 : Drywell failure is a rupture at the DW wall (leve	\$ L-DuHDF3 : Drywell failure is a rupture at the DW head (leve		Stase 1: Drywell already ruptured	5 Brywelt alrewly failed at well prevent head failur			Size 2: Drywell head already ruptured							trace 1. Drught call already lasking containment is runture	ecoso a urgente more estores tooking, concorrente la concorrente to - Drive walt failure proclamatic hand failure	 Freedominant results of burn measure realifies with 	A A A A A A A A A A A A A A A A A A A				\$Case 4: Drywell wall already leaking - NO containment ruptur	5 Prior wall failure precludes head failure	
				999.00 1.00	ady failed				22	CFRam		Z.00 1.00	HOV LEAKING TIOM DECONATION	33	CC	LINGT	2.09 1.00	up triggers particular branch	induced by late combustion?	-DWDF3 E-DWHDF3	5 2								00.0 00.000,000,000						and the second on average and	UC 4444 DD 4444 DD 4444			1.0.1	1-11.4	AUTDAN		3.00 2.00 -1.00			
۶ ۲	(-DtF3			6 00,0000	mmy Altre				12	PCFail		00.4444	with Alles	**	are-21	FURBLE	3.00	argenter va	-II Inskage	-DUHDF2									00.0000							DD. MAN	e, meau sup			111.1	CONVIC	CLOBE	00'6666			
*	1-VENT	Dare		8	Dra	116	2 +	L-DEF2	11	pBrn		-	6		11 million	LINE.	M	4	at of druge	1-04042			115	m +	E-DWD13				3								PULLERY Cas	10 . 1	17 +	LI-UNUTC	0000	Lain	3	315	*	11-040t2
£	1-013	5DRace	M-1 CDE CM	GETHRESH		56	~	1-012	5	EP8ase	UN-ECBrn2	GE THRESH		Therwise	C	EV6856	GE TYRESH		ic the low	1 mbable	-		R	3	5 -DWDF5	5	EPBace	AA'I	GE (HRESI	8	5	E1-DUHDF3	un.	EPBase	GNN	GETHRESH		¢ '	2 3	1-04076	CODADA	Croase	GETHRESH	25	2	1-540042
		N				N			4		86				4				1 Uhar	5	1.4	1	~			**				*			**					2			*			2		

		\$Case 5: Drior drouel! head leakeds and routsimment restance	5 Prior head leakage precludes no failure	5 Containment ruptured so burn pressure could be mitigated				State A. Drive decual! head fasters and an oncentrement and	5 - Prior head leakage preciudes no failure					Bornes 7. Annual and a second s	ALONG 1. BUTTO OF THE OWERT CASES WITH THE DRIVE FURNITURES					\$ LINEWI : Containment is NOT vented LATE	\$ I-VEWT : Containment IS vented following LATE	Crass 1. Cithan MI an anna an antaine an anna an anna an	auase 1: citter wu ac power or containment already has LARGE leak			Mase 2: WO core-concrete interaction and either WO wesel breach or [witaweD]	 contractioner sprace sprace contractioner sprace 	APPROX CONTRACT CONTRACT CONTRACT	\$Case 3: WD core-concreto interaction and either WD vessel breach or lats	5 containment sprays or NO LATE LARGE suppression pool bypass			SCase 4: Pressure rising in containment and ac power available		\$ Contribut: Depth of concrete erooked radially to fail pederal (m)			to fail pedestal (m)	E DavisZUR - Davischal faile at usees! braach
	-1.00						-1.00						-1.00					00.1-																ure?				proded radially	
	2.00						2.38						2.00	2008				C.50											118	6(5-	004015			stal fail				socrete e	
31 Durkan	3.00				1 C		3.00			**	Duffann		3.00	1011010101010	31	DWFRen	1	oct failur							¥	e F	m[-SP85		118	7 2 +	L-DUDIS NL			cause peder				Depth of cr	ccur?
30 EPDuit	00.9999	211	(7 +	1-CL4	200 SUDIC		00-6666			102	EPOWF		00.9999	0.0 0.000	30	EPOWF	-	meters sel	nted late?			212	C7 +	L-CLA	10	*	1-05		907	*	1-CS			eroded to				ConErPed:	failure o
11 PBrn	4	211	*	1-03	pare		4			**	parn		Distance over	and frames	11	PBrit		Dummy para	ant not ver	L-VEWT	rs.	117	5 2	L-CL3	0.000	5 2	rBreach	0.000	63	5)	Unereach	2"7"CR	03.3.2	e must be				**	s pedestai
5 EPBase	FUM-LDBrn2 GETHRESH	8	m ;	210HM0-1	EPBase	Sunsul-Wus	GETHRESH	8	£	2.10MM0-1	EPBese	FUM-LDBrnk	LUL I HRESH	Otherwise	5	EPBase	-UM-LDBrn5	10011000	te containm	LINDEWT	-	104		1 FAC	1.000		InoCC1	1.000	8 -	3	110011	TT TAXON	103,3,1 11	uch concret	ConErPed	1 000	1.400	0.40	NOD WELL THE

6	PedFaVB	PedFa10	PedFa6	Peffa3	PedFa1	NoPedF		\$ PedFa10 : Pedestal fails 10 hours from VB
6	1	2	3	- 4	5	6		\$ PedFa6 : Pedestal fails 6 hours from VB
9								\$ PefF@3 : Pedestal fails 3 hours from VS
4	-63	63	99	99				\$ PefFal : Pedestel fails 1 hours from 18
	1	+ 5		+ 5				\$ NoPedF : No pedestal failure
	A-Fail	nBreach	DIVECT	133on				
1.	43							\$Case 1: NO core-concrete interactions - NO pedestal erosion OR delay
	ConErPed							\$ CEI which would be very late gedestal erosion or NO vessel
	AND							\$ breach (WO CC1) or Alpha mode failure in which case pedestal
	GETHRESH	5	9999.0	9999.6	9999.0	9999.0	9999.0	\$ failure is no longer a concern
			5 Dummy par	rameters f	once Bran	ch 6		and the second
5	75	74						\$Case 2: Pedestal already failed from impulse or pressurization at W
	· · · · · · · · · · · · · · · · · · ·	+ 1						
	1-PedFI	1-PedFP						
1.2	43							
	ConErPed							
	AND							
	GETHRESH	5	0.00	-1.00	-1.00	-1.96	-1.00	
			\$ Dummy par	rameters f	orce Bran	ich 3		
- 6	102	102	61	99				\$Case 3: Water and High metai, and high superheat
	-1	* -2	* 3	* 2				\$ Group 1 for MCCI Experts
	nZr0x75	mZr0x56	HitiqVB	WetCC1				
- 7	43							
	ConErPed							
	AND		and the second	1.	1.	1.44		
	GETHRESH	5	9999.00	0.83	0.55	9.32	0.19	
1	107	105	63					*Frank & United and Low matel, and Low superfront
~	102	+ .2	* 2					Comp I for WPCI Competence
	n7=0+75	n7=0+50	Loi SoliP	1.00000				a group a rox must caperios
	13	1121-04.30	COLIDER	Second 2				
	Cont Ded							
	480							
	CETHRESH	5	nn 0000	0.70	0.52	0.20	0.16	
	NEL CONTLE GET		7777200	9.17	N 4.3%	No. all all all all all all all all all al	93.10	
- 5	00							State 5- Remaining race with water
×.	7							S Grown 2 For WCCL Experts
	Wetters							a aroup a row must anjus the
- 1	43							
	ConFrPad							
	AND							
	GETHRESH	5	0000 00	0.74	0.40	0.26	0.16	
5	102	102	61	63	63			\$Case 6: NO Water and High metal, and High flow
	-1	* -2	* 1	* (2	+ 3)			\$ Sroup 6 for MCC1 Experts
	n2r0x75	n2r0x50	HiligVB	8H-Fail	LgBrch			
1	43							
	ConErPed							
	AND							
	GETHRESH	5	9999.38	0.83	0.66	0.40	0.20	
3	61	63	63					\$Case 7: NO Water and Low metal, and High flow

```
3
                                                                      Group 7 for MCCI Experts
           5*(2+3)
       HiLigVB BH-Fail LgBrch
    1
          43
      ConErPed
          AND
                                 0.92 0.73 0.47 0.26
      GETHRESH
                 5 9999.00
                                                               $Case 8: NO Water and High metal, and Medium flow
      102
                102 63
                                  63
    4
        -1 * -2 * ( 2 + 3)
                                                                     Group 5 for MCC1 Experts
                                                               $
       nZr0x75 nZr0x50 BH-Fait LgBrch
    1
          43
      ConErPed
         AND
                                0.92 0.71 0.47 0.26
       GETHRESH
                   5 9999.00
                                                               SCase 9: NO Water and Low metal, and Medium flow or Low flow
      Otherwise -- Group 4 for MCC1 experts
                                                                     Group 4 for MCC1 Experts
                                                               5
    1 43
      ConErPed
          AND
                                  0.82 0.62 0.40 0.20
                   5 9999.00
       GETHRESH
122 What is the level of late suppression pool bypass?
                                                               $ LnSPB : No suppression pool bypass
    3 LnSP8 L-SP82 L-SP83
                                                               $ L-SP82 : Suppression pool bypass level 2 (Leak)
                          3
    2
          1
                  2
                                                               $ L-SPB3 : Suppression pool bypass level 3 (Rupture)
    7
          95 118 118
    3
          3 + 4 + 5
                                                                $Case 1: Drywell rupture from combustion or pre-existing rupture
        1-SP83 L-DWDf3 L-DWHDf3
         0.000 0.000 1.000
                                                                $Case 2: Pre-existing drywell leak and Late pedestal failure
    5
         95 118 118
                                   121 121
                                                                5 Pedestal failure causes rupture with preexisting leak
        ( 2 + 2 + 3)
                                  -1 -6
        L-SP82 L-DWDf2 L-DWHDf2 nPedFaV8 L-PedF
        0.000 176,2,2 176,2,1
                                       110
                                                               $Case 3: Pre-existing drywell leak and ac power is available and H2 combustion
         95 118 118
    5
                                   194
                                                               5 in containment - pre-existing leak exacerbated by vacuum breaker failu
        ( 2 + 2 + 3)
                                  2 1
        L-SPB2 L-DWDf2 L-DWHDf2
                                  L-AC L-Cign
         0.000 152,2,2 152,2,3
                                                                SEase 4: Pre-existing drywell leak - nothing has happened to change it
    3 95 118 118
           2 + 2 + 3
        L-SPB2 L-DWDf2 L-DWHDf2
         0.000 1.000 0.000
                                                                $Case 5: Drywell failure caused by Late pedestal failure
          121 121
    2
           -1
                 -6
       nPedFaVB L-PedF
      176,2,2 0.000 176,2,1
                                                                $Case 6: ac power is available and H2 combustion in containment
    2 104 110
                                                                     - vacuum breaker fails from H2 burn
           2
                  1
                                                                5
         L-AC L-Clan
      152,2,2
               0.000 152,2,3
                                                                $Case 7: No burns in containment & no additional bypass
      Otherwise
         1,000 0,000 0,000
```

123 What is the late containment pressure due to non-condensibles or steam?

2	IT-Pres	nl T-Pres				\$ LT-Pres : Late containment pressure
ũ.	1	2				\$ nLT-Pres : Late pressure negligible
- 4						\$ Par 47 - LT-Pres : Late containment pressure from non-condensibles or steam
2	117	119				
1.00	-1	+ 7				Scase 1: Containment either already failed or vented - containment will not
	1-01	1-VENT				\$ pressurize from non-condensibles or steam
	0.000	1 000				
	0.000	1.000				
17	0.000	0.000				
	0.000	53	306	110	110	trace 2- NO core-coverate interactions and either NO ussel breach or 1875
		0.5	100	110	510	 A state of the set o
		e 2	1.00	- nimer	-277	 Contrainment sprays or wo care suppression point oppess BUD services be initiated
	00001	nereach t ann	1-65	nc-DWDT3	NE-UWHOTS	s kink may not be initiated
1.1.1.1	0.000	1.000				
1.1		-				
47	400.0	0.000			102	and a second of second to be the second second by the second se
2	63	95	97	98	106	scase 3: Large amount or steam is being generated by water over core depris
	-5	* 3	* (-1	+ 1)	4	5 (cavity either riooded or injection source) and the suppression
	Breach	1-SP83	LD6Wat	LOWFIC	nL-CS	5 pool is bypassed with no late containment sprays
	1.000	0.000				
1						
47	119, 1, 1, 1	0.000				
1.1	Otherwise					\$Case 4: No means of pressure relief
	1.000	0.000				
1						
47	1123.2,1,1	0.000				
24 Does	containmen	nt failure	occur lot	te due to n	on-condensibles or	stean?
4	LPnCL	LP-CL2	LP-CL3	LP-CL4		\$ LPnCL : No containment failure from late non-condensibles or steam
5	1	2	3	4		\$ LP-CL2 : Containment failure is a leak (Level 2)
4	5	47	21	22		\$ LP-CL3 : Containment failed by rupture (Level 3)
	EPBASE	LT-PRES	PEFail	CFRan		\$ LP-CL4 : Containment failed by catastrophic rupture (Level 4)
FUN-1	TPRES					
GETH	RESH	3	3.00	2.00	1.00	
25 Uhat	is the lor	og-term lev	vel of con	tainment I	eakage?	\$ LINCL : No LONG-TERM containment failure
2	1.051	11-012	17-013	17-014		\$ LT-CL2 : Containment failure is a leak ('evel 2)
2	1	2	3	6		\$ LT-CL3 : Containment failed by rupture (Level 3)
2						\$ 11-014 - Containment failed by catastrophic rupture (Level 4)
2	117	126				
						Case 1- Containment already failed by catactrophic conture
	1.016	10-516				and the state of t
	0.000	0 000	0.000	1.000		
	5.000	0.000	110	1,000		\$Care 2. Containment slready mentioned or vented late
		1.64	119			acage c. containment arready ruptured or vented tate
	1 0 7	10 013	i were			
	1-013	LP-CLS	L-VENI	0.000		
	0.000	0.000	1.000	0.000		Provi 7. Contributed alarge institution
2	117	124				scase 5: containment acready leaking
	2	+ 2				
	L-CL2	LP-CL2	-			
	0.000	1.000	0.000	0.000		and a second descent failure
	Otherwise	1.000				scase 4: NU containment faiture
	1 000	0.000	0.903	0.000		

B.2 EVNTRE Binning Input File

The file listed below, ggbin.dat, is used in EVNTRE to bin the APET end states into accident progression bins.

GRAND	GL	ILF BINNING	S INPUT **	Version i	7 **			
13		ASeq. MCC1	2rOxid SRVBKr	VB CF-BVB	DCH-SE CF-V8	SPB-L DF-BVB	CLEAK-L DF-VB	SPRAYS
6	8	Fat-SB	STW-SB	Fst-T2	\$1w-T2	Fst-TC	SIW-TC	
- 1	1	20						
		Fst-S8						
1	2	20						
		S IW-SB						
1	3	20						
		Fst-T2						
10	A.	20						
		SIW-T2						
3	5	20						
		Fst-TC						
1	6	20						
		6 Jan TC						
2	2	HIZPOX	LoZrOx					
2	1	36	36					
		n7r0x10	n2r0xe10					
2	2	36	36					
		6	+ 7					
	į.	ZrOx10	Zr0x<10	1010-101	100-101	aVR.		
1	5	63	- Sherriers	- au-fri	age-brit	114.9		
		5						
1	5	nbreach	67	07				
	1	11.11	1.1	+ 2)				
		E4-HIP	nLDBWat	S-LDBWat				
5	5	97	97					
		nLDBWat	S-LDBWat					
1	3	26						
		FA.HIP						
1	4	26						
		2						
		HIDCH	1 MM	HIEVER	Lofyst	NDCH-ST		
2	1	in the second	£0001	TITE ASE	LUCKUS.	noen-or		
	P	1	1					
	L.	HPME	HILIQVB					
	4	64						
		HPME						
2	3	67	61					
		ExSE	HILIOVE					
1	4	67						
		1						
		Exot						

2	5	64	67						
		END MS	nEver						
R	8	SPREALD	SPRE013	SPRED 2	SPRESS S	SPRF2(2)	SPRE215	SPACE S	SPREN N
ĩ	1	122	0100010	07.05.05.6	or be we o	benere.	SLAFEES	SUMPLES &	Distoro
0.5	18.1	1							
		LINSPB							
2	2	52	95						
		1.1	3						
		ESISPB	1-SPB3						
3	3	52	95	122					
		EELCOR	1.000	1.0000					
	1	tonard 62	10560	100					
9		- 1		100					
		ESISPE	InSPB	L-SPB3					
8	5.	95	122	52	85	122			
		(2	* 2)	+ (1	* 2	* 2)			
		1-SPB2	L-SPB2	ESASPB	1-SP82	L-SPB2			
2	6	52	95						
		2	* 3						
1.		ES-SPB2	1-SPB3						
5	18	85	122						
		1-5082	L-SPRS						
1	8	52	1-11-110						
200		3							
		E5-SPB3							
9	9	CE-LK	CE-Rpt	CE-VEN1	CVB-LK	CVB-Rpt	CL-Lk	CL-Rpt	
		CL-VENT	ChFall						
5	1	50	93						
1	1.0	10-CL2 00	1=015						
÷.,	9	e.c. 2							
		E3-VENT							
2	2	50	50						
		3	+ 4						
		E5-CL3	E5-CL4						
1	4	93							
		2							
	14	1=012							
. 6	2	21.3	80						
		1-013	1-014						
1.	6	125	1 - 6-6-14						
1.2	11	2							
		LT-CL2							
2	- 8	103	119						
		2	+ 2						
12	12	I-Vent	L-Vent						
6	1	125	125						
		17-013	17-014						
	. 10	126	L.I. S.L.M						
1	1	1							
		LINCL							
4	4	noCS	ECSnoL	LCS	ΕĊ	S			
6	1	30	81	106	3	0 8	1 10	6	
		(-4	* -4	* ~4)	* (*	4 * -	4 * 4)	
		nE4-CS	n1-CS	nL - CS	n£4-C	s nI-C	\$ 1-0	\$	
3	5	30	81	106					
		FA-05	n1-03	-A					
	3	30	81	106		0 0	1 10	6	
		1 -4	* 4	* -4)	+ 1 -	4 *	4 * 1	1	
		nE4-CS	1-05	nL-CS	nEA-C	5 1-0	S L+0	S	
6	4	30	81	106	3	8 01	1 10	6	

-0

d.

÷

4

.

	ŀ	(4 84-05	* 4 1-CS	* =4) n1=C5	* (4 E4-05	* 4 1-05	* 4) 1-05		
1	à.	0FyCC1 99	WEILLI	FEDGE1	plycer	NOLLI			
i	2	99							
1	3	99 3							
1	ń	99 4							
1	5	99 5							
2	2	noCCI oSRVBkr 23	CSRVBKT						
1	2	oSRVBK7 23							
		ESBUBLY							
8	8	E-VEN1	CR-SP	CR-DET	CR-DEF	CL-SP	CL-DET	01-011	HCF011
Ĵ.	1	22							
		EBVENT							
3	5	16	38	38					
		E1-13	ESP-CL3	ESP-CLA					
1	9	45							
2	4	E4-D1F3 50	50						
2	5	£5-CL3 16 2	65-CLA 38						
1	6	E1-L2 49 2	ESP-CL2						
1	7	E4-D1F2 50 2							
1	в	ES-CL2 50 1							
8 2	8 1	E5nCL ERupt 50	ALPHA 50	1R-Det	1R-Def	E-Leak	li-Det	11-Def	nlCFail
1	2	E5-CL3 58	E5-CLA						
1	3	AL PHA 92 3							
2	4	1-DtF3	93						
		3	+ 4						
1	5	1-CL3 50	1-014						
		25-012							
1	6	92							

1	1	1-DtF2 83						
1	6	1+CL2 93						
		InCL						
5	5	DR-Det	DR-Def	DL-Det	DL-Def	nDFail		
3	1	48						
		E-DUDES						
1	2	62						
		- 3						
		E5-SPB3						
ŝ	3	48	. 17					
		E-000+2	£1-5PR2					
1	4	52	6.8 - 107 M.C.					
		2						
5		ES-SPB2						
<u>a</u> .	2	52						
		E5-5P61						
12	12	EDWRpt	ALPHA	R-DWOP	R-PedP	R-PedSE	DR-Det	DR-Def
		EDWLK	L-DWOP	DL-Det	OL-Def	n1.DWF		
1	- Q.,	52						
		ES-SPB3						
1	2	58						
		1						
	111	ALPHA						
2	3	73	13					
		1-DWOP3	1-DWHOP3					
2	4	76	7.4					
		1	* 1					
		1.ºDWFPed	1-PedFP					
		1-DWFPed						
\$	6	- 91	72					
		1-14/14-2	1-04513					
1	7	85	1-04110					
		3						
	13	1-5PB3						
А,	8	52						
		E5-5P82						
2	9	13	73					
		2	+ 3					
	1.1	I - DWOP2	1 - DWHOP 2					
¢	10	91	+ 2					
		1-DWD12	1-DWF12					
1	11	95						
		2						
1	10	1-SPB2 05						
*		1						
		InSPB						

B.3 Frequency Output File From EVNTRE

The realized split fractions calculated by EVNTRE for PDS 1 are contained in gl_freq.out, shown below. The files for the other plant damage states are similar (the split fractions are different, of course).

TREE 1D: # OF QUESTIONS: OBSERVATIONS: FOR SERIES: SEQUENCE ID:	GRAND GULF APET, REV. 7 - 1 MAR 89 LHS RIS 250 GRAND GULF POINTER cen	- PD261	SARRP
Q-TYPE/TIMES ASKED BRANCHES	1 What is the initiating event? INDEP. INPUT PROB. TLOSP T2 TC 1 Z 3	250	
REALIZED SPLIT:	1.000E+00 0.000E+00 0.000E+00		
QUESTION: Q-TYPE/TIMES ASKED BRANCHES	2 Is there a Station Blackout (Diesel Genera INDEP. INPUT PROB. SB nSB 1 2	tors fail)? 250	
REALIZED SPLIT:	1.00DE+00 0.000E+00		
******** QUESTION Q-TYPE/TIMES ASKED BRANCHES	3 Is dc Power not available? INDEP. INPUT PROB. EIFDC El-DC	250	
REALIZED SPLIT:	0.0000+00 1.0000+00		
Q-TYPE/TIMES ASKED BRANCHES REALIZED SPLIT:	4 Do one or more S/RVs fail to reclose? INDEP. INPUT PROB. EISORV EINSORV 1 2 5.203E-02 9.480E-01	500	
Q-TYPE/TIMES ASKED BRANCHES REALIZED SPLI	5 Does HPCS fail to inject? INDEP. INPUT PROB. ElfHPInj ElsHPInj El-HPInj 1 2 3 0.000E+00 1.000E+00 0.000E+00	500	
Q-TYPE/TIMES ASKED BRANCHES	6 Does RCIC fail to inject initially? INDEP. INPUT PROB. ElfRCIC El-RCIC 1 2 000000000	500	
REALIELD SPEIL	1.0000400 0.0000400		
UUESTION O-TYPE/TIMES ASKED BRANCHES	7 Does the CRD hydraulic system fail to inj INDEP. INPUT PROB. EIFCRD EIFCRD E1-CRD	ect? 500	
REALIZED SPLIT:	1.000E+00 0.000E+00 0.000E+00		
Q-TYPE/TIMES ASKED BRANCHES	B Does the condensate system fail? INDEP. INPUT PROB. ElfCond ElrCond ElaCond	500	

REALIZED SPLIT:		0.000E+00 1.000E+00 0.000E+00
Q-TYPE/TIMES ASKED: BRANCHES:	9	Do the LPCS and LPCI systems fail? INDEP. INPUT PROB EIFLPC ELTLPC ELALPC EL-LPC
REALIZED SPLIT:		0.000E+00 1.000E+00 0.000E+00 0.000E+00
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	10	Does RHR fail (heat exchangers not available)? INDEP. INPUT PROB. 500 ElfRHR ElrRHR ElaRHR El-RHR 1 2 3 4 0.000E+00 1.000E+00 0.000E+00 0.000E+00
CONTRACTOR OF CO	11	Does the service water system or cross-tie to LPCI fail? INDEP. INPUT PROB. 500 ElfSSV ElrSSV ElaSSW 1 2 3 1.000E+00 0.000E+00 0.00DE+00
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	12	Does the fire protection system cross-tie to LPCI fail? INDEP. INPUT PROB. 500 E1fFWS ElofFWS E1#FWS 1 2 3 0.000E+00 0.000E+00 1.000E+00
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	13	Are the containment (wetwell) sprays failed? INDEP. INPUT PROB. 500 EIFCSS EIFCSS EI#CSS EI#CSS EI#CSS 1 2 3 4 0.000E+00 1.0005+00 0.000E+00 0.000E+00
CONTRACTOR OF CO	14	What is the status of vessel depressurization? INDEP. INPUT PROB. 500 ElfDep ElofDep ElnDep El-Dep 1 2 3 4 0.000E+00 0.000E+00 1.000E+00 0.000E+00
******* QUESTION: Q- YPE/TIMES ASKED BRANCHES: REALIZED SPLIT:	15	When does core damage occur? INDEP. INPUT PROB. 500 CD=Fst CD=51w 1 .2 1.000E+00 0.000E+00
Q-TYPE/TIMES ASKED BRANCHES REALIZED SPLIT	16	What is the level of pre-existing leakage or isolation fai INDEP. INPUT PROB. 1000 ElmL EIL2 EIL3 1 2 3 9.935E-01 6.5 ::-03 0.000E+00
C-TYPE/TIMES ASKED BRANCHES REALIZED SPLIT:	17	What is the level of pre-existing suppression pool bypass? INDEP. INPUT PROB. 1500 ElnSPB E1-SPB2 E1-SPB3 1 2 3 9.996E+01 3.974E-04 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED	18	What is the structural capacity of the containment? INDEP. INPUT PROB. INPUT PARM. 1500

lure7

BRANCHES:		Contain	
REALIZED SPLIT:		1.000E+00	
Q-TYPE/TIMES A KED: BRANCHES:	19	What is the s INDEP. INPUT Drywell	tructural capacity of the drywell? PROB. INPUT PARM. 1500
REALIZED SPLIT:		1.000E+00	
QUESTION Q-TYPE/TIMES ASKED: BRANCHES:	20	What type of DEP. INPu? PR Fst-SB 1	sequence is this (summary of plant damage)? OB. 1500 Slw-SB Fst-T2 Slw-T2 Fst-TC Slw-TC 2 3 4 5 6
REALIZED SPLIT:		1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	SUMMA	RY BY CASE	
CASE NUMBER/SPLIT: DEPENDENCIES	1 2	1.000E+00 15	
REQ. BRANCHES:	1	* 1	
DESCRIPTION	\$8	CD-Fst	
CASE/BRANCH SPLIT:		1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2	0.000E+00	
REQ. BRANCHES:	1		
DESCRIPTION:	SB		
CASE/BRANCH SPLIT:		0.0008+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1	0.000E+00 15	
REQ. BRANCHES:	2	* 1	
DESCRIPTION	Ť2	CD-Fst	
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 1	0.000€+00	
REQ. BRANCHES:	2		
DESCRIPTION:	Τ2		
CASE/BRANCH SPLIT		0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 1	0.000E+00 15	
REQ. BRANCHES:	3	* 1	
DESCRIPTION	ŤĊ	CD-Fst	
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION CASE/BRANCH SPLIT	6	0.000E+00 Otherwise 0.000E+00	0.0005+00.0.0005+00.0.0005+00.0.0005+00.0.0005+00

Q-TYPE/TIMES ASKED: BRANCHES:	21	Do the operators turn on the HIS before core degradatio DEP. INPUT PROB. 2750 E2-HIS E2NHIS
REALIZED SPLIT:		5 DODE-01 5.000E-01
	SUMMAR	Y BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	12	0.000E+00
REQ. BRANCHES:	\$	
DESCRIPTION	nSB	
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2	1.000E+00 Otherwise Station Blackout 5.000E-01 5.000E-01
Q-TYPE/TIMES ASKED: BRANCHES:	22	Is the containment not vented before core degradation? DEP. INPUT PROB. 2750 E3NVENT E3VENT
REALIZED SPLIT:		1.00000+00 0.0000+00
	SUMMA	IN BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1	0.000E+00 15 21
REQ. BRANCHES:	3	* 2 * 2
DESCRIPTION	ŤĊ	CD-51W E2nHIS
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2	0.000E+00 15
REQ. BRANCHES:	3	* 2
DESCRIPTION:	TC	CD-S1w
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3	0.000E+00 6 15
REQ. BRANCHES:	3	* 2 * 1
DESCRIPTION	ΤÇ	E1-RCIC CD-Fst
CASE/BRANCH SPLIT:		0.0006+00 0.0006+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4	0.000E+00
REQ. BRANCHES:	2	
DESCRIPTION	nSB	
CASE/BRANCH SPLIT:		D DDDE+00 D 000E+00

e

CASE NUMBER/SPLIT: 5 1.000E+00 DESCRIPTION: Dtherwise CASE/BRANCH SPLIT: 1.000E+00 1.000E+00 0.000E+00 ******* DUESTION: 23 Does (do) any S/RV tailpipe vacuum breaker(s) stick wide open? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. 4206 4206 oSRVBkr cSRVBkr BRANCHES: 2.417E-01 7.583E-01 REALIZED SPLIT: SUMMARY BY CASE CASE NUMBER/SPLIT: 1 5.202E-02 DEPENDENCIES: 4 RED BRANCHES: - 1 DESCRIPTION: EISORV 0.000E+00 5.202E-02 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 2 9.480E-01 DEPENDENCIES: 20 20 14 REQ. BRANCHES: (1 + 3) * /4 DESCRIPTION: Fst-SB Fst-T2 /E1-Dep 2.417E-01 7.063E-01 CASE/BRANCH SPLIT: 0.000E+00 CASE NUMBER/SPLIT: 3 DEPENDENCIES: 20 20 20 14 REQ. BRANCHES: (2 + 4 + 6) * /4 DESCRIPTION: SIW-SB SIW-T2 SIW-TC /E1-Dep 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 4 0.000E+00 DEPENDENCIES: 20 RED. BRANCHES: 5 DESCRIPTION: Fst-TC 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: 0.000E+00 CASE NUMBER/SPLIT: 5 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 ******* OUESTION: 24 Does ac power remain lost during core degradation? 7792 O-TYPE/TIMES ASKED: DEP. INPUT PROB. EAFAC E4-AC BRANCHES : 3.7528-01 6.2488-01 REALIZED SPLIT SUMMARY BY CASE CASE NUMBER/SPLIT: 1 0.000E+00 DEPENDENCIES: 12 REQ. BRANCHES: 1 DESCRIPTION: EIFDC

CASE/BRANCH SPLIT: 0.000L 10 0.000E+00 CASE NUMBER/SPLIT: 2 0.0002+00 DEPENDENCIES: 2 15 RED. BRANCHES: 1 2 * DESCRIPTION: 55 CD-S1W CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 3 1.000E+00 DEPENDENCIES : 2 REQ. BRANCHES : - 1 DESCRIPTION: SB CASE/BRANCH SPLIT: 3.7528-01 6.2488-01 CASE NUMBER/SPLIT: 4 0.000E+00 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 ******** QUESTION: 25 Is do power available during core degradation? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. BRANCHES: E4FDC E4-DC 7792 0.000E+00 1.000E+00 REALIZED SPLIT: SUMMARY BY CASE CASE NUMBER/SPLIT: 1 0.000E+00 DEPENDENCIES: 3 REQ. BRANCHES: 1 DESCRIPTION: EIFDC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 2 6.248E-D1 DEPENDENCIES: 24 REQ. BRANCHES: 2 DESCRIPTION: E4-AC 0.000E+00 6.248E-01 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 3 0.000E+00 DEPENDENCIES: 2 15 REQ. BRANCHES: 1 * 2 DESCRIPTION: SB CD-S1w CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 4 3.752E-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 0.000E+00 3.752E-01 ******** QUESTION: 26 What is the RPV pressure during core degradation? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. 12792

BRANCHES		84-H1P	E4-LOP 2			
REALIZED SPLIT:		2.4658-01	7.535E-D1			
	SUMMARY	BY CASE				
CASE NUMBER/SPLIT: DEPENDENCIES:	$1 \\ 14$	0 000E+00 25				
REQ. BRANCHES:	4	* 2				
DESCRIPTION:	El-Dep	E4 10				
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00			
CASE NUMBER/SPLIT: DEPENDENCIES:	2 4	5.2018-02				
REQ. BRANCHES:	1					
DESCRIPTION:	EISORV					
CASE/BRANCH SPLIT:		0.0000000	5.2018-02			
CASE NUMBER/SPLIT: DEPENDENCIES	3 14	0.000E+00 25				
REQ. BRANCHES.	1	+ 1				
DESCRIPTION	ElfDep	EAFDC				
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00			
CASE NUMBER/SPLIT: DEPENDENCIES	4 2	9.480E-01 14				
REQ. BRANCHES:	1	* 3				
DESCRIPTION:	S.B	ElnDep				
CASE/BRANCH SPLIT:		2.4658-01	7.0158-01			
CASE NUMBER/SPLIT: DEPENDENCIES:	5 21	0.000E+00 1	1	15	22	15
REQ. BRANCHES:	1	*(2	+ 3 *(2	* 2	+ 1))
DESCRIPTION:	ES-HIS	T2	TC	CD-Slw	EBVENT	CO-Fst
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00			
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	6	0.000E+00 Otherwise 0.000E+00	0.000E+00			
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	27 W D	hat is the EP. INPUT P E4-HIS	status of th ROB. E4nHIS	ie HIS be	efore vess	el breach? 14890
REALIZED SPLIT:		2.1255-01	7.8758-01			
	S UMMAR Y	BY CASE				
CASE NUMBER/SPLIT: DEPENDENCIES:	21 21	5.000E-01				
RED. BRANCHES:	2					

N 20 20 20		S 8 84		 100	
10.00	ED T ED 1	1.1.72		 10 mil	
U.C. C.L.	R 1 F	1.1.1.1	PR	 2.71	
12.10.10.40	11.2.1	· · · ·		 	

CASE/BRANCH SPLIT:		0.000E+00 5.000E+01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 2	0.000E+00
REQ. BRANCHES:	2	
DESCRIPTION	n58	
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 24	1.876E-01
REQ. BRANCHES:	1	
DESCRIPTION	EAFAC	
CASE/BRANCH SPLIT:		1.876E-01 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 20	7.699E-02 26 14 25
REQ. BRANCHES:	1	* 1 * 3 * 2
DESCRIPTION	Fst-S0	E4-HIP E1nDep E4-DC
CASE/BRANCH SPLIT:		9.8512-03 6.7142-02
CASE NUMBER/SPLIT: DEPENDENCIES:	5 20	2.354E=01 26
REQ. BRANCHES:	1	* 2
DESCRIPTION:	Fst-SB	E4-LoP
CASE/BRANCH SPLIT:		1.505E-02 2.203E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	6 20	0.000E+00
REQ. BRANCHES:	2	
DESCRIPTION:	Slw-SB	
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	7	0.000E+00 Otherwise 0.000E+00 0.000E+00
COURT DUCTION OF STATE		
QUESTION: D-TYPE/TIMES ASKED: BRANCHES:	28 I D	s RPV injection restored during core degradation? EP. INPUT PROB. 17334 E4nLP1 E4-LP1 E4-HP1 1 2 3
REALIZED SPLIT:		1.2001-01 2.4001-01 6.2481-01
	SUMMARY	BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 5	6.248E-01 24
REQ. BRANCHES:	2	* 2

DESCRIPTION: EICHPING E4-AC CASE/BRANCH SPLIT: D.DODE+00 D.DODE+00 6.248E-01 CASE NUMBER/SPLIT: 2 D.248E-D2 DEPENDENCIES: 26 RED. BRANCHES: . 2 DESCRIPTION: E4-HIP 8.248E-02 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT 3 DEPENDENCIES: 9 0.000E+00 24 REQ. BRANCHES: /1 * 2 DESCRIPTION: /EIFLPC E4-AC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 4 0.000E+00 DEPENDENCIES: 8 24 20 27 RED. BRANCHES: /1 * 2 * /1 * 2 DESCRIPTION: /EIfCond E4-AC /Fst-SB E4nHIS 0.000E+00 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 5 0.000E+00 20 DEPENDENCIES: 8 24 REQ. BRANCHES: /1 * 2 DESCRIPTION: /ElfCond E4-AC /Fst-SB CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 6 D. DODE+00 27 DEPENDENCIES: B 24 RED. BRANC. S: 71 * 2 2 DESCRIPTION: /ElfCond E4-AC E4nHIS D.000E+00 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 7 D.DODE+00 B DEPENDENCIES 24 REQ. BRANCHES: /1 * 2 DESCRIPTION: /ElfCond E4-AC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 8 2.827E-01 27 24 24 DEPENDENCIES: 12 -20 3 * 3 *(2 * 2 + 1.) RED. BRANCHES: DESCRIPTION: ElaFWS Fst-SB E4-AC EAFAC E4nH15 3.616E-02 2.466E-01 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 9 0.000E+00

DEPENDENCIES: 12 20 REQ. BRANCHES: 3 * 1 DESCRIPTION: ElaFWS Fst-SB 0.000E+00 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 10 0.000E+00 DESCRIPTION: Otherwise CASE/REANCH SPLIT: 0.000E+00 CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 ******* DUESTION: 29 Is the core in a critical configuration following injection recovery? D-TYPE/TIMES ASKED DEP. INPUT PROB. 22629 E4-Crit EAnCrit BRANCHES: 8.661E-03 9.913E-01 REALIZED SPLIT: SUMMARY BY CASE CASE NUMBER/SPLIT: 1 0.000E+00 DEPENDENCIES: 28 - 1 RED. BRANCHES: 3 * 2 DESCRIPTION TC E4-LP1 CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 8.714E-01 CASE NUMBER/SPLIT: 2 DEPENDENCIES: 28 28 RED. BRANCHES: 2 + 3 DESCRIPTION: E4-LPI E4-HPI CASE/BRANCH SPLIT: 8.661E-03 8.627E-01 CASE NUMBER/SPLIT: 3 1.286E~01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 0.000E+00 1.286E-01 0.000E+00 1.286E-01 ******** QUESTION: 30 What is the status of containment sprays? D-TYPE/TIMES ASKED: DEP. INPUT PROB. E4fCS E4rCS 22629 BRANCHEST E4aCS E4-CS REALIZED SPLIT: 0.000E+00 3.752E-01 6.248E-01 0.000E+00 SUMMARY BY CASE CASE NUMBER/SPLIT: 1.12 0.000E+00 DEPENDENCIES: 13 RED. BRANCHES: 1 DESCRIPTION: EIFCSS CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 2 3.752E-01 DEPENDENCIES: 13 24 REO. BRANCHES: 2 * 1 DESCRIPTION: EIRCSS EAFAC

CASE/BRANCH SPLIT:		0.000E+0	00 3.752E-01 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1	0.000E+0 15	00
REQ. BRANCHES:	3	* 2	
DESCRIPTION:	TC	CD-57	•
CASE/BRANCH SPIIT:		0.000E+0	00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 20	0.0008+0 24	00
REQ. BRANCHES:	2	* 2	
DESCRIPTION	\$1w-\$	B E4-AC	
CASE/BRANCH SPLIT:		+ 3000.0	00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	5	6.248E- Otherwis 0.000E+	01 e 00 0.000E+00 6.248E-01 0.000E+00
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	31	What amoun INDEP. INP 02WW	t of Oxygen is in the wetwell during core degradation? UT PROB. INPUT PARM. 22629
REALIZED SPLIT:		1.000E+	00
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	32	What amoun INDEP. INP 02DW 1	nt of Oxygen is in the drywell during core degradation? PUT PROB. INPUT PARM. 22629
REALIZED SPLIT:		1.000E+	+00
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	33	What amoun DEP. INPUT H20WW	nt of steam is present in the containment at core drmage? T PROB. INPUT PARM. 22629
REALIZED SPLIT:		1.000E-	+00
	SUMMA	RY BY CASE	
CASE NUMBER/SPLIT: DEPENDENCIES:	1 16	0.000E 22	+00
REQ. BRANCHES:	3	+ 2	
DESCRIPTION	E1L3	E3VE	NT
CASE/BRANCH SPLIT:		0.000E	+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1	0.000E 15	+00
REQ. BRANCHES:	3	* 2	
DESCRIPTION :	TC	CD-5	51w
CASE/BRANCH SPLIT:		0.0008	+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 10	0 0008	+00 /

REQ. BRANCHES: 4 * 4

DESCRIPTION	E1-RHR	E1-CSS
CASE/BRANCH SPLIT:		0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES	4 2	0.000E+00 14 15
HEQ. BRANCHES:	1	• 1 • e
DESCRIPTION	58	ElfDep CD-S1w
CASE/BRANCH SPLIT:		0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 20	0.000E+00
REQ. BRANCHES:	2	
DESCRIPTION	S1w-SB	
CASE/BRANCH SPITT		0.000E+00
CASE NUMBER/SPLIT: DETCRIPTION: CASE/DAANCH SPLIT:	D	1.000E+00 Otherwise 1.000E+00
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	34 W	at amount of steam is present in the drywell at core damage? P. INPUT PROB. INPUT PARM. 22629 H20DW
REALIZED SPLIT:		1.000E+00
	SUMMARY	BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	23	2.416E-01
REQ. BRANCHES:	1	
DESCRIPTION:	oSRVBkr	
CASE/BRANCH SPLIT		2.416E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2	0.000E+00 15
REQ. BRANCHES:		
	3	* 2
DESCRIPTION	3 TC	* 2 CD-S1w
DESCRIPTION: CASE/BRANCH SPLIT:	3 TC	* 2 CD-51w D.000E+00
DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES:	3 TC 3 10	* 2 CD-51w D.000E+00 0.000E+00 13
DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES:	3 TC 3 10 4	* 2 CD-S1w D.000E+00 D.000E+00 13 * 4
DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION:	3 TC 3 10 4 E1-RHR	* 2 CD-S1W 0.000E+00 13 * 4 E1-CSS
DESCRIPTION: CASE/BRANCH SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION: CASE/BRANCH SPLIT:	3 TC 3 10 4 E1-RHR	* 2 CD-Slw 0.000E+00 13 * 4 E1-CSS 0.000E+00
DESCRIPTION: CASE/BRANCH SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES:	3 TC 3 10 4 E1-RHR 4 2	* 2 CD-S1W 0.000E+00 13 * 4 E1-CSS 0.000E+00 0.000E+00 0.000E+00 14 15

DESCRIPTION	5.8	ElfDep	CD-Slw				
CA' 'BRANCH SPLIT:		0 - 000E + 0	0				
G WBER/SPLIT: /ENDENCIES:	8 20	0.0008+0	0				
REQ. BRANCHES:	2						
DESCRIPTION	\$?w-	SB					
CASE/BRANCH SPLIT:		0.000E+0	0				
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	6	7.584E-0 Otherwise 7.584E-0	1				
QUESTION: Q-TYPE/TIMES ASKED BRANCHES:	35	Total amoun DEP. INPUT In-VsH2	t of hydrogen PROB. INPUT I	n released PARM.	in-vessel durii 22629	ng core degrac	lation?
REALIZED SPLIT:		1.000E+0	0				
	SUMMA	RY BY CASE					
CASE NUMBER/SPLIT: DCPENDENCIES:	1	0.000E+0 28	0				
REQ. BRANCHES:	3	* 2					
DESCRIPTION	ΤÇ	E 4 - L P 1					
CASE/BRANCH SPLIT:		0.000E+0	0				
CASE NUMBER/SPLIT: DEPENDENCIES:	2	0.000E+0	0				
REQ. BRANCHES:	. 3						
DESCRIPTION	ŤÇ						
CASE/BRANCH SPLIT:		0.000E+0	ю				
CASE NUMBER/SPLIT: DEPENDENCIES:	3 14	8.714E-(28	28				
REQ. BRANCHES:	/4	*(2	+ 3)				
DESCRIPTION	/E1-D	ep E4-LP	Ę 4 - HP 1				
CASE/BRANCH SPLIT:		8.714E-0)1				
CASE NUMBER/SPLIT: DEPENDENCIES:	4 28	0.000E+0 28	0				
REQ. BRANCHES:	(2	+ 3)					
DESCRIPTION:	E4-L	PI E4-HP					
CASE/BRANCH SPLIT:		0.000E+	00				
CASE NUMBER/SPLIT: DEPENDENCIES:	5 26	9.2486-	22				
REO. BRANCHES	1						

DESCRIPTION	E4-HIP
CASE/BRANCH SPLIT	9.2488-02
CASE NUMBER/SPLIT: DESCRIPTION:	6 3.617E-02 Otherwise
CASE/BRANCH SPLIT:	3.617E-02
Q-TYPE/TIMES ASKED BRANCHES	36 What is the level of In-Vessel zirconium oxidation? INDEP. CALC. PROB. 22628 ZrDx75 ZrDx50 ZrDx40 ZrDx30 ZrDx21 ZrDx10 ZrDx<10
REALIZED SPLIT:	0.000E+00 3.546E-02 1.134E-01 1.448E-01 1.455E-01 2.043E-01 3.566E-01
Q-TYPE/TIMES ASKED: BRANCHES:	37 What is the containment pressure during core damage? DEP. CALC. PROB. 22629 EIP>3 EIP>2 EIP>1
REALIZED SPLIT	0.000E+00 0.000E+00 1.000E+00
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 0.000E+00 16 22
REQ. BRANCHES:	3 + 2
DESCRIPTION:	EIL3 E3VENT
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 0.000E+00 1 15
REQ. BRANCHES:	3 * 2
DESCRIPTION:	TC CD-S Iw
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 0.000E+00 10 13
REQ. BRANCHES:	A * A
DESCRIPTION:	E1-RHR E1-CSS
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 0.000E+00 20 30
REQ. BRANCHES:	2 * 4
DESCRIPTION:	S1w-SB E4+CS
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPL17: DEPENDENCIES:	5 0.000E+00 2 14 15
REQ. BRANCHES:	1 * 1 * 2
DESCRIPTION	SB ElfDep CD-Slw

CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00

CASE NUMBER/SPLIT: DEPENDENCIES	6 0.000E+00 20
REC. BRANCHES:	2
DESCRIPTION:	Slw-SB
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	7 1.000E+00 Otherwise 0.000E+00 0.000E+00 1.000E+00
QUESTION: Q-TYPE/TIMES ASKED: RRANCHES:	38 What is the level of containment leakage due to slow pressurization before VB? DEP. CALC. PROB. 22629 ESPACL ESP-CL2 ESP-CL3 ESP-CL4
REALIZED SPLIT:	1.0000 +00 0.0000 +00 0.0000 +00 0.0000 +00
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:) 0.0005+00 16 22
REQ. BRANCHES:	3 + 2
DESCRIPTION	EILS E3VENT
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT : DEPENDENCIES :	2 D.DODE+00 1 15
REQ. BRANCHES:	3 * 2
DESCRIPTION:	TC CD-S1w
CASE/BRANCH SPLIT	0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 0.000E+00 2 14 15
REQ. BRANCHES	1 * 1 * 2
DESCRIPTION:	SB ElfDep CD-Slw
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 1.000E+00 Dtherwise 1.000E+00 0.000E+00 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	39 What is the maximum hydrogen concentration in the wetwell before VB? DEP. CALC. PROB. 22629 HWW>20 HWW>16 HWW>12 HWW>8 HWW>4 NoHWW 1 2 3 4 5 6
REALIZED SPLIT:	4.051E-01 9.151E-02 9.311E-02 9.812E-02 8.479E-02 2.274E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 0.000E+00 23 20
REQ. BRANCHES:	1 * 6

DESCRIPTION:	OSRVBkr	S1w-TC
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 23	0.000E+00 16 38 38
REC. BRANCHES	1	(3 + 3 + 4)
DESCRIPTION	oSRVBkr	E1L3 ESP-CL3 ESP-CL4
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	8 20	0.000E+00
REQ. BRANCHES:	6	
DESCRIPTION:	SIW-TC	
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 16	0.000E+00 38 38
REQ. BRANCHES:	(3	+ 3 + 4)
DESCRIPTION	E113	ESP-CL3 ESP-CL4
CASE/BRANCH SPLIT:		0.000E+00 0.003E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 23	2.416E-01
REQ. BRANCHES:	- 1	
DESCRIPTION:	oSRVBk	
CASE/BRANCH SPLIT:		9.549E=02 2.185E+02 2.359E=02 2.539E=02 1.739E=02 5.794E=02
CASE NUMBER/SPLIT: DEPENDENCIES:	6 17	0.000E+00
REQ. BRANCHES:	- 3	
DESCRIPTION:	E1-SPB	3
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	7	7.584E-01 Otherwise Nominal or smail leakage into drywell 3.096E-01 6.966E-02 6.953E-02 7.273E-02 6.740E-02 1.695E-01
Q-TYPE/TIMES ASKED BRANCHES	40 T 1	o what level is the wetwell inert during core degradation? NDEP. CALC. PROB. 22629 E4nWin E4-Win2 E4-Win3 1 2 3
REALIZED SPLIT		1.000E+00 0.000E+00 0.000E+00
******* QUESTION	41 (o diffusion flames consume the hydrogen released before VB?
Q-TYPE/TIMÉS ASKED BRANCHES		EP. INPUT PROB. 29846 E4-Dif E4nDif
REALIZED SPLIT		3.9008-02 9.6108-01

SUMMARY BY CASE

. D

CASE NUMBER/SPLIT: 1 0.000E+00 DEPENDENCIES: 40 20 REQ. BRANCHES: 3 + 6 DESCRIPTION: E4-Win3 Siw-TC 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 2 0.000E+00 DEPENDENCIES: 2 21 RED. BRANCHES: 2 * 1 DESCRIPTION: NSB E2-H15 CASE/BRANCH SPL11: 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 3 0.000E+00 DEPENDENCIES: 2 REO. BRANCHES: 2 DESCRIPTION: nSB CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 4 2.487E-02 DEPENDENCIES : 2 27 24 RED. BRANCHES: * 2 * 1 1 DESCRIPTION: SB E4-AC E4-HIS CASE/BRANCH SPLIT: 2.966E-03 2.190E-02 CASE NUMBER/SPLIT: 5 5.9998-01 DEPENDENCIES 2 24 * 2 RED. BRANCHES: 1 DESCRIPTION: SB E4-AC CASE/BRANCH SPLIT: 3.603E-02 5.639E-01 CASE NUMBER/SPLIT: 6 3.7528-01 DESCRIPTION: Otherwise -- Low Pressure station blackout without recovery 0.000E+00 3.752E-01 CASE/BRANCH SPLIT: ******* QUESTION: 42 What is the maximum hydrogen concentration in the drywell before VB? 29846 Q-TYPE/TIMES ASKED: DEP. CALC. PROB. BRANCHES : HDW>20 HOW-16 HDW>12 HOW HDW=4 NOHDW 8 0.000E+00 0.000E+00 0.000E+00 0.0C. .0 0.000E+00 1.000E-00 REALIZED SPLIT: SUMMARY BY CASE CASE NUMBER/SPLIT: 0.000E+00 1 DEPENDENCIES: 23 20 REQ. BRANCHES: 1 * 6 DESCRIPTION: OSRVBkr Slw-TC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

8-85

CASE NUMBER/SPLIT: DEPENDENCIES:	2 0.000E+00 23 16 38 38
REQ. BRANCHES:	1 *(3 + 3 + 4)
DESCRIPTION	oSRVBky E1L3 ESP-CL3 ESP-CL4
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 2.416E-01 23
REQ. BRANCHES:	
DESCRIPTION:	osr. "Wr
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.416E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	4 0.000E+00 17 41
REQ. BRANCHES:	3 * 2
DESCRIPTION	E1-SPB3 E4nDif
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 2.494E-04 17 41
REQ. BRANCHES:	2 * 2
DESCRIPTION:	E1-SPB2 E4nDif
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.494E-04
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	6 7.581E-01 Otherwise Nominal leakage into drywell only 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 7 5-1E-01
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	43 Do deflagrations occur in the WW prior to vessel breach? DEP. INPUT PROB. 36564 E4-WWDf E4nWWDf 1 2
REALIZED SPLIT:	6.129E-01 3.871E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEFENDENCIES:	1 3.900E-02 41 40 20
REQ. BRANCHES:	1 + 3 + 6
DESCRIPTION:	E4-Dif E4-WIn3 Slw-TC
CASE/BRANCH SPLIT:	0.000E+00 3.900E-02
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1.670E-01 25 4 39
REQ. BRANCHES:	(2 * 2) * 6
DESCRIFTION:	E4-LoP EINSORV NOHWW
CASE/BRANCH SPLIT:	0.000E+00 1.670E-01
CASE NUMBER/SPLIT:	3 4.784E-01

DEPENDENCIES	24			
REQ. BRANCHES:	2			
DESCRIPTION:	E4-AC			
CASE/BRANCH SPLIT:		4.7848-01	0.0008+00	
CASE NUMBER/SPLIT:	4	4.881E-03		
DEPENDENCIES	26	14	4	39
REQ. BRA	(1	+ /4 *	1) *	6
DESCRIPTION	E4-HiP	/El-Dep	EISORV	NOHWW
CASE/BRANCH SPLIT:		1.0538-03	3.8286-03	
CASE NUMBER/SPLIT: DEPENDENCIES:	5 26	6 334E-03 14	4	39
REQ. BRANCHES:	(1	+ /4 *	1) *	5
DESCRIPTION	E4-HiP	/El-Dep	EISORV	HWW>4
Seat/BRANCH SPLIT:		1.323E-03	4.911E-C3	
CASE NUMBER/SPLIT: DEPENDENCIES:	6 90	2.1378-02		
REQ. BRANCHES:	5			
DESCRIPTION	⊷w≥4			
CASE/BRANCH SPLIC:		3.8*38-03	1.7566-02	
CASE NUMBER / S ** IT :	7	1		
DEPENDENCIES	26	14	4	39
REC. BRANCHES:	(1	+ /4 *	1) *	4
OESCRIPTION:	E4-HiP	/El-Dep	EISORV	HWW>8
CASE/BRANCH SPLIT:		3.036E-03 I	B.210E-03	
CASE NUMBER/SPLIT:	8	2.573E-02		
DEPENDENCIES:	39			
REO. BRANCHES:	4			
DESCRIPTION:	HWW>8			
CASE/BRANCH SPLIT:		7.8098-03	1.7928-07	
CASE NUMBER/SPLIT: DEPENDENCIES:	9 26	1.222E-02 14	4	39
REQ. BRANCHES:	()	+ /4 *	1) *	3
DESCRIPTION	E4-HiP	/El-Dep	EISORV	HWW>12
CASE/BRANCH SPLIT:		4.7718-03	7.445E-03	
CASE NUMBER/SPLIT: DEPENDENCIES:	10 39	2.489E-02		
REQ. BRANCHES:	3			
DESCRIPTION	HWW>12			

CASE/BRANCH SPLIT:	1.022E-02 1.467E-02
CASE NUMBER/SPLIT: DEPENDENCIES:	11 7.741E-02 26 14 4 39 39
REQ. BRANCHES:	(1 + /4 * 1) *(2 + 1)
DESCRIPTION	E4-HIP /E1-Dep EISORV HWW>16 HWW>20
CASE/BRANCH SPLIT:	3.861E-02 3.879E-02
CASE NUMBER/SPLIT: DEPENDENUIES:	12 1.316E-01 39 39
REQ. BRANCHES:	(2 + 1)
DESCRIPTION	HWW>16 HWW>20
CASE/BRANCH SPLIT:	6.387E-02 6.76BE-02
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	13 0.000E+00 Otherwise 0.000E+00 0.000E+00
Q-TYPE/TIMES ASKED: BRANCHES:	44 Is there a detonation in the wetwell prior to vessel breach? DEF. INPUT PROB. INPUT PARM. 44444 E4-WWDt E4nWWDt 1 2
REALIZED SPLIT:	1.5356-01 8.4656-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 4.103E-C1 40 30 40 39 39 39
REQ. BRANCHES:	2 * /4 + 3 + 4 + 5 + 6
DESCRIPTION	E4-WIN2 /E4-CS E4-WIN3 HWW>B HWW>4 NoHWW
CASE/BRANCH SPLIT:	0.000E+00 4.103E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 0.000E+00 43 39 40 30
REQ. BRANCHES	1 * 3 *(2 * 4)
DESCRIPTION	E4-WWDF HWW>12 E4-WIn2 E4-CS
CASE/BRANCH SPLIT	0.000E+00 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	3 6.774E-02 43 39
REQ. BRANCHES	1 * 3
DESCRIPTION	E4-WWDF HWW>12
CASE/BRANCH SPLIT	0.000E+00 6.774E-02
CASE NUMBER/SPLIT DEPENDENCIES	4 0.000E+00 43 33 40 30
REQ. BRANCHES	1 * 2 *(2 * 4)
DESCRIPTION	E4-WWDF HWW>16 E4-WIn2 E4-CS

CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 5 6.640E-02 DEPENDENCIES: 43 39 REQ. BRANCHES: 1 2 DESCRIPTION: E4-WWDF HWW>16 CASE/BRANCH SPLIT: 1.692E-02 4.948E-02 CASE NUMBER/SPLIT: 6 0.000E+00 DEPENDENCIES: 43 39 40 30 RED. BRANCHES: 1 * 1 *(2 * 4) DESCRIPTION: E4-WWDf HWW>20 E4-Win2 E4-CS CASE/BLANCH SPLIT: 0.0000+00 0.0000+00 CASE NUMBER/SPLIT: 7 3.0568-01 DEPENDENCIES: 43 39 REO. BRANCHES: 1 * 1 DESCRIPTION: E4-WWDF HWW>20 CASE/BRANCH SPLIT: 1.366E-01 1.690E-01 CASE NUMBER/SPLIT: 8 1,499E-01 DESCRIPTION: Otherwise -- No combustion CASE/BRANCH SPLIT: 0.000E+00 1.499E-01 ******* QUESTION: 45 What is the level of containment impulse load before vessel breach? Q-TYPE/TIMES ASKED: INDEP. CALC. PROB. 44446 E-Ip>60 E-Ip>50 E-Ip>40 E-Ip>30 E-Ip>20 E-Ip>10 E-Ip<10 BRANCHES : 3 4 6 6 REALIZED SPLIT: 8.328E-05 1.811E-03 3.286E-03 4.625E-03 1.852E-02 5.276E-02 9.189E-01 ******* QUESTION 46 With what efficiency is hydrogen burned prior to V87 DEP. INPUT PROB. INPUT PARM. 44444 Q-TYPE/TIMES ASKED: HZEFBVB BRANCHES: REALIZED SPLIT: 1.000E+00 SUMMARY BY CASE CASE NUMBER/SPLIT: 1 3,871E-01 DEPENDENCIES: 43 REQ. BRANCHES: 2 DESCRIPTION: E4nWWDf CASE/BRANCH SPLIT: 3.871E-01 CASE NUMBER/SPLIT: 2 0.000E+00 DEPENDENCIES: 40 39 REQ. BRANCHES: 2 * 6 DESCRIPTION: E4-WIn2 NOHWA CASE/BRANCH SPLIT: 0.000E+00 CASE NUMBER/SPLIT: 3 4.644E-02
DEPENDENCIES :	39	
REQ. BRANCHES:	6	
DESCRIPTION	NoHWW	
CASE/BRANCH SPLIT:	4.644E-02	
CASE NUMBER/SPLIT: DEPENDENCIES	4 0.000E+00 40 39	
REQ. BRANCHES:	2 * 5	
DESCRIPTION	E4-WIn2 HWW>4	
CASE/BRANCH SPLIT:	0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	5 5.881E-02 39	
REQ. BRANCHES:	5	
DESCRIPTION	HWW>4	
CASE/BRANCE STUTT:	5.881E-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	6 0.000E+00 40 39	
REQ. BRANCHES:	2 * 4	
DESCRIPTION:	E4-WIn2 HWW>8	
CASE/BRANCH SPLIT:	0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	7 6.7921 J2 39	
REQ. BRANCHES:	4	
DESCRIPTION:	HWW>8	
CASE/BRANCH SPLIT:	6.792E-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	8 0.000E+00 40 39	
REQ. BRANCHES:	2 * 3	
DESCRIPTION:	E4-Win2 Hellel2	
CASE/BRANCH SPLIT:	0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	9 6.774E-02 39	
REQ. BRANCHES:	3	
DESCRIPTION:	HWW>12	
CASE/BRANCH SPLIT:	6.774E-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	10 0.000E+00 40 39	39
REQ. BRANCHES	2 *(2 +	1)
DESCRIPTION:	E4-Win2 HWW>16	HWW>20

CASE/BRANCH SPLIT:	0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	11 3.720E-01 39 39
REQ. BRANCHES:	(2 * 1)
DESCRIPTION	HWW>16 HWW>20
CASE/BRANCH SPLIT:	3.720E-01
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	12 0.000E+00 Otherwise 0.000E+00
QUESTION Q-TYPE/TIMES ASKED BRANCHES:	47 What is the peak pressure in containment from a hydrogen burn? DEP. CALC. PROB. 44444 PBrn>7 PBro>6 PBrn>5 PBrn>4 PBrn>3 PBrn<3 1 2 3 4 5 6
REALIZED SPLIT:	2.458E-02 2.643E-02 4.510E-02 7.687E-02 5.686E+02 7.682E-01
	SUMMARY BY CASE
CASE SUMBER/SPLIT: DEPENDENCIES:	1 3.481E-01 41 43
REQ BRANCHES	2 * 2
DESCRIPTION	E4nDif E4nWWDf
CASE/BRANCH SPLIT:	0.000E+00 0.000E+0C C 000E+00 0.000E+00 0.000E+00 3.481E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 3.900E-02 16 22 38 38 41
REQ. BRANCHES:	3 + 2 + 3 + 4 + 1
DESCRIPTION:	E1L3 E3VENT ESP-CL3 ESP-CL4 E4-D1f
CASE/BRANCH SPLIT:	0.000E+00000E+00 0.000E+00 0.000E+00 0.000E+00 3.900E-02
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1.535E-01 44
REQ. BRANCHES:	
DESCRIPTION:	E4-WWDt
CASE/BRANCH SPLIT:	1.132E-02 1.165E-02 1.421E-02 2.832E-02 6.145E-03 8.187E-02
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 4.594E-01 Otherwise 1.326E-02 1.678E-02 3.089E-02 4.854E-02 5.072E-02 2.992E-01
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	48 What is the level of drywell leakage induced by an early detonation in containment DEP. CALC. PROB. EnDWDt E-DWDt2 E-DWDt3
REALIZED SPLIT:	9.8266-01 1.4136-02 3.3186-03
	SUMMARY BY CASE
CASE NUMJER/SPLIT: DEPENDENCIES:	1 1.535E-01 44

REQ. BRANCHES: 1

DESCRIPTION: E4-WWDt

CASE/BRANCH SPLIT:	1.361E-01 1.413E-02 3.318E-03
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2 8.465E-01 Otherwise 8.465E-01 0.000E+00 0.000E+00
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	49 What is the level of containment leakage induced by an early detonation? DEP. CALC. PROB. 244444 2400tF E4-DtF2 E4-DtF3 1 2 3 9.460E-01 3.384E-02 2.011E-02
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1.745E-02 48 48
REQ. BRANCHES:	2 * 3
DESCRIPTION :	E-DWDt2 E-DWDt3
CASE/BRANCH SPLIT:	0.000E+00 7.537E+03 9.910E+03
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1.361E-01 44
REQ. BRANCHES:	
DESCRIPTION	E4-WWDt
CASE/BRANCH SPLIT:	9.956E-02 2.630E-02 1.020E-02
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	3 8.465E-01 Otherwise 8.465E-01 0.000E+00 0.000E+00
******* QUESTION : Q-TYPE//IMES ASKED : BRANCHES :	50 What is the level of containment leakage before vessel breach? DEP. CALC. PROB. ESnCL E5-CL2 E5-CL3 E5-CL4 1 2 3 4
REALIZED SPLIT:	7.706E-01 5.978E-02 1.696E-01 0.000E+00
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 2.011E-02 16 22 38 38 49
REQ. BRANCHES:	3 + 2 + 3 + 4 + 3
DESCRIPTION	E1L3 E3VENT ESP-CL3 ESP-CL4 E4-DtF3
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 2.011E-02 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES	2 2.444E-03 16 38 43
REQ. BRANCHES:	(2 + 2) * 2
DESCRIPTION:	E1L2 ESP-CL2 EdnWWDF
CASE/BRANCH SPLIT:	0.000E+00 2.444E-03 0.000E+00 0.000E+00

CASE NUMBER/SPLIT: DEPENDENCIES:	3 3.740E-02 16 49 38
REQ. BRANCHES:	2 + 2 + 2
DESCRIPTION:	E1L2 E4-DtF2 ESP-CL2
CASE/BRANCH SPLIT:	0.000E+00 2.287E-02 1.453E-02 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 9.400E-01 Otherwise 7.706E-01 3.447E-02 1.349E-01 0.000E+00
CTYPE/TIMES ASKED: BRANCHES: BRANCHES:	51 What is the level of drywell leakage induced by containment pressurization? DEP. CALC. PROB. 44444 EnDWDf E-DWDf2 E-DWHDf2 E-DWHDf3 E-DWHDf3 1 2 3 4 5 9 0455-01 5 8955-02 0 0005+00 3 5555-02 0 0005+00
REALIZED STETT.	STHMADY BY CASE
PASE NUMBED /SDI 11.	1 9 3165-02
DEPENDENCIES:	17 48
REQ. BRANCHES:	3 + 3
DESCRIPTION:	É1-SP83 E-DWDt3
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 3.318E-03 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES	2 4.407E-05 17 50 50
REQ. BRANCHES:	2 *(3 + 4)
DESCRIPTION:	E1-SPB2 E5-CL3 E5-CL4
CASE/BRANCH SPLIT:	0.000E+00 3.502E-05 0.000E+00 9.049E-06 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1.662E-01 50 50
REQ. BRANCHES:	3 + 4
DESCRIPTION:	E5-CL3 E5-CL4
CASE/BRANCH SPLIT:	8.394E-02 4.907E-02 0.000E+00 3.320E-02 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 2.216E-04 17
REQ. BRANCHES:	2
DESCRIPTION:	E1-SPB2
CASE/BRANCH SPLIT:	0.000E+00 2.216E-04 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	5 8.302E+01 Otherwise 8.206E+01 9.621E+03 0.000E+00 0.000E+00 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	52 What is the level of suppression pool bypass following early combustion events DEP. INPUT PROB. 44444 E5nSPB E5-SPB2 E5-SPB3
REALIZED SPLIT	8.692E-01 7.000E-02 6.079E-02

SUMMARY BY CASE

CASE NUMBER/SPLIT: DEPENDENCIES:	1 3.652E-02 17 48 51 51
REQ. BRANCHES:	3 + 3 + 4 + 5
DESCRIPTION	E1-SPB3 E-DWDt3 E-DWDf3 E-DWHDf3
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 3.652E-02
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1.389E-04 17 24 54 43
REQ. BRANCHES:	2 * 2 *(1 + 1)
DESCRIPTION	E1-SPD2 E4-AC E4-Dif E4-WWDf
CASE/BRANCH SPLIT:	0.000E+00 1.305E-04 8.417E-06
CASE NUMBER/SPLIT: DEPENDENCIES:	3 6.987E-02 17 48 51 51
REQ. BRANCHES:	2 + 2 + 2 + 3
DESCRIPTION:	E1-SPB2 E-DWDt2 E-DWDf2 E-DWHDf2
CASE/BRANCH SPLIT:	0.000E+00 6.987E-02 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 4.403E-01 24 41 43
REQ. BRANCHES:	2 *(1 + 1)
DESCRIPTION:	F4-AC E4-Dif E4-WWDf
CASE/BRANCH SPLIT:	4.160E-01 0.000E+00 2.426E-02
CASE NUMBER/SPLIT. DESCRIPTION: CASE/BRANCH SPLIT:	5 4.532E-01 Otherwise 4.532E-01 0.000E+00 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED:	53 Has the upper pool dumped? DEP. INPUT PROB.
BRANCHES:	
REALIZED SPLIT:	D.240E-01 5.752E-01
	SUMMARY BT CASE
CASE NUMBER/SPLIT: DEPEMDENCIES:	1 6.2488*01 24
REQ BRANCHES :	2
DESCRIPTION:	E4-AC
CASE/BRANCH SPLIT:	6.248E-01 0.000E+00
CASE NUMBER/SPLIT:	2 3.752E-01 Otherwise
CASE/BRANCH SPLIT:	0.000E+00 3.752E-01
******* QUESTION:	54 Is there water in the reactor cavity? DEP. INPUT PROB.

44444

BRANCHES :		E	5-DF1d	E5-DWet	E5-DDr	y				
REALIZED SPLIT:		5.	1676-01	3.0098-01	1.824E-	01				
	SUMMARY	₿Y	CASE							
CASE NUMBER/SPLIT: DEPENDENCIES:	1 51	0.	0005+00							
REQ. BRANCHES:	5									
DESCRIPTION	E-DWHDf	3								
CASE/BRANCH SPLIT:		0	000E+00	0.000E+00	0.000E+	00				
CASE NUMBER/SPLIT: DEPENDENCIES:	2 16	1	695E-01 22	38	38		50	50		
REQ. BRANCHES:	/3	*	1	• /3	* /4	*(3	+ 4)		
DESCRIPTION	/E1L3		ESINVENT	/ESP-CL3	/ESP-C	4	E5-CL3	E5-CL4		
CASE/BRANCH SPLIT:		1	6798-01	1.6548-03	0.000E+	00				
CASE NUMBER/SPLIT: DEPENDENCIES:	3 16	3	381E-01 22	43	39		39			
REQ. BRANCHES:	/3	*	1	• 1	* /6		/5			
DESCRIPTION:	/E1L3		ESNVENT	E4-WWDf	/NoHWW		/HWW>4			
CASE/BRANCH SPLIT:		3	378E-01	2.8548-04	0.000E+	00				
CASE NUMBER/SPLIT:	4	0	000E+00					20	20	
DEPENDENCIES	10		66		41		30	39	39	64
REQ. BRANCHES:	/3	1	1	* /3	· ·		/4	* /5	* /6	^
DESCRIPTION	/E1L3		EBNVENT	/L1-SPB3	E4-D1	t	/£4-CS	/HWW>A	/NOHWW	LATAC
CASE/BRANCH SPLIT:		0	000E+00	0.000E+00	0.000E+	00				
CASE NUMBER/SPLIT: DEPENDENCIES:	16 16	2	130E-02 22	17	53		39	39	39	
REQ. BRANCHES:	/3	*		# 1n	4					
DESCRIPTION:				- /3	1. A.	(1	+ 2	+ 3)	
	/E1L3		E3nVENT	* /3 /E1-SPB3	UPDmp		1 HWW>20	+ 2 HWW>18	+ 3) HWW>12	
CASE/BRANCH SPLIT:	/E1L3	1	E3nVENT 103E-02	<pre>/E1-SPB3 1.027E-02</pre>	* 1 UPDmp 2 0 000E+	00	1 HWW>20	+ 2 H₩₩>18	+ 3) 8 HWW>12	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES:	/E1L3 6 20	1	+ E3nVENT .103E-02 .000E+00	- /3 /E1-SPB3 1.027E-02	" 1 UPDmp 2 0.000E+	00	1 HWW>20	+ 2 HWW>11	+ 3)	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES:	/E1L3 6 20 2	1	+ E3nVENT .103E-02 .000E+00	- /3 /E1-SPB3 1.027E-02	" 1 UPDmp 2 0.000E+	00	1 HWW>20	→ 2 HWW>11	+ 3) 5 HWW>12	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES REQ. BRANCHES: DESCRIPTION:	/E1L3 6 20 2 S1w-SB	1	+ E3nVENT .103E-02 .000E+00	- /3 /E1-SPB3 1.027E-02	" 1 UPDmp 2 0 000E+	00	1 HWW>20	→ 2 HWW>11	+ 3) 5 HWW>12	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES REQ. BRANCHES: DESCRIPTION: CASE/BRANCH SPLIT:	/E1L3 6 20 2 51w-58	1.0	+ E3nVENT .103E-02 .000E+00	<pre>^ /3 /E1-SPB3 1.027E-02 0.000E+00</pre>	 UPDmp 0.000E+ 0.000E+ 	00	1 HWW>20	→ 2 HWW>11	+ 3) 5 HWW>12	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES:	/E1L3 6 20 2 S1w-SB 7 53	1 0 0 2	E3nVENT 103E-02 000E+00	- /3 /E1-SPB3 1.027E-02 0.000E+00	* 1 UPDmp ? 0.000E+	00	1 HWW>20	→ 2 HWW>11	+ 3) 5 HWW>12	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES:	/E1L3 6 20 2 51w-SB 7 53 1	1 0 0 2	E3nVENT 103E-02 000E+00	- /3 /E1-SPB3 1.027E-02 D.000E+00	 UPDmp 0.000E+ 0.000E+ 	00	1 HWW>20	+ 2 H₩₩>11	+ 3)	
CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION: CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: DEPENDENCIES: REQ. BRANCHES: DESCRIPTION	/E1L3 6 20 2 51w-SB 7 53 1 UPDmp	1 0 0 2	E3nVENT 103E-02 000E+00	- /3 /E1-SPB3 1.027E-02 D.000E+00	* UPDmp ? 0.000E+	00	1 HWW>20	+ 2 HWW>11	+ 3)	

CASE NUMBER/SPLIT: DEPENDENCIES:	8 16	1	- 2865 - 22	01		24		17			39		39			39
REQ. BRANCHES:	/3	*	1			1	*	/3		*(1	+	2	+		3)
DESCRIPTION:	/FIL3		E3nVE	NT		E4FAC		/E1-5	SPB3	10	HWW > 20)	HWW>	16	н	WV>12
CASE/BRANCH SPLIT:		0	000E+	00	6.	4498-0	2 6	.4128	- 02							
CASE NUMBER/SPLIT: DESCRIPTION:	9	1 Oti	.183E- herwis	01 e	j		ŝ									
CASE/BRANCH SPLIT:		0	. 000E+	00	0.	000E+0	0.1	1836	-01							
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	55	What DEP.	is th CALC. E5P>3	ie c PR	con LOB E	tainme 5P>2 2	nt	press E5P>1	ure	bet	fore v	esse 49	1 bri 1060	each	2	
REALIZED SPLIT:		0	.000E+	00	0.	000E+0	0 1	.0008	+00							
	SUMMAR	RY BY	CASE													
CASE NUMBER/SPLIT: DEPENDENCIES:	1 50	5	. 293E -	01												
REQ. BRANCHES:	/1															
DESCRIPTION	/E5nCl															
CASE/BRANCH SPLIT:		0	.000E+	00	0.	0002+0	0 2	. 2938	-01							
CASE NUMBER/SPLIT: DEPENDENCIES:	2 52	0	000E+ 30	00												
REQ. BRANCHES:	3	*	4													
DESCRIPTION:	£5-51	P83	E4-CS													
CASE/BRANCH SPLIT:		0	.000E+	00	0.	000E+0	0 0	. 000E	+00							
CASE NUMBER/SPLIT: DEPENDENCIES:	3 52	1	9058-	02												
REQ. BRANCHES:	3															
DESCRIPTION:	E5-SF	83														
CASE/BRANCH SPLIT:		0	000E+	00	0.	000E+0	0 1	.905E	-02							
CASE NUMBER/SPLIT: DEPENDENCIES:	4 30	0	.000E+	00												
REQ. BRANCHES:	4															
DESCRIPTION:	E4~C3	8														
CASE/BRANCH SPLIT:		0	.000E+	00	0.	0005+0	0 0	. 000E	+00							
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	5	7 Oth O	.516E- herwis .000E+	01 e 00	0.	000E+0	0 7	.5168	-01							
***** AUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	56	TO WI	hat le P. CAL E5nDIn	vel C.	PRE	s the OB. 5-DIn2	DW	steam E5-D1	n3	ert	at ve	ssel 49	brea 060	ich?		

REALIZED SPLIT:	9.217E-01 7.304E-02 5.305E-03
Q-TYPE/TIMES ASKED: BRANCHES:	57 Is there sufficient H2 for combustion/detonation in the DW before V87 INDEP, CALC, PROB. 49050 EScDWDt EScDWDf ESnDWC
REALIZED SPLIT:	5.891E-04 3.445E-03 9.960E-01
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	58 Does an Alpha Mode Event fail both the vessel and the containment? DEP. INPUT PROB. 52427 Alpha noAlpha 1 2 2 000 001 01
REALIZED SPLIT	1.201F-02 8.851F-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 2.464E-01 26
REQ. BRANCHES:	1
DESCRIPTION:	E4-K1P
CASE/BRANCH SPLIT:	2.368E-04 2.462E-01
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2 7.536E-01 Otherwise 7.664E-03 7.459E-01
Q-TYPE/TIMES ASKED: BRANCHES:	59 What fraction of the core participates in core slump? DEP. INPUT PROB. 52427 HISL MedSL LowSL
REALIZED SPLIT:	1.360E-01 0.000E+00 8.640E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 7.901E-03 58
REQ. BRANCHES:	1
DESCRIPTION:	Alpha
CASE/BRANCH SPLIT:	7.901E-03 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1.538E-01 26 28
REQ. BRANCHES:	1 * 3
DESCRIPTION	E4-H1P E4-HPI
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 1.538E-01
CASE NUMBER/SPLIT	3 0.000E+00 26 7 24
REQ. BRANCHES	1 *(/1 * 2)
DESCRIPTION	E4-HIP /EIFCRD E4-AC
CASE/BRANCH SPLIT	0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT	4 9.237E-02

.

DEPENDENCIES: 26 REA. BRANCHES: 1 DESCRIPTION: E4-HIP CASE/BRANCH SPLIT: 9.237E-02 0.000E+00 0.000E+00 7.1012-01 CASE NUMBER/SPLIT: 5 DEPENDENCIES: 28 28 REQ. BRANCHES: (2 + 3) DESCRIPTION: E4-LPI E4-HPI 0.000E+00 0.000E+00 7.101E-01 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 5 0.000E+00 DEPENDENCIES: 7 24 REQ. BRANCHES: (/1 * 2) DESCRIPTION: /EIFCRD E4-AC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 3.575E-02 CASE NUMBER/SPLIT: 7 Otherwise DESCRIPTION: CASE/BRANCH SPLIT: 3.575E-02 0.000E+00 0.000E+00 ******** QUESTION: 60 Is there a large in-vessel steam explosion? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. 80884 BRANCHES : VesStx nVesSTx 6.741E-01 3.259E-01 REALIZED SPLIT: SUMMARY BY CASE CASE NUMBER/SPLIT: 1 7.903E-03 DEPENDENCIES: 58 REQ. BRANCHES: 1 DESCRIPTION: Alpha CASE/BRANCH SPLIT: 7.903E-03 0.000E+00 CASE NUMBER/SPLIT: 2 2.4625-01 DEPENDENCIES : 26 REQ. BRANCHES: 1 DESCRIPTION: E4-HIP CASE/BRANCH SPLIT: 2.453E-02 2.216E-01 CASE NUMBER/SPLIT: 3 7.459E-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 6.417E-01 1.042E-01 ******** QUESTION: 61 What fraction of the core debris would be mobile at vessel breach? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. INPUT PARM. 80884 HiLiqVB LoLiqVB BRANCHES : REALIZED SPLIT: 3.3908-02 9.6618-01

SUMMARY BY CASE

CASE NUMBER/SPLIT: DEPENDENCIES:	1 7	8.714E-01 24	28	28		
REQ. BRANCHES:	(/1 *	2) +	2 +	3		
DESCRIPTION :	Elfcrd	E4-AC	E4-LP1	E4-HP1		
CASE/BRANCH SPLIT:		2.0805-02 8	.5068-01			
CASE NUMBER/SPLIT: DEPENDENCIES:	2 26	9.2458-02				
REQ. BRANCHES:	1					
DESCRIPTION:	E4-HiP					
CASE/BRANCH SPLIT:		9.4218-03 8	.303E-02			
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	3	3.610E-02 Otherwise 3.680E-03 3	- Low pres 3.2428-02	sure with r	no injectio	on
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES	62 Do DE	es a large P. INPUT PRO SE-Alpha 1	in-vessel DB. SE-BtHd 2	steam explo SE-LgBrch 3	osion fai! SE-SmBrch 4	the vessel 80884 SE-nFail 5
REALIZED SPLIT:		7.903E-03	1.340E-01	1.3405-01	2.008E-01	5.233E-01
	SUMMARY	BY CASE				
CASE NUMBER/SPLIT: DEPENDENCIES:	1 58	7.903E-03				
REQ. BRANCHES:	1					
DESCRIPTION :	Alpha					
CASE/BRANCH SPLIT:		7.903E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 60	6.6622-01				
REQ. BRANCHES:	1					
DESCRIPTION:	VesStx					
CASE/BRANCH SPLIT:		0.000E+00	1.340E-01	1.3408-01	2.0088-01	1.974E-01
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	3	3.259E-01 Otherwise 0.000E+00	0.000E+00	0.000E+00	0.0002+00	3.2598-01
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	63 W	hat is the m EP. INPUT PF A-Fail	node of ve ROB. BH-Fati	LgBrch	h? SmBrch	80884 nBreach
REALIZED SPLIT:		7.903E-03	1.855E-01	1.3841-01	3.4308-01	3.2518-01
	SUMMARY	BY CASE				
CASE NUMBER/SPLIT	1 58	7.9038+03				
DED BRANCHES	1					

DESCRIPTION:	Alpha
CASE/BRANCH SPLIT:	7.903E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1.340E+01 62
REQ. BRANCHES:	2
DESCRIPTION:	SE-BtHd
CASE/BRANCH SPLIT:	0.000E+00 1.340E+01 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1.340E-01 62
REQ. BRANCHES:	3
DESCRIPTION:	SE-LgBroh
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 1.340E-01 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 2.008E-01 62
REQ. BRANCHES:	4
DESCRIPTION:	SE-SmBroh
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 2.008E-01 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 5.608E-03 28 28 61 29
REQ. BRANCHES:	(2 + 3) * 1 * 2
DESCRIPTION:	E4-LPI E4-HPI HiLiqVB E4nCrit
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 2.818E-03 2.790E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	6 8.733E-03 26 61
REQ. BRANCHES:	1 * 1
DESCRIPTION	E4+H1P H1L1qVB
CASE/BRANCH SPLIT:	0.000E+00 2.103E-03 0.000E+00 6.629E-03 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	7 1.273E-03 61
REQ. BRANCHES:	1
DESCRIPTION	HILIQVB
CASE/BRANCH SPLIT:	0.000E+00 2.396E-04 0.000E+00 1.033E-03 0.000E+00
CASE NUMBER/SPLIT	8 4.138E-01 28 28 29
REQ. BRANCHES	(2 + 3) * 2
DESCRIPTION	E4-LPI E4-HPI E4nCrit
CASE / BRANCH SPLIT	0 000F+00 2 426F+02 4 2475-03 6 2045-02 3 2225-01

B-100

CASE NUMBER/SPLIT: DEPENDENCIES:	9 26	7.8538-02
REQ. BRANCHES:	1	
DESCRIPTION:	E4-H	iP
CASE/BRANCH SPLIT:		0.000E+00 2.106E+02 0.000E+00 5.747E+02 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	10	1.536E-02 Otherwise Low press., no steam explosion, no injection 0.000E+00 3.921E-03 1.351E-04 1.130E-02 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	64	Does high pressure melt ejection occur? DEP. INPUT PROB. 80884 HPME nHPME 1 2 1.130E-01 8.870E-01
	SUMMA	RY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 58	8.592E-01 63 26
REQ. BRANCHES:	1	+ 5 + 2
DESCRIPTION	Alph	a nBreach E4-LoP
CASE/BRANCH SPLIT:		0.000E+00 8.592E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 63	2.412E-03 63 61
REQ. BRANCHES:	(2	* 3) * 1
DESCRIPTION	BH-F	ail LgBrch HiliqVB
CASE/BRANCH SPLIT:		2.069E-03 3.431E-04
CASE NUMBER/SPLIT: DEPENDENCIES:	3 63	4.016E-02 63
REQ. BRANCHES:	(2	+ 3)
DESCRIPTION:	BH-F	ail LgBrch
CASE/BRANCH SPLIT:		3.368E-02 6.483E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	4 61	9.0302-03
REQ. BRANCHES	1	
DESCRIPTION	HILL	qVB
CASE/BRANCH SPLIT:		7.959E-03 1.071E-03
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	5	8.916E-02 Otherwise 6.928E-02 1.988E-02
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	65	Does a detonation occur in the DW at vessel breach? DEP. INPUT PROB. INPUT PARM. 80884 I-DWDt InDWDt
REALIZED SPLIT:		4.984E-04 9.995E-01

	SUMMAR Y	BY CASE			
CASE NUMBER/SPLIT: DEPENDENCIES:	1 56	4.984E-04 57	63		
REQ. BRANCHES:	1	* 1	* /5		
DESCRIPTION:	E5nDIn	£5cDWDt	/nBreach		
CASE/BRANCH SPLIT:		4.984E-04	0.000E+00		
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2	9.995E-01 Otherwise 0.000E+00	9.9955~01		
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	66 D	oes a deflag EP. INPUT PP I-DWDf	gration occu ROB. InDWDf	ur in the D₩ at	vessel breach? 80884
REALIZED SPLIT:		2.844E-04	9.997E-01		
	SUMMAR Y	BY CASE			
CASE NUMBER/SPLIT: DEPENDENCIES:	1 56	2.844E-04 57	63	65	
REQ. BRANCHES:	/3	* /3	* /5 *	2	
DESCRIPTION	/ES-DIn	3 /E5nDWC	/nBreach	InDWDt	
CASE/BRANCH SPLIT:		2.844E-04	C.000E+00		
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2	9.997E-01 Otherwise 0.000E+00	9.9978-01		
Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	67 D D	oes a large EP. INPUT P ExSE 1 5.303E-01	ex-vessel : ROB. nExSE 2 4.696E-01	steam explosion	occur? 109901
	SUMMARY	BY CASE			
CASE NUMBER/SPLIT:	1	3.777E-01			
DEPENDENCIES:	58	63	54	28	
REQ. BRANCHES:	1	+ 5	+(3 *	1)	
DESCRIPTION	Alpha	nBreach	E5-DDry	E4nLPI	
CASE/BRANCH SPLIT:		0.000E+00	3.777E-01		
CASE NUMBER/SPLIT: DEPENDENCIES:	2 64	8.5688-02			
REQ. BRAN HES:	1				
DESCRIPTION:	HPME				
CASE/BRANCH SPLIT:		6.861E-02	1.7075-02		
CASE NUMBER/SPLIT:	3	5.366E-01			

CASE/BRANCH SPLIT: 4.617E-01 7.489E-02

Q-TYPE/TIMES ASKED: BRANCHES:	68 Whi DEI	at amount of H2 is released at vessel breach? P. INPUT PROB. INPUT PARM. 109901 H2VB
REALIZED SPLIT:		1.000E+00
	SUMMARY	EY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 63	3.332E-01 63
REQ. BRANCHES:	1	+ 5
DESCRIPTION	A-Fail	nBreach
CASE/BRANCH SPLIT:		3.332E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1	0.0002+00
REQ. BRANCHES:	3	* 2
DESCRIPTION:	TC	E4~LPI
CASE/BRANCH SPLIT:		0.000E+00
CASE NUMBER/SPLIT. DEPENDENCIES:	3 1	0.000E+00
REQ. BRANCHES:	3	
DESCRIPTION:	TC	
CASE/BRANCH SPLIT:		0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 14	5.388E-01 28 28
REQ. BRANCHES:	/4	*(2 + 3)
DESCRIPTION:	/El-Dep	E4-LPI E4-HPI
CASE/BRANCH SPLIT:		5.388E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	5 28	0.000E+00 28
REQ. BRANCHES:	(2	+ 3)
DESCRIPTION:	E4-LP1	E4-HP1
CASE/BRANCH SPLIT:		0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	6 26	9.235E-02
REQ. BRANCHES:	1	
DESCRIPTION:	E4-HiP	
CASE/BRANCH SPLIT:		9.2358-02
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	7	3.568E-02 Otherwise Low Pressure no injection recovery 3.568E+02

******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	69 How much hydrogen is released at vessel breach? DEP. CALC. PROB. 109901 H2VB>50 H2VB>25 H2VB>10 H2VB<10
REALIZED SPLIT:	1 2 3 4 0.000E+00 4.053E-02 6.047E-01 3.548E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT:	1 5.7468-01
DEPENDENCIES :	64 67
REQ. BRANCHES:	(1 + 1)
DESCRIPTION:	HPME Exse
CASE/BRANCH SPLIT:	0.000E+00 3.747E-02 5.372E-01 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2 4.253E-01 Otherwise 0.000E+00 3.053E-03 6.748E-02 3.548E-01
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	70 What is the peak drywell/wetwell pressure difference resulting from VE DEP. INPUT PROB. INPUT PARM. 109901 DPDWVB 1
REALIZED SPLIT:	1,000E+00
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 3.332E-01 63 63
REQ. BRANCHES:	1 + 5
DESCRIPTION:	A-Fail nBreach
CASE/BRANCH SPLIT:	3.332E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 9.915E-04 26 61 63 63 54 54
REQ. BRANCHES:	1 * 1 *(2 + 3) *(1 + 2)
DESCRIPTION:	E4-HiP HiliqVB BH-Fail LgBrch E5-DFld E5-DWet
CASE/BRANCH SPLIT:	9.915E-04
CASE NUMBER/SPLIT: DEPENDENCIES:	3 6.462E-03 26 61 54 54
REQ. BRANCHES:	1 * 1 *(1 + 2)
DESCRIPTION:	E4-HIP HILIQVB E5-DF1d E5-DWet
CASE/BRANCH SPLIT:	6.462E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	4 1-421E-03 26 61 63 63
REQ. BRANCHES:	1 * 1 *(2 + 3)
DESCRIPTION:	E4-HIP HILIQVB BH-Fail LgBrch
CASE/BRANCH SPLIT:	1.421E-03
CASE NUMBER/SPLIT:	5 2.5668-03

61 DEPENDENCIES: 26 REQ. BRANCHES: 1 . . 1 DESCRIPTION: E4-HIP HILIQVB CASE/BRANCH SPL17: 2.5568-03 6 3.1665-02 CASE NUMBER/SPLIT: 54 63 54 DEPENDENCIES : 26 63 1 *(2 + 3) *(1 + 2) RED. BRANCHES: LgBroh E5-UFid E5-DWet DESCRIPTION: E4-HIP BH-Fail 3.1666-02 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 7 6.885E-02 54 DEPENDENCIES: 26 54 RED. BRANCHES: 1 *(1 + 2) DESCRIPTION: E4-HIP E5-DF1d E5-DWet CASE/BRANCH SPLIT: 6.8858-02 CASE NUMBER/SPLIT: 8 8.465E-03 DEPENDENCIES: 63 63 26 REQ. BRANCHES: 1 *(2 + 3) DESCRIPTION: E4-HIP BH-Fail LgBrch CASE/BRANCH SPLIT: 8.4658-03 CASE NUMBER/SPLIT: 9 2.026E-02 DEPENDENCIES: 26 REQ. BRANCHES: 1 DESCRIPTION: E4-HIP CASE/BRANCH SPLIT: 2.026E-02 CASE NUMBER/SPLIT: 10 4.5298-03 54 54 63 DEPENDENCIES: 61 63 1 *(2 + 3) *(1 + 2) REQ. BRANCHES: DESCRIPTION: HILIQVB BH-Fail LgBrch E5-DFld E5-DWet CASE/BRANCH SPLIT: 4.529E-03 9.826E-03 CASE NUMBER/SPLIT: 11 54 DEPENDENCIES: 61 54 1 2) RED. BRANCHES: *(1 + DESCRIPTION: HILIQVB E5-DF1d E5-DWet CASE/BRANCH SPLIT: 9.8268-03 2.230E-01 CASE NUMBER/SPLIT: 12 54 54 DEPENDENCIES: 63 63 + 2) REQ. BRANCHES: (2 + 3) *(1 DESCRIPTION: BH-Fail LgBrch E5-DFld E5-DWet

CASE/BRANCH SPLIT: 2.230E-01 CASE NUMBER/SPLIT: 13 1.840E-01 DEPENDENCIES: 54 54 RED, BRANCHES: (1 + 2) DESCRIPTION: E5-DF1d E5-DWet CASE/BRANCH SPLIT: 1.840E-01 CASE NUMBER/SPLIT: 14 1.048E-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 1.0488-01 ******* QUESTION: 71 What is the peak pedestal pressure at vessel breach? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. INPUT PARM. 109901 BRANCHES: Ped-VBP REALIZED SPLIT: 1.000E+00 SUMMARY BY CASE CASE NUMBER/SPLIT: 1 3.332E-01 DEPENDENCIES: 63 63 REQ. BRANCHES: 1 + 5 DESCRIPTION: A-Fail nBreach CASE/BRANCH SPLIT: 3.332E-01 CASE NUMBER/SPLIT: 2 9.915E-04 DEPENDENCIES: 26 61 63 63 54 54 RED. BRANCHES: 1 * 1 *(2 + 3) *(1 + 2) DESCRIPTION: E4-HIP HILIGVE BH-Fail LgBrch E5-DFld E5-DWet CASE/BRANCH SPLIT: 9.9156-04 CASE NUMBER/SPLIT: 3 6.462E-03 DEPENDENCIES. 28 61 54 54 REQ. BRANCHES: 1 * 1 *(1 + 2) DESCRIPTION: E4-HIP HILIQVB E5-DF1d E5-DWet CASE/BRANCH SPLIT. 6.462E-03 CASE NUMBER/SPLIT: 4 1.421E-03 DEPENDENCIES: 26 63 63 61 REQ. BRANCHES: 1 * 1 *(2 + 3) DESCRIPTION: E4-HIP HILIQVB BH-Fail LgBrch CASE/BRANCH SPLIT: 1.421E-03 CASE NUMBER/SPLIT: 5 2.566E-03 DEPENDENCIES: 26 61 REQ. BRANCHES: 1 * 1 DESCRIPTION E4-HIP HILIQVB

ASE/BRANCH SPLIT:		2.566E-03					
ASE NUMBER/SPLIT: DEPENDENCIES:	6 26	3.166E-02 63	63	54	54		
REQ. BRANCHES:	1 .	*(2 +	3) *(1 *	2)		
DESCRIPTION:	E4-HiP	BH-Fail	LgBrch	E5-DF1d	E5-DWet		
ASE/BRANCH SPLIT:		3.1668-02					
ASE NUMBER/SPLIT: DEPENDENCIES:	7 26	6.8855~02 54	54				
REQ. BRANCHES:	1	*(1 *	2)				
DESCRIPTION	E4-HIP	E5-DF1d	E5-DWet				
ASE/BRANCH SPLIT:		6.885E-02					
CASE NUMBER/SPLIT: DEPENDENCIES:	8 26	8.465E-03 63	63				
REQ. BRANCHES:	1	*(2 +	3)				
DESCRIPTION:	E4-HiP	BH-Fail	LgBrch				
CASE/BRANCH SPLIT:		8.4658-03					
CASE NUMBER/SPLIT: DEPENDENCIES:	9 26	2.0268-02					
REQ. BRANCHES:	1						
DESCRIPTION:	E4-HIP						
CASE/BRANCH SPLIT:		2.0268-02					
CASE NUMBER/SPLIT: DEPENDENCIES:	10 36	2.708E-03 36	63	63	54	54	61
REQ. BRANCHES:	(/6	* /7) *	(2)	3) *	(1 +	2) *	1
DESCRIPTION:	/ZrOx10	/ZrOx<10	BH-Fail	LgBrch	E5-DF1d	E5-DWet	HiliqV
CASE/BRANCH SPLIT		2.7085-03					
CASE NUMBER/SPLIT: DEPENDENCIES:	11 36	4.073E-03 36	54	54	61		
REQ. BRANCHES	(/6	* /7)	*(1 -	+ 2)	1		
DESCRIPTION	/2r0x10	0 /Zr0×<10	E5-DF1d	E5-DWet	HiliqVB		
CASE/BRANCH SPLIT		4.073E-03					
CASE NUMBER/SPLIT DEPENDENCIES	12 63	1.821E-03 63	54	54	61		
REQ. BRANCHES	(2	+ 3)	*(1	+ 2)	* 1		
DESCRIPTION	: BH-Fa	il LgBrch	E5-DF1d	E5-DWet	HILIQVB		
CASE/BRANCH SPLIT	1	1.821E-03					
CASE NUMBER/SPLIT DEPENDENCIES	: 13	5.754E-03 54	61				

C

23.

REQ. 5RANCHES: (1 + 2) * 1

DESCRIPTION:	E5-DF1d E5-DWet	HiliqVB					
CASE/BRANCH SPLIT:	5.754E-03						
CASE NUMBER/SPLIT: DEPENDENCIES:	14 1.039E-01 36 36	63	63	54	54		
REQ. BRANCHES:	(/6 * /7) *(2 +	3) *(1 *	2)		
DESCRIPTION:	/Zr0x10 /Zr0x<10	BH-Fail	LgBrch	E5-DF1d	E5-DWet		
CASE/BRANCH SPLIT:	1.039E-01						
CASE NUMBER/SPLIT: DEPENDENCIES:	15 9.235E-02 36 36	54	54				
REQ. BRANCHES:	(/6 * /7) *(1 +	2)				
DESCRIPTION:	/ZrOx10 /ZrOx<10	E5-DF1d	E5-DWet				
CASE/BRANCH SPLIT:	9.235E-02						
CASE NUMBER/SPLIT: DEPENDENCIES:	16 1.191E-01 63 63	54	54				
REQ. BRANCHES:	(2 + 3) *	(1 +	5)				
DESCRIPTION	BH-Fail LgBrch	E5-DF1d	E5-DWet				
CASE/BRANCH SPLIT:	1.191E-01						
CASE NUMBET./SPLIT: DEPENDENCIES:	17 9.161E-02 54 54						
REQ. BRANCHES:	(1 + 2)						
DESCRIPTION:	E5-DF1d E5-DWet						
CASE/BRANCH SPLIT:	9.1618-02						
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	18 1.048E-01 0therwise 1.048E-01						
Q-TYPE/TIMES ASKED BRANCHES BEAL 17ED SPLIT	72 Is the impuls DEP. CALC. PR INDWFI 1 9 9995-01	e loading OB. 1-DWF12 2 9 7235-05	to the dryn I-DWFI3 3 0.0005+00	well at VB 1	sufficient 09901	to cause fail	ure?
REALIZED OF LIT	STINNADY DY CASE	5.7656-00	0.0000400				
CASE NIMADED (SDI 17	SUMMART DI CASE						
DEPENDENCIES	: 1 4.9782-04						
REQ. BRANCHES	: 1						
DESCRIPTION	: I-DWDt						
CASE/BRANCH SPLIT	4 . 006E - 04	9.723E-05	0.000E+00				
CASE NUMBER/SPLIT DESCRIPTION CASE/BRANCH SPLIT	2 9.995E+01 Otherwise 9.995E-01	0.000E+00	0.000E+00				

.

Q-TYPE/TIMES ASKED: BRANCHES:	73 Is drywell pressurization at VB sufficient to cause failure? INDEP. CALC. PROB. INDWOP 1-DWOP2 I-DWHOP2 1-DWOP3 1-DWHOP3
REALIZED SPLIT:	9.105E-01 2.746E-02 0.000E+00 6.198E-02 0.000E+00
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	74 Does the RPV pedestal fail due to pressurization at vessel breach? INDEP. CALC. PROB. 109901 I-PedFP InPedFP
REALIZED SPLIT:	1.689E-01 8.311E-01
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	75 Does the RPV pedestal fail from an ex-vessel steam explosion (impulse loading) DEP. INPUT PROB. 129120 I-PedFI InPedFI
REALIZED SPLIT:	1 2.016E-01 7.983E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1.689E-01 74
REQ. BRANCHES:	. 2011년 2월 11일 - 11일 - 12일 - 12일 - 12일 - 12 - 12일 - 12
DESCRIPTION:	I-PedFP
CASE/BRANCH SPLIT:	0.000E+00 1.689E-01
CASE NUMBER/SPLIT: CEPENDENCIES:	2 4.050E-01 67
REQ. BRANCHES:	· 같은 사람들은 이 가슴을 다 있는 것은 것을 알려야 한다. 이 가슴을 다 가슴을 다 나라 있는 것을 다 나라 있는 것을 다 가슴을 다 가슴을 다 다 나라 있다. 아파 아파 아파 아파 아파 아파 가 가 다 가 다 가 다 가 다 가 다 가 다 다 다 가 다
DESCRIPTION	ExSE
CASE/BRANCH SPLIT:	2.016E-01 2.034E-01
CASE NUMBER/SPLIT: DESCRIPTION CASE/BRANCH SPLIT:	3 4.260E-01 Otherwise 0.000E+00 4.260E-01
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	76 Does the RPV pedestal failure induce drywell failure? DEP: INPUT PROB. 129120 I-DWFPed InDWFPed
REALIZED SPLIT:	5.398E-02 9.460E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT	1 1.243E-01 52 58 72 73 73
REQ. BRANCHES	3 + 1 + 3 + 4 + 5
DESCRIPTION	E5-SPB3 Alpha I-DWFI3 I-DW0P3 I-DWH0P3
CASE/BRANCH SPLIT	0.000E+00 1.243E-01
CASE NUMBER/SPLIT DEPENDENCIES	2 3.171E-01 74 75
REQ. BRANCHES	

DESCRIPTION	I-PedFP	1-PedF1					
CASE/BRANCH SPLIT:	5	.3986-02 8	2.631E-01				
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	3 5 Ot O	.586E-01 herwise .000E+00 !	5865-01				
******** QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	77 What DEP.	is the pr INPUT PRC CP-VB	ressure in DB. INPUT P	the contai ARM.	nment at V 12	B prior to 9120	a hydrogen burn?
REALIZED SPLIT:	1	.000E+00					
	SUMMARY BY	CASE					
CASE NUMBER/SPLIT: DEPENDENCIES:	1 4 63	.472E-01 63	50	50			
REQ. BRANCHES:	1 +	5 +	3 +	4			
DESCRIPTION	A-Fail	nBreach	E5-CL3	E5+CL4			
CASE/BRANCH SPLIT:	4	4728-01					
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1 52	. 095E - 02 72	73	73	54	54	26
REQ. BRANCHES:	(3 +	3 +	á +	5) *(1 +	2) *	-1
DESCRIPTION:	E5-SPB3	1-DWF13	I-DWOP3	I-DWHOP3	E5-DF1d	E5-DWet	E4-HIP
CASE/BRANCH SPLIT:	- 1	095E-02					
CASE NUMBER/SPLIT: DEPENDENCIES:	3 7 52	790E-04 72	73	73	26		
REQ. BRANCHES:	(3 +	3 +	4 +	5) *	1		
DESCRIPTION:	E5-SPB3	1-DWF13	1-DWOP3	I-DWHOP3	E4-H1P		
CASE/BRANCH SPLIT:	7	7908-04					
CASE NUMBER/SPLIT: DEPENDENCIES:	4 4 52	554E-02 72	73	73	54	54	
REQ. BRANCHES:	(3+	3 +	4 +	5) *(1 +	2)	
DESCRIPTION :	E5-SPB3	1-DWF13	I-DWOP3	I-DWHOP3	E5-DF1d	E5-DWet	
CASE/BRANCH SPLIT:	4	554E-02					
CASE NUMBER/SPLIT: DEPENDENCIES:	5 0. 52	000E+00 72	73	73			
REQ. BRANCHES:	(3 +	3 +	4 +	5)			
DESCRIPTION	E5-SPB3	I-DWFI3	I-DWOP3	I-DWHOP3			
CASE/BRANCH SPLIT:	0.	000E+00					
CASE NUMBER/SPLIT: DEPENDENCIES:	6 2. 84	331E-02 67	61				
REQ. BRANCHES:	(1 +	1) *	1				
DESCRIPTION :	HPME	EXSE	HIL IQVB				

CASE/BRANCH SPLIT: 2.331E-02 CASE NUMBER/SPLIT: 7 3 992E-01 DEPENDENCIES : 64 67 RED. BRANCHES: (1 1) DESCRIPTION: HPME ExSE 3.9928-01 CASE/BRANCH SPLIT: 7.298E-02 CASE NUMBER/SPLIT: 8 DESCRIPTION: Otherwise 7.298E-02 CASE/BRANCH SPLIT: 78 What is the concentration of hydrogen in containment immediately after VB? DEP. CALC. PROB. 129120 ******* QUESTION : D-TYPE/TIMES ASKED: IHWW>12 IHWW>8 I-NOHWW BRANCHES : 1HWW>20 1HWW>16 IHWW>4 1.488E-01 3.598E-02 E.082E-02 2.424E-01 2.576E-01 2.443E-01 REALIZED SPLIT: SUMMARY BY CASE CASE NUMBER/SPLIT: 11 3.332E-01 DEPENDENCIES: 58 63 1 + 5 REQ. BRANCHES: DESCRIPTION: Alpha nBreach 2.367E-02 7.766E-03 8.191E-03 1.653E-02 5.087E-02 2.262E-01 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 2 1.013E-01 66 67 50 50 DEPENDENCIES: 64 65 4) REQ. BRANCHES: (1 + 1 + 1 + 1) *(3 DESCRIPTION: HPME 1-DWDt I-DWDf ExSE E5-CL3 E5-CL4 1.561E-03 1.393E-03 3.259E-03 2.747E-02 6.759E-02 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 4.734E-01 - 3 65 66 67 DEPENDENCIES: 64 REQ. BRANCHES: (1 + 1 + 1 + 1) DESCRIPTION: HPME I-DWDt I-DWDF ExSE 1.066E-01 2.200E-02 4.163E-02 1.901E-01 1.130E-01 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 4 1.2678-02 50 50 DEPENDENCIES 54 54 28 28 2) *(3 + 4) REQ. BRANCHES: (2 + 3 + 1 + DESCRIPTION: E4-LPI E4-HPI E5-DF1d E5-DWet E5-CL3 E5-CL4 3.240E-05 4.853E-05 9.827E-05 2.898E-04 3.189E-03 9.016E-03 CASE/BRANCH S" CASE NUMBER/SPLIT: 5 6.214E-02 54 DEPENDENCIES: 28 28 54 BRANCHES: (2 + 3 + 1 + 2) JESCRIPTION: E4-LPI E4-HPI E5-DF1d E5-DWet

CASE/BRANCH SPLIT:	6.471E-03 1.911E-03 3.686E-03 8.034E-03 3.287E-02 9.074E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	8 0.000E+00 50 50
REQ. BRANCHES:	(3 + 4)
DESCRIPTION:	E5-CL3 E5-CL4
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	7 1.728E-02 Otherwise 1.046E-02 2.855E-03 3.959E-03 2.456E-06 0.000E+00 0.000E+00
Q-TYPE/TIMES ASKED: BRANCHES:	79 Is ac power not recovered following vessel breach? DEP. INPUT PROB. 170124 IFAC 1-AC 1 2 2 3515 01 2 6495 01
REALIZED SPEIT:	
	SUMMART BT CASE
DEPENDENCIES:	1 6.253E-01 24
REQ. BRANCHES:	2
DESCRIPTION:	E4-AC
CASE/BRANCH SPLIT:	0.000E+00 6.253E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 0.000E+00 25
REQ. BRANCHES:	1
DESCRIPTION:	E4fDC
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPLNDENCIES:	3 0.000E+00 2 15
REQ. BRANCHES:	1 * 2
DESCRIPTION:	S8 CD-S1w
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 3.747E-01 Otherwise Short term blackout w/ no recovery bafore VB 2.351E-01 1.396E-01
Q-TYPE/TIMES ASKED: BRANCHES:	80 1x dc power available following vessel breach? JEP. INPUT PROB. 187326 IFDC 1-DC 1 2
REALIZED SPLIT:	3.1915-03 9.967E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 0.000E+00 25
REQ. BRANCHES:	1

DESCRIPTION	EAFDC
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 6.256E-01 24
REQ. BRANCHES:	2
DESCRIPTION:	E4-AC
CASE/BRANCH SPLIT:	0.000E+00 6.256E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	3 0.000E+00 2 15
REQ. BRANCHES:	1 * 2
DESCRIPTION:	SB CD-S1w
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 3.743E-01 Otherwise Short term blackout w/ no recovery before VB 3.191E-03 3.711E-01
Q-TYPE/TIMES ASKED: BRANCHES:	81 What is the status of containment sprays following vessel breach DEP. INPUT PROB. 204304 IfCS IrCS LaCS I-CS 1 2 3 4
REALIZED SPLIT:	6.573E-02 2.202E-01 6.493E-02 6.291E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 0.000E+00 30
REQ. BRANCHES:	1
DESCRIPTION	E4fCS
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	2 2.868E-02 30 79 50 50 16 22
REQ. BRANCHES	2 * 1 *(4 + 3 *(/3 + 1))
DESCRIPTION	E4rCS IFAC E5-CL4 E5-CL3 /E1L3 E3NVENT
CASE/BRANCH SPLIT	1,484E-02 1.385E-02 0.000E+00 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	3 2.054E-01 30 79
REQ. BRANCHES	2 * 1
DESCRIPTION	E4rCS IFAC
CASE/BRANCH SPL .	0.000E+00 2.064E-01 0.000E+00 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	4 0.000E+00 : 0 50 50 16 22
000 00400000	A */ A

l.

DESCRIPTION	E4-65	EB-CL4	ES-CL3	16113	EBRVENT
CASE/BRANCH SPLIT:		0.0000+00.0	0008+00	0.000E+00	0.0000+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 30	0.000E+00			
REQ. BRANCHES:	4				
DESCRIPTION:	14-05				
CASE/BRANCH SPLIT:		0.0006+00.0	.000E+00	0.000E+00	0.0008+00
GACL NUMBER/SPLIT: DEPENDENCALS:	6 79	4078 \ 56	50	16	22
REQ. BRANCHES:	2	*(4 +	3	*(/3	• -1))
DESCRIPTION	I-AC	E5-CL4	E5-CL3	/E1L3	EBRVENT
CASE/BRANCH SPLIT:		7.089E-02 0	.000E+00	5.9158-02	1.0696-02
CASE NUMBER/SPLIT: DEPENDENCIES:	7 79	6.2428-01			
REQ. BRANCHES:	2				
DESCRIPTION	1-AC				
CASE/BRANCH SPLIT:		0.000E+00 (0.000000000	¢ 7765=03	6.184E×01
CASE NUMBER/SPLIT: DESCRIPTION CASE/BRANCH SPLIT:	8	0.000E+00 Otherwise 0.000E+00 ().000E+00	0.0008+00	0.000E+00
Q-TYPE/TIMES ASKED: BRANCHES:	82	To what level INDEP. CALC. I INWWIN	is the w PROB. 1-WWIn2	etwell ine 1-WWIn3	rt after vessel breach? 204304
REALIZED SPLIT:		9.7238-01	2.775E-02	0.000E+00	
QUESTIGN: Q-TYPE/TIMES ASKED: PRANCHES:	83	is there suff INDEF. CALC 02Det20	icient or PROB. 02Det16	ygen in th O2Det12	e containment to support combustion 204304 WW02 nWW02
REA' ZED SPLIT:		6.036E-01	7 . 096E - 0)	8 6.8185-02	1 4.143E-02 2.158E-01
******* QUESTION Q-TYPE/TIMES ASKED: BRANCHES:	84	Does ignition DEP. INPUT PR 1-Cign	occur i OB. InClgn	n the conta	ainment al vessel breach? 234274
REALIZED SPLIT:		4 4288-01	5.5718-0	1	
	SUMMA	RY BY CASE			
CASE NUMBER/SPLIT: DEPENDENCIES:	1 78	4.059E+01 82	β3		
RED. BRANCHES:	6	+ 3 -	5		
DESCRIPTION	1 - No	HWW 1-WW1n3	nWW02		
CASE/BRANCH SPLIT:		0.000E+00	4.0598-0	1	
CASE NUMBER/SPLIT	2	3-441E-01			

.....

DEPENDENCIES	24	52		52	72	73			
REQ. BRANCHES:	2	* 2	*	3	+ /1 +	73			
DESCRIPTION	E 3 - AC	£5-5	PB2	E.5 - 5 P 63	/lnDWF1	/1n0	40P		
CASE/BRANCH SPLIT:		3.4418	-01 0	000E+00					
CASE NUMBER/SPLIT: DEPENDENCIES:	3 26	9.745E 67	-02	78	78				
REQ. BRANCHES:	(1	* 11	*(1	2)				
DESCRIPTION:	Edentip	ExSE		1/6/6/>20	1H9/9/>16				
CASE/BRANCH SPLIT:		6.0548	- 02 3	90-3093.					
CASE MUMBER/SPLIT: DEPENDENCIES:	4 26	1.6778 67	- 02	78					
REQ. BRANCHES:	(1	+ 1)		3					
DESCRIPTION	E 4 - H 1 P	ExSE		IHWW>12					
CASE/BRANCH SPLT*		1.0138	-02-6	6365-03					
CASE NUMBER/SPLIT: DEPENDENCIES:	26 26	4.5768 67	-02	78					
REQ. BRANCHES:	()	+ 1)	1	4					
DESCRIPTION:	E 4 - H i P	E×SĒ		1HWW>8					
CASE/BRANCH SPLIT:		1.9698	-05 5	606E ~02					
CASE NUMBER/SPLIT: DEPENDENCIES:	6 26	2.425£ 67	× 102	78					
REQ. BRANCHES:	(1	+ 1)	. +	5					
DESCRIPTION:	£4-H1P	ExSE		1 HWW>4					
CASE/BRANCH SPLIT:		7.7965	-03 1	6461-02					
CASE NUMBER/SPLIT: DEPENDENCIES:	7 26	0.000E 67	+00	78					
REQ. BRANLHES:	(1	+ 1)		6					
DESCRIPTION	E4-HiP	ExSE		I-NoHW					
CASE/BRANCH SPLIT:		0.000E	+00 0	000E+00					
CASE NUMBER/SPLIT: DESCRIPTION:	8	6.572E Otherwi	-02 6e						
PHOEVERMACH SPETT:		0.0101	-V4 D.	2176-02					
QUESTION: Q-TYPE/TIMES ASKED BRANCHES:	85 D	oes igni EP. INPU IgnFV	tion c T PROE B r	accur in 3. 11gnFVB	the contain	merit	following 249742	vessel b	reaci
REALIZED SPLIT:		8.8338	-02 9	116E-01					
	SUMPLAR Y	BY CASE							
CATE NUMBER/SPLIT: DEPENDENCIES:	1 78	8.490E 82	-01	81	83	84			

REQ. BRANCHES:	6 * 3 * /4 * ÷ * 1
DESCRIPTION	I-NOMMY I-WAINS /I-CS INANO2 I-CIgn
CASE/BRANCH SPLIT:	0.000E+00 8.490E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 5.635E-02 79
RED. BRANCHES	2
DESCRIPTION	24-1
CASE/BRANCH SPLIT:	5.635E-02 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 4.375E-02 78 78
REQ. BRANCHES:	1 + 2
DESCRIPTION:	1HWW>20 1HWW>16
CASE/GRANCH SPLIT:	1.6998-02 2.6768-02
CASE NUMBER/SPL17: DEPENDENCIES:	4 1.051E-02 78
REQ. BRANCHES:	3
DESCRIPTION	1HWW>12
CASE/BPANCH SPLIT:	3.8485-03 5.6605-03
CASE NUMBER/SPLIT: DEPENDENCIES:	5 2.1638~0Z 78
REQ. BRANCHES:	4
DESCRIPTION:	1HWW>8
CASE/BRANCH SPLIT:	6.017E-03 1.561E-02
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	6 1.872E-02 Otherwise 5.126E-03 1.359E-02
QUESTION: Q-TYPE/TIMES ASKED BRANCHES:	86 Is there a detonation in the wetwell following vessel breach? DEP. INPUT PROB. INPUT PARM. 279691 I-WWDt InWWDt
REALIZED SPLIT:	6.010E-02 B.398E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 8.2738-01 84 85 82 82 81 78 78 78
RED. BRANCHES:	2 * 2 +(3 + 2) * /4 + 4 + 5 + 6
DESCRIPTION	Incign nighFVB I-WWIn3 I-WWIn2 /1-CS . 1HWW>8 1HWW>4 I-NoHWW
CASE/BRANCH SPLIT:	0.000E+00 8.273E-01
CASE NUMBER/SPLIT:	2 2.0438-03

DEPENDENCIES: 24 27 83 83 83

ųć,

REQ. BRANCHES	2 * 3 *(3 * 2 * 1)	
DESCRIPTION:	E4-AC E4-HIS 02Det12 02Det16 02Det20	
CASE/BRANCH SPLIT:	5.039E-06 2.038E-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	3 6 0686-03 52 72 73 73 39 39 39 43	
REQ. BRANCHES:	(/1 * /1 * /1 * /3) *(/1 * /2 * /3 + 1)	
DESCRIPTION	/E5nSPB /InDWF1 /InDWOP /I-DWHOP2 /HWW>20 /HWW>16 /HWW>12 E4-WWD	f
CASE/BRANCH SPLIT:	4.739E-05 6.020E-03	
CASE NUMBER/SPLIT: DEPENDENCIES:	4 0.000E+00 78 82 82 83 83 83	
REQ. BRANCHES:	3 *(2 * 3) *(3 * 2 * 1)	
DESCRIPTION:	IHWW>12 I-WWINZ I-WWIN3 02Det12 02Det16 02Det20	
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	5 2.602E-02 75 83 83 83	
REQ. BRANCHES:	3 *(3 * 2 ~ 1)	
DESCRIPTION:	IHWW×12 O2Det12 02Det16 02Det20	
CASE/BRANCH SPLIT:	0.000E+00 2.602E-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	6 0.000E+00 78 82 82 83 83	
REQ. BRANCHES:	2 *(2 * 3) *(2 * 1)	
DESCRIPTION:	IHWW×16 I-WWIn2 I-WWIn3 02Det16 02Det20	
CASE/BRANCH SPLIT:	0.600E+00 0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	7 1.881E-02 78 83 83	
REQ. BRANCHES:	2 *(2 + 1)	
DESCRIPTION	IHWW>16 D2Det16 D2Det20	
CASE/BRANCH SPLIT:	5.667E-03 1.314E-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	8 0.000E+00 78 82 82 83	
REQ. BRANCHES:	1 *(2 * * 1	
DESCRIPTION	1HWW+20 1-WWIn2 1-WWIn3 02Det20	
CASE/BRANCH SPLIT:	0.0C0E+00 0.000E+00	
CASE NUMBER/SPLIT	9 1-1888-01 78 83	
REQ. BRANCHES	1 * 1	
DESCRIPTION	IHWW>20 O2Det20	

CASE/BRANCH SPLIT: 5.438E-02 6.440E-02

Mary Milling

CASE NUMBER/SPLIT DESCRIPTION: CASE/BRANCH SPLIT:	10	9.199 Dtherw 0.000	E=04 ise E×00 9.1	996 - 54						
-TYPE/TIMES ASKED: -TYPE/TIMES ASKED: BRANCHES:	87	dhat is INDEP. C 1<1;	the leve ALC. PRO	e) of com DB. 1p=50	tainment 1-1p>40	impulso 1-1p>30	1080 2796 1-	following 81 1p>20 1	vessel -Tp>10	breach7 1-1p<10
REALIZED SPLIT:		6.396	E-05 8.1	561E-D4 1	1146-03	2.2316-0	0 6.5	401-03 2	0568-02	9.6866-0
****** QUESTION -TYPE/TIMES ASKED BRANCHES	88	With whi DEP. 1N H2E	et effic PUT PROB F@VB	iency is INPUT P	hydrogen ARM	burned f	0))0# 2796	ing V97 91		
REALIZED SPLIT		9.99	96-01							
	SUMMAR	Y BY CA	SE							
CASE NUMBER/SPLIT: DEPENDENCIES:	1 84	0.00	0E+00 5	82	82	81		7.8	78	
RED. BRANCHES	(1		1) *(2 . 4		×	*(-	5 4	6)	
DESCRIPTION:	1-015	in 10	nFVB	1-Wwin2	1-10153	1-05] H¥¥¥≥4	1-NoHere	
CASE/BRANCH SPLIT:		0.00	00+30							
CASE NUMBER/SPLIT: DEPENDENCIES:	2 84	1.78	2E - 01 15	78	78					
REQ. BRANCHES:	(1		1) *(5 - 4	6)					
DESCRIPTION	1-01	gn 1g	nFVB	I HWW>A	1-NoHW	6111				
CASE/BRANCH SPLIT		1.7	32E-01							
CASE NUMBER/SPLIT DEPENDENCIES	3 64	0.0	00E+00 85	82	62	81		7B		
REQ. BRANCHES	(1		1) *(2 4	3	* 65	*	4		
DESCRIPTION	1-01	gn 1	gnFVB	1-WWIn2	1-WWin	3 1-CS		1HWW>B		
CASE/BRANCH SPLIT		0.0	008+00							
CASE NUMBER/SPLIT DEPENDENCIES	4 84	1.8	51E-01 85	78						
REQ. BRANCHES	1);		1) *	4						
DESCRIPTION	1-0	ign i	gnFVB	1HWW>8						
CASE/BLANCH SPLIT		1.8	518-01							
CASE NUMBER/SPLIT DEPENDENCIES	5 84	0.0	008 + 00 85	82	82	81		78		
RED. BRANCHES	()		1) *	(2	+ 3	* 4)	*	3		
DESCRIPTION	1-0	Ign	IgnFVB	I-WW1n2	1-991	n3 1-05		1HWW×12		
CASE/BRANCH SPUTT	6	0.	000E+00							
CASE NUMBER/SPLIT DEPENDENCIES	ta 6 51 84	2	825E - 02 85	78						

.....

REQ. BRANCHES: (1 + 1) * 3

DESCRIPTION.	1-01gr	IgnFVB	1HWw>12					
CASE/BRANCH SPLIT:		2.8258-02						
CASE NUMBER/SPLIT: DEPENDENCIES:	7 84	0.000E+00 85	82	82	61	78	78	
REQ. BRANCHES:	(4	* 1) *(2 +	3 *	4)	*(1 *	2)	
DESCRIPTION	1-C1gr	1gnFV8	1-W/In2	1-WVIn3	1-05	1HWW>20	1HWV>16	
CASE/BRANCH SPLIT:		0.000E+00						
CASE NUMBER/SPLIT: DEPENDENCIES:	8 84	1.444E-01 85	78	78				
REQ. BRANCHES:	(1	* 1) *(1	2)				
DESCRIPTION	I-Cigr	1gnFVB	1HWW>20	1HWW>18				
CASE/BRANCH SPLIT:		1.444E-01						
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	9	4.690E-01 Otherwise 4.690E-01						
QUESTION: Q-TYPE/TIMES ASKED BRANCHES	89 ¥ 0	hat would be EP. CALC. PRO 1-PBrn>7	thé peak 8. 1-PBrn≥6	pressure in I-PBrn>5	contair I-PErn>-	ment from a 279691 I-PBrn×3	hydrogen bu 1-PBrn<3	rn at VB1
REALIZED SPLIT:		3.3968-02 1	200E-02	2.157E-02 ;	4 . 307E - 02	5 2.225E-02 8	6 3.860£-01	
	SUMMARY	BY CASE						
CASE NUMBER/SPLIT: DEPENDENCIES:	1 84	4.690£-01 85						
REQ. BRANCHES:	2	* 2						
DESCRIPTION:	inCign	nlgnFVB						
CASE/BRANCH SPLIT:		0.000E+00 0	0008+00	0.0008+00 0	.000E+00	0.0008+00 4	.690E-01	
CASE NUMBER/SPLIT: DEPENDENCIES:	2 50	8.5928-02 50	58					
REQ. BRANCHES:	(3	+ 4 +	1)					
DESCRIPTION:	E5-CL3	E5-CL4	Alpha					
CASE/BRANCH SPLIT:		0.000E+00 0	0002+00	0.000E+00.0	0002+00	0.000E+00 8	. 5928-02	
CASE NUMBER/SPLIT: DEPENDENCIES:	3 86	5.941E-02						
REQ. BRANCHES	1							
DESCRIPTION:	1-WWDt							
CASE/BRANCH SPLIT:		1.4458-02 7	633E-03	9.0936-03 3	638E-03	2.151E-03 2	2455-02	
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4	3.856E-01 Otherwise 1.952E-02 9	3665-03	1.2485-02 1	5435-02	2.010E+02.0	0876+01	
						THE PARTY OF THE P	A REAL PRACTICE	

ANTER ASPEN	90 What	is the level of containment pressurization at vessel breach?
BRANCHES :	14.7	1-CP>7 1-CP>6 1-CP>5 1-CP>4 1-CP>3 1-CP>2 3 4 5 6
REALIZED SPLIT:	4	227E-02 1.813E-02 1.799E-02 2.068E-02 3.854E-02 8.623E-01
	SUMMARY BY	CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1 50	.740E-01 50 58
REQ. BRANCHES:		4 + 1
DESCRIPTION	E5-CL3	E5-CL4 Alpha
CASE/BRANCH SPLIT:	C	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.740E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 3 84	3.619E-01
REQ. BRANCHES:	1	
DESCRIPTION:	1-Clgn	
CASE/BRANCH SPLIT:	3	8.375E-02 1.348E-02 1.240E-02 1.327E-02 3.005E-02 2.589E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	3 8 85	9.308E-02
REQ. BRANCHES:	1	
DESCRIPTION:	IgnFVB	
CASE/BRANCH SPLIT:		8.519E-03 4.645E-03 5.591E-03 7.401E-03 8.491E-03 4.643E-02
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 01 01	3.809E-01 therwise 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.809E-01
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	91 What DEP	t is the level of drywell leakage induced by a detonation in containmen . CALC. PROB. 279691 InDWDt I=DWDt2 I=DWDt3 1 2 3
REALIZED SPLIT:		9.8956-01 7.3926-03 3.0556-03
	SUMMARY B	Y CASE
CASE NUMBER/SPL17: DEPENDENCIES:	1 86	6.010E-02
REQ. BRANCHES:	1	
DESCRIPTION	I-WWDt	
CASE/BRANCH SPLIT		4.965E-02 7.392E-03 3.055E-03
CASE NUMBER/SPLIT DESCRIPTION CASE/BRANCH SPLIT	2	9.399E-01 therwise No detonation and thus no failure 9.399E-01 0.000E+00 0.000E+00
Q-TYPE/TIMES ASKED BRANCHES	92 Wha DEP	t is the Jovel of containment leakage induced by a detonation at VB? . CALC. PROB. 279691 InDtF 1-DtF2 I-DtF3

REALIZED SPLIT: 9.757E-01 1.423E-02 1.003E-02 SUMMARY BY CASE CASE NUMBER/SPLIT: -1 1.045E-02 DEPENDENCIES: 91 91 REQ. BRANCHES: 2 + 3 DESCRIPTION: 1-DWDt2 1-DWDt3 CASE/BRANCH SPLIT: 0.000E+00 4.780E-03 5.666E-03 CASE NUMBER/SPLIT: 2 4.965E-02 DEPENDENCIES: 86 REQ. BRANCHES: 1 DESCRIPTION: 1-WWDt CASE/BRANCH SPLIT: 3.583E-02 9.453E-03 4.366E-03 CASE NUMBER/SPLIT: 3 9.399E-01 DESCRIPTION Otherwise CASE/BRANCH SPLIT: 9.399E-01 0.000E+00 0.000E+00 ******** QUESTION: 93 What is the level of containment leakage following vessel breach? Q-TYPE/TIMES ASKED: DEP. CALC. PROB. 279691 INCL BRANCHES: 1-CL2 1-CL3 1-CL4 REALIZED SPLIT: 6.387E-01 8.756E-02 2.657E-01 7.859E-03 SUMMARY BY CASE CASE NUMBER/SPLIT: 1 7.8598-03 DEPENDENCIES: 50 58 REQ. BRANCHES: 4 + 1 DESCRIPTION: E5-CL4 Alpha 0.000E+00 0.000E+00 0.000E+00 7.859E-03 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 2 1.762E-01 DEPENDENCIES : 50 92 REQ. BRANCHES: 3 + 3 DESCRIPTION: E5-CL3 1-DtF3 CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 1.762E-01 0.000E+00 CASE NUMBER/SPLIT: 3 7.2506-02 DEPENDENCIES: 50 92 REQ. BRANCHES: 2 + 2 DESCRIPTION: E5-CL2 I-DtF2 CASE/BRANCH SPLIT: 0.000E+00 8.380E-02 8.704E-03 0.000E+00 CASE NUMBER/SPLIT: 4 7.434E-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 6.387E-01 2.377E-02 8.085E-02 0.000E+00

۱.

******** QUESTION: 94 What is the level of drywell leakage induced by containment pressurization?

-TYPE/TIMES ASKED: BRANCHES:	DEP. CALC. PROB. 278691 InDVDF 1-DWDF2 1-DWHDF2 1-DWDF3 1-DWHDF3
REALIZED SPLIT	2.700E-01 7.163E-02 0.000E+00 1.582E-01 0.000E+00
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1.508E-01 51 72 73 76 91
REQ. BRANCHES:	4 * 5 * 4 * 1 * 5
DESCRIPTION	E-DWDf3 I-DWFIS I-DWOP3 I-DWFPed I-DWDt3
CASE/BRANCH SPLIT:	D.DDDE+DD D.DDDE+DD D.DDDE+DD 1.5DBE-01 D.DDDE+DD
CASE NUMBER/SPLIT: DEPENDENCIES	2 0.000E+00 51
REQ. BRANCHES	5
DESCRIPTION:	E-DWHDfa
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1.571E-03 85 51 72 73 91 93 93
RED BRANCHES:	1 *(2 + 2 + 2 + 2) *(3 + 4)
DESCRIPTION:	IDNEVB E-DWD12 I-DWF12 I-DWDP2 I-DWD12 I-CL3 I-CL
CASE/BRANCH SPLIT:	0.000E+00 1.253E-03 0.000E+00 2.776E-04 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 4.606E-04 85 51 72 73 91
RED. BRANCHES:	1 *(2 + 2 + 2 - 2)
DESCRIPTION:	IgnFVB E-DWDF2 I-DWF12 I-DWDP2 I-DWDt2
CASE/BRANCH SPLIT:	0.000E+00 4.666E-04 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 0.000E+00 85 51 93 93
REQ. BRANCHES:	1 * 3 *(3 * 4)
DESCRIPTION:	IgnFVB E-DWHDF2 I-CL3 I-CL4
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	6 0.000E+00 65 51
REQ. BRANCHES:	1 * 3
DESCRIPTION:	IgnEVB E-DWHDF2
CASE/BRANCH SPLIT:	D.D00E+00 D.D00E+00 D.D00E+00 D.D00E+00 D.D00E+00
CASE NUMBER/SPLIT: DEPENDENCIES	7 8.038E~02 65
REQ. BRANCHES	
DESCRIPTION:	IgnFVB

CASE/BRANCH SPLIT:	6.819E-D2 5.056E-D3 0.000E+00 7.142E-03 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	B 6.4825-02 51 72 73 91
REQ. BRANCHES:	1 2 * 2 * 2 * 21
DESCRIPT'ON	E=DWDF2 1=DWF12 1=DWDF2 1=DWDt2
CASE/BRANCH SPLIT:	0.000E+00 6.482E-02 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	9. 0.4.108 00 51
REQ. BRANCHES:	3
DESCRIPTION	E-DWHDF2
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	10 7.019E-01 Otherwise 7.019E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
Q-TYPE/TIMES ASKED BRANCHES	95 What is the level of suppression pool bypass following VB? DEP. IMPUT PROB. 279691 INSPB I-SPB2 I-SPB3 1 2 3
REALIZED SPLIT:	7.208E-01 7.760E-02 1.033E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1.8836-01 52 94 94 56
REQ. BRANCHES:	3 * 4 * 5 * 1
DESCRIPTION	E5-SPB3 I-DWDF3 I-DWHDF3 Alpha
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 1.883E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 2.878E-02 52 94 94 79 84 85
REQ. BRANCHES:	(2 + 2 + 3) * 2 *(1 + 1)
DESCRIPTION	E5-SPB2 I-DWDf2 I-DWHDf2 I-AC I-CIgn IgnFVB
CASE/BRANCH SPLIT:	D.000E+00 2.821E-02 5.612E-04
CASE NUMBER/SPLIT: DEPENDENCIES:	3 4.958E-02 52 94 94
REQ. BRANCHES:	5 + 5 + 3
DESCRIPTION:	E5-SPB2 1-DWDF2 1-DWHDF2
CASE/BRANCH SPLIT	0.000E+00 4.858E-02 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES:	4 2.954E-01 79 84 85
REQ. BRANCHES:	2 *(1 * 1)
DESCRIPTION	I-AC I-Cign IgnFVB
CASE / REANCH SP. 11.	2 BIDE DI D DODE DO A 3785 02

ø

CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	5	4.378E+01 Otherwise 4.378E-01	0.000E+00	0.0008+00		
QUESTION: 0-TYPE/TIMES ASKED: BRANCHES:	96	What is the c DEP. CALC. PR IP>4	ontainment OB. IP>3	pressure IP>2	after v	essel breach? 279691
REALIZED SPLIT:		0.000E+00	0.000E+00	1.221E-02	9.8775	01
	SUMMAR	Y BY CASE				
CASE NUMBER/SPLIT: DEPENDENCIES:	1 93	3.6126-01				
REQ. BRANCHES:	71					
DESCRIPTION	/lnCL					
CASE/BRANCH SPLIT:		0.0005+00	0.000E+00	0.000E+00	3.6128	01
CASE NUMBER/SPLIT: DEPENDENCIES:	81 81	4.9088-01				
REQ. BRANCHES:	4					
DESCRIPTION:	1-05					
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00	0.000E+00	4.908E	-01
CASE NUMBER/SPLIT: DESCRIPTION:	3	1.479E-01 Otherwise	0.0005+00	1 0015-01	1 3675	- 61
CASE/ BRANCH SPLIT:		0.0000400	0.0000400	1.6611-01	1.00/6	~~~
******* QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	97	ls water not DEP, INPUT P nLDBWat	supplied ROB. S-LDEwat	to the del L-LDBWat	bris lat t	e? 279691
REALIZED SPLIT:		2.449E-01	2.151E-01	5.399E-0	1	
	SUMMA	RY BY CASE				
CASE NUMBER/SPLIT DEPENDENCIES	63	3.261E-01				
REQ. BRANCHES	5					
DESCRIPTION	nBre	ach				
CASE/BRANCH SPLIT		0.000E+00	0.000E+00	0 3.2616-0	1	
CASE NUMBER/SPLIT DEPENDENCIES	2 79	1.885E+01 12				
REQ. BRANCHES	r . 1	* 3				
DESCRIPTION	1 FAC	ElaFWS				
CASE/BRANCH SPLIT		9.1748-0	2 4.8768-0	2 4.798E-C	12	
CASE NUMBER/SPLIT DEPENDENCIES	3 79	0.0005+0	0			
REQ. BRANCHES	: 1					

.

B-124

.

ø

DESCRIPTION: IFAC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 4 4.380E-01 DEPENDENCIES: 28 28 RED. BRANCHES: (2 + 3) DESCRIPTION: E4-LPI E4-HPI CASE/BRANCH SPLIT: 1.375E-01 1.507E-01 1.498E-01 CASE NUMBER/SPLIT: 5 4.7258-02 DEPENDENCIES: 5 6 11 11 7 REQ. BRANCHES: (2 + /1 + /1 + /1 + /1) DESCRIPTION: EIRHPINJ /EIFCRD /EIFCond /EIFLPC /EI.SSW CASE/BRANCH SPLIT: 1.557E-02 1.572E-02 1.595E-02 CASE NUMBER/SPLIT: 6 0.0008+00 DESCRIPTION Otherwise CASE/BRANC: SPLIT: 0.000E+00 0.000E+00 0.000E+00 ******** QUESTION: 98 Is there water in the reactor cavity after VB? Q-TYPE/TIMES ASKED DEP. INPUT PROB. 291964 BRANCHES: LDWF1d LRCWet LRCDry REALIZED SPLIT: 8.636E-01 9.188E-02 4.440E-02 SUMMARY BY CASE CASE NUMBER/SPLIT: - 1 5.174E-01 DEPENDENCIES: 54 94 REQ. BRANCHES: 1 5 . . DESCRIPTION: E5-DF1d 1-DWHDf3 CASE/BRANCH SPLIT: 5.174E-01 0.000E+00 0.000E+00 CASE NUMBER/SPL1T: 2 2.2408-02 DEPENDENCIES: 54 64 67 65 88 95 79 REQ. BRANCHES: 2 *(1 * 1 + 1 + 1) * /3 1 DESCRIPTION: E5-DWet HPME ExSE 1-DWD1 I-DWDf /1-SPB3 IFAC. CASE/BRANCH SPLIT: 2.240E-02 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 3 2.550E-01 DEPENDENCIES: 84 85 0.6 REQ. BRANCHES: (1 + 1) * /3 DESCRIPTION: I-Clgn IgnFVB /1-SPB3 CASE/BRANCH SPLIT: 2.550E-01 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 5.6216-02 4 DEPENDENCIES: 84 85 95 REQ. BRANCHES: (1 - 1) * 3 DESCRIPTION: 1-Cign IgnFVB 1-SPB3
CASE/BRANCH SPLIT:		5.0808-02	5.4086-03 0	00+3000.		
CASE NUMBER/SPLIT: DEPENDENCIES:	5 64	1.998E-02 67	65	66	95	79
REQ. BRANCHES:	(1	< 1 ×	1 *	.1) *	/3	* 1
DESCRIPTION:	HPME	ExSE	1-DWDt	1-DWDF	/1-SPB3	1 FAC
CASE/BRANCH SPLIT:		1.8026-02	1.9588-03	0.000E+00		
CASE NUMBER/SPLIT: DEPENDENCIES:	6 54	8.452E-02				
REQ. BRANCHES:	2					
DESCRIPTION	E5-DWet					
CASE/BRANCH SPLIT:		0.0008+00	8.4528-02	0.0002+00		
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	7	4.440E-02 Otherwise 0.000E+00	0.000E+00	4.440E-02		
-TYPE/TIMES ASKED: BRANCHES:	99 W D	hat is the r EP. INPUT PR CC1 1	nature of t ROB. WetCCI 2	the coré-c FidCCI 3	DiyCCI	nteraction? 416964 noCC1 5
REALIZED SPLIT:		7.589E-03	2.2658+03	3.4716-01	2.114E-0	13 6 408E-01
	SUMMARY	BY CASE				
CASE NUMBER/SPLIT: DEPENDENCIES:	63	3.272E-01				
REQ. BRANCHES:	5					
DESCRIPTION	nBread	:ħ				
CASE/BRANCH SPLIT:		0.000E+00	0.000E+00	0.000€+00	0.000E+	00 3.272E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 97	6.297E-03 98				
REQ. BRANCHES:	- 1	* 3				
DESCRIPTION:	nLDBW	at LRCDry				
CASE/BRANCH SPLIT:		6.297E-03	3 0.000E+00	0.0008+0	0 0.000E+	00 0.000E+0
CASE NUMBER/SPLIT	3 98	0.000E+0 26	28	9	24	
REQ. BRANCHES	3	* 1	*(/1	+ /1	* 2)	
DESCRIPTION	LRCDr	y E4-HIP	/E4nLPI	/ElfLPC	E 4 - A(2
CASE/BRANCH SPLIT		0.000E+0	0 0.000E+0	0 0.000E+0	0.0005	00 0.000E+0
CASE NUMBER/SPLIT DEPENDENCIES	4 98	4.365E-0 26	3 28			
REQ. BRANCHES	: 3	* 2	* /1			
DESCRIPTION	L PCD	FA-LOP	/FADLPT			

B-126

.

CASE/BRANCH SPLIT:

```
0.000E+00 0.000E+00 3.680E-03 0.000E+00 6.848E-04
```

ASE	NUMBER/SPLIT:	5	2.584E-03
	DEPENDENCIES:	98	

DESCRIPTION: LRCDry

REQ. BRANCHES: 3

CASE/BRANCH SPLIT: 1.292E-03 0.000E+00 1.292E-03 0.000E+00 0.000E+00

CASE NUMBER/SPLIT: 6 1.383E-01 DEPENDENCIES: 98 98 97 26

REQ. BRANCHES: (1 * 2 * /1) * 1

DESCRIPTION: LOWFID LRCWet /nLDBWat E4-HiP

CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 2.719E-02 0.000E+00 1.111E-01

CASE NUMBER/SPLIT: 7 1.852E-02 DEPENDENCIES: 98 98 97 61

REQ. BRANCHES: (1 + 2 * /1) * 1

DESCRIPTION: LDWF1d LRCWet /nLDBWat HiligVB

CASE/BRANCH SPLIT: 0.000E+00 1.000E+00 1.563E-02 0.000E+00 2.895E-03

CASE NUMBER/SPLIT: 8 4.982E-01 DEPENDENCIES: 98 98 97

REQ. BRANCHES: (1 + 2 * /1)

DESCRIPTION: LDWF1d LRCWet /nLDBWat

CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 2 993E-01 0.000E+00 1.989E-01

CASE NUMBER/SPLIT: 9 9.494E-04 DEPENDENCIES: 26

REQ. BRANCHES: 1

DESCRIPTION: E4-HIP

CASE/BRANCH SPLIT: 0.000E+00 1.720E-04 0.000E+00 7.774E-04 0.000E+00

CASE NUMBER/SPLIT: 10 9.458E-05 DEPENDENCIES: 61

REQ. BRANCHES: 1

DESCRIPTICS: HiLigVB

CASE/BRANCH SPLIT: 0.000E+00 8.162E-05 0.000E+00 1.296E-05 0.000E+00

CASE NUMBER/SPLIT: 11 3.335E-03 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 0.000E+00 2.012E-03 0.000E+00 1.324E-03 0.000E+00

******* QUESTION: 100 What fraction of core not participating in HPME participates in CCI? Q-TYPE/TIMES ASKED: DEP. INPUT FROB. INPUT PARM. 416964 BRANCHES: HIFCCI LOFCCI

REALIZED SPLIT: 6.432E-01 3.566E-01

SUMMARY BY CASE

CASE NUMBER/SPLIT: - 3 3.3506-01 DEPENDENCIES : 63 63 RED. BRANCHES: 1 - 5 DESCRIPTION: A-Fail nBreach CASE/BRANCH SPLIT: 0.000E+00 3.850E-01 CASE NUMBER/SPLIT: 2 2.159E-02 DEPENDENCIES: \$7 61 RED. BRANCHES: 1 - 1 DESCRIPTION: EXSE HiligVB CASE/BRANCH SPLIT: 0.000E+00 2.159E-02 CASE NUMBER/SPLIT: . 8 5.081E-01 DEPENDENCIES : 67 61 REQ. BRANCHES: 1 2 DESCRIPTION: ExSE LOLIGVE CASE/BRANCH SPLIT: 5.081E-01 0.000E+00 CASE NUMBER/SPLIT: - 4 1.352E-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 1.352E-01 0.000E+00 ******* QUESTION: 101 How much H2 (& equivalent CO) and CO2 are produced during CC1? Q-TYPE/TIMES ASKED: DEP. CALC. PROB. 416964 BRANCHES: H2CC14 H2CC13 H2CC12 H2CC11 REALIZED SPLIT: 3.539E-01 1.299E-04 0.000E+00 6.459E-01 SUMMARY BY CASE 6.4598-01 CASE NUMBER/SPLIT: 1 DEPENDENCIES: 63 63 99 REQ. BRANCHES: 1 5 + 5 - 41 DESCRIPTION: A-Fail nBreach noCCI CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 6.459E-01 CASE NUMBER/SPLIT: 2 2.2946-02 DEPENDENCIES: 64 REQ. BRANCHES: 1 DESCRIPTION: HPME 2.294E-02 0.000E+00 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 3 3.311E-01 DESCRIPTION: Otherwise 3.309E-01 1.299E-04 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: ******* DUESTION: 102 What is the level of zirconium exidation in the pedestal before CCI? INDEP. CALC. PROB. O-TYPE/TIMES ASKED: 416964 BRANCHES : ZrOx75 ZPOx50 ZrOx40 2r0x30 2+0x21 Zr0x10 Zr0x×10 1 2 3 4 5 181

Q-TYPE/TIMES ASKED: BRANCHES:	103 I e	P. INPUT PROB. 469496 InVENT 1-VENT
REALIZED SPLIT:		9.443E-01 5.544E-02
	SUMMAR Y	BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 79	4.346E-01 93 93
RED. BRANCHES:	1	* 3 * 4
DESCRIPTION:	1fac	1-CL3 I-CL4
CASE/BRANCH SPLIT:		4.346E-01 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 99	3.300E-06 63 81 95
REQ. BRANCHES:	4	*(5 + 2 + /3)
DESCRIPTION:	D1yCC1	nBreach IrCS /1-SPB3
CASE/BRANCH SPLIT:		3.300E-06 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	3	5.551E+01 Otherwise 5.097E+01 5.544E-02
Q-TYPE/TIMES ASKED: BRANCHES: BRANCHES:	104 1 0	s ac power not recovered late in the accident? EP. INPUT PROB. 545238 LFAC L-AC 1 2 5 243E-02 9 424E-01
	SUMMARY	BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 79	7.670E~01
REQ. BRANCHES:	2	
DESCRIPTION:	JA~I	
CASE/BRANCH SPLIT:		0.000E+00 7.670E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 80	1.568E-03
REQ. BRANCHES	1	
DESCRIPTION	1fD¢	
CASE/BRANCH SPLIT:		1.568E-03 D.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3	0.0000+00
REQ. BRANCHES:	1	* 2
DESCRIPTION	Şβ	CD-S1w
CASE/BRANCH SPLIT		0.000E+00.0.000E+00

CASE NUMBER/SPLIT: DESCRIPTION	4	2.3136-01 Dtherwise
CASE/BRANCH SPLIT:		5.586E-02 1.754E-01
+***** QUESTION: -TYPE/TIMES ASKED: BRANCHES:	105	Is do power available late in the accident? DEP. INPUT PROB. 595858 LfDC L-DC
REALIZED SPLIT:		1.4228-02 9.8566-01
	SUMMAR	Y BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 80	2.3186-03
KEQ. BRANCHES:	1	
DESCRIPTION:	1fDC	
CASE/BRANCH SPLIT:		2.318E-03 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 79	7.679E-01
REQ. BRANCHES:	2	
DESCRIPTION	1 - AC	
CASE/BRANCH SPLIT:		0.000E+00 7.679E-01
CASE HUMBER/SPLIT: DEPENDENCIES:	3	0.000E+00 15
REQ. BRANCHES:	1	* 2
DESCRIPTION	SB	CD-S1w
CASE/BRANCH SPLIT:		C.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4	2.296E-01 Otherwise 1.190E-02 2.176E-01
******** QUESTION: 0-TYPE/TIMES ASKED: BRANCHES:	106	What is the late status of containment sprays? DEP. INPUT PROB. 603675 LFCS LFCS LaCS L-CS
REALIZED SPLIT:		1.393E-01 4.840E-02 1.639E-02 7.956E-01
	SUMMA	RY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 81	B.600E-02
REQ. BRANCHES:	1	
DESCRIPTION	1fCS	
CASE/BRANCH SPLIT:		8.600E-02 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 81	1.053E-02 104 50 50 93 93
REQ. BRANCHES:	2	* 1 *(1 + 2) *(3 + 4)

 $a \neq b$

.

DESCRIPTION: Incs LFAC EShCL £5-CL2 1-013 1-014 CASE BRANCH SPLIT: 4.909E-03 5.617E-03 0.000E+00 0.000E+00 CASE NUMBER/SPLIT: 3 4.278E-02 DEPENDENCIES: 81 104 * 1 RED. BRANCHES: 2 DESCRIPTION: 1+CS LEAC CASE/BRANCH SPLIT: 0.000E+00 4.278E-02 0.000E+0° 0.000E+00 CASE NUMBER/SPLIT: 4 5.9088-02 DEPENDENCIES: 50 50 81 93 93 REQ. BRANCHES: 4 *(1 + 2) *(3 + 4) DESCRIPTION: 1-CS E5nCL E5-CL2 1-CL3 I-CL4 CASE/BRANCH SPLIT: 3.190E-02 0.000E+00 0.000E+00 2.718E-02 CASE NUMBER/SPLIT: 5 5.7378-01 DEPENDENCIES: R1 REQ. BRANCHES: 4 DESCRIPTION: 1-CS CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 5.737E-01 CASE NUMBER/SPLIT: 6 3.326E-02 DEPENDENCIES: 104 50 50 93 93 REO. BRANCHES: 2 *[] 2) *(3 4) DESCRIPTION: L-AC ESOCL ES-CL2 I-CL3 1-014 CASE/BRANCH SPLIT: 1.653E-02 0.000E+00 1.509E-02 1.6386-03 CASE NUMBER/SPLIT: 7 1.9446-01 DEPENDENCIES 104 REO. BRANCHES: 2 DESCRIPTION: L-AC CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 1.303E-03 1.931E-01 CASE NUMBER/SPLIT: 8 0.000E+00 DESCRIPTION: Otherwise -- This case should not be used CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ******** QUESTION: 107 What is the late concentration of combustible gases in the containment? O-TYPE/TIMES ASKED: DEP. CALC. PROB. 603675 BRANCHES : 1.GWW>20 LGWW>16 LGWW>12 LGWW>8 LGWW>4 L-NOGWW REALIZED SPLIT: 3.398E-01 1.406E=02 1.752E-02 4.251E-02 1.531E-01 4.327E-01 SUMMARY BY CASE CASE NUMBER/SPLIT: 7.606E-02 DEPENDENCIES: 63 95 97 98 106 REQ. BRANCHES: /5 * /1 *(/1 + /3) * /4 DESCRIPTION: /nBreach /inSPB /nLDBWat /LRCDry /L-CS

CASE/BRANCH SPLIT:	0.000E+00 4.258E-07 3.858E-05 8.846E-04 3.554E-03 7.148E-02
CASE NUMBER/SPLIT: DEPENDENCIES:	2 3.357E-01 93 103
REQ. BRANCHES:	/1 + 2
DESCRIPTION:	/InCL I-VENT
CASE/BRANCH SPLIT	1.158E-01 1.586E-03 2.758E-03 8.654E-03 5.232E-02 1.543E+01
CASE NUMBER/SPLIT: DEPENDENCIES:	3 5.555E-D1 106
REQ. BRANCHES:	4
DESCRIPTION:	L-CS
CASE/BRANCH SPLIT:	2.078E-01 1.181E-02 1.366E-02 2.988E-02 9.343E-02 1.980E-01
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4 3.244E-02 Otherwise 1.612E-02 6.605E-04 1.062E-03 2.792E-03 3.808E-03 7.898E-03
OUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	108 To what level is the wetwell inert after vessel breach? INDEP. CALC. PROB. 603675 LnWWin L-WWin2 L-WWin3
REALIZED SPLIT:	9.193E-01 4.605E-03 7.606E-02
QUESTION: Q-TYPE/TIMES AJKED: BRANCHES: REALIZED SPLIT:	109 Is there sufficient oxygen in the containment to support late combustion? INDEP. CALC. PROB. 603675 LD2Det20 L02Det16 L02Det12 LWW02 LnWW02 1 2 3 4 5 4.568E-01 5.044E-02 4.664E-02 4.662E-02 3.993E-01
Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	110 Does ignition occur late in the containment? DEP. IMPUT PROB. 606381 L-Clgn LnClgn 1 2 2.740E-01 7.258E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 7.088E-01 107 108 106 109
REQ. BRANCHES:	6 + 3 * /4 + 5
DESCRIPTION:	L-NoGWW L-WWIN3 /L-CS LNWWO2
CASE/BRANCH SPLIT:	0.000E+00 7.088E-01
CASE NUMBER/SPLIT: DEPENDENCIES:	2 1.400E-02 82 83 84 85 104
REQ. BRANCHES:	/3 * /5 *(2 * 2) * 1
DESCRIPTION	/I-WWIN3 /nWW02 InCign nighEVB LfAC
CASE/BRANCH SPLIT:	0.000E+00 1.400E+02
CASE MUBADA SPLIT: U	3 2.717E-01 104

RED. BRANCHES: 2 DESCRIPTION: L-AC CASE/BRANCH SPLIT: 2.717E-01 0.000E+00 CASE NUMBER/SPLIT: 4 3.542E-03 DEPENDENCIES: 107 1 + 2 RED. BRANCHES: DESCRIPTION, LGWW>20 LGWW>16 1.820E-03 1.722E-03 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 5 0.000E+00 CEPENDENCIES: 107 LEQ. BRANCHES: 3 DESCRIPTION: LGWW>12 0.000E+00 0.000E+00 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 6 5.265E-07 DEPENDENCIES: 107 REQ. BRANCHES: 4 DESCRIPTION: LGWW>8 0.000E+00 5.265E-07 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 7 1.712E-03 Otherwise DESCRIPTION: A 678E-04 1.244E-03 CASE/BRANCH SPLIT: ******** QUESTION: 111 Is there a detonation in the wetwell following vessel breach? Q-TYPE/TIMES ASKED: DEP. INPUT PROB. INPUT PARM. 641281 L-WWDt LNWWDt BRANCHES : 6.579E-02 9.341E-01 REALIZED SPLIT: SUMMARY BY CASE 8.2668-01 CASE NUMBER/SPLIT: 1 108 106 108 107 DEPENDENCIES: 110 108 5 4 6 REQ. BRANCHES: 2 +(2 + 3) * /4 4 3 4 16. 14 L-NOGWW L-WWIN3 LGWW>8 LGWW=4 DESCRIPTION: LnCign L-WWIn2 L-WWIn3 /L-CS CASE/BRANCH SPLIT: 0.000E+00 8.256E-01 CASE NUMBER/SPLIT: 2 1.2B4E-02 DEPENDENCIES: 27 79 REQ. BRANCHES: 1 * 2 DESCRIPTION: EA-HIS 1-AC CASE/BRANCH SPLIT: 0.000E+00 1.284E-02 CASE NUMBER/SPLIT: 3 0.000E+00 DEPENDENCIES: 107 108 109 108 109

RED. BRANCHES	3 *(2 * 3) *(3 * 2 * 1)
DESCRIPTION	LGWW=12 L-WWIN2 L-WWIN3 L02Det12 L02Det16 L02Det20
CASE/BRANCH SHLIT:	D.000E+00 D.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	4 1.864E-03 107 109 109 109
RED. BRANCHES:	3 *(3 + 2 + 1)
DESCRIPTION	LGWW>12 LO2Det12 LO2Det16 LO2Det20
CASE/BRANCH SPLIT:	D.DDDE+DD 1.844E-03
CASE NUMBER/SPL11: DEPENDENCIES:	5 0.000E+00 107 108 108 109 109
REQ. BRANCHES:	2 *(2 + 3) *(2 + 1)
DESCRIPTION	LGWW×16 L-WWIn2 L-WWIn3 LO2Det16 LO2Det20
CASE/BRANCH SPLIT:	0.0005+00 0.0005+00
CASE NUMBER/SPL11: DEPENDENCIES:	6 1.644E=03 107 109 109
REQ. BRANCHES:	2 *(2 + 1)
DESCRIPTION	LOWW=16 LO2Det16 LO2Det20
CASE/BRANCH SPLIT	4.191E-04 1.225E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	7 0.000E+00 107 108 108 109
REQ. BRANCHES:	1 *(2 + 3) * 1
DESCRIPTION	LGWW+20 L-WWIN2 L-WWIN3 L02Det20
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	8 1 455E-01 107 109
REQ. BRANCHES:	1 * 1
DESCRIPTION	LOWW>20 LO2Det20
CASE/BRANCH SPLIT:	6.537E-02 8.009E-02
CASE NUMBER/SPLIT: DESCRIPTION CASE/BRANCH SPLIT:	9 1.151E-02 Otherwise D.000E+00 1.151E-02
OUESTION: O-TYPE/TIMES ASKED BRANCHES:	112 What is the late level of containment impulse load? INDEP. CALC. PROB. L-1p>60 L-1p>60 L-1p>40 L-1p>30 L-1p>20 L-1p>10 L-1p<10
REALIZED SPLIT:	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.579E-02 9.342E-01
Q-TYPE/TIMES ASKED: BRANCHES	113 What is the late gas combustion efficiency? DEP. INPUT PROB. INPUT PARM, 641281 HIZEFRVB
DEAL TTED CDUIT.	0.0005-01

•

SUMMARY BY CASE

CASE NUMBER/SPLIT: DEPENDENCIES:	110	0	.000E+00 108	108	106		107		107
REQ. BRANCHES:	1	*(2 *	3) *	4	*(8	+	6)
DESCRIPTION:	L-Clgn		L-WVIn2	L-WVIn3	L-CS		LGWW>4		L-NoGWW
CASE/BRANCH SPLIT:		0	0008+00						
CASE NUMBER/SPLIT: DEPENDENCIES:	2 110	9	030E-02 107	107					
REQ. BRANCHES:	1	*(5 +	6)					
DESCRIPTION:	L-Cign		LGWV>4	L-NoGW					
CASE/BRANCH SPLIT:		9	.030E-02						
CASE NUMBER/SPLIT: DEPENDENCIES:	3 110	0	.000E+00 108	108	106		107		
REQ. BRANCHES	1	*(2 *	3) *	4	٠	4		
DESCRIPTION:	E-Clgn		L-WW1n2	L-Win3	L-CS		LGWW>8		
CASE/BRANCH SPLIT:		0	.000E+00						
CASE NUMBER/SPLIT: DEPENDENCIES:	4 110	9	.665E-03 107						
REQ. BRANCHES:	1	*	4						
DESCRIPTION:	L-Cign		LGWW>8						
CASE/BRANCH SPLIT:		9	.6658-03						
CASE NUMBER/SPLIT: DEPENDENCIES:	5 110	Ø	.000E+00 108	108	106		107		
REQ. BRANCHES	1	*(2 *	3) *	4	*	3		
DESCRIPTION:	L-Cign		L-WW1n2	L-WW1n3	L-CS		LGWV>1	2	
CASE/BRANCH SPLIT:		0	0.000E+00						
CASE NUMBER/SPLIT: DEPENDENCIES:	6 110	2	429E-03 107						
REO. BRANCHES:	1	*	3						
SCRIPTION:	L-Cign		LGWW>12						
CASE/BRANCE SPLIT:		2	2.4295-03						
CASE NUMBER/SPLIT: DEPENDENCIES:	7 110	¢	0.000E+00 108	108	106		107		107
REQ. BRANCHES:	1	*(. 2 +	3) *	4	*(1	+	S.)
DESCRIPTION:	L-Cign		L-WVIn2	L-WW1n3	L-CS		LGWW>2	0	LGWW>16
CASE/BRANCH SPLIT:		(0.000E+00						
CASE NUMBER/SPLIT: DEPENDENCIES:	8 110	3	1.709E-01 107	107					

REQ. BRANCHES: 1 *() + 2) DESCRIPTION: L-Cign LGWV>20 LGWV>16 CASE/BRANCH SPLIT: 1.709E-01 CASE NUMBER/SPLIT: 9 7.265E-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 7.2658-01 ******* QUESTION: 114 What is the peak pressure in containment from a late hydrogen burn? O-TYPE/TIMES ASKED: DEP. CALC. PROB. 641281 L-PBrn>7 L-PBrn>6 L-PBrn>5 L-PBrn>4 L-PBrn>3 L-PBrn>2 BRANCHES : REALIZED SPLIT: 1.251E-01 2.260E-03 7.293E-03 7.172E-03 9.476E-03 8.485E-01 SUMMARY BY CASE CASE NUMBER/S/LIT: 1 7.265E-01 DEPENDEN IES: 110 REQ. BRINCHES: 2 DESCR , PTION: LnCign CASE/BRANCH SPLIT: 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 7.255E-01 CASE NUMBER/SPLIT: 2 3.5778-02 DEPENDENCIES: 27 93 93 79 REQ. BRANCHES: 3 + 1 4 2 14 DESCRIPTION: 1-CL3 I-CL4 E4-HIS I-AC 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.577E-02 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 3 6.4938-02 DEPENDENCIES: 111 REQ. BRANCHES: 1 DESCRIPTION: L-WWDt 5.326E-02 9.780E-04 3.085E-03 2.486E-03 2.577E-03 2.537E-03 CASE/BRANCH SPLIT: CASE NUMBER/SPLIT: 4 1.7265-01 DESCRIPTION: Otherwise CASE/BRANCH SPLIT: 7.180E-02 1.282E-03 4.208E-03 4.686E-03 6.8 9E-03 8.370E-02 ******* QUESTION: 115 What is the level of drywell leakage induced by a late detonation in containment Q-TYPE/TIMES ASKED: DEP. CALC. PROB. 641281 BRANCHES: LnDWDt L-DWDt2 L-DWDt3 REALIZED SPLIT: 9.872E-01 1.039E-02 2.320E-03 SUMMARY BY CASE CASE NUMBER/SPLIT: 6.578E-02 DEPENDENCIES: 111 REQ. BRANCHES: 1 DESCRIPTION: L-WWDt

CASE/BRANCH SPLIT: 5.308E-02 1.039E-02 2.320E-03

ġ

CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	2 9.342E-01 Otherwise No detonation and thus no failure 9.342E-01 0.000E+00 0.000E+00
QUESTION Q-TYPE/TIMES ASKED: BRANCHES:	116 What is the level of containment leakage induced by a late detonation? DEP. CALC. PROB. LDDIF L-DIF2 L-DIF3 3
REALIZED SPLIT:	9.728E-01 1.870E-02 7.429E-03
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1.271E-02 115 115
REQ. BRANCHES:	2 + 3
DESCRIPTION:	L-DWD12 L-DWD13
CASE/BRANCH SPLIT:	0.000E+00 9.740E-03 2.965E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	2 5.308E~02 111
REQ. BRANCHES:	1
DESCRIPTION	L-WWDt
CASE/BRANCH SPLIT:	3.866E-02 9.957E-03 4.464E-03
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	5 9.342E-01 Otherwise 9.342E-01 0.000E+00 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED BRANCHES:	117 What is the level of containment leakage induced by late combustion events? DEP. CALC. PROB. LnCL L=CL2 L=CL3 L=CL4 1 2 3 4
REALIZED SPLIT:	4.574E-01 8.084E-02 4.537E-01 7.771E-03
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 7.771E-03 93
REQ. BRANCHES:	4
DESCRIPTION	1-CL4
CASE/BRANCH SPLIT:	0.000E+00 0.000E+00 0.000E+00 7.771E-03
CASE NUMBER/SPLIT: DEPENDENCIES:	2 3.278E-01 93 103 116
REQ. BRANCHES:	3 + 2 + 3
DESCRIPTION	I-CL3 I-VENT L-D1F3
CASE/BRANCH SPLIT	0.000E+00 0.000E+00 3.278E-01 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	3 9.651E-02 93 116
DED REANCHES	

DESCRIPTION	I-CL8	L-DtF2
CASE/BRANCH SPLIT:	0.	000E+00 7.883E-02 1.768E-02 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION:	4 5. Oth	677E-01 erwise
CASE/BRANCH SPLIT:	Å.	574E-01 2.011E-03 1.082E-01 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES:	118 What DEP.	is the level of drywell leakage induced by late combustion CALC. PROB. 641281 NDWDF L-DWDF2 L-DWHDF2 L-DWDF3 L-DWHDF3
REALIZED SPLIT:	6.	583E-01 7.588E-02 0.000E+00 2.856E-01 0.000E+00
	SUMMARY BY	CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 1. 94	592E-01 115
REQ. BRANCHES:	4 +	3
DESCRIPTION	I-DWDf3	L-DVDt3
CASE/BRANCH SPLIT:	0	000E+00 0.000E+00 0.000E+00 1.592E+01 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 0 94	. DDDE+00
REQ. BRANCHES:	5	
DESCRIPTION:	I-DWHDF3	
CASE/BRANCH SPLIT:	0	.0001.+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 5 94	.865E-02 115 117 117
REQ. BRANCHES:	(2 +	2) *(3 + 4)
DESCRIPTION	1-DWDF2	L-DWD12 L-CL3 L-CL4
CASE/BRANCH SPLIT:	0	.000E+00 4.991E-02 0.000E+00 8.731E-03 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES	4 2 94	. 189E - D2 115
REQ. BRANCHES	2 +	2
DESCRIPTION	1-DWDF2	L-DWD12
CASE/BRANCH SPLIT	(0.000E+00 2.189E-02 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	5 94	0.000E+00 117 117
REQ. BRANCHES	3 *	(3 + 4)
DESCRIPTION	I-DWHDf2	L-CL3 L-CL4
CASE/BRANCH SPLIT		0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT DEPENDENCIES	6 94	0.000E+00
REQ. BRANCHES	: 3	
DESCRIPTION	1-DWHDF2	

B-138

CASE/BRANCH SPLIT:	0.000E+00 0.000 +00 0.000E+00 0.000E+00 0.000E+00
CASE NUMBER/SPLIT:	7 7.600€-01
CASE/BRANCH SPLIT:	6.583E-01 4.082E-03 0.000E+00 9.762E-02 0.000E+00
	119 Is the containment not vented late?
Q-TYPE/TIMES ASKED: BRANCHES:	DEP. INPUT PROB. 705497 LINVENT L-VENT
REALIZED SPLIT:	9.512E-01 4.840E-02
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 4.996E-01 104 117 137
REQ. BRANCHES:	1 *(3 * &)
DESCRIPTION	LFAC L-CL3 L-CL4
CASE/BRANCH SPLIT:	4.996E-01 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	2 2.609E-04 99 63 81 95
REQ. BRANCHES:	4 *(5 + 2 + /3)
DESCRIPTION	DlyCC1 nBreach IrCS /1-SPB3
CASE/BRANCH SPLIT:	2.609E-04 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 8.649E-05 99 63 106 118 118
REQ. BRANCHES:	a *(5 + 4 +(/4 * /5))
DESCRIPTION	Dlyccl nBreach L-CS /L-DWDF3 /L-DWHDF3
CASE/BRANCH SPLIT:	8.649E=05 0.000E+00
CASE NUMBER/SPLIT:	4 4.897E-01
CASE/BRANCH SPLIT	4.513E-01 4.840E-02
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES	120 How much concrete must be eroded to cause pedestal failure? INDEP. INPUT PROB. INPUT PARM. 705497 ConErPed
REALIZED SPLIT:	1.000E+D0
OUESTION Q-TYPE/TIMES ASKED: BRANCHES:	121 At what time does pedestal failure occur? DEP. CALC. PROB. 705497 PedFØVB PedFØ10 PedFØ6 PefFØ3 PedFØ1 NoPedF
REALIZED SPLIT:	1.792E-01 1.089E-01 8.624E-03 2.980E-02 1.733E-02 6.558E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT DEPENDENCIES:	1 6.472E-01 63 63 99 99
RED BRANCHES	1 + 5 + 4 + 5

DESCRIPTICH	A-Fail nBreach DiyCC1 noCC1	
CASE/BRANCH SPLIT:	0.000E+60 0.000E+00 0.000E+00 0.000E+00 0 000E+00 6.472E+01	
CASE NUMBER/SPL17: DEPENDENCISI:	2 1.792E-01 75 74	
REQ. BRANCHES:	1 + 1	
DESCRIPTION	1-PedFI 1-PedFP	
CASE/BRANCH SPLIT:	1.792E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	3 3.179E-05 102 102 61 99	
REQ. BRANCHES:	/1 * /2 * 1 * 2	
DESCRIPTION:	/ZrOx75 /ZrOx50 HiLigVB WetCC1	
CASE/BRANCH SPLIT:	0.000E+60 3.558E-06 0.000E+00 0.630E-06 1.960E-05 0.000E+00	
CASE NUMBER/SPL17: DEPENDENCIES:	4 6.822€-04 102 102 €1 99	
REQ. BRANCHES:	/1 * /2 * 2 * 2	
DESCRIPTION:	/.r0x75 /Zr0x50 LoLiqVB WetCC1	
CASE/BRANCH SPLIT:	0.000E+00 2.914E-04 1.065E-04 5.589E-05 1.791E-04 2.930E-05	
CASE NUMBER/SPLIT: DEPENDENCIES:	5 2.881E-05 99	
REQ. BRANCHES:	2	
DESCRIPTION:	WetCCI	
CASE/BRANCH SPLIT:	0.000E+U0 1.491E-05 9.970E-06 0.000E+00 3.937E-06 0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	6 J.375E-03 102 102 61 63 63	
REQ. BRANCHES:	/1 * /2 * 1 *(2 * 3)	
DESCRIPTION:	/ZrOx75 /ZrOx50 HiLigVB BH-Fail LgBroh	
CASE/BRANCH SPLIT:	0.000E+06 1.077E-03 0.0U0E+00 0.000E+00 2.979E-04 0.000E+00	
CASE NUMBER/SPLIT: DEPENDENCIES:	7 1.525E-03 61 63 63	
REQ. BRANCHES.	1 *(2 + 3)	
DESCRIPTION	HiLigVB BH-Fail Lgfrch	
CASE/BRANCH SPLIT:	0.000E+00 1.026E+00 0.000E+00 0.000E+00 0.000E+00 1.524E-03	
CASE NUMBER/SPLIT: DEPENDENCIES:	B 7.922E=09 102 102 63 63	
REQ. BRANCHES :	/1 * /2 *(2 + 3)	
DESCRIPTION	/Zr0x75 /Zr0x50 BH-Fail LgBrch	
CASE/BRANCH SPLIT:	0.000E+00 4.666E+02 6.020E-03 1.448E-02 8.817E+03 3.243E-03	
CASE NUMBER /SPL 17	0 0.0305-02	

DESCRIPTION: CASE/BRANCH SPLIT:	Ot O	hermise Group 4 for MCC1 experts .000E+00 6.085E-02 2.468E-03 1.526E-02 8.010E-03 3.801E-03
QUESTION: Q-TYPE/TIMES ASKED: BPANCHES:	122 What DEP.	is the level of late suppression pool bypass? INPUT PROB. 705487 LNSPB L-SPB2 L-5983
REALIZED SPLIT:	6	077E-01 7.851E-02 3 34E-01
	SUMMARY BY	CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 2 95	.990E-01 118 118
REQ. BRANCHES :	3 +	4 + 5
GE CRIMINO:	1-5PB3	L-DWDf3 L-DWHDf3
CASE/BR18CH SPL . T:	0	0.000E+00 0.000E+C0 2.990E-01
CASE NUMB R/SP. TT: DEPENDENCI.	2 1 5	.501E-02 118 118 121 121
REQ. BRANCHES	(2 +	2 + 3) * /1 * /6
DESCRIPTION	1-5082	L-DWDf2 L-DWHDf2 /PedF@VB /NoPedF
ASE BRANCH SPLT	(0.000E+00 1.145E-02 3.563E-03
MBER/SPL14	3 7	7. 066E×03
OEPENDEMETES	95	118 118 104 110
REQ. BRANCHES:	(2 4	2 + 3) * 2 * 1
DESCRIPTION:	I-SPB2	L-DWDF2 L-DWHDF2 L-AC L-Clgn
CASE (BRANCH St. 20)		0.000E+00 7.027E-03 3.889E-05
CAJE NUMBER /SPLIT: DEPER VINC / SS	4 4 34	6.004E-02 118 118
REQ. BRANCHES:	2*	2 + 3
DESCRIPTION:	1-5.1 2	L-DWDF2 L-DWHDF2
CASE/BRANCH SPLIT:		0.000E+00 6.004E+02 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	5 121	6.813E-02 121
REQ. BRANCHES:	/1 *	/6
25683×*174	/Peaf@78	/NoPedF
CASE/BRANCH Set 1		5.849E-02 0.000E+00 8.688E-03
CASE NUMBER/SPLIT: DECENDENCIES	1 104	9.6375-03 110
REQ. BRANCHES:	2	1
DESCRIPTION:	L-AC	VIC IN
COSE/BRANCH SPLIT		9.5246-0. C.000E+00 1.130E-03
CASE NUMBER/SPLIT	7	4.5399-01

ŝ

ä

.

.

(23) 100 mag = 120 m

Q-TYPE/TIMES ASKED: BRANCHES:	123 What is the late containment pressure due to non-condensibles or steam? DEP. INPUT PROB. INPUT PARM. 705497 LT-Pres nLT-Pres
REALIZED SPLIT:	4.151E-01 5.846E-01
	SUMMARY BY CASE
CASE NUMBER/SPLIT: DEPENDENCIES:	1 5.842E-01 117 119
REQ. BRANCHES:	/1 + 2
DESCRIPTION	/LNCL L-VENT
CASE/BRANCH SPLIT:	0.000E+00 3.842E-01
CASE NUMBER/SPLIT:	2 3.8495-04
DEPENDENCIES:	99 63 106 118 118
REQ. BRANCHES:	4 *(5 - 4 +(/4 * /5))
DESCRIPTION:	DlyCCI nBreach L-CS /L-DWDf3 /L-DWHDf3
CASE/BRANCH SPLIT:	0.000E+00 3.949E-04
CASE NUMBER/SPLIT: DEPENDENCIES:	3 1.581E-03 63 95 97 96 106
REQ. BRANCHES:	/5 * 3 *(/1 + 1) * /4
DESCRIPTION:	/nBveach 1-SPB3 /nLDBWat LDWF1d /L-CS
CASE/BRANCH SPLIT:	1.581E-03 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SFLIT:	4 4.135E+01 Otherwise 4.135E-01 0.000E+00
QUESTION: Q-TYPE/TIMES ASKED: BRANCHES: REALIZED SPLIT:	124 Does containment failure occur late due to non-condensibles or steam? INDEP, CALC. PROB. 705497 LPRCL LP-CL2 LP-CL3 LP-CL4 1 2 3 4 7.117E-01 1.600E-01 1.281E-01 0.000E+00
<pre>******* QUESTION: Q-TYPE/TIMES ASKED BRANCHES: REALIZED SPLIT:</pre>	125 What is *':= long-term level of containment laakage? DEP. INPUT PROB. 705497 LTnCL LT-CL2 LT-CL3 LT-CL4 1 2 3 4 1.319E-01 2.293E-01 6.307E-01 7.787E-03
	SUMMARY BY CASE
CASE NUMBER/SPLIT DEPENDENCIES	1 7.787E-03 117 124
REQ. BRANCHES	
DESCRIPTION	L-CL4 LP-CL4
CASE/BRANCH SPLIT	0.000E+00 0.000E+00 0.000E+00 7.787E-03
CASE NUMBER/SPLIT	2 6.3 78-01

DEPENDENCIES:	117	124 119
REQ. BRANCHES:	3	* 3 * 2
DESCRIPTION	L-CL3	LP-CL3 L-VENT
CASE/BRANCH SPLIT:		0.000E+00 0.000E+00 6.307E-01 0.000E+00
CASE NUMBER/SPLIT: DEPENDENCIES:	3 117	2.293E-01 124
PEQ. BRANCHES:	2	+ 2
DESCRIPTION	L-CL2	LP-CL2
CASE/BRANCH SPUIT:		0.000E+00 2.293E-01 0.000E+00 0.000E+00
CASE NUMBER/SPLIT: DESCRIPTION: CASE/BRANCH SPLIT:	4	1.319E-01 Otherwise 1.319E-01 0.000E+00 0.000E+00 0.000E+00

B.4 PSTEVNT Rebinning Input File for GGSOR

The PSTEVNT program is used to collapse the accident progression bins into 9-dimensional source terms bins for input into GGSOR. The input file that controls this rebinning process, ggrebin.dat, is shown below.

MCCI SRVBkr 6 6 Fst-SB S1w-SB Fst-T2 S1w-T2 Fst-TC 1 1 1 Fst-SB 1 2 1 S1w-SB 1 3 1 3 Fst-T2 1 4 1 4 S1w-T2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	SPRAY
6 6 Fist-SB S1w-SB Fist-T2 S1w-T2 Fist-TC 1 1 1 Fist-SB 1 2 1 S1w-SB 1 3 1 Fist-T2 1 4 1 S1w-T2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
1 1 1 Fst-SB 1 2 1 Slw-SB 1 3 1 Fst-T2 1 4 1 4 Slw-T2 1 5 1 5	Slw-TI
Fst-SB 1 2 1 2 Slw-SB 1 3 1 3 Fst-T2 1 4 1 4 Slw-T2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
1 2 1 2 Slw-SB 1 3 1 Fst-T2 1 4 1 4 Slw-T2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
Slw-S8 1 3 1 Fst-T2 1 4 1 4 Slw-T2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
1 3 1 Fst-T2 1 4 1 4 STw-T2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
Fst-T2 1 4 1 4 Slw-T2 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	
1 4 1 4 Slw-T2 1 5 1 5 1	
Slw-T2 1 5 1 5	
1 5 1 5	
F ST N I C	
1 6 1	
6	
Slw-IC	
2 2 Hizrox LoZrox	
1 1 2	
HIZROX	
1 2 2	
2	
LoZrOx	
5 5 MIF-NUPI LOP-NUPI HIP-UPI LOP-UPI NVB	

		HIP-nLPI							
1	5	3							
		2							
		LOP-nLP1							
1	3	3							
		3							
	13	HIP-LPI							
1	4	3							
		4							
	1	LOP-LPI							
1	5	3							
		5							
1.1	1.	nVB			-FWFF	And re			
5	5	MIDCH	LODCH	HIERSE	LOCASE	nuch-se			
8.	1	4							
		WIRAL							
1		HIDCH							
. k.	6								
		L ODDU							
1	1	LOUGH							
*	9								
		HIEXSE							
1	4	A							
÷.,	1	4							
		LOFXSE							
1	6	4							
2.1		5							
		nDCH-SE							
8	8	SPBEOLO	SPBE013	SPBEOL2	SPBEOL3	SPBE2L2	SPBE213	SPBE2L3	SPBE3L3
1	1	5							
		1							
		SPBEOLO							
1	2	5							
		2							
		SPBE013							
1	3	5							
		3							
		SPBEOL2							
1	4	5							
		4							
		SPBEOL3							
1	5	5							
		5							
1.1		SPBE2L2							
1	b	D							
		CODECIS							
12	1.0	SPBEZIS							
1	1	0							
		enproi o							
1		SPDLELS							
*	0	9							
		SPREAL 3							
0	0	CF-1k	CE-Rot	CE-VENT	CVB-Lk	CVB-Rpt	CL-14	CL-Rpt	
1		CL -VENT	CnFail			100 C			
1		6							
		1							
		CE-LK							
1	2	6							
		2							
		CE-Rpt							
1	3	6							
		3							
		CE-VENT							
1	4	6							
		4							
		CVB-LK							

1	5	Ê				
		CVR-RAT				
1	6	Gro-npt				
۰.	0	6				
		C1-14				
6	19.11	E.				
٩.,	100	7				
		CL-Pot				
6	8	E E				
*	0	R				
		CI-VENT				
1	0	6				
ð. 1		ğ				
		CoFail				
1		noCS	ECSnol	LCS	ECS	
7	1	7	6 worther			
٩.,		1				
		2200				
1	0	7				
۰.	. 6	2				
		FCSpol.				
4		2001102				
۰.	.9	à.				
		ICS				
ą.		2				
1		4				
		FCS				
	1	Drucci	WetCC1	FLDGCT	DivCCI	100001
1	ñ	R	RULUUI			
*	. *	ĩ				
		Drycci				
1	. 2	R				
1	1	2				
		VetCCI				
4	4	8				
1	1	3				
		ELDCCI				
4	4	8				
1	317	4				
		010001				
1	6	B				
22	1.17	5				
		00001				
2	2	OSRVBK	CSRVBKr			
1	- 1	Q.	Sector Control			
1						
		OSRVAL				
1	2	Q.				
1		2				
		CSRVBkr				
		ALCOND. TANKS				

B.5 PSTEVNT Rebinning File for Presentation Bins

64

The PSTEVNT program is also used to collapse the accident progression bins into the Draft NUREG-1150 presentation bins. This rebinning is controlled by the file reduce.dat, shown below.

Ř.	R No	VR NOF	VENT LOF FOR NOR FOR LOR FOR FOR FOR FOR N
ĩ	1	3	Teni cor cor mo cor cro cor cro o cor cro n
	10.1	5	
		nVB	
2	2	3	6
		/5	* 9
		VB	NOCF
3	3	3	6 6
		/5	* (3 + 8)
		VB	CE-VENT CL-VENT
3	4	3	6 6
		/5	* (6 + 7)
		VB	CL-Lk CL-Rpt
6	5	3	6 6 6 6 5
		/5	* (1 + 2 + 4 + 5) * 1
		VB	ECF NoSPB
7	6	3	6 6 6 6 5 5
		/5	* (1 + 2 + 4 + 5) * (3 + 4)
		VB	ECF L-SPB
1	7	3	6 6 6 5 5 5 5 5 7
		/5 *	(1 + 2 + 4 + 5) * (2 + 5 + 6 + 7 + 8) * /1
		VB	ECF E-SPB ECS
1	8	3	6 6 6 5 5 5 5 5 7
		/5 *	(1 + 2 + 4 + 5) * (2 + 5 + 6 + 7 + 8) * 1
		1100	P 250

...

Q.

APPENDIX C SOURCE CODE LISTINGS

APPENDIX C SOURCE CODE LISTINGS

C.1 Source Code for MASTERK

PROGRAM MASTRK

```
INTEGER PDIM, PFILE, PSMRY
       PARAMETER (PDIM = 14, PFILE
                                                              PSMRY =30000)
       CHARACTER MASTER(PSMRY)*(PDIM), COMP*(PDIM), FILENM*60,
* TITLE*80, RTITLE*80, YN*10
       DIMENSION NEXTF(P5MRY), NEXTB(P5MRY), IORDER(P5MRY), INVORD(P5MRY)
       LOGICAL BYRUN
WRITE(6,1005)
1005 FORMAT(' ENTER THE NAME OF THE KEEP BIN FILE')
       READ(5,2001) FILENM
       OPEN (UNIT=7, FILE=FILENM, STATUS='NEW')
WRITE(6.1001)
1001 FORMAT(' ENTER THE TITLE OF THE KEEP BIN FILE')
READ(5.2001) RTITLE
      FORMAT(A)
WRITE(6,1009)
1009 FORMAT('ENTER NUMBER OF FILES TO BE PROCESSED')
READ(5,*) NFILES
      WRITE(6.1002)
FORMAT(' ENTER THE NUMBER OF OBSERVATIONS TO BE PROCESSED')
READ(5,*) NOBS
WRITE(6,1008)
1008 FORMAT(' ARE KEPT BJ''S TO BE DETERMINED BY RUN7 (Y/N)')
READ(5,2 01) YN
       IF(YN(1:1).EQ.'Y'.OR.YN(1:1).EQ.'y') THEN
BYRUN=.TRUE.
          R* KUN= FALSE
       ENDIF
       NLIST=0.
       LOOP TO OPEN FILES
       DO 10 IFILE-1, NFILES
         READ FILE NAMES TO BE PROCESSED
         WRITE(6,1003) IFILE
FORMAT(' ENTER THE NAME OF FILE',14)
         READ(5,2001) FILENM
         INUNIT=IFILE+20
         OPEN(UNIT=INUNIT.FILE=FILENM.STATUS='OLD')
  10 CONTINUE
      LOOP OVER OBSERVATIONS
      DO 11. 1085=1,NOBS
          INITIALIZE BIN COUNTER
          IF(BYRUN) NLIST=0
          LOOP OVER FILES
          DO 110 IFILE=1, NFILES
              INUNIT=IFILE+20
              READ(INUNIT, 2002) TITLE
             FORMAT(1X.A79)
READ(INUNIT.*) NDIM, NBIN
```

WRITE(6,1004) NBIN, TITLE FORMAT(16, ' BINS WILL BE READ FROM: '/IX, A) C1004 READ BINS FROM FILE AND INSERT THEM INTO LIST DO 100 181N=1,NB1N READ(INUNIT, 2003)COMP(1:NDIM) FORMAT(1X,A) CALL LINKL (COMP. MASTER, NLIST, NEXTF, NEXTE, IFIRST, ILAST. LASTEN) CONTINUE CONTINUE REORDER ACCORDING TO LINKED LIST IF (BYRUN OR IDBS EQ NOBS) THEN DO 120 1=1. NLIST 10RDER(1)=1 INVORD(1)=1 CONTINUE ICURR=1FIRST DO 130 1=1, NLIST COMP=MASTER (] MASTER(1)=MASTER(IORDER(ICURR)) MASTER (IORDER (ICURR)) = COMP IORDER(INVORD(I))=IORDER(ICURR) INVORD(IORDER(ICURR))=INVORD(I) IORDER (ICURR)=1 ICURR = NEXTF(ICURR) CONTINUE REPORT RESULTS IF (BYRUN) THEN WRITE(6,1006) IOBS, NLIST FORMAT(' OBSERVATION'.15.' PRODUCED'.15,' UNIQUE BINS') WRITE(7,1007)IOBS,RTITLE,NDIM,NLIST FORMAT(15,1X,A/2110) ELSE WRITE(6,1010) NOBS. NLIST FORMAT(15, ' OBSERVATIONS PRODUCED', 15, ' UNIQUE BINS') WRITE(7.1011) RTITLE, NDIM, NLIST FORMAT(1X, A/2110) ENDIF DO 300 ILIST=1, NLIST WRITE(7,2003) MASTER(ILIST)(1:NDIM) CONTINUE ENDIF CONTINUE DO 400 IFILE=1, NFILES CLOSE (UN T=1FILE+20, STATUS= 'KEEP') 400 CONTINUE CLOSE(UNIT=7, STATUS='KEEP') STOP END SUBROUTINE LINKL (CINDEX, CBNSMR, NBINS, NEXTF, NEXTB, IFIRST, ILAST, LASTBN) LINKL INSERTS CINDEX INTO THE LINKED LIST DESCRIBED BY CBNSMR. NBINS, NEXTE, NEXTE, IFIRST, ILAST, LASTEN A MASTER LIST OF THE BINS IS KEPT IN ORDER BY MEANS OF A LINKED LIST SCHEME CHARACTER*(*) CBNSMR, CINDEX DIMENSION NEXTB(*), NEXTF(*), CBNSMR(*) CHECK FOR FIRST BIN

```
IF( NBINS .EQ. 0) THEN
C
            SET "CBNSMR" FOR THE FIRST BIN.
            CBNSMR(1) = CINDEX
            NBINS = 1
            IFIRST = 1
            1LAST = 1
            LASTBN=1
       ELSE.
č
C
            FIND POSITION OF BIN WITHIN THE LINKED LIST:
            IF THE INDEX IS NOT EQUAL TO ANY OF THE PRIOR INDICES. THE INDEX IS "STUCK IN" THE APPROPRIATE PLACE IN THE
            LINKED LIST WITH LINKED INDICES IN ASCENDING ORDER.
C
            CHECK IF SMALLEST INDEX
            IF(CINDEX.LE.CBNSMF(IFIRST)) THEN
                IF(CINDEX.NE.CENSMR(IFIRST)) THEN
                    NEINS = NEINS +1
                    NEXTF(NBINS) = IFIRST
                    NEXTB(IFIRST) = NBINS
IFIRST = NBINS
                    CBNSMR(NBINS) - CINDEX
               ENDIF
                LASTEN*IFIRST
            CHECK IF GREATEST INDEX
ELSE IF(CINDEX.GE.CBNSMR(ILAST)) THEM
č
                IF (CINDEX .NE . CBNSMR (1LAST)) THEN
                    NBINS = NBINS+1
                    NEXTR(ILAST) = NBINS
                    NEXTB(NBINS) = ILAST
                    ILAST = NBINS
                    CBNSMR(NBINS) = CINDEX
                ENDIF
                LASTBN=1LAST
            INSERT INTO LIST
            ELSE
                ICURR = LASTEN
                SELECT FORWARD OR BACKWARD SEARCH
C
                IF(CINDEX.GT.CBN.JMR(ICURR)) THEN
                      CHECK IF CINDEX IS BETWEEN CURRENT AND NEXT BIN
IF(CINDEX.LT.CBNSMR(NEXTF(ICURR))) THEN
CHECK IF CINDEX IS EQUAL TO CURRENT BIN
                         IF(CINDEX .EQ. CBNSMR(ICURR)) THEN
                             LASTEN=1CURR
                         ELSE
                             NBINS = NBINS+1
                             NEXTF(NBINS) = NEXTF(ICURR)
                             NEXTB(NEXTF(ICURR)) = NBINS
                             NEXTF(ICURR) = NBINS
NEXTB(NBINS) = ICURR
                             CBNSMR (NBINS) = CINDEX
                             LASTBN=NBINS
                         ENDIF
                          INCREMENT LIST POINTER
                         ICURR = NEXIF(ICURR)
                         GOTO 20
                      ENDIF
               ELSE
```

```
CHECK IF CIMDEX IS BETWEEN CURRENT AND PREVIOUS BIN
C
                     IF (CINDEX.GT.CBNSMR(NEXTE(ICURR))) THEN
CHECK IF CINDEX IS EQUAL TO CURRENT BIN
   25
                         JF(CINDEX EQ CBNSMR(ICURR)) THEN
                            LASTBN=1CURR
                        ELSE
                            NBINS = NBINS+1
                            NEXTB(NBINS) = NEXTB(ICURR)
                            NEXTF(NEXTB(ICURR)) = NBINS
                           NEXTB(ICURR) = NBINS
NEXTF(NBINS) = ICURR
                            CBNSMR(NBINS) = CINDEX
                            LASTBN=NBINS
                            GOTO 30
                        ENDIF
                     FUSE
                        DECREMENT LIST POINTER
                        ICURR = NEXTB(ICURR)
                        6010 25
                     ENDIF
              ENDIF
           ENDIF
      ENDIF
   30 CONTINUE
      RETURN
       END
```

C.2 Source Code Listing for GG_FRQ

```
PROGRAM GGFRQ
C******MERGE PLANT DAMAGE STATE FREQUENCIES WITH BIN CONDITIONAL
C*****PROBABILITIES FOR USE WITH PARTITION AND PREMIS
C djp
C UJD PARAMETER (MAXDM=9, MAXBIN=1700, MAXSMF=155, MAXPDS=12,
C dipl
                 MAXDAT=100)
C djp
      PARAMETER (MAXDM=9, MAXBIN=1700, MAXSMP=250, MAXPDS=12,
                 MAXDAT=100)
C dup
      CHARACTER*10 NBINTL, NDIMTL
      CHARACTER*20 LABEL
      CHARACTER*80 FILNAM, TITLE, TITLEK
      CHARACTER*(MAXDM) BINID(MAXBIN, MAXPDS, MAXSMP).
                        BINIDS(MAXBIN), BINIDK(MAXBIN)
      DIMENSION CPROB(MAXBIN, MAXPDS, MAXSMP), NEIN(MAXPDS, MAXSMP)
                IPNT(MAXBIN), PDSFRQ(MAXPDS,MAXSMP), TDAT(MAXDAT)
      LOGICAL ERROR
      DATA ERROR / FALSE. /
C*****OPEN TEMAC4 FILE CONTAINING PDS FREUDENCIES BY OBSERVATION
C dip OPEN (4,
C djp1 FILE*'66_LHS_TEMAC.DAT',
C djp2 STATUS= OLD', READONLY)
C*****OPEN TEMAC4 FILE CONTAINING PDS FREQUENCIES BY OBSERVATION
      OPEN (4,
```

```
1 FILE='gg_temac.dat',
2 STATUS='OLD', READONLY)
C*****READ NUMBER OF SAMPLE OBSERVATIONS AND NUMBER OF
C*****PLANT DAMAGE STATES
     READ(4,*) NSMP, NPDS
C*****LOOP THROUGH OBSERVATIONS
      DO 500 ISMP=1, NSMP
         READ(4,*) IOBS. NDAT. (TDAT(K),K=1,NDAT)
PDSFRQ(1,ISMP)=TDAT(1)
         POSFRO(2.ISMP)=TDAT(2)
         PDSFRQ(3,15MP)=TDAT(3)
         PDSFRQ(4,1SMP)=TDAT(4)
         PDSFRO(5.1SMP) *TDAT(5)
         POSFRQ(8, ISMP) = TDAT(6)
         PDSFR0(7,1SMP)=TDAT(7)
         PDSFRQ(8,1SMP)=TDAT(8)
         PDSFR0(9, ISMP) *TDAT(9)
         PDSFRQ(10,1SMP)=TDAT(10)
         PDSFRQ(11,1SMP)=TDAT(11
         PDSFRQ(12, ISMP) = TDAT(12)
  500 CONTINUE
C********CLOSE TEMAC4 PDS FREQUENCY FILE
IF (NPDS .GT. MAXPDS) THEN
WRITE(6.*) '>>>>INCREASE PARAMETER MAXPDS TO AT LEAST ',NPDS
         STOP
      ENDIF
C***** VALIDATE NUMBER OF SAMPLE AGAINST DIMENSION
      IF (NSMP .GT. MAXSMP) THEN
         WRITE(6.*) '>>>>INCREASE PARAMETER MAXSMP TO AT LEAST ', NSMP
          STOP
      ENDIF
C*****LOOP OVER PLANT DAMAGE STATES
      DO 3000 1PDS=1, NPDS
C*******GENERATE FILE NAME FOR BIN CONDITIONAL PROBABILITIES FOR
C*******CURRENT PLANT DAMAGE STATE
         WRITE(FILNAM, 2001) IPDS
C*******OPEN CURRENT PLANT DAMAGE STATE FILE
         OPEN (1. FILE=FILNAM, STATUS='OLD', READONLY)
 C*******READ FILE HEADING
         READ(1,1001) TITLE
 C*******READ NUMBER OF BIN ATTRIBUTES
         READ(1,*) NDM
 C*******VALIDATE DIMENSION OF BIN 1D
         IF (NDM .GT. MAXOM) THEN
WRITE(6,*) '>>>>INCREASE PARAMETER TO AT LEAST ', NDM
             STOP
          ENDIF
 C******READ BIN ATTRIBUTE DESCRIPTIONS (NOT SAVED)
          READ(1,1001) (NDIMTL, 10M=1,NDM)
 C*******LOOP OVER BIN ATTRIBUTES
          DO 1000 IDM=1,NDM
 C*********READ NUMBER OF POSSIBLE OUTCOMES FOR CURRENT BIN ATTRIBUTE
             READ(1,*) NPO
 C*********READ POSSIBLE OUTCOME DESCRIPTIONS (NOT SAVED)
             READ(1,1001) (NBINTL, IPO=1,NPO)
          CONTINUE
 C*******LOOP OVER SAMPLES
          DO 2000 15MP=1,NSMP
```

1

C********READ LABEL, SAMPLE NUMBER, AND NUMBER OF BINS FOR CURRENT SAMPLE READ(1,2002) LABEL, ISMPT, NBIN(IPDS, ISMP) C*********VALIDATE SAMPLE NUMBER IF (ISMPT .NE. ISMP) THEN WRITE(6,9001) ISMP, ISMPT STOP ENDIF C*********** VALIDATE NUMBER OF BINS FOR CURRENT SAMPLE IF (NBIN(1PDS,1SMP) .GT. MAXBIN) THEN WRITE(6.*) '>>>>INCREASE PARAMETER MAXBIN TO AT '. 'LEAST '. NBIN(IPDS,ISMP) STOP EngliF READ(1,2003) (BINID(IBIN, IPDS, ISMP)(1:NDM), CPROB(IBIN, IPDS, 15MP) IBIN=1,NBIN(1PDS,ISMP)) CONTINUE C********CLOSE CURRENT PLANT DAMAGE STATE FILE CLOSE (1) 3000 CONTINUE C*****INITIALLIZE TOTAL NUMBER OF BINS ON PDS FILES NBINKS=0 C*****INITIALLIZE TOTAL NUMBER OF BINS ON .KEP FILE NBINSS=0 C*****OPEN .KEP FILE CONTAINING BINS BY SAMPLE C dip OPEN (2. C djp1 FILE='BYRUN MASTER.KEP' C djp2 STATUS='OLD', READONLY) C*****OPEN .KEP FILE CONTAINING BINS BY SAMPLE OPEN (2 1 FILE='byr mas kep', 2 STATUS='DLD', READONLY) C*****LOOP OVER SAMPLES DO 5000 15MP=1,NSMP CAR ******READ SAMPLE LABEL READ(2,1001) TITLEK C******READ NUMBER OF BINS FOR CURRENT SAMPLE READ(2,*) NOUM, NBINK C*******READ BIN ID'S FOR CURRENT SAMPLE READ(2,1002) (BINIDK(IBIN)(1:NDM), IBIN=1, NBINK) NBINSS=NBINSS + NBINK NBINKS=NBINKS + NBINK C*******INTIALLIZE NUMBER OF BINS FOR PDS FILES FOR CURRENT SAMPLE NBINS=0 C********TRANSFER BIN IDS FOR PDS DO 3600 IPDS=', NPDS DO 3400 IBIN=1, NBIN(IPDS, ISMP) NBINS=NBINS + 1 BINIDS(NBINS)=BINID(IBIN, IPDS, ISMP) IPNT(NBINS)=NBINS CONTINUE 3400 CONTINUE CESSARAS *SORT BIN IDS FOR CURRENT SAMPLE CALL CSORT (NBINS, BINIDS, IPNT) *REMOVE MULTIPLE OCCURRENCES OF SAME BIN ID C***** NBTMP=1 DO 3800 IBINS=2,NBINS IF (BINIDS(IPNT(IBINS)) .NE. BINIDS(IPNT(NBTMP))) THEN NBTMP=NBTMP + IPNT(NBTMP)=IPNT(IBINS) ENDIF CONTINUE 3800 NBINS=NBIMP C********VALIDATE NUMBER OF BINS

```
IF (NBINS .NE. NBINK) THEN
            WRITE(6,9002) NBINS, NBINK, ISMP
            ERROR . TRUE
         ENDIF
DO 4000 IBIN=1, NBINK
           IF (ISMP EQ. B) WRITE(6,8000) IBIN, BINIDS(IPNT(IBIN)), BINIDK(IBIN)
C/// 8000 FORMAT(16,5X,A,5X,A)
            IF (BINIDS(IPNT(IBIN)) .NE. BINIDK(IBIN)) THEN
               WRITE(6,9003) 1SMP
               ERROR# . TRUE
               GO TO 5000
            END1F
         CONTINUE
4000
5000 CONTINUE
C*****CLOSE MASTER .KEP BIN LIST BY SAMPLE
      CLOSE (2)
C*****IF VALIDATION ERROR NAS OCCURED, TERMINATED EXECUTION
      IF (ERROR) STOP
C*****WRITE PLANT DAMAGE STA'E FREQUENCY AND BIN LIST WITH CONDITIONAL
C*****PROBABILITIES VS SAMPLE AND PDS
      WRITE(6.5001) NBINSS, NBINKS
C*****OPEN TILE FOR BIN CONDITIONAL PROBABILITIES AND PDS FREQUENCIES FOR
C"****ALL PDS
      OPEN (3, FILE*'gg.frq' STATUS*'NEW'.
CARRIAGECONTROL* LIST')
      WR!TE(3,10C1) TITLE
      WRITE(3,5002) NDM, NSM', NPDS
      DO 7000 ISMP=1, NSMP
         DO 6000 IPDS=1.NPDS
            WRITE(3,5003) ISMP, IPDS, NBIN(IPDS,ISMP), PDSFRQ(IPDS,ISMP)
IF (NBIN(IPDS,ISMP) .GT. 0) WRITE(3,5004)
                       (BINID(IBIN, IPDS, ISMP)(1:NDM)
                       CPROB(IBIN, IFDS, ISMP), IBIN=1, NBIN(IPDS, ISMP))
 6000
         CONTINUE
 7000 CONTINUE
      CLOSE (3)
      STOP
C*****FORMAT STATEMENTS
 1001 FORMAT(A)
 1002 FORMAT(1X,A)
C djp
C2001 FORMAT('UD16:[SUH1G61.GG_PSTEVNT_LHS_RIS]GG_PDSG',12,'_LHS_RIS_
     *REBIN.PST')
C djp
 2001 FORMAT('g',12.2,' sbin.out')
C djp
 2002 FORMAT(A, 215)
 2003 FORMAT(A, 1X, E20.0)
 5001 FORMAT(1X.17.' BINS ON PDS FILES',
1 /1X.17.' BINS ON .KEP FILE')
 5002 FORMAT(318)
 5003 FORMAT(318, 1PE12.4)
 5004 FORMAT(A, 1X, 1PE12.4)
 9001 FORMAT( ' >>>>ERROR READING SAMPLE ', 13, ', FILE INDICATES ',
              'SAMPLE ', 13)
 9002 FORMAT(' >>>>>NUMBER OF BINS ON PDS FILES (',16.') NOT SAME '.
              'NUMBER OF BINS ON .KEP FILE (',16,')'.
             /' >>>>FOR SAMPLE '.16)
 9003 FORMAT( ' >>>>LIST OF BINS FOR PDS FILES NOT SAME AS LIST OF '.
              'BINS FOR .KEP FILE FOR SAMPLE '.16)
     1
      END
      SUBROUTINE CSORT (NVAR, NAME, IPNT)
C*****SORT NVAR VALUES OF CHARACTER ARRAY NAME IN INCREASING ORDER
C*****USING POINTER ARRAY IPNT
```

```
CHARACTER*(*) NAME (NVAR)
   DIMENSION IPNT(NVAR)
    N=NVAR
   L=N/2+1
    IR=N
100 CONTINUE
    IF (L.LE.1) GO TO 700
    1-1-1
    LHOLD = IPNT(L)
200 CONTINUE
    dat.
300 CONTINUE
    1=J
    3=2*3
1F (J-1R) 400, 500, 600
400 CONTINUE
    IF (NAME(IPNT(J)) .LT. NAME(IPNT(J+1))) J=J+1
500 CONTINUE
    IF (NAME(LHOLD) .GE. NAME(IPNT(J))) GO TO 600
    IPNT(1)=IPNT(J)
    GO TO 300
600 CONTINUE
    IPNT(I)=LHOLD
    GO TO 100
700 CONTINUE
    LHOLD=1PNT(1R)
     IPNT(IR)=IPNT(1)
     1R=1R -
    IF (IR .GT. 1) GO TO 200
IPNT(1)=LHOLD
    RETURN
    END
```

Ç

C.3 Source Code Listing for STER IN

PROGRAM STER C*****READS PARTITIONED SOURCE TERM INFORMATION AND TIMING C*****INFORMATION AND GENERATES MACCS INPUT RECORDS FOR RELEASE C*****DESCRIPTION FOR ATMOS AND FOR EMERGENCY RESPONSE DESCRIPTION C*****FOR EARLY (SUBGROUP INFORMATON) CARANA TEVAC < SUBGROUP 1 = T1-TESCAPE C***** SUBGROUP 2 = T1-TESCAPE < TEVAC < T1+DT1 SUBGROUP 3 = T1+DT1 < TEVAC < T2 SUBGROUP 4 = T2 < TEVAC C***** C***** SUBGROUP 4 = C*****(TIMES IN SECONDS FROM SCRAM UNLESS SPECIFIED OTHERWISE) THIS PROGRAM MODIFIED 9 MARCH 89 BY D. CHANIN TO CORRECT AN ERROR IN THE CALCULATION OF THE SHELTER SCENARIO RESULTS THE CALCULATION OF TIDSH2, THE TIME TO TAKE SHELTER, IS BEING CHANGED. PREVIOUS TO THIS CHANGE, TIDSH2 WAS CALCULATED AS 2700 + TW. 0 0 THE CURRENT STER CODE USES A VALUE OF 2700 FOR ITOSH2 (INDEPENDENT OF TW). THE EARLY MODULE DEFINES THE TIME TO TAKE SHELTER AS MEASURED FROM OALARM. C NOT SCRAM TIME. C PARAMETER (MAXSG=4, MAXFRC=9, MAXPUF=2, MAXREC=1000, MAXLEN=80) C djp

CHARACTER*80 DUMMY

```
C djp
          CHARACTER*4 SITE
         CHARACTER*(MAXLEN) FILNAM, TITLE, ATMBAS(MAXREC), EARBAS(MAXREC)
DIMENSION DEVAC(O:MAXSG), TEVAC(O:MAXSG), TW(O:MAXSG),
I SGCP(MAXSG), SGF(MAXSG), REFTIM(MAXPUF),
2 FRACP(MAXSG), LASMOV(MAXSG), LASEVA(MAXSG),
3 LASHE2(MAXSG), TTTS(MAXSG), TOSH2(MAXSG),
                          STI(MAXFRC, 0:MAXSG), ST?(MAXFRC, 0:MAXSG),
        4
                          ELEV(0:MAXSG), T1(0:MAXSG), DT1(0:MAXSG), T2(0:MAXSG),
DT2(0:MAXSG), E1(0:MAXSG), E2(0:MAXSG)
        6
        £
         DATA 100MIN / 1 /. REFTIM / 0.0, 0.5 /. NPUFFS / 2 /.

1 FRACP / 4*0.3333 /. 10 / 0 /. 11 / 1 /. 12 / 2 /. 13 / 3 /.

2 ZERO / 0.0 /. DNE / 1.0 /. 112 / 12 /. 115 / 15 /.

3 LASMOV / D, 0. 15, 0 /. LASEVA / D, 0, 10, 0 /.

4 LASHE2 / 0, 12, 12, 0 /.

5 TTOSH2 / 0.0, 2700., 2700., 0.0 /
        8
        5
          WRITE(6,*) 'ENTER 2 TO 4 LETTER SITE ABBREVIATION'
          READ(5,1001) SITE
          WRITE(FILNAM, 21) SITE
          OPEN (7, FILE=FILNAM, STATUS='NEW', CARRIAGECONTROL='LIST')
WRITE(7,*) 'ENTER 2 TO 4 LETTER SITE ABBREVIATION'
          WRITE(7.1001) SITE
          WRITE(6.*) 'ENTER EVACUATION ESCAPE TIME (SEC)'
WRITE(7.*) 'ENTER EVACUATION ESCAPE TIME (SEC)'
          WRITE(7,*) ENTER EVACUATION DELAY TIME (SEC)'
WRITE(6,*) 'ENTER EVACUATION DELAY TIME (SEC)'
WRITE(7,*) 'ENTER EVACUATION DELAY TIME (SEC)'
          READ(5,*) TDEL
WRITE(7,*) TDEL
C*****INITIALLIZE COUNTER FOR NON-ZERO GROUPS
          NSTH0
 C*****LOAD ATMOS BASE CASE INPUT RECORDS
          NRECA=0
          WRITE(FILNAM, 101) SITE
          OPEN (2, FILE=FILNAM, STATUS='GLD')
    100 CONTINUE
          NRECA=NRECA + 1
          IF (NRECA .GT. MAXREC) THEN
WRITE(6,*) '>>>>INCREASE PARAMETER MAXREC'
               STOP
          ENDIF
          READ(2,1001,END=200) ATMBAS(NRECA)
    200 CONTINUE
          NRECA=NRECA - 1
           NRECE=0
          WRITE(FILNAM, 201) SITE
          OPEN (3, FILE=FILNAM, STATUS='OLD')
     300 CONTINUE
           NRECE=NRECE + 1
          IF (NRECE .GT. MAXREC) THEN
WRITE(6,*) '>>>>INCREASE PARAMETER MAXREC'
               STOP
           ENDIF
          READ(3,1001,END=400) EARBAS(NRECE)
 C*****LOCATE WIND-SHIFT INDEX
           IF (INDEX(EARBAS(NRECE), 'MIIPLUME001') .GT. 0) THEN
               READ(EARBAS(NRECE)(12:MAXLEN),*) 1WS
           ENDIF
           GO TO 300
    400 CONTINUE
```

```
CLOSE(3)
      NRECE=NRECE - 1
      IF ((NRECA .GT. MAXREC) .OR. (NRECE .GT. MAXREC)) THEN
WRITE(6,*) '>>>>>INCREASE PARAMETER MAXREC'
         STOP
      ENDIF
C djp
C djp OPEN JCL FILE
      OPEN (13, 'JCL.DAT', STATUS='OLD')
C djp
C*****OPEN FILE CONTAINING PARTITIONED SOURCE TERM AND TIMING INFORMATION
      WRITE(FILNAM, 401) SITE
      OPEN (1, FILE=FILNAM, STATUS='OLD')
C*****READ TITLE
      READ(1,1001) TITLE
WRITE(*,*) 'TITLE=', TITLE
WRITE(7,*) 'TITLE=', TITLE
C*****READ NUMBER OF RELEASE CLASSES (7 OR 8) AND NUMBER OF SOURCE TERM GROUPS
      READ(1,*) NRC, NG
WRITE(*,*) 'NUMBER OF RELEASE CLASSES=', NRC
       WRITE(7,*) 'NUMBER OF RELEASE CLASSES=', NRC
       WRITE(*,*) 'NUMBER OF SOURCE TERM GROUPS='. NG
WRITE(7,*) 'NUMBER OF SOURCE TERM GROUPS='. NG
       WRITE(*,*
       WRITE(7.*)
C*****LOOP OVER SOURCE TERM GROUPS
       DO 4000 IG=1,NG
C*******READ GROUP INDEX. NUMBER OF SUBGROUPS FOR THIS GROUP
C*******GROUP F.EDUENCY, AND GROUP CONDITIONAL PROBABILITY
READ(1.*) IGROUP, NSG, GFRQ, GCPRB
C********CHECK FOR NON-ZERO GROUP FREQUENCY TO READ ADDITIONAL
C******* RECORDS FOR THIS GROUP
          IF (GFRD .GT. 0.0) THEN
NST=NST + 1
                  WRITE(*.*) 'GENERATING SDURCE TERM '. NST
WRITE(7.*) 'GENERATING SDURCE TERM '. NST
C***********READ RELEASE/EVACUATION START DIFFERENCE (T1-TEVAC)
C*********EVACUATION START TIME, WARNING TIME, START OF PUFF RELEASE,
READ(1.*) DEVAC(0), TEVAC(0), TW(0),
T1(0), DT1(0), T2(0), DT2(0), ELEV(0),
                         E1(0), (ST1(1,0),1=1,NRC)
E2(0), (ST2(1,0),1=1,NRC)
 C***********SET DURATIONS IN RANGE 60 - 86400 S AND PRINT A MESSAGE IF
 DT1(0)=CLIPIT ('DT1', DT1(0), 60., 86400.)
DT2(0)=CLIPIT ('DT2', DT2(0), 60., 86400.)
 C***********SET R ASE 2 START TIME TO BEGIN AFTER RELEASE 1 IS COMPLETED
 ALLOWD=3.6E5
                   RFPNT2=T2(0) + REFT:M(2) * DT2(0)
DIFRNC=RFPNT2 - T1(0)
 C*********CALCULATE THE MAXIMUM ALLOWABLE VALUE FOR T2
                   IF (DIFRNC .GT. ALLOWD) THEN
                       VALMAX=T2(0) - (DIFRNC ALLOWD)
                       VALMAX=1.E35
                    ENDIF
 C/// T2(0)=CLIPIT ('T2', T2(0), TI(0)+DTI(0), VALMAX)
C********LDOP OVER SUBGROUPS FOR CURRENT GROUP
              DO 1000 156=1,NSG
```

```
C********* "SUBGROUP CONDITIONAL PROBABILITY, AND CONDITIONAL PROBABILITY
C*************FOR SUBGROUP DIVIDED BY SUM OF ALL SOURCE TERM FREQUENCIES
           READ(1,*) ISGRP, SGF(ISG), SGCP(ISG), SGCPT
           1F (15G .EQ. 3) GO TO 1000
           NST=NST + 1
           *INITIALIZE SUBGROUP SOURCE TERM PARAMETERS
**********
           ELEV(1SG)=0.0
            TW(156)=0.0
           E1(15G)=0.0
            E2(1SG)=0.0
            T1(156)=0.0
            T2(ISG)=0.0
            D11(15G)=0.0
            D12(1SG)=0.0
            DO 800 IFRC=1, NRC
              ST1(IFRC,1SG)=0.0
              S12(IFRC, 1SG)=0.0
 800
            CONTINUE
            wRITE(*,*) 'GENERATING SOURCE TERM '. NST
wRITE(7,*) 'GENERATING SOURCE TERM '. NST
           *CHECK FOR NON-ZERO SUBGROUP FREQUENCY TO READ ADDITIONAL
           **RECORDS FOR THIS SUBGROUP
            IF (SGF(ISG) .GT. D.O) THEN
***********EVACUATION START TIME, WARNING TIME, START OF PUFF RELEASE.
DT1(1SG), T2(ISG), DT2(ISG), ELEV(ISG),
E1(ISG), (ST1(1.1SG),1=1,NRC),
                      E2(1SG), (ST2(1,1SG),1=1,NRC)
            FLSF
C****
           ****SET EVACUATION VALUES WHEN SUBGROUP IS EMPTY
                   TW(ISG)=TW(O)
               IF (ISG .EQ. 1) THEN
                 TEVAC(ISG)=TI(ISG) - TESC - 1800.
              ELSE IF (ISG EQ. 2) THEN
              TEVAC(1SG)=T1(1SG)
ELSE 1F (1SG .EQ. 3) THEN
                 TEVAC(ISG)=T2(ISG)
               ELSE
                 TEVAC(ISG)=TI(ISG) + TDEL
               ENDIF
               DEVAC(ISG)=T1(ISG) - TEVAC(ISG)
            ENDIF
   DT1(ISG)=CLIPIT ('DT1', DT1(ISG), 60., 86400.)
DT2(ISG)=CLIPIT ('DT2', DT2(ISG), 60., 86400.)
        *****SET RELEASE 2 START TIME TO BEGIN AFTER RELEASE 1 15 COMPLETED
 ALLOWD=2.6E5
            RFPNT2*T2(ISG) + REFTIM(2) * DT2(ISG)
            DIFRNC=RFPNT2 - TI(ISG)
 CARAFARAAA
            CALCULATE THE MAXIMUM ALLOWABLE VALUE FOR T2
             IF (DIFRNC .GT. ALLOWD) THEN
               VALMAX=T2(1SG) - (DIFRNC - ALLOWD)
               VALMAX=1.E35
             END1F
             T2(ISG)=CLIPIT ('T2', T2(ISG), T1(ISG)+DT1(ISG), VALMAX)
```

C****	*********	DEFINE SHELTER DURATION AS 12 HR
		SHELIZ=43200.
C		WRITE ATMOS INPUT FILE USING BASE ATMOS INPUT FLUS
Curren		RELEASE INFORMATION FOR THIS GROUP
		WRITE(FILNAM, 1002) SITE, NST
		OPEN (11, FILE=FILNAM, STATUS='NEW'
	1	CARRIAGECONTROL = 'LIST')
C djp		
		REWIND(13)
50	1.1.2	READ(13,1005,END=60) DUMMY
		ILOC = INDEX (DUMMY, '00')
		IF(ILOC.GT.D) THEN
		DUMMY(ILOC:ILOC+1) = FILNAM(9:10)
		ENDIF
	1.1.1	WRITE(11,1004) DUMMY
	1. S.	GOTO 50
60		CONTINUE
C djp		
	1	WRITE(11,1001) (ATMBAS(IREC),IREC=1,NRECA)
	1	WRITE(11,2001) NST, IG, TW(ISG), IDOMIN,
		(REFTIM(I), 1=1, NPUFFS), NPUFFS,
	2	E1(ISG), E2(ISG)
	1	WRITE(11,2002) ELEV(1SG), ELEV(1SG),
		DT1(ISG), DT2(ISG), T1(ISG), T2(ISG)
		<pre>wRITE(11,2003) NST, 1G, (ST1(1,15G),1=1,NRC)</pre>
		<pre>wRITE(11,2004) (\$T2(1,1SG),1=1,NRC)</pre>
	(CLOSE(11)
C****	*********	WRITE EARLY INPUT FILE USING BASE ATMOS INPUT PLUS
C****	*********	EVACUATION TIMING INFORMATION FOR THIS SUBGROUP
C djp		
C djp		WRITE(FILNAM, 1003) SITE, NST, IWS
C dip		
		WRITE(FILNAM, 1003) SITE, NST
	(OPEN (12, FILE=FILNAM, STATUS='NEW',
		CARRIAGECONTROL='LIST')
С		OPEN (12, FILE*FILNAM, STATUS='unknown',
C]		ACCESS= 'APPEND')
C dip		
		WRITE(12,1001) (EARBAS(IREC), IREC=1, NRECE)
		F (SGF(ISG) .GT. 0.0) THEN
		WRITE(12,3001) NST. IG. 11. ONE, 115
		WRITE(12,3002) 112, TDEL
		WRITE(12,3003) ZERO, ZERO, ID, ZERO, ZERO
	E	LSE
		WRITE(12,3001) NST, 16, 11, ONE, 10
		WRITE(12,3002) 10, ZERO
		WRITE(12,3003) ZERO, ZERO, 10, ZERO, ZERO
	E	NDIF
		WRITE(12,3001) NST, IG, 12, ZERO, IO
		RITE(12.3002) 10, ZERO
		RITE(12,3003) ZERO, ZERO, 10, ZERO, ZERO
		RITE(12,3001) NST. 16, 13, ZERO, 10
		/RITE(12.3002) 10. ZERO
		RITE(12,3003) ZERO, ZERO, LASHE2(3).
1111		TTOSH2(3) SHELT2
	-0	LOSE(12)
1000	CONT	TNIE
1000	ENDIE	
4000	CONTINUE	
4000	CLOSELL	
	WRITE(* *)	"MACCS INPUT FILES GENERATED FOR' NST ' SOURCE TERMS
	WRITE / 7 *	MACCS INPUT FILES GENERATED FOR' NST ' SOURCE TERMS
	STOP	inter the trees delicities (and their) source really
	THE COMPLEX	

```
C*****FORMAT STATEMENTS
   21 FORMAT(A, 'STER.OUT')
  101 FORMAT(A, 'ATM. INP')
 201 FORMAT(A, 'EAR.INP')
401 FORMAT(A, 'MACCS.INP')
 1001 FORMAT((A))
C djp
C1002 FORMAT(A, 'ATM', 13, '. INP')
C djp
 1002 FORMAT(A, 'ATM', '_', 12.2, '.1NP')
C
C djp
C1003 FORMAT(A, 'EAR', 13, '-', 11, '-1, 1NP')
C djp
 1003 FORMAT(A, 'EAR', '_', 12.2, '. INP')
C
C djp
C1004 FORMAT(A, 'FAR', 13, '-', 11, '-1. INP')
C dip
 1004 FORMAT(A80)
C djp
 1005 FORMAT(A80)
C djp
                    2001 FORMAT( '***
            1.41
     1
             /'RDATNAM2001 ''SOURCE TERM-',13.3.', GROUP-',13.3.'''',
             11+1
            TIME AFTER ACCIDENT INITIATION WHEN THE ACCIDENT '.
      4
             'REACHES GENERAL EMERGENCY'
      5
            /'* CONDITIONS (AS DEFINED IN NUREG-0654), OR WHEN PLANT '.
      6
              'PERSONNEL CAN RELIABLY
            / * PREDICT THAT GENERAL EMERGENCY CONDITIONS WILL BE '.
      8
              'ATTAINED',
      9
             1. ..
      A
      8
             /'RDOALARMOO1 ', F10.0.
             1141
             / * SELECTION OF RISK DOMINANT PLUME',
      0
             11+1
      £
             /'RDMAXR1S001 ',110.
      5
             11+
      G
             /'* REFERENCE TIME FOR DISPERSION AND RADIOACTIVE DECAY'.
      н
             1141
             /'RDREFTIM001 ',2F10.2,
             110
      K
             /'* NUMBER OF PLUME SEGMENTS THAT ARE RELEASED',
             1 ***
      M
             /'RDNUMREL001 ', 110,
      N
             11+
             / HEAT CONTENT OF THE RELEASE SEGMENTS (W) '
      p
             / * A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS'.
      0
             1 . * :
      R
             / 'RDPLHEATOO1 ',1P2E10.2)
      Š
  2002 FORMAT( '*
             / ** HEIGHT OF THE PLUME SEGMENTS AT RELEASE (M) '.
             / * A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS'.
             1 . . .
             /'RDPLH1TE001 '.2F10.0,
      4
             1 . *
      5
             / * DURATION OF THE PLUME SEGMENTS (S)'
      6
              / * A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS .
      7
             1.41
      8
             / 'RDPLUDUR001 '.2F10.0.
      9
             11+
      A
             /'* TIME OF RELEASE FOR EACH PLUME (S AFTER SCRAM)'.
      B
              /'* A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS'.
```

```
D
           1181
           / 'RDPDELAYDO1 ', 2F10.0)
2003 FORMAT( '*'
           / * RELEASE FRACTIONS FOR ISOTOPE GROUPS IN RELEASE .
           /**',
/** SOURCE TERM-',13.3.', GROUP-',13.3.
            1141
    4
            / * ISDTOPE GROUPS: XE/KR I CS TE SR RU '.
             'LA CE DA',
            / 'RDRELFRCDO1', 1P9E9.2)
2004 FORMAT ( 'RDRELFRC002', 19989.2.
3001 FORMAT ( ****************
                                    / * EMERGENCY RESPONSE SCENARIO'.
           1.81
            /'EZEANAM2001 ''SOURCE TERM-',13.3.
            . GROUP-', 13.3, '-', 11, '''
    1
    4
            / ** FRACTION OF THE TIME THIS SCENARIO AFFECTS ...
    5
            110
    8
           /'EZWIFRACOOI .F6.4.
           111
    8
            / ** LAST RING IN THE MOVEMENT ZONE'.
    D
            1.0
            /'EZLASMOV001 ',15)
3002 FORMAT( '*
            /'* FIRST SPATIAL INTERVAL IN THE EVACUATION ZONE'.
            1.81
            /'EZINIEVADDI 1 (ND INNER SHELTER ZONE)'.
     4
            /** DISTANCE INTERVALS OF THE THREE EVACUATION ZONES'.
     1
            1141
     6
            /'EZLASEVADO1 0 0'.IE.
     R
            / * EVAC DELAY TIMES FOR THE THREE EVAC DELAY RINGS ...
     Q
            / * TIME FOR PEOPLE TO GET MOVING AFTER BEING WARNED'.
     à.
            11+1
    B
            /'EZEDELAYOO1 0. 0. '.FB.0)
 3003 FORMATI ********
            1 **
                        SHELTER RESPONSE DEFINITION'.
    1.
            1 ...
            /'* TIME TO TAKE SHELTER (INNER SHELTER ZONE) (S)'.
            1. * 1
     4
            /'SRTTOSH1001 '.F10.D.
     \tilde{\mathbf{x}}
     6
            114
            /'* SHELTER DURATION (INNER SHELTER ZONE) (S)'.
            110
     8
            /'SRSHELT1001 ',F10.0.
     9
     Å
            / * LAST RING (OUTER SHELTER ZONE) '.
     B
            110
            /'SRLASHE2001 ', 110,
            16
            / * TIME TO TAKE SHELTER (OUTER SHELTER ZONE) (S) .
            11.8
            /'SRTTDSH2001 ',F10.0,
     R
            /'* SHELTER DURATION (OUTER SHELTER ZONE) (S)'.
            1141
            /'SRSHELT2001 ',F10.0,
     END
FUNCTION CLIPIT (NAME, VALUE, VALMIN, VALMAX)
C*****COMPARES VALUE TO A RANGE (VALMIN TO VALMAX)
```
C.4 Source Code Listing for STER2_IN.F

PROGRAM STER C*****READS PARTITIONED SOURCE TERM INFORMATION AND TIMING C*****INFORMATION AND GENERATES MACCS INPUT RECORDS FOR RELEASE C*****DESCRIPTION FOR ATMOS AND FOR EMERGENCY RESPONSE DESCRIPTION C*****FOR EARLY (SUBGROUP INFORMATON) C***** T1-TESCAPE TEVAC < SUBGROUP 1 = CANANA SUBGROUP 2 = T1-TESCAPE < TEVAC < T1+DT1 SUBGROUP 3 = T1+DT1 < TEVAC < T2 SUBGROUP 4 = T2 < TEVAC ***** ***** SUBGROUP 4 = C*****(TIMES IN SECONDS FROM SCRAM UNLESS SPECIFIED OTHERWISE) THIS PROGRAM MODIFIED 9 MARCH 89 BY D. CHANIN TO CORRECT AN ERROR IN THE CALCULATION OF THE SHELTER SCENARIO RESULTS. THE CALCULATION OF TTOSH2, THE TIME TO TAKE SHELTER. IS BEING CHANGED. PREVIOUS TO THIS CHANGE, TTOSH2 WAS CALCULATED AS 2700 + TW. THE CURRENT STER CODE USES A VALUE OF 2700 FOR TTOSH2 (INDEPENDENT OF TW) THE EARLY MODULE DEFINES THE TIME TO TAKE SHELTER AS MEASURED FROM OALARM. NOT SCRAM TIME PARAMETER (MAXSG=4, MAXFRC=9, MAXPUF=2, MAXREC=1000, MAXLEN=80) C djp CHARACTER*80 DUMMY Cdjp CHARACTER*4 SITE CHARACTER*(MAXLEN) FILNAM, TITLE, ATMBAS(MAXREC), EAREAS(MAXREC) DIMENSION DEVAC(D:MAXSG), TEVAC(D:MAXSG), TW(D:MAXSG), SGCP(MAXSG), SGF(MAXSG), REFTIM(MAXPUF) FRACP(MAXSG), LASMOV(MAXSG), LASEVA(MAXSG), LASHE2(MAXSG), TTTS(MAXSG), TTOSH2(MAXSG). STI(MAXFRC, O:MAXSG), ST2(MAXFRC, O:MAXSG) ELEV(0:MAXSG), T1(0:MAXSG), DT1(0:MAXSG), T2(0:MAXSG), 6 DT2(0:MAXSG), E1(0:MAXSG), E2(0:MAXSG) DATA [DOMIN / 1 /, REFTIM / 0.5, 0.5 /, NPUFFS / 2 /, 1 FRACP / 4*0.3333 /, 10 / 0 /, 11 / 1 /, 12 / 2 /, 13 / 3 /.

1

.

```
ZERD / 0.0 /, ONE / 1.0 /, 112 / 12 /, 115 / 15 /, LASMOV / 0, 0, 15, 0 /, LASEVA / 0, 0, 10, 0 /,
     3
     a.
            LASHE2 / 0, 12, 12, 0 /
     5
             TTOSH2 / 0.0, 2700., 2700., 0.0 /
       WRITE(6.*) 'ENTER 2 TO 4 LETTER SITE ABBREVIATION'
       READ(5,1001) SITE
      WRITE(FILNAM, 21) SITE
      OPEN (7, FILE=FILNAM, STATUS='NEW', CARRIAGECONTROL='LIST')
       WRITE(7,*) 'ENTER 2 TO 4 LETTER SITE ABBREVIATION
       WRITE(7,1001) SITE
       WRITE(6,*) 'ENTER EVACUATION ESCAPE TIME (SEC)'
WRITE(7,*) 'ENTER EVACUATION ESCAPE TIME (SEC)'
      READ(5,*) TESC
WRITE(7,*) TESC
       WRITE(6,*) 'ENTER EVACUATION DELAY TIME (SEC)'
       WRITE(7,*) 'ENTER EVACUATION DELAY TIME (SEC)'
      READ(5,*) TDEL
WRITE(7,*) TDEL
C*****INITIALLIZE COUNTER FOR NON-ZERO GROUPS
      NST=D
C*****LOAD ATMOS BASE CASE INPUT RECORDS
       NRECA=0
       WRITE(FILNAM, 101) SITE
      OPEN (2, FILE=FILNAM, STATUS='OLD')
  100 CONTINUE
       NRECA=NRECA + 1
       IF (NRECA .GT MAXREC) THEN
WRITE(6,*) '>>>>INCREASE PARAMETER MAXREC
          STOP
       ENDIF
       READ(2.1001, END=200) ATMBAS(NRECA)
       GO TO 100
  200 CONTINUE
       CLOSE(2
       NRECA=NRECA - 1
       NRECE=D
       WRITE(FILNAM, 201) SITE
       OPEN (3, FILE=FILNAM, STATUS='OLD')
  300 CONTINUE
       NRECE=NRECE + 1
       IF (NRECE .GT. MAXREC) THEN
  WRITE(6,*) '>>>>INCREASE PARAMETER MAXREC'
           STOP
       ENDIF
       READ(3,1001,END=400) EARBAS(NRECE)
S*****LOCATE WIND-SHIFT INDEX
       IF (INDEX(EARBAS(NRECE), 'MIIPLUMEOOI') .GT. 0) THEN
           READ(EARBAS(NRECE)(12:MAXLEN),*) IWS
       ENDIF
       GO TO 300
  400 CONTINUE
       CLOSE(3)
       NRECE-NPECE - 1
       IF ((NRECA .GT. MAXREC) .OR. (NRECE .GT. MAXREC)) THEN
WRITE(6,*) '>>>>INCREASE PARAMETER MAXREC'
           STOP.
       ENDIF
C dip
C djp OPEN JCL FILE
       OPEN (13, 'JCL.DAT', STATUS='OLD')
C djp
C*****OPEN FILE CONTAINING PARTITIONED SOURCE TERM AND TIMING INFORMATION
       WRITE(FILNAM, 401) SITE
```

Mar

C-18

1

2

```
OPEN (1, FILE=FILNAM, STATUS='OLD')
C*****READ TITLE
      READ(1,1001) TITLE
WRITE(*,*) 'TITLE=', TITLE
WRITE(7,*) 'TITLE=', TITLE
C*****READ NUMBER OF RELEASE CLASSES (7 OR 9) AND NUMBER OF SOURCE TERM GROUPS
      READ(1,*) NRC, NG
WRITE(*,*) 'NUMBER OF RELEASE CLASSES=', NRC
WRITE(*,*) 'NUMBER OF RELEASE CLASSES=', NRC
WRITE(*,*) 'NUMBER OF SOURCE TERM GROUPS=', NG
      WRITE(7.*) 'NUMBER OF SOURCE TERM GROUPS=', NS
      WRITE(* *
      WRITE(7.*
C*****LOOP OVER SOURCE TERM GROUPS
      DO 4000 1G=1,NG
C*******READ GROUP INDEX, NUMBER OF SUBGROUPS FOR THIS GROUP.
C*******GROUP FREQUENCY, AND GROUP CONDITIONAL PROBABILITY
READ(1,*) IGROUP, NSG, GFRQ, GCPRB
C*******CHECK FOR NON-ZERO GROUP FREQUENCY TO READ ADDITIONAL
C*******RECORDS FOR THIS GROUP
        IF (GFRQ .GT. 0.0) THEN
                 NST=NST + 1
0///
                WRITE(*,*) 'GENERATING SOURCE TERM ', NST
WRITE(7,*) 'GENERATING SOURCE TERM ', NST
C///
C*********READ RELEASE/EVACUATION START DIFFERENCE (T1-TEVAC)
C*********EVACUATION START TIME, WARNING TIME, START OF PUFF RELEASE,
C**********DURATION OF PUFF RELEASE, START OF TAIL RELEASE,
C*********DURATION OF TAIL RELEASE, RELEASE ELEVATION (M),
READ(1.*) DEVAC(0), TEVAC(0), TW(0),
T1(0), DT1(0), T2(0), DT2(0), ELEV(0),
E1(0), (ST1(1.0), I=1,NRC),
     1
     2
                        E2(0), (ST2(1,0), I=1, NRC)
C**********SET DURATIONS IN RANGE 60 - 86400 S AND PRINT A MESSAGE IF
C****************** THE VALUE HAS BEEN MODIFIED
C/// DT1(0)=CLIPIT ('DT1', DT1(0), 60., 86400.)
C/// DT2(0)=CLIPIT ('DT2', DT2(0), 60., 86400.)
C**********SET RELEASE 2 START TIME TO BEGIN AFTER RELEASE 1 IS COMPLETED
ALLOWD=3.6E5
                  RFPNT2=T2(0) + REFTIM(2) * DT2(0)
                  DIFRNC=RFPNT2 - T1(0)
C**********CALCULATE THE MAXIMUM ALLOWABLE VALUE FOR T2
                  IF (DIFRNC .GT. ALLOWD) THEN
VALMAX=T2(0) - (DIFRNC - ALLOWD)
C///
                  ELSE
                     VALMAX=1.E35
                  ENDIF
C/// T2(0)=CLIPIT ('T2', T2(0), T1(0)+DT1(0), VALMAX)
C***********LOOP OVER SUBGROUPS FOR CURRENT GROUP
            DO 1000 ISG=1.NSG
C*************FOR SUBGROUP DIVIDED BY SUM OF ALL SOURCE TERM FREQUENCIES
                READ(1,*) ISGRP, SGF(ISG), SGCP(ISG), SGCPT
IF (ISG .EQ. 3) GO TO 1000
                NST=NST + 1
ELEV(156)=0.0
                 TW(1SG)=0.0
                 E1(ISG)=0.0
                 E2(1SG)=0.0
                 T1(ISG)=0.0
```

```
T2(1SG)=0.0
              DT1(156)=0.0
              DT2(ISG)=0.0
              DO 800 IFRC=1,NRC
                 ST1(IFRC, ISG)=0.0
                 ST2(IFRC, ISG)=0.0
 800
              CONTINUE
              WRITE(*,*) 'GENERATING SOURCE TERM '. NST
WRITE(7,*) 'GENERATING SOURCE TERM '. NST
      *******CHECK FOR NON-ZERO SUBGROUP FREQUENCY TO READ ADDITIONAL
      IF (SGF(ISG) .GT, 0.0) THEN
          ******READ RELEASE/EVACUATION START DIFFERENCE (TI-TEVAC).
         *******EVACUATION START TIME, WARNING TIME, START OF PUFF RELEASE.
          ******DURATION OF PUFF RELEASE, START OF TAIL RELEASE,
*******DURATION OF TAIL RELEASE, RELEASE ELEVATION (M),
         ******TAIL ENERGY RELEASE RATE (w), NRC RELEASE FRACTIONS FOR TAIL
                READ(1.*) DEVAC(ISG), TEVAC(ISG), TW(ISG), T1(ISG),
DT1(ISG), T2(ISG), DT2(ISG), ELEV(ISG),
E1(ISG), (ST1(1,ISG),I=1,NRC),
E2(ISG), (ST2(1,ISG),I=1,NRC)
              ELSE
C****
              ***SET EVACUATION VALUES WHEN SUBGROUP IS EMPTY
C////
                      TW(ISG)=TW(O)
                 IF (ISG .EQ. 1) THEN
TEVAC(ISG)=T1(ISG) - TESC - 1800
                 ELSE IF (ISG .EQ. 2) THEN
                 TEVAC(ISG)=T1(ISG)
ELSE IF (ISG .EQ. 3) THEN
                    TEVAC(ISG)=T2(ISG)
                 ELSE
                    TEVAC(1SG)=T1(1SG) + TDEL
                 ENDIF
                 DEVAC(ISG)=T1(ISG) - TEVAC(ISG)
              ENDIF
     ********SET DURATIONS IN RANGE 60 - 86400 S AND PRINT A MESSAGE IF
       ********THE VALUE HAS BEEN MODIFIED
ALLOWD=3.6E5
              RFPNT2=T2(ISG) + REFTIM(2) * DT2(ISG)
              DIFRNC=RFPNT2 - T1(ISG)
             **CALCULATE THE MAXIMUM ALLOWABLE VALUE FOR T2
IF (DIFRNC .GT. ALLOWD) THEN
**********
                 VALMAX=T2(ISG) - (DIFRNC - ALLOWD)
              ELSE
                 VALMAX=1.E35
              ENDIF
              T2(ISG)=CLIPIT ('T2', T2(ISG), T1(ISG)+DT1(ISG), VALMAX)
C************DEFINE SHELTER DURATION AS 12 HR
              SHELT2=43200
WRITE(FILNAM,1002) SITE, NST
OPEN (11. FILE=FILNAM, STATUS='NEW',
                    CARRIAGECONTROL='LIST')
C djp
              REWIND(13)
 50
              READ(13,1005,END=60) DUMMY
                    ILOC=INDEX(DUMMY,'0@')
                   IF(ILOC.G" O) THEN
```

DUMMY(ILOC:ILOC+1) = FILNAM(9:10) ENDIF WRITE(11,1004) DUMMY GOTO 50 60 CONTINUE C djp WRITE(11,1001) (ATMBAS(IREC), IREC=1, NRECA) WRITE(11,2001) NST, IG, TW(15G), IDOMIN, (REFTIM(1),1=1,NPUFFS), NPUFFS, E1(15G), E2(15G) 2 WRITE(11,2002) ELEV(ISG), ELEV(ISG), DT1(ISG), DT2(ISG), T1(ISG), T2(ISG) WRITE(11,2003) NST, IG, (ST1(1.ISG),1=1,NRC) WRITE(11,2004) (ST2(1.ISG),1=1,NRC) 1 CLOSE(11) *WRITE EARLY INPUT FILE USING BASE ATMOS INPUT PLUS ********** C djp WRITE(FILNAM, 1003) SITE, NST, IWS C djp C djp WRITE(FILNAM, 1003) SITE, NST OPEN (12, FILE=FILNAM, STATUS='NEW'. CARRIAGECONTROL*'LIST') OPEN (12, FILE=FILNAM, STATUS='unknown'. 00 ACCESS= 'APPEND') C djp WRITE(12,1001) (EARBAS(IREC),IREC=1,NRECE) IF (SGF(ISG) .GT. 0.0) THEN WRITE(12,3001) NST. 16, 11, ONE, 115 WRITE(12,3002) 112, TDEL WRITE(12,3003) ZERD, ZERO, 10, ZERO, ZERO ELSE WRITE(12,3001) NST, IG, II, ONE, IO WRITE(12,3002) IO, ZERO WRITE(12,3003) ZERO, ZERO, IO, ZERO, ZEKO ENDIF WRITE(12,3001) NST, IG, 12, ZERO, 10 WRITE(12,3002) 10, ZERO WRITE(12,3003) ZERO, ZERO, ID, ZERO, ZERO WRITE(12,3001) NST, IG, 13, ZERO, IO WRITE(12,3002) 10, ZERO WRITE(12,3003) ZERO, ZERC, LASHE2(3), TTDSH2(3), SHELT2 CLOSE(12) CONTINUE ENDIF 4000 CONTINUE CLOSE(1) WRITE(*.*) 'MACCS INPUT FILES GENERATED FOR', NST, ' SOURCE TERMS' WRITE(7.*) 'MACCS INPUT FILES GENERATED FOR', NST, ' SOURCE TERMS' C*****FORMAT STATEMENTS 21 FORMAT(A, 'STER.OUT') 101 FORMAT(A, 'ATM.INP') 201 FORMAT(A, 'EAR.INP') 401 FORMAT(A, 'MACCS.INP') 1001 FORMAT((A)) C1C02 FORMAT(A.'ATM',13.'.INP') 1002 FORMAT(A, 'ATM', '_', 12.2.', INP') C djp

```
C1003 FORMAT(A. 'EAR', 13, '-', 11, '-1, INP')
C dip
 1003 FORMAT(A, 'EAR', ', 12.2, '.1NP')
C UJP
C1004 FORMAT(A, 'EAR', 13, '-', 11, '-2. INP')
C djp
 1004 FORMAT(ASU)
C djp
1005 FORMAT(A80)
C djp
 2001 FORMATI "******************************* RELEASE DATA BLOCK *********************
            1. **
            /'RDATNAM2DD1 ''SOURCE TERM-',13.3.', GROUP-',13.3.'''',
            /'* TIME AFTER ACCIDENT INITIATION WHEN THE ACCIDENT '.
             'REACHES GENERAL EMERGENCY'
            /'* CONDITIONS (AS DEFINED IN NUREG-0654), OR WHEN PLANT '.
            'PERSONNEL CAN REL'ABLY',
/'* PREDICT THAT GENERAL EMERGENCY CONDITIONS WILL BE ',
     8
              'ATTAINED',
            118
            /'RDOALARMOOL ',FID.D.
            118
            /'* SELECTION OF RISK DOMINANT PLUME'.
            11.81
            /'RDMAXR15001 ',110,
             /'* REFERENCE TIME FOR DISPERSION AND RADIOACTIVE DECAY'.
            114
             / RDREFTIMOO1 ',2F10 2,
             / * NUMBER OF PLUME SEGMENTS THAT ARE RELEASED'.
             1 . * *
     М
             / RDNUMRELOOI ',110.
     N
            1.*
             / * HEAT CONTENT OF THE RELEASE SEGMENTS (W) '
             / * A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS ..
            1141
      2
             / RDPLHEATDO1 ', IP2E10.2)
 2002 FORMAT( '*
             / * HEIGHT OF THE PLUME SEGMENTS AT RELEASE (M) '.
             /'* A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS'.
             1181
             /'RDPLH1TE001 ',2F10.0.
             11+
             / * DURATION OF THE PLUME SEGMENTS (S) '
      6
             / * A VALUE SPECIFIED FOR EACH OF THE RELFASE SEGMENTS'.
             Tixi
      R
             / RDPLUDUR001 ',2F10.0.
             114
      A
             / * TIME OF RELEASE FOR EACH PLUME (S AFTER SCRAM) *
             /'* A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS'.
             1101
             / 'RDPDELAY001 ',2F10.0)
  2003 FORMATC'*
             / * RELEASE FRACTIONS FOR ISOTOPE GROUPS IN RELEASE .
             1:41
            14
                  SOURCE TERM-1,13.3,1, GROUP-1,13.3,
             1141
             .* ISOTOPE GROUPS: XE/KR I CS TE SR RU "
               'LA CE BA',
             114
             /'RDRELFRC001', 1P9E9.2)
  2004 FORMAT( 'RDRELFRC002', 1P9E9.2.
```

. 0

1.

8 0

1.40

Q

0. 0.

30

0

· See of

:0

*

-

0

0

0.2

.

1

0

0

.

0

```
3001 FORMAT( ******
                                                           *******
            1 . *
                        EMERGENCY RESPONSE SCENARIO',
            11+1
            /'EZEANAM2001 'SOURCE TERM-',13.3.
            , GROUP+',13.3,'+',11,''',
     1
     4
            /'* FRACTION OF THE TIME THIS SCENARIO AFFECTS .
     5
            1.41
     若
            /'EZWTFRACODI ',F8.4,
            110
     R
            / ** LAST RING IN THE MOVEMENT ZONE .
     D
            1.4.
            /'EZLASMOV001 ',15)
    1
 3002 FORMAT( '*
            7"* FIRST SPATIAL INTERVAL IN THE EVACUATION ZONE',
            1149
            /'EZINIEVADO1 1 [ND INNER SHELTER ZONE]'.
            1 . *
            /'* DISTANCE INTERVALS OF THE THREE EVACUATEON LON'S'.
     5
     6
            1741
            /'EZIASEVA001 0 0 ', 16,
     8
            / * EVAC DELAY TIMES FOR THE THREE EWAD DELAY RUGGE! .
    9
     A
            /'* TIME FOR PEOPLE TO GET MOVING AFTER BEING WARNED',
            1. ..
     8
            /'EZEDELAYOO1 0. 0. '.F8.0)
                                                            *******
 3003 FORMAT( ********
            110
                         SHELTER RESPONSE DEFINITION'.
            Time
            / " TIME TO TAKE SHELTER (INNER SHELTER ZONE) (S)".
            1 ***
     d
            /'SRITOSHIGO1 ',FIO.O.
     5
            1 ..
     8
            / * SHELTER DURATION (INNER SHELTER ZONE) (S) .
     7
            110
     8
            /'SRSHELT1001 ',F10.0,
     9
            1.4
     A
            / ** LAST RING (OUTER SHELTER ZONE)',
     8
            11+1
     C
            /'SRLASHE2001 '.110,
     0
            114
     Ē
            / * TIME TO TAKE SHELTER (DUTER SHELTER ZONE) (S)'.
     8
            1141
     6
            /'SRTTOSH2001 ',F10.0.
     H
            110
            /'* SHELTER DURATION (OUTER SHELTER ZONE) (S)'.
            1 * * *
     K
            /'SRSHELT2001 '.F10.0.
     1
     M
     END
      FUNCTION CLIPIT (NAME, VALUE, VALMIN, VALMAX)
C*****COMPARES VALUE TO A RANGE (VALMIN TO VALMAX)
C*****VALMIN <= VALUE <= VALMAX --- CLIPIT=VALUE
C*****VALUE < VALMIN OR VALUE > VALMAX ---CLIPIT=VALMIN OR VALMAX
      CHARACTER *(*) NAME
C
C
      IF (VALUE .LT. VALMIN) THEN
         CLIFIT=VALMIN
WRITE(*,*)'', NAME, 'RESET FROM', VALUE,
'TO MINIMUM:', VALMIN
WRITE(7,*)'', NAME, 'RESET FROM', VALUE,
'TO MINIMUM:', VALMIN
     1
      ELSE IF (VALUE .GT. VALMAX) THEN
```

```
CLIPIT+VALMAX
WRITE(*,*)'', NAME, 'RESET FROM', VALUE,
I TO MAXIMUM: ', VALMAX
WRTTETT''', ', NAME, 'RESET FROM', VALUE
I TO MAXIMUM: ', VALMAX
ELEE
CLIPIT+VALUE
ENDIF
RETUAN
TWO
```

C.5 Source Code Listing for RISK

PROGRAM RISK

```
C*****READS PARTITIONED SOURCE TERM FREQUENCY INFORMATION AND
C*****MACCS DU PUT RECORDS FOR MEAN TOTAL EARLY FATALITIES, TOTAL CANCER
C*****FATALITIE", 50 AND 1000 MILE POPULATION DOSES, AND TOTAL COST.
         PARAMETER (MAXSG=4, MAXFRC=9, MAXPUF=2, MAXREC=1000, MAXLEN B0)
C djp
         CHARACTER'200 LINE
         REAL ERLEAT
C djp
          CHARACTER*4 SITE
          CHARACTER*(MAXLEN) FILNAM, TITLE, ATMBAS(MAXREC), EARBAS(MAXREC)
DIMENSION EVAC(DIMAXSG', TEVAC(DIMAXSG), TW(DIMAXSG),
                          SGCP(MAXSQ) SF(MAXSG), REFTIM(MAXPUF),
FRACP(MAXSG), LASMOV(MAXSG), LASEVA(MAXSG)
LASHE2(MAXSG) TTTS(MAXSG), TTSH2(MAXSG)
         3 LASHE2(MAXSG) TTTS(MAXSG), TTDSH2(MAXSG),
4 S(1(MAXFRC,0:MAXSG), ST2(MAXFRC,0:MAXSG),
5 ELEV(0:MAXSG), T1(0:MAXSG), DT1(0:MAXSG), T2(0:MAXSG),
6 DT2(0:MAXSG), E1(0:MAXSG), E2(0:MAXSG),
DATA 1DOMIN / 1 /, REFTIM / 0.0, 0.5 /, NPUFFS / 2 /,
1 FRACP / 4*0.3333 /, 10 / 0 /, 11 / 1 /, 12 / 2 /, 13 / 3 /,
2 S(0) / 0.0 /, ONE / 1.0 /, 112 / 12 /, 115 / 15 /,
3 LASMOV / 0, 0, 15, 0 /, LASTVA / 0, 0, 10, 0 /,
4 LASHE2 / 0, 12, 12, 0 /,
5 TTDLA2 / 0.0, 2700, 2700, 0.0 /
           WRITE(3.*) 'ENTER 2 TO 4 LETTER SITE ARBREVIATION'
          READ(5,1001) SITE
WRITZTEILNAM, 215 SITE
           (PE) (7. FILE=FILNAM, STATUS 'NEW', CARRIAGECONTROLO'LIST')
 C*****INITIALLIZE COUNTER FOR NON-ZERO GROUPS
           NST=0
           NRECA#0
           MIECANNRECA - 1
           EARTOL=0.0
           CANTOL=0.0
           DOSITCL=0.0
COSTIDL=0.0
 C dip.
C*****UPEN FILE CONTAINING PARTICIONED SJURCE TERM GROUP FREQUENCIES
           WRITE(FILNAM, 401) SITE
            OPEN (1, FILE=FILNAM, STATUS+'OLG')
  CHARARPEAN TITLE
           READ(1,1001) 71TLE
```

```
WRITE(7.*) TITLE
C*****READ NUMBER OF RELEASE CLASSES (7 OR B) AND NUMBER OF SOURCE TERM GROUPS
     READ(1.*) NRC, NG
WRITE(7.*) 'NUMBER OF SQURCE TERM GROUPS=', NG
     WRITE(7,*)
C*****LOOP OVER SOURCE TERM GROUPS
     DO 4000 16-1,NG
C******READ GROUP INDEX, NUMBER OF SUBGROUPS FOR THIS GROUP,
C*******GROUP FREQUENCY, AND GROUP CONCITIONAL PROBABILITY
READ(1.*) IGROUP, NSG, GFRO, JCPRB
C*******CHECK FOR NON-ZERD GROUP FREQIENCY TO READ ADDITIONAL
C********RECORDS FOR THIS GROUP
        15 (GFR0 .GT. 0.0) THEN
WRITE(7,1004) IG, GFR0, GCPRB
1004 FORMAT(T4,12,3X,1P,E10,4,16X,1P,E10,4)
C***********SKIP OVER RELEASE/EVACUATION START DIFFERENCE (T1-10VAC)
B E2(0). (ST2(1.0).1=1.NRC)
C********LODP DVER SUBGROUPS FOR CURRENT GROUP
          00 1000 ISG#1,NSG
C**********************FOR SUBGROUP DIVIDED BY SUM OF ALL SOURCE TERM FREQUENCIES
             READ(1.*) ISGRP, SGF(ISG), SGCP(ISG), SGCPT
 C***********CHECK FOR NON-ZERO SUBGROUP FREQUENCY TO READ MACCS RISK
 1F (SGF(15G) .GT. 0.0) THEN
                NSTENST + 1
       ********READ RELEASE/EVACUATION START DIFFERENCE (TI-TEVAC)
READ(1.*) DEVAC(15G), TEVAC(15G), TW(15G), 11(15G),
DT1(15G), T2(15G), DT2(15G), ELEV(15G).
                         £1(15G), (ST1(1,15G),1=1,NRC),
 00 10 1=1,100000
                   LINE
                   READ(12,1001,END=2) LINE
                   1F (INDEX(LINE, 'HEALTH EFFECTS CASES') .GT. 0) THEN
READ(12,2001) ERLFAT, CANFAT, DOSE50, DOSE100, COST
  15X, 1P, EB, 2, 5X, 1P, EB, 2, 5X, 1P, EB, 2, 5X, 1P, EB, 2
                      EARTOL=LARIOL*(SGF(ISG)*ERLFAT)
```

	CARTOL #CANTOL* [SGF(1SG)*CANFAT) DOCLTOL*DOSSTOL*(SGF(1SG)*DOSE50*100.0) DOS1TOL*DOS1TOL*(SGF(1SG)*DOSE100*100.0) COSTTOL*COSTOL*(SGF(1SG)*COST) GGTD 2
1.1.1	ENDIF
1.0	CONTINUE
1.1	CLOSE (12)
	LINE CONTRACT OF ANY INCLUSION CONTRACT
-	WMITE(7,2003) 150, 50F(156), SOCP(156), SOCPT
enna	FURMAL (10,11,04,14,10,4,04,14,10,4,04,14,10,4)
inhh	CRUT
1000	ENDIE
4655	Print fund
4000	WRITE(7 2002) FARTOL CANTOL DESETOL DOLLAR CONTOL
2008	FORMAT(// TED IP FR 2 EV IP FR 2 EV ID FR 5 EV ID FR 5 EV ID FR 5
	CLOSE(7)
	CLOSE(1)
	STOP
****	FORMAT STATEMENTS
21	FORMAT(A, 'RISK.DUT')
401	FORMAT(A, 'MACCS, INP')
1001	FORMAT(A)
1003	FORMAT(A, 'MACCS, ', 12, 2)
	END

-

APPENDIX D

APET MODIFICATIONS USED IN MODELING POTENTIAL IMPROVEMENTS

APPENDIX D

APET MODIFICATIONS USED IN MODELING POTENTIAL IMPROVEMENTS

This appendix details the modifications that were made to the APEIs in modeling the potential improvements discussed in the main body of the report.

D.1 Improved HIS (Stand-Alone Improvement)

For PDSs 1, 3, 7, and 8, which are SBO sequences, ac power is not available. The hardware unavelability of the improved HIS in this case is assumed to be 0.05. The first APET question that is modified is Question 21, which asks whether the operators turn on the HIS. In the base case, this question simply asked whether the operators positioned the HIS control switch to ON; it did not actually question whether the ignitors operated. For the improvement analysis, the meaning of this question was changed to include both operator action to turn on the HIS and ignitor operation. Along with this change in meaning, the HIS availability for the SBO PDSs was changed to 0.80. This is simply the probability that dc backup power is available (assumed to be 0.95) multiplied by the probability that the operators turn on the HIS when required (taken to be 0.84 from base case APET). Actually, the human error probability in the base case SBO APETs was 0.5, based on operator training not to actuate equipment known to be inoperable (recall that the HIS required ac power in the base case). With a backup source of dc power to the HIS, this quantification is no longer valid, so the human error probability was taken from the PDSs that have ar power. In PDS 10 (long-term ATWS), which has ac power, the hardware availability was assumed to be 1.0 (either ac or dc power can be used to power the ignitors), thereby reducing unavailability to the base case human error probability of 0.16.

The next APET question to be modified is Question 27, which addresses the status of the HIS prior to vessel breach. The base case quantification of this event was modified so that, if the HIS is turned on in Question 21, it is always on prior to vessel breach. Conversely, ^{**} the HIS is not turned on in Question

0-3

21, then it is assumed to be off prior to vessel breach.

Question 28, which asks whether RPV injection is restored during core degradation, is the next APET event to be modified. The base case APET modeled human error dependencies in several places. In this question, for example, there is a dependency between failure to turn the HIS off when required and failure to establish RPV injection from available systems. Case 6 was altered by adjusting the split fraction for failure to recover injection upward to that used for Case 7 in the base case. This was done because it is now an error to not turn on the HIS during an SBO. Similarly, the split fraction for Case 7 was adjusted downward, because turning the HIS on during SBO is no longer treated as an error. Finally, the branch structure and split fractions for Case 8 were interchanged with those of Case 9 and the HIS dependency on ac power was removed.

Question 41 asks whether diffusion flames consume the hydrogen released prior to vessel breach. For the SBO PDSs (1, 3, 7, and 8), the HIS ac power dependency removed from Case 4 and Case 5 was modified by including failure of the HIS in an AND relationship with the other two questions. No modifications were required for PDS 10 (slow ATWS).

Question 84 asks whether hydrogen ignition occurs in the containment at vessel breach. This question was modified by adding operation of the HIS in an OR relationship with the other questions in Case 2.

Question 85 is similar to Question 84, except that it questions ignition following vessel breach. Case 2 was modified analogously to Question 84 to include HIS operation.

Question 86 asks whether there is a hydrogen detonation in the wetwell following vessel breach. Case 2 was modified to remove the HIS dependency on ac power.

Question 110 addresses late ignition of hydrogen in the containment. Case 3 was modified to include the HIS as a viable ignition source in an OR relationship with ac power.

-

Question 111 asks whether there is a late hydrogen detonation in the wetwell. Case 2 was modified to remove the HIS dependency on ac power.

Question 114 asks about the peak pressure in containment produced by a late hydrogen burn. Case 2 was modified to remove the HIS dependency on ac power.

Finally, sampling had to be turned off for those question cases that were modified to prevent sampling from overriding the new split fractions. This was done by making the appropriate changes to the sampling definition input file, gxx_pntr.dat.

D.2 Enhanced Depressurization (Stand-Alone Improvement)

For PDSs 1, 3, and 10, only Question 14, which addresses the status of vessel depressurization, had to be modified. For this question, the branch split fraction was adjusted such that the vessel was always depressurized. In PDSs 7 and 8, this same modification was made, but Question 26, which addresses RPV pressure during core degradation, also had to be modified, to remove the dependency of depressurization on the existing dc power system. This modification was not required in the other PDSs, because dc power from the station batteries is always available. No changes had to be made to the sampling definition input file, gxx_pntr.dat, because neither Question 14 nor 26 is sampled in the base case.

D.3 Enhanced Vacuum Breaker Operability (Stand-Alone Improvement)

Questions 54 and 98 address the amount of water in the reactor cavity before and after vessel breach. These questions were modified so that the cavity is always dry, with the exception of PDS 8, where leakage from the recirculation pump seals always results in a wet cavity. The sampling definition files were modified, also, to turn off sampling for Question 54.

r.4 Containment Venting (Stand-Alone Improvement)

Question 22, which addresses containment venting prior to core degradation, was modified for all PDSs such that venting occurs with a probability of 0.95. Questions 103 and 119, which address containment venting after vessel failure, were modified to remove the base case dependency on ac power, but the split fractions were not modified. No modifications had to be made to the sampling input files, because the venting questions were not sampled in the base case.

D.5 Upper Pool Dump (Stand-Alone Improvement)

The only question in the APET that addresses upper pool dump is Question 53. In the base case, the probability of upper pool dump is 1.0 if ac power is available and 0.0 otherwise. To analyze the potential pool dump improvement, this probability was set to 1.0 for all cases. No changes were made to the sampling input files, because Question 53 is not sampled in the base case.

D.6 Combined Improvements - Dry Cavity Case

For the combined sensitivity, the APETs for PDSs 1, 3, 7, and 10 were modified as follows. The improvement to the HIS was modeled as in the individual improved HIS sensitivity with 100% diffusion burn efficiency. A detailed discussion of the necessary APET modifications was presented earlier and will not be repeated here.

The enhanced vessel depressurization was modeled slightly different for the combined sensitivity than in the stand-alone improvement described earlier. For the combined sensitivity, the assumption was made that the reactor vessel was depressurized 95% of the time. The 5% failure to depressurize in PDSs 1, 3, and 7 was due to the unavailability of the backup dc power to the SRV solenoids. For PDS 10, the assumption was made that the operators failed to depressurize the RPV 5% of the time. For PDSs 1, 3, and 10, only the split fractions of Question 14 had to be altered for the vessel to be depressurized 95% of the time. For PDS 7, Question 14 was similarly altered. Additionally, Question 26 of PDS 7 was modified to remove the dependency of depressurization on the existing dc power

system. No changes were made to the sampling definition input file for these modifications, because neither Question 14 nor 26 is sampled in the base case.

Modifications to the APETs that would ensure that the reactor cavity remains dry at the time of vessel breach are identical to those for the separate dry cavity sensitivity analysis presented earlier.

The final modification for the combined sensitivities was an increase in the probability that the operators get the FWS aligned so that low-pressure injection into the RPV occurs in fast SBO sequences with the FWS available and either no power recovery or all other emergency injection system failure. In the base case, if the operators made no previous errors, the probability of getting the FWS aligned was 0.872. If the operators had made an error, the probability was 0.744. In the combined sensitivity, the split fractions for Question 28, cases 8 and 9, were modified such that the probability of getting the FWS aligned to 0.95 regardless of whether or not the operators had made a previous error during the sequence. Because this modification affects only the fast SBO PDSs, only the APETs for PDSs 1, 3, and 7 were modified. No modifications were made to the sampling input file for this improvement, as Question 28, cases 8 and 9, are not sampled in the base case.

D.7 Combined Improvements - Wet Case

The APET modifications were identical to those for the combined improvement sensitivity described in Section D.6 except Questions 54 and 98, which address the amount of water in the reactor cavity prior to and at vessel breach, were unmodified from the base case ACTs.

AND FORM 325 (2 80) ARCM 1102 3201, 3262 BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)	NUREG/CR-5529 EGG-2594
2 THIS AND SUBTILE	1000 - 2.04
Modes, and Potential Improvements in Performance	3 DATE REPORT PUBLISHED MONTH VEAN
	JADUATY 1991 4 FIN OR GRANT NUMBER
6 AUTHORISI	A6885
J.A. Schroeder, D.J. Pafford, D.L. Kelly, K.R. Jones, R.J. Dallman	Technical 7. PERIOD COVERED (Inclusion Dates)
B. PERFORMING ORGANIZATION - NAME AND ADDRESS (11 HIRC, provide Garanos, Office or Region, U.S. Nuclear Regulatory Cor	unitation, and matting address. It contractor provide
Idaho National Engineering Laboratory EG&G Idaho, Inc. Idaho Falls, Idaho 83415	
B. SPONSORING ORGANIZATION - NAME AND ADDRESS III NRC. type "Some as above". If contractor, provide NRC Division, Office and malling address.)	e or Region, 1.5. Nuclear Regulatory Commission
Division of Safety Issue Resolution Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555	
10 SUPPLEMENTARY NOTES	
This report describes risk-significant challenges posed to Mark III containment systems to fied for Grand Gulf. Design similarities and differences between the Mark III plants that a performance are summarized. The accident sequences responsible for the challenges and failure modes associated with each challenge are identified and described. Improvement potential either to prevent or delay containment failure, or to mitigate the offsite conset release. For each of these potential improvements, a qualitative analysis is provided. A line sis is provided for selected potential improvements.	by severe accidents as identi- tre important to containment i the postulated containment is are discussed that have the quences of a fission product nited quantitative risk analy-
*2. KEY WO/ADS/DESCRIPTORS // us worth or phrases that will active sesarchers in locating the report.)	13 AVAILABILITY STATEMENT
tern in concernment, railure modes, severe accidents, Grand Gu	14 UNIIMILEOD
	(This Page) unclassified (This Report) unclassified
	15. NUMBER OF PAGES
	16 PRICE
NRC FORM 335 (2.89)	สารา 20 กระเทศ เป็นระสมกรรม กระเทศ กระเทศ กระเทศ กระเทศ กระเทศ

1 THIS DOCUMENT WAS PRINTED USING RECYCLED PAPER. 1 1 惊

l

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

0

SPECIAL FOURTH-CLASS RATE POSTADE & FEES PAID USNRC PERMIT No. 5-67

120555139531 1 1AN1RX1XA115 US NRC+0ADM DIV FOIA & PUBLICATIONS SVCS PDR+NUREG P=223 WASHINGTON DC 2055 00 20555

