THREE MILE ISLAND AQUATIC STUDY

MONTHLY REPORT FOR SEPTEMBER 1982

by

Ichthyological Associates, Inc. P.O. Box 223, Etters, PA 17319

George A. Nardacci, Project Leader

For
GPU Nuclear Corporation

Ichthyological Associates, Inc.
Edward C. Raney, Ph.D., President
301 Forest Drive
Ithaca, New York 14850

TABLE OF CONTENTS
Introduction. 1
Compliance with Environmental Technical Specifications; G. Nardacci 2
Macroinvertebrates; R. Evans, J. Evans, W. Botts 2
Ichthyoplankton; B. Lathrop, R. Evans 2
Trapnet; R. Malick 3
Seine; R. Malick 4
Impingement of Fish; B. Snyder 5
Electrofishing; H. Hagerty 6
Movements of Fishes; H. Hagerty 6
Creel Surveys; B. Snyder, R. Malick. 6
Ambient Water Quality; G. Nardacci 7
Population Estimates of Fishes; H. Hagerty 8
Thermal Plume Mapping; G. Nardacci 8

TABLE OF TABLES
Table Page
1 Sampling conducted in compliance with the Generation Procedures Manual in September 1982 10
2 Fishes taken by trapnet on 1-3 September 1982 near TMINS 11
3 Fishes taken by trapnet on 14-16 September 1982 near TMINS 12
4 Fishes taken by seine on 1 September 1982 near TMINS 13
5 Fishes taken by seine on 2 August 1982 near TMINS 14
6 Fishes taken by seine on 19 August 1982 near TMINS 15
7 Number of fishes impinged at the Unit 1 Intake during a 24- hour impingement survey on 7-8 September 1982 16
8 Summary of length, weight, reproductive status, and number of fishes impinged at the Unit I Intake on 7-8 September 1982 16
9 Number of fishes Unit 1 21-22 September 1982 17
10 Summary Unit 1 21-22 September 1982 17
11 Number of fishes Unit 2 7-8 September 1982 18
12 Summary Unit 2 7-8 September 1982 18
13 Number of fishes Unit 2 21-22 September 1982 19
14 Summary Unit 2 21-22 September 1982 19
15 Fishes captured by the AC electrofisher near TMINS in September 1982 20
16 Creel survey data from the GR for each survey day in September 1982 21
17 Creel survey data from the West Dam for each survey day in September 1982 21
18 Creel survey data from the East Dam for each survey day in September 1982 22
19 Creel survey data from the YHGS for each survey day in September 1982 22
Table Page
20 Summary of selected physicochemical parameters taken on 9 and 20 September 1982 near the TMINS 23
21 Summary of selected physicochemical parameters taken on 9 and 23 August 1982 near the TMINS 23
22 Thermal plume temperature data (C) taken at 0.5 m intervals surface (S) to bottom at $5 \mathrm{~m}, 20 \mathrm{~m}$, and 40 m offshore, above and below the TMINS Discharge, 29 September 1982 24

INTRODUCTION

The ecology of York Haven Pond near the Three Mile Island Nuclear Station (TMINS) has been under investigation since February 1974. Studies initiated in April 1974 include analysis of ambienc water quality, ichthyoplankton (far-field), ichthyoplankton entraimment, macroinvertebrates, fish population dynamics, impingement of fishes, creel survey, and thermal plume mapping.

This report discusses the progress of investigations conducted in September 1982.

Objective: To determine compliance with the nonradiolozical (aquatic) environmental monitoring programs specified in sections 3.1.1.a.(4), 3.1.2.a., 4.2 , and 4.6 .1 of the ETS and to insure that said programs are performed as detailed in the Generation Procedures Manual.

Progress: Compliance with all programs specified in the ETS and detailed in the Procedures Document was achieved in September (Table 1). The fall fish population estimate program was initiated on 27 September.

A program by program summary of the progress for September follows.

MACROINVERTEBRATES

Objectives: To describe the diversity and distribution of the benthic macroinvertebrates occurring at the five benthos sampling stations near TMINS.

Progress: Replicate (4) benthos samples were taken on 9 and 20 September (Table 1). Enumeration, determination of dry weights, and identification of specimens have been completed through 20 September. ICHTHYOPLANKTON

Objectives: (1) To determine the species composition, abundance, and distribution of ichthyoplankton in York Haven Pond; and (2) To investigate ichthyoplankton entrained at TMINS Unit 1 and 2 Intakes. Far-Field

Progress: All data were entered on the computer and proofed. The following tables for the annual report were typed and proofed: station summary, density summary, percent similarity, and species list. Entrainment

Progress: All data were coded and keypunched. Running tables were generated for the 1982 report.

Objectives: (1) To determine the distribution and relative abundance of fishes in the Thrac lile Island area vulnerable to trapnet; (2) To provide specimens for movements studies; (3) To monitor the occurrence of diseased fishes; (4) To provide specimens for radiation analysis; and (5) To determine reproductive status for fishes throughout the year.

Progress: Samples were taken on 1-3 and 14-16 September (Table 1). A total of 203 fish of 12 species was taken on $1-3$ September (Table 2). Most fish (85) and greatest biomass (9.83 kg) occurred at Station 9B2 while most species (9) were found at 11A2. Common fishes included the pumpkinseed (40.9% of the total catch), black crappie (16.7%), white crappie (15.8%), and bluegill (11.8\%). Anchor worms parasitized two pumpkinseed and one pumpkinseed exhibited exophthalmia. Two white crappie were found dead in the trapnets. Eight rock bass and three channel catfish were tagged.

A total of 135 fish of 10 species was collected on $14-16$ September (Table 3). Most fish (52) were taken at Station 9B2 while most species (8) and greatest biomass (12.52 kg) occurred at 11 A 3 . The pumpkinseed (41.5% of the total catch), black crappie (16.3%), bluegill (14.8%), and white crappie (12.6%) were again most numerous. One redbreast sunfish had a mouth deformity and two pumpkinseed were found dead in the trapnets. Six rock bass, three channel catfish, and one largemouth bass were tagged.

One common carp and one quillback were observed dead in the study araa. No pattern of parasite infection, anomaly, or dead fishes was observed with respect to the location of TMINS in September.

SEINE

Objectives: (1) To determine the species composition of fish upstream and downstream from the TMINS Discharge vulnerable to seine; (2) To determine the relative condition factor for important species; and (3) To determine the reproductive status for fishes throughout the year.

Progress: Collections were made at the 10 stations on 1 and 14 September (Table 1). A total of 11,745 fish of 16 species was taken on 1 September (Table 4). Most fish $(3,766)$ and greatest biomass (390.3 g) occurred at Station 10A2 while most species (11) were taken at 1 A 2 . The spotfin shiner was the most abundant species at all stations except 4A2 and comprised 88.3% of the total catch. Slight black spot infestations were observed on 48 spotfin shiner, 2 tessellated darter, 1 river chub, and 1 bluntnose mínnow. Anchor worms parasitized 27 mimic shiner, 11 spotfin shiner, 4 bluntnose minnow, 4 pumpkinseed, 4 bluegill, and 3 spottail shiner. Two bluntnose minnow and one comely shiner bore protozoan cysts. One tessellated darter was parasitized by a leech and one spotfin shiner had scoliosis.

Collections taken on 14 September are currently being analyzed; results will be presented in a future progress report.

August collections have now been processed; a total of 6,626 fish of 26 species was taken on 2 August (Table 5). Most fish $(1,649)$ were collected at Station 16Al while greatest biomass (189.5 g) and most species (13) occurred at 1A2. The spotfin shiner and pumpkinseed/bluegill were most abundant and comprised 62.3% and 25.6% of the total catch, respectively. Anchor worms parasitized 6 mimic shiner, 5 spotfin shiner, 5 pumpkinseed/bluegill, 4 smallmouth bass,

2 bluntnose minnow, 1 spottail shiner, 1 white sucker, and 1 tessellated darter. Twenty-two spotfin shiner, one bluntnose minnow, and one tessellated darter exhibited slight black spot infestations. One spotfin shiner had scoliosis.

A total of 7,995 fish of 20 species was taken on 19 August (Table 6). Most fish $(2,732)$ and greatest biomass (332.0 g) were taken at Station 10B5 while most species (11) occurred at i3B5 and 1A2. The spotfin shiner and mimic shiner were most abundant and comprised 71.8% and 15.4% of the total catch, respectively. Anchor worms parasitized 5 pumpkinseed, 4 mimic shiner, 4 bluntnose minnow, 4 pumpkinseed/bluegill, 3 spotfin shiner, 1 spottail shiner, 1 swallowtail shiner, 1 channel catfish, 1 bluegill, and 1 smallmouth bass. Slight black spot infestations were observed on 34 spotfin shiner, 3 bluntnose minnow, 2 quillback, and 2 tessellated darter. One comely shiner and one bluntnose minnow had protozoan cysts. One spotfin shiner had scoliosis and one mimic shiner was pugheaded.

No pattern of parasite infection or anomaly was observed with respect to the location of TMINS from collections taken on any of the above sample dates.

IMPINGEMENT OF FISH

Objectives: (1) To determine the numbers and species impinged on the river water intake screens; (2) To determine day-night differences in impingement frequency; and (3) To determine the extent of mortality of impinged fish.

Progress: Impingement surveys were conducted on 7-8 and 21-22
September at the TMINS Unit 1 and 2 Intakes (Table 1). Unit 1 impinged 12 fish of 3 species weighing 10.8 g (Tables 7 through 10). All fish were young and dead. F : th numbers and biomass were highest during the

7-8 September survey. The estimated impingement for Unit 1 for September was 180 fish weighing 162.0 g (0.4 lb).

Unit 2 impinged 10 fish of 6 species weighing 99.1 g (Tables $: 1$ through 14). Most fish were young and all were dead. Fish numbers and biomass were highest during the $7-8$ and $21-22$ September surveys, respectively. The estimated impingement for Unit 2 was 150 fish weighing $1,486.5 \mathrm{~g}(3.3 \mathrm{lb})$.

The total estimated impingement at TMINS during September was 330 fish weighing $1,648.5 \mathrm{~g}$ (3.7 1b).

ELECTROFJ SHING

Objectives: (1) To provide specimens for radiation analysis and movements studies; and (2) To determine the relative abundance of fishes vulnerable to electrofishing in various parts of York Haven Pond.

Progress: Sampling was conducted on four nights in September (Table 1). Twenty-four collections in 12 zones yielded 774 specimens of 19 species (Table 15). The pumpkinseed (185 specimens), quillback (126), redbreast sunfish (116), and smallmouth bass (92) were most abundant. A total of 79 fish was tagged for movements studies. MOVEMENTS OF FISHES

Objective: To determine if fishes in waters receiving the TMINS effluent mix with fishes from other areas.

Progress: A total of 112 fish was tagged and four previously tagged fish were recaptured in September. Recaptured fishes included one channel catfish that moved 5.6 km downstream and three rock bass that were recaptured in the same areas in which they were tagged. CREEL SURVEYS

Objectives: (1) To determine the extent and success of sport fishing; and (2) To determine information on angler residence and use of catch.

Progres3: Creel surveys were conducted in all areas on 8, 12, 25, and 27 September (Table 1). The 289 anglers interviewed fished 511.05 hours and caught 546 fish (Tabies 16 through 19). The actual harvest was 143 fish or 26.2% of the total catch. The mean catch per effort (c/e) was 1.07 . Most anglers (128) fished in the General Reservoir. The largest total catch (336), most hours fished (246.12), and highest $c / e(1.36)$ were reccrded at the General Reservoir; however, the most fish kept (86) were recorded at the York Haven Generating Station.

Smallmouth bass (265) was the predominant species caught by anglers. Other species frequently caught included unidentified sunfish (75), channel catfish (65), rock bass (40), and walleye (39).

Approximately 76% of the anglers interviewed lived in York or Dauphin counties. Most anglers reported that they eat some of their catch.

AMBIENT WATER QUALITY

Objective: To determine the concentrations of selected water quality parameters in ambient river areas and the TMINS effluent.

Progress: Water quality samples were collected on 9 and 20 September at the five river stations (Table 1). Data were analyzed and tabulated; results are presented in Table 20. On 9 September values for sulfate, total dissolved solids, and dissolved zinc were highest at Station 1A1 (located upstream of the TMINS Discharge); turbidity and alkalinity values were highest at la2. Values for dissolved oxygen and water temperature were highest at Stations $11 A 2$ and 9B1, respectively.

On 20 September values for sulfate (1A1), and dissolved oxygen and alkalinity (1A2) were highest at stations located upstream of the Discharge. Values for total dissolved solids, total copper, and total zinc were highest at Station 11A1 (TMINS Discharge), while water temperature, pH , and turbidity were highest at 9 Bl .

The water quality samples collected in August have now been analyzed; results are presented in Table 21 . On 9 August values for sulfate, total dissolved solids, and total zinc were highest at Station 1A1; alkalinity was highest at 1A2. Values for water temperature, dissolved oxygen, total copper, and dissolved zinc were hiohest at Station 9B1.

On 23 August values for turbidity, sulfate, and total dissolved solids were highest at 1 Al ; dissolved oxygen and alkalinity were highest at 1A2. Dissolved zinc values were highest at Station 9B1.

Parameters, for which State water quality criteria have been established, were not exceeded at any station on 9 and 23 August or 9 and 20 September. POPULATION ESTIMATES OF FISHES

Objectives: (1) To determine if differences exist in fish populations between areas receiving the TMINS effluent; and (2) To estimate populations in other areas available for recruitment.

Progress: Fall population estimates sampling was initiated on 27 September (Table 1). Sampling will continue in October until enough recaptures are taken to compute estimates. THERMAL PLUME MAPPING

Objectives: (1) To determine temperature data; (2) To define the discharge plume; and (3) To check the accuracy of the analytical plume model.

Frogress: Thermal plume mapping was conducted on 29 September (Table 1) at a river flow of $7,660 \mathrm{cfs}\left(216.9 \mathrm{~m}^{3} / \mathrm{s}\right)$; the $\Delta \mathrm{T}$ at the Discharge was 0.1 C (Table 22). River water temperature varied about $\pm 1.0 \mathrm{C}$ between the Unit 1 Intake and 1900 m downstream of the Discharge. No plume was evident.

Table 1
Sampling conducted in compliance with the Generation Procedures Manual in September 1982.

PROGRAM	$\begin{aligned} & \text { Sep } \\ & 1-4 \end{aligned}$	$\begin{aligned} & \text { Sep } \\ & 5-11 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sep } \\ 12-18 \\ \hline \end{gathered}$	$\begin{gathered} \text { sep } \\ 19-25 \end{gathered}$	$\begin{gathered} \text { sep } \\ 26-30 \end{gathered}$
Macroinvertebrates		X		X	
Ichthyoplankton: Far-Field ${ }^{1}$ Entrainment					
Trapnet	X		X		
Seine	X		X		
Inpingement of Fish		X		X	
Electrofishing		X		X	
Movements of Fishes	X	X	X	X	
Creel Surveys.		X	X	X	X
Ambieat Water Quality		X		X	
Poprlation Estimates of Fishes					X
Thermal Plume Mapping					X

Sampling terminated for 1982 as of 31 August.

Table 2
Fishes taken by trapnet on 1-3 September 1982 near THINS.

Table 3

Fishen taken by trapnet oo 14-16 September 1982 near TMINS.

Station TM-AQF-1A3			TM-AQF-11A2		TM-AQF-12A3		TH-AQF-982					
Dete	14-15						Total	3 catch				
Time	0947-1004	$\stackrel{1006-100:}{15}$	$\begin{gathered} 14-15 \\ 0935-0950 \end{gathered}$	$\begin{gathered} 15-16 \\ 0952-0946 \end{gathered}$	$\begin{gathered} 16-15 \\ 0923-0932 \end{gathered}$	$\begin{gathered} 15-16 \\ 0934-0929 \end{gathered}$			$\begin{gathered} 14-15 \\ 0909-0915 \end{gathered}$	$\begin{gathered} 15-16 \\ 0917-0900 \end{gathered}$		
A1r Temp (C)	$21.0,23.5$	$23.5,23.0$										
Weter Temp (C)	$23.5,23.5$	$23.5,23.5$	24.0, 23.0	$23.0,23.5$ $24.0,24.0$		$22.5,23.0$	20.5, 22.5	22.5, 22.5				
Dissolved Oxygen (mg/1)	$9.4,9.0$	9.0, 8.9	24.0, 8.7 .9 .3	$24.0,24.0$ $9.3,8.0$	$24.0,24.0$ $8.2,9.4$	$24.0,24.0$	$24.5,24.0$	$24.0,23.5$				
Sechil disc (cm)	$8.8,8.3$ 41,64	$8.3,8.4$	8.7, 8.6	$8.6,8.4$	$8.7,8.4$	$8.4,8.8$	$9.2,9.5$ $8.0,8.7$	$9.5,8.7$ $8.7,8.5$				
River Stage (m)	0.94, ${ }^{41}$, 0.94	0.64, 71	41, 69	69.14	36, 69	69, 11	8.0, 86	$8.7,8.5$				
Weather	Fog, Haze	Tire, clear	$0.94,0.94$ Fog, Haze	0.94, 0.94	$0.94,0.94$	$0.94,0.94$	$0.94,0.94$	$0.94,0.94$				
No. of Specimeus No. of Specties	fox. 16	$\frac{19}{\text { 19xe. clear }}$	$\frac{\text { Fog, Haze }}{10}$	Haze, Clear	Fog, Haze	Haze, clear	Fog, Haze	Haze, Clear				
No. of Spectes	3	S	10	9	18	11	16	36	135			
common carp yellou bulthead	-	5	6	4	6	5	2	5	10			
Yellow bullhead	-	1		-	-	1	-	-	1	0.7		
Channel catfish	-	$\stackrel{\square}{-}$	-	-	-	-	-	-	1	0.7		
Rock bans Redbreast sunfigh	-	3	I	;	2	1	-	-	3	2.2		
Redbreast sunfish Pumpkinseed	-	3	1	3	1	-	1	2	11	8.1		
Pumpkinseed Bluegill	6	8	1	1	-	1	-	-	,	2.2		
sluegill Largemouth bass	-	2	4	4	10	6	8	10	56	41.5		
Largenouth bass	-	2	2	1	3	-	1	11	20	14.8		
White crapple Mlack srapple	4	2	1	-	1	-	-	-	1	0.7		
Black srapple	6	3	1	-	-	;	,	7	17	12.6		
					1	2	3	6	22	16,3		

Table 4

Fishes taken by seine on 1 september 1982 near Tmps.

Sterton	TM-AQF-13B5 TH-AQF-1ORS TM-AQF-16AS TH-AQF-1A2				TM-AQF-TF31 TM-AQF-10A2		TM-AQF-9B6 TM-AQF-9AL		TM-AQF-9B3	TIT-AQF-4A2				
T1me					${ }^{\text {Total }}$	2. cotch								
	125	0850	1130	1105				1021	1010	0949	0930	0912	1047	
Afr Temp (C)	22.0	22.0	23.0							1047				
Water Temp (C)	22.5	22.5	22.0	21.5 22.5	22.0 22.0	22.0 22.5	21.0	21.5	22.0	22.0				
Disaolved Oxygen (mg/1)	8.2	10.4	$\begin{array}{r}2.8 \\ \hline 8\end{array}$	22.5 10.0	22.0 9.7	22.5 9.2	22.5 9.5	22.5	22.0	22.5				
Seceht Dise (cm)	8.1	8.6 69	8.7	8.1	8.1	9.2 8.0	9.5 8.1	9.8 8.3	10.0	11.4				
River stage (m)	0.98	69 0.98	- 69 \%	38 0.98	38	38	56	8.36	8.3	8.4				
Weather	Overcast	Overcast	0.98 Overcast	(0.98	0.98	0.98	0.98	0.98	0.98	86 0.98				
No. of Specimens	3199	2497	$\frac{\text { Overcast }}{} 533$	$\frac{\text { Overcast }}{467}$	Overcast	Overcast	Overcase	Overcase	overcost	overcast				
No. of Species No. of liauls	9	${ }^{2497} 5$	53	467	100	3766	460	400	203	cuersast 120				
$\frac{\mathrm{No} \text {. of linuls }}{\text { River chat }}$	2	6	6	$1!$	5	5	5	5	6	120	11765			
River chub Colden shiner	-	-	6	1	5	1	4	4	4	4	41			
Colden shiner Comely shiner	2	8	-	1	-	?	-	-	-	-	1			
Conely shfser Cosson shfrer	1	-	3	1	-	$?$	-	-	-	-	13			
Coswon shfrer	1	-	-	1	-	-	-	-	-		3	0.1		
Spottall shtner	10	-	.	\%	-	-	-	-	-					
Svallowtall shiner	18	3	10	2	10	i	-	4	5	-	$3{ }^{3}$			
Spotifin shiner	2522	2383	451	271	17	1	-	-	-	-	32	0.3		
Mimic shtner	137	55	43	271	17	3692	424	382	163	i	32 10367	0.3		
Blunt nose minnow	38	6	63	7	1	68	31	1	12	:	10367 374	88.3		
Fallfish	,	6	i	7	-	-	3	3		38	374 97	3.2		
Redbreast sunf ish	-	-	-	\%	-	-	-	-	?	8	97	0.8		
Pumpkinseed	148	12	-	167	-	-	-	-	-	6	7	9.1		
8) ${ }^{\text {Peg } 111}$	286	1	-	167	11	-	1	-	3	38	369	9.1		
Pumpk $\mathrm{vseed} / \mathrm{Bl}$ luegill	36	28	-	$\stackrel{9}{2}$	11	-	-	-	-	23	330	2.8		
Smallmouth bass	-	-			-	-	-	-	-		64	0.5		
White crapple	-	1		-	1	-	-	-	-		,			
teisellated darter	-	.	-		-	\%	-	-	-	-	1			
* Clear to botcom at indicated depth. + Lese than 0.05%.				6.	-	3	1	10	18	14	52	0.4		

Table 5

Fishes taken by seine on 2 August 1982 near TMINS.

station	TM-A0F-13P5											
	M-80\%-1985	TMA2T-1075	TI-AQF-16AS	T1-AQ5-1A2	TIL-A8F-16A]	TI-AQF-10A2	T-AQF-986	TH-ACF-9AI	TH-AQF-983	TI-AQE-4A2	Total	$2 \mathrm{cotch}^{\text {a }}$
Tine	1164	OB40	1121	1058	1010	0952	0935	0922	0905	1038		
Afr Teup (c)	27.0											
Water Temp (C)	26.0	24.5	26.0	23.0 24.5	23.5 26.5	22.5 24.5	21.5	21.0 24.5	21.0 24.5	25.0		
Dissolved Oxygen (mg/1)	12.6	11.4	9.2	8.4	7.9	24.5 7.8	24.3 8.1	24.5 8.3	24.5 8.1	26.0 11.4		
${ }^{\text {Ph }}$ Seechi Disc (cm)	8.6	8.7	8.8	8.1	8.2	8.1	8.1	8.2	8.3	11.4		
(86 1.19	56	58	38	36	30	36	36	36	8.6		
Beather	Haze	Haze	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19		
No, of Specimens	1165	834	laze	Haze 620	Haze	Haze	Have	Haze	Haze	Haze		
No. of Species	11	9	6	620 13	1649	1562	109	32	461	89	6626	
No. of tuyle	4	6	5	13	10	12	9	5	8	?	26	
Common carp		-	2	5	5	4	4	4	4	3	46	
R fver chub	-	1	-	-	-	-	-	-	i	-	1	\pm
Colden shiner	1	-	-	3	2	4		-	1	-	2	+
Comely shiner	3	-	-	-	1	4	-	-	-	-	10	0.2
Cosemon shfiner	4	-	-	1	1	2	1	-	-	-	5	0.1
Spottafl shfaer	19	-	1	6	1	${ }_{3}^{2}$	1	-	5	-	9	0.1
Swalloveatl shiner	3	-	-	6	3	3	4	1	6	-	43	0.6
Spotifin shiner	957	690	95	327	711	1290	${ }^{6}$	18	21		12	0.2
Minte shiner	105	32	1	32	71 87	1290 226	1888	18	21	\%	4127	623
Notropie spp.	-	-	-	32	87	226 1	28	1	3	1	516	7.8
Bluntnose minnow	30	11	-	-	5	16	12	-	\%	-	1	$+$
Blacknose dace	-	1	-	-	5	16	12	-	$\stackrel{2}{ }$	2	78	1.2
Creek chub	-	-	-	1	-	-	-	-	-	-	1	+
Fallfish	-	-	5	1	-	-	-	-	-		1	,
Quillback	1	5	,	21	-	-	2	-	7	-	5	0.1
thite sucker	-	5	-	2	-	-	2	-	1		30	6.5
Brown bullhead	-	-	-	2	-	-	-	:	-	-	2	+
Banded killifish	-	1	-	2		-	-	-	-	-	2	+
Rock bass	-		-	5	-	-	-	-	-	-	1	,
Pumpkinseed	-	-	,	5	-	-	-	-	-	*	5	0.1
Bluegill	-	5	-	1	-	-	-	-	-	4	4	0.1
Fumpkinseed/Bluegill	36	88	-	218	837	6	29	10	402	67	9	0.1
Smallmouth basa	-	-	2	21.	837	4	29	10	402	67	1693	25.6
intgemouth bass	-	-		-	-	4	-	-	-	6	12	0.2
Tensellated darter	6	-	-	-	1	6	9	2	25	5	${ }^{1}$	${ }_{0}^{+8}$
Shield darter		-	1	-	2	6	9	2	25	5	54	0.8
Halleye	-	-	$-$	-	1	-	-	-	-	-	1	+

Table 6

Fishen taken by seine on 19 August 1982 near Thims,

station	Th-ADr-13ns	ग1-A0r-10n5	TMAEP-16AS	TI-AOF-1A2	TH-ACF-16A1	T-AQF-10A2	TH-AQF-986	TH-AQF-9A1	TH1-APF-983	TM-AQE-6A2	Total	3 cotsh
Time	1226	1537	1249	1314	1406	1427	1447	1507	1522	1363		
A1t Temp (C)	28.0	28.5	28.0	27.0	27.5	27.0	28.0	28.0	28.0	28.0		
Water Temp (C)	26.0	28.0	26.0	25.0	25.0	24.5	26.0	26.0	27.0	26.0 26.5		
Diswolved Oxygen (mg/1)	10.8	13.6	10.4	11.1	11.2	10.8	11.4	11.6	12.0	12.0		
ph	8.7	9.1	9.4	8.4	8.4	8.1	8.5	11.6 8.6	12.0 8.8	12.0 8.7		
Secch1 Dise (cm)	51	71	46*	58	[6	38	8.36	8.6 38	8.8 36	8.76		
River Stage (${ }_{\text {() }}$	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	76 1.01		
Weather	Partly	Partiy	Partly									
	Cloudy	Cl_{2732}	Cloudy									
No. of Spec imens	2247	2732	248	1079	559	584	438	17	14	77	7995	
No. of Spectes	11	10 6	6	11	6	5	5	5	4	8	20	
No. of Hanle	3	6	6	5	4	4	4	4	4	4	44	
Golden shiner	6	4	-	5	-	-	-	-	1	-	1	+
Comely shiner	-	-	-	4	2	-	-	-	-	-	16	0.2
Common shiner	2	-	-	4	2	-	-	-	-	:	6	0.1
5 potafl shfaer	30	2	-	6	-	-	-		-	i	39	5
Swallowtall shiser	27	25	5	-	-	15	5	-	-	1	17	1.0
Spotifo shiner	1468	2175	212	578	530	418	339	11	-	11	5742	${ }^{11.0}$
Minic shiner	599	369	24	40	10	. 05	86	1	-	,	5742 1234	71.8
8 luntnose minnow	50	35	,	5	3	37	6	-	1	20	1234 158	15.4 2.0
Fallfish	.	-	3	-	-	3	-	-	-		158	2.0 .
Quflliback	3	8	-	-	-	-	-				11	
Brown bullhead	-	-	-	1	-	-	-	i			11	0.1
Channel catfish	-	-	-	-	-	-	-	-	8		${ }_{8}^{2}$	1
Redbreast sunfloh	-	-	-	-	-	-	-	-	8	i	8	1
Pumpkinseed	40	33	-	303	1	-	-			16	393	9
Blueg111	6	10	-	42	13	-	-	-		10	81	
Pumpkinseed'Blueg 111	10	69	-	86	-	-	-	-	4	10	81 169	1.0
Smallmouth bass	-	-	1	-	-	-	-	1	4		169	2.1
Largemouth bass	-	-	-	-	-	-	-	:	-	1	1	+
Tessellated darter	6	2	-	7	-	9	2	3	-	17	46	0.6
panded darter	-	$-$	2	1	-	-	-	-	-	.	3	$+$

+ Less than $0.05 z$.

Table 7
Number of fishes impinged at the Unit 1 Intake during a 24 -hour impingement survey on $7-8$ September 1982 .

Date Time	$\begin{array}{r} 7 \\ 2000 \end{array}$		$\begin{array}{r} 8 \\ 3400 \end{array}$		8					
Volumetric Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$) Number of River Water Pumps:	0.84				0.84		0.84			
Nuclear Service	1		1		1					
Secondary Service Decay Heat	1		1							
Intake Velocity (cm / s)	0		0		0					
River Flow ($\mathrm{m}^{3} / \mathrm{s}$)	-4		-4		-4					
Air Temp (C)	143.3		143.3		143.3		Total			
Water Temp (C)	22.5	20.0	17.0		20.0					
Condition of Fish	Alive	Dead	21.0		21.0					
Rock bass	Alive	Dead	Alive	Dead	Alive	Dead	Alive	Dead		
Pumpkinseed		1	-	3	-	-	-	4		
Bluegill				-	-	1	-	1		
Total	-	1		6	-	2	-	5		
	-	1	-	6	-	3	-	10		

Table 8

Summary of length, weight, reproductive status, and number of fishes impinged at the Unit 1 Intake on 7-8 September 1982.

Species	Fork Length Range $(5 \mathrm{~mm}$ groups $)$	Reproductive Status	Total Weight
Rock bass	$31-35,41-45,56-60$	4 Young	Total Number
Pumpkinseed	$21-25$	1 Young	8.0
Bluegill	$16-35$	5 Young	0.3
Total			1.6

Table 9

Number of fishes impinged at the Unit 1 Intake during a 24 -hour impingement survey on $21-22$ Septenber 1982 .

Date Time	$\begin{array}{r} 21 \\ 2000 \end{array}$		$\begin{array}{r} 22 \\ 0 \div 00 \end{array}$		22200					
Volumetric Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$) Number of River Water Pumps:	1.33				1.33		1.33			
Nuclear Service Secondary Service Decay Heat		,	1		1					
Intake Velocity (cm / s)	110.3		3							
River Flow ($\mathrm{m}^{3 / \mathrm{s} \text {) }}$			110.2		110.2					
Air Temp (C)	18.0		17.0		14.0					
Warter Temp (C)	18.5		18.5		17.0		Total			
Condition of Fish	Alive	Dead	Alive	Dead	Alive	Dead	Alive	Dead		
$\frac{\text { Pumpkinseed }}{\text { Total }}$	-	-	-	-	-	2	Alive	2		
Total	-	-	-	-	-	2	-	2		

Table 10
Summary of length, weight, reproductive status, and number of fishes impinged at the Unit 1 Intake on 21-22 September 1982.

| Species | Fork Length Range
 $(5 \mathrm{~mm}$ groups $)$ | Reproductive Status | Total Weight |
| :--- | :---: | :---: | :---: | :---: |
| | $21-25,31-35$ | 2 Young | (g) |

Table 1

Number of fishes impinged at the Unit 2 Intake during a 24 -hour impingement survey on $7-8$ September 1982 .

Date Time	$\begin{array}{r} 7 \\ 2000 \end{array}$		$\begin{array}{r} 8 \\ 0400 \end{array}$		$\begin{array}{r} 8 \\ 1200 \end{array}$			
Volumetric Flow Rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ Number of River Water Pump :	1.58		1.58		1.58			
Nuclear Service Secondary Service		1		1		1		
Intake Velocity (cm / s)		5		5		5		
River Flow ($\mathrm{m}^{3} / \mathrm{s}$)	14		143		14	3		
Air Temp (C)			16					
Water Temp (C)	22.5		21.0		21.0		Total	
Condition of Fish	Alive	Dead	Alive	Dead	Alive	Dead	Alive	Dead
Spotfin shiner	-	-	-	3	Alive	Dead	Alive	${ }_{3}$
Margined madtom	-	-	-	1	_	-	-	1
Rock bass	-	1	-		-		-	1
Pumpkinseed	-	1	-	1	-	-	-	2
Total	-	2	-	5	-	-	-	7

Table
12

Summary of length, weight, reproductive status, and number of fishes impinged at the Unit 2 Intake on 7-8 September 1982.

Species	Fork Length Range (5 mm groups)	Reproductive Status	Total Keight (g)	Total Number
Spotfin shiner	$41-45,61-65,76-80$	1 Juvenile, 2 Adult	10.0	3
Margined madtom	51-55	1 Juvenile	1.6	1
Rock bass	36-40	1 Young	1.2	1
Pumpkinseed	26-30, 41-45	2 Young	2.4	2
Total			15.2	7

Table 13

Number of fishes impinged at the Unit 2 Intake during a 24 -hour impingemeni survey on $21-22$ September 1982 .

Date Time	$\begin{array}{r} 21 \\ 2000 \end{array}$		$\begin{array}{r} 22 \\ 0400 \end{array}$		22200			
Volumetric Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$) Number of River Water Pumps:	1.58		1.58		1.58			
Nuclear Service Secondary Service	1		1		1			
Intake Velocity (cm / s)	110.2		1		1			
River Flow ($\mathrm{m}^{3} / \mathrm{s}$)			110.3		3			
Air Temp (C)	18.0		17.0		110.2			
Water Temp (C)	18.5		18.5		17.0		Total	
Mimic shiner	Alive	Dead	Alive	Dead	Alive	Dead		
Rock bass	-	1	-	-	-	-	俍	Dead
Tessellated darter		-	-	1	-	-	-	1
Total	-	1	-	1	-	-	-	1
	-	2	-	1	-	-	-	3

Table 14
Summary of length, weight, reproductive status, and number of fishes impinged at the Unit 2 Intake on 21-22 September 1982.

Species	Fork Length Range $(5 \mathrm{~mm}$ groups $)$	Reproductive Status	Total Weight
	$21-25$	1 Young	Total Number
Mimic shiner	$201-205$	1 Adult	0.2
Rock bass	$41-45$	1 Juvenile	83.0
Tessellated darter		0.7	1
Total			83.9
		1	1

Table 15

Fishes captured by the AC electrofisher near MINS in September 1982.

zone	1181	1083	1081	13al	10a3	985	1582	1688	4 Al	16A2	15A2	1581
Date	8 Sep	9 Sup	9 Scp									
T17e	2008	2042	2123	2206	2247	2322	1944	2036	2119	2200	2232	2314
burstion (sin)	18	19	22	22	18	20	19	16	16	16	18	18
AIr Tenp (C)	17.5	18.5	17.5	17.5	17.5	16.5	18.0	18.5	18.5	17.0	17.0	17.0
(1) of Tsap (C)	20.0	20.0	20.0	19.5	20.0	20.0	22.0	21.0	21.5	20.0	21.5	20.0
bl-solved Oxyzen ($\mathrm{mg} / 1$)	8.9	9.7	10.2	9.0	9.5	9.2	12.1	11.0	12.3	10.6	11.6	11.2
pis	8.5	8.6	8.7	8.0	8.0	7.9	8.8	8.9	8.8	8.5	8.6	8.9
Ei nuctivity (sicronhos/cm)	325	375	400	425	440	450	310	325	410	425	390	390
b. chi Dise (es)	61	71	61	46	46	51	66	321 91	46	425 41	390 63	390 63
V. its	190	175	180	175	160	165	200	200	195	180	190	180
Ape	6.5	7.5	8.0	7.0	7.5	8.0	6.5	5.0	8.0	9.0	7.0	8.5
Giazard shad Musiellunge	-	-	-	-	\cdots	8.0	-	3.0	8.0.	$\stackrel{-}{-}$	2.0	8.3
Costan carp	-	4	1	-	-	F	1	-	-	-	-	-
(uat)lback	4	2	6	3	2	9	10	4	,	1	-	-
Ahite sucher	,	2	6	3	2	9	10	10	3	9	14	1
tartliers hag sucker	-	-	-	2	-	-	-	-	-	1	-	1
Shorthesd redhorse	-	.	-	1	-	-	-	3	-	-		
Yellow bullhead	-	-	-	-	*	-	-	3	-	-	-	-
Channel catfish	-	-	-	1	-	-	-	1	-	-	-	*
kock bass	-	-	-	1		-	5	3	F	F	,	
kedtreast sunfish	-	-	4	3	11	i	5	5	6	1	,	6
Puspkinseed	5	15	9	6	11	1			,	4	10	4
Bluezil1	2	4	2	6	11	2	10	3	17	6	20	-
Stalleouth bans	2	2	1	5	-	1	-	1	5	-	-	-
Largetouth bass	2	1	1	5	-	1	4	12	6	6	1	9
thite crapple	2	-	-	-	-	-	1	i	1	-	-	-
Black crapple	-	-	-	-	-	*	1	1	-	-	-	-
Yellow perch	-	-	1	-	-	-	3	2	-	-	-	-
Walleve	1	-	3	6	2	$\overline{4}$	3	3	-	"	-	\%
\%. of Specinens	16	28	27	28	28	19	1	3	8	4	4	2
Yo. of Species	,	6	8	16 9	28 6	19	10	51 13	53 8	32 8	53	25

Table 15 continued.

Tune													
Date	21 Sep	21 $\begin{array}{r}1083 \\ 2150 p\end{array}$	1081 $21 \quad \mathrm{Sep}$	21.8	${ }_{21}^{10 \mathrm{sab}}$	${ }^{21} 985$	1582	1688	4 Al	16A2	15A2	15×1	Total
Tise	21 1933	21 Sep	23 Sep										
buration (ain)	20	2008 19	2048 18	2131	2206	2238	1940	2024	2113	2145	2226	2303	
Air Teap (C)	17.5	17.0	17.5	17.0	16.5	15.5	18	$1+$	15	19	17	18	
iater Teep (C)	19.0	18.5	18.5	19.0	16.5 18.5	15.5	14.5	13.0	12.5	12.0	12.0	11.0	
Dissulved Oxygen (0g/1)	9.7	10.4	11.2	9.6	18.5 9.2	18.0	18.0	16.5	17.0	16.5	16.5	16.0	
pH	8.7	8.4	8.3	8.6	9.2	8.6	9.9	10.0	8.5	8.3	9.9	9.7	
Conductivity (micreahes/cm)	360	410	430	8.2 460	8.1	7.9	8.3	8.7	8.2	8.2	8.8	4.7	
Seccht Dise (cm)	61	63	+ 69	460	490 58	480	310	350	410	410	450	440	
Voles	190	180	180	180	58 170	61	46	91*	56	51	11	66	
dets	5.5	6.0	8.0	7.0	170 8.5	170	190	200	190	185	180	185	
Glzzard shad	2	2	-			9.0	5.5	5.0	7.0	8.9	7.5	7.5	
Concellunge	-	-	-	-	-	-	10	-	-	-	-	-	14
Corsom carp	1	-	-	-		-	-	-	-	5	-	-	1
Quillback	2	5	5	-	i	7	1	3	-	5	1	3	27
b).1te sucker	-	5	5	-	1	7	18	2	1	2	7	3	126
*) sttiern $^{\text {hag sucker }}$	-	-	-	-		-	-	-	-	3	1	1	7
St-rthead redhorse	-	-	-	-	-	-	-	-	-	-	-	-	2
Yellow bullhead	-	-	-	-		-	-	1	-	-	-	-	5
Channel catfish	\sim	-	-	-	I	-	-	$\frac{1}{2}$	-	-	-	-	2
kock bass	-	-	-		3	-	-	2	-	-	-	1	11
ReSbreast sunfish	-	-	-	2	3	1	5	9	4	4	1	5	59
PG-painseed	4	13	2	6	$\frac{1}{7}$	-	5	9	3	3	12	30	116
816. 111	-	13	2	6	7	1	?	9	9	7	18	3	185
Smalisouth bass	-	1	1	7	i	-	1	3	1	1	2	-	30
Larku nouth bass	1	3	\%	7	2	1	2	10	-	5	5	11	92
thite erapple	-	1		-	-	-	-	-	1	-	-	-	10
Blac. erapple	-	-				-	-	-	=	-	-	-	4
Yell 4 perch	-	1	-		-	1	-	1	2	-	3	-	9
kallese	2	-			4	2	3	5	1	\%	-	-	6
No. of Specazens				22	19	13	3	5	,	2	4		68
Vo. of Species	6	8		2	19	13	43	53	22	32	54	62	774
		8	4	3	7	6	9	12	8	9	10	9	19

Greel survey data fros the Gh for each survey day in September 1982.

TGeneral identification.
k Kept.
\% Releaced.

Table 17

Creel survey data from the West Dam for each survey day in September 1982.

K Rept.
R keleased.

Table 18

Creel survey data from the East Dam for each survey day in September 1982.

DayWeather	8 Wed Overcast3.19			$\begin{gathered} 12 \text { Sun } \\ \text { Fog. } \\ \text { Overcast } \\ 3.13 \end{gathered}$			Fog.25 Set Partly Cloudy, Overcast 3.15			27 Mon Overcast, Partly Cloudy 3.18								
River Stage (\mathbf{s})																		
Air Teaperature (C)	16.0	18.0	18.5				26.5	31.0	26.5	16.5	21.0	20.5	17.5	21.0	20.0			
Water Temperature (C)	22.5	22.6	22.0				24.0	28.0	27.0	17.5	18.5	18.5	17.5	18.0	18.5			
Tises:																		
a) sorning (0900-1300)	$\stackrel{ }{ }$			a			s			a								
b) afternoon (1301-1700)		b			b			b			b							
c) evening (1701-2100)			c			c			c			c		TOTAL				
total Per Tise Period:																		
Anglers	*	-	-	2	5	-	-	1	-	-	2	-		10				
Fish Caught	-	-	-	2	6	-	-	1	-	-	-	-		9				
Fish kept	-	-	-	-	-	-	-	-	-	-	-	-		-				
Hours Fished	-	-	-	1.00	3.50	-	-	0.25	-	-	3.00	-		7.75				
Catch/Effort (b)	-	-	-	2.00	1.71	-	-	4.00	-	-	3.	-		1.16				
Day Totals:																		
Anglers		-			7			1			2							
Fish Caught		-			8			1			-							
Fish Kept		-			-			-			-							
Hours Fished		-			4.50			0.25			3.00							
Catch/Eftort (h)		-			1,78			4.00			.							
Species	a	b	C	a	\%	c	3	b	c	a	5	c		Tot. 11				
Chanel catfish		-	-	-	-	-	-	1R	-	\square	-	-	-	IR	1			
Sunfishes (Lepumis spp.)	-	-	-	18	5R	-	-	-	-	-	-	-	-	6R	-			
Stallmouth bass	-	-	-	1 R	,	-	-	-	-	-	-	-	-	1R	1			
Lariseouth bass	-	-	-	.	1R	-	-	-	-	-	-	-	-	IR	1			

General identification.
K Kept.
R Released

Table 19

Creel survey data from the YHGS for each survey day in September 1982.

K Kept.
K Released.

Table 20

Table 21

Thernal plume teaperature data (C) taken at 0.5 a intervals surface ($\$$) to bottoa at $5 \mathbf{m} 20 \mathrm{a}$, and 40 a offahore, above and below the TMINS Discharge, 29 September 1982.

17.7	17.8	17.7	5
17.7	17.8	17.7	0.5
17.7	17.8		1.0
17.7	17.8		1.5

[^0]
[^0]: 125 - Dounstreas of D

