

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION UNIT 1

NRC Form 474 Submittal for SIMULATOR CERTIFICATION

9102210328 910213 PDR ADOCK 05000285

NOTE BE ARMI	SION APPROVED BY OMB. NO. 3150-0138 EXPIRES: 9-30-62
SIMULATION FACILITY CERTIFICATION	ESTIMATED BURDEN PER RESPONSE TO COMPLY WITH THI INFORMATION COLLECTION REQUEST 120 HRS, FORWAR COMMENTS REGARDING BURDEN ESTIMATE TO THE INFOR MATION AND RECORDS MANAGEMENT BRANCH (MNBB 7314 U.S. NUCLEAR REGULATORY COMMISSION, WASHINGTON, D 20565, AND TO THE PAPERWORK REDUCTION PROJECT (315 01381, OFFICE OF MANAGEMENT AND BUDGET, WASHINGTON DC 20503.
NSTRUCTIONS. This form is to I for initial certification, recertification (if required), and for any cha ubmittal of such a plan. Provide the following information, and check the appropriate box to indicate reason	ange to a simulation facility performance testing plan made after initial n for submittal.
FACILITY Fort Calhoun Station, Unit 1	DOCKET NUMBER
ICENSEE Omaha Public Power District	DATE 2-8+91
This is to certify that: 1. The above named facility licensee is using a simulation facility consisting solely of a plant-referenced sin 2. Documentation is available for NRC review in accordance v. 10 CFR 55.45(b). 3. This simulation facility meets the guidance contained in ANS./ANS 3.5, 1985, as endorsed by NRC Rev If there are any exceptions to the certification of this item, check here [X] and describe fully on adding NAME (meet)	nulator that meets the requirements of 10 CFR 55.45. gulatory Guide 1.149. Itional pages as necessary. See Attachment
Fc & Calhoun Training Center Fort Calhoun, NE 68023	
X SIMULATION FACILITY PER-ORMANCE TEST ABSTRACTS ATTACHED. (For performance tests	conducted in the period ending with the date of this cert/fication)
See attached computer Real Time Test, Steady Sta Transient Tests, Marfunction Tests, Other Tests	ate and Normal Operations Tests, (Appendix 3.A)
See attached Schedule for Performance and Opera	bility Tests (Appendix B)
See attached Schedule for Performance and Opera	bility Tests (Appendix B)
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su	bility Tests (Appendix B)
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su DESCRIPTION OF PERFORMANCE TESTING PLAN CHANGE (Attach additional page(s) as necessary, a	bility Tests (Appendix B) ubmitted on a previous withfication) and identify the item description being continued)
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su DESCRIPTION OF PERFORMANCE TESTING PLAN CHANGE (Attach additional page(s) as necessary, a Not Applicable Initial Certification	bility Tests (Appendix B) ibmitted on a previous witification; ind identify the item description being continued;
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su DESCRIPTION OF PERFORMANCE TESTING PLAN CHANGE (Attach additional page(s) as necessary, a Not Applicable Initial Certification RECERTIFICATION (Describe corrective actions taken, attach results of completed performance test Attach additional page(s) as necessary, and identify the item description being continued.)	bility Tests (Appendix B) ubmitted on a previous withfication) Ind identify the item description being continued) ting in accordance with 10 CFR § 55 45(-)[15][v].
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su DESCRIPTION OF PERFORMANCE TESTING PLAN CHANGE (Attach additional page(s) as necessary, a Not Applicable Initial Certification RECERTIFICATION (Describe corrective actions taken, attach results of completed performance test Attach additional page(s) as necessary, and identify the item description being continued.) Not Applicable Initial Certification	bility Tests (Appendix B) ibmitted on a previous withfication) ind identify the item description being continued) ting in accordance with 10 CFR § 55.45(>)(5)(v).
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su DESCRIPTION OF PERFORMANCE TESTING PLAN CHANGE (Attach additional page(s) as necessary, a Not Applicable Initial Certification RECERTIFICATION (Describe corrective actions taken, attach results of completed performance test Attach additional page(s) as necessary, and identify the item description being continued.) Not Applicable Initial Certification Not Applicable Initial Certification Not Applicable Initial Certification	bility Tests (Appendix B)
See attached Schedule for Performance and Opera PERFORMANCE TESTING PLAN CHANGE. (For any modification to a performance testing plan su DESCRIPTION OF PERFORMANCE TESTING PLAN CHANGE (Attach additional page(s) as necessary, a Not Applicable Initial Certification PECERTIFICATION (Describe corrective actions taken, attach results of completed performance test Attach additional page(s) as necessary, and identify the item description being continued.] Not Applicable Initial Certification Any false statement or omission in this document, including attachments, may be subject to civil and crimities document and attachments is true and correct. IGNATURE - AUTHORIZEO REPRESENTATIVE Mut. D. Jacks	bility Tests (Appendix B) demitted on a previous wettification) nd (dentify the item description being commund) ting in accordance with 10 CFR § 55.45%-(15)(v). The secondance of the information in DATE Nuclear Operations 2-15-9/

ATTACHMENT TO NRC FORM 474 SIMULATION FACILITY CERTIFICATION

 Test Number 14.5.4.11, "Loss of Load Test" (included in Appendix 3.A, Transient Tests): An exception for this test is due to Fort Calhoun Station Unit 1 plant configuration and operations. Additional details are provided in the test summary.

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION

Simulator Certification Submittal Table of Contents

Section 1 - Simulator Information

- 1.1 General Information
- 1.2 Simulator Control Room Information
- 1.3 Instructor Interface Information
- 1.4 Operational Procedures Use
- 1.5 Changes since last report

Section 2 - Simulator Design Data

- 2.1 Introduction
- 2.2 Design Process
- 2.3 Simulator Design Documentation
- Appendix 2.A Simulator Design Team Core Member Qualifications
- Appendix 2.B Simulator Design Basis Documentation

Appendix 2.C - System Design Data Summary

Section 3 - Simulator Tests

- 3.1 Introduction
- 3.2 Simulator Test Program Documents
- 3.3 Trouble Report Data
- 3.4 Simulator Performance Test Abstracts
- 3.5 Summary

Appendix 3.A - Computer Real Time Test

- Appendix 3.A Steady State & Normal Operations Tests
- Appendix 3.A Transient Tests
- Appendix 3.A Malfunction Tests

Appendix 3.A - Other Tests

Section 4 - Simulator Discrepancy Resolution and Upgrades

- 4.1 Introduction
- 4.2 Simulator Discrepancies
- 4.3 Simulator Modifications

Appendix A - Modification Priority Listing/Status

Appendix B - Schedule for Performance and Operability Tests

Appendix C - Simulator Administrative Manual Excerpts

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION

Simulator Certification Submittal

-

Section 1

4

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION

Simulator Certification Submittal Section 1

1. STAULATOR INFORMATION

- 1.1 GENERAL
 - Owner: <u>Omaha Public Power District</u>
 Operator: <u>Omaha Public Power District</u>
 Manufacturer: <u>Westinghouse Electric Corporation</u>
 - (2) Reference Plan*: Fort Calhoun Station, Unit 1
 Type: NSSS Combustion Engineering PWR
 Turbine Generator: General Electric
 Rating: 1500 MWt, 502 MWe

(3) Date Available for Training: June 16, 1990

(4) Type of Report: Initial

The simulated control room is a reproduction of the reference plant's control room. The simulator has all operational pare's (less any current modifications) to provide the controls, instrumentation and alarms to accommodate operator training. The simulator's main control boards and auxiliary panels have been constructed using the reference plant's original vendor drawings. Deviations in dimensions and arrangement are minimal.

Panel controls, meters, recorders, etc., as the control boards themselves, duplicate the size, snape, color and configuration of the reference plant. Devices on the panels match the reference plant device by manufacturer, model, or external appearance. Quality photos of nonfunctional components that require no operator interaction replace internals for visual effects. All components required to ronduct normal plant evolutions are function.

The simulated control room decor has been matched to the greatest possible extent. Paint has been matched to existing color codes for both panels and control room walls. Carpeting was installed nearly simultaneously in both control rooms, as were the operator consoles. Vinyl floor covering may differ slightly in pattern. Panel access door latches, hinge placement and vent louvers may differ also. Valences on back control panels may completely extend around the back rather than existing front and sides. These slight deviations have no impact on training as they are not apparent from the operators' side of the panels.

The simulator duplicates the appearance and functional aspects of the main control room equipment and controls. The operator will be presented with an accurate representation of control room responses as would be expected during normal, abnormal and emergency operations. Those areas not simulated will not detract from the overall control panel appearance or operation.

.

CONTROL ROOM FIDELITY (continued)

The environment in the simulated control room mimics the reference control room closely. The capability to use a noise generator to simulate normal control room sounds exists. This includes a simulated control room communications system. Main control room sounds include: main turbine/generator noise (run-up, normal, shutdown), safety valve operation, relays, automatic bus transfer and switchgear, and random operational sounds. In addition, control room lighting fluctuates according to electrical distribution system operation and malfunctions.

The facility will support and provide a current simulator for NRC operating tests and required licensed operator training.

Modifications and revisions to the simulated control room will be monitored with the Configuration Management System. Modifications associated with the reference plant after the simulator's design freeze date follow. A brief description accompanies each modification. CONTROL ROOM

<u>Mod #</u>	Mod Title	Mod Description
FC81-051	Control Room Ventilation System Modification	Addition of 2 totally new panels; generation of I/O and software for new panels; HVA changes to accommodate new panels.
FC85-128	Meter Scale Modifications	Conversion of Sq. root processes to linear processes; replacement of Sq. root flow meters; replacement of Foxboro meters with Dixson meters; replacement of Sigma start-up meters; adding units to meter facefronts and changing meter scale of FIA-236.
FC88-017	Addition of a Third Aux Feedwater Pump	Pump, piping, and valve additions; control board switch, indicator, and annunciator additions; addition of accumulators for AFW valves and main FW valves; modification of main FW isolation valve circuits.
FC85-136	SGLS Block Permissive Setpoints	Replacement of S/G pressure meters; change of SGLS logic to true 2-out-of-4 logic.
FC75A-061	Component Cooling Valves Control Circuits	Replacement of CCW switches with spring return to center switches; valve handler logic changes.
FC88-011	Instrument Air Containment Isolation Valve Replacement	Addition of new valve on instrument air to containment; valve logic changes; addition of new pressure switch loop; addition of control switch and lights, and lights only on AI-43A; addition of valve position to ERF/QSPDS.
FC88-110	SI-3A/3B/3C Start Signal Logic Change	ESF logic changes for sequencers; sequencer times need to be changed; addition of new test switches; ERF timing program modification.
FC89-025	RCS Narrow Range Level Instrument	Addition of 2 new indicators on control panel; RCS model changes; addition of WR and NR level calculations.

Mod #	Mod Title	Mod Description
FC83-004B	Remaining VA-66 Flow Problems	Addition of control/interlock logic for new fan VA-121; addition of switches and lights for dampers; addition of pressure and temperature interlocks; addition of new flow controller (FIC-766).
FC81-064	RCS Hot Leg Level Indication	Addition of alarm bistable to LI-197 loop; addition of ERF point.
FC83-074	DC Sequencer Relay Replacement	Removal and plugging of auto-start key switches; removal and plugging of "spare" DC timers; removal and plugging of "spare" AC timers; replacement of remaining AC timers with new ones.
FC85-151	Replace Oddly Shaped Switch Handles	Replacement of switch handles on AI-179 and AI-185; modification and replacement of some meter scales; reversal of new Dixson indicators for S/G level and pressure.
FC87~037	Diesel Generator Electrical Modifications	Replacement of diesel tachometers; swapping of starting air pressure sensors to correct lines; removal of ERF points.
FC84-075	Redundant Power Supply for RW-CCW Interface Valves	Replacement of AC/RW interface valve switches; addition of an alarm window; removal of lights and switches on AI-45; addition of new switch on CB-1,2,3; Software changes.
FC87-048	Diverse Scram System (DSS) Testing	Addition of alarm windows to indicate DSS relay status; logic changes on operation of control switches.

<u>Mod #</u>	Mod Title	Mod Description
FC85-132	RCS Loop RTD Indicator Replacement	Replacement of RCS temperature meters with Dixsons.
FC88-067	Pedicated N2 Supply for Isolation Valves	Addition of N2 backup to instrument air for certain valves; modification of CAS model; removal of existing accumulators.
FC86-033	Evaluate Replacement of Proc/Area Radiation Monitors	Replacement of radiation monitor recorders; movement of area monitors.
FC87-055	ERF Computer Terminal Upgrade	Upgrade of control room consoles; addition of fourth terminal in control room; lazy susans for existing consoles.
FC85-196	Increased minimum flow for Pumps FW-4A/B/C	Tuning of CFW model to provide new minimum flow conditions.
FC86-046	Qualification of PZR Level Control Instrumentation	Replacement of Pressurizer level recorders (101 loop recorders).
FC87-016	Containment Sump Temperature Indication	Addition of ERF point; addition of instrument loop for containment sump temperature to software.
FC82-150B	Vac Dearator Pumps (DW-46A/B) Replacement	DW-46A/B pump capacities and operational aspects will need to be changed; CCW heat load to be added.
FC86-096	RPS Power Supplies	Replacement of RPS power supply face fronts.
FC85-022	Control Room Annunciation for Limitorque Operators	Addition of alarm window to indicate loss of power and/or thermal overload.
FC84-159	Metrascope Changeout	Addition of logic for rod drop timing; addition of I/O from AI-3.

<u>Mod #</u>	Mod Title	Mod Description
FC85-049	Redistribute Loads/DC Buses and Inverters	Reallocation of electrical loads.
FC87-038	Diesel Generator Mechanical Modifications	Tuning of DSG AUX model.
FC85-005	Heater Drain Pump Suction Relief Valves	Addition of valves to FWH model.
FC87-054	Fire Protection Systems Upgrade	FPS model flow path changes.
FC87-063	Diesel Generator Radiator Exhaust Damper Valves	Isolation of damper control circuit on operation of 183/MES switch.
FC88-009	Control Room Iodine Monitor (RM-065) Modification	Addition of alarm window on AI- 33C; new VIAS logic may need to be added.
FC85-126	Condensate/Feedwater Switch (43/FW) Alarm	Addition of new alarm window and logic for 43/FW switch.
FC83-174	Reactor Reg/Steam Dump & Bypass Alarm	Addition of new alarm windows; addition of logic to RRS model.
FC87-032	Air Compressors for Fire Protection Deluge System	Addition of alarm window.
FC88-022	CRDR Labeling/Demarcation/ Mimic/Etc.	Replacement of some of the control room labeling.
FC88-074	DCRDR Meter Banding Project	Addition of colored tape to some meter faces; replacement of other meter faces.
FC85-138	Guard Rail on Edge of Control Boards	Addition of chrome plated steel guard rail around control boards.

<u>Mod #</u>	Mod Title	Mod Description
FC85-142	Replacement of Sigma Meter Scales	Removal and disassembly of some meters to replace scales.
FC84-176	Letdown Level and Backpressure Control	Tuning to improve response time of PT-210.
FC87-014	Replacement of HCV-249 and HCV-2988	Valve stroke timing could be affected.
FC85-148	CIAS Emergency Operate Button Relocation	Removal and relocation of CIAS emergency operate button.
FC83-133	Control Room Indication-Diesel Gen Malfunction	Removal of ERF points; Removal of pressure switch contact; DSG AUX model changes.
FC88-036	Aux Controller for Feedwater Reg System	Power supply transfer switch logic changes; addition of new alarm window.
FC85-137	Reactor Trip Push-button Guard	Addition of reactor trip push-button guard.
FC83-166	Containment Sump Pump Level Indication and Control	Logic changes to WD-3A/B pump handler; could involve recorder hardware changes.
FC84-0928	Steam Generator Nozzle Dam Control Console	Addition of new alarm window.
FC85-130	Keylock Switch Changes	Some keys placed in key locker; other key lock switch actuators replaced by "normal" actuators.
FC85-150	Plastic Switch Guards	Installation and modification of plexiglass switch guards.
FC88-049	Installation of Instrument Air Dryer	Addition of new alarm window.

Mod #	Mod Title	Mod Description
FC89-051	Diesel Fuel Transfer Pump Install	Tuning of DSG fuel oil transfer pump characteristics.
FC89~068	AI-179 Indications	Loading of "D" inverter may need to be changed.
FC86-091	Limitorque Motor Operator Update	Valve limit switch/valve position light changes; annunciator window changes; bypass switch logic changes; replacement of HC-308 switch.
FC84-205	Setpoint Selector Switch for RM-061	Addition of new switch; modification of RM-061 setpoints.
FC74B-057	Power System Stabilizer	Changes in PSS will cause changes in GEN excitation; tuning of GEN model may be needed.
FC85-088	Acoustic Noise Generator	Addition of new label on VLPMS panel; new picture of control switch.

The Instructor System is an integrated system of hardware and software. Its primary function is to provide a flexible, comprehensive control interface to the simulator system, allowing the instructor to use the simulator in an effective manner as a training tool. An important secondary function of the Instructor System is to provide the instructor with a set of monitoring tools. These tools are useful in evaluating the state of the simulation and the performance of the trainees. The Instructor System also gives the hardware engineer access to a series of diagnostic programs to test the control panel display/control equipment and the control panel/computer interface equipment. Capabilities included in the software are useful in the testing and debugging of simulator software.

Operation of the Instructor System is possible from three different types of control stations. The first control station is the primary control console which is located in the instructor booth. The second control station is a moveable secondary control console located on the simulated control room floor. And, finally, hand-held remote control units can be activated up to 100 feet from the center of the control panels, thus providing the instructor with the ability to control the simulator from any point in the simulator area.

The primary control console is located in the instructor's booth and consists of two CPTs (with touchscreens and a mouse for cursor control), a keyboard, a color CRT screen copier, and a printer.

The secondary instructor's console is a portable roll-around unit that contains the SUN monitor, keyboard and mouse. The console is easily maneuverable with an anti-tipping device. The mobile unit plugs into various access outlets located on the simulator floor, so that an instructor is not hindered by a long cable.

Control Interface Description

There are three physical control interfaces available to the instructor; the primary control console, the secondary control console, and the remote control unit. The capabilities of each of these interfaces is described below:

Primary Control Console

The primary control console has two CRTs. One CRT is for the display of all the Instructor System monitoring features and one CRT serves as the main control tableau. Either of these two CRTs can be used for the display of plant diagrams as well as allowing control of the LOAs, malfunctions, plant parameters, and global component failures which are accessed through these displays. Control access utilizes the touchscreen, mouse and/or keyboard. These two CRTs are serviced by a single keyboard that is assignable via cursor control. These CRTs are referred to as the <u>monitor</u> and <u>control</u> CRTs, respectively, throughout this section.

Control and Monitor CRT Windows

In order to provide uniformity of operation, the instructor interface with the control and monitor CRTs at both the primary and secondary control consoles is identical. Each CRT screen is broken up into six fixed windows. The window arrangement and identification is shown in Figure A1.3(1).

On the control CRT, the control menu is a series of soft keys that provide direct access to overall simulation control features, in particular, initialization, snapshot, backtrack, replay, annunciator acknowledge/reset, expert mode, and run/freeze control. The action menu provides a series of soft keys for direct access to instructor

-1¹-1

r

0

actions that may be performed during a typical training scenario. The second page of the action menu consists of a series of soft keys for features which are not routinely accessed by an instructor. See Table A1.3(1) for a listing of the specific features that are accessed through these menus. The option menu is a variable menu that consists of text poke field, and soft keys. The exact configuration of this menu depends upon the instructor system feature accessed through the control and action menus. The time window provides the date, clock time, and simulator run time. The activity window is reserved for menus, tableau, and color graphics. The contents of this window also vary with the selected instructor system feature. The alarm window provides one line of text to identify software driven instructor ...stem alarms. If more than one alarm is present, instructions to see the message area will be provided. The message area is accessed through a soft key and produces a display of alarms or messages in the activity window.

On the monitor CRT, the control and alarm windows are not utilized. The action menu provides soft keys for direct access to all of the monitoring functions. The only soft keys common to the action menus between the control and monitor CRTs are the HELP and PLANT DIAGRAMS keys. The option menus on the monitor CRT are identical to those on the control CRT for the same features (malfunctions, LOAs, etc.). The option menu and activity window perform varying functions, as on the control CRT, depending upon the instructor feature accessed. The activity window is the same size as the activity window on the control CRT so that the same plant diagrams can be accessed from both CRTs.

The primary means of instructor interface with the control and monitor CRT screens is the touchscreen. All entry selections may be made using the touchscreen, although only with limited accuracy from the plant diagrams; the coarse control of the touchscreen is the governing limitation on poke field size. Primary access to poke TABLE A1.3(1) Instructor System Features

		CRT Screens*	Menu
ø	Reboot	N/A	N/A
•	Startup	N/A	N/A
	Initialization	с	Control
0	Snapshot Control	с	Control
	Backtrack	c	Contro l
۰	Replay	с	Control
٥	Annunciator acknowlege, reset and	c	Contro 1
	silence		Contro 1
	Run/Freeze Control	с	Contro 1
o	Expert Mode	С	Control
0	Malfunctions	C(C/M)	Action (Plant Diagrams)
٥	Local Operator Action	C(C/M)	Action (Plant Diagrams)
ø	Plant Parameters	C(C/M)	Action (Plant Diagrams)
ø	Global Component Failure	C(C/M)	Action (Plant Diagrams)
ø	Overr ides	с	Action
ø	Instructor action status displays	С	Action
o	Plant diagrams	C/M	Action
. 0	Computer alarms and messages	С	Action
ø	Artificial noise generator	с	Action/p.2
٥	Instrument noise	С	Action/p.2
٥	Remote control unit	c	Action/p.2
٩	Drill library	C	Action/p.2
ø	Time scaling	С	Action/p.2
0	Diagnostics	с	Action/p.2
٠	Help	C(M)	Action/p.2(Action)
٥	DP Monitor printer control	C(M)	Action/p.2(Action)
ø	Printer control	с	Action/p.2
o	Trending	М	Action
0	Plant status displays	м	Action
ø	Datapool monitor	я	Action
٥	Paramater databook	м	Action
a	Strip chart recorder	м	Action
ø	Trainee performance review	M	Action
ø	Student record program	м	Action
0	Shutdown	с	Action/p.2

*C = Control CRT/Display

M . Monitor CRT/Display

fields on the plant diagrams will be through the mouse. In this manner, the high resolution color graphics can be used to the instructor's advantage.

Additional Equipment

Additional hardware is present in the instructor's booth for the following functions:

- Recorder Power On/Off -- Controls power to control room recorders.
- 2. Emergency Stop -- Cuts power to simulator.
- 3. Annunciator Horns On/Off -- Disables control room horns, in case of a computer failure with any horn sounding. When the horns are enabled again by this switch, they resume being silent or sounding as if they had never been disabled.
- Communications devices, phones and plant paging system, to simulate communications from outside the control room.
- 5. Audio and video monitoring and recording equipment.

Hand-Held Remote Control Unit

Two wireless remote control units are provided which allow limited control of the simulator. The remote functions can be activated up to 100 feet from the center of the control panels, thus providing the instructor with the ability to control the simulator from any point in the simulator area.

The wireless transmitter has an internal antenna and is small enough to fit into a shirt pocket. It has 16 "click-type" buttons which cause 16 discrete signals to be transmitted to the receiver. Four push-buttons on the unit are dedicated to freeze/run, switch check override, master annunciator acknowledge, and master annunciator reset. The remaining push-buttons are programmable from the instructor control console. The instructor is to review and assign functions for each of the programmable keys on the remote control unit. These functions include:

- Activation of Instructor Actions (preassigned)
- ° Snapshot
- Activation of Backtrack with Forward/Reverse Stepping
- Activation of Replay
- Initialization Reset
- ^o Activation of Control Panel Hardware Diagnostic Testing
- Control of Time Scaling
- Activation of Malfunctions (preassigned)
- Termination of Malfunctions (preassigned)

Secondary Control Console

The secondary control console is a movable unit consisting of one CRT with touchscreens, a roller ball and a keyboard. The operation of the secondary control console is identical to the monitor and control CRTs of the primary control console.

When the secondary control console is operating, control of the simulation from the primary control console is relinquished; the console "in-command" at a given time has the unique prerogative of retaining or relinquishing control to the other. Control of the simulation is exchanged between the primary and secondary console by depressing the right mouse button while the cursor is on the window frame and then selecting the "give console" or "take console" option. The remote control unit interfaces with whichever console is in command.

1.3(1) Initial Conditions

The Fort Calhoun simulator has the capacity for 54 Initial Conditions (IC) to be stored. The first 24 IC's have been assigned as permanent training IC's. These 24 IC's include various modes of operation various power levels, various times in core life and several different fission product poison concentrations. These 24 IC's are shown in Table A1.3(2).

IC's 25-54 are being used for temporary IC's. The temporary IC's are used for training and for troubleshooting simulator software problems.

IC locations 55-59 are used as a rotating snapshot buffer. IC location 60 is a default IC. IC locations 61-300 are used for the backtrack and replay option.

TABLE A1.3(2)

1 1 1 1 1

10 #	POWER	TIME IN LIFE	
1	0%	BOL	Cold Shutdown - RCS drained
2	0%	BOL	Cold Shutdown - PZR Bubble
3	0%	BOL	RCS heatup in progress
4	0%	BOL.	RCS cooldown, on SDC
5	0%	BOL	RCS cooldown, prior to SDC
6	0%	BOL	RCS hot shutdown, borated
7	0%	BOL	Rx startup in progress
8	0%	BOL	Rx critical - cold turbine
9	15%	BOL	Ready to Sync Generator
10	30%	BOL	Xenon Increasing following startup
11	55%	BOL	Power raised from 30%
12	55%	BOL	Equilibrium Xenon
13	80%	BOL	Equilibrium Xenon
14	100%	BOL	Equilibrium Xenon
15	0%	MOL	Rx startup, post trip, Xe = 150%
16	0%	MOL	Rx critical - Post Trip
17	15%	MOL	Post Trip
18	30%	MOL	Extended Run
19	55%	MOL	Post Trip - Xenon Decreasing
20	55%	MOL	Power Decreasing, 105% Xenon
21	100%	MOL	Equilibrium Xenon
22	0%	EOL	Rx startup - Xenon Free
23	80%	EOL	106% Xenon, CH-9B in Service
24	100%	EOL	Equilibrium Xenon

.

The Fort Calhoun simulator has over 500 specific malfunctions which can be initiated by the simulator instructor. These malfunctions are listed in Table A1.3(3).

Instructors are able to compose malfunctions at the primary or secondary console. Malfunctions appearing on plant diagrams can be selected for control via the mouse and, with limited accuracy, the touchscreen. Alternatively, after selecting MALF on the control CRT, the master index of plant systems will be displayed on the CRT. The instructor can select a particular system from the display so that a listing menu containing all the malfunctions for that particular system will be displayed. Next, the instructor can select the particular malfunction. If the exact malfunctions name is known initially, after selecting MALF, the instructor can type the specific malfunction mnemonic directly without reviewing any index in order to select it. A particular malfunction can also be selected directly from the malfunction status page if it appears there.

Through the malfunction option menu, the instructor can enter the following information:

- Selection of components or discrete option to be affected (such as RC-3B)
- Severity of malfunction if applicable; adjustable using numeric key entry or a sliding bar chart suitable for touchscreen or mouse adjustment
- ° Delay time to malfunction activation in relative simulator time
- Delay time until an active malfunction is cleared in relative simulator time for all recoverable malfunctions; this time is set at a default value of 8 hours for recoverable malfunctions
 Ramping time if applicable
- Type of trigger, either direct, remote, or Boolean (conditional) expression, if applicable

In addition, many more malfunctions can be initiated as Global Failures.

The Fort Calhoun simulator design uses a number of common handlers which simulate the common components in the plant. These common handlers include the following:

- Pump Handler for motor operated pumps and fans operated from the control room
- Controller Handler for controllers
- Control Valve Handlers for control valves which are modulated either by a controller or a modulating signal
- Valve Handler for nonmodulated valves operated from the control room
- Transmitter Handler for transmitter characteristics
- Bistable Handler for bistables
- Heat Exchanger Handler for heat exchanger

Each handler includes the simulation of common mode failures. Since each handler is used to process common components in the simulator, it is possible to malfunction any pump, controller, valve, transmitter, or bistable within the capabilities of each handler. This instructor system feature is referred to as global component failures.

The implementation of the global component failures is detailed below.

- ° Pumps
 - Trip d e to overcurrent with or without remote reset requirement for restart
- Valves
 - Fail as is
 - Fail to specified position (MOVs and AOVs)

- ° Controllers
 - Fail to a selected position or us is
 - Oscillate at selected amplitude
- Transmitters
 - Fail to a selected value
 - Fail as is
- Bistables
 - Actuated
 - Inhibited
 - Fail as is
- Heat Exchangers
 - Degrade heat transfer coefficient (fouling)

Required Simulator Malfunctions

Loss of Coolant

The Fort Calhoun simulator can model a Steam Generator Tube Rupture in either or both of the Steam Generators using malfunction SGN1. The leak size can be varied from 0 to 10 full tubes in each Steam Generator.

Malfunction RCS1 can model a primary Loss of Coolant Accident in any not or cold leg of the RCS. The break size can be varied from 0 to full pipe rupture. Saturation conditions in the RCS will result if the break size is large enough.

Malfunctions CVC1, CVC2, CVC9 and CVC10 model charging and letdown line breaks, inside and outside of containment. The break sizes can be varied from 0 to a full rupture of a charging or letdown line.

Malfunctions PRS5 and PRS6 simulate the failure of pressurizer relief and safety valves. Global Failures can also be used to fail the Pressurizer relief, safety and block valves to any position.

Loss of Instrument Air

Malfunction CAS3 can be used to simulate the rupture of an Instrument Air header in the Auxiliary Building, the Turbine Building and in Containment. These failures can be initiated individually or in combination. Malfunction CAS4 models a leak in individual Instrument Air Risers.

The Air Compressors can be failed using Global Failures.

Loss or Degraded Electrical Power to the Station

A Loss of Offsite Power to the Fort Calhoun Station can be simulated using Malfunction EDS11. A loss of power to the individual electrical busses, including the Emergency busses, can be simulated using Malfunctions EDS1 and EDS2.

A loss of the Emergency Generators can be simulated using Malfunctions DSG3, DSG4, DSG5, DSG6, DSG8, DSG10 and DSG12.

A loss of power to the AC Instrument busses can be performed using Malfunction EDS4 and a loss of power to the DC busses can be performed using Malfunction EDS3.

Loss of Forced Coolant Core Flow

Malfunctions RCP6 and RCP7 can be used to simulate the seizure or the shear of the shaft on any or all reactor coolant pumps. The reactor coolant pumps can also be tripped using Global Failures.

Loss of Condenser Vacuum Including Loss of Condenser Level Control

Malfunction CND1 will simulate a loss of condenser vacuum by air inleakage. The leak size can be varied from 0 to the equivalent of having the vacuum breaker open.

Loss of Condenser Vacuum Including Loss of Condenser Level Control (continued)

Malfunctions CND2 and CND8 simulate the lors of hotwell level control due to a leak or malfunction of the hotwell level controller. In addition, failures of the instrumentation and controllers associated with the hotwell level control system can be simulated using Glob 1 Failures.

Loss of Service Water or Cooling to Individual Components

A loss of Raw Water or degraded cooling can be simulated using Malfurctions RWS1, RWS2, and RWS3. Global failures can be used to trip the Raw Water Pumps, close valves to some individual components and cause fouling of some heat exchangers.

Loss of Shutdown Cooling

Malfunction SDC2 simulates a shutdown cooling heat exchanger inlet header leak. The size can be varied from 0 to a 12 inch header break.

A loss of shutdown cooling can be simulated by using global failures to trip the Shutdown Cooling (LPSI) pumps, to close valves between the RCS and the Shutdown Cooling System, or to fail pressure instruments which result in closing valves between the RCS and the Shutdown Cooling System.

Malfunction CCW-6 can be used to simulate a loss of CCW to the Shutdown Cooling Heat Exchangers. Other Malfunctions listed below under Component Cooling Losses can also be used to produce a loss of shutdown cooling.

Loss of Component Cooling System or Cooling to Individual Components

Malfunctions CCW1-CCW9 can be used to simulate a loss of CCW or degraded CCW performance. Global failures can be used to trip the Component Cooling Water Pumps, close valves to some individual components and cause fouling of some heat exchangers.

Loss of Normal Feedwater

Malfunctions FW1-FW6 can be used to simulate feedwater line breaks at various locations both inside and outside of containment. The leak size can be varied from 0 to 100% of the pipe size at the simulated break location.

Global Failures can be used to trip the feedwater pumps or fail the valves used to control feedwater flow.

Malfunction ESF6 can be used to cause a Steam Generator Isolation Signal Actuation which will result in a loss of normal feedwater.

Loss of all Feedwater

A loss of all feedwater can be simulated by combining one of the loss of normal feedwater events listed above with Malfunction AFW-1 (Turbine Driven AFW Pump Fails) and the Global Failure of FW-6, the motor driven AFW pump.

Loss of Protective System Channel

Malfunction EDS4, with Instrument Bus A, B, C, or D chosen, will cause all protective bistables in the selected protective system channel to fail in the topped condition.

Malfunction RPS1 can be used to fail an interposing relay in either the energized or de-energized position.

Loss of Protective System Channel (continued)

Global Failures can be used to fail any individual protective system bistable in either position.

Control Rod Failures

Malfunction CRD5 can be used to simulate stuck control rods. Malfunction CRD6 can be used to cause selected control rods to drop into the core. Malfunctions CRD2-CRD5 can be used to simulate misaligned rods when combined with the students manually moving the rods.

Drifting rods are not simulated since all automatic control features have been removed from the Fort Calhoun Control Rod Drive System. However, uncontrolled rod motion can be simulated by using overrides. Uncoupled rods are not modeled in the Fort Calhoun Simulator.

Inability to Drive Control Rods

The inability to drive control rods can be simulated by overriding the IN-HOLD-OUT switch on CB-4 to the HOLD position.

Fuel Cladding Failure Resultin: in High Activity in Reactor Coolant

Malfunction RCS3 can be used to simulate a cladding failure which results in high RCS activity.

Turbine Trip

Malfunctions TUR1, TUR2, TUR5 and EHC1 will produce a turbine trip at their higher severity levels.

Turbine Trip (continued)

A turbine trip can also be produced by overriding the turbine trip switch on the control board or by simulating a local turbine trip using a local operator action (LOA EHC1).

Generator Trip

A Generator trip can be produced using malfunction TGA4. A Generator trip can also be produced by overriding the generator breaker control switches or by using a global failure to actuate the 86 relay on the generator.

Failure in Automatic Control Systems that Affect Reactivity and Core Heat Removal

Global failures can be used to simulate the failure of any automatic control system due to either instrument or controller failures.

Failure of Reactor Coolant Pressure and Volume Control System

Global failures can be used to simulate the failure of any automatic control system due to either instrument or controller failures. This includes pressurizer pressure and level control systems. Malfunction PRS9 will simulate a variable size leak on a pressurizer instrument tap.

Reactor Trip

A simulated Reactor Trip can be initiated using the appropriate options of Malfunctions RPS1, RPS2, or CRD7. A Reactor Trip can also be initiated by overriding one of the manual reactor trip switches.

Main Steam or Feedwater Line Break(s)

Malfunctions FDW1-FDW5, MSS1-MSS7 simulate Steam and Feedwater Line Breaks. Locations both inside and outside of containment are modeled as well as Main Steam leaks due to failed Steam Generator Safety Valves. The leak size can be varied from zero to complete pipe rupture at each simulated break location.

Nuclear Instrumentation Failures

Malfunctions NIS1-NIS8 simulates various types of failures of the wide range (in both the wide range and extended range modes) and power range (safety and concrol channels) Nuclear Instrumentation. The wide range Nuclear Instrumentation channels operating in their extended range mode function as the source range Nuclear Instrumentation at Fort Calhoun.

Process Instrumentation, Alarms, and Control System Failures

Global failures can be used to simulate the failure of any automatic control system due to either instrument or controller failures. Any alarm can be initiated or inhibited using the override feature.

Passive Malfunctions in Systems, Such as Engineered Safety Features, Emergency Feedwater Systems

Malfunctions ESF1-ESF13 can be used to simulate various passive malfunctions of the engineered safety features actuation systems. Malfunction AFW5 can be used to simulate the failure of an AFW actuation relay.

Global Failures can be used to prevent the actuation of engineered safety features pumps and valves.

Failure of the Automatic Reactor Trip System

Malfunction RPS1 can be used to prevent an automatic reactor trip by failing three or more interposing relays in their energized state.

MALFUNCTIONS TABLE A1.3(3)

<u>575.</u>	Number	Description
AFW AFW AFW AFW	RRS-2 AFW-1 AFW-2 AFW-3A AFW-3B AFW-4	* * * DELETED * * * Turbine Driven AFW Pump Failure Aux Feedwater Main Spply Line Lk AFW Line A Lk Inside Cont (Isol) * W Line B Lk Inside Cont (Isol) Aux Feedwater Storage Tank Leak
CAS CAS CAS CAS CAS CAS CAS CAS CAS CAS	CAS-1A CAS-1B CAS-1C CAS-2A CAS-2B CAS-2B CAS-2C CAS-3A CAS-3B CAS-3C CAS-4A CAS-4B CAS-4B CAS-4D CAS-4D CAS-4E CAS-4F CAS-4F CAS-4H CAS-4J CAS-4J	Compr CA-1A Discharge Line Leak Compr CA-1B Discharge Line Leak Compr CA-1C Discharge Line Leak Serv Air Line Leak In Aux Bldg Serv Air Line Leak In Contmat Serv Air Line Leak In Contmat Serv Air Loop Leak In Aux Bldg Instr Air Loop Leak In Aux Bldg Instr Air Loop Leak In Contmat Instr Air Loop Leak In Contmat Instr Air Loop Leak In Contmat Instr Air Loop Leak In Contmat Instrument Air Riser (AF) Leak Instrument Air Riser (AG) Leak Instrument Air Riser (AH) Leak Instrument Air Riser (AS) Leak Instrument Air Riser (AS) Leak Instrument Air Riser (AZ) Leak Instrument Air Riser (BB) Leak Instrument Air Riser (BF) Leak Instrument Air Riser (BF) Leak
	CCW-1A CCW-1B CCW-2A CCW-2B CCW-2C CCW-3A CCW-3B CCW-3C CCW-3C CCW-5A CCW-5A CCW-5B CCW-5D CCW-6B CCW-6B CCW-6B CCW-8B CCW-9A CCW-9B	CCW Surge Tank Gas Space Leak CCW Surge Tank Liquid Space Leak Air Binding Of CCW Pump AC-3A Air Binding Of CCW Pump AC-3B Air Binding Of CCW Pump AC-3C CCW Pump AC-3A Disch Line Leak CCW Pump AC-3B Disch Line Leak CCW Pump AC-3C Disch Line Leak CCW Pump AC-3C Disch Line Leak CCW Pump Discharge Header Leak CCW Hx AC-1A Tube Leak CCW Hx AC-1B Tube Leak CCW Hx AC-1B Tube Leak CCW Hx AC-1C Tube Leak CCW Hx AC-1D Tube Leak CCW Hx AC-1D Tube Leak CCW Line To SDC Hx AC-4A Leak CCW Line To SDC Hx AC-4B Leak Failure Of Relief Valve AC-258 Detctr Well Clng Coil VA-14A Lk Detctr Well Clng Coil VA-14B Lk Containment Cooler VA-1A Leak

2421	Mumber	Deseription
CFW CFW CFW CFW CFW CFW CFW CFW CFW CFW	CND-1 CND-2 CND-3A CND-3B CND-3C CND-4A CND-4B CND-4C CND-5 CND-6A CND-6B CND-7 CND-8 CND-9	Loss Of Main Condenser Vacuum Hotwell Leak Cnd Pp FW-2A Suct Cplng Collaps Cnd Pp FW-2B Suct Cplng Collaps Cnd Pp FW-2C Suct Cplng Collaps Cond Pump FW-2A Bearing Failure Cond Pump FW-2B Bearing Failure Cond Pump FW-2C Bearing Failure Condensate Clr FW-3 Tube Leak Stator Cooler ST-25A Tube Leak Stator Cooler ST-25B Tube Leak Stator Cooler ST-25B Tube Leak Condensate Header Break Hotwell Level Control Failure Cond Storage Tank DW-48 Leak
CFW CFW CFW CFW CFW CFW CFW CFW CFW CFW	FDW-1A FDW-1B FDW-2 FDW-3A FDW-3B FDW-4A FDW-4B FDW-5A FDW-5B FDW-5B FDW-6A FDW-6B FDW-6C FDW-6D	Main FW Pump FW-4A Disch Line Lk Main FW Pump FW-4B Disch Line Lk Main FW Pump FW-4C Disch Line Lk Main Feedwater Header Leak Fdln A Leak Upstream Of The FCV Fdln B Leak Upstream Of The FCV Fdln A Leak Downstrm Of The FCV Fdln A Leak Downstrm Of The FCV Fdln A Leak Inside Cnmt (non-iso Fdln B Leak Inside Cnmt (non-iso Fdln B Leak Inside Cnmt (non-iso Main Feed Isol Vlv MOV-1103 Fail Main Feed Isol Vlv MOV-1385 Fail Main Feed Isol Vlv MOV-1386 Fail
CRD CRD CRD	CRD-5 CRD-6 CRD-8	Stuck Rod CEDM Clutch Failure Rod Ejection
CVC CVC CVC CVC CVC CVC CVC	CVC-1 CVC-2 CVC-3 CVC-3 CVC-4 CVC-5 CVC-5 CVC-6	Letdown Line Leak Inside Cnmt Letdown Line Leak Outside Cnmt Letdown Heat Exchanger Tube Leak Letdown Hx CH-7 Tube Leak Ltdn Purif System Inlet Line Lk Letdown Purif Filter Blockage Ltdn Purif Fltr CH-17B Blockage Ltdn Purif System Outlet Line Lk
CVC CVC CVC CVC CVC CVC CVC	CVC-7A CVC-7B CVC-8 CVC-9 CVC-10 CVC-11 CVC-11 CVC-12A	VCT Leak - Gas Space VCT Liquid Space Leak VCT Discharge Line Leak Charging Line Leak Outside Cnmt Charging Line Leak Inside Cnmt Regenerative Heat Exch Tube Leak Regenerative Hx CH-6 Tube Leak BA Storage Tank CH-11A Leak

21.

n.

2 ...

e.

-
Sys.	Number	Description
	CVC-12B CVC-13 CVC-14 CVC-15A CVC-15B CVC-16A CVC-16B CVC-16C	BA Storage Tank CK-11B Leak Boric Acid To Blender Line Leak Demin Water To Blender Line Leak Loss Of Heat Tracing To CH-11A Loss Of Heat Tracing To CH-11B Chrgng Pp CH-1A Valve Failure Chrgng Pp CH-1B Valve Failure Chrgng Pp CH-1C Valve Failure
CVC CVC CVC CVC CVC CVC CVC	RCP-2A RCP-2B RCP-2C RCP-2D RCP-8A RCP-8B RCP-8C RCP-8D	RC-3A Seal Cooler Leak RC-3B Seal Cooler Leak RC-3C Seal Cooler Leak RC-3D Seal Cooler Leak RC-3A LP Vapor Seal Leak RC-3B LP Vapor Seal Leak RC-3C LP Vapor Seal Leak RC-3D LP Vapor Seal Leak
CWS CWS CWS CWS CWS CWS CWS CWS CWS CWS	CWS-1A CWS-1B CWS-1C CWS-1C CWS-1E CWS-1F CWS-1G CWS-1G CWS-2A CWS-2B CWS-2C CWS-2D CWS-2D CWS-3A CWS-3B CWS-4B CWS-4B CWS-4C CWS-4E CWS-4F	CWS To Main Cond A South Uppr Lk CWS To Main Cond A South Lwr Lk CWS To Main Cond A North Uppr Lk CWS To Main Cond A North Lwr Lk CWS To Main Cond B South Uppr Lk CWS To Main Cond B South Lwr 'k CWS To Main Cond B North Uppr Lk CWS To Main Cond B North Uppr Lk CWS To Main Cond B North Lwr Lk Main Cond A South Tube Leak Main Cond A South Tube Leak Main Cond B South Tube Leak Main Cond B South Tube Leak Main Cond B North Tube Leak Turbine Bearing Cooler CW-6A Lk Turbine Bearing Cooler CW-6B Lk River Water Screen A Blockage River Water Screen C Blockage River Water Screen D Blockage River Water Screen F Blockage
DSG DSG DSG DSG DSG DSG DSG DSG DSG DSG	DSG-1A DSG-1B DSG-2A DSG-2B DSG-3A DSG-3B DSG-4A DSG-4B DSG-5A DSG-5B DSG-5B DSG-6A DSG-6B	D/G 1 Fuel Xfer Pp Suction Leak D/G 2 Fuel Xfer Pp Suction Leak D/G 1 Fuel Xfer Pp Disch Leak D/G 2 Fuel Xfer Pp Disch Leak D/G 1 Auxiliary Fuel Tank Leak D/G 2 Auxiliary Fuel Tank Leak D/G 2 Auxiliary Fuel Tank Leak D/G 1 Engine Lube Oil Sump Leak D/G 2 Engine Lube Oil Sump Leak D/G 1 Lube Oil Cooler Leak D/G 2 Lube Oil Cooler Leak Diesel Generator 1 Radiator Leak Diesel Generator 2 Radiator Leak

DSG DSG-7A DSG DSG-7B DSG DSG-7C DSG DSG-7C DSG DSG-8A DSG DSG-8B DSG DSG-9A DSG DSG-9A DSG DSG-10A DSG DSG-10B DSG DSG-10B DSG DSG-11B DSG DSG-11B DSG DSG-12A DSG DSG-12B DSG DSG-12B DSG DSG-12B DSG DSG-12B DSG DSG-12B DSG DSG-12B DSG DSG-12B	D/G 1 Starting Air Left Bank Lk D/G 1 Starting Air Right Bank Lk D/G 2 Starting Air Left Bank Lk D/G 2 Starting Air Right Bank Lk D/G 2 Failure To Start D/G 2 Failure To Start D/G 1 Governor Failure D/G 2 Governor Failure D/G 2 Governor Failure D/G 1 Field Flashing Failure D/G 2 Field Flashing Failure D/G 2 Voltage Regulator Failure D/G 2 Voltage Regulator Failure D/G 1 Output Breaker Failure D/G 2 Output Breaker Failure Demin Water Surge Tank DW-39 Lk Primary Water Strg Tank DW-45 Lk
EDSEDS-1AEDSEDS-1BEDSEDS-1CEDSEDS-1DEDSEDS-2AEDSEDS-2BEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2DEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-2CEDSEDS-3AEDSEDS-3AEDSEDS-4AEDSEDS-4DEDSEDS-4CEDSEDS-4CEDSEDS-4CEDSEDS-4CEDSEDS-6AEDSEDS-6DEDSEDS-6DEDSEDS-6DEDSEDS-6CEDSEDS-6CEDSEDS-7AEDSEDS-7AEDSEDS-7CEDSEDS-7C	4160 VAC Bus 1A1 Fault 4160 VAC Bus 1A2 Fault 4160 VAC Bus 1A3 Fault 4160 VAC Bus 1A3 Fault 480 VAC Bus 1B3A Fault 480 VAC Bus 1B3A-4A Fault 480 VAC Bus 1B3A-4A Fault 480 VAC Bus 1B3B-4B Fault 480 VAC Bus 1B3B-4B Fault 480 VAC Bus 1B3C Fault 480 VAC Bus 1B3C Fault 480 VAC Bus 1B3C Fault 480 VAC Bus 1B3C-4C Fault 480 VAC Bus 1B4C Fault 125 VDC Bus 1 Fault 125 VDC Bus 2 Fault 120 VAC Instrument Bus A Fault 120 VAC Instrument Bus B Fault 120 VAC Instrument Bus B Fault 120 VAC Instrument Bus J Fault 120 VAC Instrument Bus J Fault 120 VAC Instrument Bus #1 Fault 120 VAC Instrument Bus #2 Fault 480 VAC Supply Xfmr T1B-3A Fault 480 VAC Supply Xfmr T1B-3B Fault 480 VAC Supply Xfmr T1B-3B Fault 480 VAC Supply Xfmr T1B-4C Fault 480 VAC Supply Xfmr F1B-4C Fault 480 VAC Supply Xfmr F1B-4D Fault

Sys.	Number	Description
EDS EDS EDS EDS EDS EDS EDS EDS EDS EDS	EDS-7F EDS-8A EDS-8B EDS-9A EDS-9C EDS-10A EDS-10B EDS-10C EDS-10D EDS-10E EDS-10F	Instr Bus Sply Xfmr EE-4T Fault Lighting Sply Xfmr T1C-3A Fault Lighting Spply Xfmr T1C-4A Fault Battery Charger #1 Fault Battery Charger #2 Fault Battery Charger #3 Fault Inverter A Fault Inverter B Fault Inverter D Fault Inverter D Fault Inverter #1 Fault Inverter #2 Fault
EHC EHC EHC EHC EHC EHC EHC EHC EHC EHC	EHC-1 EHC-2 EHC-3A EHC-3B EHC-3C EHC-3C EHC-4A EHC-4A EHC-4B EHC-4C EHC-4D EHC-5A EHC-5A EHC-5C EHC-5C EHC-5C EHC-5F EHC-5F EHC-5H EHC-5H EHC-5H	EH Fluid System Leak Main Turbine Failure To Trip Control Valve CV-1 Failure Control Valve CV-2 Failure Control Valve CV-3 Failure Control Valve CV-3 Failure Control Valve CV-4 Failure Control Valve CV1 Oscillates Control Valve CV2 Oscillates Control Valve CV3 Oscillates Control Valve CV3 Oscillates Intercept Valve CV4 Oscillates Intercept Valve IV-1 Failure Intercept Valve IV-2 Failure Intercept Valve IV-3 Failure Intercept Stop Valve ISV-1 Failure Intercept Stop Valve ISV-2 Failure Intercept Stop Valve ISV-3 Failure Intercept Stop Valve ISV-3 Failure Intercept Stop Valve ISV-4 Failure Intercept Stop Valve ISV-4 Failure
ESF ESF ESF ESF ESF ESF ESF	AFW-5A AFW-5B AFW-5C AFW-5D AFW-5E AFW-5F AFW-5H	AFW Act Relay A/RC-2A Failure AFW Act Relay A1/RC-2A Failure AFW Act Relay B/RC-2A Failure AFW Act Relay B1/RC-2A Failure AFW Act Relay A/RC-2B Failure AFW Act Relay A1/RC-2B Failure AFW Act Relay B/RC-2B Failure AFW Act Relay B1/RC-2B Failure
ESF ESF ESF ESF ESF ESF ESF ESF	ESF-1A ESF-1B ESF-2A ESF-2B ESF-3A ESF-3B ESF-4A ESF-4B ESF-5A	SGLP Logic Matrix Failure Trn A SGLP Logic Matrix Failure Trn B CPHS Logic Matrix Failure Trn A CPHS Logic Matrix Failure Trn B STLS Logic Matrix Failure Trn A STLS Logic Matrix Failure Trn B CRHS Logic Matrix Failure Trn A CRHS Logic Matrix Failure Trn B PPLS Logic Matrix Failure Trn A

5

٩,

.....

Sys.	Number	Description
ESF ESF ESF ESF ESF ESF ESF ESF ESF ESF	ESF-5B ESF-6A ESF-6B ESF-7A ESF-7B ESF-7B ESF-8B ESF-9A ESF-9B ESF-10A ESF-10B ESF-10B ESF-11A ESF-11B ESF-12A ESF-128 ESF-13A	PPLS Logic Matrix Failure Trn B SGIS Actuation Failure Trn A SGIS Actuation Failure Trn B CSAS Actuation Failure Trn A CSAS Actuation Failure Trn A RAS Actuation Failure Trn B CIAS Actuation Failure Trn B CIAS Actuation Failure Trn A CIAS Actuation Failure Trn A SIAS Actuation Failure Trn B SIAS Actuation Failure Trn B VIAS Actuation Failure Trn B VIAS Actuation Failure Trn B OPLS Logic Matrix Failure Trn B D/G Sequencer S2-1 Failure D/G Sequencer S2-2 Failure
FPS FPS FPS FPS FPS FPS FPS FPS FPS FPS	FPS-1 FPS-2A FPS-2B FPS-2C FPS-2C FPS-2E FPS-2F FPS-2G FPS-2G FPS-2H FPS-2J FPS-2J FPS-3A FPS-3B FPS-3C	Fire Protection System Leak Xmfr T-1 Deluge System Actuation Xmfr T1A-1 Deluge System Actuation Xmfr T1A-2 Deluge System Actuation Xmfr T1A-3 Deluge System Actuation Xmfr T1A-4 Deluge System Actuation D/G Rooms Deluge System Actuation TSC Deluge System Actuation A/B Hatchway Deluge System Actuation A/B Stairway Deluge System Actuation Rocm 19 Deluge System Actuation Tur Bldg Sprinkler Sys Actuation AFW Pump Room Sprinkler Sys Actuation T.B. Office Sprinkler Sys Actuation
FWH FWH FWH FWH FWH FWH FWH FWH FWH FWH	FWH-1A FWH-1B FWH-1C FWH-1D FWH-1E FWH-1F FWH-1F FWH-1G FWH-1H FWH-1J FWH-1J FWH-1J FWH-2A FWH-2B FWH-2B FWH-3 FWH-4	LP Feedwater Htr FW-11A Tube Lk LP Feedwater Htr FW-11B Tube Lk LP Feedwater Htr FW-12A Tube Lk LP Feedwater Htr FW-12B Tube Lk LP Feedwater Htr FW-13A Tube Lk LP Feedwater Htr FW-13B Tube Lk LP Feedwater Htr FW-14A Tube Lk LP Feedwater Htr FW-14B Tube Lk LP Feedwater Htr FW-14B Tube Lk LP Feedwater Htr FW-15A Tube Lk LP Feedwater Htr FW-15B Tube Lk HP Feedwater Htr FW-16B Tube Lk HP Feedwater Htr FW-16B Tube Lk Lp Heater FW-13A Shell Leak Lp Heater FW-13B Shell Leak Heater Drain Pump Disch Hdr Lk Heater Drain Tank Leak

SYS.	Number	Description
GEN GEN GEN GEN	GEN-1A GEN-1B GEN-2 GEN-3 GEN-4	Voltage Reg Failure - Auto Mode Voltage Reg Failure - Manual Mod Main Generator Otpt Brkr Failure Main Generator Exciter Failure Main Generator Field Brkr Failure
NIS NIS NIS NIS NIS NIS NIS NIS NIS NIS	NIS-1A NIS-1B NIS-1C NIS-1D NIS-1E NIS-1F NIS-1G NIS-2A NIS-2B NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-2C NIS-3C NIS-4C NIS-4C NIS-4C NIS-4C NIS-5C NIS-5C NIS-5C NIS-5C	Main Generator Field Brkr Failure Chan A Ext Range Detector Failure Chan B Ext Range Detector Failure Chan B Ext Range Detector Failure Chan C Wide Range Detector Failure Chan C Ext Range Detector Failure Chan D Ext Range Detector Failure Chan D Ext Range Detector Failure Chan D Ext Range Detector Failure Wide Range Pwr Supply A Fails Lo Wide Range Pwr Supply A Fails Lo Wide Range Pwr Supply B Fails Lo Wide Range Pwr Supply B Fails Lo Wide Range Pwr Supply C Fails Lo Wide Range Pwr Supply C Fails Lo Wide Range Pwr Supply D Fails Lo Wide Range B/S A Fails Deenerg Extended Range B/S A Fails Deenerg Extended Range B/S D Fails D
NIS	NIS-6B	Pwr Rng Dtctr Chan A Lower Fail
NIS	NIS-6C	Pwr Rng Dtctr Chan B Upper Fail
NIS	NIS-6D	Pwr Rng Dtctr Chan B Lower Fail
NIS	NIS-6E	Pwr Rng Dtctr Chan C Upper Fail
NIS	NIS-6F	Pwr Rng Dtctr Chan C Lower Fail
NIS	N1S-6G	Pwr Rng Dtctr Chan D Upper Fail
NIS	NIS-6H	Pwr Rng Dtctr Chan D Lower Fail

Sys.	Number	Description
NIS NIS NIS NIS NIS NIS NIS NIS NIS NIS	NIS-6I NIS-6J NIS-6K NIS-7A NIS-7B NIS-7C NIS-7C NIS-7C NIS-7F NIS-8A NIS-8B NIS-8C NIS-8B NIS-8E NIS-8F	Pwr Rng Dtctr Chan 9 Upper Fail Pwr Rng Dtctr Chan 9 Lower Fail Pwr Rng Dtctr Chan 10 Upper Fail Pwr Rng Dtctr Chan 10 Lower Fail Pwr Rng Pwr Supply Chan A Fail Pwr Rng Pwr Supply Chan B Fail Pwr Rng Pwr Supply Chan C Fail Pwr Rng Pwr Supply Chan D Fail Pwr Rng Pwr Supply Chan D Fail Pwr Rng Pwr Supply Chan 9 Fail Pwr Rng Pwr Supply Chan 10 Fail Pwr Rng Summing Amp Chan A Fail Pwr Rng Summing Amp Chan B Fail Pwr Rng Summing Amp Chan D Fail Pwr Rng Summing Amp Chan 10 Fail
PMP	TUR-6	Turning Gear Failure
PMP RCP RCP RCP RCP RCP RCP RCP RCP RCP RC	TUR-6 RCP-1A RCP-1B RCP-1C RCP-1D RCP-3A RCP-3B RCP-3C RCP-3B RCP-3C RCP-3E RCP-3F RCP-3F RCP-3G RCP-3H RCP-4A RCP-4B RCP-4A RCP-4B RCP-4D RCP-5A RCP-5B RCP-5C RCP-5C RCP-5F RCP-5G RCP-5H RCP-6A	RC-3A Lube Oil Cooler Leak RC-3B Lube Oil Cooler Leak RC-3C Lube Oil Cooler Leak RC-3D Lube Oil Cooler Leak RCP RC-3A Upper Guide Brg Failure RCP RC-3A Lower Guide Brg Failure RCP RC-3B Upper Guide Brg Failure RCP RC-3B Lower Guide Brg Failure RCP RC-3C Upper Guide Brg Failure RCP RC-3C Lower Guide Brg Failure RCP RC-3D Thrust Bearing Failure RCP RC-3D Thrust Bearing Failure RCP RC-3A Thrust Bearing Failure RCP RC-3A Upr Lubc Oil Reser Lk RCP RC-3A Lwr Lube Oil Reser Lk RCP RC-3B Lwr Lube Oil Reser Lk RCP RC-3C Upr Lube Oil Reser Lk RCP RC-3C Lwr Lube Oil Reser Lk RCP RC-3C Lwr Lube Oil Reser Lk RCP RC-3D Upr Lube Oil Reser Lk RCP RC-3D Upr Lube Oil Reser Lk RCP RC-3D Lwr Lube Oil Reser Lk RCP RC-3A Shaft Seizure
RCP RCP RCP RCP	RCP-6C RCP-6D RCP-7A RCP-7B	RCP RC-3C Shaft Seizure RCP RC-3D Shaft Seizure RCP RC-3A Shaft Shear RCP RC-3B Shaft Shear
RCP RCP RCP	RCP-7C RCP-7D RCP-9A	RCP RC-3C Shaft Shear RCP RC-3D Shaft Shear RCP RC-3A Lower Seal Failure

Sys.	Number	Description
RCP RCP RCP RCP RCP RCP RCP RCP RCP RCP	RCP-9B RCP-9C RCP-9D RCP-10A RCP-10B RCP-10C RCP-10D RCP-11A RCP-11B RCP-11C RCP-11D	RCP RC-3B Lower Seal Failure RCP RC-3C Lower Seal Failure RCP RC-3D Lower Seal Failure RCP RC-3A Middle Seal Failure RCP RC-3B Middle Seal Failure RCP RC-3C Middle Seal Failure RCP RC-3D Middle Seal Failure RCP RC-3A Upper Seal Failure RCP RC-3B Upper Seal Failure RCP RC-3C Upper Seal Failure RCP RC-3D Upper Seal Failure RCP RC-3D Upper Seal Failure
RCS RCS RCS RCS RCS RCS RCS RCS RCS	CRD-1A CRD-1B CRD-1C CRD-1D CRD-1E CRD-1F CRD-1G CRD-1H CRD-11 CRD-1J	CEDM 3 Seal Leakage CEDM 5 Seal Leakage CEDM 6 Seal Leakage CEDM 10 Seal Leakage CEDM 16 Seal Leakage CEDM 25 Seal Leakage CEDM 28 Seal Leakage CEDM 33 Seal Leakage CEDM 39 Seal Leakage CEDM 41 Seal Leakage
RCS RCS RCS RCS RCS RCS RCS RCS RCS RCS	PRS-1 PRS-2A PRS-2B PRS-3 PRS-4 PRS-5A PRS-5B PRS-5B PRS-6B PRS-6B PRS-7 PRS-6B PRS-7 PRS-8 PRS-9A PRS-9B PRS-9D PRS-9D	Pressurizer Surge Line Leak Przr Spray From Loop 2A Leak Przr Spray From Loop 2B Leak Pressurizer Spray Line Leak Pressurizer Steam Space Leak Przr PORV PCV-102-1 Failure Przr PORV PCV-102-2 Failure Przr Safety Valve RC-141 Failure Przr Safety Valve RC-142 Failure Przr Reliefs' Tail Pipe Leak Pressurizer Quench Tank Leak A/PE-102/120 Tap Leak LE-101X & B/PE-102/120 Tap Leak LE-101Y & C/PE-102/120 Tap Leak
RCS RCS RCS RCS RCS RCS RCS RCS RCS	RCS-1A RCS-1B RCS-1C RCS-1D RCS-1E RCS-1F RCS-1G RCS-1H RCS-2 RCS-3	RCS Loop 1 Hot Leg Leak RCS Loop 2 Hot Leg Leak RCS Loop 1A Cold Leg Leak RCS Loop 1B Int. Leg Leak RCS Loop 1B Cold Leg Leak RCS Loop 2A Cold Leg Leak RCS Loop 2A Int. Leg Leak RCS Loop 2B Cold Leg Leak Variable RCS Boron Concentration Fuel Element Failure

	101	
	107	
1000		

調け

Sys. Number Description

RPS	CRD-7A	Failure Of Clutch Pwr Spply PS-1
RPS	CRD-7B	Failure Of Clutch Pwr Spply PS-2
RPS	CRD-7C	Failure Of Clutch Pwr Spply PS-3
RPS	CRD-7D	Failure Of Clutch Pwr Spply PS-4
RPS	RPS-1A	Failure Of Interposing Rlv IR-1
PPS	PPS-1R	Failure Of Interposing Ply 10-2
DDS	DDS-10	Failure Of Internation Dly 10-2
DDC	PPS-10	Failure Of Interposing Riy IR-S
DDC	005-20	DDC Dowon Supply DC 5 Failure
DDC	DDC 2D	DPC Dower Supply PS-5 Failure
RPD	RPD=CD	RFS FOWER Supply FS=0 Failure
RPS	RFS=20	RFS FOWER Supply PS=7 Failure
RPD	RFS=2U	RF5 Power Supply PS-0 Failure
RES	RPS-ZE	RPS Power Supply PS-9 ratiure
RPS	RPS=2r	RPS Power Supply PS-10 Failure
KP3	RP5-20	KPS Power Supply PS-11 railure
KPS	RPS-ZH	KPS Power Supply PS-12 Failure
RPS	RPS=ZI	RPS Power Supply PS-13 Failure
KP5	KPS=2J	RPS Power Supply PS-14 Failure
RPS	RPS+2K	RPS Power Supply PS-15 Failure
RPS	RPS-2L	RPS Power Supply PS-16 Failure
RPS	RPS-3A	Failure Of Ch A APD Pos Lim Calc
RPS	RPS-3B	Failure Of Ch B APD Pos Lim Calc
RPS	RPS=3C	Failure Of Ch C APD Pos Lim Caic
RPS	RPS-3D	Failure Of Ch D APD Pos Lim Calc
RPS	RPS-4A	Chan A APD Neg Lim Calc Failure
RPS	RPS-4B	Chan B APD Neg Lim Calc Failure
RPS	RPS-4C	Chan C APD Neg Lim Calc Failure
RPS	RPS+4D	Chan D APD Neg Lim Calc Failure
RRS	CRD-2A	Failure Of Rod Group Relay RA
RRS	CRD-2B	Failure Of Rod Group Relay LA
RRS	CRD-2C	Failure Of Rod Group Relay RB
RRS	CRD-2D	Failure Of Rod Group Relay LB
RRS	CRD-2E	Failure Of Rod Group Relay R1
RRS	CRD-2F	Failure Of Rod Group Relay L1
RRS	CRD+2G	Failure Of Rod Group Relay R2
RRS	CRD-2H	Failure Of Rod Group Relay L2
RRS	CRD-21	Failure Of Rod Group Relay R3
RRS	CRD-2J	Failure Of Rod Group Relay L3
RRS	CRD-2K	Failure Of Rod Group Relay R4
RRS	CRD-2L	Failure Of Rod Group Relay L4
RRS	CRD-2M	Failure Of Rod Group Relay RP
RRS	CRD-2N	Failure Of Rod Group Relay LP
RRS	CRD-3	Failure Of Indiv Rod Raise Relay
RRS	CRD-4	Failure Of Indiv Rod Lower Relay
RRS	MSS-8	Turbine Bypass Valve Failure

SYS.	Number	Description
RRS	RRS-1A	Main FW Reg Valve FCV-1101 Fail
RRS	RRS-1B	Main FW Reg Valve FCV-1102 Fail
RRS	RRS-3A	S/G Hi Lvl FW Isol Rlv 94/903Y Fail
RRS	RRS-3R	S/G Hi Lv1 FW Iso1 R1v 94/905Y Fail
DDC	AA-299	Tur T. 'FW Isol Ply 94/11014 Fail
000	005-40	Tun Tood EW Isol Dly 04/11024 Eail
DDC	RRJ-4D	fur inpure Controllon Failure
RRS	KKS=D	Steam Dump Controller railure
KKD	KKS=0	Stm Dump Turb Trip Intrick Fail
KK3	RKS=/	Stm Ump Quick Open Sol VIV Pail
RKS	KRS-8A	TCV-909-1 Valve Failure
RRS	RRS~8B	ICV-909-2 Valve Failure
RRS	RRS-8C	TCV-909-3 Valve Failure
RRS	RRS-8D	TCV-909-4 Valve Failure
RWS	RWS-1A	RW Pump AC-10A Discharge Line Lk
RWS	RWS-1B	RW Pump AC-10B Discharge Line Lk
RWS	RWS-1C	RW Pump AC-10C Discharge Line Lk
RWS	RWS-1D	RW Pump AC-10D Discharge Line Lk
RWS	RWS-2A	RWS Strainer A Plugged
RWS	RWS-2R	RWS Strainer & Plugged
RWS	PWS-34	Raw Water Supply Line & Break
DWC	DMC-38	Paw Water Supply Line & Break
KNS	KW3=30	Raw water Supply time b break
SFP	SFP-1A	SFP Demineralizer AC-7 Plugged
SFP	SFP-1B	SFP Filter AC~6 Plugged
SFP	SFP-2	Spent Fuel Pool Clng System Leak
SFP	SFP-3	Spent Fuel Pool Hx AC-8 Tube Lk
SGB	SGB-1A	Steam Gen RC-2A Blowdown Line Lk
SGB	SGB-1B	Steam Gen RC-2A Blowdown Line Lk
SCN	MCC_1A	Main Stm Line A Leak Incide Comt
SCN	MCC-1D	Main Stm Line A Leak Inside Chint
SCN	MCC DA	Main Sta Cofety Viv MC 275 Feil
SCH	MCC 2D	Main Stm Safety VIV MS-275 Fail
SUN	M35+28	Main Stm Safety VIV MS-270 Fail
SUN	M35-20	Main Stm Safety VIV MS-277 Fail
SUN	M35-20	Main Stm Safety VIV MS-278 Fail
SGN	MSS-2E	Main Stm Safety VIV MS-279 Fail
SGN	MSS-2F	Main Stm Safety VIV MS-280 Fail
SGN	MSS-2G	Main Stm Safety VIv MS-281 Fail
SGN	MSS-2H	Main Stm Safety Vlv MS-282 Fail
SGN	MSS-21	Main Stm Safety Vlv MS-291 Fail
SGN	MSS-2J	Main Stm Safety Vlv MS-292 Fail
SGN	MSS-3A	Stm Ln A Leak Otsd Cnmt (non-iso
SGN	MSS-3B	Stm Ln B Leak Otsd Cnmt (non-iso
SGN	MSS-4A	Stm Ln A Leak Outside Cnmt (Iso)
SGN	MSS-4B	Stm Ln B Leak Outside Cnmt (Iso)
SGN	MSS-5A	MSIV HCV-1041A (S/G A) Failure
SGN	MSS-5B	MSIV HCV-1042A (S/G B) Failure
SGN	MSS-6A	Steam Line A To TDAFW Pump Leak
	and the second	a second a second second second second

342.	Mumper	Description
SGN	MSS-6B	Steam Line B To TDAFW Pump Leak
SGN	MSS-7	Main Steam Header Leak
SGN	MSS-9A	Stm To FW-10 Leak Upstrm 1045
SGN	MSS-9B	Stm To FW-10 Leak Dwnstrm 1045
SGN	SGN-1A	Steam Gen RC-2A Tube Rupture
SGN	SGN-1B	Steam Gen RC-2B Tube Rupture
SGN	SGN-2A	LT-903X Reference Leg Leak
SGN	SGN-2B	LT-903Y Reference Leg Leak
SGN	SGN-2C	LT-906X Reference Leg Leak
SGN	SGN-2D	LT-906Y Reference Leg Leak
SIS SIS SIS SIS SIS SIS SIS SIS SIS SIS	SDC-1A SDC-1B SDC-2 SIS-1 SIS-2A SIS-2B SIS-3 SIS-4A SIS-4B SIS-5A SIS-5A SIS-5D SIS-5C SIS-5D SIS-6A SIS-6B SIS-6C SIS-6D SIS-7	SDC Heat Exchanger AC-4A Tube Lk SDC Heat Exchanger AC-4B Tube Lk SDC Heat Exchanger Inlet Hdr Lk SIRWT Leak Safety Injection Supply Hdr A Lk Safety Injection Supply Hdr B Lk LPSI Line Leak HPSI Line Leak Dnstrm HCV-306 HPSI Line Leak Dnstrm HCV-307 SI Tank SI-6A Gas Space Leak SI Tank SI-6B Gas Space Leak SI Tank SI-6B Gas Space Leak SI Tank SI-6C Gas Space Leak SI Tank SI-6C Gas Space Leak SI Tank SI-6A Liquid Space Leak SI Tank SI-6B Liquid Space Leak SI Tank SI-6C Liquid Space Leak SI Tank SI-6C Liquid Space Leak SI Tank SI-6D Liquid Space Leak
SWD	EDS-5A	Supply Transformer T1 Fault
SWD	EDS-5B	Supply Transformer T1A-1 Fault
SWD	EDS-5C	Supply Transformer T1A-2 Fault
SWD	EDS-5D	Supply Transformer T1A-3 Fault
SWD	EDS-5E	Supply Transformer T1A-4 Fault
SWD	EDS-11A	Switchyard 3451 Fault
SWD	EDS-11B	Switchyard 161 Fault
SWD	EDS-11C	Switchyard 111 Fault
SWD	EDS-12A	Switchyard 111 Fault
SWD	EDS-12B	Breaker 3451-5 Fault
	EDS-12C	Breaker 111 Fault
TGA	GEN-5	Main Generator Cooling Gas Leak
TGA	GEN-6A	Stator Clng Wtr Pp ST-6B Suct Lk
TGA	GEN-6B	Stator Clng Wtr Pp ST-6B Suct Lk
TGA	GEN-7	Stator Cooling System Leak
TGA	GEN-8	Rectifier Excitation Clng Sys Lk
TGA	TUR-7	Gland Seal Steam Supply Hdr Leak

e

Sys.	Number	Description
TLO	TUR-1	Main Turb Lube Oil Reservoir Lk
TLO	TUR-2	Shaft-driven LO Pp Suct Line Lk
TLO	TUR-3	Lube Oil Cooler Supply Line Lk
TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI	TUR-4 TUR-5A TUR-5B TUR-5C TUR-5D TUR-5E TUR-5F TUR-5G TUR-51 TUR-5J	Main Turbine High Eccentricity Main Turb Brg 1 High Vibration Main Turb Brg 2 High Vibration Main Turb Brg 3 High Vibration Main Turb Brg 4 High Vibration Main Turb Brg 5 High Vibration Main Turb Brg 6 High Vibration Main Turb Brg 7 High Vibration Main Turb Brg 8 High Vibration Main Turb Brg 9 High Vibration Main Turb Brg 10 High Vibration
TUR	MSS-10A	Moisture Separator ST-3A Leak
TUR	MSS-10B	Moisture Separator ST-3B Leak
TUR	MSS-10C	Moisture Separator ST-3C Leak
TUR	MSS-10D	Moisture Separator ST-3D Leak
WDS	WDS-1	Reactor Coolant Drain Tank Leak
WDS	WDS-2	Gas Decay Tank Leak

1.3(3) Local Operator Action Control

Local Operator Actions (LOAs) include such auxiliary functions as valve manipulation, remote electrical operation, and other normal operation of equipment accomplished outside the control room. These LOAs will be included for two purposes: to allow the operator to follow plant operating procedures which have visible effects in the control room; and to permit the operator to recover from malfunctions.

A list of LOAs available to the simulator instructor is shown in TABLE 1A.3(4)

LOCAL OPERATOR ACTIONS (ABLE 1A.3(4)

Sys.	Number	Description
AFW AFW AFW AFW AFW AFW AFW AFW	MIS-4 AFW-1 AFW-2 AFW-3 AFW-4 AFW-5 AFW-5 AFW-5 AFW-6 AFW-7 AFW-8 AFW-9 AFW-9 AFW-10 AFW-16	Reset Pump Trip Signal(s) FW-340 - AFWST Drain to Raw Wtr FW-339 - AFWST to AFW Pumps FW-350 - MDAFP FW-6 Suction Vlv FW-349 - TDAFP FW-10 Suction Vlv FW-745 - FW-6 Disch to Mn FW Hdr FW-745 - FW-6 Disch to Mn FW Hdr FW-746 - AFW to Main FW Hdr FW-171 - MDAFP to AFW Hdr FW-172 - TDAFP to AFW Hdr FW-172 - TDAFP to AFW Hdr PCV-2613 Setpoint - N2 to AFWST FW-10 - Latch TDAFP
AXS	MIS-1	Aux Boiler Status
BCW BCW BCW BCW BCW BCW BCW BCW BCW BCW	MIS-9 MIS-10 MIS-11 MIS-12 MIS-13 MIS-14 MIS-15 MIS-16 MIS-17 MIS-18 MIS-19 MIS-20 MIS-21	AC-524 - BCW Hx CW-6A Inlet AC-525 - BCW Hx CW-6B Inlet Turb LO Clr A Inlt/Otlt Isol Turb LO Clr B Inlt/Otlt Isol Clng Wtr Src to Air Cmpr CA-1A Clng Wtr Src to Air Cmpr CA-1B Clng Wtr Src to Air Cmpr CA-1C TCV-1919A - BCW Hx A Setpoint TCV-1919B - BCW Hx A Setpoint AC-528 - BCW Hx A to Cond Vac Pp AC-529 - BCW Hx B to Cond Vac Pp AC-526 - BCW Hx CW-6A to LO Clrs AC-527 - BCW Hx CW-6B to LO Clrs
BGS BGS BGS BGS	MIS-2 MIS-3 MIS-4 MIS-5	Nitrogen Supply Pressure Hydrogen Supply Pressure PCV-2625 - N2 Header Pressure PCV-2606 - N2 to Cnmt Setpoint
CAS CAS CAS CAS CAS CAS CAS CAS CAS CAS	CAS-1 CAS-2 CAS-3 CAS-4 CAS-5 CAS-6 CAS-7 CAS-8 CAS-9 CAS-10 CAS-11 CAS-12 CAS-13 CAS-14 CAS-15	CA-1A - Local MCC Switch CA-1B - Local MCC Switch CA-1C - Local MCC Switch Compr CA-1A High Temp Trip Stpt Compr CA-1B High Temp Trip Stpt Compr CA-1C High Temp Trip Stpt CA-100 - Cmpressr 1A Dschg Vlv CA-107 - Cmpressr 1B Dschg Vlv CA-111 - Cmpressr 1C Dschg Vlv CA-629 - Serv Air to Cnmt & Aux CA-630 - Serv Air to Intake Bldg IA-515 - Aux Bld IA Lp Segr Vlv IA-545 - Aux Bld IA Lp Segr Vlv IA-545 - Aux Bld Lp to Cnmt Isol CA-151 - Inst Air/Serv Air Xconn

1

1 10 v

<u>Sys.</u>	Number	Description
CAS CAS CAS CAS CAS CAS CAS CAS CAS CAS	CAS-16 CAS-17 CAS-18 CAS-20 CAS-20 CAS-21 CAS-22 CAS-23 CAS-24 CAS-25 CAS-25 CAS-25 CAS-26 CAS-27 FDW-9 FDW-10 FDW-11	IA-203 - Tur Bld IA Lp Segr Vlv IA-204 - Tur Bld IA Lp Segr Vlv IA-532 - Riser 'AF' Isolation Vl IA-534 - Riser 'AG' Isolation Vl IA-535 - Riser 'AH' Isolation Vl IA-542 - Riser 'AR' Isolation Vl IA-543 - Riser 'AS' Isolation Vl IA-527 - Riser 'AS' Isolation Vl IA-524 - Riser 'AZ' Isolation Vl IA-544 - Riser 'BB' Isolation Vl IA-549 - Riser 'BB' Isolation Vl IA-550 - Riser 'BF' Isolation Vl IV-1151A - IA to FW Pp A Recrc V IV-1151B - IA to FW Pp B Recrc V IV-1151C - IA to FW Pp C Recrc V
	CCW-1 CCW-2 CCW-3 CCW-4 CCW-5 CCW-6 CCW-7 CCW-8 CCW-9 CCW-10	AC-100 - CCW Pp 3A Suction Vlv AC-102 - CCW Pp 3A Disch Vlv AC-103 - CCW Pp 3B Suction Vlv AC-105 - CCW Pp 3B Disch Vlv AC-106 - CCW Pp 3C Suction Vlv AC-108 - CCW Pp 3C Disch Vlv AC-116 - CCW to Ltdn Hx Inlet Vl AC-117 - CCW to SFP Hx Inlet Vlv HCV-2895B - CCW to Waste Evap Pk PCV-2610 - N2 Reg to CCW Srg Tk
CFW CFFW CFFW CFFW CFFW CFFW CFFW CFFW	CND-1 CND-2 CND-3 CND-4 CND-5 CND-6 CND-7 CND-8 CND-7 CND-8 CND-10 CND-10 CND-11 CND-12 CND-13 CND-14 CND-15 CND-14 CND-15 CND-16 CND-17 CND-18 CND-19 CND-21 CND-22 CND-23 CND-24 CND-25	VD-201 - Cndnsr A to Vac Pp Isol VD-202 - Cndnsr A to Vac Pp Isol VD-203 - Cndnsr B to Vac Pp Isol VD-204 - Cndnsr B to Vac Pp Isol VD-200 - Cndnsr Vacuum Brkr VA-293 - Cndnsr Vac Pmp to Stack VD-423 - Cndnsr Vac Pmp to Atmos FW-1050 - Cond to Blowdown Hx FW-241/243 - Cond Cooler In/Out FW-242 - Condensate Cooler Byp FW-249/256 - Stator Clr A In/Out FW-248/255 - Stator Clr B In/Out FW-248/255 - Stator Clr B In/Out FW-265/300 - Htrs 1A-3A Cond Iso FW-303/315 - Htrs 1A-3A Cond Iso FW-302/314 - Htrs 4A-5A Cond Iso FW-309 - Htr Drn Pmps to 5A Htr FW-308 - Htr Drn Pmps to 5B Htr FW-308 - Htr Drn Pmps to 5B Htr FW-878 - Cond Pp FW-1A Disch V1v FW-880 - Cond Pp FW-1B Disch V1v FW-880 - Cond Pp FW-1C Disch V1v HCV-1100 - Cond to Blwdn Hx

Sys.	Number	Description
CFW CFW CFW CFW CFW CFW CFW CFW	FDW-1 FDW-2 FDW-3 FDW-4 FDW-5 FDW-5 FDW-6 FDW-7 FDW-7 FDW-8 FDW-12 FDW-13 FDW-14	FW-319 - Fdwtr Pmp FW-4A Suction FW-112 - Fdwtr Pmp FW-4A Bypass FW-318 - Fdwtr Pmp FW-4B Suction FW-113 - Fdwtr Pmp FW-4B Bypass FW-317 - Fdwtr Pmp FW-4C Suction FW-114 - Fdwtr Pmp FW-4C Bypass FW-119/137 - Htr 6A Cond In/Out FW-120/138 - Htr 6B Cond In/Out FW-120/138 - Htr 6B Cond In/Out 86/FW-4A TRIP SIGNAL 86/FW-4B TRIP SIGNAL
CFW	MIS-8	AC-590 - Cond to BCW Head Tk
CNM CNM CNM CNM CNM CNM CNM	CNM-1 CNM-2 CNM-3 CNM-4 CNM-5 CNM-6 CNM-7 CNM-8	Fan VA-3A Blade Pitch Fan VA-3B Blade Pitch Open YCV-747 - Byp VA-32A Start Open YCV-748 - Byp VA-32B Start H2 Purge Compr VA-80A Local Cntl H2 Purge Compr VA-80B Local Cntl Hydrogen Recombiner Local Cntrl Open HCV-6602 - Byp VA-77 Start
CVC CVC CVC CVC CVC CVC CVC CVC CVC CVC	CVC-1 CVC-2 CVC-3 CVC-4 CVC-5 CVC-6 CVC-7 CVC-8 CVC-9 CVC-10 CVC-11 CVC-12 CVC-13 CVC-14 CVC-15 CVC-15 CVC-16 CVC-17 CVC-18 CVC-19 CVC-20 CVC-20 CVC-21 CVC-22 CVC-23 CVC-25 CVC-25 CVC-25 CVC-25	CH-345 - Charging to Lp 1A CH-275 - Seal Bleedoff to VCT CH-191 - CH-1A/1B to HPSI CH-190 - CH-1C Disch Isolation CH-192 - CH-1B Disch Isolation CH-193 - CH-1A Disch Isolation CH-238 - Letdown to Ion Exch CH-236 - Purif Ion Exch Inlet CH-300 - Cation Ion Exch Inlet CH-306 - Debor Ion Exch Inlet CH-306 - Debor Ion Exch Inlet CH-306 - Debor Ion Exch Status CH-9B - Debor Ion Exch Status PCV-2611 - N2 to VCT Reg Stpt PCV-2612 - H2 to VCT Reg Stpt WD-104 - VCT Vent to Waste Gas CH-11B - BAT A Batch Add CH-11B - BAT B Dutlet Valve CH-116 - BAT Disch Lines X-conn CH-145 - BA Hdr Recirc to BAT A CH-144 - BA Hdr Recirc to BAT B CH-152 - Makeup Wtr to Chrg Pps SI-157 - SIRWT to Chrg Pps AR-213 - Ltdn Boron Conc Range

<u>\$¥5</u>	. <u>Number</u>	Description
	CWS-1 CWS-2 CWS-3 CWS-4 CWS-5 CWS-6 CWS-7 CWS-8 CWS-7 CWS-8 CWS-9 CWS-10 CWS-11 CWS-12 CWS-11 CWS-12 CWS-13 CWS-12 CWS-13 CWS-14 CWS-15 CWS-15 CWS-15 CWS-16 CWS-17 CWS-18 CWS-19 CWS-20 CWS-21 CWS-22	CW-155/158 - CWS to Cond Cooler CW-156/157 - CWS to BCW Cooler A CW-174/175 - CWS to BCW Cooler B CW-169 - Cond A Circ Wtr Outlet CW-170 - Cond B Circ Wtr Outlet CW-17 - Disch Tunnel Sluice Gate Backwash Cond FW-1A South Side Backwash Cond FW-1A North Side Backwash Cond FW-1B South Side CW-A-A1 - Cond A S.S. Nrml Inlt CW-A-B2 - Cond A S.S. Alt Outlt CW-A-C3 - Cond A S.S. Alt Outlt CW-A-C3 - Cond A S.S. Nrml Outlt CW-A-B5 - Cond A S.S. Nrml Outlt CW-A-B6 - Cond A N.S. Nrml Inlt CW-A-B6 - Cond A N.S. Nrml Inlt CW-A-B7 - Cond A N.S. Nrml Outlt CW-A-B8 - Cond A N.S. Nrml Outlt CW-A-B7 - Cond B S.S. Nrml Outlt CW-A-C7 - Cond A N.S. Nrml Outlt CW-B-A1 - Cond B S.S. Nrml Outlt CW-B-C3 - Cond B S.S. Nrml Outlt
DSG DSG DSG DSG DSG DSG DSG DSG DSG DSG	DSG-1 DSG-2 DSG-3 DSG-4 DSG-5 DSG-6 DSG-7 DSG-8 DSG-7 DSG-8 DSG-10 DSG-10 DSG-11 DSG-12 DSG-13 DSG-14 DSG-15 DSG-16 DSG-17 DSG-18 DSG-19 DSG-20	FO-4A-1 FUEL PUMP SWITCH FO-4B-1 FUEL PUMP SWITCH SA-1-1 COMPRESSOR SWITCH SA-103 - DI AIR RVR C.C. VLV SA-113 - D1 SEC AIR ISOL VLV SA-114 - D1 PRI AIR ISOL VLV SA-147 - D1 Cranking Air Valve SA-148 - D1 Cranking Air Valve SA-148 - D1 Cranking Air Valve SA-153 - D2 AIR RVR C.C. VLV SA-163 - D2 SEC AIR ISOL VLV SA-163 - D2 SEC AIR ISOL VLV SA-164 - D2 PRI AIR ISOL VLV SA-197 - D2 Cranking Air Valve SA-198 - D2 Cranking Air Valve SM/SS - D1 AIR REC'VR SELECT D1-BLOCK START ON RPS TRIP D2-BLOCK START ON RPS TRIP D/G 1 Local Pn1 Alrm Ack 86A/D1 TRIP SIGNAL 86A/D2 TRIP SIGNAL

Sys.	Number	Description
DSG DSG DSG DSG DSG DSG DSG DSG DSG DSG	DSG-21 DSG-22 DSG-23 DSG-24 DSG-25 DSG-26 DSG-27 DSG-28 DSG-29 DSG-30 DSG-30 DSG-31 DSG-31 DSG-32 DSG-33 DSG-34 DSG-35	86A-OR/1AD1 TRIP SIGNAL 86A-OR/1AD2 1RIP SIGNAL 86B/D1 TRIP SIGNAL 86B/D2 TRIP SIGNAL 86B-OR/1AD1 TRIP SIGNAL 86B-OR/1AD2 TRIP SIGNAL 86/D1 TRIP SIGNAL 86/D2 TRIP SIGNAL 86/D2 TRIP SIGNAL 86/D2 TRIP SIGNAL SA-1-1 - Drive Belt Select SA-1-2 - Drive Belt Select SA-1-2 - Drive Belt Select SA-1-2 - Diesel Engine Control D/G 1 Output Breaker D/G 2 Output Breaker 143/SS - D/G 1 Maint Test Switch
DSQ DSQ DSQ DSQ DSQ DSQ DSQ DSQ	ESF-61 ESF-62 ESF-63 ESF-64 ESF-65 ESF-65 ESF-67 ESF-67	86-1/S1-1 TRIP SIGNAL 86-1/S2-1 TRIP SIGNAL 85-1/S1-2 TRIP SIGNAL 86-1/S2-2 TRIP SIGNAL 86-2/S1-1 TRIP SIGNAL 86-2/S2-1 TRIP SIGNAL 86-2/S1-2 TRIP SIGNAL 86-2/S2-2 TRIP SIGNAL
DWS	CND-20	HCV-1195 - Demin Water to CST
DWS DWS DWS DWS DWS DWS DWS DWS DWS	DWS-3 DWS-6 DWS-7 DWS-8 DWS-9 DWS-10 DWS-10 DWS-11 DWS-12 DWS-13	Demin Water Hose to CCW DW-164 - Deaerator Recirc DW-147 - Demin Wtr to BA Batch DWS Makeup from RW Supply Pump AC-666 - Demin Wtr to BCW Hd Th PCV-1651 - CA to PW-1 Reg Stpt PW-1 Vent AI-104 Lc1 Ann Ack P/B AI-104 Lc1 Ann Reset P/B
EDS EDS EDS EDS EDS EDS EDS EDS EDS EDS	EDS-1 EDS-2 EDS-3 EDS-4 EDS-5 EDS-6 EDS-7 EDS-8 EDS-9 FDS-10 FDS-11 EDS-12 EDS-13 EDS-14 EDS-15	T1C-3A Feeder Bkr T1C-4A Feeder Bkr Lighting Transfer Switch T1B-3D Feeder Bkr MCC 3A1 Feeder Bkr MCC 3A2 Feeder Bkr MCC 3A3 Feeder Bkr MCC 3A4 Feeder Bkr MCC 4A1 Feeder Bkr MCC 3B1 Feeder Bkr MCC 3B2 Feeder Bkr MCC 3B3 Feeder Bkr MCC 4B1 Feeder Bkr MCC 4B2 Feeder Bkr

Sys.	Number	Description
EDS	EDS 16	MCC 4B3 Feeder Bkr
EDS	EDS-17	MCC 3C1 Feeder Bkr
EDS	EDS-18	MCC 3C2 Feeder Bkr
EDS	EDS-19	Transformer T1C-3C-1
EDS	EDS-20	MCC 4C1 Feeder Bkr
EDS	EDS-21	MCC 4C2 Feeder Bkr
EDS	EDS-22	MCC 4C3 Feeder Bkr
EDS	EDS-23	MCC 4C4 Feeder Bkr
EDS	EDS-24	MCC 3C4C-1 Feeder Bkr
EDS	EDS-25	MCC 3C4C-2 Feeder Bkr
EDS	EDS-26	AI-41A MTS Norm Sup Feeder Bki
EDS	EDS-27	AI-418 MTS Norm Sup Feeder Bki
EDS	EDS-28	Inverter A Feeder Bkr
EDS	EDS-29	Inverter B Feeder Bkr
EDS	EDS-30	Inverter C Feeder Bkr
EDS	EDS-31	Inverter D Feeder Bkr
EDS	EDS-32	Inverter 1 Feeder Bkr
EDS	EDS-33	Inverter 2 Feeder Bkr
EDS	EDS-34	Inverter A Static Switch
EDS	EDS-35	Inverter B Static Switch
EDS	EDS-36	Inverter C Static Switch
EDS	EDS-37	Inverter D Static Switch
EDS	EDS-39	DELETED
EDS	EDS-40	DELETED
EDS	EDS-41	DELETED
EDS	EDS-42	DELETED
EDS	EDS-43	DELETED
EDS	EDS-44	Inverter 1 Static Switch
EDS	EDS-45	Inverter 2 Static Switch
EDS	EDS-46	DELETED
EDS	EDS-47	DELETED
EDS	EDS-48	Inverter A 480VAC Feeder Bkr
EDS	EDS-49	Inverter B 480VAC feeder Bkr
EDS	EDS-50	Inverter C 480VAC Feeder Bkr
EDS	EDS-51	Inverter D 480VAC Feeder Bkr
EDS	EDS-52	Inverter 1 480VAC Feeder Bkr
EDS	EDS-53	Inverter 2 480VAC Feeder Bkr
EDS	EDS-54	T1B-3A Feeder Bkr
EDS	EDS-55	T1B-3B Feeder Bkr
EDS	EDS-56	T1B-3C Feeder Bkr
EDS	EDS-57	T1B-4C Feeder Bkr
EDS	EDS-53	T1B-4B Feeder Bkr
EDS	EDS-59	T1B-4A Feeder Bkr
EDS	EDS-60	FP-1A Breaker
EDS	EDS-61	FW-5A Breaker
EDS	EDS-62	FW-4A Breaker
EDS	EDS-63	FW-2A Breaker
EDS	EDS-64	CW-1A Breaker
EDS	EDS-65	RC-3A Breaker
EDS	EDS-66	RC-38 Breaker

Sys.	Number	Description
EDS	EDS-67	CK 10 Breaker
EDS	EDS-68	FW-28 Breaker
FOS	EDS-69	FW-48 Breaker
FDS	EDS-70	FW-5H Breaker
EDG	EDC. 71	DC-3C Prestor
EDS	CDS=71	CE 16 Dreaker
EUS	EUS-72	SI-IH Breaker
EU3	EUS-/3	AL-IUA Breaker
EUS	EUS74	AC-10C Breaker
EDS	EDS=75	iW-6 Breaker
EDS	EDS-76	CW-1C Breaker
EDS	EDS-77	FW-5C Breaker
EDS	EDS-78	FW-4C Breaker
EDS	EDS-79	FW-2C Breaker
EDS	EDS-80	AC-108 Breaker
EDS	EDS-81	AC-10D Breaker
EDS	FDS-82	SI-18 Breaker
EDS	FDS-83	RC-3D Breaker
FDS	FUS-84	SI-24 Breaker
FRIS	EDS-85	CH-1A Breaker
EDS	EDS-86	VA-30 Breaker
EDS	EDG_87	CA-1C Breaker
EDS	EDS-88	SI_2C lineaker
EDS	EDS-00	AC-2A Preaker
CDO	EUS-09	EW OC Dreaker
EDS	EUJ-90	rw-ol breaker
500	ED2-31	SI-SU Breaker
EUS	EUS-92	VA-/U Breaker
EUS	EDS-93	CH-IC Breaker
EDS	E03-94	51-3A Breaker
EDS	EDS-95	CA-IA Breaker
EDS	EDS-96	FW-8A Breaker
EDS	EDS-97	VA-7C Breaker
EDS	EDS-98	AC-3C Breaker
EDS	EDS-99	AC-38 Breaker
EDS	EDS-100	FW-8B Breakar
EDS	EDS-101	ST-3B Breaker
EDS	EDS-102	CA-1B Breaker
EDS	EDS-103	CH-1B Breaker
EDS	EDS-104	SI-2B Breaker
EDS	EDS-105	VA-3B Breaker
EDS	EDS-106	HCV-1103 Breaker
EDS	EDS-107	HCV-1385 Breaker
EDS	EDS-108	HTR B1-G1 Breake
EDS	EDS-109	HTR B1-G2 Breake
EDS	EDS-110	HTR B1-G3 Breake
EDS	EDS-111	RC-3C-1 Breaker
EDS	EDS-112	HCV-2954 Breaker
EDS	EDS-113	HCV-314 Breaker
EDS	EDS-114	HCV-317 Breaker
EDS	EDS-115	HCV-331 Bruker
EDS	EDS-116	ICV-218-2 Breake
EDS	EDS-117	ICV-218-3 Breake
No. No. 1	And	ALL

•

EDS EDS-118 EDS EDS-119	
EDS EDS-120 EDS EDS-121 EDS EDS-123 EDS EDS-123 EDS EDS-123 EDS EDS-123 EDS EDS-123 EDS EDS-124 EDS EDS-125 TDS EDS-26 EDS EDS-125 TDS EDS-27 EDS EDS-129 EDS EDS-140 EDS EDS-148 EDS<	DW-43A Breaker DW-46A-1 Breaker * * DELETED HCV-308 Breaker HCV-383-3 Breaker VA-81A Breaker FW-30A Breaker FW-30A Breaker DI-NORM Breaker D2-EMERG Breaker BATT CHG 1 Breaker HCV-150 Breaker HTR P1-G6 BREAKER PC 3A-1 Breaker MCV-2914 Breaker MCV-2914 Breaker MCV-320 Breaker MCV-321 Breaker MCV-327 Breaker MCV-348 Breaker VA-12A Breaker VA-12A Breaker VA-45A Breaker VA-45A Breaker VA-45A Breaker VA-45A Breaker VA-45A Breaker MC-13A Breaker MC-13A Breaker MC-13A Breaker MC-13A Breaker MC-14 Breaker MCV-265 Breaker HTR B2-G4 Breaker HTR B2-G5 Breaker HTR B2-G5 Breaker HTR B2-G5 Breaker HTR B2-G5 Breaker MCV-265 Breaker HCV-265 Breaker HCV-265 Breaker HCV-265 Breaker MCV-265 Breaker HCV-265 Breaker MCV-265 Breaker HCV-265 Breaker HCV-265 Breaker HCV-265 Breaker HCV-265 Breaker MCV-265 Breaker HCV-265 Breake

đ

00

8

the

Sys.	Number	Description
EDS	EDS-168	LO-14C Breaker
FDS	FDS-169	10-3 Breaker
EDC	EDS-170	IA 9 Prestor
EUS	EUS-170	LU-O DIEGKEI
EUS	EUS-1/1	MUV-B Broaker
EDS	EDS-172	MOV-CV Breaker
EDS	EDS-173	MOV-CV2 Breaker
EDS	EDS-174	MOV-CV4 Breaker
EDS	EDS-175	MOV-S1 Breaker
EDS	EDS-176	MOV-SV1 Breaker
EDS	EDS-177	MOV-S2 Breaker
EDS	EDS-178	MOV-SV3 Breaker
EDS	EDS-179	MOV-SV5 Breaker
EDS	EDS-180	MOV-SV7 Breaker
EDS	EDS-18	D1-EMERG Breaker
EDS	ED\$-182	D2-NORM Breaker
EDS	EDC-182	BATT CHC 2 Breaker
EDS	E05-100	UCV_10/10 Prestor
EDS	E.U.)=104	ICV 151 Presker
EUS	EU3-105	HUV-ISI Breaker
EUS	EDS-180	HIK P2=67 Breaker
EUS	EDS-18/	RC-3B-1 Breaker
EDS	ED5-188	HCV-2934 Breaker
EDS	EDS-189	HCV-315 Breaker
EDS	EDS-190	HCV-318 Breaker
EDS	EDS-191	HCV-329 Breaker
EDS	EDS-192	VA-12B Breaker
EDS	EDS-193	VA-2B Breaker
EDS	EDS-194	VA-45B Breaker
EDS	EDS-195	VA-46B Breaker
EDS	EDS-196	CH-4B Breaker
EDS	EDS-197	HCV-258 Breaker
EDS	EDS-198	DW-41B Breaker
EDS	EDS-199	MPP-6 Breaker
EDS	EDS-200	EW-34B Breaker
EDS	FDS-201	RM-060 Breaker
EDS	EDS. 202	VA-248 Breaker
EDS	EDS-203	VA-328 Breaker
EDS	EDS-200	VA-358 Breaker
EDG	EDS-205	VA-ADP Prosker
EUS	LOS-200	VA-400 Dreaker
EDS	EUS-200	VA-OID Breaker
EUS	EUS+207	HIR B3-68 Breaker
EUS	EUS+208	HIR B3-65 Breaker
EDS	E03-209	PCV-102-2 Breaker
EDS	E05-210	AC-98 Breaker
EDS	EDS-211	FW-30B Breaker
EDS	EDS-212	HCV-1150B Breaker
EDS	E0S-213	RM-057 Breaker
EDS	EDS-214	HCV-1104 Breaker
EDS	E05-215	HCV-1384 Breaker
EDS	ED5-216	HCV-1386 Breaker
EDS	EDS-217	HCV-1042C Breaker

ŝ	a		٥.	8
1				S.
4				ŧ
1	1	1	97	

<u>Sys.</u>	Number	Description
EDS EDS EDS EDS EDS EDS EDS EDS EDS EDS	EDS-218 EDS-220 EDS-220 EDS-221 EDS-222 EDS-223 EDS-224 EDS-225 EDS-226 EDS-226 EDS-227 EDS-229 EDS-229 EDS-230 EDS-231 EDS-232 EDS-233 EDS-233 EDS-235 EDS-235 EDS-236 EDS-237 EDS-238 LDS-238 LDS-239	HTR B4-G10 Breaker HTR B4-G11 Breaker HTR B4-G12 Breaker RC-3D-1 Breaker HCV-2974 Breaker HCV-312 Breaker HCV-312 Breaker HCV-321 Breaker HCV-321 Breaker DW-43B Breaker DW-46B-1 Breaker * * DELETED * * * RM-061/062 Breaker HCV-347 Breaker HCV-347 Breaker HCV-383-4 Breaker FW-30C Breaker HCV-1150C Breaker EE-2G-1B Breaker ST-14 Breaker ST-6B Breaker HCV-1905B Breaker
EDS	EDS-240 EDS-241	Rod Drive Control Cabinet Bkr AI-179 Breaker
EDS	EDS-242 EDS-243	AI-179/185 Breaker LO-4 Breaker
EDS	EDS-244 EDS-245	400 Hz Cab Breaker Generator Field Breaker

EDS	EDS-244	400 Hz Cab Breaker
EDS	EDS-245	Generator Field Breaker
EDS	EDS-246	LO-12B Breaker
EDS	EDS-247	AI-41B MTS Emerg Sup Feeder Bkr
EDS	EDS-248	AI-41A MTS Emerg Sup Feeder Bkr
FDS	EDS-249	Rod Drive Control Cabinet Bkr
FDS	EDS-250	* * * DELETED * * *
EDS	EDS-251	Bkr 1411 EDS EDS-252 Bkr 1413
EDS	EDS-263	Bkr 1422 EDS EDS-254 Bkr 1424
FDS	EDS-255	Bkr 1431 FDS FDS-256 Bkr 1433
EDS	EDS-257	Rkr 1042 EDS EDS-250 Bkr 1044
EDG	EDS-250	RUN 1834 EDS EDS-260 RUN 1838
EDC	EDS-261	RL 1034 EDS EDS-200 BKT 1036
EDS	EDS-263	DENT IDJU EDJ EDJ-202 DET ID4A
EDS	EDS-200	DKT 1040 CU3 CU3-204 DKT 1040
EDS	EUS-200	DKT DI-ID3A ED3 ED3-200 DKT DI-ID3D
EUS	EDS+20/	DKT DI*IDJU EUJ EUJ=200 DKT DI=1D4A
EUS	EDS-209	BKT BI-1646 EUS EUS-2/U BKT BI-1640
EUS	505-2/1	IAI/IA3 Swgr Control Power MIS
EUS	EDS-272	1AZ/1A4 Swor Control Power MIS
EDS	EDS-273	183A/3A-4A/38 CTrI PWP MIS
EDS	EDS-274	1B3B-4B/4A/4B/4C Ctrl Pwr MIS
EDS	EDS-275	1B3C/3C-4C Ctrl Pwr MIS
EDS	EDS-276	AI-133A/D1 Ctrl Pwr MTS
EDS	EDS-277	AI-133B/D2 Ctrl Pwr MTS

Sys.	Number	Description
EDS	EDS-278	D1 Aux MTS
FDS	EDS-279	D2 AUX MTS
EDS	EDS-200	Dod Daive Cabinet Transfor Sw
EUS	CU3=200	Rot Drive Cabinet Transfer Sw
EUS	EDS=281	Battery I Output Breaker
EDS	EDS-282	Battery 2 Output Breaker
EDS	EDS-283	Batt Charger 1 Output to Bus 1
EDS	EDS-284	Batt Charger 3 Output to Bus 1
EDS	EDS-285	Batt Charger 3 Output to Bus 2
EDS	EDS-286	Batt Charger 2 Output to Rus 2
FDS	EDS-304	R6/1A11 TRIP STGNAL
EDS	EDS-305	86/1A31 TRIP STONAL
EDG	EDC 206	00/1AD1 TRIP STORAL
CDC	EDS-300	DE TAAD TOTO STONAL
EUS	EUS-307	00/1442 TRIP SIGNAL
EDS	EDS-308	80/1413 TRIP SIGNAL
EDS	EDS-309	86/1A33 TRIP SIGNAL
EDS	EDS-310	86/1A24
EDS	EDS-311	86/1A44 TRIP SIGNAL
EDS	EDS-312	86/1A3-TFB TRIP SIGNAL
EDS	EDS-313	86/1A4-TFB TRIP SIGNAL
EHC	EHC-1	Manual Mechanical Trip Lever
EHC	EHC-2	Thrust Bearing Wear Test Switch
EHC	EHC-3	Power Load Unbalance Setpoint
EHC	EHC-4	FV-EHC-1 - EHC Fluid Bypass
EHC	EHC-5	Turbine Hi Vibr Trin Bypass
ESE	ESE-1	A/RC-2A AFAS Bypass Switch
FSF	ESE-2	R/RC-20 AFAS Runass Switch
ESE	ESE_3	C/PC-20 AFAS Bypass Switch
ECE	ESE-A	D/DC-2A AFAS Bypass Switch
ECE	ESE-5	A/DC-2R AFAS Bunace Switch
ESE	ESF 6	D/DC 2D AFAS Dypass Switch
ESF	COL-0	B/RC-2D AFAS Bypass Switch
LOF	ESF=/	U/RU-28 AFAS Bypass Switch
ESF	ESF-8	D/RC-28 AFAS Bypass Switch
ESF	ESF-9	80/AI-43B TRIP SIGNAL
ESF	ESF-10	86/A1-43A TRIP SIGNAL
ESF	ESF-11	86B/CRHS TRIP SIGNAL
ESF	ESF-12	86B/STLS TRIP SIGNAL
ESF	ESF-13	86B/CPHS TRIP SIGNAL
ESF	ESF-14	86B/PPLS TRIP SIGNAL
ESF	ESF-15	86B/VIAS TRIP SIGNAL
ESF	ESF-16	86B/RAS TRIP SIGNAL
ESF	ESF-17	86B/SIAS TRIP SIGNAL
ESF	ESF-18	86B/CSAS TRIP SIGNAL
ESE	ESE-19	86B/OPLS TRIP SIGNAL
ESE	ESF-20	86X/RAS TRIP SIGNAL
ESE	ESE-21	868X/SIAS TRIP SIGNAL
FSF	FSF-22	868/CIAS TRIP SIGNAL
ESE	ESE-23	8641/CRHS TRIP SIGNAL
ESE	ESE-24	R641/STIS
ESE	ESE 25	REAT/COUSTDID STONAL
ESF	ESF=20	OCAT /OPL C TOTO STONAL
5.55	E 31 = 20	BOAL/PPLS IKIP SIGNAL

Sys.	Number	Description
ESF	ESF-27	86A1/VIAS TRIP SIGNAL
ESF	ESF-28	86A1/RAS TRIP SIGNAL
ESF	ESF-29	86A1/SIAS TRIP SIGNAL
ESF	ESF-30	86A1/CSAS TRIP SIGNAL
ESF	ESE-31	86A1X/RAS TRIP SIGNAL
ESE	ESE-32	86A1X/STAS TRIP SIGNAL
ESE	FSE-33	8641/CIAS TRIP SIGNAL
FSF	ESE-34	864/PPLS TRIP STONAL
ESE	ESE-35	864/CPHS TRIP SIGNAL
ECE	ESE 36	Q6A/CTIS TOTO STONAL
ESE	ESE 27	OCA/DILS TRIP SIGNAL
ESF	ESF=3/	OCA/CEAS TRIP SIGNAL
ESF	ESF - 38	SDA/CSAS TRIP SIGNAL
ESF	ESF - 39	80A/SIAS IRIP SIGNAL
ESF	ESF=40	BOA/RAS IRIP SIGNAL
ESF	ESF-	86A/VIAS TRIP SIGNAL
ESF	ESF-42	86A/CIAS TRIP SIGNAL
ESF	ESF-43	86AX/SIAS TRIP SIGNAL
ESF	ESF-44	86AX/RAS TRIP SIGNAL
ESF	ESF-45	86A/OPLS TRIP SIGNAL
ESF	ESF-46	86B1/PPLS TRIP SIGNAL
ESF	ESF-47	86B1/CPHS TRIP SIGNAL
ESF	ESF-48	8681/STLS TRIP SIGNAL
ESF	ESF-49	86B1/CRHS TRIP SIGNAL
ESF	ESF-50	86B1/CSAS TRIP SIGNAL
ESF	ESF-51	86B1/SIAS TRIP SIGNAL
ESF	ESF-52	86B1/RAS TRIP SIGNAL
ESF	ESF-53	8681/VIAS TRIP SIGNAL
ESE	ESE-54	8681/CIAS TRIP SIGNAL
FSF	ESE-55	8681X/STAS TRIP SIGNAL
FSF	ESE-56	RERIX/RAS TRIP SIGNAL
FSF	ESE-57	REA/SELS TOTO STONAL
ECE	ECE ED	OCD/SOLS THIP STORAL
COL	ESE EO	OCD/ SULS TRIF SIGNAL
LOF	ESF-09	DEAL/COADE TOID CICNAL
C.Sr.	ESF-00	BOAT/SPAKE TRIP SIGNAL
FPS	FPS-3	FP-186 - Fire Main to AFW Tank
e un	P101 4	511 000 LOV 1100 Durana Value
FWH	FWH-1	FW-992 - LCV-1199 Bypass Valve
FWH	FWH-2	FW-481 - LCV-1199 Isolation VIV
FWH	FWH-J	FCV-960 - 2nd Stage Extr Byp VIV
FWH	FWH-4	FCV-964 - 4th Stage Extr Byp VIV
FWH	FWH-5	FW-723 - MS Drn Tk ST-31A Drn Is
FWH	FWH-6	FW-725 - MS Drn Tk ST-318 Drn Is
FWH	FWH-7	FW-727 - MS Drn Tk ST-31C Drn Is
FWH	FWH-8	FW-729 - MS Drn Tk ST-31D Drn Is
FWH	FWH-9	FW-447 - HP Htr 4A Drain Isol Vv
FWH	FWH-10	FW-448 - HP Htr 4A Drain Isol Vv

Sys.	Number	Description
GEN	EDS-38	DS-T1 - Main Gen Disc Perm
GEN GEN GEN GEN GEN GEN GEN GEN GEN	GEN-9 GEN-10 GEN-11 GEN-12 GEN-13 GEN-14 GEN-15 GEN-15 GEN-16 GEN-17 GEN-18 GEN-19 GEN-20	AI-134 30-1 Acknowledge P/B AI-134 30-1 Reset P/B 86-1/SVG1 TRIP SIGNAL 86-2/SVG1 TRIP SIGNAL 86-1/G1 TRIP SIGNAL 86-2/G1 TRIP SIGNAL 86-3/G1 TRIP SIGNAL 86-3/G1 TRIP SIGNAL 86-2/GT1 TRIP SIGNAL 86-2/GT1 TRIP SIGNAL 86-3/GT1 TPIP SIGNAL AI-134 30-2 Acknowledge P/B AI-134 30-2 Reset P/B
HVA	HVA-1	VA-71A Breaker
HVA	HVA-2	VA-71B Breaker
PMP	AFW-15	FW-6 (MDAFP) Local Control
PMP	DWS-1	DW-8A - Wtr Trtmnt Bstr Pump
PMP	DWS-2	DW-8B - Wtr Trtmnt Bstr Pump
PMP	DWS-4	DW-46A - Deaerator Vacuum Pump
PMP	DWS-5	DW-46B - Deaerator Vacuum Pump
RCP	RCP-1	86/RC-3A TRIP SIGNAL
RCP	RCP-2	86/RC-33 TRIP SIGNAL
RCP	RCP-3	86/RC-3C TRIP SIGNAL
RCP	RCP-4	86/RC-3D TRIP SIGNAL
RCS	PRS-1	RC-131 - PCV-103-2 Bypass
RCS	PRS-2	RC-133 - PCV-103-1 Bypass
RCS	PRS-3	PCV-2624 - PQT N2 REG SETPOINT
RCS	PRS-4	RC-167 - Pressurizer Vent Valve
RCS	RCS-1	RC-356 - LT-197 Upper Leg Isol
RCS	RCS-2	RC-355 - LT-197 Lower Leg Isol
RCS	WDS-11	HCV-2500 - RCS Hot Leg 1 Sample
RCS	WDS-12	HCV-2502 - Przr Stm Space Sampl
RMS RMS RMS RMS RMS RMS RMS RMS	RMS-1 RMS-2 RMS-3 RMS-4 RMS-4 RMS-5 RMS-6 RMS-6 RMS-7 RMS-8	RM-050 Anti-Jam Fuse Interlock RM- il Anti-Jam Fuse Interlock RM-r5? Anti-Jam Fuse Interlock J Anti-Jam Fuse Interlock RM-054A Anti-Jam Fuse Interlock RM-055 Anti-Jam Fuse Interlock RM-055A Anti-Jam Fuse Interlock

<u>Sys.</u>	Number	Description
RMS	RMS-9	RM-056A Anti-Jam Fuse Interlock
RMS	RMS-10	RM-056B Anti-Jam Fuse Interlock
RMS	RMS-11	RM-057 Anti-Jam Fuse Interlock
RMS	RMS-12	RM-059 Anti-Jam Fuse Interlock
RMS	RMS-13	RM-060 Anti-Jam Fuse Interlock
RMS	RMS-14	RM-061 Anti-Jam Fuse Interlock
RMS	RMS-15	RM-062 Anti-Jam Fuse Interlock
RMS	RMS-16	RM-063H Anti-Jam Fuse Interlock
RMS	RMS-17	RM-063L Anti-Jam Fuse Interlock
RMS	RMS-18	RM-063M Anti-Jam Fuse Interlock
RMS	RMS-19	RM-054 Anti-Jam Fuse Interlock
RMS	RMS-20	Vent Stack to Rad, Mon.
RMS	RMS-21	RM-050 Warning Alarm Setpoint
RMS	RMS-22	RM-051 Warning Alarm Setpoint
RMS	RMS-23	RM-061 Warning Alarm Setpoint
RMS	RMS-24	RM-070 Warning Alarm Setpoint
PMS	PMS-25	PM_071 Warning Alarm Setpoint
DMS	DMC_26	DM_072 Warning Alarm Setpoint
DMS	DMS_27	DM-073 Warning Alarm Setpoint
DMS	MS 20	DM 074 Warning Alarm Setpoint
DMS	DMC 20	DM 075 Warning Alarm Setpoint
CPUN	RM3=29	RM-075 Warning Alarm Setpoint
DMC	RM5-30	RM-USU Warning Alarm Setpoint
DMC	RMS-31	RM-065 Warning Alarm Setpoint
DMC	RM3-32	RM-USU High Alarm Setpoint
DMC	RMS-33	RM-USI High Alarm Setpoint
RMS	RM5-34	RM-UDI High Alarm Setpoint
RMS	RMS-30	RM-U/U High Alarm Setpoint
RMS	RM5-30	RM-0/I High Alarm Setpoint
RMS	RM5-3/	RM-0/2 High Alarm Setpoint
RMS	RM5-38	RM-0/3 High Alarm Setpoint
RMS	RM5-39	RM-074 High Alarm Setpoint
RMS	RMS-40	RM-075 High Alarm Setpoint
RMS	RM5-41	RM-080 High Alarm Setpoint
RMS	RMS-42	RM-085 High Alarm Setpoint
RPS	RPS-1	86A/DSS TRIP SIGNAL
RPS	RPS-2	86B/DSS TRIP SIGNAL
RRS	PRS-5	"Pzr Htr Bank 4 Gr 10, 11 & 12 S
RRS	RRS-1	CA-909-1 - Air to TCV-909-1
RRS	RRS-2	CA-909-2 - Air to TCV-909-2
RRS	RRS-3	CA-909-3 - Air to TCV-909-3
RRS	RRS-4	CA-909-4 - Air to TCV-909-4
RRS	RRS-5	CA-910 - Air to PCV-910
RWS	RWS-1	FPS to CCW Hx via RWS
SEP	SEP-1	AC-307 - FTC Pn Suction fm SIRWT
SEP	SEP-2	AC-13A - Fuel Xfer Cnl Drn Pn A
SED	SEP-3	AC-13R - Fuel Xfer Col Don Bo R

Sys.	Mumber	Description
SFP SFP SGB SGB SGB SGB SGB SGB SGB SGB SGB SGB	SFP-4 SFP-5 SFP-7 MIS-6 SGB-1 SGB-2 SGB-3 SGB-3 SGB-3 SGB-4 SGB-5 SGB-6 SGB-5 SGB-6 SGB-7 SGB-8 SGB-7 SGB-8 SGB-9 SGB-10 SGB-11 SGB-12 SGB-13 SGB-14	AC-5A - SFP Circulating Pump A AC-5B - SFP Circulating Pump B AC-8 - SFP Hx Isolation Valves AC-217 + SFP to SIRWT via W2S * * DELETED * * * FW-182 - S/G B to Blowdown Tank FW-1052 - S/G B to Blowdown Tank FW-1053 - S/G A to Blowdown Hx FW-1053 - S/G A to Blowdown Hx FW-1055 - Slwdwn Hx to Blwdwn Tk FW-1055 - Blwdwn Hx to Blwdwn Tk FW-1055 - Blwdwn Hx to Blwdwn Tk FW-215 - Blowdown Pumps to RWS WD-890 - Blowdown Pumps to RWS WD-890 - Blowdown Pumps to WDS AI-107 A42 Reset P/B HCV-2508 - Blwdn Smpl to RWS HCV-2509 - Blwdn Smpl to WDS AI-186 Lcl Ann Reset P/B
SGN SGN SGN SGN SGN SGN	MSS-1 MSS-2 MSS-3 MSS-4 MSS-5 MSS-6	MS-336 - YCV-1045A Byp/Warmup MS-337 - YCV-1045B Bypass/Warmup MS-338 - HCV-1041A Dwnstrm Drain MS-339 - HCV-1041A Upstrm Drain MS-341 - HCV-1042A Dwnstrm Drain MS-342 - HCV-1042A Upstrm Drain
SIS SIS SIS SIS SIS SIS SIS SIS SIS SIS	SIS-1 SIS-2 SIS-3 SIS-4 SIS-5 SIS-6 SIS-7 SIS-8 SIS-9 SIS-10 SIS-11 SIS-12 SIS-13 SIS-14 SIS-15 SIS-16 SIS-17 SIS-18 SIS-19 SIS-20 SIS-21 SIS-23	SI-185 - Lkg Clr Hdr To SIRWT SI-183 - Lkg Clr Hdr To SIRWT SI-126 - SI-1A Suct Vlv Frm SDC SI-125 - SI-1B Suct Vlv Frm SDC SI-152 - SI-3C SIRWT Recrc Isol SI-146 - SI-3B SIRWT Recrc Isol SI-138 - SI-3A SIRWT Recrc Isol SI-132 - SI-1A SIRWT Recrc Isol SI-132 - SI-1A SIRWT Recrc Isol SI-146 - SI-28 SIRWT Recrc Isol SI-132 - SI-28 SIRWT Recrc Isol SI-148 - SI-28 SIRWT Recrc Isol SI-111 - SI-2C SIRWT Recrc Isol SI-105 - SI-28 SIRWT Recrc Isol SI-105 - SI-28 SIRWT Recrc Isol SI-171 - AC-4A Inlet Isol Valve SI-172 - AC-4A Outlet Isol Vlv SI-167 - AC-4B Inlet Isol Vlv SI-168 - AC-4B Outlet Isol Vlv SI-169 - AC-4A/4B Inlt X-Tie Is SI-173 - AC-4A/4B Otlt X-Tie Is SI-173 - AC-4A/4B Otlt X-Tie Is SI-178 - Cntmt Spray Isol Valve

Sys.	Number	Description
SIS	SIS-24	SI-186 - SDC Warmup Valve
SIS	SIS-25	NG-173 - SI-6C Vent Cap
SIS	SIS-26	NG-174 - SI-6D Vent Cap
SIS	SIS-27	NG-172 - SI-6B Vent Cap
SIS	SIS-28	NG-171 - SI-6A Vent Cap
SWD SWD SWD SWD SWD SWD SWD SWD SWD SWD	EDS-287 EDS-288 EDS-289 EDS-290 EDS-291 EDS-292 EDS-293 EDS-294 EDS-297 EDS-298 EDS-299 EDS-299 EDS-300 EDS-301 EDS-302 EDS-303	3451-2 - 345 KV Breaker 3451-6 - 345 KV Breaker DS-T1A-1 - Xfmr T1A-1 Disconnect DS-T1A-2 - Xfmr T1A-2 Disconnect DS-T1A-3 - Xfmr T1A-3 Disconnect DS-T1A-4 - Xfmr T1A-4 Disconnect Transfer Trip Signal Channel 1 Transfer Trip Signal Channel 2 86-1/T1A-3 TRIP SIGNAL 86-2/T1A-3 TRIP SIGNAL 86-2/T1A-4 TRIP SIGNAL 86-2/BF4 TRIP SIGNAL 86-2/BF5 TRIP SIGNAL 86/161 TRIP SIGNAL
SYN	EDS-295	22 KV Fast Transfer Block
SYN	EDS-296	161 KV Fast Transfer Block
TGA TGA TGA TGA TGA TGA TGA	GEN-1 GEN-2 GEN-3 GEN-4 GEN-5 GEN-6 GEN-7 GEN-8	Gen H2 Supply Manifold Pressure Gen CO2 Supply Manifold Pressure TGA-H2 - Gen H2 Fill/Vent Valve TGA-CO2 - Gen CO2 Fill/Vent Vlv Y-O1 - Inlet to Pump ST-6A Y-O2 - Inlet to Pump ST-6B Bus Duct Clng Fan Motor Select 20-27 - Gen H2 Analyzer Vent
TLO	TUR-3	Turbine Oil Reservoir Fill Valve
TUR	TUR-1	MS-308 - Main Steam to Gland Sl
TUR	TUR-2	SSFV - Glnd Sl Stm Reg Stpt
TUR	TUR-4	Turning Gear Jog Pushbutton
VLV	AFW-11	YCV-1045 - Auto/Manual Select
VLV	AFW-12	YCV-1045 - Mn Stm to FW-10
VLV	AFW-13	HCV-1384 - LOCAL/REMOTE SELECT
VLV	AFW-14	HCV-1384 - AFW to Main FW Hdr
VLV	AFW-17	HCV-1107B - Auto/Manual Select
VLV	AFW-18	HCV-1107B - AFW to S/G RC-2A
VLV	AFW-19	HCV-1108B - Auto/Manual Select
VLV	AFW-20	HCV-1108B - AFW to S/G RC-2B

<u>Sys.</u> Numbe	<u>Descript</u>	tion
WDS WDS-1	WD-2A -	250 GPM RCDT Pump
WDS WDS-2	WD-2B -	50 GPM RCDT Pump
WDS WDS-3	WD-465 -	- WHU Tank C Drain Valve
WDS WDS-4	WD-879 -	- WHU Tank C Inlet Isol
WDS WDS-5	5 WD-843	- Waste Header to SIRWT
HDS WDS-6	5 WD-137 -	- N2 to Gas Decay Tk Isol
WDS WDS-7	FCV-532	C - WGDT to Vent Stack
WDS WDS-8	3 WD-28A	- Waste Gas Compr A
WDS WDS-S	9 WD-28B	- Waste Gas Compr B
WDS WDS-1	10 RC-124	- RCS Loop Drain to RCDT
WDS WDS-1	13 * * *	Deleted * * *
WDS WDS-1	14 NG-124	- N2 to RCDT Isol. Viv
WDS WDS-	15 WD-352	- Spnt Rgn Tk 13A Drn Vlv
WDS WDS-	16 AI-100	A50 Acknowledge P/B
WDS WDS-	17 AI-100	A50 Reset P/B
WDS WDS-	18 AI-100	A51 Acknowledge P/B
WDS WDS-	19 AI-100	A51 Reset P/B
WDS WDS-	20 AI-100	A52 Acknowledge P/B
WDS WDS-	21 AI-100	A52 Reset P/B

Freeze/Run

It is possible to interrupt (Freeze) and restart (Run) the simulator dynamics but retain the I/O to the panel instrumentation from any console. Freeze will be accomplished by selecting FRZ. When the simulator is in the freeze mode, the RUN/FRZ soft key will be reverse video blue with RUN inscribed on the key. The run function will be accomplished by selecting RUN. When the simulator is running, the RUN/FRZ soft key will be reverse video green with FRZ inscribed on the key.

Backtrack

A backtrack disk file contains the historical snapshots of simulator conditions to allow the instructor to back up and restart the simulator from some time back during the training session. Backtrack initialization is identical to normal initialization. The simulator automatically records its condition during the training session and stores that status at regular time intervals. Disk space for 240 historical snapshots is provided. A circular buffer arrangement will make the latest minutes of operation be represented by the numerically earliest backtrack snapshots. The circular buffer arrangement is not affected by resetting to any IC including backtrack ICs so that records are not lost.

Snapshot

The snapshot capability of the simulator enables the instructor to write an initial condition, or snapshot, of current power plant status and conditions including malfunctions, local operator actions, global component failures, plant parameters, overrides, and remote control unit assignments by storing the necessary information

Snapshot (continued)

in a rotating buffer using IC locations 55-59. It is possible to move the contents of one of these snapshot buffer ICs to any other IC position (I-54). Password protection can be used for protected IC's.

Replay

The replay feature provides the instructor with the capability to freeze the simulation and replay a period of recent history of simulator operation on all control panel readouts. Plant computer systems and computerized displays are not included in the replay function.

While in this mode of operation, the system will not respond to any operator actions. However, while in replay the system will respond to FRZ and RUN control inputs. Slow time operation of replay can be selected by the instructor, up to 1/10 of real time.

This replay is a semi-dynamic simulation; all of the simulator models function normally, except for the control panel inputs. Instead of receiving control manipulations from the boards, the simulation task receives inputs from the stored history of operator manipulations. Thus, starting from one of the backtrack snapshots, the instructor is able to go back to the time represented by that backtrack snapshot and exactly repeat all of the students' actions and plant responses during that period.

This replay feature has the advantage of being able to be stopped at any point in the operations of the replay, and resuming normal simulator operation with this exact stopping point being the initial condition. This capability enables the instructor to reach any

Replay (continued)

instant of the recent history of the simulator operation exactly, taking into consideration all control board and instructor inputs. The snapshot feature is active during the replay operation, as will many of the monitoring displays.

During the replay function, the instructor can send a history of operator and instructor actions to a printer, or monitor them in the activity window on the control CRT. The information contained in this history includes the time of each specific action, the associated plant tag number or instructor system reference, a description of the affected component, and the status change.

Override Control

A number of override features are provided to simulate simple failures of control room equipment. These overrides include the following generic types:

- Digital output override to simulate:
 - Freezing any digital input in its current status
 - Permanent ailure of switches to a selectable position
 - Permanent failure of push-buttons in the open or closed contact state
- Analog input override to simulate permanent failure of any analog input, freezing of the input in its current value, or drifting to a specified value with a specified ramp time.
- Annunciator override to simulate failure of any hardwired control board annunciator freezing in its current status, or causing the annunciator to be permanently on or off.
- Digital output override to simulate failure of any on/off light in its current status or to cause the light to be permanently on or off.

Override Control (continued)

Analog output override to simulate failure of any output, freezing in its current position, or drifting to a specified value with a specified ramp value and ramp time.

Plant Performance Parameter Control

The instructor is able to change external and internal plant parameters. External plant parameters are those which are outside the control of the plant, but which have dynamic effects on the plant simulation.

Internal parameters are those which are state variables within individual models which have been identified during the preliminary design review and are subject to change by the instructor.

Time Scaling

A time scaling feature is provided with the system. This feature addresses both a fast and slow time mode of operation.

A fast time mode of operation is provided to allow the instructor to accelerate certain plant dynamics which have long time constants. This speedup allows up to 10 times real time. Activating the time scaling feature at the main instructor's station causes a menu to appear at the control CRT allowing the following dynamics to be adjusted for fast time:

- Xenon and samarium concentration and decay heat
- ° RCS heatup
- RCS cooldown
- ° Turbine system heatup
- Turbine system cooldown
- Orawing condenser vacuum
- Pressurizer bubble formation

Time Scaling (continued)

The instructor can select any one or any combination of these dynamics for fast time mode of operation; he can select any integral factor between 1 and 10 times real-time for each item individually. The dynamics of the selected items speed up while other plant dynamics remain in real time. The control panel input/output system operates at the same frequency as real time. Those plant parameters affected by the fast time dynamics indicate the effects on the control panels and on instructor's console monitoring displays.

A slow time mode of operation is provided to allow the instructor to slow down all plant dynamics from 10% to 100% of real time in 10% steps. All plant simulation calculations are executed at a correspondingly slower frequency. However, the control panel input/output system operates in the same frequency as in real time to provide realism. All control panel indicators work properly during slow the operation. Indicators show corresponding slower changes in analog values. Alarm flashing occurs at its normal frequency. An analog smoothing feature may be started to smooth analog outputs to the control board during slow time operation.

Drill Library

The instructor may select exercises from a library of preprogrammed lesson drills or exercises which will automatically step the simulator through a set of predefined operations and controls. The library can contain up tr '00 drills with up to 25 actions in each. Titles and comments can be included in drill files. This computerassisted exercise feature minimizes simulator setup and manipulations by the instructor, and provides standard, repeatable, and preplanned exercises for training.

Datapool Monitoring

The instructor is able to monitor the status of up to 64 parameters on the monitor CRT by selecting the DATAPOOL soft key. The monitor display has four parameter value fields to a line, with the appropriate datapool variable name prefacing each value field. Lines are grouped together with spaces between groups to enhance legibility.

Plant Status Displays

This CRT display will provide an alphanumeric presentation of status information for plant system variables in "log sheet" format. The instructor can page between 10 discrete pages of 20 variable per page.

Plant Diagrams

Plant diagrams, accessed with the P&IDs soft keys allow the instructor to review and monitor the simulator status via special graphic displays on the control or monitor CRTs. A menu of available diagrams is provided along with a convenient control and paging structure. After the desired system diagram has been selected, the proper display will appear on the CRT and the dynamic information will be updated once every second. Up to 64 dynamic fields may appear on each diagram. Colors, symbols, and numeric fields can all be dynamically changed by association with process values in Datapool. It is possible to select malfunctions, LOAs, plant parameters, and global component failures on these displays.

Parameter Trending

Using the monitor display, the instructor is able to monitor tronds of four variables versus time distributed over 20 pages, four variables on each page. A four hour historica data file with values stored at one second increments is available with each variable. This trending task continuously updates when the simulator is in the run mode.

The instructor may change the monitored variables, their range, or alarm setpoints at any time through the option menu. The trends may be printed out on a color printer to provide a hard copy.

Trainee Performance Review

Trainee performance review capability includes:

- Cogging of up to 80 monitored parameters to a disk file once per second for up to four hours (those previously selected per section 4.4, Trends).
- Logging of all control panel manipulations and instructor directed actions (as described in section 3.6, Replay).
- Capability to transfer data collected in disk files to tape.
- Trend display generation of monitored parameters from stored history that was logged to the disk file.
- Printer reports available for each class to supplement trend displays.
1.4 OPERATIONAL PROCEDURES

All the procedures used on the Fort Calhoun simulator are the procedures used in the operation of the reference plant. Procedures used in the simulator are updated at the same time as the plant procedures.

All drawings used in the simulator control room are controlled documents maintained in the same manner as the drawings used in the reference plant.

Differences between the simulator control room and the reference plant that impact procedure performance are discussed with the trainees by the simulator instructors as the procedure is performed.

1.5 CHANGES SINCE LAST REPORT

ø

This is Fort Calhoun Station's initial report.

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION

Simulator Certification Submittal

Section 2

2.1 INTRODUCTION

The purpose of this Section is to describe the process and documentation used for design scope and modelling of the Fort Calhoun Station (FCS) Full Scope Simulator. The design process is described in Section 2.2. Section 2.3 (and appendices) details the design documents.

2.2 DESIGN PROCESS

A multi-disciplined core group of personnel established a simulator design team, with the mission of defining the desired final product. The core membership of this team included specialists in Plant Operations, Engineering, and Nuclear Plant Simulation Modelling. (For the specific core design team member qualifications, see Appendix 2.A). The steps used in the aforementioned definition included the following major steps, detailed below:

- Determination of Simulator Scope
- Development of a Simulator Design Specification
- Data Collection and Review
- Vendor/Customer Simulator Scope Meetings
- Simulator Design Reviews
 - Development and Implementation of Simulator Configuration Management Program

2.2.1 Determination of Simulator Scope

The first part of this step consisted of bounding the scope of simulation based on FCS Operator Training needs. Identification and subsequent definition of operator training needs was in progress pursuant to Job and Task Analysis (JTA) for accreditation of the OPPD Operator Training Program by the Institute of Nuclear Power Operations. The JTA was made simulator-specific by discussions of procedure-based tasks held between

2.2.1 Determination of Simulator Scope (continued)

members of the simulator design team and FCS plant operators. The results collated from the simulator-specific JTA provided the basis for marking up FCS Piping and Instrumentation Diagrams (P&ID's) to reflect the operator-based preliminary scope of simulation.

Subsequent portions of Simulator Scope Determination consisted of refining the preliminary scope. This refinement included the development of modelling assumptions and simplifications, as well as preparation of the following lists:

- Malfunctions
- Local Operator Actions (LOA's)
- Plant Performance Parameters
- External Parameters
- Critical and Monitored Parameters
- Initial Conditions

2.2.2 Simulator Data Collection

With the scope of simulation defined as described above, data collection for use in the simulator model could proceed. The first step in the data collection effort was that of identifying and evaluating data to facilitate the writing of an accurate simulator specification to put out for bid. The simulator design team reviewed FCS System Descriptions, the Updated Safety Analysis Report (USAR), and evaluated pending plant design changes to establish system design bases and system characteristics. The Control Room Inventory portion of the Integrated Control Room Design Review Report was used to provide data on control board legend plates, instrument characteristics (i.e., types, ranges, scales), system mimics, and panel demarcations and color padding.

2.2.2 <u>Simulator Data Collection</u> (continued)

Following the award of the simulator contract to Westinghouse Electric Corporation, and at the behest of Westinghouse, the simulator design team collected operational plant data. This data collection effort consisted of three phases. Reference plant data was collected during actual plant maneuvers, such as plant startup, shutdown, and to the extent actual plant data was available, during plant transients. The data included, in addition to selected plant parameter printonts, strip charts, and log readings, video taping and still photographs of all simulated control panel instrumentation at various power levels. The video tapes and photographs were for Westinghouse use for panel fabrication, determination of I/O devices, and as reference power level instrument readings.

2.2.3 Simulator Design Reviews

The initial step in this phase of the design effort consisted of simulator scope review meetings between the OPPD Simulator Design Team and Westinghouse personnel. The purpose of these meetings was to further hone the scope definition. The meetings consisted of reviews of the submitted scope P&ID's (discussed above) and additional P&ID annotation to correlate the locations of listed Malfunctions, LOA's, and Plant Performance Parameters.

Periodic design reviews were conducted by the design team during simulator construction to ensure complete, correct implementation of the simulator specification. Among these were comprehensive reviews of the Preliminary, and later the Interim Design Basis Documentation packages prepared by Westinghouse. The need for additional documentation, assumed or surrogate plant data identified during the design process was tracked by generation of Data Void Requests, issued by Westinghouse. Data Voids remained open until the requested data was provided.

2.2.4 Simulator Configuration Management

A Configuration Management System (CMS) was established to maintain control of design data for all systems and components in the simulator. The CMS consists of databases of references for all source documents provided to Westinghouse by OPPD, and the uses of those documents by simulated systems and components. This CMS is maintained current with as-built plant conditions and plant design changes by frequent review and updates.

2.3 SIMULATOR DESIGN DOCUMENTATION

The simulator Design Basis Documents (DBD's) are presented in Appendix 2.B. The DBD's describe the simulation of each modelled system, including the following information:

- System Purpose(s) and Description
 - System Design Bases
 - Discussion of System Simulation

A summary of the design data documents used in development of the simulator models, grouped by system or component handler (i.e., pump, valve) is presented in Appendix 2.C. This summary contains, as available, the following information for source documents:

- Alphanumeric Identifier
- Title
- Issuing Agency
 - OPPD Aperture Card Number

Appendix 2.C is not intended to be an all-inclusive reference list. Document sheet numbers and revision/change numbers used specifically for simulation development have been intentionally omitted from this summary

2.3 SIMULATOR DESIGN DOCUMENTATION (continued)

a

in the interest of brevity. The CMS databases, however, contain all pertinent document identification information. Additional documentation data from the CMS databases are available upon request.

.8

APPENDIX 2.A

SIMULATOR DESIGN TEAM CORE MEMBER QUALIFICATIONS

The following personnel formed the core of the simulator design team:

- Richard P. Clemens, P.E., B.S. Electrical, Supervisor -OPPD Simulator Services Mark Gutierrez, B.S. EET, Former FCS Shift Technical
- Advisor, OPPD J. B. Michael, Former FCS Operations Shift Supervisor
- (Senior Reactor Operator), OPPD Skip Searfoss, Senior Consultant, Interfacts, Inc.

APPENDIX 2.B

SIMULATOR DESIGN BASIS DOCUMENTATION

Reactor Core System Functional Description

Description of Simulated System

The purpose of the reactor core is to generate heat to be used in the formation of steam in the steam generators. The core is the primary heat source in the Nuclear Steam Supply System (NSSS). Heat generated as a result of fission is transferred from the fuel rods to the Reactor Coolant System. This heat is then used to heat water in the steam generators to form steam.

The core consists of 133 fuel assemblies. The fuel assemblies are approximately 8 inches square, with the active fuel region being approximately 10 feet long. Each fuel assembly consists of a 14 x 14 matrix of fuel pins with five 4-pin groups of pins missing where the control element assembly (CEA) guide cubes are placed. This leaves 176 fuel pins in each assembly. Placed in certain of the CEA guide tubes are either CEAs (49), flow plugs (4), neutron sources (2), or incore detectors (28). Approximately one-third of the fuel in the core is removed and replaced with new fuel on an 18 month-based cycle.

There are 49 CEAs, moved by 37 Control Element Drive Mechanisms (CEDMs). These are grouped into three general categories (shutdown, regulating, and non-trippable CEAs), subdivided into a total of seven groups; shutdown groups A and B, regulating groups 1 through 4, and non-trippable group N. The 24 shutdown group CEAs are moved by 12 CEDMs. The CEDMs for the shutdown and regulating CEAs are identical. The remaining CEAs have non-trippable CEDMs.

Each CEA is comprised of five fingers which are one inch in diameter and 153 inches long and tied together at the top with a "spider". The CEA is joined to the extension shaft of the CEDM with an internal expandable collet. Each finger of the CEA is filled with 120 inches of boron carbide pellets, with 8 inches of Ag-In-Cd at the lower tip. A gas expansion space is provided to accommodate the helium gas and moisture given off by the boron carbide during operation. This expansion space eliminates the probability of sticking or binding of the control rod fingers in a CEA guide tube due to swelling.

Incore neutron detectors are inserted into the core at 28 selected fuel assembly locations. Each detector assembly consists of four neutron flux detectors stacked vertically, and one thermosouple at the assembly outlet.

The neutron detectors are self-powered rhodium detectors; the thermocouples are chromel-alumel.

Axial spacing of the detectors in each assembly and radial spacing of the assemblies permit representative neutron flux mapping of the core and monitoring of the fuel assembly coolant outlet temperature.

Excore detectors are grouped into four wide range channels, four power range safety channels, and two power range control channels. The wide range (logarithmic) channels indicate neutron flux over more than 12 decades from source level to above full power. They are located approximately every 90° around the reactor core, in cavities physically outside of the reactor vessel. The power range channels provide an output signal in the range of 0 to 200 percent power. The power range detectors are also located approximately every 90° around the core in instrument thimbles in the Liclogical shield.

Components and Functions Simulated Elsewhere

The positions of the shutdown, regulating, and non-trippable CEAs are determined by the Control Rod Drive (CRD) model.

Noron incentration is simulated in the Reactor Coolant System model.

Nuclear instrumentation is hardled by two different models. The excore detection system is modeled in the Nuclear Instrumentation System model, while the incore detection system is modeled in the Incore Instrumentation model.

The heated Junction Thermocouples are simulated by the Reactor Coolant System model.

Activity simulation and transport is simulated in the Radic on Monitoring System model.

Components and Functions Not Simulated

Reat generation from the metal-water reactions is not simulated.

Control Rod Drive System Functional Description

Description of Simulated System

The purpose of the Control Rod Drive (CRD) system is to provide a means to move the Control Element Assemblies (CEAs) into/out of the reactor core. This movement of the CEAs is necessary to bring the reactor critical, dampen axial power oscillations, or quickly bring the reactor subcritical upon a reactor trip signal. Power changes are not generally accomplished with the CEAs. Power changes are made with, and fuel depletion is compensated for, by reactor coolant system boron concentration changes. Experience has shown that operation with the CEAs controlled manually and fully withdrawn significantly extends fuel clad integrity and also optimizes fuel depletion.

There are 49 CEAs that are moved by 37 Control Element Drive Mechanisms (CEDMs). There are seven groups of CEAs divided into three general groups; shutdown CEAs, regulating CEAs, and non-trippable CEAs. The shutdown groups are identified as groups A and B; the regulating groups are identified as groups 1, 2, 3, and 4; and the non-trippable group as group N. The 24 shutdown group A and B CEAs are yoked together in pairs and moved by 12 CEDMs. The 21 regulating group CEAs are each moved by their own CEDM.

The CEDMs for the shutdown and regulating TEAs are identical. The four group N CEAs each have a non-trippable CEDM.

The CEDM drive motors insert and withdraw the CEAs upon receipt of a signal from the manual control switch (joystick) on the main control board. A manual or a tomatic reactor trip will interrupt power to the clutches of the trippable CEDMs and gravity will cause the CEAs to fall into the core. There are two clutches installed in the CEDM. The lowest one is an anti-reverse rotation clutch that was designed to prevent inadvertent upward CEA motion, and to drive

down any stuck CEAs after a reactor trip. The more important of the two clutches is the upper clutch, the trip clutch. The trip clutch transfers forward and reverse torques from the CEDM drive motor to the drive shaft. The clutch has two toothed sections. When the 52 VDC clutch power is applied, the lower section rises and engages the teeth of the driving section. A reactor trip signal removes the clutch power from the electro-magnet located in the upper section of the trip clutch, thus allowing gravity to pull the lower section away, disengaging the clutch teeth. The lower portion of the clutch, the drive shaft, and the pinion gear rotate as the control rod falls in.

The non-trippable CEDMs have a solid shaft that replaces the trip clutch and the anti-reverse clutch.

The CEDM drive motor is an AC synchronous motor that will run in either direction. This requires that a forward and a reverse starting circuit be used. When 120 VAC is applied to either the raise or lower start circuit, that same current is converted to 90 VDC and applied to an electromagnet that retracts the motor brake, and permits either forward or reverse motor rotation. The motor speed is reduced and torque is multiplied by a reduction gear between the motor and clutches. Drive shaft speed is only 8 KPM, corresponding to a rod speed of 46 inches per minute. When tripped, the CEAs must travel from fully withdrawn to at least 90% insertion in 2.5 seconds or less.

There are three different methods of CEA position indication that the CEDMs provide; reed switch position indication, synchro position indication, and limit switch position indication.

The synchro indication and the reed switch indication are used for position readout, and are considered to be the primary and secondary position indications, respectively. The limit switch indication is used primarily for control rather than indication, and is therefore not considered a form of position indication. The synchro indication is driven with a sending unit that is geared to the CEDM drive shaft. The receiving units are mounted on the main control board. The 128 inches of CEA travel cause a corresponding 264 degree rotation of the synchro units. The synchros are accurate to ± 0.5 inch. The synchro position is also supplied to the plant computer for logging and control purposes.

The reed switch indication uses 65 reed switches in a 130-inch string for each CEDM. The reed switches are located in a conduit outside of the pressure housing of the CEDM and are actuated by a permanent magnet inside the pressure housing that closes the reed switch that is in closest proximity to it. The reed switches are accurate to +2 inches.

Limit switch indication utilizes six cam lobes on the shaft between the primary synchro and the synchro gear drive. The cam lobes actuate nine switches for core mimic and other light indications, as well as control functions.

Components and Functions Simulated Elsewhere

The nuclear effects of the CEAs moving into or out of the core are simulated in the Reactor Core model.

The clutch power supplies and their control are simulated in the Reactor Protective System model.

The Reactor Regulating System computes rod movement demand signals for each individual rod.

The CRD model only computes rod positions; the signals representing the reed switch outputs and the synchro transmitter outputs are generated in the Instrument Channel Handler (ICH) from these rod positions; SCEAPIS selects from these to perform its control and display functions; the Reactor Regulating System model also selects from these signals to drive the synchro indicators.

The limit switches are modeled in the Reactor Regulating System model. The status of the CEDM drive motor power supply is determined in the Inplant Electrical Distribution System model.

Components and Functions Not Simulated

Coupling or uncoupling of the CEAs from the CEDMs is not simulated.

The manual lock function of the CEDM drive package is not simulated.

Reactor Coolant System Functional Description

Description of Simulated System

The major components of the Reactor Coolant System (RCS) are the reactor vessel, two parallel heat transfer loops, each containing one steam generator and two reactor coolant pumps, and a pressurizer connected to one of the reactor vessel outlet (hot leg) pipes. All components are located inside the containment building.

During normal operation, reactor coolant is circulated through the reactor vessel and steam generators by the reactor coolant pumps. The coolant is heated as it passes through the active region of the core and transfers that heat to the secondary system in the steam generators. The coolant also serves as a neutron moderator in the core and contains a soluble neutron absorber (boric acid) for reactivity control.

The system also includes the reactor coolant gas vent system which provides paths for venting the reactor vessel head and the pressurizer to the Pressurizer Quench Tank (PQT) or the containment atmosphere.

A boron concentration model is also included as part of the RCS model.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler, based on data received from this model. The pressurizer quench tank and associated piping are simulated in the Pressurizer Quench Tank (PQT) model.

The reactor coolant pumps are simulated in the Reactor Coolant Pump (RCP) model.

Heat generation/transfer from the core is computed in the Reactor Core (RXC) model.

Activity inventory and transport are modeled in the Radiation Monitoring System (RMS) model.

The Reactor Vessel Level Indication System (RVLIS) is a part of the Qualified Safety Parameter Display System (QSPDS).

Incore nuclear instrumentation is simulated in the Incore Nuclear Instrumentation (ICI) model.

The Heated Junction hermocouples (HJTCs) are simulated in the ICI model.

The control signals for pressurizer level control are computed in the Reactor Regulating System (RRS) model.

The control signals for pressurizer pressure control and pressurizer heater heat flux are computed in the RRS model.

Components and Functions Not Simulated

All major components and functions are simulated. Only one loop drain is simulated.

Removal of the reactor head for refueling is not simulated.

Reactor Coolant Pump System Functional Description

Description of Simulated System

The Reactor Coolant Pumps (RCPs) (two per steam generator) provide the motive force to move the reactor coolant water through the Reactor Coolant System (RCS). They also provide the driving head for the pressurizer spray (from loops 1B and 2A) during normal operation. The water transports heat from the reactor core to the steam generator tubes.

During plant startup, the reactor coolant pumps supply thermal energy to heat up the Reactor Coolant System. During plant shutdown/ cooldown, the reactor coolant pumps provide flow to maintain a uniform temperature distribution throughout the Reactor Coolant System. (Pressurizer spray is provided by the charging pumps via aux spray when the reactor coolant pumps are unavailable.)

The reactor coolant pumps are vertical shaft, single suction, single stage centrifugal pumps, driven by 4160 volt electric motors with flywheels. Each pump is equipped with multistage mechanical face seals and a single self-aligning, water lubricated bearing mounted above the pump impeller. The pump has three impellers.

The main impeller provides coolant flow. The auxiliary impeller, cast as part of the main impeller, maintains a low pressure on the inside of the hydrostatic bearing; this has the same effect as supplying a pressurized fluid to the journal free. The hydrostatic bearing is thereby lubricated, and able to keep the shaft from wobbling. Additional shaft support is provided by the driver motor bearings. The third impeller is an acme thread attached to the shaft. The screw action of the thread recirculates 40 gpm of reactor coolant through the seal heat exchanger and around the seal cartridge. One gpm of this recirculating water is continually leaking up through the seals and is replenished by one gpm leaking up between the shaft and the thermal barrier.

The shaft seal system is composed of four mechanical seals that are lubricated and cooled by the controlled reactor coolant leakoff. The first three seals are tandem-mounted, and are designed to withstand full RCS pressure, while allowing a controlled leakage of coolant (approximately one gpm) into the seal assembly. The fourth seal, also capable of withstanding full RCS pressure, is designed to be a vapor seal.

Reactor coolant flows up the shaft, past the thermal barrier, and through a heat exchanger to be cooled before it enters the area of the first stage seal.

The heat exchanger maintains approximately 130° F at the seal inlet with the design seal leakage flow of between .75 and 1.25 gpm when the pressure breakdown seals are functioning properly. Flow is controlled by labyrinth flow restrictors designed to divide the total pressure drop across three high pressure seals. By dividing the pressure drop, each seal normally sees only 700 psid, thereby extending the seal's operating lifetime. The fourth seal virtually eliminates any leakage to the containment atmosphere, and typically is less than 0.3 gph.

Controlled bleedoff past the third seal is ducted by a header to the volume control tank. Controlled bleedoff past the fourth seal is directed to the reactor coolant drain tank (RCDT). During periods of containment isolation, the controlled bleedoff flow is also directed to the RCDT.

The pump driving motors are air cooled, three phase induction motors, which employ flywheels to increase their coastdown time in the event of loss of power to the motor.

The motors are designed for continuous operation, and accelerate from a dead stop to operating speed under full load when 90 percent or more of the rated voltage of 4000 volts is applied at its terminals. The motors have anti-reverse rotation clutches. These keep the pump from rotating in the reverse direction when idle, permit starting an idle pump when voltage is low, and help to minimize reverse flow.

Each pump has a startup and a running lube oil system. The startup system uses a high pressure and a low pressure oil lift pump to supply oil to the anti-reverse rotation clutch radial bearing and to position the motor/pump shaft axially. Oil lift pressure must be high enough to satisfy starting interlocks for the pump start circuit. Once the pump attains 90 percent of rated speed, the lift pumps stop (they would restart if speed dropped below 90 percent) and the thrust bearing runner acts like an impeller to supply oil flow to the lube oil cooler and the anti-reverse rotation device. The lift pumps must also be in operation if flow is lost to the anti-reverse rotation devices. The upper and lower guide bearings are immersed in oil, and don't need forced lubrication. The external oil cooler cools oil used by the upper guide bearing, the thrust bearing, and the anti-reverse rotation device. The lower bearing oil is cooled by a cooling coil located within the lower oil reservoir.

Components and runctions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Actual reactor coolant flow through the pumps themselves is modeled in the RCS model.

Components and Functions Not Simulated

Normal oil leakage from the reactor coolant pumps is not modeled; only the leak flows resulting from the oil reservoir and oil cooler leak malfunctions (RCP-1 & d RCP-5) are modeled.

The stator winding heaters are not modeled; the control logic is implemented, and the currents will be calculated.

Pump gasket bleedoff flow to the RCDT is not modeled.

Flushing and venting of the RCP seals is not modeled.

Pressurizer Quench Tank System Functional Description

Description of Simulated System

The Pressurizer Quench Tank (PQT) is a horizontal right circular cylindrical vessel located within the containment structure. Its primary purpose is to prevent the escape of potentially radioactive steam released from the pressurizer via its PORVs or safeties from entering the containment atmosphere. This function is achieved by maintaining the tank approximately two-thirds full of water, and terminating the tail pipe from the reliefs and safeties inside the tank below the water level.

The tank also receives discharges from several other reliefs/ safeties throughout the primary plant. Also, an interconnection to the RCDT allows draining of the tank, while a connection to the Demineralized Water System permits cool makeup water to be sprayed into the gas space of the tank to reduce pressure in the tank. A connection to the bottled gas system allows a nitrogen blanket to be applied to the gas space of the tank. The gas space can also be vented, either to the waste gas compressors via HCV-155 (and HCV-507A and 507B), or through the gas analyzer flow path (HCV-509A and HCV-509B).

The tank is protected against catastrophic failure resulting from overpressurization by a relief valve (RC-125) which relieves to the containment floor, and by a rupture disk which vents the tank's gas space to containment atmosphere.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Components and Functions Not Simulated

The gas analyzer is not simulated. Any gas vented through HCV-509A and HCV-509B is lost from inventory.

Steam Generator System Functional Description

Description of Simulated System

The steam generators serve as the heat sink for the primary system. Under normal operating conditions, the steam generators supply steam for use in the main turbine generator.

In other modes of operation, steam flow can be directed to the main condensers (steam dump or turbine bypass) or directly to the atmosphere. Each steam generator is also capable of supplying steam to the turbine-driven auxiliary feed pump and to the turbine grand sealing system.

The system consists of two vertically mounted U-tube steam generators; for each steam generator, a steam line containing safety, relief, stop, and drain valves, traps, and the instrumentation necessary to carry out the functions described above; and a common steam header.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The supply of water for the steam generators comes from the Condensate and Feedwater (CFW) model or the Auxiliary Feedwater (AFW) model.

Heat and fluid transport on the primary side of the U-tubes are computed by the Reactor Coolant System (RCS) model.

Steam generator blowdown processes are modeled in the Steam Generator Blowdown (SGB) model.

Control signals for the steam dump and turbine bypass valves modeled herein are generated in the Reactor Regulating System (RRS) model.

The turbine stop and governor valves are modeled in the Main Turbine (TUR) model.

The AFW turbine governor valve is modeled in the Auxiliary Feedwater (AFW) model.

Radiation monitoring and activity transport are performed by the Radiation Monitoring System (RMS) model.

Components and Functions Not Simulated

All major system components, flowpaths, and functions are modeled, either within SGN or as described above.

Steam Generator Blowdown System Functional Description

Description of Simulated System

The Steam Generator Blowdown System (SGB) consists of two separate blowdown lines, each connected to its respective steam generator. Each line, having valves and instrumentation, leads to a common heat exchanger which cools the effluent before it flows to the blowdown tank. The common heat exchanger is modeled, but is not utilized. Flow from blowdown flows directly to the blowdown tank. The tank is pumped via either steam generator blowdown pump to the Waste Disposal System (WDS) for processing or to the Raw Water System (RWS) for discharge to the river.

The Steam Generator Blowdown System provides a means of controlling steam generator chemistry, draining the steam generators for dry layup conditions, and removing radioactive contaminants from the steam generators in the event of a primary to secondary leak.

A portion of the blowdown flow is continuously routed to the sampling area for sampling and monitoring. Only the flow and radiation monitoring instrumentation are simulated.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Components and Functions Not Simulated

The SGBPS, consisting of the blowdown demineralizers and the spent resin holding tanks together with their associated piping, pumps, and instrumentation, is not simulated.

The blowdown sample heat exchanger, sample headers, and chemistry analyzers are not simulated.

Chemical Volume and Control System Functional Description

Description of Simulated System

The Chemical and Volume Control System (CVCS) consists of three charging pumps, a volume control tank, two concentrated boric acid storage tanks, ion exchangers, a letdown heat exchanger, a regenerative heat exchanger, a purification filter, a boronometer, process radiation monitors, control valves, instrumentation, and interconnecting piping.

The normal flow path of reactor coolant through the chemical and volume control system is from RCS loop 2A through the tube side of the regenerative heat exchanger for an initial temperature reduction. The cooled fluid then passes through the letdown flow control valve(s) to the letdown heat exchanger where the final reduction to operating temperature takes place.

The pressure of the fluid in the letdown heat exchanger is maintained by the letdown backpressure control valve, through which the fluid flows on its way to the ion exchanger(s). It then passes through a filter and is sprayed into the volume control tank.

The charging pumps take suction from the volume control tank and pump the coolant through the shell side of the regenerative heat exchanger (for recovery of heat from the letdown flow) and back to the reactor coolant system via loops 1A and 2A cold legs. An auxiliary spray flow line to the pressurizer is also provided, as well as a cross-connect to the HPSI header at the charging pumps' discharge.

The volume control tank's level and boron concentration are controlled by feeding makeup liquid from the makeup system and/or diverting letdown flow to the waste disposal system. Toward the end of a core cycle, deborating ion exchangers are also used. In addition, ion exchangers are used to remove soluble nuclides and insoluble particles.

Hydrogen overpressure is maintained in the VCT to control oxygen. Excess gasses are vented to the waste gas system.

The reactor coolant pump mechanical seal controlled leakage is piped to the VCT.

The instruments, controls, pumps, valves alarms, and other equipment simulated are listed in tables and are depicted schematically on the system diagram located in the simulator Final Design Data Base documents.

All major flow paths are modeled.

In order to allow the instructor to establish realistic plant conditions, Plant Performance Parameters (PPPs) and Local Operator Actions (LOAs) are provided. PPPs CVC-1 through CVC-3 allow the instructor to set the boron concentration of the various ion exchangers in the letdown system. Although the ion exchangers will not exhaust during the course of simulation, the RCS boron concentration malfunction will set the ion exchanger boron concentration to the malfunction value. PPPs CVC-4 and CVC-5 allow the instructor to set the boron concentration of the concentrated boric acid tanks. Makeup to the BATs is accomplished via LOAs, CVC-17 and CVC-18. Each activation of either of these LOAs will cause an 11 percent increase in level of its corresponding BAT (as though the contents of the batch tank were being added), at the current specified value of boron concentration for that tank. Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Components and Functions Not Simulated

All major components and flow paths are modeled as stated above. The following items are not modeled:

Resin addition tank

Boric acid batching tank end strainer

Chemical addition tank

Chemical addition flow path

Letdown strainer

Boric acid filter

Metering pump and flow path

Aging of the ion exchangers is not modeled

Only one of each type of ion exchanger and purification filter is modeled.

Safety Injection System Functional Description

Description of Simulated System

The Safety Injection System, as defined for the Fort Calhoun Simulator, performs the following functions.

Provide emergency core cooling following a loss of coolant accident for any break size up to and including a double ended rupture of the 32-inch ID hot leg.

Provide rapid injection of borated water for added shutdown capability during a rapid cooldown of the Reactor Coolant System following a main steamline break.

Low pressure safety injection (LPSI) pumps and shutdown cooling heat exchangers are used during plant cooldown to remove core decay heat and reactor coolant system stored heat. Following cooldown they are used to maintain a constant Reactor Coolant System temperature while the plant is at cold shutdown or while conducting refueling operations.

Maintain the core covered with borated water for extended periods of time by recirculating containment sump water to the Reactor Coolant System following a loss of coolant accident.

Provide a means of cooling containment spray water following a recirculation actuation signal (RAS).

Provide a means to fill and drain the safety injection tanks.

Limit the containment structure pressure rise by providing a means for cooling the containment atmosphere following a loss of coolant accident. Control reactor coolant temperature during normal startup in the range of ambient to less than 300F.

The major components of the SIS are the safety injection and refueling water tank (SIRWT), three high pressure safety injection (HPSI) pumps, two low pressure safety injection (LPSI) pumps, three containment spray pumps, two shutdown cooling heat exchangers, four safety injection tanks, eight high pressure injection valves, four low pressure injection valves, and a dual set of containment spray headers and nozzles.

During normal operation, the Safety Injection System is maintained in a standby mode with all of its components aligned for automatic emergency operation.

Upon receiving a safety injection actuation signal (SIAS), which actuates the diesel sequencers, all of the safety injection and spray pumps will start via the sequencers. The HPSI and LPSI injection valves will also automatically open. The containment spray valves will not open until receipt of a containment spray actuation signal (CSAS). During the injection mode of operation, all of the pumps take suction from the SIRWT and inject borated water at refueling boron concentration into the Reactor Coolant System.

The SIRWT would continue to provide water until its level dropped low enough to actuate the SIRWT low signal (STLS), which in turn actuates RAS if either the pressurizer pressure low signal (PPLS) or the containment pressure high signal (CPHS) is present. When RAS is received, the suction of the pumps is automatically switched over to the containment building floor, the LPSI pumps are stopped, the pump minimum recirculation valves are shut, and full cooling flow is cut into the shutdown cooling heat exchangers. Once initiated, recirculation will continue until terminated or modified by operator action. Upon receiving a CSAS, the containment spray header valves would open, and bring the containment spray system to full operation. During the recirculation mode, the containment spray water is cooled by the shutdown cooling heat exchangers prior to discharge back into the containment atmosphere. The Containment Spray System is redundant to the containment air recirculation, cooling, and iodine removal system (within CNM) for the containment cooling function.

When the reactor coolant system pressure drops below approximately 250 psig, the four safety injection tanks will discharge their contents into the primary coolant system.

The safety injection tanks are a passive injection system since no electrical signal, operator action, or outside power source is required for the tanks to perform their function.

Between the safety injection tanks and the reactor coolant loops are double pipe, helical coil type heat exchangers. They are designed to condense and cool any leakage from the safety injection check valves. These heat exchangers work in conjunction with a pressure control valve to accept inleakage from the Reactor Coolant System and return it to either the volume control tank (CVC) or the reactor coolant drain tank (WDS).

After the Reactor Coolant System pressure has dropped low enough, the Safety Injection System is aligned for shutdown cooling. Alignment consists of blocking CSAS, isolating the safety injection tanks, and ensuring the Safety Injection Actuation Signals are blocked.

After the proper valve lineups are performed, a LPSI injection valve to a loop with a running reactor coolant pump is cracked open and the system is heated to equalization temperature with the Reactor Coolant System. The shutdown cooling system flow, along with component cooling water flow to the heat exchangers, is then set to achieve the desired cooldown rate. During shutdown cooling, the LPSI pumps take suction from the Reactor Coolant System through a nozzle on the hot leg in loop 2. The shutdown cooling flow is injected back into the Reactor Coolant System through the four safety injection nozzles on the cold legs. This nozzle arrangement makes the shutdown cooling flow pass through the core in the normal direction. The shutdown cooling capability may also be used during the early stages of plant startup to control the reactor coolant temperature.

Another system interface is a connection that is provided from the discharge side of the charging pumps (CVC) to the redundant HPSI header. Its primary purpose is to test the operation of the four safety injection check valves at the primary loops when the Reactor Coolant System is pressurized. The connection can also be used to correct boron concentrations in the safety injection tanks, as well as providing an alternate injection path for the charging pumps.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

All accident signal logic and actuation is modeled in the Engineered Safeguards model (ESF).

Containment ambient conditions relating to safety injection/spray are modeled in the Containment model (CNM).

Safety injection pump bearing coolers are modeled in the Component Cooling Water model (CCW).

Chemical and Volume Control system functions relating to the Safety Injection System are modeled in the Chemical and Volume Control model (CVC).

Components and Functions Not Simulated

Refueling cavity filling/draining is not modeled.

Shutdown cooling purification is not modeled.

Alternate spent fuel pool cooling is not modeled.

Safety injection system sampling is not modeled.

Safety injection pump discharge drains to WDS are not modeled.

Safety injection pump flushing is not modeled.

Trisodium phosphate dodecahydrate maintained in the containment sump for pH control is not simulated.
Component Cooling Water System Functional Description

Description of Simulated System

The Component Cooling Water System (CCW), is a closed-loop cooling system consisting of three pumps, four heat exchangers, a surge tank, and the valves and instrumentation which may be operated and monitored from the simulated control room.

It provides cooling to the following components/heat loads:

Letdown non-regenerative heat exchanger Reactor coolant pump lube oil coolers Reactor coolant pump seal coolers Charging pump oil coolers CEDM seal coolers Waste evaporator package Containment air cooling and filtering unit coils Containment air cooling units Safety injection tank leakage coolers Control room air conditioning units Nuclear detector well coolers Spent fuel pool heat exchanger Waste gas compressor seal water heat exchangers Shutdown cooling heat exchangers Containment spray pump bearing coolers Low pressure SI pump bearing coolers High pressure SI pump bearing coolers

Interconnections with the Raw Water System provide a backup cooling supply to the following components:

Containment spray pump bearing coolers Low pressure SI pump bearing coolers High pressure SI pump bearing coolers Containment air cooling and filtering unit colls Containment air cooling units Control room air conditioning units

An interconnection with the Bottled Gas System provides the capability of pressurizing the surge tank with a nitrogen blanket. Since the components which are cooled by CCW carry radioactive or potentially radioactive fluids, the system is continuously monitored for radioactivity which may have leaked into the system from the components being cooled.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Activity transport is performed by the Radiation Monitoring System model based on flow rates computed by this model.

Components and Functions Not Simulated

The sampling heat exchangers are not simulated.

The dechromate tank and associated water chemistry are not simulated.

Containment System Functional Description

Description of Simulated System

The Containment model, as defined for the Fort Calhoun simulatur, performs a number of functions. These functions are listed below:

Cools and filters containment atmosphere to minimize contamination buildup via VA-3A, VA-3B, VA-7C, and VA-7D.

Reduces fission product inventory by filtration in the event of a DBA via VA-3A and VA-3B.

.stricts leakage of airborne activity from the containment in the event of a DBA.

Purges the potential accumulation of hydrogen concentrations within the containment via purge units VA-80A and VA-80B. These units are simulated logically based on valve positions, power, and differential pressure.

Forces cooling of the seismic skirt to ensure adequate cooling of the control element drive motors (CEDMs) via cooling units VA-2A and VA-2B.

Cools the nuclear detectors situated in the nuclear detector wells via units VA-12A and VA-12B.

Maintains the concrete temperatures in the concrete shielding surrounding the reactor vessel to below 150° F.

Allows the controlled relief of pressure buildup within the containment structure.

Purges to supply fresh air and rid the containment of noble gasses prior to personnel access for shutdowns and maintenance outages via VA-24A, VA-24B, VA-32A, VA- 32B, VA-77, and VA-76. Monitors hydrogen buildup under accident conditions via hydrogen analyzers VA- 81A and VA-81B.

The containment system consists of fans, cooling units, dampers, and various instrumentation which can be remotely operated and munitored from the control room.

Fluid leakages, mass and energy balances (including RCS and SGN heat transfer to containment) and hydrogen buildup are simulated in two containment space model.

The temperature of the containment atmosphere will be calculated in the containment model and will be sent to the various instrumentation in the associated system to account for instrument error, e.g., pressurizer level in RCS and steam generator level in SGN.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model. The radiation monitors are modeled in their respective system.

Components and Functions Not Simulated

The various filters are not explicitly modeled.

Demineralized Water System Functional Description

Description of Simulated System

The Demineralized Water System (DWS) takes raw river water from either the screenhouse pump cells (via the raw water pumps), or from the circulating water discharge tunnel (via the raw water supply pump) and provides clarified water to the potable water tank (and thus to the fire protection system) and to the Bearing Cooling Water System as an alternate cooling supply to the air compressors.

This system p ovides the demineralized water for makeup to the auxiliary feedwater storage tank, the main condenser (via the condensate storage tank), the primary water storage tank, and the bearing cooling water head tank.

It also provides demineralized and deaerated makeup water to the CVC makeup system, the CCW surge tank, and the pressurizer quench tank.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Components and Function Not Simulate.

The chemical treatment facilities are not simulated.

The chemistry of the water in the DWS model is not simulated; it is assumed to always be within specification.

Makeup to the drip and drain tank is not simulated.

Station usage from the potable water tank is not simulated.

The flow path to the Boric Acid Batch Tank is simulated; however, since the tank is not modeled in the CVC model, any water sent through this path is lost from inventory.

The supply of demineralized water to containment via valves HCV-1559A and B is not simulated. The control logic for the valves is simulated to provide proper indication on the control boards.

Waste Disposal System Functional Description

Description of Simulated System

The Waste Disposal System (WDS) collects liquid waste streams and liquid flows resulting from leaks (induced by malfunctions) in the containment and auxiliary building which may be subject to radioactive contamination. Gaseous wastes are also collected from the VCT and PQT. It also collects non-contaminated leak flows in the turbine building. 0 10

Storage facilities are provided for both the liquid and gaseous wastes until they can be monitored for controlled release or processed for disposal.

This system consists of tanks, pumps, compressors, sumps, valves, interconnecting piping, and instrumertation which may be remotely operated and monitored from the control room.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers. Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Activity transport is performed by the Radiation Monitoring System model based on flow rates computed by this model.

The containment sump is modeled in the Containment model.

Components and Functions Not Simulated

The Stressing Tunnel Sump is not simulated.

The Waste Neutralization Tank (and associated piping) is not simulated.

The Fuel Transfer Canal is not simulated.

Hotel wastes are not simulated. Waste processing equipment is not simulated; it is assumed to work perfectly when required, with the only observable result being a reduction in stored waste inventory.

In most cases, only one of a group of redundant components is simulated. The remainder are either not simulated, (eg. redundant sump pumps), or an IDA is provided to allow the instructor to establish the appearance of the existence of the non-simulated components (such as the gas decay tanks and waste hold-up tanks).

Spent Fuel Pool System Functional Description

Description of Simulated System

The Spent Fuel Pool System basically has two purposes. The first and most important purpose is to remove decay heat from spent fuel assemblies stored in the storage pool and to transfer the heat to the Component Cooling Water System, thus keeping the spent fuel pool's temperature below Technical Specification limits. The second purpose is to control and maintain the chemistry and clarity of the storage pool water.

The system consists of two transfer canal drain pumps that can be used to make up to the storage pool, the storage pool itself, two storage pool circulation pumps, a heat exchanger, a demineralizer, and a filter. The associated valves and piping to connect the components together are also included. The system is manually operated, and has no pneumatic or electrically actuated valves.

The heat exchanger (AC-8), is cooled by component cooling water, and is used to keep the storage pool below Technical Specification temperature limits. Cooling is controlled by manually throttling component cooling water to the heat exchanger. The heat exchanger is in parallel with the demineralizer (AC-7), and the filter (AC-6). In this way, some of the pool recirculation flow can be diverted through the demineralizer/filter to keep the water clarity and purity within specification.

Components and Functions Simulated Elsewhere

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model. The supply of water for the spent fuel pool make-up is taken from the Safety Injection Refueling Water Tank (SIRWT). This tank is modeled in the SIS system.

Cooling water for the spent fuel pool heat exchanger is supplied by the CCW system. Temperature control of the SFP heat exchanger is performed by using an LOA to throttle CCW flow.

The radiological implications of lowering pool level (increased area radiation), and overflowing the pool or leakage due to malfunction SFP-2 (increased airborne activity in the auxiliary building), are accomplished in the RMS model based on inputs from this model.

Components and Functions Not Simulated

The multiple suction paths from either the surface of the pool through a strainer or from the middle of the pool are not modeled; only the path from the middle of the pool is modeled. The strainer is not modeled.

The back-up cooling path using a cross connection to the Shutdown Cooling System and flexible spool pieces is not modeled. This is because this path depends upon altering the state of certain locked safety related valves in the shutdown cooling and safety injection systems. Therefore, this path cannot be used during normal operations or when there is fuel in the reactor vessel. These conditions exceed the extent of simulation.

Flow paths to the waste disposal system are not modeled. The flow path from the Reactor Coolant Drain Tank pumps that is used to clarify the refueling cavity is also not modeled.

The number and power history of fuel elements stored in the fuel pool are not simulated, however, the heat load in the pool is an instructor-selectable Plant Performance Parameter.

Bottled Gas System Functional Description

Nescription of Simulated System

The Bottled Gas System supplies pure nitrogen or hydrogen gas at regulated pressure to various plant systems for use primarily as a cover gas in their associated tanks.

The gas supply bottles are simulated as infinite-capacity sources at pressures selectable by the instructor via Local Operator Actions (LOAs). The instructor can simulate isolation of the bottle(s) by setting the respective pressure to zero. The setpoints of the nitrogen pressure reducing valves PCV-2625 and PCV-2606 are also adjustable by the instructor via LOAs.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards are implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The individual shutoff valves and regulators serving individual tanks are modeled in the subroutine which models the tank in order to improve the numerical stability of the models.

Components and Functions Not Simulated

The regulators and/or shutoff valves at the gas bottles are not simulated, as the instructor can emulate their operation by setting the source pressure to the desired value via LOAs.

Main Turbine System Functional Description

Description of Simulated System

The system consists of the main turbine and the associated piping from the main steam header to the main condenser. The main flow path is from the main steam header through the turbine stop and control valves into the high pressure turbine. From the high pressure turbine, the flow splits and enters four parallel moisture separators, then passes through the combined intermediate (i.e., intermediate stop and intercept) valves before entering the two double-flow parallel low pressure turbines.

The exhaust from the low pressure turbines exits directly into the main condenser. Secondary flow paths include the extraction steamlines from various stages of the turbine, the turbine inlet valves and piping drain lines, the turbine crossover relief lines, and the turbine gland seal steam piping.

The turbine is a thirteen-stage, tandem compounded non-reheat unit. At rated operation, it runs at 1800 rpm with a guaranieed rating of 481,477 kW and a maximum design rating of 501,143 kW at 1500 MWt. For warming the turbine during startup, a poppet valve is provided internal to stop valve 2.

The four moisture separators are of the vane-type, single pass design. Each separator has its own drain collecting tank which in turn drains to the heater drain tank or dumps directly to the main condenser.

The steam space of each turbine section is sealed from the outside atmosphere where the shaft penetrates the shell by a low pressure gland seal steam system, which prevents steam leakage out of the high pressure turbine, and air leakage into the low pressure turbine. During startup, shutdown, and low load operation, sealing steam is supplied directly from the main steamlines upstream of the main turbine stop valves. Once the turbine is in operation, leakage from the high pressure glands supplies the needs of the system. Excess steam is dumped to the shell sides of the No. 1A and 1B feedwater heaters. The gland seal steam system has two relief valves which are modeled as one valve.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The Main Turbine Control System is simulated in the turbine Electrohydraulic Control model (EHC).

The main generator is modeled in the Main Generator model (GEN).

The turbine lubricating oil system is modeled in the Turbine Lubricating Oil model (TLO).

Instrumentation and monitoring functions unique to the turbine are modeled in the Turbine Supervisory Instrumentation model (TSI). Cooling and seal oil for the generator are modeled in the Turbine Generator Auxiliaries model (TGA).

The remainder of the extraction steam system is simulated in the Feedwater Heaters, Vents, and Drain model (FWH).

Components and Functions Not Simulated

The steam packing exhauster (ST-4) is not modeled.

Auxiliary Steam System Functional Description

Description of Simulated System

The Auxiliary Steam System (AXS) model consists of an oil fired boiler (operable in on-off fashion by the instructor via an LOA) which provides a backup source of steam to the following components when sixth-stage extraction steam is not available from the main turbine:

Building heating coils Gas stripper Waste evaporator Condensate storage tank Caustic tank heaters Domestic hot water generator

Since these "hotel" loads are not modeled, the instructor is provided with a Plant Performance Parameter to set the steam load for the system.

The model also includes the instrumentation necessary for monitoring the system and valves and traps for controlling the interface from the main turbine.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The normal extraction steam supply to the hotel loads is modeled in the Main Turbine model (TUR).

Components and Functions Not Simulated

The individual heaters/components which receive steam from the Auxiliary Steam System are not simulated; the instructor varies the steam load through the use of a Plant Performance Parameter.

The fuel oil system is not modeled. As long as the instructor turns the boiler on, sufficient fuel is assumed to exist.

Turbine Electrohydraulic Control ystem Functional Description

Description of Simulated System

The Electrohydraulic Control System (EHC) controls the amount of electrical load carried by the main turbine generator. It also governs the speed, acceleration, and loading rate of the main turbine generator. The system is composed of speed, load, and valve position control units.

The speed control unit compares actual turbine speed with a reference speed signal. The output of the speed control unit is a speed error signal that is input to the load control unit.

The acceleration control unit compares actual turbine acceleration with a reference acceleration rate signal. The output of the acceleration control unit is an acceleration error signal that is input to the load control unit.

The load control unit combines the speed error signal with the load set signal, plus various limit signals and biases, to produce the load reference signal.

The load reference signal is applied to the valve positioning units which develop it into individual positioning signals for their respective turbine steam flow control valves.

The system operates the four turbine control valves, turbine stop valves, and combined stop/intercept valves.

The system also provides for valve testing at power.

Each control valve and its associated stop valve are tested together, and both normal and fast acting devices are tested. Each intercept valve and its associated intermediate stop valve are tested the same as the above control valve.

The Emergency Trip Fluid System (ETS) includes a hydraulic power unit that provides pressurized hydraulic fluid to open the turbine steam admission valves. Any trip of the protection system will remove the pressure and trip the main and intermediate stop valves directly, and the control and intercept valves indirectly. The ETS system consists of a fluid reservoir, redundant pumps and fluid coolers, and accumulators.

Directly associated with the ETS system is the turbine protection system, which automatically trips the turbine upon receipt of any of the following trip signals:

Loss of Vacuum Turbine Overspeed Turbine Backup Overspeed Reactor Trip Main Generator Field Breaker Trip Main Steam Isolation Valves Shut Main Generator Trip Main Generator Disconnect Open Primary Speed Signal Lost. Backup Speed Signal Lost Loss of Main Generator Stator Cooling Turbine High Vibration Moisture Separator High Level Turbine Exhaust Hood High Temperature Loss of Turbine Lube Gil Pressure Low ETS System Hydraulic Pressure Loss of D.C. Power From AI-41A (Breaker 4) Low Pressure Signal from the Thrust Bearing Wear Detector Manual Trip

The chest/shell warming logic allows for gradual warming of the valve chest and high pressure shell by admitting steam through a small pilot valve built into the disk of stop valve #2. This minimizes the differential temperature of the metal and steam, thereby minimizing thermal stresses.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers, with the exception of the turbine stop valves, control valves, and combined intermediate stop/intercept valves.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Components and Functions Not Simulated

Only those portions of the turbine control system necessary to simulation operation are modeled.

Turbine Supervisory Instrumentation System Functional Description

Description of Simulated System

The Turbine Supervisory Instrumentation System (TSI), as defined for the Fort Calhoun simulator, models the turbine-related instrumentation that is not included in the Main Turbine (TUR) or Turbine Electrohydraulic Control (EHC) systems.

The instrumented parameters computed by this model include individual bearing metal temperatures, individual bearing lubricating oil exit temperatures, individual journal bearing vibration levels, a synthesized bearing vibration phase angle, rotor, shell and differential expansion values, eccentricity, control valve bowl temperatures, and turbine shell casing temperatures. These parameters are then passed to other routines for display, control, and alarms.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The exhaust hood temperatures are computed in the Condensate and Feedwater model (CFW).

Bearing lubricating oil flows and inlet temperatures are computed in the Turbine Lubricating Oil model (TLO). Turbine shaft speed, generator output power, and turbine steam properties are computed in the Main Turbine model (TUR). Supply steam properties are computed in the Steam Generator model (SGN).

Components and Functions Not Simulated

The shaft phase angle, and consequently the bearing vibration phase angle, are not explicitly computed. A vibration phase angle signal is synthesized for display purposes only.

Condensate and Feedwater System Functional Description

Description of Simulated System

The Condensate and Feedwater System (CFW), returns the condensed, preheated steam cycle condensate to the Steam Generators.

Steam exhausted from each low pressure turbine is condensed in its respective condenser. The condensate thus produced drains to a hotwell located at the bottom of each condenser. The condensate is then supplied to the suction of three condensate pumps having minimum flow requirements.

The condensate passes through the condensate cooler and then through stator and hydrogen coolers. Flow is controlled through these coolers by a bypass flow via TCV-1180 and HCV-1160. The condensate is then directed to the steam packing exhauster and is supplied to the tube side of the drain coolers. The flow then passes through two parallel heater trains, each containing five low pressure heaters, and is then delivered to the steam generator feed pumps' suctions.

Connections upstream of the fifth heater in each train are provided to receive the discharge from the heater drain tank pumps.

The three steam generator feed pumps operate to increase the pressure of the condensate and supply it to the steam generators. Connected to the discharge of each feed pump is a minimum recirculation flow control valve that can direct flow to the main condenser to insure minimum flow requirements for each pump.

The outlet of each pump connects to a common header which supplies two parallel high pressure heaters. The flow passes through flow nozzles and flow control valves which are controlled by the three-element feedwater regulating system during normal operation. The system functions to maintain the mass flow rate into the steam generator equal to the mass flow rate out of the steam generator while keeping the steam generator level at a programmed level. The feedwater then flows through motor-operated stop valves and into the steam generators.

The main vacuum pumps have two modes of operation, hogging and holding. The proper mode is determined by condenser pressure. The performance of the vacuum pumps is dependent on bearing cooling water temperature.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

All thermal effects of the feedwater heaters on the condensate are calculated in the Feedwater Heaters model (FWH).

The radiological effects in the condensate and feedwater system, including the detection by RM=057, will be modeled in the Radiation Monitoring System (RMS).

Components and Functions Not Simulated

Secondary side water chemistry is not modeled, except for conductivity.

The main feedwater pump lube oil systems are not dynamically simulated.

Feedwater Heaters, Vents & Drains System Functional Description

Description of Simulated System

The Feedwater Heater System (FWH), is primarily used to heat condensate and feedwater prior to pumping the water back into the steam generators.

The heater system consists of a pair of drain coolers, five pairs of low pressure feedwater heaters, and a pair of high pressure feedwater heaters. The drains from these heaters are created by the condensing of steam extracted from various stages of the main turbine. Water drained from the turbine crossover steam separators is also collected by this system. The cascaded drains are all collected in a tank and then pumped back into the condensate system under normal operation. Levels of water in the heaters are maintained within pre- determined limits. Under abnormal conditions, the drains can be diverted directly to the condensers.

The heater drain system is a cascade-type system, which means that the heaters gravity drain from the highest to the lowest heater within each train. One train of heaters drains from heater #6 to #5 to #4 to the heater drain tank. From the heater drain tank, the contents are pumped back into the condensate header between heaters 4A and 5A and/ or 4B and 5B.

Erains also flow within a train from heater #3 to #2 to #1 to a level control tank to one of the drain coolers, and then into the respective condenser. All heaters, except 4A and 4B, have a backup level control valve, which is operated by a level controller on the heater's shell side to dump excess water directly to the condenser. Drain valves prevent flooding of the heaters, which could lead to water backing up into the turbines through the steam extraction lines. The main steam moisture separators drain to their respective drain collecting tanks, and then to the heater drain tank. The collecting tanks function to maintain a water seal between the moisture separators and the heater drain tank to prevent steam blow-by to the heater drain tank. Each collecting tank has its own level controller to maintain operating level. Each tank also has a backup level controller that operates a level control valve. This control valve drains directly to the condenser to maintain water level should the normal level controller fail.

The heater drain tank collects and stores condensate drainage from the four moisture separator drain tanks, heaters 4A, 4B, 5A, 5B, 6A, and 6B, and serves as a water source for the heater drain pumps. Heater drain tank level is controlled by two different level controllers.

The heater drain pumps take suction on the heater drain tank and pump drain condensate to the condensate system. Each pump has its own recirculation valve which directs pump discharge water to the condenser to cool its pump during low flow conditions.

The drains from heaters 3A and 3B cascade down through heaters 2A and 2B, and 1A and 1B, to the level control tanks. These tanks are used as seal tanks to keep the drain coolers full of water, which prevents steam blow-by to the main condenser. The water then flows from the drain coolers into the main condenser.

Extraction steam bypass valves are used to remove moisture from the extraction lines during periods of no extraction steam flow in the supply lines, even though the system is operating. The extraction bypass valves for the second and fourth stage extraction lines have steam traps in parallel with the valves; the sixth stage extraction line has a trap only.

If leak isolation of heaters is necessary, plant power must be reduced. Power level must be within the capacity of the remaining operating heaters in the drain path to prevent level control problems in the operating heaters. Failure of a heater drain tank, moisture separator drain tank, or level control tank level controller would cause control to be maintained by the backup level controller for the respective unit. The heater drain tank also has a manually operated level control valve that can be used in conjunction with the backup level control valve.

To simplify the thermal interface, this model also computes all of the temperatures on the condensate side of the heaters, starting at the drain cooler inlet.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Malfunctions representing feedwater heater tube leaks have their flows calculated in the Condensate and Feedwater System (CFW).

Malfunctions representing failures of the various level controllers are implemented in the Controller Handler (CNH) via global failures. The moisture separators are modeled in the in the Main Turbine model (TUR).

Extraction steam flow to the Auxiliary Steam System is modeled in the Main Turbine model (TUR).

Components and Functions Not Simulated

Local control of the heater level control valves from panels AI-121 or AI-122 is not explicitly modeled. All of the level control valves can be failed by the instructor (using global failures) to emulate this function. Switches and controls at AI-121 and AI-122 are not included in the simulator process diagrams.

The feedwater heater vents to the main condensers are not explicitly modeled.

The heater drain tank pressure relief and drains to the heater drain pump suction trench are not modeled.

The heater drain pump vents back to the heater drain tank are not modeled.

Sands.

Auxiliary Feedwater System Functional Description

Description of Simulated System

The Auxiliary Feedwater (AFW) system is used for three functions:

To provide an alternate supply of feedwater to the steam generators in the event of low steam generator water level.

To provide a source of feedwater during system heatup and cooldown operations.

To provide a source of feedwater during hot standby operation.

The system is designed to add feedwater to either steam generator under any condition, including the loss of all electrical power along with the loss of the main feedwater system and the loss of the main steam piping downstream of the main steam isolation valves.

The auxiliary feedwater system is considered to be that equipment required to store, pump and deliver makeup water to the steam generators to remove decay heat in the event the normal equipment is not available. The system consists of one emergency feedwater storage tank (FW-19), one motor-driven (FW-6) and one turbine-driven (FW-10) auxiliary feedwater pump, remotely operated flow control valves, interconnecting piping to the main feedwater system and piping to the auxiliary feed nozzles in the steam generators.

FW-6 is operated during reactor and steam plant heatup, and during reactor startup until the reactor reaches the point of adding heat. When reactor power is between zero and five percent of full power, a main feedwater pump is started, and FW-6 is shutdown and placed in a standby condition. The turbine-driven auxiliary feedwater pump (FW-10) is not normally used during plant heatup due to the fact that its use of steam as a driver represents a heat loss and slows the plant heatup rate. During plant shutdown, the main feedwater pumps are used to feed the steam generators until the plant heat loads and decay heat load are within the capacity of FW-6. When plant heat loads permit, FW-6 is started and the main feed pumps are stopped. FW-10 is not normally used during plant shutdowns. It is only used occasionally to demonstrate operability.

In the event of an auto initiation of auxiliary feedwater, the auxiliary feedwater system is designed to automatically start both auxiliary feedwater pumps. Actual flow to the steam generators will be directed to the intact steam generator(s).

When both auxiliary feedwater pumps are operating, the mode of control is such that FW-10 will not be discharging water to the steam generators unless FW-6 is pumping at its maximum output. The reason is that the speed of FW-10 is regulated to keep its discharge pressure approximately 40 psi greater than steam header pressure.

FW-6 is a constant speed pump and its discharge pressure is controlled by the feedwater header restrictions so that, as flow is throttled down, the discinge pressure increases to an ultimate shutoff head of about 1200 psi. The steam header pressure is maintained automatically by the steam dump and turbine bypass system at about 900 psi. Therefore, FW-10, which senses auxiliary feedwater header and steam line pressures, will be idling and not pumping into the auxiliary feedwater header until the auxiliary feedwater header pressure is within 40 psi of the steam header pressure

Due to the above described control dissimilarity, FW-10 is usually stopped and placed in standby after the transient stabilizes and FW-6 is used to maintain the steam generator water level.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The fill values for the Emergency Feedwater Storage Tank (EFWST), LCV-1189 and LCV-1173, are modeled in their respective system models (DWS and CFW).

The boundary of the crosstie to the main feedwater system is at the main feed header, downstream of the crosstie check valve FW-1334.

The logic computations for automatic actuation of the auxiliary feedwater system's components (including malfunction AFW-6) is performed in the Engineered Safeguards model (ESF). The feedwater pump turbine steam supply valve (YCV-1045) is modeled in the SGN model.

Components and Functions Not Simulated

The isolation valves for the motor operated crosstie valve, HCV-1384, are not simulated. They are redundant to HCV-1384, and used primarily for maintenance purposes.

The redundant EFWST isolation valve, FW-1316, is also not simulated. The suction path from the tank is adequately modeled with one valve.

The recirculation flow path back to the main condenser is not modeled.

The lube oil cooler for FW-10 is not modeled.

Raw Water System Functional Description

Description of Simulated System

The Raw Water System (RWS), is a two loop, once through circulating water system consisting of four pumps, four heat exchangers, valves, piping, and instrumentation which may be remotely operated and monitored from the control room. The system is manifolded and valved to allow interconnection of the loops during all modes of operation.

The raw water system provides screened and strained river water to the component cooling water heat exchangers for cooling (CCW) and to the demineralized water system for makeup (DWS), during normal operation.

It also provides water for direct cooling of various engineered safeguards components in the unlikely event that all component cooling water pumps and heat exchangers are unavailable to fulfill their design functions. The engineered safeguards components include the shutdown cooling heat exchangers, control room cir conditioning heat exchangers, containment air cooling and filtering units, high pressure safety injection pump lube oil coolers, low pressure safety injection pump lube oil coolers, and the containment spray pump lube oil coolers.

In addition, drainage and discharge to the raw water system is simulated from overflow and drainage of the emergency feedwater storage tank, discharge from the blowdown tank transfer pumps, and discharge from the steam generator portion of the sampling system.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The heat exchangers for shutdown cooling (AC-4A and -4B), containment cooling (VA-1A and -1B and VA-8A and -8B), safety injection (SI-1A, -1B ar.' SI-2A, -2B, -2C), containment spray (AC-3A, -3B, and -3C), and control room air conditioning (VA-46A and -46B) are modeled in their respective systems.

Components and Functions Not Simulated

Backwashing of the raw water strainers (AC-12A and -12B) is not simulated.

Overflow and discharge from the bearing cooling water tank, potable water tank, and potable water relief valve is not simulated.

Circulating Water System Functional Description

Description of Simulated System

The primary function of the Circulating Water System (CWS) is to supply cooling water from the river to the main condensers. It also provides cooling water to the two bearing cooling water heat exchangers and to the condensate cooler. The system consists of an intake structure with grids and screens to filter out debris and ice from the river, three circulating water pumps, piping and valves to distribute the water, and instrumentation to allow the operator to monitor the operation of the system.

In order to reduce fouling, flow through each of the four simulated tube bundles can be reversed. The instructor can either individual' manipulate the intake/discharge valves for each quarter, or use a single LOA which will automatically reposition all of the valves for the respective quarter.

In order to prevent icing of the grids/screens during cold weather operation, the instructor can divert the warmed discharge water from the downstream side of the intake structure to the upstream side, where it mixes with the river water prior to entering the intake structure. This is accomplished with a single three-way valve, representing the sluice gate and stop logs actually used at the plant. Note that the flow path to the upstream discharge cannot handle as much flow (has a lower admittance) than the downstream path.

Both the Fire Protection System and the Raw Water System draw their supply of water from the circulating water pump cells.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data ruceived from this model.

The thermodynamic simulation of the main condensers is performed by the Condensate and Feedwater (CFW) model.

The thermodynamic simulation of the bearing water heat exchangers and the condensate cooler is performed by the heat exchanger handler.

The logic for the operation of the traveling screens is performed by the traveling screen handler.

Components and Functions Not Simulated

The pump cell inlet and interconnecting sluice gates are not simulated.

The intake structure sump is and sump pumps are not simulated; all leakage into the intake structure is lost from inventory.

Operation of the traveling screens is not simulated; the control logic is simulated only to the extent necessary to drive the status lights on CB-10.

The circulating water vacuum priming system is not simulated.

The screen wash system is not simulated.

The circ water pump cooling blower is not simulated.

Bearing seal water is not simulated.

Compressed Air System Functional Description

Description of imulated System

The Compressed Air System (CAS) provides filtered and dried compressed air to the instrument air header for pneumatic controls and the actuation of valves, dampers, and similar devices. It also supplies air to the service air header for maintenance tools and large valves.

Air is supplied by three identical two-stage compressors that operate automatically to maintain air pressure. The compressors are connected to a discharge manifold that feeds the instrument and service air systems. Since most of the loads on the system are of an occasional nature, the system normally operates at a very low load factor. To prevent unnecessary wear on the compressors while still maintaining the ability to meet peak demands, local control switches are provided (accessible to the instructor via LOAs).

Under normal conditions, one compressor will be in continuous run mode Its output will vary stepwise between 0 percent, 50 percent, and the percent of capacity, based on the positions of its two loading valves, which open and close in response to receiver pressure.

A second compressor will be in standby mode, available to automatically start if the running compressor cannot keep up with demand.

The compressed air flows first to two air receivers, one associated with the instrument air header, the other with the service air header. If pressure in the instrument air header reaches a low setpoint, an isolation valve in the service air line will close, shutting off air to the service air system. The third compressor is an offline spare. Downstream of the instrument air receiver is an air drier. In the event that the drier becomes plugged, a bypass valve will open on a high differential pressure signal.

The air is then distributed through a network of loops, manifolds, and risers to the individual components. Many of the safety-related components h their own accumulator, isolable from their respective riser by a check valve. This allows some operation of the valve following a loss of air to the riser.

Components and Functions Simulated Elsewhere

Control logic for the components that are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Usage of air by individual valves is simulated in the Valve Handler. Each time a valve is stroked, the handler decrements the pressure of the assigned supply by a specified amount. The supply pressure is then replenished by this model during its next iteration.

Components and Functions Not Simulated

The air drier, CA-4, is not dynamically simulated.

Turbine Lubricating Oil System Functional Description

Description of Simulated System

The Turbine Lube Oil System (TLO) provides a clean oil supply at suitable temperatures and pressures to the turbine generator unit bearings for both lubrication and cooling, to the high pressure bearing lift system, and to the wet pocket area of the front standard for the low speed timing cylinders. It also provides a makeup supply to the shaft seal oil system.

The simulated system includes; the reservoir (LO-1), the motor suction pump (LO-8) for startup, the shaft oil pump (LO-15), the oil-turbine-driven suction booster pump (LO-16), the turning gear oil pump (LO-3), the emergency bearing pump (LO-4), one lube oil cooler (LO-17), three high-pressure lift pumps (LO-14A, -14B, and -14C, representing the six actual pumps driven by three motors), and an oil supply line from an infinite supply.

Note: since all of the piping being simulated is double-walled piping, any leakage resulting from pipe break malfunctions is returned to the reservoir; the only loss of inventory results from leaks from the reservoir itself.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The turbine hydraulic control oil system is simulated in the Turbine Electrohydraulic Control model (EHC).
Turbine bearing instrumentation is modeled in the Turbine Supervisory Instrumentation model (TSI).

The generator shaft seal oil system is modeled in the Turbine Generator Auxiliaries model (TGA).

Components and Functions Not Simulated

The oil conditioning unit is not simulated, and only one of the redundant lube oil coolers is simulated.

The vapor extractor is simulated only to the degree that the associated lights on the control board will respond to manipulation of the control switch.

Heating Ventilation And Air Conditioning System Functional Description

Description of Simulated System

The Heating, Ventilation, and Air Conditioning System (HVA), as defined for the Fort Calhoun simulator, consists of the Auxiliary Building controlled and uncontrolled areas ventilation, control room ventilation, and diesel room ventilation.

The system performs the following functions:

Maintains the Auxiliary building at a comfortable temperature and provides adequate air changes for personnel comfort.

Provides control of radioactivity by ventilating areas where radiation may be released in accordance with the following guidelines:

Ensures that air flow inside the building is from areas of lower activity to areas of higher activity, thus avoiding the spread of activity.

Provides sufficient air flow to insure that legal radioactivity limits are met at points where ventilating air leaves the building.

Provides charcoal filtration of effluent air from the safety injection pump rooms, spent regenerant tank room, and spent fuel area to entrap iodine.

Provides for remote isolation of rooms where larger releases of radioactivity may occur.

Removes heat from various rooms to keep electrical equipment at acceptable temperaty is.

Prevents hydrogen accumulation in the battery rooms.

Provides for venting the spent regenerant tanks, monitor tanks, and spent fuel pool demineralizer.

Provides a channel for release of gaseous wastes from the Waste Disposal System.

Prevents the accumulation of toxic vapors in rooms where chemicals are handled; e.g., the sampling room.

Provides a means for heating and cooling in the control room during normal operations.

Provides a means of ventilating the diesel rooms.

The HVAC System consists of supply fans, exhaust fans, dampers with remote indications and controls, and toxic gas monitoring instrumentation. The system is of the once-through non-recirculating type, with the exception of the control room ventilation system, which is recirculatory.

Components and Functions Simulated Elsewhere

Control logic for the components that are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrumentation Handler based on data received from this model.

Activity transport is performed by the Radiation Monitoring System model based on flow rates computed by this model.

Components and Functions Not Simulated

Service building ventilation is not modeled.

Office building ventilation is not modeled.

Intake structure ventilation is not modeled.

The Technical Support Center ventilation system is not modeled.

The HEPA and charcoal filters and the A/C units in the control room ventilation system are not modeled.

The fresh air inlet fan (VA-63) is not modeled.

The toilet exhaust fan (VA-49) is not modeled.

Fresh air dampers PCV-860A and PCV-360B are not modeled.

Main Generator System Function 1 Description

Description of Simulated System

The Main Generator (GEN) model simulates the main generator and associated protective relaying, including volts per hertz, underfrequency, loss of field, overexcitation, and distance relaying.

The Main Generator is a General Electric ATB 4 pole, 60 Hz unit, rated for 590.8 MVA at 22 KV and an 0.85 pf. The generator is directly coupled to and driven by the Main Turbine (modeled in TUR). The generator's output is directed to the low voltage side of the main output transformer, T1, where it is stepped up and fed to the power grid via substation No. 3451.

Excitation for the generator is provided by the output of an AC alternator-exciter coupled to the end of the main generator. The AC output is rectified by stationary silicon-diode rectifiers (SCRs) and the resulting DC output is fed to the main generator field.

The SCRs are controlled by the output of either the manual or automatic voltage regulating system. The manual system functions to maintain the main generator's field voltage at a setpoint generated by the 70P control switch mounted on CB-20. The automatic voltage regulation system maintains the main generator terminal voltage at the setpoint generated by the 90P control, also located on CB-20.

0

The Power System Stabilizer (PSS) functions to modify the voltage regulator's output to dampen power line swings, and to shift load in response to a signal generated by voltage and frequency.

The main generator's output is connected, through motor-operated disconnect switch DS- T1, to the 22 KV system, which is modeled in the Switchyard System (SWD).

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The following components/functions are performed in the Turbine Generator Auxiliaries model (TGA):

Hydrogen Cooling Stator Cooling Seal Oil System Exciter Air Cooling

Synchronization and synch checking are performed in the Synchronizer model (SYN).

Components and Functions Not Simulated

The Power System Stabilizer is not explicitly simulated.

Emergency Diesel Generators System Functional Description

Description of Simulated System

There are two emergency diesel engine driven generators of identical design and characteristics. Each unit is complete with all auxiliaries necessary for operation and for ensuring quick starts. No auxiliaries are shared and no energy source external to the units, other than DC control power, is required for starting or subsequent operation.

The emergency diesel control are designed to furnish reliable inplant AC power at the ferrice of a ferrice of a major bus (1A11, 1A13, 1A31, 1A33, 1A22, 1A24, 1A42, 1A44), any plant trip, or receipt of any PPLS or CPHS, the diesel generators will automatically start.

The diesels will start and energize their respective buses automatically with a loss of voltage on buses 1A3 and/or 1A4.

The diesels are started with stored compressed air. Each unit is provided with a duplicate air start system having the capacity for five starts. The air starting valve mechanism is simplified to a single solenoid valve associated with each air receiver. An LOA is provided for local operation. In case of a loss of DC control power, diesel generator DG-2 may be started and placed on-line locally at panel AI-133B.

The fuel storage capacity is sufficient for a minimum of one hundred hours of operation when both diesels are fully loaded, or to provide operation of one diesel in excess of one week. Panel sections D1 on AI-30A and D2 on AI-30B in the control room are associated with the emergency diesel generators #1 and #2, respectively. These sections provide facilities for the automatic start, manual start, supervision of the availability and operating status of the engine and generator, auxiliary systems, and to provide a means of testing the units.

Generator voltage, current, frequency, and power are provided on CB-20 as well as breaker control. Additional alarms are displayed on A17 and A18.

The fuel auxiliaries are duplicated for each unit, including the fue oil systems between the day tank and the engine fuel line and fuel transfer pumps.

The lube oil system has a pressure pump for each diesel generator that circulates oil through a lube oil cooler cooled by a closed jacket water cooling loop. An oil circulating pump provides additional flow.

The cooling system is of the completely integral type, requiring no external power source, except the diesel itself.

Components and Functions Simulated Elsewhere

_ontrol logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The diesel generator room fans and dampers associated with the jacket water cooling radiators (JW-3-1 and JW-3-2) are modeled in the HVAC System (HVA).

Components and Functions Not Simulated

The local control panel for diesel generator #1, AI-133A, is not simulated.

Only one air receiver per train of the starting air system is modeled.

Inplant Electrical Distribution System Functional Description

Description of Simulated System

The Inplant Electrical Distribution System (EDS) is that portion of the Inplant Electrical Distribution System bounded by the secondary sides of transformers TIA-1, 2, 3, and 4 and includes the following buses, transformers and associated breakers:

4160 VAC Buses 1A1, 1A2, 1A3 and 1A4

4160/480 VAC Transformers T1B-3A, T1B-3B, T1B-3C, T1B-3D, T1B-4A, T1B- 4B, T1B-4C, T1C-3A, and T1C-4A

13.8 KV/480 VAC Transformer T1B-3C1

480 VAC Buses 183A, 183B, 183C, 183A-4A, 183B-4B, 183C-4C, 184A, 184B, and 184C

MCCs 3A1, 3A2, 3A3, 3A4, 4A1, 4A2, 3B1, 3B2, 3B3, 4B1, 4B2, 4B3, 3C1, 3C2, 3C4C-1, 3C4C-2, 4C1, 4C2, 4C3, and 4C4

Batteries 1 and 2

Battery Chargers 1, 2, and 3

125 VDC Buses 1 and 2

125 VDC Panels AI-41A and AI-41B

Static Inverters A, B, C, D, 1 and 2

Instrument Buses A (AI-40A, B (AI-40B), C (AI-40C), D (AI-40D), 1 (AI-42A) and 2 (AI-42B)

The 4.16 KV distribution system consists of four separate buses. Buses 1A1 and 1A2, unit auxiliary buses, feed only large major auxiliary loads at 4.16 KV. House service buses, 1A3 and 1A4, feed the remainder of the major 4.16 KV components and all other plant loads through 4160/480 V transformers, including all the engineered safeguard components.

In case of a complete loss of station supply power from both the 22 KV and the 161 KV systems, buses 1A3 and 1A4 are supplied automatically by two onsite emergency diesel generators, one on each bus. Buses 1A1 and 1A2 cannot be supplied from the diesels.

In the event that only one of the station supplies is lost, then the breakers associated with the transformer outputs would rapidly transfer the affected buses to the other station supply source (this transfer is subject to other interlock and safety considerations being met). Either of the supply systems is capable of supporting normal power plant operations and any emergency power needs.

With the exception of very large motor loads, nearly all of the rotating equipment, system power supplies, and most of the engineered safeguard features are fed from the 480 V distribution system. The system is comprised of three double-ended load centers, each load center having three sections or buses, for a total of ni-480 VAC buses. Six of these buses are fed from the main 4160 V buses through transformers.

The third or island bus section of the load center can be fed from either of its main buses. Normally one end or the other of the load center is designated a "preferred" side for the purpose of balancing loads, especially those of a safeguard nature, between the separate power sources. The transformers are capable of supplying the power demands of both the main and the island buses in case of a failure of, or a power loss to, the other transformer. Motor Control Centers (MCCs) distribute the power throughout the plant. In addition, various other motors are fed directly from the buses. Most of the main system breakers, MCCs and other motors can be remotely operated, energized or otherwise controlled from one or more of several panels in the control room.

In the event of a complete loss of power at the source of the 480 V buses, equipment is protected from damage automatically by undervoltage devices that will remove them from the bus. In the event a safety injection accident signal is received, automatic load shedding of selected loads and the starting of engineered safeguards is initiated.

In addition to the above mentioned equipment, three of the 480 V buses provide power to one 125 VDC battery charger for the DC distribution system. The DC distribution system is intended to provide a non-interruptible source of power for plant control and instrumentation. It is further intended that it will provide this source of power for a minimum of eight hours without any power source. The system is comprised of two separate buses, powered by an AC-DC battery charger in parallel with a wet cell storage battery. A third battery charger that can be aligned to either bus acts as an installed spare.

The two buses cannot be connected together. The battery chargers normally maintain the system load while maintaining a slight trickle charge on the battery. Large load increases are absorbed by the battery until the load is again within the capacity of the battery charger.

There are a total of six instrument buses. All of these buses (A, B, C, D, 1, and 2 are fed from the 125 VDC system via their own 120 VAC inverters. Buses A and C, and B and D, can be tied together with an alarmed tie breaker which is used only when a bus power

supply is down for maintenance. The four primary buses, A through D, are normally operated independently as they make up one of the trip paths to the reactor protection logic circuits.

The individual loads on each bus are modeled within the applicable system model.

Instructor Overrides (LOAs) are provided for breakers for all equipment operated from the control panels, as well as for some important loads that are not. LOAs are provided for operation of transfer switches for station lighting, breaker control power, diesel generator auxiliaries, rod control cabinet 480 V supply, and the inverter static switches.

Some buses are modeled with loads computed, but without the individual loads being explicitly modeled. An example of this would be an instrument bus.

Overcurrent trips are computed by the Breaker Overcurrent Routine, and the output from this routine is sent to the various 86 relays for breaker trips.

Malfunctions for bus faults are provided for all major buses.

Components and Functions Simulated Elsewhere

and 345 KV components are modeled within the Switchyard (SWD) model.

Main generator output and 22 KV components are modeled within the Generator (GEN) model.

Synchronizing equipment and switches are modeled within the Synchronizer (SYN) model.

13.8 KV components are modeled within the Switchyard (SWD) model. Components and Functions Not Simulated

Motor Control Centers 4A3 and 3C3 are not modeled.

The computer inverters are not modeled.

Ground protection relays are not modeled.

Loads that are nonessential (such as hoisting equipment) are not modeled.

Switchvard System Functional Description

Description of Simulated System

The Switchyard System (SWD) basically models the grid system and its interfaces with the plant electrical system. The Switchyard System consists of the two main auxiliary transformers (TIA-1 and -2) and the two main house service transformers (TIA-3 and - 4); their associated disconnect switches (DS-TIA-1, -2, -3, and -4); the 161 KV bus and 345 KV busses; the associated grid breakers (3451-2, -4, -5, -6, and 111); the grid disconnect switches (MOD-4E and -5W); and the 13.8 KV feed to the 480 V system. The main generator transformer T1 is also included in this system.

The plant's electrical output is supplied at 22 KV to the output transformer T1 where it is stepped up to 345 KV for transmission to the OPPD power distribution grid. In addition to the 22 KV supply to T1, a bus taps off between the generator disconnect switch and T1 to supply the unit auxiliary transformers (T1A-1 and T1A-2) through a set of manually operated disconnect switches (DS-T1A-1 and DS-T1A-2).

While the unit does not have an output breaker as such, the breakers 3451-4 and 3451-5 are part of a ring bus in the substation. Breakers 3451-2 and 3451-6 are also part of the ring bus and are normally operated locally. Three high voltage transmission lines connect the onsite switchyard to Omaha, Lincoln, and Sioux City. Each of the three 345 KV lines has sufficient capacity to carry the station's output.

The 161 KV grid supplies the house service transformers (T1A-3 and T1A-4) through breaker 111. Each of these transformers also has its own motor operated disconnect switch (DS-T1A-3 and DS-T1A-4).

The four 4160 V transformers that provide power for plant services are the unit auxiliary transformers T1A-1 and T1A-2 and the house service transformers T1A-3 and T1A-4. The transformers are, except for primary voltages, essentially identical. Either pair of transformers is capable of providing one needs of the plant during operation. The transformers are monitored and controlled from the control room. Once placed in service, the transformers are basically passive devices, and do not need any operator action to meet changing load conditions.

The unit auxiliary transformer disconnect switches are operated locally, and have indicating lights in the control room. There are no electrical interlocks associated with these switches.

However, the disconnects cannot be operated until their respective 4160 V breakers have been opened, racked down, and interlock keys removed and placed in the control boxes for the disconnect switches. The house service transformer disconnect switches, even though they are motor operated, are locally operated also. There are no electrical interlocks for these switches, either; they are prevented only by procedure from being opened under load.

During plant shutdown, the 22 KV bus is normally supplied from the 345 KV grid by feeding back through T1. While this is not, in the true sense, a source of emergency power, it does provide power when the turbine is not available. Due to operational and interlock considerations, it is not an immediately available source of power. If there is a problem with either the 345 KV or 22 KV system, the source may not be available at all.

The back feed is normally accomplished by opening the generator output disconnect switch DS-T1. As this switch is not designed to be a current interrupting device, the generator must be off-line and the 345 KV substation breakers must be open prior to opening the switch. In the event that the plant suffers a total loss of AC power, the plant can be maintained in a standby condition by way of a 13.8 KV to 480 V transformer supplying 480 V bus 1B3C. This feeder is supplied from the 161 KV grid before the substation supply breaker to the plant. Its capacity is limited to approximately 300 amps at 480 VAC, and is only intended to provide the bare essentials to maintain the plant in a stable standby condition until the other power sources can be reestablished.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The main generator, together with disconnect DS-T1 and its associated interlocks, is modeled in the Main Generator model (GEN).

Inplant electrical distribution is modeled in the Electrical Distribution model (EDS).

Synchronizing is performed in the Synchronizer model (SYN).

The characteristics of each line of the grid, and overall grid frequency, can be set by the instructor via External Parameters.

Isolated phase bus duct cooling is modeled in the Turbine Generator Auxiliaries model (TGA).

Components and Functions Not Simulated

Disconnect switches MOD-4E and -5W are not explicitly simulated.

Grounding relays are not simulated.

Synch: onizing System Functional Description

Description of Simulated System

The synchronizing system consists of all of the synch switches as well as the synchroscope, incoming voltmeter, incoming frequency meter, running voltmeter, and running frequency meter. It also includes the synchronizing relays for breakers 3451-4 and 3451-5, and breaker 111.

The synch switches serve to provide the logic necessary to determine which buses feed the incoming and running voltage and frequency circuits. These circuits drive the synchroscope with its fast and slow lights. Any breaker closure permissives that require synchronization are supplied from this system. They also serve to feed the incoming and running voltage and frequency meters.

The synchronizing system also serves to provide the fast transfer block signal on underfrequency or excessive phase angle. Within the limitations of a simulated synchronizing system, the determination of excessive phase angle is an output taken from the synchroscope itself, as the mathematical modeling does not take into account phase angle in a single phase model.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model. 23

Generator underfrequency is modeled in the Generator model (GEN).

Components and Functions Not Simulated

Phase angle is not simulated.

Synchronizing relays are not accurately modeled. The determination of phase is derived from the synchroscope driver.

Diesel Sequencing System Functional Description

Description of Simulated System

The D-G Sequencing System (DSQ) consists of four panels, two associated with D1 and two associated with D2. One panel of each channel contains the AC timers, and the other the DC timers. The panels of each channel are functionally redundant to each other.

The D-G Sequencing System functions to sequentially load Safeguards loads onto the Safeguards Busses following the receipt of a Safeguards actuation signal or manually initiated test signals. The main components of each panel are the sequencer timers, keyed switches for enabling or disabling auto-start of the Safeguards components, and the status lights for each component. Each panel is equipped with devices and circuits for automatic or manual initiation, control, supervision, and testing of the sequencers.

Upon initiation, either from a Safeguards signal or a manual test signal, the 86 relay for the applicable sequencer will trip, sending a signal to each timer to start timing.

When each timer reaches its specified time setting, it in turn sends a signal to its associated component to start. If at any time during or after this process the voltage of Safeguard Bus 1A3 or 1A4 is lost, the associated sequencer timers will de-energize and reset. When power is restored, the timers will time-out, re-sequencing the loads on the bus.

With minor exceptions, the D-G Sequencing System has no function during normal operation, and will operate only in the event of an accident or when under test.

Cross connections between the channels are held to the unavoidable minimum, and such connections are buffered and arranged to prevent communication of faults.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Components and Functions Not Simulated

The DC sequencer timers (magastats) are not physically functional; their timing function is performed with software.

Bearing Cooling Water System Functional Description

Description of Simulated System

The Bearing Cooling Water (BCW) System is a closed loop, temperature controlled circulating water system utilizing two electrically driven centrifugal pumps to circulate clean, treated water to the following components:

Turbine bearing oil coolers Feedwater pump lube oil coolers Feedwater pump seal coolers Condenser vacuum pump sealing water coolers Air compressor inter and after coolers Hydraulic oil coolers on the turbine power unit Heater drain pump coolers Condensate pump upper bearing oil coolers Main generator alternator cooler Isolated phase bus duct cooler

With the exception of the isolated phase bus duct cooler and the turbine bearing oil coolers, these components are simulated as lumped heat loads to the BCW System.

A three-way control valve regulates flow through or around the bearing water heat exchangers to maintain the outlet temperature at the desired setpoint.

A backup supply of cooling water (from the potable water system) is available to the air compressors, in the event of a failure of the BCW System.

Components and Functions Simulated (lsewher

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Components and Functions Not Simulated

The following components are not simulated in the BCW system:

Secondary sampling center cooler Air drier cooling unit Chemical mixing tank BCW water chemistry is not simulated

Turbine Generator Auxiliaries System Functional Description

Description of Simulated System

The Turbine Generator Auxiliaries (TGA), as defined for the Fort Calhoun Simulator, is divided into four subsystems. These are:

The generator gas control system The shaft seal oil system The stator cooling water system The isolated phase bus duct cooling system.

In the main generator, hydrogen gas is used to transfer heat produced within the generator windings to four condensate-cooled hydrogen cooling coils mounted within the generator casing. The hydrogen gas is circulated by a single generator generator and driven by the generator rotor.

Hydrogen, despite its flammability/explosive hazard, is used due to its superior heat conduction capacity and low viscous drag. In order to safely permit maintenance to be performed on the machine, the hydrogen gas must first be exchanged with an inert gas (carbon dioxide), which is then exchanged with air. This prevents the formation of explosive hydrogen-oxygen mixtures within the generator casing. The procedure is reversed when preparing the generator for operation. The generator gas control system provides the means for establishing and maintaining the proper gas concentration in the generator as required by the plant condition, and for safely venting hydrogen outside of the turbine building.

The shaft seal oil system is used to seal the openings in the main generator casing where the shaft passes through in order to prevent the internal hydrogen gas from escaping (or oxygen from entering). In a manner analogous to the turbine shaft steam seal system, oil is pumped to the midpoint of each seal. Part of it flows outward along the shaft, preventing oxygen from entering, while part of it flows inward, preventing hydrogen from escaping.

Appropriately located drains collect the oil and return it to the system for reuse. The split includes the necessary pumps, reservoir, piping, and a vacuum tank (for removing dissolved gasses from the oil). A makeup/backup supply of oil is available from the Main Turbine Lubricating Oil System (TLO).

The stator cooling water system is a closed-loop cooling system consisting of two pumps, two main exchangers, various cooling coils, and interconnecting piping, which removes heat from the generator stator and the rectifier/exciter assembly and rejects it to the Condensate System (CFW). A regulator maintains the pressure of the cooling water to the generator at 3 psi below the pressure of the generator hydrogen gas.

The isolated phase bus duct cooling system provides cooling air to the bussing that physically connects the generator's output to the main output transformer.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The steam seal system is modeled in the Main Turbine System (TUR).

Components and Functions Not Simulated

Stator cooling water chemistry, including the demineralizers and filters, is not modeled.

The hydrogen and carbon dioxide gas bottles used to supply gas to the generator gas control system are not modeled.

The supply gasses are modeled as infinite supplies at pressures can be set by the instructor via LOAs.

The generator seal oil filters are not modeled.

Fire Protection System Functional Description

Description of Simulated System

The simulated Fire Protection System (FPS) consists of a motor-driven jockey pump for pressurizing the system; a motor-driven fire pump; a diesel-engine-driven fire pump; sprinkler systems serving the turbine building, the turbine building offices, and the AFW Pump Room; deluge valves serving the five main transformers, the diesel generator rooms, Room 19, the auxiliary building stairwell, the auxiliary building hatchway, and the TSC charcoal filter; and interconnecting piping and necessary instrumentation.

Interconnections from the fire main to raw water (to service the CCW heat exchangers), and to the AFW storage tank (for makeup) are also simulated.

Components and Functions Simulated Elsewhere

Control logic for the components that are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Components and Functions Not Simulated

Fire detection, monitoring, and indication are not modeled.

The halon fire suppression systems are not modeled.

Secondary effects of water suppression system actuation are not modeled.

The pneumatic portions of the dry-pipe deluge systems are not modeled.

Miscellaneous Yard hydrants, hose reels, and suppression systems not mentioned above are not modeled.

Reactor Regulating System Functional Description

Description of Simulated System

The simulated Reactor Regulating System implements portions of several discrete control systems utilized in the control and operation of the power plant. Each of these control systems is made up of both digital logic controls and analog process controls. In order to generate the proper outputs to effect the desired process control, the control networks receive process information from the associated models and control information from switches and controllers mounted on the control panels. The RRS model primarily performs preprocessing on the control signals, then passes its outputs to the respective handlers.

The systems simulated include:

Rod Control - RRS evaluates the status of power supplies, interlocks, and switch positions to determine a rod motion demand signal for each Control Element Assembly (CEA). It also drives the CEA status lights.

Tave Control - RRS computes both reference and actual Tave based on plant operating conditions.

Pressurizer Pressure Control - RRS computes the analog spray valve position and variable heater output signals, and sums the total heater output.

Low Temperature Overpressure Protection (LTOP) - RRS computes the setpoint temperatures and pressures based on current plant conditions.

Pressurizer Level Control - RRS computes the reference level signals, level deviation signals, and letdown flow control valve demand signals.

Steam Dump/Bypass Control - RRS performs all of the logical and analog computations necessary to correctly position the steam dump/bypass valves.

Steam Generator Level Control - RRS preprocesses the inputs to the feedwater flow control network; it density compensates the steam flow signal, generates the steam flow/feed flow mismatch signal, and normalizes the signal for use by the Controller Handler. It also implements the malfunctions of the logical control signals.

Reactor Makeup Control - RRS scales the flow deviation setpoint data for use by the bistable handler.

Components and Functions Simulated Elsewhere

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Signals to components affected by this model which implement engineered safeguards features are generated in the Engineered Safeguards Features model (ESF).

This model only computes CEA motion demand signals; actual rod movement and CEA positions are simulated in the Control Rod Drive model (CRD).

Reactor protection and trip signals are computed in the Reactor Protective System model (RPS).

Components and Functions Not Simulated

No signals for automatic rod control are computed, as the circuitry is disconnected at the plant. The in/balance/out lights are not dynamically driven; they can be set by the instructor using overrides.

Reactor Protection System Functional Description

Description of Simulated System

The Reactor Protection System (RPS) consists of the following:

Trip units Coincidence logic matrices Clutch power trip circuits Power supplies RPS testing system Thermal Margin/Low Pressure Trip (TM/LP) calculator Variable Over Power Trip (VOPT) calculator Axial Power Distribution (APD) calculator Axial Power Distribution (APD) calculator Asymmetric Steam Generator Transient (ASGT) calculator Auxiliary logic RPS Calibration and Indiction Panel (RPSCIF) Diverse scram trip logic

The four trip unit birs, each consisting of twelve trip units, monitor the NSSS prote tive parameters and input to the coincidence logic matrix if a trip setpoint has been exceeded.

The six coincidence logic matrices perform two-out-of-four logic and send a signal to the clutch power supply trip circuits. The clutch power supply trip circuits interrupt AC power to the clutch power supplies when a protective signal exists. This will cause a reactor trip.

The power supplies provide power to all the systems listed above and to the RPS testing system.

The RPS testing system allows periodic testing of the complete Reactor Protective System with the reactor operating at power or shutdown. The TM/LP Calculator provides for plant protection in the event of a loss of coolant accident, and also prevents operation when the DNBR is less than 1.18.

The VOPT Calculator (Variable Over Power Trip) provides an operator-adjustable high power level trip.

The APD Calculator provides a trip signal to ensure that excessive axial peaking caused by xenon oscillations or CEA movement will not cause fuel damage.

The ASGT Calculator provides a trip signal on an excessive difference between steam generator pressures to protect against the loss of heat removal capability from the primary system.

The four Auxiliary Logic Assemblies house auxiliary relays to provide for automatic bypass and automatic bypass removal, and also house the two-out-of-four logic networks to provide control signals for the pressurizer power-operated relief valve.

The four Reactor Protective System Calibration and Indication Panels provide a means of calibrating the trip and pre-trip setpoints of the bistable trip units, output of the high power bistable trip units, Delta T Power reference signal, and the Delta T cold signal. The RPSCIPs also provide an accurate readout of selected signal parameters in the RPS.

The Diverse Scram Trip Logic provides for reactor shutdown in the event that two out of four pressurizer pressure bistables trip on high pressure to prevent harmful thermal and hydraulic pressures from damaging the primary system. All of the logic of the RPS will be fully simulated. Full simulation of all front panel instrumentation and controls will be provided utilizing standard simulator I/O hardware. This will include the responses to adjustments of the front panel controls during testing or calibration. The test system will be simulated by incorporating additional test switch contacts wired to the trip test cable jacks.

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards, is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The decimal points on the RPSCIP DVMs are controlled by the meter input selector switch, not by software.

Components and Functions Not Simulated

The internals of the Reactor Protection System cabinets are not simulated.

Engineered Safeguards System Functional Description

Description of Simulated System

The Engineered Safeguards System functions to actuate Safeguards and essential support systems automatically. Means for manual operation are also provided. The system includes control devices and circuits for automatic or manual initiation, control, supervision, and manual test of the Engineered Safeguards components described in the appropriate section of other DBDs.

With minor exceptions, the safeguards control system has no function during normal operations and ill operate only in the event of an accident during or after plant shutdown, or when under test.

The control system consists of two independent, functionally redundant systems called the "A" and "B" Train. Cross connections between the systems are held to the unavoidable minimum, and such connections are buffered and arranged to prevent communication of faults. In each system, the logic basis for initiation signals is two-out-of-four, with the exception of Containment Radiation high, which is one-out-of-five. Each train has both a "primary" and a "derived" signal, the latter being supplied from the redundant train through a Derived Signal Cut-off Switch.

A brief description of the individual ESF signals follows:

The Containment Pressure High Signal (CPHS) is sensed by eight pressure switches that measure containment pressure. The signals are split, four switches for each train.

The Pressurizer Pressure Low Signal (PPLS) is sensed by four channels measuring pressurizer pressure. The signal is doubled by relays to give the necessary two-out-of-four logic to each train.
The Containment Radiation High Signal (CRHS) is sensed by five radiation monitors, two measuring containment activity, and three measuring stack activity. This signal is split by relays to provide a one-out-of-five logic to each train.

The Storage Tank Low Signal (STLS) is sensed by eight level channels that measure the Safety Injection and Refueling Water Storage Tank (SIRWT) level.

The Steam Generator Low Signal (SGLS) is sensed by eight pressure channels, four for "A" steam generator and four for "B" steam generator.

The Steam Generator Isolation Signal (SGIS) is initiated by either the SGLS or the CPHS.

The Containment Isolation Actuation Signal (CIAS) is initiated by either the CPHS or the PPLS.

The Safety Injection Actuation Signal (SIAS) is initiated by either the CPHS or the PPLS.

The Containment Spray Actuation System (CSAS) is actuated by signals from PPLS and CPHS in combination.

The Ventilation Isolation Actuation Signal ("IAS) is actuated by either CRHS, CSAS, or Si'S.

The Recirculation Actuation Signal (RAS) is actuated by STLS in combination with either PPLS or CPHS.

The Auxiliary Feedwater Actuation Signal (AFAS) is actuated by low steam generator water leve? ith permissives determined from steam generator differential pressures.

The Offsite Power Low Signal (OPLS) is generated by the measurement of low voltages in combination with an SIAS. The 4160 VAC distribution system is isolated from the grid on receipt of this signal.

The 480 VAC Load Shed signal is generated by the SIAS and serves to strip nonessential loads from the 480 VAC distribution system.

Components and Functions Simulated Elsewhere

The individual components which receive ESF signals are modeled in their respective system.

Control logic for the components affected by signals generated by this model is implemented in the component's respective handler.

The diesel generators are modeled in the Diesel Generator model (DSG).

The safeguards sequencers are modeled in the Diesel Sequencers model (DSQ).

Components and Functions Not Simulated

Test switches, jumpers, and plugs utilized in panels not simulated are not modeled. These include, but are not limited to, AI-196, AI-197, AI-198, and AI-199.

Auto Load Shed Test Switch functions are not modeled.

The override test switches for the OPLS lockout relays are not modeled.

Nuclear Instrumentation System Functional Description

Description of Simulated System

The Nuclear Instrumentation System (NIS), utilizes ten excore detectors which measure flux leakage outside of the reactor vessel. These detectors are designated the Wide-Range Logarithmic Channels, Linear Power-Range Safety Channels, and the Linear Power-Range Control Channels

Wide-Range Logarithmic Channels

Each of the four wide-range logarithmic channels performs the following functions:

Provides flux level indication

Supplies a Start-Up Rate (SUR) signal to the Reactor Protective System (RPS) for the high-SUR reactor trip

Generates protective interlocks to automatically unblock (and block) reactor protective functions

Provides a signal that can be selected as the input to a common audio count- rate circuit

The wide-range detector consists of two fission chambers: wide-range (shielded, measuring 10 decades of neutron flux), and extended-range (unshielded, extending the range downward an additional two decades).

In the extended range, the signals from both chambers are gamma-discriminated and summed. Above the extended range, only the undiscriminated signal from the wide-range chamber is used. The transition into and out of the extended range produces a discontinuity in the indication. The same wide-range (or extended-range) detector signal is processed independently by two parallel circuits: log count-rate (covering the lower 7 decades); and log Campbell (covering the upper 5).

The count-rate circuit's output is proportional to the logarithm of 1/2 of the discriminated pulse count-rate. The Campbell circuit's output is proportional to the logarithm of the rms value of the detector signal. Above a certain power level, the count-rate signal is clamped at a preset maximum value. Below that same power level, the Campbell signal is biased off. The all- electronic transition between counting and campbelling is smooth and continuous.

The count-rate and Campbell signals are summed to produce the wide-range channel signal, which is applied to a rate amplifier (SUR) and various indications, bistables, and alarms.

An audible count rate is developed by taking a signal from the count-rate circuit and processing it through an audio rate scaler and amplifier.

Indications and alarms are provided at the alternate shutdown panel by feeding two signals from the wide-range channel D detector to a dedicated signal processor. The extended-range (unshielded) chamber signal is processed by a log power-range circuit, which is equivalent to the count-rate and Campbell circuits of the channel drawer. The summed output of both fission chambers is processed by a source-rang: circuit, which is equivalent to just the count-rate circuit of the channel drawer. The source-range and log power-range signals are processed independently and displayed separately. Linear Power-Range Safety Channels

Each of the four linear power-range safety channels performs the following functions:

Provides indication

Supplies linear channel and subchannel power signals to the RPS for various reactor protective functions

Generates protective interlocks to automatically unblock (and block) reactor protective functions

The linear power-range detectors are dual-section uncompensated ion chambers. Each detector consists of two long chambers, upper and lower. Each chamber's signal is processed independently by its own associated subchannel: A, lower chamber or B, upper chamber. Deviation (upper minus lower) between the two subchannel signals is measured and forwarded to RPS. Each subchannel separately performs the following functions: amplification, indication, and comparison (individual subchannel compared to average subchannel).

The individual subchannel signals are summed and averaged to produce the channel signal [(U+L)/2]. The channel signal is applied to a negative-rate circuit (for dropped rod protection), a comparator averager (to obtain the average subchannel signal), and to various indications, bistables, and alarms.

Linear Power-Range Control Channels

The only function of the two linear power-range control channels is to provide indication.

The detectors and electronics drawers of the power-range control channels are identical to those of the power-range safety channels.

The NIS system also provides inputs to the Emergency Response Facility Computer System (ERFCS).

Components and Functions Simulated Elsewhere

Control logic for the components which are operable from the control boards is implemented in the various handlers.

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

The actual neutron flux signals are computed by the Reactor Core model (RXC).

Components and Functions Not Simulated

The remote count-rate speaker (located in containment) and its associated volume control adjustment (located on AI-31E/CN1) are not simulated. NM-004, the optical isolator for WR log channel D signals to the alternate shutdown panel, is not simulated.

The A+B/2 switch located inside the linear power-range drawer (normally left in the A+B/2 position) is not simulated.

The X1/X10 range (sensitivity) switch located inside the power-range drawer (hardwired in the X1 position) is not simulated.

The remote indicators for the power-range control channels (RI-003 and RI-004) and the associated X1/X10 scale indicating lights located at AI-4A and AI-4B are not simulated.

Incore Instrumentation System Functional Description

Description of Simulated System

The Incore Instrumentation System is used to provide indication of core flux, which is used to analyze and verify the core flux limits. It is also used to monitor the temperature of the reactor coolant exiting the core. The Incore Detector System consists of 28 instrumented incore assemblies installed within the reactor core which provide inputs to the ERF computer and the QSPDS.

The incore instruments are used to:

Verify that the radial peaking factors $(F_{XY}^T \text{ and } F_R^T)$ are less than the limits specified in the Technical Specifications.

Provide flux related signals which are compared to alarm levels set into the plant computer (which generates alarms if the power density (kW/ft) margins are exceeded in the core) and used as inputs to an offsite computer which calculates the power density (kW/ft).

Determine the axial shape index for periodic verification of the calibration of the Excore Detector System.

Determine the steady-state axial and radial neutron flux distribution in the core, in addition to a determination of flux tilts.

Provide data on which to estimate fuel burnup.

Provide average core temperature indication for no flow conditions, or local core temperatures.

All of the incore assemblies contain a string of four rhodium detectors and a thermocouple. Axially, the four rhodium detectors in each incore assembly are positioned such that their centerlines coincide with 20, 40, 60, and 80 percent of core height when the assembly is inserted into the core, i.e., detector 1 in each string is the bottom detector at the 20 percent height, detector 2 is at the 40 percent height, etc. The individual detectors are 40 cm in length, and the entire string terminates with a core exit thermocouple at the top of the core. Radially, the 28 incore detector assemblies are located assymmetrically. The detector assemblies are located such that, at full power operation, sufficient data is obtained to give an understanding of how the neutron flux in the core is distributed.

This detector arrangement has been selected such that, in view of the 1/8 core symmetry, every type of fuel assembly not occupied by a CEA (Control Element Assembly) is instrumented at least once. In addition, no incore detector assemblies have been placed in peripheral fuel assemblies near the coolant nozzles.

The incore detector signals feed the ERF computer and are monitored and alarmed in the control room on the alarm printer. The core exit thermocouples feed the QSPDS, and are then transferred to the ERF computer for display in the control room.

The data from both the thermocouples and the incore detectors can be printed out periodically or on demand.

The incore instrumentation model computes the X-Y flux profiles in the core, based on the Z-axis flux distribution computed by the Reactor Core model (RXC).

Components and Functions Simulated Elsewhere

Signals representing process information transmitted via instrument loops are generated by the Instrument Channel Handler based on data received from this model.

Analyses of the incore detector data are not performed in this model, but by the ERFCS computer system.

Analyses of the core exit thermocouple data are performed by the QSPDS.

The Heated Junction Thermocouple outputs are computed in the RCS model.

Components and Functions Not Simulated

There are no background or vanadium detector flux signals simulated.

Radiation Monitoring System Functional Description

Description of Simulated System

The Radiation Monitoring System (RMS), as defined for the Fort Calhoun simulator, performs the following functions:

Computes activity levels throughout the plant

Simulates the various activity sensors

Displays information on the RMS panels

Processes inputs received from the RMS panels

The activity levels are computed based on known source levels (e.g., fuel element failure) and transport times. The transport times are derived from the fluid system flow rates computed by the individual models. Reduction of activity due to species decay over time is also accounted for, as is removal by filtration or discharge to the external environment.

The system consists of 19 process monitor channels, 22 area monitor channels, and associated detectors, filters, and sampling pumps. These can be broken up into three general categories based on the functionality of the display unit, as described below.

942A UNIVERSAL DIGITAL RATEMETER

The Victoreen model 942A UDR is a micro rocessor-based display unit used for all of the process monitors (RM-050 through RM-064, non-consecutively). It performs as follows:

Power Up

When the UDR is powered up, the bar graph will display 10E7 for one second, and the digital display will read 0.00E0 CPM for seven seconds. Following the seven second period the display will indicate the current count rate and any alarm conditions.

Display Update

All of the front panel displays and indicators update or change state at one second intervals, with some exceptions that will be discussed later. For example, if the Warn Alarm light is blinking, it blinks at a one second frequency; or if the Alarm Ack push-button is depressed immediately following a display update, the Warn light will not stop blinking until the next one-second update.

The exception to this occurs when the count rate falls below the Target Counts selected for the desired accuracy level. Under these conditions the CPM value will only be updated at one minute intervals.

CPM Calculation

As mentioned in the immediately preceding section, the digital display is updated at one second intervals. However, the indicated count rate is not a CPM value calculated from a one second sample. The UDR maintains a history of the last sixty one-second count rates; it also maintains a history of the last twenty one-minute counts. When the CPM display is updated, the total counts from the previous fifty-nine one-second counts are summed with the most recent one-second count. This value is then displayed as the CPM value. The end result is that, if the process signal changes, it will take sixty seconds for the UDR to accurately display the new process value.

However, if the current sixty-second sum value is not greater than the selected Target Counts value, the UDR calculates the CPM value by adding the stored one-minute sums to the current value until the Target Counts value is exceeded. The CPM rate is then computed as this total divided by the number of one-minute values summed.

Warn Alarm

When the input exceeds the warning alarm setpoint value, the Warn light will start flashing (amber in color), and the bar graph color will change to amber. The Warn light will continue to flash and the bar graph will remain amber in color until the Alarm Ack push-button is depressed (even if the input drops below the setpoint). At that time, the Warn light will come on solid. Once the input signal decreases below the setpoint value, the Warn light will go off, and the bar graph color will return to green.

High Alarm

When the input exceeds the high alarm setpoint value, the High light will start flashing (red in color), and the bar graph color will change to red. The High light will continue to flash and the bar graph will remain red in color until the Alarm Ack push-button is depressed (even if the input drops below the setpoint). At that time, the High light will come on solid. Once the input signal decreases below the setpoint value, the High light will go off, and the bar graph color will change to amber (or green).

Rate Alarm

When the input exceeds the rate alarm setpoint value, the Rate light will start flashing (red in color) and the bar graph color will change to red. The Rate light will continue to flash and the bar graph will remain red in color until the Alarm Ack push-button is depressed (even if the input drops below the setpoint). At that time, the Rate light will come on solid. Once the input signal decreases below the setpoint value, the Rate light will go off, and the bar graph color will change to amber (or green).

Range Alarm

If the input falls below 10 CPM the Range light will come on red in color and stay on until the count rate exceeds 10 CPM. If the input exceeds the over-range setpoint the Range light will come on red in color and the bar graph will go full scale. Note that the bar graph goes full scale even if the over-range setpoint is less than 10E7. The digital display will display EEEEE CPM. When the counts decrease to a value less than the over-range setpoint, the UDR will remain in the above state until the power is turned off and then back on.

Fail Alarm

If the UDR receives zero counts for five minutes, the Fail light will come on and stay on. If the input exceeds the High Count Rate Threshold, the display will show EEEEE CPM, the fail light will come on and stay on, the bar graph will go full scale, and the anti-jam fuse will blow, disabling the high voltage power supply. The UDR will remain in this state until the input decreases to below the setpoint, the UDR is turned off, and the anti-jam fuse is replaced (via an LOA). All alarm functions are inhibited while the UDR is in the fail state.

High ' ltage Push-button

The value of the high voltage will be displayed on the digital display during the next display update after the button is depressed. Note that the bar graph is still active when the high voltage value is being displayed.

High Alarm Push-button

The setpoint of the high alarm will be displayed on the digital display during the next display update after the button is depressed.

Warn Alarm Push-button

The setpoint of the warning alarm will be displayed on the digital display during the next display update after the button is depressed.

High Rate Push-button

The setpoint of the high rate alarm will be displayed on the digital display during the next display update after the button is depressed.

Check Source Push-button

The Check Source push-button must be held depressed for the check source to remain active. When the Check Source push-button is depressed and held depressed the following will occur; one second after the push-Lutton is depressed the Check Source green light will come on; two seconds after depressing the push-button the display indicates 0.00E0 CPM, the Range light will come on, and the bar graph will go blank; three seconds after the push-button is depressed the display will show the check source value, the range light goes off, and the bar graph is active.

When the Check Source button is released, the following will occur: one second after the push-button is released the Check Source green light will go off; two seconds after releasing the push-button the display will indicate 0.00E0 CPM, the range light will come on, and the bar graph will go blank; three seconds after the push-button is released the display will show the process value, the range light goes off, and the bar graph is active.

Bar Graph Increments

The bar graph segments (three per oecade), will be turned on in the following manner. When the current decade's indication reaches 2.5 the first segment will light. When the current decade's indication reaches 5.5 the second segment will light. The third segment lights when the current decade's indication reaches 8.5.

946A UNIVERSAL DIGITAL RATEMETER

The Victoreen model 946A UDR is a microprocessor-based display unit used for most of the area monitors (RM-070 through RM-089). It performs as follows:

Power Up

When the UDR is powered up, the bar graph will be blank, the Range light will be on (red), and the digital display will read 0.00E0 MR/HR for four seconds. Following the fractional period the display will indicate 5.46 R/H and start to ramp to the current process value. It takes approximately two and a half minutes to reach the process value.

Display Scaling

The display will change format as the process signal moves from one decade to the next. As the format changes, specific digits are blanked out on the display. (Throughout this discussion, the letter "B" in a display example indicates that the digit is blanked.) The display format for each decade is as follows:

0.1 - .999 mR/hr BB.NNN MR/HR 1.0 - 9.99 mR/hr BN.NNB MR/HR 10.0 - 99.9 mR/hr NN.NBB MR/HR

0.1 - .999 R/hr BB.NNN R/HR 1.0 - 9.99 R/hr BN.NNB R/HR 10.0 - 99.9 R/hr NN.NBB R/HR

0.1 - .999 KR/hr BB.NNN KR/HR 1.0 - 9.99 KR/hr BY.NNB KR/HR

Display Update

All of the front panel displays dicators update or change state at one second intervals, we coeptions that are discussed later. For example, if the marn alarm light is blinking, it blinks at a one second frequency, or if the Alarm Ack push-button is depressed immediately following a display update, the Warn light will not stop blinking.

Warn Alarm

When the input reaches the warning alarm setpoint, the Warn hight w. I nome on amber in color and the bar graph will change to amber. The Warn light will blink on and off in one second intervals until the Alarm Ack push-button is pushed.

After the Alarm Ack push-button is pushed, the Warn light will stop blinking but remain amber in color. Once the input falls below the warning alarm setpoint, the Warn light will turn off and the color of the bar graph will change to green. If the input falls below the setpoint without the operator pushing the Alarm Ack push-button, the bar graph will automatically change back to green, but the Warn light will continue to flash amber unti? the push-button is pushed. It will then go out.

High Alarm

When the input reaches the high alarm setpoint, the High light will come on red in color, and the bar graph will change to red. The High light will blink on and off in one second intervals until the Alarm Ack push-button is pushed. After the Alarm Ack push-button is pushed, the High light will stop blinking but remain red in color. Once the input falls below the high alarm setpoint, the High light will turn off and the bar graph will change to amber in color. If the input falls below the setpoint without the operator pushing the Alarm Ack push-button, the bar graph will automatically change back to amber, but the High light will continue to flash red until the push-button is pushed. It will then go out.

Range Alarm

If the input falls below 0.1 mR/hr, the Range light will come on red in color and stay on until the radiation level exceeds 0.1 mR/hr. While below 0.1 mR/hr, the display will indicate BB.000 MR/HR and the bar graph will be blank.

If the input exceeds 9.99 KR/hr, the Range light will come on red in color and stay on and the bar oph will go full scale. The digital display will display EEEEE MR/MR (no decimal point). When the activity decreases to a value less than 9.99 KR/hr, the UDR will automatically resume functioning in the normal mode.

Fail Alarm

The fail alarm will come on if the input is less than 0.1 mR/hr for five minutes. The Fail light will come on and stay on after the five minute period.

High Alarm Push-button

The setpoint of the high alarm will be displayed on the digital display during the next display update after the button is depressed. The format is N.NNEN (or N.NN-N) MR/HR.

Warn Alarm Push-button

The setpoint of the warning alarm will be displayed on the digital display during the next update after the button is depressed. The format is N.NNEN (or N.NN-N) MR/HR.

Check Source Push-button

The Check Source function will remain active once the push-button is depressed. It will automatically deactivate after ten minutes, or can be manually deactivated by depressing the Check Source push-button.

When the Check Source function is activated, the following will occur: one second after activation the Check Source green light will come on; three seconds after activation the display will increase by 5670 mR/hr. The bar graph also increases by the same value. When the Check Source function is deactivated, the green Check Source light will go out after one second. After four seconds, the indication returns to the current value.

Note that the Check Source Function will not activate if the process activity level exceeds 1 R/hr. Once this level is reached, it must decrease to less than 0.8 R/hr to re-enable the Check Source function.

Bar Graph Increments

The bar graph segments (three per decade) will be turned on in the following manner: when the current decade's indication reaches 2.5, the first segment will light; when the current decade's indication reaches 5.5, the second segment will light; and the third segment lights when the current decade's indication reaches 8.5. Response Time

The detectors used with the 946A UDRs have an inherent time lag which is dependent on the activity is all The response times for a change in readings within the decade are as follows:

0.1 - 0.999 mR/hr 80 seconds 1.0 - 9.99 mR/hr 32 seconds 10.0 - 99.9 mR/hr 16 seconds 0.1 - 0.999 R/hr 4 seconds 1.0 - 9.99 R/hr 2 seconds 10.0 - 99.9 R/hr .9 seconds

0.1 - 0.999 KR/hr .2 seconds 1.0 - 9.99 KR/hr .2 seconds

If the process activity step changes by a factor of 100, the response time is bypassed and the appropriate decade will be skipped.

876A-1 HIGH RANGE AREA MONITOR

Victoreen 876A-1 analog high range monitors are used for post-accident monitoring of containment (RM-091A and RM-091B).

Display Scaling

With the control selector switch in the "All" position, the unit provides direct readout of process activity over a range of seven decades (1 - 10E7 R/hr). Placing the control selector switch in any of the other five range positions presents the data on an expanded scale covering only the three decades corresponding to the selected switch position. Module Test

Placing the control selector switch in the "Test" position and depressing the Test push-button will cause the monitor's output to go full scale and light the blue Test light.

ECS Test

Depressing the ECS Test push-button will cause the monitor to read 10E3 R/hr for one second, then go to zero. The output to the recorder will be disabled while the push-button is depressed.

Alert Alarm

When the process activity exceeds the alert alarm setpoint, the amber Alert light will come on steady. Depressing the Fail/Reset button once the level has decreased to below the setpoint will clear the alarm. Holding the Fail/Reset push-button in while the activity is above the alarm setpoint disables the module alarm output.

High Alarm

When the process activity exceeds the high alarm setpoint, the red High light will come on steady. Depressing the Fail/Reset button once the level has decreased to below the setpoint will clear the alarm. Depressing and holding the Fail/Reset push-button while the activity is above the alarm setpoint will disable the alarm output from the module.

Fail Alarm

If the unit detects an internal failure, the green Fail light will go out.

Components and Functions Simulated Elsewhere

Control logic for the components affected by signals generated by this model is implemented in the component's respective handler.

Transport paths and transport delay times are determined by the individual thermohydraulic models.

Valves and other components that receive signals from this model are modeled in their respective thermohydraulic fluid system model.

Components and Functions Not Simulated

Explicit determination of the concentration of all individual radionuclides is not performed.

Since the iodine activity in the reactor coolant is explicitly known, the failed fuel analyzers (RM-214 and RM-214A) are not explicitly modeled.

The historical data for the 946A UDRs is not retained with the snapshot. During initialization, the historical data registers are packed with the current data.

APPENDIX 2.C

SYSTEM DESIGN DATA SUMMARY

é,

•

Document	Description	Source	GOL#
OPPD-120	Operating Manual Technical Lata Book, Volume 1	OPPD	
OSAR 86-18	Operations Safety Analysis Review	OPPD	
OSAR 86-19	Operations Safety Analysis Review	OPPD	
OSAR 86-19	Reactor Physics Safety Analysis Data, Cycle 11	OPPD	
OGAR 87-19	Operations Safety Analysis Review	OPPD	
OCAD 87-20	Operations Safety Analysis Review	OPPD	
OCAD 97-29	Operations Safety Analysis Review	OPPD	
OUTY CASE	OUIX Computer Code Output	OPPD	
CHP 22-26-5	Student Handbook - Reactor Coolant System	OPPD	
SHD 23-20-5	Student Handbook - Reactor Coolant System	OPPD	
5HD 25-20-0	Wide Range Logarithmic Channels	OPPD	
11405-5-31	Annunciator Schematics	OPPD	12266
1610561	Interconnection Diagram	OPPD	9476
C-22866-411-320	Pod Dron Test Panel Schematic	OPPD	1297
E-23866-411-520	Safety Injection and Containment Spray System	OPPD	1617
CHD 23-26-6	Student Handbook - Reactor Coolant System	OPPD	
11405-F-147	By Coolant Gas Vent System Schematic	OPPD	21140
11405-E-17	A 16 KV Switchgear Schematics	OPPD	12253
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-402	Post Accident Monitoring Panel AI-65A	OPPD	23655
11405-E-402	Post Accident Monitoring Panel AI-65B	OPPD	23658
11405-E-403	Post Accident Monitoring Panel AI-66A	OPPD	23592
11405-E-404	Post Accident Monitoring Panel AI-66B	OPPD	23591
11405-E-51	HCV Schematics Limit Sw Contacts	OPPD	12285
11405-E-51	Sampling N2 H2 & Air Systems S.C. & T.	OPPD	12293
11405-E-59	Instrument and Control Equipment List	OPPD	809
11405-EM-109	Instrument and Control Equipment List	OPPD	15290
11405-EM-12	Primary Plant Sampling System Flow Diagram	OPPD	10442
11405-M-12	Aux Elda & Contairment Instrument Air Diagram	OPPD	16292
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-204	Index/Day Sheet for Inst. Loop Diagrams	OPPD	7111
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	23651
13082331	Flomontary Diagram - Switch Development	OPPD	5711
13682432	Elementary Diagram - Switch Development	OPPD	5730
13682432	Elementary Diagram - Switch Development	OPPD	5754
13682432	Elementary Diagram - Switch Development		

Page 2 of 91

Document	Description	Source	GSE#
1010000	Electrical Control Valve & Pump Index	OPPD	9488
151F561	Interconnection Diagram	OPPD	9476
1611561	Interconnection Diagram	OPPD	9481
161F561	Interconnection Diagram	OPPD	9482
1611561	Interconnective Diagram	OPPD	0483
161F561	Interconnection Diagram	OPPD	9484
161F561	Interconnection Diagram	OPPD	9487
161F561	Interconnection Diagram	OPPD	9489
161F561	Interconnection Diagram	OPPD	9491
161F561	Interconnection Diagram	OPPD	9493
161F561	Interconnection Diagram	OPPD	9494
161F561	Interconnection Diagram	OPPD	9496
161F561	Interconnection Diagram	OPPD	9497
161F561	Interconnection Diagram	OPPD	9498
161F561	Interconnection Diagram	OPPD	9499
161F561	Interconnection Diagram	OPPD	9500
161F561	Interconnection Diagram	OPPD	9501
161F561	Interconnection Diagram	OPPD	9502
161F561	Interconnection Diagram	OPPD	9503
161F561	Interconnection Diagram	OPPD	9504
161F561	Interconnection Diagram	OPPD	9505
161F561	Interconnection Diagram	OPPD	9506
161F561	Interconnection Diagram	OPPD	9512
161F561	Interconnection Diagram	OPPD	9513
161F561	Interconnection Diagram	OPPD	9514
161F561	Interconnection Diagram	OPPD	9516
161F561	Interconnection Diagram	OPPD	9517
161F561	Interconnection Diagram	OPPD	9518
161F561	Interconnection Diagram	OPPD	9513
161F561	Interconnection Diagram	OPPD	21478
161F 51	Interconnection Diagram	OPPD	27780
161F:51	Interconnection Diagram	OPPD	9730
161F575	Elem. Diag Annunciator Schemes Al &A2	Westingh	01100
A4ENGR	Annunciator A-4 Engraving List	oppp	1250
B-23866-414-360	Schematic Diagram - Electro Pneumatic Throttle Valves	OPPD	1600
CD-009A	Loop Connection Diagram	OPPD	40010

Page 3 of 91

Document	Description	Source	CSE#
CD-009B	Loop Connection Diagram	GPPD	43067
CD-011C	Loop Connection Diagram	OPPD	43068
CD-011D	Loop Connection Diagram	OPPD	43069
CP-101X	PRESSURIZER LEVEL	OPPD	
CP-101Y	PRESSURIZER LEVEL	OPPD	
CP-103X	PRESSURIZER PRESSURE CHANNEL 103X	OPFD	
CP-103Y	PRESSURIZER PRESSURE CHANNEL 103Y	OPPD	
CP-105/123	PRESSURIZER PRESSURE WIDE RANGE CHANNEL B	OPPD	
CP-106	PRESSURIZER LEVEL	OPPD	
CP-107	PRESSURIZER VAPOR PHASE TEMPERATURE	OPPD	
CP-108	PRESSURIZER WATER PHASE TEMPERATURE	OPPD	
CP-109	RCS SPRAY AND SURGE LINE TEMPERATURE	OPPD	
CP-111C	REACTOR COOLANT LOOP 1 COLD LEG TEMPERATURE	OPPD	
CP-111H	REACTOR COOLANT LOOP 1 HOT LEG TEMPERATURE	OPPD	
CP-113/115	PRESSURIZER PRESSURE WIDE RANGE CHANNEL C	OPPD	
CP-118	PRESSURIZER PRESSURE SHUTDOWN COOLING INTERLOCKS	OPPD	
CP-120A	PRESSURIZER PRESSURE INPUT TO THE DSS CHANNEL A	OPPD	
CP-120B	PRESSURIZER PRESSURE INPUT TO THE DSS CHANNEL B	OPPD	
CP-120C	PRESSURIZER PRESSURE INPUT TO THE DSS CHANNEL C	OPPD	
CP-120D	PRESSURIZER PRESSURE INPUT TO THE DSS CHANNEL D	OPPD	
CP-121C	REACTOR COOLANT LOOP 2 COLD LEG TEMPERATURE	OPPD	
CP-121H	REACTER COOLANT LOOP 1 HOT LEG TEMPERATURE	OPPD	
CP-134	PRESSURIZER RELIEF AND SAFETY VALVE DISCHARGE TEMP	OPPD	
CP-135	PRESSURIZER RELIEF AND SAFETY VALVE DISCHARGE TEMP	OPPD	
CP-136	PRESSURIZER RELIEF AND SAFETY VALVE DISCHARGE TEMP	OPPD	
CP-136	RC-142 Tailpipe Temperature	OPPD	
CP-137	REACTOR COOLANT SPRAY AND SURGE LINE TEMPERATURE	OPPD	
CP-138	REACTOR COOLANT SPRAY AND SURGE LINE TEMPERATURE	OPPD	
CP-139	REACTOR VESSEL LEAKAGE PRESSURE SWITCH	OPPD	
CP-141/142	ACOUSTIC VALVE FLOW MONITOR	OPPD	
CP-182	REACTOR COOLANT GAS VENT PRESSURE	OPPD	
CP-197	REACTOR COOLANT SHUTDOWN LEVEL	OPPD	
CP-198	SPRAY VALVE SEAL LEAKAGE TEMPERATURE	OPPD	
CP-A/102	PRESSURIZER PRESSURE CHANNEL 102	OPPD	
CP-A/112C	REACTOR COOLANT LOOP 1 COLD LEG TEMPERATURE	OPPD	

OPPD REACTOR COOLANT LOOP 1 HOT LEG TEMPERATURE CP-A/112H OPPD REACTOR COOLANT FLOW RATE CP-A/114W OPPD REACTOR COOLANT FLOW RATE CP-A/114X OPPD REACTOR COOLANT FLOW RATE CP-A/114Y OPPD REACTOR COOLANT FLOW RATE CP-A/114Z OPPD REACTOR COOLANT LOOP 2 COLD LEG TEMPERATURE CF-A/122C OPPD REACTOR COOLANT LOOP 2 HOT LEG TEMPERATURE CP-A/122H OPPD STEAM GENERATOR B WIDE RANGE PRESSURE CP-B-122C OPPD PRESSURIZER PRESSURE CHANNEL 102 CP-B/102 REACTOR COOLANT LOOP 1 COLD LEG TEMPERATURE OPPD CP-B/112C OPPD REACTOR COOLANT LOOP 1 HOT LEG TEMPERATURE CP-B/112H OPPD REACTOR COOLANT FLOW RATE CP-B/114W OPPD REACTOR COOLANT FLOW RATE CP-B/114X OPPD REACTOR COOLANT FLOW RATE CP-B/114Y OPPD REACTOR COOLANT FLOW RATE CP-B/114Z OPPD REACTOR COOLANT LOOP 2 COLD LEG TEMPERATURE CP-B/122C OPPD REACTOR COOLANT LOOP 2 HOT LEG TEMPERATURE CP-B/122H OPPD PRESSURIZER PRESSURE CHANNEL 102 CP-C/102 OPPD REACTOR COOLANT LOOP 1 COLD LEG TEMPERATURE CP-C/112C REACTOR COOLANT LOOP 1 HOT LEG TEMPERATURE OPPD CP-C/112H OPPD REACTOR COOLANT FLOW RATE CP-C/114W OPPD REACTOR COOLANT FLOW RATE CP-C/114X OPPD REACTOR COOLANT FLOW RATE CP-C/114Y OPPD REACTOR COOLANT FLOW RATE CP-C/114Z OPPD REACTOR COOLANT LOOP 2 COLD LEG TEMPERATURE CP-C/122C OPPD REACTOR COOLANT LOOP 2 HOT LEG TEMPERATURE CP-C/122H OPPD PRESSURIZER PRESSURE CHANNEL 102 CP-D/102 OPPD TM/LP. SETPOINT SIGMA D/PIA-102X CP-D/102X OPPD REACTOR COOLANT LOOP 1 COLD LEG TEMPERATURE CP-D/112C OPPD REACTOR COOLANT LOOP 1 HOT LEG TEMPERATURE CP-D/112H OPPD REACTOR COOLANT FLOW RATE CP-D/114W OPPD OPPD

REACTOR COOLANT FLOW RATE CP-D/114X REACTOR COOLANT FLOW RATE CP-D/114Y REACTOR COOLANT FLOW RATE CP-D/114Z

REACTOR COOLANT LOOP . COLD LEG TEMPERATURE

Page 5 of 91

OPPD

OPPD

GSE#

Source

Description

Document

CP-D/122C

Document	Description	Source	GSE#
CP-D/122H	REACTOR COOLANT LOOP 2 HOT LEG TEMPERATURE	OPPD	
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	10473
CP-A/112H	REACTOR COOLANT LOOP 1 HOT LEG TEMPERATURE	OPPD	
CD-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45591
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45592
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45593
D-4078	Generator Condition Mcnitor Remote Panel Layout	OPPD	20663
D-4159	Schematic diagram solenoid operated valves	OPPD	37777
E-00000-422-224	QSPDS Wiring Diagram	OPPD	37521
E-232-471	QSPDS Wiring Diagram	OPPD	1450
E-232-542	QSPDS Wiring Diagram	OPPD	1483
E-23866-210-110	Reactor Coolant System	OPPD	10475
11405-E-17	4.16 KV Switchgear Schematics	OPPD	12253
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-32	Pzr Heater Wiring Diag	OPPD	12267
11405-FM-3101/31.8	Instrument and Control Equipment List	OPPD	21625
11405-EM-1121/3138	Instrument and Control Equipment List	OPPD	21628
11405-EM-3141/3158	Instrument and Control Equipment List	OPPD	21633
11405-EM-3161/3178	Instrument and Control Equipment List	OPPD	21635
11405-EM-3181/3192	Instrument and Control Equipment List	OPPD	21638
136B2340	4.16KV Controls & Elementary Diagram	OPPD	5521
136B2431	Elementary Diagram - Pumps and Valves	OPPD	5586
161F561	Interconnection Diagram	OPPD	9476
161F561	Interconnection Diagram	OPPD	9477
161F561	Interconnection Diagram	OPPD	9508
161F561	Interconnection Diagram	OPPD	9509
161F561	Interconnection Diagram	OPPD	9510
161F561	Inter onnection Diagram	OPPD	9511
161F561	Inter onnection Diagram	OPPD	9524
161F561	Interconnection Diagram	OPPD	9525
161F561	Interconnection Diagram	OPPD	9526
161F561	Interconnection Diagram	OPPD	9527
161F561	Interconnection Diagram	OPPD	22152
CP-3101	RC-3A UPPER OIL RESERVOIR LEVEL CHANNEL 3101	OPPD	
CP-3102	RC-3A LOWER OIL RESERVOIR LEVEL CHANNEL 3102	OPPD	

Document	Description	Source	GSE#
CP-3103	RC-3A GUIDE BEARING TEMPERATURE	OPPD	
CP-3104	RC-3A STATOR WINDING TEMPERATURE	OPPD	
CP-3105	RC-3A DOWNWARD THRUST BEARING TEMPERATURS	OPPD	
CP-3106	RC-3A UPWARD THRUST BEARING TEMPERATURE	OPPD	
CP-3107-1	RC-3A UPPER GUIDE BEARING TEMPERATURE	OPPD	
CP-3109	RC-3A OIL LIFT PERMISSIVE PRESSURE	OPPD	
CP-3121	RC-3B UPPER OIL RESERVOIR LEVEL CHANNEL 3121	OPPD	
CP-3122	RC-3B LOWER OIL RESERVOIR LEVEL CHANNEL 3122	OPPD	
CP-3123	RC-3B GUIDE BEARING TEMPERATURE	OPPD	
CP-3124	RC-3B STATOR WINDING TEMPERATURE	OPPD	
CP-3125	RC-3B DOWNWARD THRUST BEARING TEMPERATURE	OPPD	
CP-3126	RC-3B UPWARD THRUST BEARING TEMPERATURE	OPPD	
CP-3127	RC-3B UPPER GUIDE BEARING TEMPERATURE	OPPD	
CP-3129	RC-3B OIL LIFT PERMISSIVE PRESSURE	OPPD	
CP-3141	RC-3C UPPER OIL RESERVOIR LEVEL CHANNEL 3141	OPPD	
CP-3142	RC-3C LOWER RESERVOIR LEVEL CHANNEL 3142	OPPD	
CP-3143	RC-3C GUIDE BEARING TEMPERATURE	02PD	
CP-3144	RC-3C STATOR WINDING TEMPERATURE	OPPD	
CP-3145	RC-3C DOWNWARD THRUST BEARING TEMPERATURE	OPPD	
CP-3146	RC-3C UPWARD THRUST BEARING TEMPERATURE	OPPD	
CP-3147	RC-3C UPPER GUIDE BEARING TEMPERATURE	OPPD	
CP-3149	RC-3C OIL LIFT PERMISSIVE PRESSURE	OPPD	
CP-3161	RC-3D UPPER OIL RESERVOIR LEVEL CHANNEL 3161	OPPD	
CP-3162	RC-3D LOWER OIL RESERVOIR LEVEL CHANNEL 3162	OPPD	
CP-3163	RC-3D GUIDE BEARING TEMPERATURE	OPPD	
CP-3164	RC-3D STATOR WINDING TEMPERATURE	OPPD	
CP-3165	RC-3D DOWNWARD THRUST BEARING TEMPERATURE	OPPD	
CP-3166	RC-3D UP THRUST BEARING TEMPERATURE	OPPD	
CP-3167	RC-3D UPPER GUIDE BEARING TEMPERATURE	OPPD	
CP-3169	RC-3D OIL LIFT PERMISSIVE PRESSURE	OPPD	
CP-3193	R.C. 3A PUMP GASKET LEAK OFF PRESSURE	OPPD	
CP-3194	R.C. 3B PUMP GASKET LEAK OFF PRESSURE	OPPD	
CP-3195	R.C. 3C PUMP GASKET LEAK OFF PRESSURE	OPPD	
CP-3196	R.C. 3D PUMP GASKET LEAK OFF PRESSURE	OPPD	
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	1047

Page 7 of 91

Document	Description	Source	GSE#
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45591
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45592
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45593
SHB 23-26-3	Student Handbook - Reactor Coolant System	OPPD	
T-3147	RCP C Upper Guide Bearing Temperature Loop	OPPD	
11.52	Control Valve Specification Sheet	OPPD	15043
11.53	Control Valve Specification Sheet	OPPD	15044
11.83	Control Valve Specification Sheet	OPPD	15094
11405-E-30	Stored Energy System & Misc. Systems S.C. & I.	OPPD	12265
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-38	Waste Disposal System S.C. & I.	OPPD	12273
11405-E-52	Miscellaneous Schematics	OPPD	12236
11405-EM-130	Instrument and Control Equipment List	OPPD	43528
11405-EM-131	Instrument and Control Equipment List	OPPD	802
11405-EM-132	Instrument and Control Equipment List	OPPD	1566
11405-EM-133	Instrument and Control Equipment List	OPPD	803
11405-M-264 Sht. 3	Aux Building & Cont Instrument Air Diagram	OPPD	16954
11405-M-264 Sht. 4	Aux Building & Cont Inst: ment Air Diagram	OPPD	16292
11405-M-264 Sht. 5	Aux Building & Cont Instrument Air Diagram	OPPD	16293
11405-M-42	Auxiliary Gas Flow Diagram	OPPD	10450
11405-M-49	Auxiliary Gas Flow Diagram	OPPD	10611
11405-M-5	Demineralized Water Systen Flow Diagram	OPPD	10435
11405-M-6	Waste Disposal System Flow Diagram	OPPD	10436
11405-M-63	Waste Disposal System Flow Diagram	OPPD	10618
11405-M-98	Waste Disposal System Flow Diagram	OPPD	10452
161F561	Interconnection Diagram	OPPD	9475
1970	Control Valve Specification Sheet	OPPD	2299
23866-210-110	EHC LOAD CONTROL UNIT	OPPD	
23866-210-120	Sht. 1 EHC LOAD CONTROL UNIT	OPPD	
23866-210-130	Sht. 2 EHC LOAD CONTROL UNIT	OPPD	
598	Control Valve Specification Sheet	OPPD	45684
CP-103X	PRESSURIZER PRESSURE CHANNEL 103X	OPPD	
CP-103Y	PRESSURIZER PRESSURE CHANNEL 103Y	OPPD	
CP-130	QUENCH TANK WIDE RANGE PRESSURE	OPPD	
CP-131	QUENCH TANK NARROW RANGE PRESSURE	OPPD	

Document	Description	Source	GSE#
	OUPNON TANK I FUEL	OPPD	
CP-132	QUENCH TANK DEVED	OPPD	
CP-133	QUENCH TARK IEMPERATORE	OPPD	31102
D-4300 Sht. 1	Stator And Cooling Panel Al 194 Willing Diagram	OPPD	10475
E-23866-210-110	Reactor Coolant System	OPPD	
E-2520-IC-437	Safety Injection and containment opidy opoce	OPPD	
OP-10-A4-11	operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A4-13	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A4-4	Operating Procedure - Annunciator Response rivecuare	OPPD	8678
RC-2035 Sht. 1	Piping Isometric Diagrams	OPPD	8679
RC-2035 Sht. 2	Piping Isometric Diagrams	OPPD	8680
RC-2035 Sht. 3	Piping Isometric Diagrams	OPPD	8681
RC-2036 Sht. 1	Piping Isometric Diagrams	OPPD	8683
RC-2036 Sht. 3	Piping Isometric Diagrams	OPPD	
SD I-4	Pressurizer System Description	OPPD	8904
WD-2001	Piping Isometric Diagrams	OPPD	8905
WD-2002	Piping Isometric Diagrams	OPPO	15074
11.69	Control Valve Specification Sheet	OPPD	21423
11405-E-137	YCV-1045 S.C. & I.	OPDI	12528
11405-E-261	Turbine Generator Auxiliary System S.C. & I.	OPPD	12263
11405-E-28	Main Steam & Feed System S.C. & I.	OPPD	12265
11405-E-31	Annunciator Schema ics	OPPD	12200
11405-E-44	Revision File Reference Data	OPPD	122/7
11405-E-45	MCC Auto Load Shed & Misc S.C. & I.	OPPD	12200
11405-E-49	H2 Purge/Analyzer System S.C. & I.	OPPD	15770
11405-EM-1039	Instrument and Control Equipment List	OPPD	15770
11405-EM-951	Instrument and Control Equipment List	OPPD	10/20
11405-M-252	Main Steam Flow Diagram	OPPD	10458
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OFPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
12007 55-FSK-17A	125 VDC ELEM. DIAG. HC-921 & HC-922	OPPD	22613
12602221	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
1618544	Feed Reg System Block Wiring Diagram - Train A	OPPD	94. 1
1612544	Feed Reg System Block Wiring Diagram - Train A	OPPD	9426
1011544	Interconnection Diagram	OPPD	24463
1011301	ALLOW VILLING VILLING VILLING		

Page 9 of 91

8

Document	Description	Source	GSE#
	Flow Diag - Annunciator Schemes Al & A2	OPPD	9733
161F575	Liem. Diag Annunciator Schemes in the Sheet	OPPD	15164
17.2	Instrumentation and control specification sheet	OPPD	15166
17.2.01	Control Valve Specification Sheet	OPPD	15172
17.8	Control Valve Specification Sheet	OPPD	15180
20.4	Control valve Specification Sheet	OPPD	43030
20.4	Control valve Specification Sheet	OPPD	45130
542	Control Valve Specification Sheet	OPPD	45131
542	Control Valve Specification Sheet	OPPD	45132
543	Control Valve Specification Sheet	OPPD	45686
600	Control Valve Specification Sheet	OPPD	22622
8IN30237BD001A	Loop Dwg. A/LT-911	OPPD	22626
8IN30237BD001B	Loop Dwg. B/LT-911	OPPD	22647
8IN30237BD001C	Loop Dwg. C/LT-911	OPPD	22640
8IN30237BD001D	Loop Dwg. D/LT-911	OPPD	22621
8IN30237BD002A	Loop Dwg. A/PT-913	OPPD	22625
8IN30237BD002B	Loop Dwg. B/PT-913	OPPD	22646
8IN30237BD002C	Loop Dwg. C/PT-913	OPPD	22639
8IN30237BD002D	Loop DWG. D/PT-913	OPPD	22630
8IN30237BD003A	Loop Dwg. A/LT912	OPPD	22620
8IN30237BD053B	Loop Dwg. B/LT912	OPPD	22649
8IN302373D003C	Loop Dwg. C/LT-912	OPPD	22040
8IN30237E0003D	Loop Dwg. D/LT-912	OPPD	22300
81N30237BL004A	Loop Dwg. A/PT-914	OPPD	22017
8TN30237BD304B	Loop Dwg. B/PT-914	OPPD	22023
8TN30237BD004C	Loop Dwg. C/PT-914	OPPD	22649
8TN30237BD0L4D	Loop Dwg. D/PT-914	OPPD	22031
ASENCE	Annunciator A-60-A Engraving List	Westingh	louse
B-4101	ERF Computer Analog Point Input List	OPFD	31487
Coffin Turbo Lump	OPP-2868 Operation and Maintenance Manual	OPPD	
CD-1046	MAIN STEAM PRESSURE	OPPD	
CP-1040	MAIN STEAM TEMPERATURE	OPPD	
CP-1047	MAIN STEAM PRESSURE	OPPD	
CP-1040	MAIN STEAM TEMPERATURE	OPPD	
CP-1049	FEEDWATER RECULATING SYSTEM A	OPPD	
CP-1101	FEEDWATER REGULATING SYSTEM B	OPPD	

П

18

Page 10 of 91

Document	Description	Source	GSE#
CP-903Y-1	STEAM GENERATOR RC-2A LEVEL	CPPD	
CP-906Y-1	STEAM GENERATOR RC-2B LEVEL	OPPD	
CP-910	STEAM BYPASS PRESSURE	OPPD	
CP-941	MAIN STEAM PRESSURE	OPPD	
CP-942	MAIN STEAM TEMPERATURE (T-942)	OPPD	
CP-951	MAIN STEAM CALORIMETER PRESSURE	OPPD	
CP-A/901	STEAM GENERATOR RC-2A LEVEL	OPPD	
CP-A/902	STEAM GENERATOR RC-2A PRESSURE	OPPD	
CP-A/904	STEAM GENERATOR RC-2B LEVEL	OPPD	
CP-A/905	STEAM GENERATOR RC-2B PRESSURE	OPPD	
CP-A/911	STEAM GENERATOR A WIDE RANGE LEVEL	OPPD	
CP-A/912	STEAM GENERATOR B WIDE RANGE LEVEL	OPPD	
CP-A/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-A/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
CP-B/901	STEAM GENERATOR RC-2A LEVEL	OPPD	
CP-B/902	STEAM GENERATOR RC-2A PRESSURE	OPPD	
CP-B/904	STEAM GENERATOR RC-2B LEVEL	OPPD	
CP-B/905	STEAM GENERATOR RC-2B PRESSURE	OPPD	
CP-B/911	STEAM GENERATOR A WIDE RANGE LEVEL	OPPD	
CP-B/912	STEAM GENERATOR B WIDE RANGE LEVEL	OPPD	
CP-B/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-B/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
CP-C/901	STEAM GENERATOR RC-2A LEVEL	OPPD	
CP-C/902	STEAM GENERATOR RC-2A PRESSURE	OPPD	
CP-C/904	STEAM GENERATOR RC-2B LEVEL	OPPD	
CP-C/905	STEAM GENERATOR RC-2B PRESSURE	OPPD	
CP-C/911	STEAM GENERATOR A WIDE RANGE LEVEL	OPPD	
CP-C/912	STEAM GENERATOR B WIDE RANGE LEVEL	OPPD	
CP-C/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-C/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
CP-D/901	STEAM GENERATOR RC-2A LEVEL	OPPD	
CP-D/902	STEAM GENERATOR RC-2A PRESSURE	OPPD	
CP-D/904	STEAM GENERATOR RC-2B LEVEL	OPPD	
CP-D/905	STEAM GENERATOR RC-2B PRESSURE	OPPD	
CP-D/911	STEAM GENERATOR A WIDE RANGE LEVEL	OPPD	

Document	Description	Source	GSE#
CP-D/912	STEAM GENERATOR B WIDE RANGE LEVEL	OPPD	
CP-D/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-D/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
FIG.8.1-1	Plant Electrical System One Line Diagram	OPPD	12234
IC-2	Piping Isometric Diagrams	OPPD	35546
IC-381	Piping Isometric Diagrams	OPPD	35928
IC-382	Piping Isometric Diagrams	OPPD	35929
IC-383	Piping Isometric Diagrams	OPPD	35930
MS-4099	Piping Isometric Diagrams	OPPD	8562
MS-4099	Piping Isometric Diagrams	OPPD	8563
MS-4153	Piping Isometric Diagrams	OPPD	8564
MS-6055	Piping Isometric Diagrams	OPPD	8576
MS-6056	Piping Isometric Diagrams	OPPD	8580
SD I-4	Steam Generator System Description	OPPD	
ST-ISI-FW-1	Feedwater Inservice Inspection	OPPD	
ST-ISI-MS-1	Main Steam Inservice Inspection	OPPD	
ST-MSSV-1	Main Steam Stop Valve Exercise Test	OPPD	
11.97	Control Valve Specification Sheet	OPPD	15118
11.99	Control Valve Specification Sheet	OPPD	15119
11405-A-5	Control Valve Specification Sheet	OPPD	12161
11405-E-26	Feedwater System Schematic Diagram	OPPD	12261
11405-E-28	Main Steam & Feed System S.C. & I.	OPPD	12263
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-59	Sampling, N2, H2 & Air Systems S.C. & I.	OPPD	12293
11405-EM-1226	Blowdown Temperature Elementary Diagram	OPPD	39061
11405-EM-1231	Instrument Loop Diagram	OPPD	39071
11405-EM-1372/1381	Sht. 1 Instrument Loop Diagram	OPPD	15864
11405-EM-1372/1381	Sht. 2 Instrument Loop Diagram	OPPD	15865
11405-EM-1372/1381	Sht. 3 Instrument Loop Diagram	OPPD	15866
11405-EM-1391/1394	Sht. 1 Instrument Loop Diagram	OPPD	15874
11405-EM-1391/1394	Sht. 2 Instrument Loop Diagram	OPPD	21857
11405-EM-2510	Instrument and Control Equipment List	OPPD	11640
11405-EM-2511	Instrument and Control Equipment List	OPPD	11653
11405-M-12	Primary Plant Sampling System Flow Diagram	OPPD	10442

Document	Description	Source	GSE#
11405-M-253	S/G Feed & Blowdown Flow Diagram	OPPD	10459
11405-M-264 Sht. 1	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264 Sht. 3	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-264 Sht. 5	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
161F572	Mechanical Control Board CB-10,-11	OPPD	9674
17.2	Instrumentation and Control Specification Sheet	OPPD	15164
20.2	Control Valve Specification Sheet	OPPD	15178
20.3	Control Valve Specification Sheet	OPPD	15179
4778 435 302-001	Steam Generator Blowdown Processing System	OPPE	21670
CP-1231	S/G BLOWDOWN HEAT EXCHANGER DISCHARGE PRESSURE	OPPD	
CP-1374	CALIBRATION PROCEDURE	OPPD	
CP-1374,	CALIBRATION PROCEDURE	OPPD	
CP-1375	BLOWDOWN TANK LEVEL	OPPD	
CP-1391/1392	SG RC-2A BLOWDOWN TEMPERATURE AND FLOW	OPPD	
CP-1393/1394	SG RC-2B BLOWDOWN TEMPERATURE AND FLOW	OPPD	
D-4243	Stator And Cooling Panel AI-134 Wiring Diagram	OPPD	22302
D-4244	Stator And Cooling Panel AI-134 Wiring Diagram	OPPD	22480
FW-34A, 34B	Pump Curve - FW-34A, 34B	OPPD	
FW-4105	Piping Isometric Diagrams	OPPD	8450
FW-4107	Piping Isometric Diagrams	OPPD	8451
FW-4108	Piping Isometric Diagrams	OPPD	8452
Fig.8.1-1	Plant Electrical System One Line Diagram	OPPD	12234
IC-286	Piping Isometric Diagrams	OPPD	35836
IC-287	Piping Isometric Diagrams	OPPD	35837
IC-409	Piping Isometric Diagrams	OPPD	35953
IC-427	Piping Isometric Diagrams	OPPD	35971
OP-10-A21,	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A42	Operating Procedure - Annunciator Response Procedure	OPPD	
11.74	Control Valve Specification Sheet	OPPD	15081
11.75	Control Valve Specification Sheet	OPPD	15084
11.76	Control Valve Specification Sheet	OPPD	15086
11405-E-143	480 V Switchgear Schematics	OPPD	12331
11405-E-144	480 V Switchgear Schematics	OPPD	12332
11405-E-31	Annunciator Schematics	OPPD	12266

Document	Description	Source	GSE#
11405-E-42	SI & CVCS Systems S.C. & I.	OPPD	12277
11405-E-51	HCV Schematics, Limit Sw Contacts	OPPD	12285
11405-E-52	Miscellaneous Schematics	OPPD	12286
11405-EM-202	Instrument and Control Equipment List	OPPD	15291
11405-EM-205	Instrument and Control Equipment List	OPPD	20532
11405-EM-207	Instrument and Control Equipment List	OPPD	20531
11405-EM-210	Instrument and Control Equipment List	OPPD	6824
11405-EM-211	Instrument and Control Equipment List	OPPD	15295
11405-EM-212	Instrument and Control Equipment List	OPPD	1569
11405-EM-213	Instrument and Control Equipment List	OPPD	1565
11405-EM-214	Instrument and Control Equipment List	OPPD	845
11405-EM-215	Instrument and Control Equipment List	OPPD	15390
11405-EM-218	Instrument and Control Equipment List	OPPD	15296
11405-EM-219	Instrument and Control Equipment List	OPPD	848
11405-EM-220	Instrument and Control Equipment List	OPPD	849
11405-EM-221	Instrument and Control Equipment List	OPPD	847
11405-EM-226	Instrument and Control Equipment List	OPPD	20541
11405-EM-229	Instrument and Control Equipment List	OPPD	20536
11405-EM-232	Instrument and Control Equipment List	OPPD	20537
11405-EM-233	Instrument and Control Equipment List	OPPD	43092
11405-EM-235	Instrument and Control Equipment List	OPPD	20545
11405-EM-236	Instrument and Control Equipment List	OPPD	812
11405-EM-237	Instrument and Control Equipment List	OPPD	20544
11405-EM-246	Instrument and Control Equipment List	OPPD	20538
11405-EM-253	Instrument and Control Equipment List	OPPD	20547
11405-EM-254	Instrument and Control Equipment List	OPPD	20543
11405-EM-255/256	Instrument and Control Equipment List	OPPD	15303
11405-EM-259	Instrument and Control Equipment List	OPPD	813
11405-EM-260	Instrument and Control Equipment List	OPPD	20555
11405-EM-261	Instrument and Control Equipment List	OPPD	20546
11405-EM-262/263	Instrument and Control Equipment List	OPPD	18196
11405-EM-266	Instrument and Control Equipment List	OPPD	15310
11405-EM-269	Instrument and Control Equipment List	OPPD	16276
11405-EM-2897	Instrument and Control Equipment List	OPPD	16074
11405-EM-3101/3118	Instrument and Control Equipment List	OPPD	21625
Document	Description	Source	GSE#
--------------------	---	--------	-------
11405-EM-3121/3138	Instrument and Control Equipment List	OPPD	21628
1405-EM-3141/3158	Instrument and Control Equipment List	OPPD	21633
11405-EM-3161/3178	Instrument and Control Equipment List	OPPD	21638
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16292
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-42	Auxiliary Gas Flow Diagram	OPPD	10450
11405-M-98	Waste Disposal System Flow Diagram	OPPD	10452
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2341	480V Controls & Elementary Diagrams	OPPD	5521
161F531	Mair Three Line Diagram	OPPD	9385
161F561	Interconnection Diagram	OPPD	9476
161F561	Interconnection Diagram	OPPD	9532
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9729
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9730
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9732
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
1900-30F/S3	Control Valve Specification Sheet	OPPD	2281
1900-30H/S4	Control Valve Specification Sheet	OPPD	2285
1900-30L/S3	Control Valve Specification Sheet	OPPD	2295
1970	Control Valve Specification Sheet	OPPD	2299
20.6	Control Valve Specification Sheet	OPPD	15182
208	Control Valve Specification Sheet	OPPD	23874
271	Control Valve Specification Sheet	OFPD	23941
272	Control Valve Specification Sheet	OPPD	23942
273	Control Valve Specification Sheet	OPPD	23943
274	Control Valve Specification Sheet	OPPD	23944
276	Control "alve Specification Sheet	OPPD	23946
544	Control Vaive Specification Sheet	OPPD	45134
B-23866-414-303	Pump Motor Control Schematic	OPPD	1254
B-23866-414-353	Elem. Wiring Diagram - Motor Operated Valves	OPPD	1258
B-23866-414-362	Schematic Diagram - Electro Pneumatic Throttle Valves	OPPD	1262
B-23866-414-364	Schematic Diagram - Electro Pneumatic Throttle Valves	OPPD	1266
B-2386F-414-367	Schematic Diagram - Letdown Control Valves	OPPD	1267

Page 15 of 91

Document	Description	Source	GSE#
B-23866-414-372	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1271
B-23866-414-373	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1272
8-23866-414-374	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1273
8-23866-414-375	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1274
B-23866-414-376	Elem. Wiring Diagram - Pilot Soleroid Operated Valves	OPPD	1275
B-23866-414-377	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1276
B-23866-414-382	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1279
B-4101	ERF Computer Analog Point Input List	OPPD	31487
CP-1683	FIRE MAIN HEADER PRESSURE	OPPD	
CF-202	REGENERATIVE HEAT EXCHANGER TEMPERATURE	OPPD	
CP-205	REGENERATIVE HEAT EXCHANGER TEMPERATURE	OPPD	
CP-207	REACTOR COOLANT PUMP BLEED-OFF HEADER PRESSURE	OPPD	
CP-210	INTERMEDIATE PRESSURE LETDOWN PRESSURE	OPPD	
CP-211	LETDOWN FLOW DIVERSION TEMPERATURE	OPPD	
CP-212	LETDOWN FLOW	OPPD	
CP-213	BORONOMETER ELECTRONICS	OPPD	
CP-214	SECONDARY & PRIMARY CAL FOR FAILED FUEL MONITOR	OPPD	
CP-218	VOLUME CONTROL TANK LEVEL	OPPD	
CP-219	VOLUME CONTROL TANK LEVEL	OPPD	
CP-220	VOLUME CONTROL TANK PRESSURE CHANNEL 220	OPPD	
CP-221	VOLUME CONTROL TANK TEMPERATURE CHANNEL 221	OPPD	
CP-226	CHARGING PUMP SUCTION PRESS CONTROL SWITCH 226	OPPD	
CP-229	CHARGING PUMP SUCTION PRESS CONTROL SWITCH 229	OPPD	
CP-232	CHARGING PUMP SUCTION PRESS CONTROL SWITCH 232	OPPD	
CP-235	CHARGING PUMP DISCHARGE HEADER PRESSURE CHANNEL 235	OPPD	
CP-236	CHARGING PUMP FLOW CHANNEL 236	OPPD	
CP-237	REGENERATIVE HEAT EXCHANGER TEMPERATURE	OPPD	
CP-242	HIGH PRESSURE LETDOWN PRESSURE	OPPD	
CP-243	L'GH PRESSURE LETDOWN PRESSURE	OPPD	
CP-244	HIGH PRESSURE LETDOWN PRESS CONTROL CHANNEL 244	OPPD	
CP-254	CONCENTRATED BORIC ACID TANK LEVEL	OPPD	
CP-255	BORIC ACID STORAGE TANK TEMPERATURE CHANNEL 255	OPPD	
CP-256	BORIC ACID STORAGE TANK B TEMPERATURE CHANNEL 256	OPPD	
CP-259	BORIC ACID PUMP DISCHARGE HEADER PRESSURE	OPPD	
CP-261	COMCENTRATED BORIC ACID TANK LEVEL	OPPD	

Page 16 of 91

Document	Description	Source	GSE#
00-262	BORIC ACID STORAGE TANK A TEMPERATURE CHANNEL 262	OPPD	
CP-262	BORIC ACID STORAGE TANK A TEMPERATURE CHANNEL 263	OPPD	
CP-203	BORIC ACID DIMP DISCHARGE HEADER PRESSURE	OPPD	
CP-200	DDIMADY WATED MAKEIIP FLOW	OPPD	
CP-269X	CONCENTRATED BORIC ACID MAKE-UP FLOW	OPPD	
CP-2691	THERE DESCUPE LETDOWN TEMPERATURE	OPPD	
CP-2897	DC-2A LOWED CEAL TEMPEDATURE	OPPD	
CP-3113	RC-JA LOWER SEAL TEMPEDATION	OPPD	
CP-3114	RC-3A UPPER SEAD TEAPERATORD	OPPD	
CP-3115	RC-3A CONTROLLED BLEEDOFF FLOW	OPPD	
CP-3116	RC-3A LOWER SEAL PRESSORE CHANNEL SITO	OPPD	
CP-3117	RC-JA MIDDLE SEAL PRESSURE	OPPD	
CP-3118	RC-JA UPPER SEAL FRESSURE	OPPD	
CP-3133	RC-3B LOWER SEAL TEMPERATURE	OPPD	
CP-3134	RC-3B UPPER SEAL TEMPERATORE	OPPD	
CP-3135	RC-3B CONTROLLED BLEEDOFF FLOW CALIBRATION FROCEDORE D	OPPD	
CP-3136	RC-3B LOWER SEAL PRESSURE	OPPD	
CP-3137	RC-3B MIDDLE SEAL PRESSURE	OPPD	
CP-3138	RC-3B UPPER SEAL PRESSURE	OPPD	
CP-3153	RC-3C LOWER SEAL TEMPERATURE	OPPD	
CP-3154	RC-3C UPPER SEAL TEMPERATURE	OPPD	
CP-3155	RC-3C CONTROLLED BLEEDOFF FLOW	OPPD	
CP-3156	RC-3C LOWER SEAL PRESSURE	DODD	
CP-3157	RC-3C MIDDLE SEAL PRESSURE	OPPD	
CP-3158	RC-3C UPPER SEAL PRESSURE	OPED	
CP-3173	RC-3D LOWER SEAL TEMPERATURE	OPPD	
CP-3174	RC-3D UPPER SEAL TEMPERATURE	OPPD	
CP-3175	RC-3D CONTROLLED BLEEDOFF FLOW	OPPD	
CP-3176	RC-3D LOWER SEAL PRESSURE	OPPD	
CP-3177	RC-3D MIDDLE SEAL PRESSURE	OPPD	
CP-3178	RC-3D UPPER SEAL PRESSURE	OPPD	20473
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	1047.
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45591
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	40094
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	4559.
D-4329	HCV-238 Schematic and Wiring Diagram	OPPD	24368

GSE#

Source

Page 17 of 91

Document	Description	Source	GSE#
D-4330	HCV-239 Schematic and Wiring Diagram	OPPD	24369
E-23866-210-120	Chemical and Volume Control	OPPD	10476
E-23866-210-120	Chemical and Volume Control	OPPD	10477
E-23866-210-121	Chemical and Volume Control	OPPD	10478
E-23866-210-130	Safety Injection and Containment Spray System	OPPD	10479
E-4047	Schematics & Elementaries - Long Term Core Cocling	OPPD	37607
FIG.8.1-1	Plant Electrical System One Line Diagram	OPPD	12234
OP-10-A2	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A6	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A7	Operating Procedure - Annunciator Response Procedure	OPPD	
SD I-5	Chemical and Volume Control System Description	OPPD	
SHB 23-26-3	Student Handbook - Reactor Coolant System	OPPD	
VFCS0146	Ion Exchanger D/P	OPPD	
VFCS0147	BAT Low Level	OPPD	
VFCS0148	Boronometer Alarm Setpoints	OPPD	
VFCS0149	Boronometer Low Flow Alarm	OPPD	
11.56	Control Valve Specification Sheet	OPPD	15053
11.84	Control Valve Specification Shrat	OPPD	15095
11.84	Control Valve Specification Sheet	OPPD	43002
11.85	Control Valve Specification Sheet	OPPD	15098
11.85	Control Valve Specification Sheet	OPPD	39981
11.86	Control Valve Specification Sheet	OPPD	15102
11.86	Control Valve Specification Sheet	OPPD	42950
11.87	Control Valve Specification Sheet	OPPD	15103
11.87	Control Valve Specification Sheet	OPPD	42949
11.88	Control Valve Specification Sheet	OPPD	15105
11.88	Control Valve Specification Sheet	OPPD	43080
11.92	Control Valve Specification Sheet	OPPD	15111
11.92	Control Valve Specification Sheet	OPPD	43160
11.93	Control Valve Specification Sheet	OPPD	15112
11.93	Control Valve Specification Sheet	OPPD	43066
11405-E-142	480 V Switchgear Schematics	OPPD	12330
11405-E-143	480 V Switchgear Schematics	OPPD	12331
11405-E-17	4.16 KV Switchgear Schematics	OPPD	12253
11405-E-23	4.16 KV Switchgear Schematics	OPPD	12258

Page 18 of 91

Document	Description	Source	GSE#
11405-E-29	Safety Injection System S.C. & I.	OPPD	1226
11405-E-30	Stored Energy System & Misc. Systems S.C. & I.	OPPD	1226
11405-E-31	Annunciator Schematics	OPPD	1226
11405-E-38	Waste Disposal System S.C. & I.	OPPD	1227
11405-E-42	SI & CVCS Systems S.C. & I.	OPPD	1227
11405-E-44	Revision File Reference Data	OPPD	1227
11405-E-51	HCV Schematics, Limit Sw Contacts	OPPD	1228
11405-E-52	Miscellaneous Schematics	OPPD	1228
11405-E-53	Ventilation System S.C. & I.	OPPD	1228
11405-EM-311/312	Instrument and Control Equipment List	OPPD	1627
11405-EM-314/315	Instrument and Control Equipment List	OPPD	1627
11405-EM-317/318	Instrument and Control Equipment List	OPPD	1627
11405-EM-320/321	Instrument and Control Equipment List	OPPD	1627
11405-EM-327	Instrument and Control Equipment List	OPPD	1532
405-EM-329	Instrument and Control Equipment List	OPPD	2062
11405-EM-331	Instrument and Control Equipment List	OPPD	2062
11405-EM-333	Instrument and Control Equipment List	OPPD	1530
11405-EM-381	Instrument and Control Equipment List	OPPD	1532
11405-EM-382	instrument and Control Equipment List	OPPD	1532
11405-EM-383	Instrument and Control Equipment List	OPPD	1533
11405-EM-406	Instrument and Control Equipment List	OPPD	1535
11405-EM-407	Instrument and Control Equipment List	OPPD	2060
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OPPD	1044
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	15292
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	1695
11405-M-40	AC-CCW System Flow Diagram	OPPD	3536
11405-M-40	AC-CCW System Flow Diagram	OPPD	3536
11405-M-42	Auxiliary Gas Flow Diagram	OPPD	1045
117C3250	Waste Disposal System Flow Diagram	OPPD	6474
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111

Index/Rev Sheet for Inst. Loop Diagrams

136B2331

136B2331

136B2331

136B2331

OPPD 7250

OPPD

OPPD

OPPD

Page 19 of 91

7150

7151

7152

Document Description	Source	GSE#
136B2331 Index/Rev Sheet for Inst. Loop Diag	rams OPPD	7252
136B2331 Index/Rev Sheet for Inst. Loop Diag	rams OPPD	7253
136B2340 4.16KV Controls & Elementary Diagram	m OPPD	5521
136B2341 480V Controls & Elementary Diagrams	OPPD	5521
136B2431 Elementary Diagram - Pumps and Valv	es OPPD	5590
136B2432 Elementary Diagram - Switch Develop	ment OPPD	5703
136B2432 Elementary Diagram - Switch Develop	ment OPPD	5704
136B2432 Elementary Diagram - Switch Develop	ment OPPD	5711
136B2432 Elementary Diagram - Switch Develop	ment OPPD	5720
136B2432 Elementary Diagram - Switch Develop	ment OPPD	5731
136B2432 Elementary Diagram - Switch Develop	ment OPPD	5741
136B2530 Elementary Diagram - Pump & Valves	OPPD	6115
136B3081 Elementary Diagram Pump & Valves	OPPD	6243
136B3219 Electrical Control Valve & Pump Inde	ex OPPD	6350
136B3219 Elementary Diagram - Pump & Valves	OPPD	6351
136B3219 Elementary Diagram - Pumps and Valv	es OPPD	6351
161F531 13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9388
161F531 13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9390
161F531 13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9392
161F561 Interconnection Diagram	OPPD	9476
161F561 Interconnection Diagram	OPPD	9556
161F561 Interconnection Diagram	OPPD	9557
161F561 Interconnection Diagram	OP2D	9558
161F561 Interconnection Diagram	OPPD	9559
161F561 Interconnection Diagram	OPPD	9579
161F561 Interconnection Diagram	OPPD	9580
161F561 Interconnection Diagram	OPPD	9581
161F561 Interconnection Diagram	OPPD	9582
161F561 Interconnection Diagram	OPPD	9583
1617561 Interconnection Diagram	OPPD	9584
161F561 Interconnection Diagram	OPPD	9585
161F561 Interconnection Diagram	OPPD	9586
161F561 Interconnection Diagram	OPPD	9587
161F561 Interconnection Diagram	OPPD	9588
161F561 Interconnection Diagram	OPPD	9589

Page 20 of 91

Document	Description	Source	GSE#
161F561	Interconnection Diagram	OPPD	9590
161F561	Interconnection Diagram	OPPD	9591
161F561	Interconnection Diagram	OPPD	9592
161F561	Interconnection Diagram	OPPD	9593
161F561	Interconnection Diagram	OPPD	9594
161F561	Interconnection Diagram	OPPD	9595
161F561	Interconnection Diagram	OPPD	9596
161F561	Interconnection Diagram	OPPD	9597
161F561	Interconnection Diagram	OPPD	9598
161F561	Interconnection Diagram	OPPD	9599
161F561	Interconnection Diagram	OPPD	9600
161F561	Interconnection Diagram	OPPD	9601
161F561	Incerconnection Diagram	OPPD	9602
161F561	Interconnection Diagram	OPPD	9603
161F561	Interconnection Diagram	OPPD	9605
161F561	Interconnection Diagram	OPPD	9606
161F561	Interconnection Diagram	OPPD	9607
161F561	Interconnection Diagram	OPPD	9608
161F561	Interconnection Diagram	OPPD	9609
161F561	Interconnection Diagram	OPPD	9610
161F561	Interconnection Diagram	OPPD	9611
161F561	Interconnection Diagram	OPPD	9612
161F561	Interconnection Diagram	OPPD	9613
161F561	Interconnection Diagram	OPPD	9614
161F561	Interconnection Diagram	OPPD	9615
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9732
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9739
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9740
161F575	Elem, Diag Annunciator Schemes A1 & A:	OPPD	9744
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9745
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9810
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
161F598	Panel AT-306 Diesel Semiencer Safety and Test B	OPPD	9820

Page 21 of 91

Document	Description	Source	GSE#
17.3	Control Valve Specification Sheet	OPPD	15167
17.3	Control Valve Specification Sheet	OPPD	43075
17.9	Control Valve Specification Sheet	OPPD	15174
1900F/S3	Control Valve Specification Sheet	OPPD	2278
1900F/S3	Control Valve Specification Sheet	OPPD	2279
20.9	Control Valve Specification Sheet	OPPD	15187
20.9	Control Valve Specification Sheet	OPPD	43520
20.91	Control Valve Specification Sheet	OPPD	15189
20.91	Control Valve Specification Sheet	OPPD	43310
20.92	Control Valve Specification Sheet	OPPD	15190
20.92	Control Valve Specification Sheet	OPPD	43311
20.93	Control Valve Specification Sheet	OPPD	15191
20.93	Control Valve Specification Sheet	OPPD	43312
20.94	Control Valve Specification Sheet	OPPD	15192
20.95	Control Valve S, Scification Sheet	OPPD	15193
220	Transmitter Specification Sheet	OPPD	23886
275	Control Valve Specification Sheet	OPPD	23945
275	Control Valve Specification Sheet	OPPD	43309
401	Control Valve Specification Sheet	OPPD	37625
427	Control Valve Specification Sheet	OPPD	30962
A2ENGR	Annunciator A-2 Engraving List	Westing	nouse
A33-1ENG	Annunciator A-33-1 Engraving List	Wescingt	nouse
A33-2ENG	Annunciator A-33-2 Engraving List	Westingh	nouse
A34-1ENG	Annunciator A-34-1 Engraving List	Westing	nouse
A34-2ENG	Annunciator A-34-2 Engraving List	Westing	louse
A7ENGR	Annunciator A-66-A Engraving List	Westing	louse
AC-2017	Piping Isometric Diagrams	OPPD	7330
AC-2019	Piping Isometric Diagrams	OPPD	7334
AC-2025	Piping Isometric Diagrams	OPPD	7349
AC-2028	Piping Isometric Diagrams	OPPD	7355
B-23866-414-361	Schematic Diagram - Electro Pneumatic Throttle Valves	OPPD	1261
B-23866-414-363	Schematic Diagram - Electro Pneumatic Throttle Valves	OPPD	1264
B-23866-414-380	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1277
B-23866-414-381	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1278
B-3302	Relief Valve Composite Drawing	OPPD	16654

GSE# Source Description Document 31487 OPPD ERF Computer Analog Point Input List B-4101 37450 OPPD ERF Computer Analog Point Input List B-4102 OPPD 37813 QSPDS A Data Link Analog Computer Points B-4108 37816 OPPD QSPDS B Data Link Analog Computer Points B-4109 37918 OPPD QSPDS B Data Link Analog Computer Points B-4110 37822 OPPD QSPDS B Data Link Analog Computer Points B-4111 OPPD CALC AIR COMPRESSOR BACKUP START CP-1708 OPPD JACKET COOLING PRESSURE CP-1716 OPPD S.I. TANK 6A PRESSURE CP-2901 OPPD SI TANK 6A LEVEL CP-2904X OPPD SI TANK 6A LEVEL CP-2904Y OPPD SI CHECK VALVE LEAKAGE COOLER PRESSURE CP-2909 OPPD LEAKAGE COOLER OUTLET TEMPERATURE CP-2910 OPPD S.I. TANK 6B PRESSURE CP-2921 OPPD SI TANK 6B LEVEL CP-2924X OPPD SI TANK 6B LEVEL CP-2924Y OPPD SI CHECK VALVE LEAKAGE COOLER PRESSURE CP-2929 OPFD LEAKAGE COOLER OUTLUT TEMPERATURE CP-2930 OPPD S.I. TANK 6C PRESSURE CP-2941 OPPD ST TANK 6C LEVEL CP-2944X OPPD SI TANK-6C LEVEL CP-2944Y OPPD SI CHECK VALVE LEAKAGE COOLER PRESSURE CP-2949 OPPD LEAKAGE COOLER OUTLET TEMPERATURE CP-2950 OPPD S.I. TANK 6D / CSURE CP-2961 OPPD SI TANK PRES' CP-2962 OPFD SI TANK 6D LL L CP-2964X OPPD SI TANK-6D LEVEL CP-2964Y OPPD SI CHECK VALVE LEAKAGE COOLER PRESSURE CP-2969 OPPD LEAKAGE COOLER OUTLET TEMPERATURE CP-2970 OPPD LEAKAGE COOLER FLOW CP-2981 CONTAINMENT SUMP DISCHARGE VALVE ENCLOSURE PRESSURE OPPD CP-2996 CONTAINMENT SUMP DISCHARGE VALVE ENCLOSURE PRESSURE OPPD CP-2997 OPPD HPST PUMP DISCHARGE PRESSURE CHANNEL 309 CP-309 OPPD HPSI PUMP DISCHARGE PRESSURE CP-310 OPPD HPSI TO LOOP 1B FLOW CHANNEL 313 CP-313

-39

Page 23 of 91

Document	Description	Source	GSE#
CP-316	HPSI TO LOOP 1A CHANNEL 316	OPFD	
JP -319	HPSI TO LOOP 2A FLOW CHANNEL 319	OPPD	
CP-322	HPSI TO LOOP 2B FLOW CHANNEL 322	OPPD	
CP-325	CALIBRATION PROCEDURE - LPSI PUMP DISCHARGE PRESSURE	1	
CP-326	SHUTDOWN COOLING RETURN FLOW	210	
CP-328	LPSI TO LOOP 1B FLOW	ULPD	
CP-330	LPSI TO LOOP 1A FLOW	OPPD	
CP-332	LPSI TO LOOP 2A FLOW	OPPD	
CP-334	CALIBRATION PROCEDURE - LPSI TO LOOP 2B FLOW	OPPD	
CP-339	SHUTDOWN COOLING OUTLET TEMPERATURE CHANNEL 339	OPPD	
CP-340	SHUTDOWN COOLING OUTLET TEMPERATURE CHANNEL 340	OPPD	
CP-343	LPSI TO HPSI SUCTION VALVE HCV-341	OPPD	
CP-342	CONTAINMENT SPRAY FLOW	OPPD	
CP-343	CONTAINMENT SPRAY FLOW CHANNEL 343	OPPD	
CP-344	CONTAINMENT SPRAY VALVE HCV-344	OPPD	
CP-345	CONTAINMENT SPRAY VALVE HCV-345	OPPD	
CP-346	SHUTDOWN COOLING LINE TEMPERATURE	OPPD	
CP-381	SIRWT LEVEL	CPPD	
CP-382	SIRWT LEVEL	OPPD	
E-23866-210-130	Safety Injection and Containment Spray System	OPPD	10479
E-23866-210-130	Safety Injection and Containment Spray System	OPPD	10480
E-4047	Schematics & Elementaries - Long Term Core Cooling	OPPD	37607
IC-169	Piping Isometric Diagrams	OPPD	35723
IC-181	Piping Isometric Diagrams	OPPD	35735
TC-185	Piping Isometric Diagrams	OPPD	35739
IC-187	Piping Isometric Diagrams	OPPD	35741
IC-189	Piping Isometric Diagrams	OPPD	35743
IC-190	Piping Isometric Diagrams	OPPD	35744
IC-191	Piping Isometric Diagrams	OPPD	35745
IC-192	Piping Isometric Diagrams	OPPD	35746
IC-195	Piping Isometric Diagrams	OPPD	35-49
IC-196	Piping Isometric Diagrams	OPPD	35750
IC-197	Piping Isometric Diagrams	OPPD	35751
JC-198	Piping Isometric Diagrams	OPPD	35752
IC-199	Piping Isometric Diagrams	OPPD	35751

Page 24 of 91

Document	Description	Source	GSE#
	Distan Isometria Diagrama	OPPD	35755
_C-201	Piping inometric Diagrams	OPPD	35756
IC-202	Piping Isometric Diagrams	OPPD	35757
IC-203	Piping Isometric Diagrams	OPPD	35758
IC-204	Piping Isometric Diagrams	OPPD	35759
IC-205	Piping Isometric Diagrams	OPPD	35760
IC-206	Piping Isometric Diagrams	OPPD	35763
IC-209	Piping Isometric Diagrams	OPPD	35764
IC-210	Piping Isometric Diagrams	OPPD	35765
IC-211	Piping Isometric Diagrams	OPPD	35766
IC-212	Piping Isometric Diagrams	OPPD	35773
IC-223	Piping Isometric Diagrams	OPPD	8620
NG-2062	Piping Isometric Diagrams	OPPD	8621
NG-2062	Piping Isometric Diagrams	OPPD	9624
NG-2062	Piping Isometric Diagrams	OPPD	8625
NG-2063	Piping Isometric Diagrams	OPPD	0625
NG-2065	Piping Isometric Diagrams	OPPD	0620
NG-2067	Piping Isometric Diagrams	OPPD	0620
NG-2070	Piping Isometric Diagrams	OPPD	0030
NG-2071	Piping Isometric Diagrams	OPPD	8631
SD I-9	Safety Injection System Description	OPPD	0750
ST-2020	Piping Isometric Diagrams	OPPD	8759
ST-2020	Piping Isometric Diagrams	OPPD	8762
ST-2020	Piping Isometric Diagrams	OPPD	8763
5(-2020	Piping Isometric Diagrams	OPPD	8754
ST-2020	Piping Isometric Diagrams	OPPD	8765
ST-2020	Piping Isometric Diagrams	OPPD	8766
SI-2020	Piping Isometric Diagrams	OPPD	8767
ST-2020	Piping Isometric Diagrams	OPPD	8765
ST-2020	Diping Isometric Diagrams	OPPD	8769
S1-2020	Pining Isometric Diagrams	OPPD	8800
S1-4055	Safety Injection Inservice Inspection	OPPD	
S1-151-51-1	SI/Containment Spray Inservice Inspection	OPPD	
51-51/05-1	Control Valve Specification Sheet	OPPD	14976
11 11	Control Valve Specification Sheet	OPPD	14979
11.12	Control Valve Specification Sheet	OPPD	14980
11.15	concroi varie opeorrioation one		

Page 25 of 91

Document	Description	Source	GSE#
11.14	Control Valve Specification Sheet	OPPD	14981
11.15	Control Valve Specification Sheet	OPPD	14982
11.16	Control Valve Specification Sheet	OPPD	14983
11.17	Control Valve Specification Sheet	OPPD	14984
11.18	Control Valve Specification Sheet	OPPD	14985
11.19	Control Valve Specification Sheet	OPPD	14986
11.19	Control Valve Specification Sheet	OPPD	42943
11.21	Control Valve Specification Sheet	OPPD	14991
11.	Control Valve Specification Sheet	OPPD	14992
11.22	Control Valve Specification Sheet	OPPD	43046
11.23	Control Valve Specification Sheet	OPPD	14994
11.23	Control Valve Specification Sheet	OPPD	43047
11.25	Control Valve Specification Sheet	OPPD	14997
11.25	Control Valve Specification Sheet	OPPD	43010
11.26	Control Valve Specification Sheet	OPPD	14999
11.26	Control Valve Specification Sheet	OPPD	43011
11.27	Control Valve Specification Sheet	OPPD	15000
11.27	Contr Valve Specification Sheet	OPPD	43012
11.28	J1 Valve Specification Sheet	OPPD	15003
11.28	Control Valve Specification Sheet	OPPD	43013
11.31	Control Valve Specification Sheet	OPPD	15006
11.31	Control Valve Specification Sheet	OPPD	42948
11.32	Control Valve Specification Sheet	OPPD	15007
11.32	Control Valve Specification Sheet	OPPD	42952
11.33	Control Valve Specification Sheet	OPPD	15009
11.34	Control Valve Specification Sheet	OPPD	15014
11.35	Control Valve Specification Sheet	OPPD	15015
11.36	Control Valve Specification Sheet	OPPD	15016
11.37	Control Valve Specification Sheet	OPPD	15017
11.37	Control Valve Specification Sheet	OPPD	42951
11.38	Control Valve Specification Sheet	OPPD	15021
11.38	Control Valve Specification Sheet	OPPD	42947
11.39	Control Valve Specification Sheet	OPPD	15022
11.39	Control Valve Specification Sheet	OPPD	42946
11.4	Control Valve Specification Sheet	OPPD	15025

Document	Description	Source	GSE#
11.4	Control Valve Specification Sheet	OPPD	42944
11.41	Control Valve Specification Sheet	OPPD	15027
11.41	Cortrol Valve Specification Sheet	OPPD	43308
11.5	Control Valve Specification Sheet	OPPD	15039
11.99.5	Control Valve Specification Sheet	OPPD	15124
11405-E-144	480 V Switchgear Schematics	OPPD	12332
11405-E-148	Auxiliary Cooling System S.C. & I.	OPPD	11419
11405-E-25	Annunciator Schematics	OPPD	12260
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-38	Waste Disposal System S.C. & I.	OPPD	12273
11405-E-43	Auxiliary Coolant System S.C. & I.	OPPD	12278
11405-E-56	Solenoid Operated Valves Schematic	OPPD	12290
11405-5-57	Aux Coolant System S.C. & I.	OPPD	12291
11408-24-290	Instrument and Control Equipment List	OPPD	24262
1140 - EM-2817/2818	Instrument and Control Equipment List	OPPD	24831
11405-5%-2819/2820	Instrument and Control Equipment List	OPPD	16020
11405-28-2/21/2822	Instrument and Control Equipment List	OPPD	16021
11405-EM-2823/2824	Instrument and Control Equipment List	OPPD	16022
11405-EM-2858/2860	Instrument and Control Equipment List	OPPD	16045
11405-EM-412	Instrument and Control Equipment List	OPPD	23303
11405-EM-413	Instrument and Control Equipment List	OPPD	23304
11405-EM-442	Instrument and Control Equipm it List	OPPD	15372
11405-EM-444	Instrument and Control Equips at List	OPPD	15374
11405-EM-445	Instrument and Control Equipment List	OPPD	15375
11405-EM-446	Instrument and Control Equipment List	OPPD	15376
11405-EM-447	Instrument and Control Equipment List	OPPD	15377
11405-EM-448	Instrument and Control Equipment List	OPPD	15378
11405-EM-449	Instrument and Control Equipment List	OPPD	15379
11405-EM-497	Instrument and Control Equipment List	OPPD	15418
11405-M-1	Cont HVAC Flow Diagram	OPFD	10431
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OF PD	10440
11405-M-119	AC-CCW CEDM Flow Diagram	CPPD	10456
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16292
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954

Page 27 of 91

	말했다. 김 씨는 것은 것은 것은 것은 것은 것은 것을 하는 것을 수가 없다. 것을 하는 것을 하는 것을 수가 없는 것을 수가 없다. 것을 하는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 하는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 수가 없는 것을 수가 없는 것을 수가 없는 것을 수가 없다. 것을 것을 것을 것을 것을 것을 수가 없는 것을 수가 없다. 것을		
Document	Description	Source	GSE#
11405-M-40	AC-CCW System Flow Diagram	OPPD	35367
11405-M-40	AC-CCW System Flow Diagram	OPPD	35368
11405-M-40	AC-CCW System Flow Diagram	UPPD	35369
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7121
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7127
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7128
36B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7129
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7130
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7131
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7134
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7135
136B2331	'ndex/Rev Sheet for Inst. Loop Diagrams	OPPD	7136
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7137
135B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7138
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7139
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7141
136E2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7142
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7144
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7145
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7146
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7147
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7149
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7217
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7218
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7219
136B2341	480V Controls & Elementary Diagrams	OPPD	5521
161F561	Interconnection Diagram	OPPD	9476
161F561	Interconnection Diagram	OPPD	9530
161F561	Interconnection Diagram	OPPD	9616
161F561	Interconnection Diagram	OPPD	9617
161F561	Interconnection Diagram	OPPD	9618
161F561	Interconnection Diagram	PPD	9619
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801

Page 28 of 91

0

3

Document	Description	Source	GSL#
1612500	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
101000	Control Valve Specification Sheet	OPPD	15163
17.01	Control Valve Specification Sheet	OPPD	23947
211	control Valve Specification Sheet	OPPD	43519
211	AC Dining Isometric Diagraw	OPPD	7303
AC-2006	AC Piping Isometric Diagram	OPPD	7307
AC-2008	AC Piping Isometric Diagram	OPPD	7311
AC-2010	AC Piping Isometric Diagram	OPPD	7314
AC-2011	AC Piping Isometric Diagram	OPPD	7321
AC-2015	AC Piping Isometric Diagram	OPPD	7326
AC-2017	AC Piping Isometric Diagram	OPPD	7329
AC-2017	AC Piping Isometric Diagram	OPPD	7330
AC-2017	AC Piping Isometric Diagram	OPPD	7334
AC-2019	AC Piping Isometric Diagram	OPPD	7335
AC-2019	AC Piping Isometric Diagram	OPFD	7339
AC-2022	AC Piping Isometric Diagram	OPPD	7343
AC-2023	AC Piping Isometric Diagram	OPPD	7348
AC-2024	AC Piping Isometric Diagram	OPPD	7349
AC-2025	AC Piping Isometric Diagram	OPPD	7354
AC-2027	AC Piping Isometric Diagram	OPPD	7355
AC-2028	Ar piping Isometric Diagram	OPPD	7360
AC-2078	A liping isometric Diagram	OPPD	7361
AC-2078	AC Piping Isometric Diagram	OPPD	7405
AC-4101	AC Piping Isometric Diagram	OPPD	7406
AC-4102	AC Piping Isometric Diagram	OPPD	7415
AC-4305	AC Piping Isometric Diagram	OPPD	7440
AC-4408	AC Piping Isometric Diagram	OPPD	7441
AC-4409	AC Piping Isometric Diagram	OPPD	7444
AC-4412	AC Piping Isometric Diagram	OPPD	7445
AC-4413	AC Piping Isometric Diagram	OPPD	31487
B-4101	ERF Computer Analog Point Input List	OPPD	37450
B-4102	ERF Computer Analog Point Input List	OPPD	37918
B-4110	QSPDS B Data Link Analog Computer Points	OPPD	37822
B-4111	QSPDS B Data Link Analog Computer Points	OPPD	31022
CP-2800	CC WATER PUMPS DISCHARGE HEADER TEMPERATURE	OPPD	
CP-2801	CC WATER SURGE TANK LEVEL CHANNEL 2801	OFFD	

Page 29 of 91

in raises 20

Document	Description	Source
00 0000	CON SURCE TANK PRESSURE	OPPD
CP-2802	CCW EDOM LETDOWN HEAT EXCHANGER FLOW	OPPD
CP-2831	NUX COOLING LEAVING CRDM'S FLOW	OPPD
CP-2858	CON TENUING CEDM'S TEMPERATURE	OPPD
CP-2860	NO TO CONTAINMENT COOLING UNIT HCV-4000	OPPD
CP-400C	AC TO CONTAINMENT COOLING UNIT HCV-401C	OPPD
CP-401C	AC TO CONTAINMENT COOLING UNIT HOV-402C	OPPD
CP-402C	AC TO CONTAINMENT COOLING UNIT HOV-403C	OPPD
CP-403C	AC TO CONTRINMENT COOLING ONIT HEY 4000	OPPD
CP-412	CCW 60 PSIG PRESSURE SENSOR	OPPD
CP-413	CON 60 PSIG PRESSURE SENSOR	OPPD
CP-416	CC WATER FROM CONTAINMENT COOLING UNIT FLOW	OPPD
CP-417	CC WATER FROM CONTAINMENT COOLING UNIT FLOW	OPPD
CP-418	CC WATER FROM CONTAINMENT COOLING UNIT FLOW	OPPD
CP-419	CC WATER FROM CONTAINMENT COOLING UNIT TEMPERATURE	OPPD
CP-420	CC WATER FROM CONTAINMENT COOLING UNIT TEMPERATURE	OPPD
CP-421	CC WATER FROM CONTAINMENT COOLING UNIT TEMPERATURE	OPPD
CP-422	CC WATER FROM CONTAINMENT COOLING UNIT TEMPERATURE	OPPD
CP-423	CC WATER FROM CONTRINNENT COODING ONTE COOLER FLOW	OPPD
CP-434	AU. COULING WATER FROM ST TANK LEAKAGE COOLER FLOW	OPPD
CP-435	AUX COOLING WATER FROM ST TANK LEAKAGE COOLER FLOW	OPPD
CP-436	AUX COULING WATER FROM SI TANK LEAKAGE COOLER FLOW	OPPD
CP-437	AUX COOLING WATER FROM ST TRACK BEAUTION UNIT FLOW	OPPD
CP-450	CC WATER LEAVING R C POMP SEAL COOLER FLOW	OPPD
CP-451	CC WATER LEAVING R C PUMP SEAL COOLER FLOW	OPPD
CP-452	CC WATER LEAVING R C PUMP SEAL COOLING UNIT FLOW	OPPD
CP-453	CC WATER LEAVING R C PUMP SEAL COOLING ONIT THOM	OPPD
CP-454	CC WATER LEAVING R C PUMP LUBE OIL COOLER FLOW	OPPD
CP-455	CC WATER LEAVING R C PUMP LUBE OIL COOLER FLOW	OPPD
CP-456	CC WATER LEAVING R C PUMP LUBE OIL COOLER FLOW	OPPD
CP-457	CC WATER LEAVING R C PUMP SEAL COULER FLOW	OPPD
CP-458	CC WATER LEAVING PC-3A SEAL COULER TEMPERATORE	OPPD
CP-459	CC WATER LEAVING RC-3B SEAL COOLER TEMPERATURE	OPPD
CP-460	CC WATER LEAVING RC-3C SEAL COULER TEMPERATURE	OPPD
CP-461	CC WATER LEAVING RC-3D SEAL COOLER TEMPERATORE	OPPD
CP-462	CC WATER LEAVING RC-3A LUBE OIL COULER TEMPERATURE	OLLO

10.11

Source

GSE#

Page 30 o. 91

Document	Description		
	CC WATER LEAVING RC-3B LUBE OIL COOLER TEMPERATURE	OPPD	
CP-463	CC WATER LEAVING RC-3C LUBE OIL COOLER TEMPERATURE	OPPD	
CP-464	CC WATER LEAVING RC-OD LUBE TO COOLER TEMPERATURE	OPPD	
CP-465	CC WATER EDAVING NO DO DODU	OPPD	
CP-470	CC WATER FROM COOLING COIL V (48	OPPD	
CP-471	CC WATER FROM COLLING COLL VA-14A TEMPERATURE	OPPD	
CP-472	CC WATER FROM COOLING COIL VA-14R TEMPERATURE	OPPD	
CP-473	CC WATER FROM COULING COIL VA 145 THIN DRIVENER FLOW	OPPD	
CP-476	AUX COULING WATER FROM LETDOWN HEAT EXCHANGER TEMP	OPPD	
CP-477	AUX COOLING WATER FROM LETDOW, IFAT EXCHANGER TEMP	OPPD	
CP-479	AUX COOLING WATER FROM LEIDOW	OPPD	
CP-486	CC WATER FROM SHUTDOWN HEAT . CHANGER AC TR THE	OPPD	
CP-487	CC WATER FROM SHUTDOWN HEAT EACHANGER AC AD TELL	OPPD	
CP-493	CC WATER FROM HEAT EXCHANGER A TIA TEMPERATURE	OPPD	
CP-494	CC WATER FROM HEAT EXCHANGER ACTIO IEMP RATCAL	OPPD	
CP-495	CC WATER FROM HEAT EXCHANGER AC 10 TEMPERATURE	OPPD	
CP-496	CC WATER FROM HEAT EXCHANGER M - 10 IEMPERATORE	OPPD	
CP-498	CC WATER PUMP DISCHARGE FLOW	OPPD	
CP-499	CC WATER PUMP DISCHARGE PRESSURE	OPPD	10473
D-23866-210-111	Reactor Coolant Pump P&ID	OPPD	45591
D-23866-210-111	Reactor Coolant Pump PaiD	OPPD	45592
D-23866-210-111	Reactor Coolant Pump PaiD	OPPD	45593
D-23866-210-111	Reactor Coolant Pump Palb	OPPD	22449
D-4218	Stator And Cooling Panel Al-13: Wiring Diagram	OPPD	10476
E-23866-210-120	Chemical and Volume Control	OPPD	10477
E-23866-210-120	Chemical and Volume Control	OPPD	35738
IC-184	Piping Isometric Diagram	OPPD	35767
IC-213	Piping Isometric Diagram	OPPD	35768
IC-214	Piping Isometric Diagram	OPPD	35769
IC-215	Piping Isometric Diagram	OPPD	25770
IC-216	Piping Isometric Diagram	OPPD	25771
IC-217	Piping Isometric Diagram	OPPD	35772
TC-220	Piping Isometric Diagram	OPPD	35722
IC-223	Piping Isometric Diagram	OPPD	35773
IC-224	Piping Isometric Diagram	OPPD	35774
TC-320	Piping Isometric Diagram	OPPD	35669

Document

IC-224

IC-320

Description

GSE# Source

Page 31 of 91

Document	Description	Source	GSE#
IC-323	Piping Isometric Diagram	OPPD	35872
IC-324	Piping Isometric Diagram	OPPD	35873
IC-325	Piping Isometric Diagram	OPPD	35874
IC-328	Piping Isometric Diagram	OPPD	35877
IC-351	Piping Isometric Diagram	OPPD	35898
IC-412	Piping Isometric Diagram	OPPD	35956
IC-442	Piping Isometric Diagram	OPPD	35985
IC-454	Piping Isometric Diagram	OPPD	35997
IC-91	Piping Isometric Diagram	OPPD	35646
IC-92	Piping Isometric Diagram	OPPD	35647
IC-93	Piping Isometric Diagram	OPPD	35648
IC-94	Piping Isometric Diagram	OPPD	35649
RW-4123	Piping Isometric Diagrams	OPPD	8714
RW-4124	Piping Isometric Diagrams	OPPD	8716
RW-4125	Piping Isometric Diagrams	OPPD	8719
RW-4126	Piping Isometric Diagrams	OPPD	8722
RW-4127	Piping Isometric Diagrams	OPPD	8724
RW-4128	Piping Isometric Diagrams	OPPD	8726
RW-4129	Piping Isometric Diagrams	OPPD	8728
RW-4130	Piping Isometric Diagrams	OPPD	8730
RW-4131	Piping Isometric Diagrams	OPPD	8732
RW-4132	Piping Isometric Diagrams	OPPD	8734
RW-4133	Piping Isometric Diagrams	OPPD	8736
RW-4134	Piping Isometric Diagrams	OPPD	8738
RW-4135	Piping Isometric Diagrams	OPPD	8740
RW-4136	Piping Isometric Diagrams	OPPD	8742
RW-4137	Piping Isometric Diagrams	OPPD	8744
RW-4138	Piping Isometric Diagrams	OPPD	8746
SPEC-287	Leakage Cooler- Aux Cooling Relief Valve	OPPD	23957
ST-ISI-CC-1	Component Cooling Inservice Inspection	OPPD	
VFCS0233	CCW Flow Bistable FC-2817 Setpoint	OPPD	
VFCS0234	CCW Flow Bistable FC-2818 Setpoint	OPPD	
VFCS0235	CCW Flow Bistable FC-2819 Setpoint	OPPD	
VFCS0236	CCW Flow Bistable FC-282C Se point	OPPD	
VFCS0237	CCW Flow Bistable FC-2821 Setpoint	OPPD	

0

Docum ent	Description	Source	GSE#
172020000	CCW Flow Ristable FC-2822 Setpoint	OPPD	
VFC50236	CCW Flow Bistable FC-2823 Setpoint	OPPD	
VFCS0239	CCW Flow Bistchle FC-2824 Setpoint	OPPD	
VFCS0240	AC-CCW CEDM Flow Diagram	OPPD	10456
11405-M-119	Control Valve Specification Sheet	OPPD	15043
11.52	Ago V Switchgear Schematics	OPPD	12333
11405-E-145	Cont Durge Fan VA-76%77 Schematic	OPPD	12518
11405-E-200	Cont Purge Lo Flow Valve Schematic	OPPD	20351
11405-E-201	ANNUNCTATOR SCHEMATICS	OPPD	12260
11405-E-25	Annunciator Schematics	OPPD	12266
11405-E-31	Ventilation System S.C. & T.	OPPD	12268
11405-E-33	Waste Disposal System S.C. & T.	OPPD	12270
11405-E-35	Waste Disposal System S.C. & I.	OPPD	12273
11405-E-38	Dest Accident Monitoring Panel AI-65A	OPPD	23655
11405-E-402	Post Accident Monitoring Panel AI-65B	OPPD	23658
11405-E-403	Ho Durge (Apoluzor Suctom S.C. & T.	OPPD	12284
11405-E-49	H2 Purge/Analyzer System S.C. & T	OPPD	12287
11405-E-53	Ventilation System S.C. & I.	OPPD	12288
11405-E-54	Ventilation System S.C. a 1.	OPPD	15612
11405-EM-738	Instrument and Control Equipment List	OPPD	15613
11405-EM-739	Instrument and Control Equipment List	OPPD	15614
11405-EM-740	Instrument and control Equipment List	OPPD	15615
11405-EM-741	Instrument and Control Equipment List	OPPD	22988
11405-EM-742	Instrument and Control Equipment List	OPPD	15650
11405-EM-765	Instrument and Control Equipment List	OPPD	24087
11405-EM-783/786	Instrument and Control Equipment List	OPPD	16821
11405-EM-861	Instrument and Control Equipment List	OPPD	15705
11405-EM-866/867	Instrument and Control Equipment List	OPPD	43619
11405-EM-887	Instrument and Control Equipment List	OPPD	10431
11405-M-1	Cont HVAC Flow Diagram	C PD	16292
11405-M-264	Aux Bldg & Containment Instrument All Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	35367
11405-M-40	AC-CCW System Flow Diagram	OPPD	10436
11405-M-6	Waste Disposal System Flow Diagram	OFFD	10100

Page 33 of 91

Document	Description	Source	GSE#
11405-M-7	Waste Disposal System Flow Diagram	OPPD	10437
13007.54-ESK-11C	125VDC Panel AI-65A H2 Analyzer Elementary	OPPD	36902
13007.54-ESK-11D	125VDC Panel AI-65B H2 Analyzer Elementary	OPPD	36903
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7150
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7200
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7201
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7206
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7207
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7208
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7211
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7212
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7213
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7214
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7216
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7220
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7257
136B2341	480V Controls & Elementary Diagrams	OPPD	5521
136B2493	Elem. Diagram - Elect. Control Valves & Pumps	OPPD	24062
161F561	Interconnection Diagram	OPPD	9476
161F561	Interconnection Diagram	OPPD	22471
161F561	Int_rconnection Diagram	OPPD	22472
161F561	Interconnection Diagram	OPPD	24030
161F561	Interconnection Diagra	OPPD	24031
161F561	Interconnection Diagram	OPPD	43158
161F561	Interconnection Diagram	OPPD	43514
161F573	Ventilation Control Aux Panel, AI-44	OPPD	9706
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
AOP-17	Loss of Instrument Air Procedure	OPPD	
C-1265	Joy Series 1000 Axivane Fan Model 25 Manual	OPPD	20680
C-1300	Joy Series 1000 Axivane Fan Model 29 Manual	OPPD	20682
C-5102	Joy Series 2000 Axivane Fan Model 36 Manual	OPPD	20683
C-5134	Joy Series 2000 Axivane Fac Model 48 Manual	OPPD	20686

Page 34 of 91

0

Document	Description	Source	GSE#
C-5142	Joy Series 2000 Axivane Fan Model 60 Manual	OPPD	20687
CP-384	CONTAINMENT POST ACCIDENT WATER LEVEL	OPPD	
CP-387	CONTAINMENT POST-ACCIDENT WATER LEVEL-CHANNEL 387	OPPD	
CP-388	CONTAINMENT POST-ACCIDENT WATER LEVEL-CHANNEL 388	OPPD	
CP-599	CONTAINMENT SUMP LEVEL	OPPD	
CP-600	CONTAINMENT SUMP LEVEL	OPPD	
CP-700	CONTAINMENT AIR COOLING FAN PRESSURE	OPPD	
CP-701	CONTAINMENT AIR COOLING FAN PRESSURE	OPPD	
CP-702	CONTAINMENT ALR CUOLING FAN PRESSURE	OPPD	
CP-703	CONTAINMENT AIR COLLING FAN PRESSURE	OPPD	
CP-704	NUCLEAR DETECTOR WELL COOLING FAN PRESSURE	OPPD	
CP-705	NUCLEAR DETECTOR WELL COOLING FAN PRESSURE	OPPD	
CP706	CONTAINMENT AIR COOLING FILTER D PRESSURE	OPPD	
CP-707	CONTAINMENT AIR COOLING FILTER D PRESSURE	OPPD	
CP-708	CONTAINMENT AIR COOLING COIL D PRESSURE	OPPD	
CP-709	CONTAINMENT AIR COOLING COIL D PRESSURE	OPPD	
CP-710	CONTAINMENT AIR COOLING COIL D PRESSURE	OPPD	
CP-711	CONTAINMENT AIR COOLING COIL D PRESSURE	OPPD	
CP-714	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 714	OPPD	
CP-715	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 715	OPPD	
CP-716	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 716	OPPD	
CP-717	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 717	OPPD	
CP-718	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 718	OPPD	
CP-719	CONTAINMENT COOLING UNIT DISCH JE TEMP CHANNEL 719	OPPD	
CP-720	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 720	OPPD	
CP-721	CONTAINMENT COOLING UNIT DISCHARGE TEMP CHANNEL 721	OPPD	
CP-722	CONTAINMENT AIR COOLING UNIT DISCHARGE TEMPERATURE	OPPD	
CP-723	CONTAINMENT AIR COOLING UNIT DISCHARGE TEMPERATURE	OPPD	
CP-732A	NUCLEAR DETECTOR WELL COOLING TEMP. CP-732A	OPPD	
CP-732B	NUCLEAR DETECTOR WELL COOLING TEMP. CP-732B	OPPD	
CP-733A	NUCLEAR DETECTOR WELL COOLING TEMP. CP-733A	OPPD	
CP-733B	NUCLEAR DETECTOR WELL COOLING TEMP. CP-733B	OPPD	
CP-734A	NUCLEAR DETECTOR WELL COOLING TEMP. CP-734A	OPPD	
CP-7348	NUCLEAR DETECTOR WELL COOLING TEMP. CP-734B	OPPD	
CP-735A	NUCLEAR DETECTOR WELL COOLING TEMP. CP-735A	OPPD	

Page 35 of 91

Document	Description	Source
CP-736A	NUCLEAR DETECTOR WELL COOLING TEMP. CP-736A	OPPD
CP~736B	NUCLEAR DETECTOR WELL COOLING TEMP. CP-736B	OPPD
CP-737A	NUCLEAR DETECTOR WELL COOLING TEMP, CP-737A	OPPD
CP-737B	NUCLEAR DETECTOR WELL COOLING TEMP. CP-737B	OPPD
CP-738	CEA MECHANISM AIR TEMPERATURE CHANNEL 738	OPPD
CP-739	CEA MECHANISM AIR TEMPERATURE CHANNEL 739	OPPD
CP-740	CEA MECHANISM AIR TEMPERATURE CHANNEL 740	OPPD
CP-741	CEA MECHANISM AIR TEMPERATURE CHANNEL 741	OPPD
CP-743	CONTAINMENT PRESSURE SWITCH	OPPD
CT-744	CONTAINMENT PRESSURE	OPPD
CP-745	CONTAINMENT PRESSURE	OPPD
CP-755	CONTAINMENT FURGE AIR DUCT FLOW	OPPD
CP-756	CONTAINMENT PURGE BY-PASS DILUTION FLOW	OPPD
CP-758	DISCHARGE STACK TOTAL EXHAUST FLOW CHANNEL 758	OPPD
CP-759	CONTAINMENT PURGE AIR THRU HEATING COIL FLOW	OPPD
CP-750	CONTAINMENT PURGE AIR THRU HEATING COIL FLOW	OPPD
CP-783	CONTAINMENT PRESSURE CHANNEL	OPPD
CP-784	CONTAINMENT PRESSURE CHANNEL	OPPD
CP-785	CONTAINMENT PRESSURE CHANNEL	OPPD
CP-786	CONTAINMENT PRESSURE CHANNEL	Oppr
CP-861	CONTAINMENT DEWPOINT	OPPD
CP-866	CONTAINMENT AIR CHARCOAL FILTER UNIT TEMPERATURE	OPPD
CP-867	CONTAINMENT AIR CHARCOAL FILTER UNIT TEMPERATURE	OPPD
CP-887	CONTAINMENT AMBIENT AIR TEMPERATURE CHANNEL 887	OPPD
CP-888	CONTAINMENT AMBIENT AIR TEMPERATURE CHANNEL 888	OPPD
CP-889	CONTAINMENT AMBIENT AIR TEMPERATURE CHANNEL 889	OPPD
CP-890	CONTAINMENT AMBIENT AIR TEMPERATURE CHANNEL 890	OPPD
CP-A/742-1	CONTAINMENT PRESSURE	OPPD
CP-A, 742-2	CONTAINMENT PRESSURE	OPPD
CP-A/765	CONTAINMENT PRESSURE	OPPD
CP-B/742-1	CONTAINMENT PRESSURE	OPPD
CP-B/742-2	CONTAINMENT PRESSURE	OPPD
CP-B/765	CONTAINMENT PRESSURE	OPPD
CP-C/742-1	CONTAINMENT PRESSURE	OPPD
CP-C/742-2	CONTAINMENT PRESSURE	OPPD

GSE#

Page 36 of 91

Document	Description	Source	GSE#
an 0/2/5	CONTAINMENT DRESSURE	OPPD	
CP-C/765	CONTRAINMENT DRESSURE	OPPD	
CP-D/742-1	CONTAINMENT PRESSURE	OPPD	
CP-D/ 742-2	CONTAINMENT DRESSURE	OPPD	
CP-D/765	Plant Electrical System One Line Diagram	OPPD	12234
F1G.8.1-1	Dining Teometric	OPPD	36363
SPEC 403	Fiping Isomecification Sheet	OPPD	45647
SPEC 580	Containment Ventilation Inservice Inspection	OPPD	
ST-ISI-VA-1	Containment Ventriation Inservice Inspection	OPPD	
ST-ISI-WD-1	Containment waste Disposal inscribed inspectation	OPPD	
VFCS0259	Fort calnoun Data volu a keply	OPPD	9020
WD-4034	Piping isometric Diagrams	OPPD	14971
11.06	Control valve Specification Sheet	OPPD	43.70
11.06	Control valve specification sheet	OPPD	14995
11.24	Control Valve Specification Steat	OPPD	15012
11.33C	Control Valve Specification Sheet	OPPD	15076
11.71	Control Valve Specification Sheet	OPPD	15080
11.73	Control Valve Specification Sheet	OPPD	43076
11.73	Control Valve Specification Sneet	OPPD	15114
11.95	Control Valve Specification Sneet	OPPD	12538
11405-E-271	Water Treatment System S.C. & I - Sheet I	OPPD	12539
11405-E-272	Water Treatment System S.C. & 1 - Sheet 2	OPPD	12598
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12292
11405-E-58	Demin Water system S.C. & I.	OPPD	15880
11405-EM-1515/1518	Instrument and Control E., oment List	OPPD	15885
11405-EM-1528/1532	Instrument and Control Equipment List	OPPD	15801
11405-EM-1535/1540	Instrument and Control Equipment List	OPPD	15003
11405-EM-1555/1556	Instrument and Control Equipment List	OPPD	15903
11405-EM 1650	Instrument and Control Equipment List	OPPD	10440
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OPPD	10440
11405-M-100	Raw Water Flow Diagram	OPPD	10454
11405-M-13	Plant Air Flow Diagram	OPPD	10443
11405-M-254	Condensate Flow Diagrom	OPPD	10460
11405-M-257	Flow Diagram Circulating Water	OPPD	10463
11405-M-258	TPCW Flow Diagram	OPPD	10464

2.1

Page 37 of 91

- 0

Document	Description	Source	GSE#
11405 M-250	Flow Diagram Potable & Service Water	OPPD	10465
71405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-204	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-0-204	Aux Bidg & Containment Instrument Air Diagram	OPPD	16955
11405-M-264	Dominuralized Water System Flow Diagram	OPPD	21220
11405-M-3	Dominovalized Water System Flow Diagram	OPPD	10434
11405-M-4	Domineralized Water System Flow Diagram	OPPD	10435
11405-M-5	Index/Pow Sheet for Inst Loop Diagrams	OPPD	7111
13052331	Flow Diac - Annunciator Schemes Al & A2	OPPD	9724
161F5/5	Elem. Diag Annunciator Schemes Al (A2	OPPD	9726
161F575	Control Value Specification Sheet	OPPD	45146
554	Control Valve Specification Sheet	OPPD	45682
596	Control valve Specification Sheet	Westingh	nouse
A21ENGR	Annunciator A-66-A Engraving List	Westingh	nouse
A9ENGR	ANNUNCIALOF A-00-A ENGLAVING DISC	OPPD	
CP-1515	CALIBRATION PROCEDURE	OPPD	
CP-1516	DEMINERALIZED WATER SURGE TANK DEVILS AND FOR SUBTROD	OPPD	
CP-1529	PRIMARY WATER STORAGE TANK LEVEL	OPPD	
CP-1530	CALIBRATION PROCEDURE	OPPD	
CP-1536	CALIBRATION PROCEDURE	OPPD	
CP-1537B	VACUUM DEALKATOR LEVEL	OPPD	
CP-1538	VACUUM DEAERATUR ADSOLUTE PRESSORE	OPPD	
CP-1555	PRIMARY WATER BOUSTER FUMP PRESSURE	OPPD	
CP-1556	DEAERATED WATER HEADER PRESSURE	OPPD	
CP-1650	CALIBRATION PROCEDURE	OPPD	8376
DW-4064	Piping Isometric Diagrams	OPPD	8377
DW-4067	Piping Isometric Diagrams	OPPD	
DW-40A, 40B	Pump Curve - DW-40A,40B	OPPD	
DW-41A, 41B	Pump Curve - DW-41A,41B	OPPD	
DW-43A, 43B	Pump Curve - DW-43A,43B	OPPD	8409
DW-4407	Pump Curve - DW-43A,43B	OPPD	0405
DW-8A & B	Pump Curve DW-8A,8B	OPPD	35689
IC-135	Piping Isometric Diagrams	OPPD	35917
IC-370	Piping Isometric Diagrams	OPPD	35918
IC-371	Piping Isometric Diagrams	OPPD	35921
TC-374	Piping Isometric Diagrams	UPPD	33321

Page 38 of 91

Document	Description	Source	G: 5#
IC-378	Piping Isometric Diagrams	OPPD	35925
IC-398	Piping Isometric Diagrams	OPPD	35943
IC-403	Piping Isometric Diagrams	OPPD	35948
SPEC 763	Instrument Loop for Control Valves	OPPD	15549
ST-ISI-DW-1	Demineralized Water System Inservice Inspection	OPPD	
11.51	Control Valve Specification Sheet	OPPD	15041
11.55E	Control Valve Specification Sheet	OPPD	15052
11405-A-257	Control Valve Specification Sheet	OPPD	12185
11405-A-5	Control Valve Specification Sheet	OPPD	12162
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-336	Elem. Diag - Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-341	Secondary Plant Misc. Equipment S.C. & I -Sheet 2	OPPD	12603
11405-E-35	Waste Disposal System S.C. & I.	OPPD	12270
11405-E-36	Waste Disposal System S.C. & I.	OPPD	12271
11405-E-37	Waste Disposal System S.C. & I.	OPPD	12272
11405-E-38	Waste Dispocal System S.C. & I.	OPPD	12273
11405-EM-502/503	Instrument and Control Equipment List	OPPD	15426
11405-EM-510	Instrument and Control Equipment List	OPPD	15438
11405-EM-511/512	Instrument and Control Equipment List	OPPD	15438
11405-EM-517	Instrument and Control Equipment List	OPPD	35460
11405-EM-518	Instrument and Control Equipment List	OPPD	35461
11405-EM-519	Instrument and Control Equipment List	OPPD	35462
11405-EM-520	Instrument and Control Equipment List	OPPD	35463
11405-EM-547/556	Instrument and Control Equipment List	OPPD	15463
11405-EM-565/567	Instrument and Control Equipment List	OPPD	20609
11405-EM-568	Instrument and Control Equipment List	OPPD	15481
11405-EM-569	Instrument and Control Equipment List	OPPD	15482
11405-EM-570	Instrument and Control Equipment List	OPPD	15483
11405-EM-571	Instrument and Control Equipment List	OPPD	15484
11405-EM-572	Instrument and Control Equipment List	OPPD	15485
11405-EM-573	Instrument and Control Equipment List	OPPD	15486
11405-EM-577	Instrument and Control Equipment List	OPPD	15487
11405-EM-578	Instrument and Control Equipment List	OPPD	15488
11405-EM-579	Instrument and Control Equipment List	OPPD	15489

Page 39 of 91

Document	Description	Source	GSE#
11405-EM-580	Instrument and Control Equipment List	OPPD	20604
11405-EM-581	Instrument and Control Equipment List	OPPD	20605
11405-EM-582	Instrument and Control Equipment List	OPPD	20606
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OPPD	10440
11405-M-257	Flow Diagram Circulating Water	OPPD	10463
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16292
11405-M-204	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-42	Auxiliary Gas Flow Diagram	OPPD	10450
11405-M-6	Waste Disposal System Flow Diagram	OPPD	10436
11405-M-7	Waste Disposal System Flow Diagram	OPPD	10437
11405-M-8	Waste Disposal System Flow Diagram	OPPD	10438
11405-M-98	Waste Disposal System Flow Diagram	OPPD	10452
13007.54-EE-54J	CHEST & SHELL WARMING	OPPD	42793
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7224
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
161F576	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9752
A2ENGR	Annunciator A-2 Engraving List	Westingh	ouse
Auxiliary Building	Sumps Curve, OPP-0204	OPPD	
CP-501	RCDT LEVEL	OPPD	
CP-502	RCDT LEVEL	OPPD	
CP-503	RCD1' PRESSURE	OPPD	
CP-510	WASTE GAS COMPRESSOR START CONTROL PRESSURE SWITCH	OPPD	
CP-511	WASTE GAS COMPRESSOR TRIP AND VENT HEADER ALARM SWITCH	OPPD	
CP-512	WASTE GAS COMPRESSOR STANDBY START CONTROL SWITCH	OPPD	
CP-517	GAS DECAY TANK WD-29A PRESSURE	OPPD	
CP-518	GAS DECAY TANK WD-29B PRESSURE	OPPD	
CP-519	GAS DECAY TANK WD-29C PRESSURE	OPPD	
CP-520	GAS DECAY TANK WD-29C PRESSURE	OPPD	
CP-565	RCOM 21 - SUMP LEVEL	OPPD	
CP-566	ROOM 22 - SUMP LEVEL	OPPD	
CP-567	ROOM 23 - SUMP LEVEL	OPPD	
CP-568	AUXILIARY BUILDING SUMP ROOM 21 LEVEL	OPPD	
CP-569	AUXILIARY BUILDING SUMP ROOM 21 LEVEL	OPPD	
CP-570	AUXILIARY BUILDING SUMP AREA 22 LEVEL	OPPD	

Document	Description	Source	GSE#
CP-571	AUXILIARY BUILDING SUMP ROOM 22 LEVEL	OPPD	
CP-572	AUX. BUILDING SUMP ROOM 23 LEVEL	OPPD	
CP-573	AUXILIARY BUILDING SUMP ROOM 23 LEVEL	OPPD	
CP-577	WASTE HOLDUP TANK A LEVEL	OPPD	
CP-578	WASTE HOLDUP TANK B LEVEL	OPPD	
CP-579	WASTE HOLDUP TANK C LEVEL	OPPD	
E-23866-210-110	Reactor Coolant System	OPPD	10475
IC-253	Piping Isometric Diagrams	OPPD	35802
RCDT Tank Curve,	OPP-0159	OPPD	
SD I-15	Waste Disposal System Description	OPPD	
SD I-16	Waste Disposal System Description	OPPD	
ST-ISI-WD-1	Waste Disposal System Inservice Inspection	OPPD	
Spent Regenerant	Tank Curve, OPP-0164	OPPD	
VFCS0248	Pump Curves for WD-2A/B	OPPD	
VFCS0262	Turbine Building Sump Data	OPPD	
VFCS0278	Spent Regen Tank Level Alarms	OPPD	
Waste Hold Up	Tank Curve, OPP-016	OPPD	
WD-4303	Piping Isometric Diagrams	OPPD	9216
WDS Student	Handbook, OPP-0659	OPPD	
11405-A-5	Control Valve Specification Sheet	OPPD	12162
11405-A-8	Control Valve Specification Sheet	OPPD	12165
11405-E-25	ANNUNCIATOR SCHEMATICS	OPPD	12260
11405-E-43	Auxiliary Coolant System S.C. & I.	OPPD	12278
11405-EM-2842	Instrument and Control Equipment List	OPPD	16029
11405-EM-2843/2844	Instrument and Control Equipment List	OPPD	16030
11405-EM-2845	Instrument and Control Equipment List	OPPD	16031
11405-EM-2846	Instrument and Control Equipment List	OPPD	16032
11405-EM-408	Instrument and Control Equipment List	OPPD	21452
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OPPD	10440
11405-M-11	Spent Fuel Pool Cooling System Flow Diagram	OPPD	10441
11405-M-37	Instrument Detail-Sheet 3	OPPD	10445
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
CP-2842	COOLING TO STORAGE POOL DEMINERALIZER FLOW	OPPD	
CP-2843	STORAGE POOL DEMINERALIZER DIFFERENTIAL PRESSURE	OPPD	
CP-2844	STORAGE POOL FILTER DIFFERENTIAL PRESSURE	OPPD	

Page 41 of 91

Document	Description	Source	GSE#
CP-2845	AUX. COOLING LEAVING STORAGE POOL HX TEMPERATURE	OPPD	
CP-2846	SPENT FUEL POOL LEVEL	OPPD	
CP-408	SPENT FUEL POOL TEMPERATURE INDICATION RECORDER	OPPD	
E-23866-210-120	Chemical and Volume Control	OPPD	10476
Fig. 8.1-1	Plant Electrical System One Line Diagram	OPPD	12234
OP-10-A1-42	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A1-44	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A1-48	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A1-49	Operating Procedure - Annunciator Response Procedure	OPPD	
System Description	I-13 Spent Fuel Pool System Description	OPPD	
11.89	Control Valve Specification Sheet	OPPD	15107
11.89	Control Valve Specification Sheet	OPPD	43161
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-59	Sampling, N2, H2 & Air Systems S.C. & I.	OPPD	12293
11405-EM-2600	Instrument and Control Equipment List	OPPD	15985
11405-EM-2601	Instrument and Control Equipment List	OPPD	15986
11405-EM-2602	Instrument and Control Equipment List	OPPD	15987
11405-M-264	Aux Bldg & Contairment Instrument Air Diagram	OPPD	16292
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-42	Auxiliary Gas Flow Diagram	OPPD	10450
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7177
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
CP-2600	N2 GAS HEADER PRESSURE	OPPD	
CP-2601	N2 GAS HEADER PRESSURE	OPPD	
CP-2602	HYDROGEN GAS HEADER PRESSURE	OPPD	
NG-2058	Piping Isometric Diagrams	OPPD	8619
NG-2062	Piping Isometric Diagrams	OPPD	8623
NG-4147	Piping Isometric Diagrams	CPPD	8647
NG-4309	Piping Isometric Diagrams	OPPD	8660
SD I-14	Bottled Gas System Description	OPPD	
ST-ISI-NG-1	Bottled Gas Inservice Inspection	OPPD	
11405-A-260	Control Valve Specification Sheet	OPPD	12191
11405-A-251	Control Valve Specification Sheet	OPPD	12192
11405-A-263	Control Valve Specification Sheet	OPPD	12194

Document	Description	Source	GSE#
11405-E-261	Turbine Generator Auxiliary System S.C. & I -Sheet 5	OPPD	12528
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-EM-1301	Instrument and Control Equipment List	OPPD	15855
11405-EM-1302	Instrument and Control Equipment List	OPPD	15856
11405-EM-1303	Instrument and Control Equipment List	OPPD	15857
11405-EM-1304	Instrument and Control Equipment List	OPPD	15858
11405-EM-3200/3277	Instrument Loop Elementary	OPPD	16092
11405-EM-957/958	Instrument and Control Equipment List	OPPD	15734
11405-EM-961/962	Instrument and Control Equipment List	OPPD	15738
11405-EM-965/966	Instrument and Control Equipment List	OPPD	15742
11405-EM-968/969	Instrument and Control Equipment List	OPPD	15745
11405-EM-970	Instrument and Control Equipment List	OPDD	15747
11405-EM-972	Instrument and Control Equipment List	OFFU	15757
11405-EM-973	Instrument and Control Equipment List	OPPD	15753
11405-M-252	Main Steam Flow Diagram	OPPD	10458
11405-M-255	Heater Drain Flow Diagram	OPPD	10461
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-265	Flow Diagram, Misc Drain, Chem Feed, T.G. Condenser	OPPD	10471
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7153
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7158
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7165
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7166
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7167
136B2331	Index/Rev Steet for Inst. Loop Diagrams	OPPD	7168
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7169
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7174
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7175
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7183
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7240
136B2432	Elementary Diagram - Switch Development	OPPD	5723
136B2432	Elementary Diagram - Switch Development	OPPD	5724
136B2492	480V Controls & Elementary Diagrams	OPPD	5756
161F561	Interconnection Diagram	OPPD	9476

Page 43 of 91

Docu ant	Description	Source	GSE#
161F561	Interconnection Diagram	OPPD	9555
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9724
233R964	Turbine Control Diagram	OPPD	10000
233R964	Turbine Conti ' Diagram	OPPD	31065
236R548	EHC Load Contial Unit	OPPD	10007
738E345	Steam Turbine Sealing Steam P&ID	OPPD	6817
A10ENGR	Annunciator A-10 Engraving List	Westingh	ouse
A9ENGR	Annunciator A-66-A Engraving List	Westingh	ouse
B-4101	ERF Computer Analog Point Input List	OPPD	31487
CP-047	LIQUID DILUTION (SL-16 GROSS GAMMA DETECTOR)	OPPD	
CP-919	TURBINE FIRST STAGE PRESSURE	OPPD	
CP-920	TURBINE FIRST STAGE PRESSURE	OPPD	
CP-939	THROTTLE STEAM PRESSURE	OPPD	
CP-943	THROTTLE STEAM PRESSURE AT TURBINE	OPPD	
CP-944	TURBINE INTERMEDIATE PRESSURE	OPPD	
CP-945	TUR. NE FIRST STAGE PRESSURE	OPPD	
CP-946A	TURBINE FIRST STAGE PRESSURE	OPPD	
CP-946C	TURBINE FIRST SI GE PRESSURE	OPPD	
CP-953A	STEAM ENTERING STEAM SEPARATOR NO. 1 PRESSURE	OPPD	
CP-953B	STEAM ENTERING STEAM SEPARATOR NO. 2 PRESSURE	OPPD	
CP-953C	STEAM ENTERING STEAM SEPARATOR NO. 3 PRESSURE	OPPD	
CP-953D	STEAM ENTERING STEAM SEPARATOR NO. 4 PRESSURE	OPPD	
CP-954A	STEAM LEAVING STEAM SEPARATOR NO. 1 PRESSURE	OPPD	
CP-954B	STEAM LEAVING STEAM SEPARATOR NO. 2 PRESSURE	OPPD	
CP-954C	STEAM LEAVING STEAM SEPARATOR NO. 3 PRESSURE	OPPD	
CP-954D	STEAM LEAVING STEAM SEPARATOR NO. 4 PRESSURE	Dado	
CP-956A	COMBINED INTERMEDIATE VALVE TO CONDENSER PRESSURE	OPPD	
CP-956B	COMBINED INTERMEDIATE VALVE TO CONDENSER PRESSURE	OPPD	
CP-958	EXTRACTION TO HEATER 6A AND B PRESSURE	OPPD	
CP-962	EXTRACTION TO HEATER 5A AND B PRESSURE	OPPD	
CP-966	EXTRACTION TO HEATER 4A AND B PRESSURE	OPPD	
CP-969A	EXTRACTION TO HEATER 3A PRESSURE	OPPD	
CP-969B	EXTRACTION TO HEATER 3B PRESSURE	OPPD	
CP-971A	EXTRACTION TO HEATER 2A PRESSURE	OPPD	
CP-971B	EXTRACTION TO HEATER 28 PRESSURE	OPPD	

0

Document	Description	Source	G5E#
00-0733	EXTRACTION TO HEATER 1A PRESSURE	OPPD	
CP-973A	EXTRACTION TO HEATER 1B PRESSURE	OPPD	
CP-973B	Analog Input Lists	OPPD	1158
SB-400-065	Fort Calhour Data Void & Reply	OPPD	
VFC50104	Turbine Cenerator Auxiliary System S.C. & I -Sheet 4	OPPD	12527
11405-E-LOI	Turbine Cenerator Auxiliary System S.C. & I -Sheet 5	OPPD	12528
11405-E-201	Flow Diag - Anunciator Schematics	OPPD	12598
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12599
11 15-E-337	Instrument and Control Equipment List	OPPD	15743
11405-EM-967	Instrument and Control Equipment List	OPPD	15765
11405-EM-981	Schument and concror Equipment bibt	OPPD	10458
11405-M-252	Plan Diagram Dotable & Service Water	OPPD	39564
11405-M-260	Flow Diagram Focable a Service nated	OPPD	7111
136B2331	The Dies Annuncistor Schemes Al & A2	OPPD	9725
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9726
161F575	Elem. Diag Annunciator Schemes Al & A2	OPFD	9729
161F 75	Elem. Diag Annunciator Schemes Ar a Az	Westing	house
AllENGR	Annunciator A-11 Engraving List	Westing	house
A13ENGR	Annunciator A-13 Englaving List	Westing	house
A21ENGR	Annunciator A-21 Engraving List	OPPD	
CP-1050	AUX. STEAM TO UNIT HEATERS PRESSURE	OPPD	
CP-981	EXTRACTION STEAM TO AUXILIARY STEAM FLOW	OPPD	12525
11405-E-258	Turbine Generator Auxiliary System S.C. & 1 -Sheet 2	OPPD	12598
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	21344
11405- 1-3324	Instrument and Control Equipment List	OPPD	21485
11405-EM-3325	Instrument and Control Equipment List	OPPD	21484
11405-EM-5096	Instrument and Control Equipment List	OPPD	21404
11405-EM-5097	Instrument and Control Equipment List	OPPD	21400
11405-EM-5098	Instrument and Control Equipment List	OPPD	21401
11405-EM-5099	Instrument and Control Equipment List	OPPD	24102
11405-EM-5100	Instrument and Control Equipment List	OPPD	21403
11405-EM-5101	Instrument and Control Equipment List	OPPD	21040
11405-EM-5102	Instrument and Control Equipment List	OPPD	214/9
11405-EM-5105	Instrument and Control Equipment List	OPPD	21488
11405-M-258	TPCW Flow Diagram	OPPD	10464
114D6776	Waste Disposal System Flow Diagram	OPPD	10805

Page 45 of 91

Document	Description	Source	GSE#
114D6794	Waste Disposal System Flow Diagram	OPPD	6723
114D6794	Waste Disposal System Flow Diagram	OPPD	6724
114D7327	Waste Disposal System Flow Diagram	OPPD	6725
115D3329	Waste Disposal System Flow Diagram	OPPD	6727
115D3390	Waste Disposal System Flow Diagram	OPPD	6728
117D9188	Waste Disposal System Flow Diagram	OPPD	6730
118D2189	Waste Disposal System Flow Diagram	OPPD	6731
118D2198	Waste Disposal System Flow Diagram	OPPD	6732
118D2198	Waste Disposal System Flow Diagram	OPPD	6733
125D2012	CHEST/SHELL WARMING	OPPD	6734
125D2016	CHEST/SHELL WARMING	OPPD	6735
125D2578	CHEST/SHELL WARMING	OPPD	6736
126C2942	Fort Calhoun 125V DC Load Study	OPPD	6553
126C3309	EHC Wiring Monitor Circuit Schematic	OPPD	6555
126C3309	EHC Wiring Monitor Circuit Schematic	OPPD	6556
126C3309	EHC Wiring Monitor Circuit Schematic	OPPD	6557
126C3309	EHC Wiring Monitor Circuit Schematic	OPPD	6558
12003309	EHC Wiring Monitor Circuit Schematic	OPPD	6560
126C3309	EHC Wiring Monitor Circuit Schematic	OPPD	6595
126C3310	EHC Control Panel Schematic	OPPD	1079
126C3310	EHC Control Panel Schematic	OPPD	1079
126C3310	EHC Control Panel Schematic	OPPD	1079
126C3310	EHC Control Panel Schematic	OPPD	10798
126C3310	EMC Control Panel Schematic	OPPD	10795
126C3310	EHC Control Panel Schematic	OPPD	10800
126C3310	EHC Control Panel Schematic	OPPD	1080
126C3310	EHC Control Panel Schematic	OPPD	10803
126C3326	BACK UP TRIP	OPPD	10803
126C3827	CHEST & SHELL WARMING	OPPD	6561
126C3833	CHEST & SHELL WARMING	OPPD	10804
126C3854	CHEST & SHELL WARMING	OPPD	6562
126C3854	CHEST & SHELL WARMING	OPPD	6563
126C3854	CHEST & SHELL WARMING	OPPD	6564
126C3854	CHEST & SHELL WARMING	OPPD	6565
126C3854	CHEST & SHELL WARMING	OPPD	6566

Page 46 of 91

Document	Description	Source	GSE#
10000054	CHEST & SHELL WARMING	OPPD	6567
12603854	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
13682331	Index/Rev Sheet for Inst. Loop Diagrams	GPPD	7174
13682331	Floctrical Control Valve & Pump Index	OPPD	9381
161F529	Electrical Control Valve & Pump Index	OPPD	9382
161F529	Liom Dizg - Appunciator Schemes A1 & A2	OPPD	9724
161F5/5	Elem. Diag Annunciator benemes ni a no	OPPD	16000
233R964	Turbine Control Diagram	OPPD	31065
233R964		OPPD	10004
236R518	EHC CONTROL LINE UP	OPPD	10005
236R518	EHC CONTROL LINE UP	OPPD	10006
236R518	EHC CONTROL LINE OF	OPPD	10007
236R548	EHC LOAD CONTROL ONT	OPPD	10813
715E918	Fort Calhour 480V Load Study	OPPD	10831
715E918	Fort Calhoun 480V Load Study	OPPD	10815
716E602	Fort Calhoun 480V Load Study	OPPD	6833
754E903	Steam Turbine Sealing Steam Paib	OPPD	10816
776E728	Steam Turbine Sealing Steam Paid	OPPD	10840
776E730	Steam Turbine Sealing Steam Paid	OPPD	6756
947D338	Universal Digital Ratemeter 946A-100 Instructions	OPPD	67
947D338	Universal Digital Ratemeter 946A-100 Instructions	OPPD	6753
947D338	Universal Digital Ratemeter 946A-100 Instructions	OPPD	67 /
947D338	Universal Digital Ratemeter 946A-100 Instructions	OPPD	67.0
947D338	Universal Digital Ratemeter 946A-100 Instructions	OPPD	6761
947D338	Universal Digital Ratemeter 946A-100 Instructions	OPPD	10810
992D444	Turbine Generator P&ID	OPPD	10809
992D456	Turbine Generator P&ID	OPPD	6779
996D331	Turbine Generator P&ID	OPPD	6780
996D332	Turbine Generator P&ID	OPPD	6791
996D332	Turbine Generator P&ID	OPPD	6781
996D3359	Turbine Generator P&ID	OPPD	6700
996D336	Turbine Generator P&ID	OPPD	6702
996D337	Turbine Generator P&ID	OPPD	6783
996D338	Turbine Generator P&ID	OPPD	0/84
996D343	Turbine Generator P&ID	OPPD	10811
9960376	Turbine Generator P&ID	OPPD	6/88

Page 47 of 91

1

D. 4

.

Document	Description	Source	GSE#
996D385	Turbine Generator P&ID	OPPD	6785
996D393	Turbine Generator P&ID	OPPD	6789
996D398	Control Valve Position Switch	OPPD	6790
996D398	Control Valve Position Switch	OPPD	6791
996D398	Control Valve Position Switch	OPPD	6792
996D398	Control Valve Position Switch	OPPD	6793
996D467	Control Valve Position Switch	OPPD	6794
996D907	Control Valve Position Switch	OPPD	6803
996D915	Control Valve Position Switch	OPPD	6804
996D916	Control Valve Position Switch	OPPr	10812
996D927	Control Valve Position Switch	OPPU	6805
A9ENGR	Annunciator A-66-A Engraving List	Westingh	louse
CP-2101	HYDRAULIC FLUID PRESSURE	OPPD	
GEK-5501 Vol. 1	GE Turbine/Generator Manual	OPPD	
GEK-5591 Vol. III	GE Turbine/Generator Manual	OPPD	
LP-7-11-27	EHC Power Unit Lesson Plan	OPPD	
LP-7-11-28	EHC Fluid System Lesson Plan	OPPD	
11405-M-258	TPCW Flow Diagram	OPPD	10464
SD III-7	Turbine Lubricating Oil System Description	OPPD	
LP-7-12-29	Turbine Lube Oil System Lesson Plan	OPPD	
SD III-1	Turbine Electrohydraulic Controls System Description	OPPD	
VFCS0208	Fort Calnoun Data Void & Reply	OPPD	
VFCS0209	Fort Calhoun Data Void & Reply	OPPD	
VFCS0210	Fort Calhoun Data Void & Reply	OPPD	
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-400	Turbine Supervisory Panel AI-55	OPPD	12610
11405-E-401	Turbine Supervisory Panel AI-55	OPPD	12611
11405-EM-3200/3277	Instrument Loop Elementary	OPPD	16092
11405-EM-5000	Instrument and Control Equipment List	OPPD	39904
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7154
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9724
A10ENGR	Annunciator A-10 Engraving List	Westingh	louse
A9ENGR	Annunciator A-66-A Engraving List	Westingh	louse
CP-3241	TURBINE SPEED AND TOTAL CONTROL VALVE POSITION	OPPD	
CP-3242	TURBINE SHAFT ECCENTRICITY	OPPD	

Page 48 of 91

Document	Description	Source	GSE#
CP-3243	TURBINE SHAFT VIBRATION CHANNEL NO. 1	OPPD	
CP-3244	TURBINE SHAFT VIBRATION CHANNEL NO. 2	OPPD	
CP-3246	TURBINE SHAFT VIBRATION CHANNEL NO. 4	OPPD	
CP-3247	TURBINE SHAFT VIBRATION CHANNEL NO. 5	OPPD	
CP-3248	TURBINE SHAFT VIBRATION CHANNEL NO. 6	OPPD	
CP-3249	TURBINE SHAFT VIBRATION CHANNEL NO. 7	OPPD	
CP-3250	TURBINE SHAFT VIBRATION CHANNEL NO. 8	OPPD	
CP-3251	TURBINE SHAFT VIBRATION CHANNEL NO. 9	OPPD	
CP-3252	TURBINE SHAFT VIBRATION CHANNEL NO. 10	OPPD	
CP-3253	ROTOR EXPANSION	OPPD	
CP-3254	DIFFERENTIAL EXPANSION CHANNEL	OPPD	
CP-5000	TURBINE BEARING TEMPERATURE	OPPD	
SB-400-063	ANALOG INPUT LISTS	OPPD	1158
11.06	Control Valve Specification Sheet	OPPD	43070
11405-E-11	4.16 KV Switchgear Schematics	OPPD	12247
11405-E-12	4.16 KV Htr Drn Pump Bkr FW-5A	OPPD	12248
11405-E-26	Feedwater System Schematic Diagram	OPPD	12261
11405-E-261	Turbine Generator Auxiliary System S.C. & I -Sheet 4	OPPD	12527
11405-E-261	Turbine Generator Auxiliary System S.C. & I -Sheet 5	OPPD	12528
11405-E-262	Feedwater & Condensate System S.C. & I - Sheet1	OPPD	12529
11405-E-264	Condensate Return Pump	OPPD	12531
11405-E-28	Main Steam & Feed System S.C. & I.	OPPD	12263
11405-E-330	Feedwater & Condensate System S.C. & I - Sheet 4	OPPD	12592
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-EM-1151	Instrument and Control Equipment List	OPPD	15806
11405-EM-1152/1157	Instrument and Control Equipment List	OPPD	15009
11405-EM-1170	Instrument and Control Equipment List	OPPD	22384
11405-EM-1172	Instrument and Control Equipment List	OPPD	15815
11405-EM-1173	Instrument and Control Equipment List	OPPD	15816
11405-EM-1180	Instrument and Control Equipment List	OPPD	15818
11405-EM-1184/1185	Instrument and Control Equipment List	OPPD	15822
11405-EM-1189/1190	Instrument and Control Equipment List	OPPD	15825
11405-EM-1191	Instrument and Control Equipment List	OPPD	21434
11405-EM-1193	Instrument and Control Equipment List	OPPE	15827

Page 49 of 91

Document	Description	Source	GSE#
11405-FM-1226	Blowdown Temperature Elementary Diagram	OPPD	39061
11405-EM-1220 11405-EM-2200/3277	Instrument Loon Elementary	OPPD	16092
11405-EM-5200/5277	Instrument and Control Equipment List	OPPD	21656
11405-EM-062	Instrument and Control Equipment List	OPPD	15728
11405-EM-952	Main Steam Flow Diagram	OPPD	10453
11405-M-252	C/C Food & Blowdown Flow Diagram	OPPD	10459
11405-M-253	Condongato Flow Disgram	OPPD	10460
11405-M-254	Elow Diagram Circulating Water	OPPD	10463
11405-M-257	TION Diagram	OPPD	10464
11405-1-258	Flow Diagram Condenser Evacuation & H2 - CO2 Piping	OPPD	10468
11405-M-261	Aux Pldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-264	Index/Por Chest for Inst Loon Diagrams	OPPD	7111
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7133
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7153
13682331	Index/Rev Sheet for Inst. Loor Diagrams	OPPD	7154
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7158
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7159
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7169
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7170
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	71.80
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7184
13682331	Index/Rev Sheet for Inst. Joop Diagrams	OPPD	7188
13682331	Index/Rev Sheet for Inst. Good Diagrams	OPPD	7189
13682331	Index/key Sheet for Inst. Loop Diagrams	OPPD	7190
13682331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7194
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7195
136B2331	Index/Rev Sheet for Inst Loop Diagrams	OPPD	7239
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7246
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	25168
136B2331	index/Rev Sheet for Inst. Loop Diagrams	OPPD	23181
13682331	Index/Rev Sneet for Inst. Loop Diagrams	OPPD	5521
136B2340	4.16KV CONTROLS & Elementary Diagram	OPPD	5521
136B2341	480V CONTROLS & Elementary Diagrams	OPPD	5708
136B2432	Elementary Diagram - Switch Development	OFFD	5700

Page 50 of 91
Document	Description	Source	GSE#
136B2432	Elementary Diagram - Switch Development	OPPD	5712
136B2432	Elementary Diagram - Switch Development	OPPD	5715
136B2432	Elementary Diagram - Switch Development	OPPD	5716
136B2432	Elementary Diagram - Switch Development	OPPD	5723
136B2432	Elementary Diagram - Switch Development	OPPD	5724
136B2492	480V Controls & Elementary Diagrams	OPPD	5521
161F544	Feed Reg System Block Wiring Diagram - Train A	OPPD	9424
161F544	Feed Reg System Block Wiring Diagram - Train A	OPPD	9425
161F544	Feed Reg System Block Wiring Diagram - Train A	OPPD	9426
161F561	Interconnection Diagram	OPPD	9555
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
233R964	Turbine Control Diagram	OPPD	10000
233R964	Turbine Control Diagram	OPPD	31065
234R311	Stator Winding Cooling Water P&ID	OPPD	10001
4778 435 302-001	Steam Generator Blowdown Processing System	OPPD	21670
561	TCV-5039 Valve Spec Sheet	OPPD	45153
738E345	Steam Turbine Sealing Steam P&ID	OPPD	6817
B-4101	ERF Computer Analog Point Input List	OPPD	31487
BORG-FEED PUMPS	Borg-Warner Steam Generator Feed Pumps Tech Manual	OPPD	
CP-1101	FEEDWATER REGULATING SYSTEM A	OPPD	
CP-1102	FEEDWATER REGULATING SYSTEM B	OPPD	
CP-1141	HEATERS 6A AND B FEED HEADER PRESSURE CHANNEL 1141	OPPD	
CP-1144	FEEDWATER PUMPS DISCHARGE PRESSURE	OPPD	
CP-1146A	FEEDWATER PUMP FW-4A DISCHARGE PRESSURE	OPPD	
CP-1146B	FEEDWATER PUMP FW-4B DISCHARGE PRESSURE	OPPD	
CP-1146C	FEEDWATER PUMP FW-4C DISCHARGE PRESSURE	OPPD	
CP-1151A/D	STEAM GENERATOR PUMP & RECIRC. CONTROL	OPPD	
CP-1151B/E	STEAM GENERATOR PUMP & RECIRC. CONTROL	OPPD	
CP-1151C/F	STEAM GENERATOR PUMP C RECIRC. CONTROL	OPPD	
CP-1170A	HOTWELL LEVEL	OPPD	
CP-1172	CONDENSATE PUMP RECIRCULATING CONTROL	OPPD	
CP-1174	CONDENSATE TEMPERATURE (T-1174)	OPPD	
CP-1175	CONDENSATE LEAVING STATOR COOLING COILS	OPPD	
CP-1176	CONDENSATE TEMPERATURES (T-1176A, B, C, D)	OPPD	
CP-1177	CONDENSATE TEMPERATURE (T-1177)	OPPD	

Document

Const	A 17 19	0	CEL
000	100		2.2.5.1

Document	Description	Source	GSE#
CP-1178	CONDENSATE ENTERING STATOR COOLING COILS	OPPD	
CP-1179	CONDENSATE INSTRUMENT TEMPERATURE (T-1179A/B)	OPPD	
CP-1181A	CONDENSATE PUMP DISCHARGE PRESSURE	OPPD	
CP-1181B	CONDENSATE PUMP DISCHARGE PRESSURE	OPPD	
CP-1181C	CONDENSATE PUMP DISCHARGE PRESSURE	OPPD	
CP-1191	CONDENSATE STORAGE TANY LEVEL 1191	OPPD	
CP-1193	CONDENSATE DUMP CONTROL	OPPD	
CP-1395/1396	SG-RC-2A FEEDWATER TEMPERATURE AND FLOW	OPPD	
CP-1397	SG-RC-2A FEEDWATER TEMPERATURE AND FLOW	OPPD	
CP-1398/1399	SG-RC-2B FEEDWATER TEMPERATURE AND FLOW	OPPD	
CP-5039	CALIBRATION PROCEDURE	OPPD	
CP-5047	HIGH EXHAUST HOOD TEMPERATURE	OPPD	
CP-5048	EXHAUST HOOD A LOW VACUUM	OPPD	
CP-5049	EXHAUST HOOD B LOW VACUUM	OPPD	
CP-952	STEAM DUMP/CONDENSER VACUUM INTERLOCK PRESSURE	OPPD	
CP-975A	CONDENSER A VACUUM	OPPD	
CP-9758	CONDENSER B VACUUM	OPPD	
CP-976A	CONDENSER A ABSOLUTE PRESSURE	OPPD	
CP-976B	CONDENSER B ABSOLUTE PRESSURE	OPPD	
FIG.8.1-1	Plant Electrical System One Line Diagram	OPPD	12234
FW-6092	Piping Isometric Diagrams	OPPD	8502
FW-6130	Piping Isometric Diagrams	OPPD	8511
FW-6131	Piping Isometric Diagrams	OPPD	8512
FW-6132	Piping Isometric Diagrams	OPPD	8513
FW-6158	Piping Isometric Diagrams	OPPD	8521
IC-119	Piping Isometric Diagrams	OPPD	35674
IC-120	Piping Isometric Diagrams	OPPD	35675
IC-121	Piping Isometric Diagrams	OPPD	35676
IC-13	Piping Isometric Diagrams	OPPD	35557
IC-14A	Piping Isometric Diagrams	OPPD	35559
IC-18	Piping Isometric Diagrams	OPPD	35563
IC-20	Piping Isometric Diagrams	OPPD	35565
IC-342	Piping Isometric Diagrams	OPPD	35889
IC-347	Piping Isometric Diagrams	OPPD	35895
IC-49	Piping Isometric Diagrams	OPPD	35597

Page 52 of 91

Document	Description	Source	GSE#
IC-50	Piping Isometric Diagrams	OPPD	35598
IC-53	Piping Isometric Diagrams	OPPD	35601
IC-56	Piping Isometric Diagrams	OPPD	35604
IC-57	Piping Isometric Diagrams	OPPD	35605
IC-58	Piping Isometric Diagrams	OPPD	35606
IC-59	Piping Isometric Diagrams	OPPD	35607
IC-60	Piping Isometric Diagrams	OPPD	35608
IC-62	Piping Isometric Diagrams	OPPD	35609
IC-63	Piping Isometric Diagrams	OPPD	35610
IC-67	Piping Isometric Diagrams	OPPD	35614
SD III-3	Condensate and Feedwater System Description	OPPD	
SD III-7	Turbine Lubricating Oil System Description	OPPD	
SPEC #99	Instrument and Control Specification Sheet	OPPD	
SPEC 11.05	Instrument and Control Specification Sheet	OPPD	14970
SPEC 11.94	Instrument and Control Specification Sheet	OPPD	15113
SPEC 11.96	Instrumentation and Control Equipment Spec Sheet	OPPD	15115
ST-ISI-FW-1	Feedwater Inservice Inspection	OPPD	
11.07	Control Valve Specification Sheet	OPPD	14972
11.08	Control Valve Specification Sheet	OPPD	14973
11.09	Control Valve Specification Sheet	OPPD	14974
11.1	Control Valve Specification Sheet	OPPD	14975
11.1	Control Valve Specification Sheet	OPPD	43044
11.69	Control Valve Specification Sheet	OPPD	15074
11.69	Control Valve Specification Sheet	OPPD	43010
11.7	Control Valve Specification Sheet	OPPD	1507
11.7	Control Valve Specification Sheet	OPPD	43033
11.77	Control Valve Specification Sheet	OPPD	15088
11.77	Control Valve Specification Sheet	OPPD	43045
11.78	Control Valve Spe fication Sheet	OPPD	15089
11.78	Control Valve Specification Sheet	OPPD	43050
11.79	Control Valve Specification Sheet	OPPD	15090
11.79	Control Valve Specification Sheet	OPPD	43051
11405-E-12	4.16 KV Htr Drn Pump Bkr FW-5A	OPPD	12248
11405-E-262	Feedwater & Condensate System S.C. & I - Sheet1	OPPD	12529
11405-E-263	Extraction Steam to Heater Pilot Solenoid Valve	OPPD	12530

Tage 53 of 91

Document	Description	Source	GSE#
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-EM-1152/1157	Instrument and Control Equipment List	OPPD	15809
11405-EM-1184/1185	Instrument and Control Equipment List	CPPD	15822
11405-EM-1196	Instrument and Control Equipment List	OPPD	15830
11405-EM-1197	Instrument and Control Equipment List	OPPD	15832
11405-EM-1198	Instrument and Control Equipment List	OPPD	22709
11405-EM-1199	Instrument and Control Equipment List	OPPD	22692
11405-EM-1201	Instrument and Control Equipment List	OPPD	15836
11405-EM-1202	Instrument and Control Equipment List	OPPD	15839
11405-EM-1203	Instrument and Control Equipment List	OPPD	15846
11405-EM-1209/1210	Instrument and Control Equipment List	OPPD	15847
11405-EM-1212/1215	Instrument and Control Equipment List	OPPD	15848
11405-EM-1218/1219	Instrument and Control Equipment List	OPPD	15853
11405-EM-1300	Instrument and Control Equipment List	OPPD	15854
11405-EM-1301	Instrument and Control Equipment List	OPPD	15855
11405-EM-1302	Instrument and Control Equipment List	OPPD	15856
11405-EM-1303	Instrument and Control Equipment List	OPPD	15857
11405-EM-1304	Instrument and Control Equipment List	OPPD	15858
11405-EM~959	Instrument and Control Equipment List	OPPD	15735
11405-EM-963	Instrument and Control Equipment List	OPPD	15739
11405-EM-967	Instrument and Control Equipment List	OPPD	15743
11405-EM-968/969	Instrument and Control Equipment List	OPPD	15745
11405-EM-970	Instrument and Control Equipment List	OPPD	15747
11405-EM-972	Instrument and Control Equipment List	OPPD	15751
11405-M-252	Main Steam Flow Diagram	OPPD	10458
11405-M-253	S/G Feed & Blowdown Flow Diagram	OPPD	10459
11405-M-254	Condensate Flow Diagram	OPPD	10460
11405-M-255	Heater Drain Flow Diagram	OPPD	10461
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16955
11405-M-305	Instrument Detail-Sheet 3	OPPD	10745
11405-M-309	Instrument Detail-Sheet 3	OPPD	10749
119C6117	Waste Disposal System Flow Diagram	OPPD	6491
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7161

Document	Description	Source	GSE#
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7168
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7180
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7237
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7238
136B2331	Index/Rev Sheet for Insc. Loop Diagrams	OPPD	7239
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7240
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	20691
136B2340	4.16KV Controls & Elementary Diagram	OPPD	5521
136B2432	Elementary Diagram - Switch Development	OPPD	5708
136B2432	Elementary Diagram - Switch Development	OPPD	5725
136B2492	480V Controls & Elementary Diagrams	OPPD	5756
161F531	13.2 & Sub 1226 Transfer Trip Ckt	OPPD	9386
161F531	13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9390
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9724
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9725
30.1.02	Control Valve Specification Sheet	OPPD	15221
30.4	Control Valve Specification Sheet	OPPD	15225
30.4	Control Valve Specification Sheet	OPPD	43022
30.5	Control Valve Specification Sheer	OPPD	15226
30.5	Control Valve Specification Sheet	OPPD	43021
348	Control Valve Specification Sheet	OPPD	24076
551	Control Valve Specification Sheet	OPPD	45142
551	Control Valve Specification Sheet	OPPD	45143
873D727	Steam Turbine Sealing Steam P&ID	OPPD	6745
A10ENGR	Annunciator A-10 Engraving List	Westing	house
AllENGR	Annunciator A-11 Engraving List	Westing	house
A12ENGR	Annunciator A-12 Engraving List	Westing	house
B-4101	ERF Computer Analog Point Input List	OPPD	31487
CP-1196A	FEEDWATER HEATER 6A LEVEL INDICATION	OPPD	
CP-1196B	FEEDWATER HEATER 6B LEVEL INDICATION	OPPD	
CP-1197A	FEEDWATER HEATER 5A LEVEL INDICATION	OPPD	
CP-1197B	FEEDWATER HEATER 5B LEVEL INDICATION	OPPD	
CP-1198	HEATER DRAIN TANK LEVEL	OPPD	
CP-1199	HEATER DRAIN TANK	OPPD	
CP-1200	HEATER DRAIN TANK LEVEL	OPPD	

Document	Description	Source	GSE#
CD-1201-H	EXTRACTION BYPASS DRAIN HTR. 3B	OPPD	
CP-1201 h	FFEDWATER HEATER 3A LEVEL INDICATION	OPPD	
CP-1201R	FEEDWATER HEATER 3B LEVEL INDICATION	OPPD	
CP-12010	EXTRACTION BYPASS DRAIN HTR. 3A	OPPD	
CP-1201G	EXTRACTION BYPASS DRAIN HTR. 2B	OPPD	
CP-1202-1	FEEDWATER HEATER 2A LEVEL INDICATION	OPPD	
CP-1202A	FEEDWATER HEATER 28 LEVEL INDICATION	OPPD	
CP-1202B	EXTRACTION BYPASS DRAIN HTR. 2A	OPPD	
CP-1202G	REEDWATER HEATER IA LEVEL INDICATION	OPPD	
CP-1203A	FEEDWATER HEATER IN LEVEL INDICATION	OPPD	
CP-1203B	HEATER DRAIN TANK FOUALIZING VENT	OPPD	
CP-1300	MOISTURE SEPARATOR NO. 7 LEVEL	OPPD	
CP-1301	MOISTURE SEPARATOR NO. 2 LEVEL	OPPD	
CP-1302	MOISTURE SEPARATOR NO. 3 LEVEL	OPPD	
CP-1303	MOISTURE SEPARATOR NO. 4 LEVEL	OPPD	
CP-1304	EXTRACTION TO HEATER 2A PRESSURE	OPPD	
CP-971R	EXTRACTION TO HEATER 2B PRESSURE	OPPD	
CF-971D	Pining Isometric Diagrams	OPPD	35554
10-10	Piping Isometric Diagrams	OPPD	35559
1C-14A TC-10	Piping Isometric Diagrams	OPPD	35564
10-19	Pining Isometric Diagrams	OPPD	35565
10-20	Piping Isometric Diagrams	OPPD	35566
10-21	Piping Isometric Diagrams	OPPD	35567
10-22	Piping Isometric Diagrams	OPPD	35568
10-23	Pining Isometric Diagrams	OPPD	35569
10-24	Pining Isometric Diagrams	OPPD	35570
10-25	Piping Isometric Diagrams	OPPD	35571
10-20	Piping Isometric Diagrams	OPPD	35572
10-27	Piping Isometric Diagrams	OPPD	35573
10-28	Piping Isometric Diagrams	OPPD	35572
10-29	Piping Isometric Diagrams	OPPD	35575
10-30	Piping Isometric Diagrams	OPPD	35576
10-31	Dining Isometric Diagrams	OPPD	35577
10-32	Piping Isometric Diagrams	OPPD	35581
10-30	Diping Isometric Diagrams	OPPD	35583
10-38	LINING IDOMOCITO DIGGIGNO		

Page 56 of 91

23

Document	Description	Source	GSE#
IC-39	Piping Isometric Diagrams	OPPD	35584
IC-4	Piping Isometric Diagrams	OPPD	35548
IC-40	Piping Isometric Diagrams	OPPD	35585
IC-41	Piping Isometric Diagrams	OPPD	35586
IC-42	Piping Isometric Diagrams	OPPD	35587
IC-43	Piping Isometric Diagrams	OPPD	35588
IC-44	Piping Isometric Diagrams	OPPD	35589
IC-45	Piping Isometric Diagrams	OPPD	35590
IC-458A	Piping Isometric Diagrams	OPPD	36001
IC-459	Piping Isometric Diagrams	OPPD	36002
IC-461	Piping Isometric Diagrams	OPPD	36004
IC-462	Piping Isometric Diagrams	OPPD	36005
IC-463	Piping Isometric Diagrams	OPPD	36006
IC-464	Piping Isometric Diagrams	OPPD	36007
IC-464A	Piping Isometric Diagrams	OPPD	36008
IC-465	Piping Isometric Diagrams	OPPD	35009
IC-465A	Piping Isometric Diagrams	OPPD	36010
IC-466	Piping Isometric Diagrams	OPPD	36011
IC-467	Piping Isometric Diagrams	OPPD	36012
IC-468	Piping Isometric Diagrams	OPPD	36013
IC-56	Piping Isometric Diagrams	OPPD	35604
IC-57	Piping Isometric Diagrams	OPPD	35605
IC-58	Piping Isometric Diagrams	OPPD	35606
IC-59	Piping Isometric Diagrams	OPPD	35607
IC-60	Piping Isometric Diagrams	OPPD	35608
IC-62	Piping Isometric Diagrams	OPPD	35609
IC-9	Piping Isometric Diagrams	OPPD	35553
MS-6060	Piping Isometric Diagrams	OPPD	8585
MS-6061	Piping Isometric Diagrams	OPPD	8586
MS-6136	Piping Isometric Diagrams	OPPD	8607
SD III-7	Turbine Lubricating Oil System Description	OPPD	
SPEC 2.59.11	Instrumentation and Control Equipment Spec Sheet	OPPD	14860
SPEC 2.59.12	Instrumentation and Control Equipment Spec Sheet	OPPD	14861
SPEC 2.59.13	Instrumentation and Control Equipment Spec Sheet	OPPD	14862
SPEC 2.59.14	Instrumentation and Control Equipment Spec Sheet	OPPD	14863

Page 57 of 91

9

Document	Description	Source	GSE#
SPEC 2.59.15	Instrumentation and Control Equipment Spec Sheet	OPPD	14864
SPEC 2.59.16	Instrumentation and Control Equipment Spec Sheet	OPPD	14865
11405-E-136	Motor Driven AFW Pump FW-6 S.C. & I.	OPPD	21419
11405-E-137	YCV-1045 S.C. & I.	OPPD	21423
11405-E-138	AFW Valves HCV-1107A&B S.C. & I.	OPPD	21422
11405-E-139	AFW Valves HCV-1108A&B S.C. & I.	OPPD	21421
11405-E-26	Feedwater System Schematic Diagram	OPPD	12261
11405-E-28	Main Steam & Feed System S.C. & I.	OT PD	12263
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-404	Post Accident Monitoring Panel AI-66A	OPPD	23592
11405-E-405	Post Accident Monitoring Panel AI-66B	OPPD	23591
11405-E-45	MCC Auto Load Shed & Misc S.C. & I.	OPPD	12280
11405-EM-1039	Instrument and Control Equipment List	OPPD	15770
11405-EM-1173	Instrument and Control Equipment List	OPPD	15816
11405-EM-1189/1190	Instrument and Control Equipment List	OPPD	15825
11405-EM-1194	Instrument and Control Equipment List	OPPD	15828
11405-EM-1361/1366	Instrument and Control Equipment List	OPPD	15859
11405-M-253	S/G Feed & Blowdown Flow Diagram	OPPD	10459
11405-M-254	Condensate Flow Diagram	OPPD	10460
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7160
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7179
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7184
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7240
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7243
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	20691
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	38890
136B2736	Elementary Diagram Pump & Valves	OPPD	6170
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
17	Control Valve Specification Sheet	OPPD	15161

Page 58 of 91

Document	Description	Source	GSE#
17	Control Valve Specification Sheet	OPPD	43036
17.2	Instrumentation and Control Specification Sheet	OPPD	15164
17.2	Instrumentation and Control Specification Sheet	OPPD	43004
B-4101	ERF Computer Analog Point Input List	OPPD	31487
CP-1109	AUXILIARY FEEDWATER TO STEAM GENERATOR RC-2A	OPPD	
CP-1110	AUXILIARY FEEDWATER TO STEAM GENERATOR RC-2B	OPPD	
CP-1183	EMERGENCY FEEDWATER STORAGE TANK LEVEL CHANNEL 1183	OPPD	
CP-1188	EMERGENCY FEEDWATER STORAGE TANK LEVEL CHANNEL 1188	OPPD	
CP-1189	CONDENSATE MAKEUP LEVEL	OPPD	
CP-1368	AUX. FEEDWATER TO S/G FLOW CHANNEL	OPPD	
CP-1369	AUX. FEEDWATER TO S/G FLOW CHANNEL	OPPD	
FW-19 Tank Curve,	OPP-0148 Emergency Feedwater Storage Tank Curve	OPPD	
FW-4097	Piping Isometric Diagrams	OPPD	8444
FW-4387	Piping Isometric Diagrams	OPPD	8456
IC-345	Piping Isometric Diagrams	OPPD	35893
IC-68	Piping Isometric Diagrams	OPPD	35615
IC-69	Piping Isometric Diagrams	OPPD	35616
SD III-4	Auxiliary Feedwater System Description	OPPD	
ST-ISI-FW-1	Auxiliary Feedwater Inservice Inspection	OPPD	
11.11	Control Valve Specification Sheet	OPPD	14976
11.12	Control Valve Specification Sheet	OPPD	14979
11.13	Control Valve Specification Sheet	OPPD	14980
11.14	Control Valve Specification Sheet	OPPD	14981
11.15	Control Valve Specification Sheet	OPPD	14982
11.16	Control Valve Specification Sheet	OPPD	14983
11.17	Control Valve Specification Sheet	OPPD	14984
11.18	Control Valve Specification Sheet	OPPD	14985
11.20B	Control Valve Specification Sheet	OPPD	14989
11.29	Control Valve Specification Sheet	OPPD	15004
11.3	Control Valve Specification Sheet	OPPD	15005
11.42	Control Valve Specification Sheet	OPPD	15029
11.43	Control Valve Specification Sheet	OPPD	15030
11.48	Control Valve Specification Sheet	OPPD	15036
11.49	Control Valve Specification Sheet	OPPD	15038
11405-A-281	Control Valve Specification Sheet	OPPD	12209

Page 59 of 91

0

Document	Description	Source	GSE#
11405-E-148	Auxiliary Cooling System S.C. & I.	OPPD	11419
11405-E-24	4.16 KV Switchgear Schematics	OPPD	12259
11405-E-25	ANNUNCIATOR SCHEMATICS	OPPD	12260
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-335	Auxiliary Cooling Water System S.C. & I.	OPPD	12597
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-43	Auxiliary Coolant System S.C. & I.	OPPD	12278
11405-E-57	Aux Coolant System S.C. & I.	OPPD	12291
11405-EM-2805	Instrument and Control Equipment List	OPPD	16007
11405-EM-2809	Instrument and Control Equipment List	OPPD	16011
11405-EM-2825	Instrument and Control Equipment List	OPPD	16023
11405-EM-2854/2855	Instrument and Control Equipment List	OPPD	16043
11405-EM-2856/2857	Instrument and Control Equipment List	OPPD	16044
11405-EM-2862/2863	Instrument and Control Equipment List	OPPD	16048
11405-EM-2864/2865	Instrument and Control Equipment List	OPPD	16049
11405-EM-2866/2867	Instrument and Control Equipment List	OPPD	16050
11405-EM-2868/2869	Instrument and Control Equipment List	OPPD	16051
11405-EM-2868/2869	Instrument and Control Equipment List	OPPD	16052
11405-EM-2870/2871	Instrument and Control Equipment List	OPPD	16052
11405-EM-2872/2873	Instrument and Control Equipment List	OPPD	16053
11405-EM-2884/2885	Instrument and Control Equipment List	OPPD	16064
11405-EM-2886/2887	Instrument and Control Equipment List	OPPD	16065
11405-EM-2888	Instrument and Control Equipment List	OPPD	16066
11405-EM-2889	Instrument and Control Equipment List	OPPD	21375
11405-EM-2890/2891	Sht. 1 Instrument and Control Equipment List	OPPD	16068
11405-EM-2890/2891	Sht. 2 Instrument and Control Equipment List	OPPD	16069
11405-EM-2892	Instrument and Control Equipment List	OPPD	16070
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OPPD	10440
11405-M-100	Raw Water Flow Diagram	OPPD	10454
11405-M-264 Sht. 2	Aux Bldg & Containment Instrument Air Diagram	OPPD	16955
11405-M-264 Sht. 3	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-264 Sht. 4	Aux Bldg & Containment Instrument Air Diagram	OPPD	16292
11405-M-264 Sht. 5	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
136B2340	4.16KV Controls & Elementary Diagram	OPPD	5521
136B2431	Elementary Diagram - Pumps and Valves	OPPD	5590

Page 60 of 91

	ALC: NO.	
- 44	Contraction of	
- 60	COACHE.	
100	100000	
	10000	
	1000	

Document	Description	Source	GSE#
161F531	Main Three Line Diagram	OPPD	9385
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
89	Control Valve Specification Sheet	OPPD	24053
90	Control Valve Specification Sheet	OPPD	24054
91	Control Valve Specification Sheet	OPPD	24055
92	Control Valve Specification Sheet	OPPD	24056
CP-2805	RAW WATER STRAINER AC-12A PRESSURE SWITCH	OPPD	
CP-2805B	RAW WATER STRAINER AC-12B PRESSURE	OPPD	
CP-2825	RAW WATER PUMP CELL LEVEL	OPPD	
CP-2854	RAW WATER PUMP DISCHARGE PRESSURE	OPPD	
CP-2855	RAW WATER PUMP DISCHARGE PRESSURE	OPPD	
CP-2856	RAW WATER PUMP DISCHAPGE PRESSURE	OPPD	
CP-2857	RAW WATER PUMP DISCHARGE PRESSURE	OPPD	
CP-2862	RAW WATER PUMP DISCHARGE HEADER PRESSURE	OPPD	
CP-2863	RAW WATER PUMP DISCHARGE HEADER PRESSURE	OPPD	
CP-2864	RAW WATER PUMP DISCHARGE HEADER PRESSURE	OPPD	
CP-2365	RAW WATER PUMP DISCHARGE HEADER PRESSURE	OPPD	
CP-2866	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2867	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2868	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2869	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2870	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2871	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2872	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2873	RAW WATER TO CC HEAT EXCHANGER HEADER PRESSURE	OPPD	
CP-2885	RAW WATER TO CCW HEAT EXCHANGER TEMPERATURE	OPPD	
CP-2886	RAW WATER TO C.C.H.X. TEMPERATURE	OPPD	
CP-2887	RAW WATER TO CCW HEAT EXCHANGER TEMPERATURE	OPPD	
CP-2888	RAW WATER TO CCW HEAT EXCHANGER TEMPERATURE	OPPD	
CP-2889	RAW WATER PUMP ROOM LEVEL	OPPD	
CP-2890	RAW WATER SUPPLY HEADER FLOW	OPPD	
CP-2891	RAW WATER SUPPLY HEADER FLOW	OPPD	
CP-2892	RW TO SHUTDOWN COOLING HX PRESSURE	OPPD	
TC-223	Piping Isometric Diagrams	OPPD	35773

Page 61 of 91

Document	Description	Source	GSE#
IC-233	Piping Isometric Diagrams	OPPD	35784
IC-309	Piping Isometric Diagrams	OPPD	35857
IC-309A	Piping Isometric Diagrams	OPPD	35858
IC-325	Piping Isometric Diagrams	OPPD	35874
IC-340	Piping Isometric Diagrams	OPPD	35887
IC-403	Piping Isometric Diagrams	OPPD	35948
OP-10-A1	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A12	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A2	Operating Procedure - Annunciator Response Procedure	OPPD	
0P-10-A33-1	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A34-1	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A7	Operating Procedure - Annunciator Response Procedure	OPPD	
RW-4124 Sht. 1	Piping Isometric Diagrams	OPPD	8716
RW-4125 Sht. 2	Piping Isometric Diagrams	OPPD	8719
RW-4125 Sht. 3	Piping Isometric Diagrams	OPPD	8720
RW-4126 Sht. 2	Piping Isometric Diagrams	OPPD	8722
RW-4126 Sht. 3	Piping Isometric Diagrams	OPPD	8723
RW-4127 Sht. 1	Piping Isometric Diagrams	OPPD	8724
RW-4128 Sht. 1	Piping Isometric Diagrams	OPPD	8726
RW-4129 Sht. 1	Piping Isometric Diagrams	OPPD	8728
RW-4130 Sht. 1	Piping Isometric Diagrams	OPPD	8730
RW-4131 Sht. 1	Piping Isometric Diagrams	OPPD	8732
RW-4132 Sht. 1	Piping Isometric Diagrams	OPPD	8734
RW-4133 Sht. 1	Piping Isometric Diagrams	OPPD	8736
RW-4134 Sht. 1	Piping Isometric Diagrams	OPPD	8738
RW-4135 Sht. 1	Piping Isometric Diagrams	OPPD	8740
RW-4136 Sht. 1	Piping Isometric Diagrams	OPPD	8742
RW-4137 Sht. 1	Piping Isometric Diagrams	OPFD	8744
RW-4138 Sht. 1	Piping Isometric Diagrams	OPPD	8746
RW-4416	Piping Isometric Diagrams	OPPD	8748
RW-4417	Piping Isometric Diagrams	OPPD	8749
RW-4418	Piping Isometric Diagrams	OPPD	8750
RW-4423 Sht. 1	Piping Isometric Diagrams	OPPD	8752
System Description	III.8 Raw Water System Description	OPPD	
11405-A-279	Control Valve Specification Sheet	OPPD	

Page 62 of 91

Document	Description	Source	GSE#
11405-E-11	4.16 KV Switchgear Schematics	OPPD	12247
11405-E-24	4.16 KV Switchgear Schematics	OPPD	12259
11405-E-265	Circulating Water System S.C. & I - Sheet 1	GPPD	12532
11405-E-266	Circulating Water System S.C. & I - Sheet 2	OPPD	12533
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-EM-1900	Sht. 1 Instrument and Control Equipment List	OPPD	15926
11405-EM-1900	Sht. 2 Instrument and Control Equipment List	OPPD	15927
11405-EM-1900	Sht. 3 Instrument and Control Equipment List	OPPD	15928
11405-EM-1900	Sht. 4 Instrument and Control Equipment List	OPPD	15929
11405-EM-1900	Sht. 5 Instrument and Control Equipment List	OPPD	15930
11405-EM-1900	Shi. 6 Instrument and Control Equipment List	OPPD	15931
11405-EM-1901	Sht. 1 Instrument and Control Equipment List	OPPD	15932
11405-EM-1901	Sht. 2 Instrument and Control Equipment List	OPPD	15933
11405-EM-1901	Sht. 3 Instrument and Control Equipment List	OPPD	15934
11405-EM-1901	Sht. 4 Instrument and Control Equipment List	OPPD	15935
11405-EM-1901	Sht. 5 Instrument and Control Equipment List	OPPD	15936
11405-EM-1901	Sht. 6 Instrument and Control Equipment List	OPPD	15937
11405-EM-1906/1909	Instrument and Control Equipment List	OPPD	15943
11405-EM-1910	Sht. 1 Instrument and Control Equipment List	OPPD	15946
11405-EM-1910	Sht. 2 Instrument and Control Equipment List	OPPD	15947
11405-EM-1910	Sht. 3 Instrument and Control Equipment List	OPPD	15948
11405-EM-1913/1914	Instrument and Control Equipment List	OPPD	15951
11405-EM-1915/1916	Instrument and Control Equipment List	OPPD	15952
11405-EM-1915/1916	Instrument and Control Equipment List	OPPD	15953
11405-M-254	Condensate Flow Diagram	OPPD	10460
11405-M-257	Flow Diagram Circulating Water	OPPD	10463
11405-M-258	PCW Flow Diagram	OPPD	10464
11405-M-263	Flow Diagram Compressed Air	OPPD	10469
11405-M-287	Fire Protection Deluge System Details	OPPD	10717
11405-M-296	Fire Protection Deluge System Details	OPPD	10725
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2340	4.16KV Controls & Elementary Diagram	OPPD	5521
136B2494	Elem. Diagram - Elect. Control Valves & Pumps	OPPD	5996
161F531	Main Three Line Diagram	OPPD	9385

Page 63 of 91

Document	Description	Source	GSE#
30	Control Valve Specification Sheet	OPPD	15218
B-4101	ERF Computer Analog Point Input List	OPPD	31487
CP-1900	RIVER LEVEL	OPPD	
CP-1900A	GRID A LEVEL	OPPD	
CP-1900B	GRID B LEVEL	OPPD	
CP-1900C	GRID C LEVEL	OPPD	
CP-1900D	GRID D LEVEL	OPPD	
CP-1900E	GRID E LEVEL	OPPD	
CP-1900F	GRID F LEVEL	OPPD	
CP-1901A	SCREEN A LEVEL	OPPD	
CP-1901B	SCREEN B LEVEL	OPPD	
CP-1901C	SCREEN C LEVEL	OPPD	
CP-1901D	SCREEN D LEVEL	OPPD	
CP-1901E	SCREEN E LEVEL	OPPD	
CP-1901F	SCREEN F LEVEL	OPPD	
CP-1910A	CIRCULATING WATER PUMP DISCHARGE PRESSURE	OPPD	
CP-1910B	CIRCULATING WATER PUMP DISCHARGE PRESSURE	OPPD	
CP-1910C	CIRCULATING WATER PUMP DISCHARGE PRESSURE	OPPD	
CP-1913	INTAKE TUNNEL PRESSURE	OPPD	
CP-1915	CONDENSER CIRCULATING WATER DISCHARGE PRESSURE	OPPD	
Fig. 8.1-1	Plant Electrical System One Line Diagram	OPPD	12234
FW-34A, 34B	Pump Curve - FW-34A, 34B	OFPD	
OP-10-A11	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A12	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A13	Operating Procedure - Annunciator Response Procedure	OPPD	
SD III-6	Circulating Water System Description	OPPD	
SD III-7	Turbine Cooling Water System Description	OPPD	
11.8	Control Valve Specification Sheet	OPPD	15091
11405-E-142	480 V Switchgear Schematics	OPPD	12330
11405-E-144	480 V Switchgear Schematics	OPPD	12332
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-59	Sampling, N2, H2 & Air Systems S.C. & I.	OPPD	12293
11405-EM-1700/1701	Instrument and Control Equipment List	OPPD	15910
11405-EM-1750/1751	Instrument and Control Equipment List	OPPD	15912

11405-EM-1750/1751 Instrument and Control Equipment List

Page 64 of 91

Document	Description	Source	GSE#
11405-EM-1752	Instrument and Control Equipment List	OPPD	15913
11405-EM-1753	Instrument and Control Equipment List	OPPD	15914
11405-EM-1849	Instrument and Control Equipment List	OPPD	15923
11405-EM-2907/2908	Instrument and Control Equipment List	OPPE	16078
11405-EM-2917/2918	Instrument and Control Equipment List	OPPD	20581
11405-EM-2927/2928	Instrument and Control Equipment List	OPPD	20582
11405-EM-2937/2938	Instrument and Control Equipment List	OPPD	20583
11405-EM-2947/2948	Instrument and Control Equipment List	OFPD	20584
11405-EM-6511	Instrument and Control Equipment List	OPPD	28666
11405-EM-903	Instrument and Control Equipment List	OPPD	21366
11405-EM-906	Instrument and Control Equipment List	OPPD	21368
11405-EM-959	Instrument and Control Equipment List	OPPD	15735
11405-M-13	Plant Air Flow Diagram	OPPD	10443
11405-M-254	Condensate Flow Diagram	OPPD	10460
11405-M-258	TPCW Flow Diagram	OPPD	10464
11405-M-263	Flow Diagram Compressed Air	OPPD	10469
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16955
11405-M-264	Inst Air Riser Diagram Details	OPPD	16292
136B2341	480V Controls & Elementary Diagrams	OPPD	5521
161F531	Main Three Line Diagram	OPPD	9385
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9729
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
17.3	Control Valve Specification Sheet	OPPD	15167
17.5	Control Valve Specification Sheet	OPPD	15169
CP-1101	FEEDWATER REGULATING SYSTEM A	OPPD	
CP-1102	FEEDWATER REGULATING SYSTEM B	OPPD	
CP-1700	COMPRESSED AIR HEADER PRESSURE	OPPD	
CP-1701	COMPRESSED AIR HEADER PRESSURE	OPPD	
CP-1705A	CA1A AIR COMPRESSOR 50% LOADING	OPPD	
CP-1705B	CA1B AIR COMPRESSOR 50% LOADING	OPPD	
CP-1705C	CAIC AIR COMPRESSOR 50% LOADING	OPPD	

Document	Description	Source	GSE#
CP-1706A	CA1A AIR COMPRESSOR 100% LOADING	OPPD	
CP-1706B	CA1B AIR COMPRESSOR 100% LOADING	OPPD	
CP-1706C	CA1C AIR COMPRESSOR 100% LOADING	OPPD	
CP-1707A	CA1A AIR COMPRESSOR BACKUP START	OPPD	
CP-1707B	CA1B AIR COMPRESSOR BACKUP START	OPPD	
CP-1707C	CAIC AIR COMPRESSOR BACKUP START	OPPD	
CP-1750	INSTRUMENT AIR HEADER PRESSURE CHANNEL 1750	OPPD	
CP-1751	INSTRUMENT AIR HEADER PRESSURE	OPPD	
CP-1753	INSTRUMENT AIR HEADER PRESSURE	OPPD	
CP-1849	INSTRUMENT AIR TO CONTAINMENT PRESSURE	OPPD	
CP-2908	LOSS OF AIR TO SI VALVE PRESSURE	OPPD	
CP-2918	LOSS OF AIR TO SI VALVES PRESSURE	OPPD	
CP-2928	LOSS OF AIR TO SI VALVE PRESSURE	OPPD	
CP-2937	LOSS OF AIR TO SI VALVES PRESSURE	OPPD	
CP-2947	LOSS OF AIR TO SI VALVES PRESSURE	OPPD	
CP-700	CONTAINMENT AIR COOLING FAN PRESSURE	OPPD	
CP-959	EXTRACTION TO HEATER 6A AND B LEVEL	OPPD	
IC-290	Piping Isometric Diagrams	OPPD	35840
IC-293	Piping Isometric Diagrams	OPPD	35843
IC-385	Piping Isometric Diagrams	OPPD	35932
SPEC 763	Instrument Loop for Control Valves	OPPD	15549
ST-ISI-CA-1	Compressed Air System Inservice Inspection	OPPD	
WD10758	CAS Joy Manufacturing Wiring Diagram for CA-1A,1B & 1C	OPPD	7078
11405-E-258	Turbine Generator Auxiliary System S.C. & I -Sheet 2	OPPD	12525
11405-E-259	Turbine Generator Auxiliary System S.C. & I -Sheet 3	OPPD	12526
11405-E-260	Bearing Lift & PSOV Turbine Oil Test	OPPD	12527
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-EM-2100/2101	Instrument and Control Equipment List	OPPD	15960
11405-EM-3200/3277	Instrument Loop Elementary	OPPD	16092
11405-EM-3316	Instrument and Control Equipment List	OPPD	21486
11405-EM-3323	Instrument and Control Equipment List	OPPD	21496
11405-EM-5067	Instrument Loop Elementary	OPPD	21493
11405-EM-5068	Instrument Loop Elementary	OPPD	21494
11405-EM-5070/5075	Instrument Loop Elementary	OPPD	22149

Page 66 of 91

Document	Description	Source	CSE#
11405-EM-5080	Instrument and Control Equipment List	OPPD	21491
11405-EM-5082	Instrument and Control Equipment List	OPPD	21499
11405-EM-5083/5085	Instrument and Control Equipment List	OPPD	21500
11405-EM-5086	Instrument and Control Equipment List	OPPD	21492
11405-EM-5087	Instrument and Control Equipment List	OPPD	21490
11405-EM-5088	Instrument and Control Equipment List	OPPD	21495
11405-EM-5107/5113	Instrument and Control Equipment List	OPPD	21498
11405-M-258	TPCW Flow Diagram	OPPD	10464
11405-M-262	Lube Oil Sample Valves	OPPD	10357
11405-M-302	Demineralized Water System Flow Diagram	OPPD	10731
12783859	CHEST & SHELL WARMING	OPPD	6422
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7175
136B2432	Elementary Diagram - Switch Development	OPPD	5723
136B2492	480V Controls & Elementary Diagrams	OPPD	5756
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9724
233R964	Turbine Control Diagram	OPPD	10000
233R964	Turbine Control Diagram	OPPD	31065
A10ENGR	Annunciator A-10 Engraving List	Westing	nouse
A9ENGR	Annunciator A-66-A Engraving List	Westing	nouse
CP-2100	BEARING HEADER OIL PRESSURE	OPPD	
CP-3215	OIL TEMPERATURE ENTERING OIL COOLERS (T-3215)	OPPD	
CP-3216	OIL TEMPERATURE LEAVING OIL COOLERS (T-3216)	OPPD	
CP-3316	THRUST BEARING WEAR DETECTOR/LOW BEARING OIL PRESSURE	OPPD	
CP-3323	TURBINE SHAFT PUMP DISCHARGE LOW PRESSURE	CPPD	
CP-5067	CALIBRATION PROCEDURE	OPPD	
CP-5068	CALIBRATION PROCEDURE	OPPD	
CP-5080	L.O. PUMP SUCTION PRESSURE	OPPD	
CP-5081	TURNING GEAR L.O. PUMP PRESSURE	OPPD	
CP-5082	EMERGENCY BEARING OIL PUMP PRESSURE	OPPD	
CP-5084	TURNING GEAR MOTOR INTER-LOCK PRESSURE	OPPD	
CP-5085	L.O. LOW BEARING OIL PRESSURE	OPPD	
CP-5086	L.O. MSP RUNNING PRESSURE	OPPD	
CP-5087	L.O. TGOP RUNNING PRESSURE	OPPD	
CP-5088	L.O. EBP RUNNING PRESSURE	OPPD	

Document	Description	Source	GSE#
CP-5107	L.O. LIFT PUMP 3B SUCTION PRESSURE	OPPD	
CP-5108	L.O. LIFT PUMP 3B SUCTION PRESSURE	OPPD	
CP-5109	L.O. LIFT PUMP DISCHARGE FOR #4 BEARING PRESSURE	OPPD	
CP-5111	L.O. LIFT PUMP DISCHARGE FOR #6 BEARING PRESSURE	OPPD	
CP-5113	L.O. LIFT PUMP DISCHARGE FOR #8 BEARING PRESSURE	OPPD	
IC-130	Piping Isometric Diagrams	OPPD	35624
OP-10-A10	Operating Procedure - Annunciator Response Procedure	OPPD	
OP-10-A9	Operating Procedure - Annunciator Response Procedure	OPPD	
SD III-1	lurbine Lubricating Oil System Description	OPPD	
SD III-7	Turbine Lubricating Oil System Description	OPPD	
11405-E-25	Annunciator Schematics	OPPD	12260
11405-E-27	Diesel Generator Ventilation S.C. & I.	OPPD	12262
11405-E-30	Stored Energy System & Misc. Systems S.C. & I.	OPPD	12265
11405-E-33	Ventilation System S.C. & 1.	OPPD	12268
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-339	Elem. Diag Annunciator Schematics	OPPD	12601
11405-E-34	Ventilation System S.C. & I.	OPPD	12269
11405-E-402	Post Accident Monitoring Panel AI-65A	OPPD	23655
11405-E-402	Post Accident Monitoring Panel AI-65A	OPPD	23656
11405-E-402	Post Accident Monitoring Panel AI-65A	OPPD	24072
11405-E-403	Post Accident Monitoring Panel AI-65B	OPPD	23658
11405-E-403	Post Accident Monitoring Panel AI-65B	OPPD	23659
11405-E-403	Post Accident Monitoring Panel AI-65B	OPPD	37915
11405-E-48	Miscellaneous HVAC S.C. & I.	OPPD	12283
11405-E-53	Ventilation System S.C. & I.	OPPD	12287
11405-E-54	Ventilation System S.C. & I.	OPPD	12288
11405-E-55	HVAC System Schematic Control & Inst	OPPD	12289
11405-E-8	125 Volt DC Misc. Power Distribution Diagram	OPPD	12244
11405-EM-6286	Instrument and Control Equipment List	OPPD	37363
11405-EM-6287	Instrument and Control Equipment List	OPPD	37364
11405-EM-6288	Instrument and Control Equipment List	OPPD	37362
11405-EM-828	Instrument and Control Equipment List	OPPD	15690
11405-EM-837/839	Instrument and Control Equipment List	OPPD	15695
11405-EM-850	Instrument and Control Equipment List	OPPD	15698
11405-M-1	Cont HVAC Flow Diagram	OPPD	10431

Page 68 of 91

Document	Description	Source	GSE#
11405-M-2	Aux Bldg Heating & Ventilating Flow Diagram	OPPD	35454
11405-M-2	Aux Bldg Heating & Ventilating Flow Diagram	OPPD	35465
11405-M-2	Aux Bldg Heating & Ventilating Flow Diagram	OPPD	35466
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16292
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	15293
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-97	Misc HVAC Flow Diagram	OPPD	10451
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPFD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7201
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7215
136B2493	Elem. Diagram - Elect. Control Valves & Pumps	OPPD	24062
161F561	Interconnection Diagram	OPPD	9476
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9721
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9722
161F57	Elem. Diag Annunciator Schemes Al & A2	OPPD	9728
537	Control Valve Specification Sheet	OPPD	45124
564	Control Valve Specification Sheet	OPPD	45621
575	Control Valve Specification Sheet	OPPD	45632
579	Control Valve Specification Sheet	OPPD	45636
579	Control Valve Specification Sheet	OPPD	45637
579	Control Valve Specification Sheet	OPPD	45638
579	Control Valve Specification Sheet	OPPD	45639
579	Control Valve Specification Sheet	OPPD	45640
579	Control Valve Specification Sheet	OPPD	45641
579	Control Valve Specification Sheet	OPPD	45642
579	Control Valve Specification Sheet	OPPD	45643
579	Control Valve Specification Sheet	OPPD	45644
579	Control Valve Specification Sheet	OPPD	45645
579	Control Valve Specification Sheet	OPPD	45646
581	Control Valve Specification Sheet	OPPD	45654
581	Control Valve Specification Sheet	OPPD	45655
581	Control Valve Specification Sheet	OPPD	45656
581	Control Valve Specification Sheet	OPPD	45657
581	Control Valve Specification Sheet	OPPD	45658
582	Control Valve Specification Sheet	OPPD	45650

Page 69 of 91

0

Document	Description	Source	GSE#
582	Control Valve Specification Sheet	OPPD	45651
582	Control Valve Specification Sheet	OPPD	45652
582	Control Valve Specification Sheet	OPPD	45653
583	Control Valve Specification Sheet	OPPD	45659
583	Control Valve Specification Sheet	OPPD	45660
583	Control Valve Specification Sheet	OPPD	45661
583	Control Valve Specification Sheet	OPPD	45662
583	Control Valve Specification Sheet	OPPD	45663
584	Control Valve Specification Sheet	OPPD	45664
584	Control Valve Specification Sheet	OPPD	45665
585	Control Valve Specification Sheet	OPPD	45666
586	Control Valve Specification Sheet	OPPD	45667
586	Control Valve Specification Sheet	OPPD	45668
587	Control Valve Specification Sheet	OPPD	45669
588	Control Valve Specification Sheet	OPPD	45670
588	Control Valve Specification Sheet	OPPD	45671
589	Control Valve Specification Sheet	OPPD	45672
589	Control Valve Specification Sheet	OPPD	45673
590	Control Valve Specification Sheet	OPPD	45674
590	Control Valve Specification Sheet	OPPD	45675
590	Control Valve Specification Sheet	OPPD	45676
602	Control Valve Specification Sheet	OPPD	45688
602	Control Valve Specification Sheet	OPPD	45689
88	Control Valve Specification Sheet	OPPD	24016
A15ENGR	Annunciator A-15 Engraving List	Westing	house
A18ENGR	Annunciator A-18 Engraving List	Westing	house
A38ENGR	Annunciator A-38 Engraving List	Westing	house
A39ENGR	Annunciator A-39 Engraving List	Westing	house
A65AENGR	Annunciator A-65-A Engraving List	Westing	house
B120F04002	DG-1 Jacket Water Flow Diagram	OPPD	17388
C-1272	Joy Series 1000 Axivane Fan Model 29 Manual	OPPD	20681
C-5102	Joy Series 2000 Axivane Fan Model 36 Manual	OPPD	20683
C-5105	Joy Series 2000 Axivane Fan Model 38 Manual	OPPD	20684
C-5106	Joy Series 2000 Axivane Fan Model 42 Manual	OPPD	20685
CP-6286A-M	HYDROGEN FLUORIDE MONITOR A	OPPD	

Page 71 of 91

0

Document	Description	Source	GSE#
ALLOS N. ACA	Fuel Oil Flow Diagram	OPPD	16303
11405-M-262	Main Three Line Diagram	OPPD	9385
161F531	Eler Diag - Annunciator Schemes Al & A2	OPPD	9721
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9722
161F575	Elem Diag Annunciator Schemes Al & A2	OPPD	9736
161F575	Elem. Diag Annunciator Schenes Al & A2	OPPD	9741
161F575	Elem. Diag Annunciacor Schewes Al & net A	OPPD	9801
161F597	Panel Al-JUA, Diesel Sequencer Safety and Test A	OPPD	9809
161F597	Panel Al-JOA, Diesel Sequencer Safety and Test B	OPPD	9811
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9819
161F598	Panel Al-30B, Diesel Sequencer Salety and lest b	Westingh	ouse
A15ENGR	Annunciator A-15 Engraving List	Westingh	ouse
A17ENGR	Annunciator A-17 Engraving List	Westingh	OUSE
A18ENGR	Annunciator A-18 Engraving List	Westingh	ouse
A30ENGR	Annunciator A-30 Engraving List	Westingh	OUSP
A37ENGR	Annunciator A-37 Engraving List	oppp	17387
B120F03001	D/G Lube Oil System Schematic	OPPD	17388
B120F04002	DG-1 Jacket Water Flow Diagram	OPPD	17300
B120F07001	Air Starting System Schematic DG-2	OPPD	29753
B120F07001	Air Starting System Schematic DG-2	OPPD	17396
B120F14501	Schematic - Engine Control	OPPD	17390
B120F14501	Schematic - Engine Control	OPPD	17300
B120F14502	Schematic - Engine Control	OPPD	17410
B120F15503	Schematic - 480 Volt Diesel Auxiliary Systems	OPPD	17410
B120F15503	Schematic - 480 Volt Diesel Auxiliary Systems	OPPD	1/411
CP-1101-DG	EMERGENCY DIESEL NO. 1 LUBE OIL IDLE PRESSURE CONTROL	OPPD	
CP-1102-DG	EMERGENCY DIESEL NO. 2 LUBE OIL IDLE PRESSURE CONTROL	OPPD	
CP-1103	EMG DIESEL 1 JACKET WATER LEVEL CAL	OPPD	
CP-1103-DG	EMG DIESEL 1 JACKET WATER LEVEL CAL	OPPD	
CP-1104	EMG DIESEL 1 LUBE OIL STANDBY PRESS LO CAL	OPPD	
CP-1104-DG	EMG DIESEL 1 LUBE OIL STANDBY PRESS LO CAL	OPPD	
CP-1105-DG	EMERGENCY DIESEL NO. 1 JACKET WATER LEVEL ALARM	OPPD	
CP-1106-DG	EMERGENCY DIESEL NO. 2 JACKET WATER LEVEL ALARM	OPPD	
CP-3339	EMERGENCY DIESEL NO. 1 STANDBY OIL PRESSURE	OPPD	
CP-3340	EMERGENCY DIESEL NO. 2 STANDBY OIL PRESSURE	OPPD	
CP-3341	EMERGENCY DIESEL NO. 2 STANDBY OIL PRESSURE	OPPD	

Page 72 of 91

CP-3341-DGEMERGENCY DIESEL NO. 1 LUBE OIL TEMPERATURE LOWOPPDCP-3342EMERGENCY DIESEL NO. 2 LUBE OIL TEMPERATURE LOWOPPDCP-3343EMERGENCY DIESEL NO. 2 LUBE OIL TEMPERATURE LOOPPDCP-3344EMERGENCY DIESEL NO. 2 LUBE OIL TEMPERATURE LOOPPDCP-3345EMERGENCY DIESEL NO. 1 JACKET WATER TEMP. CONTROLOPPDCP-3346EMERGENCY DIESEL NO. 2 JACKET WATER TEMP.OPPDCP-3347EMERGENCY DIESEL NO. 2 JACKET WATER TEMPOPPDCP-3348EMERGENCY DIESEL NO. 2 JACKET WATER TEMP.OPPDCP-3350EMERGENCY DIESEL NO. 2 CPANKCASE HIGH PRESSUREOPPDCP-3351EMERGENCY DIESEL NO. 1 F.O. FILTER NO. 1 PRESSUREOPPDCP-3352EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 1 PRESSUREOPPDCP-3353EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 1 PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 1 F.O. FILTER NO. 1 PRESSUREOPPDCP-3355EMERGENCY DIESEL NO. 1 SECONDAFY STARTING AIR LOWOPPDCP-3356EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 2 PRESSUREOPPDCP-3357EMERGENCY DIESEL NO. 1 SECONDAFY STARTING AIR LOWOPPDCP-3376EMERGENCY DIESEL NO. 2 SECONDAFY STARTING AIR LOWOPPDCP-3377EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-6026EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STAR	Document	Descriptio	n			Courc
CP-3342EMERGENCY DIESEL NO. 1 LUBE OIL TEMPERATURE LOWOPPDCP-3342-DGEMERGENCY DIESEL NO. 2 LUBE OIL TEMPERATURE LOOPPDCP-3343EMERGENCY DIESEL NO. 2 LUBE OIL TEMPERATURE LOOPPDCP-3344EMERGENCY DIESEL NO. 2 LUBE OIL TEMPERATURE LOOPPDCP-3345EMERGENCY DIESEL NO. 2 JACKET WATER TEMP. CONTROLOPPDCP-3346EMERGENCY DIESEL NO. 2 JACKET WATER TEMP.OPPDCP-3347EMERGENCY DIESEL NO. 2 JACKET WATER LOW PRESSUREOPPDCP-3348EMERGENCY DIESEL NO. 1 JACKET WATER LOW PRESSUREOPPDCP-3349EMERGENCY DIESEL NO. 1 CRANKCASE HIGH PRESSUREOPPDCP-3351EMERGENCY DIESEL NO. 1 F.O. FILTER NO. 1 PRESSUREOPPDCP-3352EMERGENCY DIESEL NO. 1 F.O. FILTER NO. 2 PRESSUREOPPDCP-3353EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 2 PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 2 PRESSUREOPPDCP-3355EMERGENCY DIESEL NO. 2 FROM FARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2 PREMARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3377EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3419EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3419EMERGENCY DIESEL NO. 1 FOR LAKET WATER TEMPOPPDCP-6026FMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-6038EMERGENCY DIESEL NO.	CP-3341-DG	EMERGENCY	DIESEL NO.	1	LUBE OIL TEMPERATURE LOW	OPPD
CP-3342-DGEMERGENCY DIESEL NO. 2LUBE OIL TEMPERATURE LOOPPDCP-3343EMERGENCY DIESEL NO. 2LUBE OIL TEMPERATURE LOOPPDCP-3344EMERGENCY DIESEL NO. 2LUBE OIL TEMPERATURE LOOPPDCP-3345EMERGENCY DIESEL NO. 1JACKET WATER TEMP. CONTROLOPPDCP-3346EMERGENCY DIESEL NO. 1JACKET WATER TEMP. CONTROLOPPDCP-3347EMERGENCY DIESEL NO. 2JACKET WATER TEMPOPPDCP-3348EMERGENCY DIESEL NO. 2JACKET WATER TEMPOPPDCP-3349EMERGENCY DIESEL NO. 2JACKET WATER TEMPOPPDCP-3350EMERGENCY DIESEL NO. 2CRANKCASE HIGH PRESSUREOPPDCP-3351EMERGENCY DIESEL NO. 1F.O. FILTER NO. 1PRESSUREOPPDCP-3353EMERGENCY DIESEL NO. 2F.O. FILTER NO. 1PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 1F.O. FILTER NO. 2PRESSUREOPPDCP-3358EMERGENCY DIESEL NO. 1SECONDAFY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2SECONDARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2SECONDARY STARTING AIR LOWOPPDCP-33419EMERGENCY DIESEL NO. 2SECONDARY STARTING AIR LOWOPPDCP-3418EMERGENCY DIESEL NO. 2SECONDARY STARTING AIR LOWOPPDCP-3418EMERGENCY DIESEL NO. 1FUEL OIL XFR PUMP NO. 2PRESSCP-6026EMERGENCY DIESEL NO. 1FUEL OIL XFR PUMPOPPDCP-6031EMERGENCY DIESEL NO. 1SO GALLON FUEL OIL TANK LEVEL	CP-3342	EMERGENCY	DIESEL NO.	1	LUBE OIL TEMPERATURE LOW	OPPD
CP-3343EMERGENCY DIESEL NO. 2LUBE OIL TEMPERATURE LOOPPDCP-3344EMERGENCY DIESEL NO. 2LUBE OIL TEMPERATURE LOOPPDCP-3345EMERGENCY DIESEL NO. 2JACKET WATER TEMP.OPPDCP-3346EMERGENCY DIESEL NO. 2JACKET WATER TEMPOPPDCP-3347EMERGENCY DIESEL NO. 2JACKET WATER TEMPOPPDCP-3348EMERGENCY DIESEL NO. 1JACKET WATER LOW PRESSUREOPPDCP-3349EMERGENCY DIESEL NO. 1CRANKCASE HIGH PRESSUREOPPDCP-3350EMERGENCY DIESEL NO. 1F.O. FILTER NO. 1PRESSUREOPPDCP-3351EMERGENCY DIESEL NO. 1F.O. FILTER NO. 1PRESSUREOPPDCP-3353EMERGENCY DIESEL NO. 2F.O. FILTER NO. 2PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 2F.O. FILTER NO. 1PRESSUREOPPDCP-3359EMERGENCY DIESEL NO. 2SECONDAFY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2SECONDAFY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2SECONDAFY STARTING AIR LOWOPPDCP-3377EMERGENCY DIESEL NO. 2FUEL OIL XFR PUMP NO. 2PRESSOPPDCP-6026EMERGENCY DIESEL NO. 1FUEL OIL XFR PUMP NO. 2PRESSOPPDCP-6031EMERGENCY DIESEL NO. 1S50 GALLON FUEL OIL TANK LEVELOPPDCP-6031EMERGENCY DIESEL NO. 1S50 GALLON FUEL OIL TANK LEVELOPPDCP-6031EMERGENCY DIESEL NO. 1AIR STARTING SWITCH NO. 2OPPDCP-6039EMERGENCY DIE	CP-3342-DG	EMERGENCY	DIESEL NO.	2	LUBE OIL TEMPERATURE LO	OPPD
CP-3344EMERGENCYDIESELNO.2LUBE OILTEMPERATURELOOPPDCP-3345EMERGENCYDIESELNO.1JACKET WATER TEMP.CONTROLOPPDCP-3346EMERGENCYDIESELNO.1JACKET WATER TEMP.OPPDCP-3347EMERGENCYDIESELNO.1JACKET WATER TEMP.OPPDCP-3348EMERGENCYDIESELNO.2JACKET WATER LOW PRESSUREOPPDCP-3349EMERGENCYDIESELNO.2JACKET WATERICMPRESSUREOPPDCP-3350EMERGENCYDIESELNO.2CRANKCASEHIGH PRESSUREOPPDCP-3351EMERGENCYDIESELNO.1F.O.FILTER NO.1PRESSUREOPPDCP-3353EMERGENCYDIESELNO.2F.O.FILTER NO.1PRESSUREOPPDCP-3354EMERGENCYDIESELNO.2F.O.FILTER NO.2PRESSUREOPPDCP-3359EMERGENCYDIESELNO.1SECONDAPYSTARTING AIR LOWOPPDCP-3359EMERGENCYDIESELNO.1SECONDAPYSTARTING AIR LOWOPPDCP-3375EMERGENCYDIESELNO.1FUEL OIL XFR PUMPNO.2PRESSOPPDCP-3375EMERGENCYDIESELNO.1FUEL OIL XFR PUMPNO.2PRESSOPPDCP-3379EMERGENCYDIESELNO.1S	CP-3343	EMERGENCY	DIESEL NO.	2	LUBE OIL TEMPERATURE LO	OPPD
CP-3345EMERGENCYDIESEL NO.1JACKET WATER TEMP.CONTROLOPPDCP-3346EMERGENCYDIESEL NO.2JACKET WATER TEMPOPPDCP-3347EMERGENCYDIESEL NO.1JACKET WATER LOW PRESSUREOPPDCP-3348EMERGENCYDIESEL NO.2JACKET WATER LOW PRESSUREOPPDCP-3349EMERGENCYDIESEL NO.1CRANKCASE HIGH PRESSUREOPPDCP-3350EMERCENCYDIESEL NO.1F.O. FILTER NO.1PRESSUREOPPDCP-3351EMERGENCYDIESEL NO.1F.O. FILTER NO.1PRESSUREOPPDCP-3353EMERGENCYDIESEL NO.2F.O. FILTER NO.1PRESSUREOPPDCP-3354EMERGENCYDIESEL NO.2F.O. FILTER NO.2PRESSUREOPPDCP-3360EMERGENCYDIESEL NO.2SECONDAFY STARTING AIR LOWOPPDCP-3375EMERGENCYDIESEL NO.2SECONDAFY STARTING AIR LOWOPPDCP-3375EMERGENCYDIESEL NO.2SECONDARY STARTING AIR LOWOPPDCP-3418EMERGENCYDIESEL NO.2FUEL OIL XFR PUMP NO.2PRESSOPPDCP-3419EMERGENCYDIESEL NO.1FUEL OIL XFR PUMP NO.2PRESSOPPDCP-6026EMERGENCYDIESEL NO.1FUEL OIL XFR PUMPOPPDOPPDCP-6031EMERGENCYDIESEL NO.1ENGINE JACKET WATER TEMPOPPDCP-6038	CP-3344	EMERGENCY	DIESEL NO.	2	LUBE OIL TEMPERATURE LO	OPPD
CP-3346EMERGENCYDIESELNO.2JACKETWATERTEMPOPPDCP-3347EMERGENCYDIESELNO.1JACKETWATERLOWPRESSUREOPPDCP-3348EMERGENCYDIESELNO.1JACKETWATERLOWPRESSUREOPPDCP-3349EMERGENCYDIESELNO.2JACKETWATERTEMPOPPDCP-3350EMERGENCYDIESELNO.2CRANKCASEHIGHPRESSUREOPPDCP-3351EMERGENCYDIESELNO.2F.O.FILTERNO.1PRESSUREOPPDCP-3352EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3353EMERGENCYDIESELNO.2F.O.FILTERNO.1PRESSUREOPPDCP-3354EMERGENCYDIESELNO.1SECONDAPYSTARTINGAIRLOWOPPDCP-3355EMERGENCYDIESELNO.1SECONDAPYSTARTINGAIRLOWOPPDCP-3361EMERGENCYDIESELNO.1FUELOILXFRPUMPOPPDCP-3375EMERGENCYDIESELNO.1FUELOILXFRPUMPOPPDCP-3419EMERGENCYDIESELNO.1FUELOILXFRPUMPOPPDCP-6026EMERGENCYDIESELNO.1ENGINEJACKETWAT	CP-3345	EMERGENCY	DIESEL NO.	1	JACKET WATER TEMP. CONTROL	OPPD
CP-3347EMERGENCYDIESELNO.1JACKETWATERLOWPRESSUREOPPDCP-3348EMERGENCYDIESELNO.2JACKETWATERLOWPRESSUREOPPDCP-3349EMERGENCYDIESELNO.1CRANKCASEHIGHPRESSUREOPPDCP-3350EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3351EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3353EMERGENCYDIESELNO.2F.O.FILTERNO.1PRESSUREOPPDCP-3354EMERGENCYDIESELNO.2F.O.FILTERNO.2PRESSUREOPPDCP-3359EMERGENCYDIESELNO.1PRIMARYSTARTING AIRLOWOPPDCP-3360EMERGENCYDIESELNO.2PRIMARYSTARTING AIRLOWOPPDCP-3375EMERGENCYDIESELNO.2FUELOILXFRVMMOPPDCP-3418EMERGENCYDIESELNO.2FUELOILXFRVMMOPPDCP-6026EMERGENCYDIESELNO.1FUELOILXFRVMMOPPDCP-6031EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6036EMERGENCYDIESELNO.1AIRSWIT	CP-3346	EMERGENCY	DIESEL NO.	2	JACKET WATER TEMP	OPPD
CP-3348EMERGENCY DIESEL NO. 2 JACKET WATER LOW PRESSUREOPPDCP-3349EMERGENCY DIESEL NO. 1 CRANKCASE HIGH PRESSUREOPPDCP-3350EMERGENCY DIESEL NO. 2 CRANKCASE HIGH PRESSUREOPPDCP-3351EMERGENCY DIESEL NO. 1 F.O. FILTER NO. 1 PRESSUREOPPDCP-3353EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 1 PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 1 PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 2 PRESSUREOPPDCP-33554EMERGENCY DIESEL NO. 1 SECONDAFY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2 SECONDAFY STARTING AIR LOWOPPDCP-3361EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3419EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6033EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6034EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6041EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6044EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP	CP-3347	EMERGENCY	DIESEL NO.	1	JACKET WATER LOW PRESSURE	OPPD
CP-3349EMERGENCYDIESELNO.1CRANKCASEHIGHPRESSUREOPPDCP-3350EMERGENCYDIESELNO.2CRANKCASEHIGHPRESSUREOPPDCP-3351EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3352EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3353EMERGENCYDIESELNO.2F.O.FILTERNO.1PRESSUREOPPDCP-3354EMERGENCYDIESELNO.2F.O.FILTERNO.2PRESSUREOPPDCP-3359EMERGENCYDIESELNO.1PRIMARYSTARTING AIRLOWOPPDCP-3360EMERGENCYDIESELNO.2SECONDAFYSTARTING AIRLOWOPPDCP-3375EMERGENCYDIESELNO.2SECONDARYSTARTING AIRLOWOPPDCP-3418EMERGENCYDIESELNO.2FUELOILXFRPUMPOPPDCP-6026EMERGENCYDIESELNO.1ENGINEJACKETWATERPRESSUREOPPDCP-6027EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6038EMERGENCYDIESELNO.1AIRSWITCHNO.2OPPDCP-6040EMERGENCYDIESELNO.1AIRSTARTI	CP-3348	EMERGENCY	DIESEL NO.	2	JACKET WATER LOW PRESSURE	OPPD
CP-3350EMERGENCYDIESELNO.2CRANKCASEHIGHPRESSUREOPPDCP-3351EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3352EMERGENCYDIESELNO.1F.O.FILTERNO.1PRESSUREOPPDCP-3353EMERGENCYDIESELNO.2F.O.FILTERNO.1PRESSUREOPPDCP-3354EMERGENCYDIESELNO.2F.O.FILTERNO.2PRESSUREOPPDCP-3358EMERGENCYDIESELNO.1PRIMARYSTARTING AIRLOWOPPDCP-3360EMERGENCYDIESELNO.2PREMARYSTARTING AIRLOWOPPDCP-3361EMERGENCYDIESELNO.2PREMARYSTARTING AIRLOWOPPDCP-3375EMERGENCYDIESELNO.2FUEL OILXFRPUMPNOPPESSOPPDCP-3418EMERGENCYDIESELNO.1FUEL OILXFRPUMPOPPDOPPDCP-6004EMERGENCYDIESELNO.2FUEL OILXFRPUMPOPPDOPPDCP-6026EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6031EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6038EMERGENCYDIESELNO.1	CP-3349	EMERGENCY	DIESEL NO.	1	CRANKCASE HIGH PRESSURE	OPPD
CP-3351EMERGENCYDIESEL NO.1F.O.FILTER NO.1PRESSUPEOPPDCP-3352EMERGENCYDIESEL NO.1F.O.FILTER NO.2PRESSUREOPPDCP-3353EMERGENCYDIESEL NO.2F.O.FILTER NO.2PRESSUREOPPDCP-3354EMERGENCYDIESEL NO.2F.O.FILTER NO.2PRESSUREOPPDCP-3354EMERGENCYDIESEL NO.1PRIMARYSTARTING AIR LOWOPPDCP-3359EMERGENCYDIESEL NO.2PRIMARYSTARTING AIR LOWOPPDCP-3361EMERGENCYDIESEL NO.2SECONDARYSTARTING AIR LOWOPPDCP-3375EMERGENCYDIESEL NO.2SECONDARYSTARTING AIR LOWOPPDCP-3418EMERGENCYDIESEL NO.2FUEL OIL XFR PUMP NO.2PRESSOPPDCP-6026EMERGENCYDIESEL NO.1FUEL OIL XFR PUMPOPPDOPPDCP-6031EMERGENCYDIESEL NO.1ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCYDIESEL NO.1AIR STARTING SWITCH NO.1OPPDCP-6040EMERGENCYDIESEL NO.1AIR STARTING SWITCH NO.2OPPDCP-6039EMERGENCYDIESEL NO.1AIR STARTING SWITCH NO.2OPPDCP-6040EMERGENCYDIESEL NO.1AIR COMPRESSOR NO.1START-STOPOPPDCP-6042EMERGENCYDIESEL NO. <td< td=""><td>CP-3350</td><td>EMERGENCY</td><td>DIESEL NO.</td><td>2</td><td>CRANKCASE HIGH PRESSURE</td><td>OPPD</td></td<>	CP-3350	EMERGENCY	DIESEL NO.	2	CRANKCASE HIGH PRESSURE	OPPD
CP-3352EMERGENCY DIESEL NO. 1 F.O. FILTER NO. 2 PRESSUREOPPDCP-3353EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 1 PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 2 PRESSUREOPPDCP-3358EMERGENCY DIESEL NO. 1 PRIMARY STARTING AIR LOWOPPDCP-3359EMERGENCY DIESEL NO. 1 SECONDAFY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2 PRIMARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3377EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3419EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMPOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6043EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6044EMERGENCY DIESEL NO. 1 SPED SENSING SWITCHOPPDCP-6045EMERGENCY DIESEL NO. 1 SPED SENSING SWITCHOPPDCP-6046EMERGENCY DIESEL NO. 1 SPED SENSING SWITCHOPPDCP-6047EMERGENCY DIESEL NO. 1 SPED SENSING SWITCHOPPDCP-6048EMERGENCY DIESEL NO. 1 SPED SENSING SWITCHOPPDCP-6049EMERGENCY DIESEL NO. 1 SPED SENSIN	CP-3351	EMERGENCY	DIESEL NO.	1	F.O. FILTER NO. 1 PRESSURE	OPPD
CP-3353EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 1 PRESSUREOPPDCP-3354EMERGENCY DIESEL NO. 2 F.O. FILTER NO. 2 PRESSUREOPPDCP-3358EMERGENCY DIESEL NO. 1 PRIMARY STARTING AIR LOWOPPDCP-3359EMERGENCY DIESEL NO. 1 SECONDAPY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2 PRIMARY STARTING AIR LOWOPPDCP-3361EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3377EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3419EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMPOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6041EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6044EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6045EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6046EMERGENCY DIESEL NO. 2 STORT-STOPOPPDCP-6047EMERGENCY DIESEL NO. 2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6049EMERGENCY DIESEL NO. 2	CP-3352	EMERGENCY	DIESEL NO.	1	F.O. FILTER NO. 2 PRESSURE	OPPD
CP-3354EMERGENCYDIESELNO.2F.O.FILTERNO.2PRESSUREOPPDCP-3358EMERGENCYDIESELNO.1PRIMARYSTARTING AIRLOWOPPDCP-3359EMERGENCYDIESELNO.1SECONDAFYSTARTING AIRLOWOPPDCP-3360EMERGENCYDIESELNO.2PRIMARYSTARTING AIRLOWOPPDCP-3361EMERGENCYDIESELNO.2SECONDARYSTARTING AIRLOWOPPDCP-3375EMERGENCYDIESELNO.2SECONDARYSTARTING AIRLOWOPPDCP-3418EMERGENCYDIESELNO.2FUEL OILXFRPUMPOPPDCP-6040EMERGENCYDIESELNO.1FUEL OILXFRPUMPOPPDCP-6031EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6038EMERGENCYDIESELNO.1AIRSTARTING SWITCHNO.2OPPDCP-6040EMERGENCYDIESELNO.1AIRSTARTING SWITCHNO.2OPPDCP-6042EMERGENCYDIESELNO.1AIRSTARTING SWITCHNO.2OPPDCP-6043EMERGENCYDIESELNO.1AIRSTARTING SWITCHNO.2OPPDCP-6044EMERGENCYDIESELNO.1AIRCOMPRESSORNO.2START-STOP	CP-3353	EMERGENCY	DIESEL NO.	2	F.O. FILTER NO. 1 PRESSURE	OPPD
CP-3358EMERGENCY DIESEL NO. 1 PRIMARY STARTING AIR LOWOPPDCP-3359EMERGENCY DIESEL NO. 1 SECONDAFY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2 PRIMARY STARTING AIR LOWOPPDCP-3361EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3419EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMPOPPDCP-6026EMERGENCY DIESEL NO. 1 S50 GALLON FUEL OIL TANK LEVELOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6041EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6043EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6044EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6041EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6042EMERGENCY DIESEL NO. 2 STO GALLON FUEL OIL TANK LEVELOPPDCP-6043EMERGENCY DIESEL NO. 2 STO GALLON FUEL OIL TANK LEVELOPPDCP-6044EMERGENCY DIESEL NO. 2 STO GALLON FUEL OIL TANK LEVELOPPDCP-6045EMERGENCY DIESEL NO. 2 STO GALLON FUEL OIL TANK LEVELOPPDC	CP-3354	EMERGENCY	DIESEL NO.	2	F.O. FILTER NO. 2 PRESSURE	OPPD
CP-3359EMERGENCY DIESEL NO. 1 SECONDAFY STARTING AIR LOWOPPDCP-3360EMERGENCY DIESEL NO. 2 PRIMARY STARTING AIR LOWOPPDCP-3361EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3375EMERGENCY DIESEL NO. 2 SECONDARY STARTING AIR LOWOPPDCP-3377EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMPOPPDCP-3419EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMPOPPDCP-6004EMERGENCY DIESEL NO. 1 550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6043EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6044EMERGENCY DIESEL NO. 2 SECONDRESSOR NO.2 START-STOPOPPDCP-6045EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6046EMERGENCY DIESEL NO. 2 S50 GALLON FUEL OIL TANK LEVELOPPDCP-6047EMERGENCY DIESEL NO. 2 S50 GALLON FUEL OIL TANK LEVELOPPDCP-6048EMERGENCY DIESEL NO. 2 S50 GALLON FUEL OIL TANK LEVELOPPDCP-6049EMERGENCY DIESEL NO. 2 S50 GALLON FUEL OIL TANK LEVELOPPDCP-6042EMERGENCY DIESEL NO. 2 S50 GALLON FUEL OIL TANK LEVELOPPD <td>CP-3358</td> <td>EMERGENCY</td> <td>DIESEL NO.</td> <td>1</td> <td>PRIMARY STARTING AIR LOW</td> <td>OPPD</td>	CP-3358	EMERGENCY	DIESEL NO.	1	PRIMARY STARTING AIR LOW	OPPD
CP-3360EMERGENCYDIESELNO.2PRIMARYSTARTINGAIRLOWOPPDCP-3361EMERGENCYDIESELNO.2SECONDARYSTARTINGAIRLOWOPPDCP-3375EMERGENCYDIESELNO.1FUEL OILXFRPUMPNO.2PRESSOPPDCP-3377EMERGENCYDIESELNO.2FUEL OILXFRPUMPNO.2PRESSOPPDCP-3418EMERGENCYDIESELNO.1FUEL OILXFRPUMPOPPDOPPDCP-3419EMERGENCYDIESELNO.2FUEL OILXFRPUMPOPPDOPPDCP-6004EMERGENCYDIESELNO.1S50GALLONFUELOILTANKLEVELOPPDCP-6027EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6031EMERGENCYDIESELNO.1ENGINEJACKETWATERTEMPOPPDCP-6038EMERGENCYDIESELNO.1AIRSTARTINGSWITCHNO.1OPPDCP-6040EMERGENCYDIESELNO.1AIRSTARTINGSWITCHNO.2OPPDCP-6042EMERGENCYDIESELNO.1AIRCOMPRESSORNO.2START-STOPOPPDCP-6048EMERGENCYDIESELNO.1SPEEDSSNITCHOPPDOPPDOPPD <td>CP-3359</td> <td>EMERGENCY</td> <td>DIESEL NO.</td> <td>1</td> <td>SECONDAFY STARTING AIR LOW</td> <td>OPPD</td>	CP-3359	EMERGENCY	DIESEL NO.	1	SECONDAFY STARTING AIR LOW	OPPD
CP-3361EMERGENCYDIESEL NO. 2SECONDARYSTARTING AIR LOWOPPDCP-3375EMERGENCYDIESEL NO. 1FUEL OIL XFR PUMP NO. 2PRESSOPPDCP-3377EMERGENCYDIESEL NO. 2FUEL OIL XFR PUMP NO. 2PRESSOPPDCP-3418EMERGENCYDIESEL NO. 1FUEL OIL XFR PUMPOPPDCP-3419EMERGENCYDIESEL NO. 1FUEL OIL XFR PUMPOPPDCP-6004EMERGENCYDIESEL NO. 1550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCYDIESEL NO. 1ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCYDIESEL NO. 1ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCYDIESEL NO. 1AIR STARTING SWITCH NO. 1OPPDCP-6040EMERGENCYDIESEL NO. 1AIR COMPRESSOR NO.1START-STOPOPPDCP-6042EMERGENCYDIESEL NO. 1AIR COMPRESSOR NO.2START-STOPOPPDCP-6048EMERGENCYDIESEL NO. 1AIR COMPRESSOR NO.2START-STOPOPPDCP-6104EMERGENCYDIESEL NO. 1AIR COMPRESSOR NO.2START-STOPOPPDCP-6126EMERGENCYDIESEL NO. 2550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCYDIESEL NO. 2START PRESSUREOPPDCP-6127EMERGENCYDIESEL NO. 2START PRESSUREOPPD	CP-3360	EMERGENCY	DIESEL NO.	2	PRIMARY STARTING AIR LOW	OPPD
CP-3375EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3377EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMPOPPDCP-3419EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMPOPPDCP-6004EMERGENCY DIESEL NO. 1 550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6044EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6045EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6104EMERGENCY DIESEL NO. 2 START-STOPOPPDCP-6126EMERGENCY DIESEL NO. 2 START-STOPOPPDCP-6126EMERGENCY DIESEL NO. 2 START-STOPOPPDCP-6126EMERGENCY DIESEL NO. 2 START-STOPOPPDCP-6126EMERGENCY DIESEL NO. 2 START-STOPOPPDCP-6127EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6126EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 START PRESSUREOPPD	CP-3361	EMERGENCY	DIESEL NO.	2	SECONDARY STARTING AIR LOW	OPPD
CP-3377EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMP NO. 2 PRESSOPPDCP-3418EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMPOPPDCP-3419EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMPOPPDCP-6004EMERGENCY DIESEL NO. 1 550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6126EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6126EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-3375	EMERGENCY	DIESEL NO.	1	FUEL OIL XFR PUMP NO. 2 PRESS	OPPD
CP-3418EMERGENCY DIESEL NO. 1 FUEL OIL XFR PUMPOPPDCP-3419EMERGENCY DIESEL NO. 2 FUEL OIL XFR PUMPOPPDCP-6004EMERGENCY DIESEL NO. 1 550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6126EMERGENCY DIESEL NO. 2 START PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-3377	EMERGENCY	DIESEL NO.	2	FUEL OIL XFR PUMP NO. 2 PRESS	OPPD
CP-3419EMERGENCYDIESEL NO. 2FUEL OIL XFR PUMPOPPDCP-6004EMERGENCYDIESEL NO. 1550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCYDIESEL NO. 1ENGINE JACKET WATER PRESSUREOPPDCP-6027EMERGENCYDIESEL NO. 1ENGINE JACKET WATER TEMPOPPDCP-6031EMERGENCYDIESEL NO. 1ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCYDIESEL NO. 1AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCYDIESEL NO. 1AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCYDIESEL NO. 1AIR COMPRESSOR NO.1START-STOPOPPDCP-6042EMERGENCYDIESEL NO. 1AIR COMPRESSOR NO.2START-STOPOPPDCP-6048EMERGENCYDIESEL NO. 1SPEED SENSING SWITCHOPPDCP-6104EMERGENCYDIESEL NO. 2550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCYDIESEL NO. 2JACKET WATER PRESSUREOPPDCP-6127EMERGENCYDIESEL NO. 2ENGINE JACKET WATER TEMPOPPD	CP-3418	EMERGENCY	DIESEL NO.	1	FUEL OIL XFR PUMP	OPPD
CP-6004EMERGENCY DIESEL NO. 1 550 GALLON FUEL OIL TANK LEVELOPPDCP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6027EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER FRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPDOPPDOPPDOPPDOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-3419	EMERGENCY	DIESEL NO.	2	FUEL OIL XFR PUMP	OPPD
CP-6026EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER PRESSUREOPPDCP-6027EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6004	EMERGENCY	DIESEL NO.	1	550 GALLON FUEL OIL TANK LEVEL	OPPD
CP-6027EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6026	EMERGENCY	DIESEL NO.	1	ENGINE JACKET WATER PRESSURE	OPPD
CP-6031EMERGENCY DIESEL NO. 1 ENGINE JACKET WATER TEMPOPPDCP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6027	EMERGENCY	DIESEL NO.	1	ENGINE JACKET WATER TEMP	OPPD
CP-6038EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 1OPPDCP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6031	EMERGENCY	DIESEL NO.	1	ENGINE JACKET WATER TEMP	OPPD
CP-6039EMERGENCY DIESEL NO. 1 AIR STARTING SWITCH NO. 2OPPDCP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6038	EMERGENCY	DIESEL NO.	1	AIR STARTING SWITCH NO. 1	OPPD
CP-6040EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.1 START-STOPOPPDCP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER FRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6039	EMERGENCY	DIESEL NO.	1	AIR STARTING SWITCH NO. 2	OPPD
CP-6042EMERGENCY DIESEL NO. 1 AIR COMPRESSOR NO.2 START-STOPOPPDCP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6040	EMERGENCY	DIESEL NO.	1	AIR COMPRESSOR NO.1 START-STOP	OPPD
CP-6048EMERGENCY DIESEL NO. 1 SPEED SENSING SWITCHOPPDCP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6042	EMERGENCY	DIESEL NO.	1	AIR COMPRESSOR NO.2 START-STOP	OPPD
CP-6104EMERGENCY DIESEL NO. 2 550 GALLON FUEL OIL TANK LEVELOPPDCP-6126EMERGENCY DIESEL NO. 2 JACKET WATER PRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6048	EMERGENCY	DIESEL NO.	1	SPEED SENSING SWITCH	OPPD
CP-6126EMERGENCY DIESEL NO. 2 JACKET WATER FRESSUREOPPDCP-6127EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMPOPPD	CP-6104	EMERGENCY	DIESEL NO.	2	550 GALLON FUEL OIL TANK LEVEL	OPPD
CP-6127 EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMP OPPD	CP-6126	EMERGENCY	DIESEL NO.	2	JACKET WATER PRESSURE	OPPD
	CP-6127	EMERGENCY	DIESEL NO.	2	ENGINE JACKET WATER TEMP	OPPD

Source GSE#

.

Page 73 of 91

Docum	nent	
00 03	22	

Description

CD-6131	EMERGENCY DIESEL NO. 2 ENGINE JACKET WATER TEMP	OPPD	
CP-6138	EMERGENCY DIESEL NO. 2 AIR STARTING SWITCH NO.1 PRESS	OPPD	
CP-6130	EMERGENCY DIESEL NO. 2 AIR STARTING SWITCH NO.2 PRESS	°P* >	
CP-6140	EMERCENCY DIESEL NO. 2 AIR COMPRESSOR NO.1 START-STOP	JPPD	
CP-6140	EMERCENCY DIESEL NO. 2 AIR COMPRESSOR NO.2 START-STOP	OPPD	
CP-6142	EMERGENCY DIESEL NO. 2 SPEED SENSING SWITCH	OPPD	
CP-0140	DIESEL GENERATOR NO. 1 - METERING	OPPD	
CP-DG-1/METERING	DIESEL CENERATOR NO. 2 - METERING	OPPD	
CP-DG-2/MEIERING	Main One Line Diagram	OPPD	12235
11405-E-1	Emergency Alarm System EE-32	OPPD	12249
11405-E-13	A 16 KV Switchgear Schematics	OPPD	12250
11405-E-14	4.16 KV Switchgear Schematics	OPPD	1225.
11405-E-15	4.16 KV Switchgear Schematics and Switch Developments	OPPD	12252
11405-E-16	4.10 KV Switchgear Schematics	OPPD	12254
11405-E-18	4160 Volt Switchgear Schematics	OPPD	12255
11405-E-19	4160 Voit Switchgear Schematics	OPPD	12256
11405-E-21	Lockout and Misc. Relay Schematics	OPPD	12257
11405-E-22	LOCKOUL AND MISC. REINY SCHEMACICS	OPPD	12260
11405-E-25	A 16 MU Auxiliary Power One Line Diagram	OPPD	12239
11405-E-3	4.10 KV Auxiliary Power one bine bragian	OPPD	12599
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12600
11405-E-338	Elem. Diag Annunciator Schematics	OPPD	12601
11405-E-339	LIEM. Diag Annunciator Schematics	OPPD	12240
11405-E-4	480V Auxillary Power one Line Slagram Sheet I	OPPD	23655
1J405-E-402	Post Accident Monitoring Panel Al-658	OPPD	23658
11405-E-403	Post Accident Monitoring Panel AI-65b	OPPD	23592
11405-E-404	Post Accident Monitoring Panel Al-66R	OPPD	23591
11405-E-405	Post Accident Monitoring Panel Al-600	OPPD	12241
11405-E-5	480V Auxillary Power One Line Diagram	OPPD	12244
11405-E-8	125 Volt DC Misc. Power Distribution Diagram	OPPD	12245
11405-E-9	120 Volt AC Instrument Buses One Line Diagram	OPPD	6142
136B2570	Elementary Diagram Instrument Buses Scheme	OPPD	6143
136B2570	Elementary Diagram Instrument Buses Scheme	OPPD	9386
161F531	13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9300
161F531	13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9307
161F531	13.8 & Sub 1226 Transfer Trip Ckt	OFFD	9300

Page 74 of 91

Document	Description	Source	GSE#
	to a contract Transfor Trip Okt	OPPD	9389
161F531	13.8 & Sub 1226 Hansier Hip Cht	OFPD	9390
161F531	13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9391
161F531	13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9392
161F531	13.8 & Sub 1225 Transfer Trip CKC	OPPD	9385
161F531	Main Three Line Diagram	OPPD	9721
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9722
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	3726
161F575	Elem. Diag Annunciator Schemes Al & A2	OP2D	9801
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9802
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9803
161£597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9811
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9812
161F598	Panel AI-30B, Diesel Sequencer Safety and Test 5	OPPD	9813
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	4422
238X503	Electrical Control Board CB-20 Drawing	OPPD	1422
238X503	Electrical Control Board CB-20 Drawing	OPPD	4425
238X503	Electrical Control Board CB-20 Drawing	OPPD	4424
238X507	Instrument Bus and DC Bus Distribution Panel Drawing	OPPD	4490
238X507	Instrument Bus and DC Bus Distribution Panel Drawing	Westinzh	4423
A14ENGR	Annunciator A-14 Engraving List	Westingh	ouse
A15ENGR	Annunciator A-15 Engraving List	Westing	louse
A16ENGR	Annunciator A-16 Engraving List	westing	ouse
A17ENGR	Annunciator A-17 Engraving List	westingh	iouse
AISENGR	Arnunciator A-18 Engraving List	Westingn	louse
A19ENGR	Annunciator A-19 Engraving List	Westingh	louse
A21ENGR	Annunciator A-21 Engraving List	Westingh	louse
CD-3284A	BATTERY CHARGER 1 AMPS	OPPD	
CD-3284B	BATTERY CHARGER 2 AMPS	OPPD	
CP-3284C	BATTERY CHARGER 3 AMPS	OPPD	
E-4022	FLEM, DIAGRAM - OFF-SITE POWER LOW VOLTAGE MATRIX	OPPD	16951
2D-10-11F	Operating Procedure - Annunciator Response Procedure	OPPD	
(D-10-11)	Operating Procedure - Annunciator Response Procedure	OPPD	
02-10-117	Operating Procedure - Annunciator Response Procedure	OPPD	
00-10-A17	Operating Procedure - Annungiator Response Procedure	OPPD	
00-10-210	Operating Procedure - Annunc ator Response Procedure	OPPD	
OF TO MID			

0

Page 75 of 91

ø

DUDY AP		
Annunciator A21 Response Procedure	OPPD	
Operating Procedure - Annunciator Response Procedure	O PPD	
Operating Procedure - Annunciator Response Procedure	OPPD	
Operating Procedure - Annunciator Response Procedure	OPPD	
Instant Electrical Distribution System Description	OPPD	
Inplant Electrical Distribution System Second	OPPD	12257
Dockout and Misc. Reisy Schemerers S.C. & I -Sheet 7	OPPD	12589
Turpine Generator Auxiliary System of the offer	OPPD	12599
Elem. Diag Annunciator Schematics	OPPD	12600
Elem. Diag Annunciator Schematics	OPPD	12601
Elem. Diag. ~ Annunciator Schemo Cohomo	OPPD	12607
345/161 KV Mimic Bus & Backup Scheme	OPPD	9386
13.8 & Sub 1226 Transfer Hip Ckt	OPPD	9387
13.8 & Sub 1226 Transfer Trip CKC	OPPD	9391
13.8 & Sub 1226 Transfer Trip CKL	OPPD	9393
13.8 & Sub 1226 Transfer Trip CKL	OPPD	9394
13.8 & Sub 1226 Transfer Trip CKt	OPPD	9385
Main Three Line Diagr	OPPD	9721
Elem. Diag Annunci Schemes Al & A2	OPED	9722
Elem. Diag Annuncia Schemes Al & A2	Weeting	house
Annunciator A-14 Engraving List	Westing	house
Annunciator A-15 Engraving List	Westing	house
Annunciator A-16 Engraving List	Westing	house
Annunciator A-17 Engraving List	Westing	house
Annunciator A-18 Engraving List	westing	house
Annunciator A-19 Engraving List	westing	nouse
Calibration Procedure - System Protection Relaying	OPPD	10040
Emergency Alarm System EE-32	OPPD	12249
Elem. Diag Annunciator Schematics	OPPD	12600
Secondary Plant Misc. Equipment S.C. & I -Sheet 3	OPPD	12606
13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9393
13.8 & Sub 1226 Transfer Trip Ckt	OPPD	9394
Elem, Diag Annunciator Schemes Al & A2	OPPD	9721
Elem, Diag, - Annunciator Schemes A1 & A2	OPPD	9722
Annunciator A-16 Engraving List	Westing	house
Annunciator A-17 Engraving List	Westing	house
	Annunciator A21 Response Procedure Operating Procedure - Annunciator Response Procedure Operating Procedure - Annunciator Response Procedure Inplant Electrical Distribution System Description Lockout and Misc. Relay Schematics Turbine Generator Auxiliary System S.C. & I -Sheet 7 Elem. Diag Annunciator Schematics Elem. Diag Annunciator Schematics Elem. Diag Annunciator Schematics 345/161 KV Mimic Bus & Backup Scheme 13.8 & Sub 1226 Transfer Trip Ckt 13.8 & Sub 1226 Transfer Trip Ckt 2000 Schemes Al & A2 Elem. Diag Annunciator Schemes Al & A2 Annunciator A-15 Engraving List Annunciator A-16 Engraving List Annunciator A-17 Engraving List Calibration Procedure - System Protection Relaying Emergency Alarm System EE-32 Elem. Diag Annunciator Schematics Secondary Plant Misc. Equipment S.C. & I -Sheet 3 13.8 & Sub 1226 Transfer Trip Ckt Elem. Diag Annunciator Schemas Al & A2 Annunciator A-16 Engraving List Annunciator A-16 Engraving List Annunciator A-16 Engraving List Annunciator A-17 Engraving List Annunciator A-16 Engraving List	Annunciator A21 Response ProcedureOPPDOperating Procedure - Annunciator Response ProcedureOPPDOperating Procedure - Annunciator Response ProcedureOPPDOperating Procedure - Annunciator Response ProcedureOPPDInplant Electrical Distribution System DescriptionOPPDLockout and Misc. Relay SchematicsOPPDTurbine Generator Auxiliary System S.C. & I -Sheet 7OPPDElem. Diag Annunciator SchematicsOPPDElem. Diag Annunciator SchematicsOPPD345/161 KV Mimic Bus & Backup SchemeOPPD13.8 & Sub 1226 Transfer Trip CktOPPD13.8 & Sub 1226 Transfer Trip CktOPPDBelm. Diag Annunciaco: Schemes Al & A2OPPDAnnunciator A-14 Engraving ListWestingAnnunciator A-15 Engraving ListWestingAnnunciator A-16 Engraving ListWestingAnnunciator A-19 Engraving ListWestingAnnunciator A-19 Engraving ListOPPD13.8 & Sub 1226 Transfer Trip CktOPPDDig Annunciator SchematicsOPPDElem. Diag Annunciator SchematicsOPPDBerny Calibration A-15 Engraving ListWestingAnnunciator A-16 Engraving ListWestingOpPDDiag Annunciator SchematicsOPPDBerny Diag Annunciator SchematicsOPPDBerny Diag Annunciator Schematics

Document

Description

Source GSE#

Page 76 of 91

Document	Description	Source	GSE#
117C3250	Waste Disposal System Flow Diagram	OPPD	6474
117C3250	Waste Disposal System Flow Diagram	OPPD	6476
117C3250	Waste Disposal System Flow Diagram	OPPD	6477
117C3250	Waste Disposal System Flow Diagram	OPPD	6480
117C3250	Waste Disposal System Flow Diagram	OPPD	6481
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9737
161F575	Elem. Diag Annunciator Schemes Al & A2	OPFD	9738
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9742
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9743
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9802
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9803
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9804
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9805
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9812
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9813
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9814
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9815
A31ENGR	Annunciator A-31 Engraving List	Westingh	louse
A32ENGR	Annunciator A-32 Engraving List	Westingh	ouse
A35ENGR	Annunciator A-35 Engraving List	Westingh	louse
A36ENGR	Annunciator A-36 Engraving List	Westingh	louse
11405-E-334	Auxiliary Cooling Water System S.C. & I - Sheet 1	OPPD	12596
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-EM-1704/1714	Instrument and Control Equipment List	OPPD	22282
11405-EM-1917/1918	Instrument and Control Equipment List	OPPD	15954
11405-EM-1919	Instrument and Control Equipment List	OPPD	15955
11405-EM-1920	Instrument and Control Equipment List	OPPD	957
11405-M-257	Flow Diagram Circulating Water	OPPD	10463
11405-M-258	TPCW Flow Diagram	OPPD	10464
11405-M-263	Flow Diagram Compressed Air	OPPD	10469
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16940
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7113

Page 77 of 91

Document	Description	Source	GSE#
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7159
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7171
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7188
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9729
AC-9A, 9B	Pump Curve - AC-9A, 9B	OPPD	
CP-1709	JACKET COOLING PRESSURE	OPPD	
CP-1917	COOLING WATER HEADER PRESSURE	OPPD	
CP-1920	BEARING WATER HEAD TANK LEVEL CHANNEL	OPPD	
SD III-7	Turbine Lubricating Oil System Description	OPPD	
SPEC 11.82	TCV-1919B Valve Spec Sheet	OPPD	15093
11405-A-263	Control Valve Specification Sheet	OPPD	12194
11405-E-251	Gen & Exciter Field Bkr Structure Diagram	OPPD	12519
11405-E-257	Turbine Generator Auxiliary System S.C. & I -Sheet 1	OPPD	12524
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-EM-1180	Instrument and Control Equipment List	OPPD	15818
11405-EM-2100/2101	Instrument and Control Equipment List	OPPD	15960
11405-EM-2650	Instrument and Control Equipment List	OPPD	21551
11405-EM-3200/3277	Instrument Loop Elementary	OPPD	16092
11405-EM-5020	Instrument and Control Equipment List	OPPD	21649
11405-EM-5023	Instrument and Control Equipment List	OPPD	21651
11405-EM-5024	Instrument and Control Equipment List	OPPD	21650
11405-EM-5026	Instrument and Control Equipment List	OPPD	21660
11405-EM-5028	Instrument and Control Equipment List	OPPD	22126
11405-EM-5032	Instrument and Control Equipment List	OPPD	21653
11405-EM-5034	Instrument and Control Equipment List	OPPD	21343
11405-EM-5044	Instrument and Control Equipment List	OPPD	21659
11405-EM-5045	Instrument and Control Equipment List	OPPD	21654
11405-EM-5132	Instrument and Control Equipment List	OPPD	21552
11405-EM-5144	Instrument and Control Equipment List	OPPD	21561
11405-EM-5145	Instrument and Control Equipment List	OPPD	21564
11405-EM-982	Instrument and Control Equipment List	OPPD	15766
11405-M-254	Condensate Flow Diagram	OPPD	10460
11405-M-258	TPCW Flow Diagram	OPPD	10464
11405-M-264	Aux Bldg & Containment Instrument Air Diagram	OPPD	16954

Document	Description	Source	GSE#
		OPPD	10731
11405-M-302	Demineralized Water System Flow Diagram	OPPD	7111
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7164
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7175
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7192
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7102
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7109
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7120
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	7199
136B2331	Index/Rev Sheet for Inst. Loop Diagrams	OPPD	24080
136B2432	Elementary Diagram - Switch Development	OPPD	5722
136B2432	Elementary Diagram - Switch Development	OPPD	5123
136B2492	480V Controls & Elementary Diagrams	OPPD	5/56
161F535	13.8 & Sub 1226 Transfer Trip Ckt	OPPD	
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9722
161F575	Elem. Diag Annunciator Schemes Al & AT	OPPD	9724
234R311	Stator Winding Cooling Water P&ID	OPPD	10001
949-D-151	Digital Ratemeter Models 946A-100 Instruction Manual	OPPD	
9490151	Turbine Generator Gas Control P&ID	OPPD	6765
9490154	Turbine Generator P&ID	OPPD	6768
ALOFNER	Annunciator A-10 Engraving List	Westingh	louse
ALAFNER	Annunciator A-14 Engraving List	Westingt	louse
CD-1287	STATOR COOLING WATER LOW FLOW ALARM & UNIT TRIP	GPPD	
CD-1288	STATOR COOLING WATER LOW FLOW ALARM & UNIT TRIP	OPPD	
CP-2650	GENERATOR H2 PRESSURE	OPPD	
CP-2651	HYDROGEN GAS PURITY	OPPD	
CD-2652	GENERATOR CONDITION MONITOR	OPPD	
CP-5010	PECTIFIER DIFFERENTIAL PRESSURE SWITCH CALIBRATION	OPPD	
CP-5010	CENEDATOR INLET FLOW	OPPD	
CP-5020	STATOP COOLING INLET TEMPERATURE ALARM	OPPD	
CP-5023	CTATOR COOLING OUTLET TEMPERATURE ALARM	OPPD	
CP-5024	STATOR COOLING WATER OUTLET HIGH TEMPERATURE	OPPD	
CP-5032	CTATOR COOLING WATER TANK LEVEL	OPPD	
CP-5044	CTATOR COOLING WATER DIMP DISCHARGE PRESSURE	OPPD	
CP-5045	CENT OTT UNCHIM TANK LEVEL	OPPD	
CP-5125	SEAL OIL VACUUM TANK LEVED	OPPD	
CP-5128	EMERGENCI SEAL ULL PUMP MUTOR START INSTRUMENTATION		

Page 79 of 91

0

Document	Description	Source	"C.B.
	HO COOLING DEESSIDE	OPPD	
CP-5136	HZ COULING PRESSORE	OPPD	
CP-5141	NTD TEMPEDATUDE IN ALTERNATOR-FXCITOR	OPPD	
CP-5142	AIR ILEPPERATORE IN ADJUSTICE SLOT TEMPERATURE	OPPD	
CP-982	Concrator Condition Monitor Remote Panel Lavout	OPPD	23745
D-4041	Generator Condition Honitor Remote Fund	OPPD	37369
D-4184	Dising Teometric Diagrams	OPPD	
1C-50	Piping Isometric Diagrams	OPPD	
IC-98	Chatan Cooling Inlet Temperature LOOD	OPPD	
T-1175A/B	Stator Cooling Intel Temperature Loop	OPPD	
T-1178A/B	Stator cooling outlet remperature hoop	OPPD	20607
11405-E-121	Emergency Ale in System DE Sz	OPPD	12259
11405-E-24	4.16 KV SWILCHGEAI SCHEMACICS	OPPD	12545
11405-E-278	TURBINE BUILDING IRAI LATOOT	OPPD	12598
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12600
11405-E-338	Elem. Diag Annunciator Schematics	OPPD	12601
11405-E-339	Elem. Diag Annunciacor Schemacics	OPPD	12602
11405-E-340	Secondary Plant Misc. Equipment S.C. & I -Sheet 3	OPPD	12604
11405-E-342	Secondary Fidne Misc. Equipment S.C. & I Sheet S	OPPD	10465
11405-M-259	Flow Diagram Polable & Service Mater	OPPD	19615
11405-M-266	Fire Protection Deluge System Details	OPPD	20599
11405-M-266	Fire Protection Deluge System Details	OPPD	20600
11405-M-266	Fire protection beinge System becalls	OPPD	9721
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	0722
161F575	Elem. Diag Annunciator Schemes Al & Az	Westingh	ouse
A14ENGR	Annunciator A-14 Engraving List	Westingh	ouse
A16ENGR	Annunciator A-16 Engraving List	Westingh	ouse
A17ENGR	Annunciator A-1/ Engraving List	Westingh	ouse
A18ENGR	Annunciator / -18 Engraving List	OPPD	
CP-1652	FIRE MAIN HEADER PRESSURE	OPPD	
CF-6511A/B	DRY FIPE SPRINKLER SYSTEM FOR DIESEL GENERATOR ROOMS	OPPD	
CP-WP-63	LOW FIRE MAIN PRESSURE FIRE PUMP START	OPPD	12234
FIG. 8.1-1	Plant Electrical System One Line Diagram	OPPD	
SD III-16	Fire Protection System Description	OPPD	
SD III-8	Fire Protection System Description	OFFD	

.

Page 80 of 91

N

2

E a

Document	Description	Source	GSE#
11405 0 20	Main Steam & Food System S.C. & T.	OPPD	12263
11405-E-28	Annunciator Schematics	OPPD	12266
11405-6-31	Instrument and Control Eminment List	OPPD	10227
11405-EM-101	Instrument and Control Equipment List	OPPD	16956
11405-EM-101	Instrument and Control Equipment List	OPPD	15425
11405-EM-102	Instrument and Control Equipment List	OPPD	1567
11405-EM-103	Instrument and Control Equipment List	OPPD	1568
11405-EM-103	Instrument and Control Eminment List	OPPD	15626
11405-EM-111	Instrument and Control Eminment List	OPPD	800
11405-EM-121	Instrument and Control Equipment List	OPPD	11654
11405-EM-269	Instrument and Control Equipment List	OPPD	15720
11405-EM-903	Instrument and Control Equipment List	OPPD	21368
11405-EM-906	Flowentary Diagram - Switch Development	OPPD	5730
13682432	Elementary Diagram - Switch Development	OPPD	5745
13682432	Elementary Diagram - Switch Development	OPPD	5746
13682432	Elementary Diagram - Switch Dev lopment	OPPD	5754
136B2432	ARON Controls & Flementary Diagrams	OPPD	5756
136B2492	Annunciator A-8 Field Contacts	OPPD	6273
136B3082	Food Dog System Block Wiring Diagram - Train A	OPPD	9424
1611544	Feed Reg System Block Wiring Diagram - Train A	OPPD	9425
161F544	Feed Reg System Block Wiring Diagram - Train A	OPPD	9426
161F544	Flee Rey System Block willing blaging System	OPPD	9429
161F549	Elem. Diagram - Reactor Regulating System	OPPD	9430
161F549	Elem. Diagram - Reactor Regulating officer	OPPD	9476
161F561	Interconnection Diagram	OPPD	9503
161F561	Interconnection Diagram	OPPD	9512
161F561	Interconnection Diagram	OPPD	9513
161F561	Interconnection Diagram	OPPD	9551
161F561	Interconnection Diagram	OPPD	9554
161F561	Interconnection Diagram	OPPD	9791
161F594	Rod Drive Control System Interconnection Diagram	OPPD	9792
161F594	Rod Drive Control System Interconnection Diagram	CPPD	9793
161F594	Rod Drive Control System Interconnection Diagram	OPPD	9794
161F594	Rod Drive Control System Interconnection Diagram	OPPD	9795
161F594	Rod Drive Control System Interconnection Diagram	OPPD	9796
161F594	Kod Drive control system interconnection brugitan		

Page 81 of 91

9

Document	Description	Source	GSE#
161F594	Rod Drive Control System Interconnection Diagram	OPPD	9797
161F594	Rod Drive Control System Interconnection Diagram	OPPD	9798
161F594	Rod Drive Control System Interconnection Diagram	OPPD	10266
B-23866-414-360	Schematic Diagram - Electro Pneumatic Throttle Valves	OPPD	1259
B-23866-414-377	Schematic Diagram - Pilot Solenoid Operated Valves	OPPD	1276
CP-101X	PRESSURIZER LEVEL	OPPD	
CP-101Y	PRESSURIZER LEVEL	OPPD	
CP-103X	PRESSURIZER PRESSURE CHANNEL 103X	OPPD	
CP-103Y	PRESSURIZER PRESSURE CHANNEL 103Y	OPPD	
CP-105/123	PRESSURIZER PRESSURE WIDE RANGE CFANNEL B	OPPD	
CP-113/115	PRESSURIZER PRESSURE WIDE RANGE CHANNEL C	OPPD	
CP-909	STEAM DUMP CONTROL AND QUICK OPENING OVERRIDE CHANNEL	OPPD	
CP-RRS	CALIBRATION PROCEDURE - RRS	OPPD	
D-23866-413-001	Reactor Coolant Pump P&ID	OPPD	1375
D-4158	LTOP	OPPD	37776
D-4159	Schematic Diagram - Solenoid Operated Valves	OPPD	37777
D-W-1537N-240	RRS Design Basis Document Review Comments	OPPD	
E-23866-413-075	Safety Injection and Containment Spray System	OPPD	1617
FIG.7.4-6	Steam Dump & Bypass System Block Diagram	OPPD	36561
SD I-4 RCS	Reactor Coolant System Description	OPPD	
SD I-5	Chemical and Volume Control System Description	OPPD	
SD III-3	Condensate and Feedwater System Description	OPPD	
11405-E-120	4.16 KV Htr Drn Pump Bkr FW-5A	OPPD	40239
11405-E-120	4.16 KV Htr Drn Pump Bkr FW-5A	OPPD	40240
11405-E-190	4160 Volt Switchgear Schematics	OPPD	12426
11405-E-191	4160 Volt Switchgear Schematics	OPPD	12427
11405-E-192	4160 Volt Switchgear Schematics	OFPD	12428
11405-E-193	4160 Volt Switchgear Schematics	OPPD	12429
11405-E-193A	4160 Volt Switchgear Schematics	OPPD	23159
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-404	Post Accident Monitoring Panel AI-66A	OPPD	23592
11405-E-405	Post Accident Monitoring Panel AI-66B	OPPD	23591
C-23866-411-003	Joy Series 1000 Axivane Fan Model 29 Manual	OPPD	1294
CP-A RPS/DT METER	ALTERNATOR ARMATURE SLOT TEMPERATURE	OPPD	
CP-B RPS/DT METER	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	

A 10 11 14

Page 82 of 91

Document	Description	Source	GSE#
CP-D RPS/DT METER	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
D-23860-411-027	Reactor Coolant Pump P&ID	OPPD	1356
D-23866-411-031	Reactor Coolant Pump P&ID	OPPD	1359
D-23866-411-052	Reactor Coolant Pump P&ID	OPPD	23158
D-23866-413-352	Reactor Coolant Pump P&ID	OPPD	1379
E-23866-411-003	Safety Injection and Containment Spray System	OPPD	1582
E-23866-411-012	Safety Injection and Containment Spray System	OPPD	23160
E-23866-411-012	Safety Injection and Containment Spray System	OPPD	23161
E-23866-411-012	Safety Injection and Containment Spray System	OPPD	23162
E-23866-411-012	Safety Injection and Containment Spray System	OPPD	23163
E-23866-411-012	Safety Injection and Containment Spray System	OPPD	23164
E-23866-411-013	Safety Injection and Containment Spray System	OPPD	1584
E-23866-411-013	Safety Injection and Containment Spray System	OPPD	1585
E-23866-411-013	Safety Injection and Containment Spray System	OPPD	1586
E-23866-411-013	Safety Injection and Containment Spray System	OPPD	1587
E-23866-411-039	Safety Injection and Containment Spray System	OPPD	1597
E-23866-411-040	Safety Injection and Containment Spray System	OPPD	1598
E-23866-411-043	Safety Injection and Containment Spray System	OPPD	1599
E-23866-411-061	Safety Injection and Containment Spray System	OPPD	23156
E-23866-411-064	Safety Injection and Containment Spray System	OPPD	1600
E-23866-411-064	Safety Injection and Containment Spray System	OPPD	1601
E-23866-411-302	Safety Injection and Containment Spray System	OPPD	23157
E-23866-411-310	Safety Injection and Containment Spray System	OPPD	1605
E-23866-411-323	Safety Injection and Containment Spray System	OPPD	1606
E-23866-411-324	Safety Injection and Containment Spray System	OPPD	1607
E-23866-411-325	Safety Injection and Containment Spray System	OPPD	1608
E-23866-411-400	Safety Injection and Containment Spray System	OPPD	1611
E-23866-411-401	Safety Injection and Containment Spray System	OPPD	1612
E-4088	D.S.S. Channel A & B Matrix Diagram	OPPD	43616
OP-10-A20	Operating Procedure - Annunciator Response Procedure	OPPD	
RPS VOL I	RPS Technical Manual	OPPD	
RPS VOL II	RPS Technical Manual	OPPD	
SHB 23-26-15	Reactor Protective System Student Handbook	GAdo	
11405-E-25	Annunciator Schematics	OPPD	12260
11405-E-31	Annunciator Schematics	OPPD	12260

Page 83 of 91

Document	Description	Source	GSE#
11405-E-338	Elem. Diag Annunciator Schematics	OPPD	12600
11405-E-339	Elem. Diag Annunciator Schematics	OPPD	12601
11405-E-404	Post Accident Monitoring Panel AI-66A	OPPD	23592
11405-E-405	Post Accident Monitoring Panel AI-66B	OPPD	23591
136B3219	Electrical Control Valve & Pump Index	OFPD	6350
161F596	Elem. Diagram - Steam Gen. Pressure Initiation Matrix	OPPD	9800
161F597	Panel AI-30A, Diesel Seg 'ncer Safety and Test A	OPPD	9801
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
161F598	Panel AI-305, Diesel Sequencer Safety and Test B	OPPD	9816
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9817
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9818
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9819
161F599	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9821
161F609	Elem. Diagram - Pressurizer Low Pressure Matrix A & B	OPPD	9829
161F611	Elem. Diagram - Pressurizer Low Pressure Matrix A & B	OPPD	9831
161F615	Cont. Hi Press & SIRWT Lo 2/4 Matrices A & B Schematic	OPPD	9841
A17ENGR	Annunciator A-17 Engraving List	Westingh	louse
A18ENGR	Annunciator A-18 Engraving List	Westing	nouse
B120F14501	Schematic - Engine Control	OPPD	17396
CP-A/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-A/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
CP-B/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-B/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
CP-C/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-C/914	STEAM GENERATOR B WIDF RANGE PRESSURE	OPPD	
CP-D/913	STEAM GENERATOR A WIDE RANGE PRESSURE	OPPD	
CP-D/914	STEAM GENERATOR B WIDE RANGE PRESSURE	OPPD	
D-4074	Generator Condition Monitor Remote Panel Layout	OPPD	16262
E-4027	ELEM. DIAGRAM - OFF-SITE POWER LOW VOLTAGE MATRIX	OPPD	16951
E-4043	ELEM. DIAG AFW ACTUATION FROM RC-2A MATRIX	OPPD	16143
E-4043	ELEM. DIAG AFW ACTUATION FROM RC-2A MATRIX	OPPD	16144
E-4044	ELEM. DIAG AFW ACTUATION FROM RC-2A MATRIX	OPPD	16145
E-4044	ELEM. DIAG AFW ACTUATION FROM RC-2A MATRIX	OPPD	16146
OP-10-A31/32	Operating Procedure - Annunciator Response Procedure	OPPD	
SD II-7	Engineered Safeguards System Description	OPPD	

Page 84 of 91

Document	Description	Source	GSE#
	Annungiator Cohomatics	OPPD	12266
11405-E-31	Annunciator Schematron duses One Line Diagram	OPPD	15433
11405-EM-001/010	120 Voit At Institument Duses one bine brageous	OPPD	9476
161F561	Interconnection Diagram	OPPD	9562
161F561	Interconnection Diagram	OPPD	9563
161F561	Interconnection Diagram	OPPD	9564
161F561	Interconnection Diagram	OPPD	22681
161F561	Interconnection Diagram	OPPD	9731
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9777
161F591	Elem, Diag Annunciator Schemes Al & A2	OPPD	9779
161F591	Elem. Diag Annunciator Schemes Al & Az	OPPD	10266
161F594	Rod Drive Control System Interconnection Diagram	Westingh	01156
A20ENGR	Annunciator A-20 Engraving List	OPPD	1363
D-23866-411-100	Nuclear Instrumentation System Functional Diagram	OPPD	1589
E-23866-411-021	NI & RPS Cabinet Front Panel Layout	OPPD	1602
E-23866-411-102	Neutron Flux Monitoring System Wide Range Log Channel	OPPD	1603
E-23866-411-103	Neutron Flux Monitoring System Power Range Channel	OPPD	25824
Gulf NIS Man V III	Gulf Atomic Technical Manual	OPPD	25822
Gulf NIS Man. V I	Gulf Atomic Technical Manual	OPPD	25022
Gulf NIS Man. V II	Gulf Atomic Technical Manual	OPPD	63063
LINEAR POWER	LINEAR POWER CHANNEL TECHNICAL MANUAL	OPPD	
LP-7-12-18	Nuclear Instrumentation Student Lesson Plan	OPPD	
LP-7-12-19	Nuclear Instrumentation Student Lesson Plan	OPPD	
OI-NI	Operation of the Excore Nuclear Instrumentation System	OPPD	
OP-10-A20	Operating Procedure - Annunciator Response Procedure	OPPD	
0P-7	OPERATING PROCEDURE - REACTOR STARTUP - Part 1	OPPD	
SHB 23-26-5	Nuclear Instrumentation Student Handbook	OPPD	43300
ST-RPS-1	Power Range Safety Channels	OPPD	41189
ST-RPS-2	Wide Range Logarithmic Channels	OPPD	23957
B-4101	ERF Computer Analog Point Input List	OPPD	31487
8-4108	OSPDS A Data Link Analog Computer Points	OPPD	37813
B-4109	OSPDS B Data Link Analog Computer Points	OPPD	37816
B-4103	OSPDS Plasma Display Pages View	OPPD	23555
B=4101	ERF Computer Analog Point Input List	OPPD	31487
B-4108	OSPDS A Data Link Analog Computer Points	OPPD	37813
B-4109	QSPDS B Data Link Analog Computer Points	OPPD	37816

Page 85 of 91

0

Document

Description

Et and a second one one	100000
SOUTCP	1 - C - F - 2
that that take day that that	1 h h h h h h h h

SD II-8	Incore Nuclear Instrumentation System Description	OPPD	
11405-E-25	ANNUNCIATOR SCHEMATICS	OPPD	12260
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-406	RM Panel AI-33C Annunciator & Elem.	OPPD	22662
11405-EM-214	Instrument and Control Equipment List	OPPD	845
11405-M-1	Cont HVAC Flow Diagram	OPPD	10431
11405-M-10	Aux Coolant Component Cooling Flow Diagram	OPPD	10440
11405-M-100	Raw Water Flow Diagram	OPPD	10454
11405-M-12	Primary Plant Sampling System Flow Diagram	OPPD	10442
11405-M-252	Main Steam Flow Diagram	OPPD	10458
11405-M-261	Flow Diagram Condenser Evacuation & H2 - CO2 Piping	OPPD	10468
11405-M-43	Auxiliary Gas Flow Diagram	OPPD	10447
11405-M-9	Waste Disposal System Flow Diagram	OPPD	10439
13007.55-EE-2B-2	125VDC Panel AI-65B H2 Analyzer Elementary	OPPD	37714
161F561	Interconnection Diagram	OPPD	9476
161F561	Interconnection Diagram	OPPD	9479
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9728
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9729
161F575	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9730
161F584	Elem. Diag Annunciator Schemes Al & A2	OPPD	9769
161F591	Elem. Diag Annunciator Schemes A1 & A2	OPPD	9779
903546	System Wiring, Process RadMonitor	OPPD	18276
904531	RM-060 Vent Stack Fan Control	OPPD	18293
904654	Process Monitor Stack 1 Deteccor Wiring	OPPD	18295
910658	Process Monitor Stack 1 Detector Wiring	OPPD	37706
911105	Process Monitor Stack 1 Detector Wiring	OPPD	37710
911106	Process Monitor Stack 1 Detector Wiring	OPPD	37707
911106	Process Monitor Stack 1 Detector Wiring	OPPD	37708
911107	Process Monitor Stack 1 Detector Wiring	OPPD	37709
911584	Process Monitor Stack 1 Detector Wiring	OPPD	37711
911585	Process Monitor Stack 1 Detector Wiring	OPPD	37697
942A-100-1	Victoreen Digital Ratemeter 942A Tech Manual	OPPD	
946A-100-1B	Victoreen Digital Ratemeter 946A-100 Instructions	OPPD	
A2ENGR	Annunciator A-2 Engraving List	Westinghouse	
A39ENGR	Annunciator A-39 Engraving List	Westinghouse	
Document	Description	Source	GSE#
--------------------	--	----------	--------
A4ENGR	Annunciator A-4 Engraving List	Westingh	ouse
B-4101	ERF Computer Analog Input List	OPPD	31487
B-4102	ERF Computer Analog Point Input List	OPPD	37450
B-4108	QSPDS A Data Link Analog Computer Points	OPPD	37813
B-4109	QSPDS B Data Link Analog Computer Points	OPPD	37816
CP-057	CONDENSER OFFGAS MONITOR CALIBRATION	OPPD	
CP-063F	POST ACCIDENT WR NOBLE GAS SAMPLER CALIBRATION	OPPD	
CP-214	SECONDARY & PRIMARY CAL FOR FAILED FUEL MONITOR	OPPD	
CP-54A	S/G A BLOWDOWN MONITOR CALIBRATION	OPPD	
CP-54B	S/G B BLOWDOWN MONITOR CALIBRATION	OPPD	
E-23866-210-120	Chemical and Volume Control	OPPD	10477
11405-E-25	Annunciator Schematics	OPPD	12260
11405-E-31	Annunciator Schematics	OPPD	12266
11405-E-336	Elem. Diag Annunciator Schematics	OPPD	12598
11405-E-337	Elem. Diag Annunciator Schematics	OPPD	12599
11405-E-338	Elem. Diag Annunciator Schematics	OPPD	12600
11405-E-339	Elem. Diag Annunciator Schematics	OPPD	12601
11405-E-402	Post Accident Monitoring Panel AI-65A	OPPD	23655
11405-E-403	Post Accident Monitoring Panel AI-65B	OPPD	23658
11405-E-404	Post Accident Monitoring Panel AI-66A	OPPD	23592
11405-E-405	Post Accident Monitoring Panel AI-66B	OPPD	23591
11405-E-406	RM Panel AI-33C Annunciator & Elem.	OPPD	22662
11405-EM-1700/1701	Instrument and Control Equipment List	OPPD	15910
161F575	Elem. Diag Annunciator Schemes Al & A2	OPPD	9729
161F597	Panel AI-30A, Diesel Sequencer Safety and Test A	OPPD	9801
161F598	Panel AI-30B, Diesel Sequencer Safety and Test B	OPPD	9811
A10ENGR	Annunciator A-10 Engraving List	Westingh	louse
AllENGR	Annunciator A-11 Engraving List	Westingh	louse
A12ENGR	Annunciator A-12 Engraving List	Westingh	louse
A13ENGR	Annunciator A-13 Engraving List	Westingh	louse
A14ENGR	Annunciator A-14 Engraving List	Westingh	louse
A15ENGR	Annunciator A-15 Engraving List	Westingh	louise
A16ENGR	Annunciator A-16 Engraving List	Westingh	lo'ise
A17ENGR	Annunciator A-17 Engraving List	Westingh	ouse
A13ENGR	Annunciator A-18 Engraving List	Westingh	louse

Page 87 of 91

A		-		
1.103	C~23		00	· · ·
1.25.7				
100.00	~ ~	1.00.00	A	1.10. 7607

Description

Source GSE#

19ENGR	
1ENGR	
20ENGR	
21 ENCR	
DENCE	
CENGR	
SUENGR	
131ENGR	
32ENGR	
133-1ENG	
33-2ENG	
34-1ENG	
34-2ENG	
35ENGR	
36ENGR	
37ENGR	
38ENGR	
39ENGR	
40ENGR	
41ENGR	
4ENGR	
65AENGR	
65BENGR	
GENENCD	
NUMBROOM	

Annunciator A-19 Engraving List Annunciator A-1 Engraving List Annunciator A-20 Engraving List Annunciator A-21 Engraving List Annunciator A-2 Engraving List Annunciator A-30 Engraving List Annunciator A-31 Engraving List Annunciator A-32 Engraving List Annunciator A-33-1 Engraving List Annunciator A-33-2 Engraving List Annunciator A-34-1 Engraving List Annunciator A-34-2 Engraving List Annunciator A-35 Engraving List Annunciator A-36 Engraving List Annunciator A-37 Engraving List Annunciator A-38 Engraving List Annunciator A-39 Engraving List Annunciator A-40 Engraving List Annunciator A-41 Engraving List Annunciator A-4 Engraving List Annunciator A-65-A Engraving List Annunciator A-65-B Engraving List Annunciator A-66-A Engraving List

Westinghouse Westinchouse Westinghouse Westinghouse Westinghouse Westinghouse Westinghouse Westinghouse Westinghouse Westinghouse

Design Reference Documents:

Excerpt from Steam (Generator Technical Manual for Fort Calhoun Station Unit No. 1, Data Void Request #VFCS0024	OPPD
Fort Calhoun Station	unit 1 Updated Safety Analysis Report Rev. 1	OPPD
Fort Calhoun Station	Simulator Malfunction Descriptions	OPPD
Fluid Mechanics, Fra	ank M. White, McGraw-Hill, 1979	Westinghouse
IMB	Design Basis and Mcdel Documentation The Interactive Model Builder (IMB) Handbook IMB 13.10	Westinghouse
IMB	Design Basis and Model Documentation The Interactive Model Builder (IMB) Handbook IMB 10.5.1	Westinghouse
IMB	Design Basis and Model Documentation Interactive Model Builder Modules 10.5.2	Westinghouse
Letter D-W-1537N-149	o, "RCS Data Request", R.P. Clemens of OPPD to S.S. Khwaja of Westinghouse, July 13, 1988.	Westinghouse
Letter D-W-1537N-141	, "Auxiliary Feedwater Pump FW-6, Pump Curve", R. P. Clemens, June 29, 1988.	Westinghouse
Letter	USER #83-02, "Least Square Polynomial Curve Fitting", Shooo-Dyi Yeh, Jan. 11, 1983	Westinghouse
Marks, L. S. Mechani	cal Engineer's Handbook, Fourth Edition. New York: McGraw Hill Book Company, Inc., 1941.	Westinghouse
Meter Scale List	Meter Faceplate Scale Data	Westinghouse

Page 89 of 91

Meyer, C. A., McClintock, R. B., Silvestri, G. J., and Spencer, R. J. Jr. ASME Steam Tables, Fourth Edition. New York: The American Society of Mechanical Engineers, 1967.	Westinghouse
Operating Manual Technical Data Book, Volume 1, Fort Calhoun Station, Unit No. 1, III-20, "RCS Elevations vs. Tygon Tube, LI-106 LI-197", Revised 05/04/87	OPPD
100% Power Point Summary 4/17/89 12:38:52 FCS ERF Data Point Scan	OPPD
Plant Startup Data taken 5/16/89	OPPD
Reactor Core Data Transmitted 1988.	OPPD
RMS Notes - 942A Notes on the 942A Area Monitors by M. L. Ellis	OPPD
RMS Notes - 946A Notes on the 946A Area Monitors by M. L. Ellis	OPPD
Systems Description for Fort Calhoun Station Unit No. 1, Volume 1, Section 4, "Reactor Coolant System"	OPPD
Standard Handbook for Mechanical Engineers, Theodore Baumeister, McGraw-Hill, 1967.	Westinghouse
Tong, L. S. and Weisman, J. Thermal Analysis of Pressurized Water Reactors, Second Edition. LaGrange Park: American Nuclear Society, 1979.	Westinghouse
Updated Safety Analysis Report for Fort Calhoun Station Unit No. 1, Volume 2, Section 4	OPPD
Van Wylen, G. J. and Sonntag, R. E. Fundamentals of Classical Thermodynamics, 2nd Edition. New York: John Wilely and Sons, Inc., 1973.	Westinghouse
Wallis, G. B. One-Dimensional Two-Phase Flow. New York: McGraw-Hill, 1969.	Westinghouse

WALK STATES

Page 90 of 91

Weast, Robert C. CR	C Handbook of Chemistry and Physics, 57th Edition. Cleveland: CRC Press, 1976.	Westinahouse
Zaloudek, F. R. "Cr	itical Flow of Hot Water Through Short Tubes." Atomic Energy Commission Research and Development Report, HW-77594, General Electric Corporation, 1963.	Westinghouse
120VAC LOAD STUDY	Fort Calhoun 120V AC Load Study	OPPD
125VDC LOAD STUDY	Fort Calhoun 125V DC Load Study	OPPD
480VAC LOAD STUDY	Fort Calhoun 480V Load Study	OPPD
4160VAC LOAD STUDY	Fort Calhoun 4.16KV Load Study	OPPD

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION

Simulator Certification Submittal

Section 3

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION

Simulator Certification Submittal Section 3

3.1 INTRODUCTION

The purpose of this Section is to present the documentation for the Simulator Performance Testing pursuant to ANSI/ANS-3.5-1985, Section 5.4.1(1), "Completion of initial construction." A representative sample of this documentation is presented as Simulator Performance Test Abstracts, attached as Appendix 3.A, and described below.

3.2 SIMULATOR TEST PROGRAM DOCUMENTS

The Test Program documentation can be encapsulated by the following simulator documents:

- Simulator Acceptance Test Procedures (ATPs), Section 14 of FCS Simulator Documentation:
 - Simulator Malfunction Cause and Effect (MC&E) Sheets, Section 6.3.4 of FCS Simulator Documentation; and
- Simulator Trouble Report (TR) Data

The preceding documents are discussed below.

3.2.1 Simulator ATPs

The ATPs were written in collaboration with Westinghouse, to test all aspects of simulator design, and to compare those aspects with Fort Calhoun Station characteristics, based on the Design Process described in Section 2. The scope of testing addressed by the ATP's exceeds the guidance of ANSI/ANS-3.5-1985, Appendix A3, "Simulator Tests." Each ATP describes and documents a single test. Following the ATP cover page, the overall Test Status is documented with an entry from the OPPD Acceptance Test Procedure Status Report database. This Report contains the Test Number, Title, report Date, a listing of TRs written pursuant to the test, Test Results, and signature blocks for test acceptance. The appropriate Test Results are checked from the following selections:

- 1. Test completed satisfactorily.
- After correction of above discrepancies and retests are satisfactory, the test is completed satisfactorily.
- 3. Test results unsatisfactory, a complete retest is necessary.

Immediately after the Status Report, the body of each ATP describes the method of test conduct, and provides initial blocks to document the test results. The ATPs can be broadly categorized as either Non-Malfunction or Malfunction.

The 190 Non-Malfunction ATPs include the following types of tests:

Hardware (e.g., panel and instrument inspection and verification, I/O Operation, Overtemperature trip)

Computer System (e.g., verification of spare computer time) Simulated Control System

Simulated ERFCS/SPDS Computer (e.g., ERF Alarms, Plant Computer Sequence of Events, QSPDS Calculations)

Handler (e.g., pump, valve, breaker)

Electrical Bus and Plant Air

*

÷.

Model Integration (e.g., Reactor Coolant System, Containment, Circulating Water System)

Plant Fluid System (e.g., Reactor Coolant, Chemical and Volume Control, Auxiliary Feedwater)

Plant Non-Fluid Systems (e.g., Reactor Core, Main Generator)

- Core Performance (e.g., Rod Worth, Boron Worth)
- Steady State Plant Operation
- Steady State Drift (100%, 80%, 55%, 30%)
- Steady State Accuracy (100%, 80%, 55%, 30%)
- Control Board Lineup Checks (100%, Hot Standby, Cold Shutdown) Induced Transients (e.g., Maximum Rate Ramp, Reactor Trip and Recovery)

Each type of Non-Malfunction Test has different objectives and data collection requirements, however all of the Non-Malfunction ATPs (except for the surveillance tests) share the following format broken down by sections: Section 1 contains the text of the Procedure, Section 2 contains References, Section 3 contains Acceptance Criteria. The remainder of the ATP is comprised of applicable Attachments for Remarks and Results.

The Malfunction ATPs include each of the 165 Simulator Malfunctions and 5 multiple malfunctions. Simulator Malfunctions effects range from relatively minor equipment failures (e.g., Load Limiter Potentiometer Malfunction) to Limiting Faults. However, the Malfunctions ATPs characteristically contain similar objectives, variables, and data collection requirements as described below.

The Malfunction ATPs contain up to eleven sections. Section 1, the Malfunction Description, refers the user to the applicable MC&E sheet. Sections 2 and 3 specify the test Initial Conditions (IC), any additional actions needed to set up the test conditions, and the requisite data acquisition points. Section 4 specifies the selection of test malfunction set up variables from among those available as listed on the MC&E Sheet. Sections 5, 6, and 7 describe respectively the Malfunction Effects, Mitigating Actions, and Actions to Recover, in terms of expected actions, applicable instrument and control tag designators, and panel locations of designated instruments and controls. These three sections also provide performance documentation via a sign-off for each applicable expected action. Section 8 lists applicable ATP references. Section 9 provides for Verification of Function and Simulator Response to All Possible Instructor Selections. Section 10 provides ATP Acceptance Criteria, as described in the following subsection. Section 11 lists procedures contained within the ATP.

3.2.1.1 Acceptance Criteria

Acceptance criteria specifically designed to meet or exceed the guidance of Reference were developed for the ATPs. Non-Malfunction ATP acceptance criteria appropriate to ANSI/4NS-3.5-1985, sections 3.1, 3.1.1, 3.2, 3.3, or 4 were specified for each type of test. These criteria are available for review at the Fort Calhoun Site. Malfunction ATPs contained the generic criteria, developed to address the guidance of ANSI/ANS-3.5-1985, Sections 3.1.2, 3.4.2, and 4.2.2. These criteria are as follows:

The simulation will be within the limits of those plant tests applicable to the scope of simulation as listed in Section 8.0. The simulation "critical" parameters as listed in Section 3.0 will demonstrate similarity with "best estimate" Fort Calhoun design calculations or Fort Calhoun data applicable to the scope of simulation as listed in Section 8.0.

The simulation will cause observable changes in parameters to correspond in time and direction to those from actual plant data or best estimate analysis of the transient, will not violate physical laws of nature, and shall not detract from training. The simulator will not fail to cause an alarm or automatic action if the Fort Calhoun Station would have caused an alarm or automatic action, and conversely, the simulator will not cause an alarm or automatic action if the reference plant would not cause an alarm or automatic action. If no approved Fort Calhoun Station actual plant data or best estimate analyses are available, comparisons against design calculations will be made and will be judged by PWR operations experienced test engineers against the above criteria.

3.2.2 Malfunction Cause and Effects Sheets

The MC&E Sheets were prepared as a joint effort between Westinghouse and OPPD as part of the Simulator Specification and for instructor use following simulator delivery. These sheets provide the following data for each malfunction:

- 3 to 4 character alphanumeric Identifier;
- Title;
- Description;
- · Cause;
 - Available selection variables, e.g., component(s) effected, leak size, ramp and delay times, activation mode;
- Plant Response;

Instructor Notes:

References.

An example r.f a MC&E Sheet is included as Figure 3.B.

3.3 TROUBLE REPORT DATA

A computerized database of simulator TRs has been used to document, and track the correction of, problems discovered during simulator construction, testing, and operation. Pursuant to conduct of the ATPs, 2654 TRs were initiated, distributed as follows:

•	Hardware	259
•	Computer System	1
•	Control System	78
•	ERFCS/SPDS Computer	36

٠.	Handler	136
× 1	Model Integration	89'i
•	Fluid Systems	56
۰.,	Non-Fluid Systems	123
•	Core Performance	6
1	Steady State Operations	102
•	Steady State Accuracy	23
•	Control Board Lineup	197
¥.	Induced Transients	11
*	Malfunctions	677

As of 10/30/90, 2455 of the above TRs had been corrected. The remaining 199 TRs fall into one of four categories -- Active (i.e., no corrective work performed), Returned for Testing (i.e., problem corrected; awaiting testing), In the Field (i.e., corrective work in progress), or Scope (i.e., awaiting determination if problem is within the scope of simulation). An aggressive on-going program has been implemented to correct TRs in a timely fashion. Outstanding ATP TRs are listed on applicable Performance Test Abstracts in Appendix 3.A.

3.4 SIMULATOR PERFORMANCE TEST ABSTRACTS

The Test Abstracts are a synthesis of data extracts from the sources described in Sections 3.2 and 3.3, collated to provide a convenient Certification Submittal presentation medium. Figure 3.A shows the Test Abstract data fields. The mapping of applicable data to the Test Abstracts from the above sources is described below.

Abstract Data Field	Source Document, Section
OPPD Test Number	ATP Test Number
Malfunction Identifier *	ATP, MC&E ID
Test Description	ATP/MC&E Test Title + MC&E Description, or Test Purpose
Initial Conditions	Non-Malfunction ATP Section 1 Malfunction ATP Section 2

Abstract Data Field	Source Document, Section
Options Available *	MC&E Selection Variables
Options Used *	ATP Section 4.1
Test Parameters Monitored	As directed by the Non-Malfunction ATP, or Malfunction ATP Section 3
Test Precis	Synthesis of Non-Malfunction ATP Section 1, or Malfunction ATP Sections 5 - 7
Test Status/Date Completed	ATP OPPD Acceptance Test Procedure Status Report
ANSI/ANS 3.5 Compliance	Based on review of ATP test data
Trouble Report, # / Description	TR Data

* Data applicable to Malfunction Performance Test Abstracts only

3.5 SUMMARY

Appendix 3.A contains 144 Simulator Performance Test Abstracts as a representative sample of the Initial Construction Test Program. The distribution of the 144 is comprised of 58 Non-Malfunction, and 86 Malfunction tests. This sampling represents the requisite tests to demonstrate compliance with the guidance of ANSI/ANS-3.5-1985. The specific selection of the Malfunction Tests for abstraction is congruent with the Malfunctions planned for use during Operator Training in 1990-1991. As the mode of testing changes from Simulator Performance Testing of Reference 1, Section 5.4.1, to Simulator Operability Testing (ANSI/ANS-3.5,1985, Section 5.4.2) additional appropriate malfunctions may be abstracted. Of the 402 ATPs scheduled for eventual completion, 318 have been completed as Category 1, 74 are Category 2, 3 are Category 3, and 7 remain to be started.

3.5 SUMMARY (continued)

Of the 144 tests that are being submitted for the certification submittal, there are 13 tests that remain as Category 2 tests. These are identified in the test abstracts as having a completion date of "future". These tests have all been performed, but many are waiting on the satisfactory completion of one or two TRs by the simulator manufacturer. These tests are planned to be completed by the end of the seven week simulator outage that begins on February 25, 1991.

Appendix B contains the schedule for Performance and Operability Tests.

-

FIGURE 3.A

PERFORMANCE TEST ABSTRACT MALFUNCTION TEST

.

FIGURE 3.B

MALFUNCTION CAUSE AND EFFECTS SHEET

(THREE PAGES FOLLOWING)

FORT CALHOUN STATION SIMULATOR MALFUNCTION CAUSE AND EFFECTS

ID:	EDS-2
NO:	6.3.4.11.2
REV:	3
ATE	08/89

Title: 480 VAC Bus Fault

Description: The selected bus(ses) is lost due to a single-phase to ground fault on the bus on phase 2.

Cause: Maintenance; equipment fault.

	Instructor Action	Available Selections	Comments
١.	Select bus(ses)	A - 1	A - Bus 183A
			B - Bus 183A-4A
			C - Bus 184A
			D - Bus 1838
			E - Bus 1838-43
			F - Bus 1B4B
			0 - Bus 1830
			H - Bus 1B3C-4C
			1 - Bus 1B4C
2.	Select delay time	0 - 3600 sec	
З.	Select activation mode	D, R, or C	D - Direct
			R - Remote
			C - Conditional

Plant Response:

A bus ground alarm will occur. The breaker feeding the selected 480 V bus will trip. Power will be lost to the 480 V loads and MCC's supplied by the faulted bus. The 480 V feeder or tie breaker will indicate tripped on CB-20. The phase voltage indicated on all three phases for the faulted bus will be zero. The phase amps will go high on phase B until the breaker trips (probably will not be seen), then all phase amps indications will go to zero. The undervoltage and breaker trip alarms for the affected bus will occur. If the 480 V bus is supplying an island bus, the island bus breaker will trip. The 480 V motor load breakers will open on undervoltage. The island bus may be transferred to the alternate supply if the fault is on the normal supply.

FCS6.3.4.11.2

Page 1 of 3

FORT CALHOUN STATION SIMULATOR MALFUNCTION CAUSE AND EFFECTS

ID	EDS-2
NQ:	6.3.4.11.2
REV	3
DATE	08/89

Title: 480 VAC Bus Fault

Plant Response:

if Bus 183A is lost, the following loads will be lost:

MCC 3A4	SI-2A
MCC 3A2	CH-1A
MCC 3A1	VA-3A
MCC3A3	

If Bus 1B3A-4A is lost, the following loads will be lost:

CA-1C	HE-1
SI-2C	

If Bus 1B4A is lost, the following loads will be lost:

AC-38	MCC 4A2
FW-88	MCC 4A3
CW-38	MCC 4A1
SECURITY BLDG	

If Bus 1B3P is lost the following loads will be lost:

CW-3A	MCC 3B2
AC-3A	MCC 3B3
MCC 3B1	

If Bus 1838-48 is lost, the following loads will be lost:

FWW-8C	VA-7D
HE-2	CH-1C
SI-3C	

If Bus 1848 is lost, the following loads will be lost:

SI-3A	MCC4E3
CA-1B	MCC 4B2
MCC 4B1	

FORT CALHOUN STATION SIMULATOR MALFUNCTION CALLE AND EFFECTS

ID:	EDS-2
NQ:	6.3.4.11.2
REV:	3
DATE	08/89

Title: 480 VAC Bus Fault

Plant Response: (cont)

If Bus 1C3C is lost, the following loads will be lost:

TIC-3B	CA-1A
MCC 3C2	FW-8A
MCC 3C3	HE-3
MCC 3C1	

If Bus 1B3C-4C is lost, the following loads will be lost:

MCC 3C4C-1	MCC 3C4C-2
VA-7C	AC-3C

If Bus 1B4C is lost, the following loads will be lost:

SI-2B	CH-1B
VA-38	MCC 4C3
MCC 4C1	MCC 4C4
MCC 4C2	

Instructor Notes:

None.

References:

Fig. 8.1-1 Rev. 27 Electrical Distribution System DBD, 10.3.15, Rev. 0 OPPD Letter D-W-1537N-276

APPENDIX 3.A COMPUTER REAL TIME TEST

PERFORMANCE TEST ABSTRACT COMPUTER HARDWARE TEST

Test Number: 14.3.3

Test Name: VERIFICATION OF SPARE COMPUTER TIME

Description: This test verified that the simulator calculations run at a rate of speed sufficient to allow spare duty cycle time.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis:</u> Simulator duty cycle spare time was measured for steady state and severe transient run time conditions. The first segment of this test was to initialize into 100% Power conditions with the Emergency Response Computer operating and with no non-real time tasks active. The test was run for 15 minutes with peak and steady state values for duty cycle sp re time collected.

The next tests were multiple malfunctions, and were selected as worst case, expending a maximum of calculation time, thus ensuring any less severe scenario would not exceed spare time limits.

The tests selected were ATP 14.5.5.35.1, LOCA with Loss of Offsite Power, and ATP 14.5.5.35.3, Inadvertent PORV opening with a Loss of Feedwater, and Loss of Offsite Power.

The results of these three tests showed a 25% steady state and 15% transient total available duty cycle spare time per second.

Baseline: FCS Simulator Specification Section 11.04.1 and Simulator Conformed Document Section 11.04.1

Test Status: 1 Date Completed: 4/24/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

APPENDIX 3.A NORMAL OPERATIONS AND STEADY STATE TESTS

F

C

0

INDEX OF NORMAL OPERATIONS AND STEADY STATE TESTS

TEST NO.	TEST NAME	DESCRIPTION
14.5.3.1	Normal operations	Verifies that the simulator is capable of simulating real time plant operations
14.5.3.2.1	Steady state drift test at 100% power	Verifies that the simulator computed values for 100% power are stable and meet ANSI/ANS-3.5 specifications.
14.5.3.2.2	Steady state drift test at 80% power	Verifies that the simulator computed values for 80% power are stable and meet ANSI/ANS-3.5 specifications.
14.5.3.2.3	Steady state drift test at 55% power	Verifies that the simulator computed values for 55% power are stable and meet ANSI/ANS-3.5 specifications.
14.5.3.2.4	Steady state drift test at 30% power	Verifies that the simulator computed values for 30% power are stable and meet ANSI/ANS-3.5 specifications.
14.5.3.3.1	Steady state accuracy test at 100% power	Verifies simulator computed values and meter indications for 100% power conditions.
14.5.3.3.2	Steady state accuracy test at 80% power	Verifies simulator computed values and meter indications for 80% power conditions.
14.5.3.3.3	Steady state accuracy test at 55% power	Verifies simulator computed values and meter indications for 55% power conditions.
14.5.3.3.4	Steady state accuracy test at 30% power	Verifies simulator computed values and meter indications for 30% power conditions.

Page 1

PERFORMANCE TEST ABSTRACT STEADY STATE PLANT OPERATION TEST

Test Number: 14.5.3.1

Test Name: NORMAL OPERATIONS TEST

<u>Description:</u> This test verifies the simulator is capable of simulating real time plant operations of FCS Unit 1

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis:</u> This test was performed using Operating Procedures, with Local Operator Actions (LOAs), utilized where appropriate, and non applicable plant specific tasks (Notifications, approvals, manual valve lineups, etc.) annotated as NA.

The test was begun with a normal station shutdown to refueling conditions. Boration rates and amounts were verified to be consistent with plant references and operator experience.

Following Shutdown Cooling (SDC) initiation, a subsequent cooldown and draindown of the Pressurizer was conducted.

Pressurizer refill was conducted and bubble formed. Pressurizer heatup rate and bubble formation were verified to be consistent with operator experience.

A plant heatup to Normal Operating Pressure and Temperature (NOP & NOT) was performed following securing of SDC. Reactor Coolant Pump heat was used and verified to be consistent with plant data, and operator experience.

A dilution to Reactor criticality was performed with dilution rate and amounts were verified to be consistent with Plant references and operator experience. Nuclear Instrumentation response to the dilution and criticality was also verified to be consistent with operator experience.

The Point of Adding Heat response was verified to be consistent with Plant references and operator experience.

PERFORMANCE TEST ABSTRACT STEADY STATE PLANT OPERATION TEST

Test Number: 14.5.3.1

Test Precis: (cont.)

Turbine Warm-up and Synchronization was performed. The rate of condenser vacuum rise was verified to be consistent with the Vacuum Pump in service.

The Main Turbine warm up and roll was verified to be consistent with Plant references and operator experience.

An increase in Power to 100% was conducted and the Feedwater Pump capacity was verified to be consistent with Plant references and operator experience.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

0P-4	Load Changes, Normal Power Operation
0P-5	Plant Shutdown
0I-ST-3	Turbine Generator Shutdown
0P-8	Reactor Shutdown
OP-6	Hot Shutdown to Cold Conditions
OI-RC-4	Reactor Coolant System Normal Shutdown
OI-SC-1	Initiation of Shutdown Cooling
OI-RC-5	Reactor Coolant System Draining
0P-2	Plant Startup from Cold Shutdown to Hot
	Standby
01-RC-3	Reactor Coolant System Start-up
01-SC-2	Termination of Shutdown Cooling
0P-7	Reactor Startup
OP-3	Plant Startup Hot Standby to Minimum Load
OI-ST-2	Turbine Generating Startup
0I-ST-10	Turbine Generator Test
0I-ST-9	Generator Excitation System, Synchronization Procedure

Test Status: 2 Date completed: future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory
<u>ANSI/ANS 3.5 Compliance:</u>

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description - CLEARED

Test_Number: 14.5.3.2.1

Test Name: STEADY STATE DRIFT TEST AT 100% P.WER

Description: This test verified the simulator computed values for 100% Power were stable and met ANSI/ANS-3.5 specifications.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xe

<u>Test Precis:</u> This test was performed by initializing into a 100% Power steady state configuration, with controls in automatic, and acquiring data every three (3) minutes.

Personnel monitored plant parameters at the Instructors control CRT and at the Control Boards. Following the end of one hour of operation, the test was stopped and the captured data was then examined for deviation.

Simulator Response Assessment: Plant Data

Charging Flow, Condenser pressures, inlet and outlet Baseline: temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures, Main Feedwater pressure, Main Generator Mwe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temperature, RCS Loops, Delta T, Thot, Tcold, Tayg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Boric Acid tank levels, Core Exit Thermocouple temperature, Quench Tank level, Pzr liquid and steam temperatures.

Test Number: 14.5.3.2.1

Test Status: 1 Date Completed: 12/20/89

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Test Number: 14.5.3.2.2

Test Name: STEADY STATE DRIFT TEST AT 80% POWER

Description: This test verified the simulator computed values for 80% Power were stable and met ANSI/ANS-3.5 specifications.

Initial Conditions:

IC-13 BOC, 80% Power, Equil. Xe

<u>Test Precis:</u> This test was performed by initializing into a 80% Power steady state configuration, with controls in automatic, and acquiring data every three (3) minutes.

Personnel monitored plant parameters at the Instructors control CRT and at the Control Boards. Following the end of one hour of operation, the test was stopped and the captured data was then examined for deviation.

Simulator Response Assessment: Plant Data

Baseline: Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures, Main Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temperature, RCS Loops, Delta T, Thot, Tcold, Tayg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Boric Acid tank levels, Core

Test Number: 14.5.3.2.2

Baseline: (cont.)

Exit Thermocouple temperature, Pressurizer Quench Tank level, Pressurizer liquid and steam temperatures.

Test Status: 1 Date Completed: 12/28/89

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Test Number: 14.5.3.2.3

Test Name: STEADY STATE DRIFT TEST AT 55% POWER

Description: This test verified the simulator computed values for 55% Power were stable and met ANSI/ANS-3.5 specifications.

Initial Conditions:

IC-12 BOC, 55% Power, Equil. Xe

<u>Test Precis:</u> This test was performed by initializing into a 55% Power steady state configuration, with controls in automatic, and acquiring data every three (3) minutes.

Personnel monitored plant parameters at the Instructors control CRT and at the Control Boards. Following the end of one hour of operation, the test was stopped and the captured data was then examined for deviation.

Simulator Response Assessment: Plant Data

Baseline: Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures, Main Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temperature, RCS Loops, Delta T, Thot, Tcold, Tavg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Boric Acid tank levels,

Test Number: 14.5.3.2.3

Baseline: (cont.)

Core Exit Thermocouple temperature, Pressurizer Quench Tank level, Pressurizer liquid and steam temperatures.

Test Status: 1 Date Completed: 12/26/89

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Test Number: 14.5.3.2.4

Test Name: STEADY STATE DRIFT TEST AT 30% POWER

Description: This test verified the simulator computed values for 30% Power were stable and met ANSI/ANS-3.5 specifications.

Initial Conditions:

IC-11 BOC, 30% Power, Equil. Xe

<u>Test Precis</u>: This test was performed by initializing into a 30% Power steady state configuration, with controls in automatic, and acquiring data every three (3) minutes.

Personnel monitored plant parameters at the Instructors control CRT and at the Control Boards. Following the end of one hour of operation, the test was stopped and the captured data was then examined for deviation.

Simulator Response Assessment: Plant Data

Baseline: Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures, Main Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temperature, RCS Loops, Delta T, Thot, Tcold, Tayg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Boric Acid tank levels,

Test Number: 14.5.3.2.4

Baseline: (cont.)

Core Exit Thermocouple temperature, Pressurizer Quench Tank level, Pressurizer liquid and steam temperatures.

Test Status: 1 Date Completed: 12/23/89

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

PERFORMANCE TEST ABSTRACT STEADY STATE ACCURACY TESTS

Test Number: 14.5.3.3.1

Test Name: STEADY STATE ACCURACY TEST AT 100% POWER

Description: This test verified the simulator computed values and meter indications for 100% Power conditions.

The testing ensured critical and noncritical parameters were accurate, and within tolerance when compared to FCS Unit 1 at full power.

Principal mass and energy balances were performed during this test.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xe

<u>Test Precis:</u> This test was performed by initializing into a 100% Power steady state configuration, with the controls in automatic. Steam Flow was then adjusted to the values given as baseline data. Main Condenser Vacuum, Circulating Water temperature, and power factor were adjusted as required to maintain the baseline value.

> The plant was allowed to stabilize, then computer as well as Control Board instrument data collection was performed.

Personnel then performed the following mass and energy balances:

TDB-V.6 Indication of Reactor Power Based on Delta T TDB-V.7 Reactor Power Based on Steam Flow ST-CTPC-1 Core Thermal Power Calculation ST-RLT-3 Reactor Coolant System Leak Rate Calculation

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

Critical Parameters:

Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures,

PERFORMANCE TEST ABSTRACT STEADY STATE ACCURACY TESTS

Test Number: 14.5.3.3.1

Critical Parameters: (cont.)

Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures, Main Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temp.RCS Loops, Delta T, T hot, T cold, T avg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, RCS flow, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Pressurizer liquid and steam temperatures.

Monitored Parameters:

Steam Generator AFW flows, AFW Storage Tank levels, Boric Acid tank levels, Turbine Bearings vibration, CCW Pump discharge flow and temperature, CCW supply temperature, Core Exit Thermocouple temperatures, Charging Header pressure, Containment (CNTMT) ambient temperatures, CNTMT average ambient temperature, CNTMT Cooler outlet air temperatures, CNTMT temperatures, CNTMT H2 concentrations, CNTMT Spray flows, CNTMT Sump levels, CNTMT water levels, Control Rod positions for group 4, Control Valve Chest in and out metal temperatures, Diesel Generators KW and voltage, Main Turbine differential expansion, Emergency Feedwater Storage Tank temperature, Emergency Busses 1A3 and 1A4 volts, Generator field current and voltage, High CET temperatures by guadrants, Highest Core Exit temperature, High pressure extraction pressures and temperatures to Feed heaters, HPSI flows, Instrument Air pressure, Low pressure extraction pressures and temperatures to Feed heaters, LPSI flows, Main Turbine speed, PORV flows, Pressurizer Quench Tank level, temperature

PERFORMANCE TEST ABSTRACT STEADY STATE ACCURACY TESTS

Test Number: 14.5.3.3.1

Monitored Parameters: (cont.)

and pressure, Reactor Vessel levels, Turbine Rotor expansion, SIT levels and pressures, Safety Injection Refueling Water Tank levels, Steam Seal Header pressure, Steam Separators inlet and outlet pressures, STG shell lower in and out metal temperature, Turbine eccentricity, Turbine Exhaust pressures, Turbine Steam Chest pressure and VCT pressure.

Other Parameters:

An additional 154 other parameters were monitored for balance of plant.

fest Status: 1 Date Completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).
Test Number: 14.5.3.3.2

Test Name: STEADY STATE ACCURACY TEST AT 80% POWER

Description: This test verified the simulator computed values and meter indications for 80% Power conditions. The testing ensured critical and noncritical parameters were accurate, and within tolerance when compared to FCS Unit 1 at 80% of full power. Principal mass and energy balances were performed during this test.

Initial Conditions:

IC-13 BOC, 80% Power, Equil. Xe

<u>Test Precis:</u> This test was performed by initializing into a 80% Power steady state configuration, with the controls in automatic. Steam Flow was then adjusted to the values given as baseline data. Main Condenser Vacuum, Circulating Water temperature, and power factor were adjusted as required to maintain the baseline value.

> The plant was allowed to stabilize, then computer as well as Control Board instrument data collection was performed.

Personnel performed the following mass and energy balances:

TDB-V.6 Indication of Reactor Power Based on Delta T TDB-V.7 Reactor Power Based on Steam Flow ST-CTPC-1 Core Thermal Power Calculation ST-RLT-3 Reactor Coolant System Leak Rate Calculation

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

Critical Parameters:

Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures, Main

Test Number: 14.5.3.3.2

Critical Parameters: (cont.)

Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temp, RCS Loops, Delta T, Thot, Tcold, Tavg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, RCS flow, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Pressurizer liquid and steam temperatures.

Monitored Parameters:

Steam Generator AFW flows, AFW Storage Tank levels, Boric Acid tank levels, Turbine Bearings vibration, CCW Pump discharge flow and temperature, CCW supply temperature, Core Exit Thermocouple temperatures, Charging Header pressure, Containment (CNTMT) ambient temperatures, CNTMT average ambient temperature, CNTMT Cooler outlet air temperatures, CNTMT temperatures, CNTMT H2 concentrations, CNTMT Spray flows, CNTMT Sump levels, CNTMT water levels, Control Rod positions for group 4, Control Valve Chest in and out metal temperatures, Diesel Generators KW and voltage, Main Turbine differential expansion, Emergency Feedwater Storage Tank temperature, Emergency Busses 1A3 and 1A4 volts, Generator field current and voltage, High CET temperatures by quadrants, Highest Core Exit temperature, High pressure extraction pressures and temperatures to Feed heaters, HPSI flows, Instrument Air pressure, Low pressure extraction pressures and temperatures to Feed heaters, LPSI flows, Main Turbine speed, PORV flows, Pzr. Quench Tank level, temperature and pressure, Reactor Vessel levels, Turbine Rotor expansion, SIT levels and pressures, Safety Injection Refueling

Test Number: 14.5.3.3.2

Monitored Parameters: (cont.)

Water Tank levels, Steam Seal Header pressure, Steam Separators inlet and outlet pressures, STG shell lower in and out metal temperature, Turbine eccentricity, Turbine Exhaust pressures, Turbine Steam Chest pressure and VCT pressure.

Other Parameters:

An additional 154 other parameters were monitored for balance of plant.

Test Status: 1 Date Completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.3.3.3

Test Name: STEADY STATE ACCURACY TEST AT 55% POWER

Description: This test verified the simulator computed values and meter indications for 55% Power conditions. The testing ensured critical and noncritical parameters were accurate, and within tolerance when compared to FCS Unit 1 at 55% of full power. Principal mass and energy balances were performed during this test.

Initial Conditions:

IC-12 BOC, 55% Power, Equil. Xe

Test Precis:

This test was performed by initializing into a 55% Power steady state configuration, with the controls in automatic. Steam Flow was then adjusted to the values given as baseline data. Main Condenser Vacuum, Circulating Water temperature, and power factor were adjusted as required to maintain the baseline value.

The plant was allowed to stabilize, then computer as well as Control Board instrument data collection was performed.

i onnel performed the following mass and energy balances:

TDB-V.6 Indication of Reactor Power Based on Delta T TDB-V.7 Reactor Power Based on Steam Flow ST-CTPC-1 Core Thermal Power Calculation ST-RLT-3 Reactor Coolant System Leak Rate Calculation

Simulator Response Accessment: Plant Data and Best Estimate

Baseline:

Critical Parameters:

Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures,

Test Number: 14.5.3.3.3

Critical Parameters: (cont.)

Main Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temp, RCS Loops, Delta T, Thot, Toold, Tavg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, RCS flow, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Pressurizer liquid and steam temperatures.

Monitored Parameters:

Steam Generator AFW flows, AFW Storage Tank levels, Boric Acid tank levels, Turbine Bearings vibration, CCW Pump discharge flow and temperature, CCW supply temperature, Core Exit Thermocouple temperatures, Charging Header pressure, Containment (CNTMT) ambient temperatures, CNTMT average ambient temperature, CNTMT Cooler outlet air temperatures, CNTMT temperatures, CNTMT H₂ concentrations, CNTMT Spray flows, CNTMT Sump levels, CNTMT water levels, Control Rod positions for group 4, Control Valve Chest in and out metal temperatures, Diesel Generators KW and voltage, Main Turbine differential expansion, Emergency Feedwater Storage Tank temperature, Emergency Busses 1A3 and 1A4 volts, Generator field current and voltage, High CET temperatures by quadrants, Highest Core Exit temperature, High pressure extraction pressures and temperatures to Feed heaters, HPSI flows, Instrument Air pressure, Low pressure extraction pressures and temperatures to Feed heaters, LPSI flows, Main Turbine speed, PORV flows, Pzr. Quench Tank level, temperature and pressure, Reactor Vessel levels, Turbine Rotor expansion, SIT levels and pressures, Safety Injection Refueling

Test Number: 14.5.3.3.3

Monitored Parameters: (cont.)

Water Tank levels, Steam Seal Header pressure, Steam Separators inlet and outlet pressures, STG shell lower in and out metal temperature, Turbine eccentricity, Turbine Exhaust pressures, Turbine Steam Chest pressure and VCT pressure.

Other Parameters:

An additional 154 other parameters were monitored for balance of plant.

Test Status: 1 Date Completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.3.3.4

Test Name: STEADY STATE ACCURACY TEST AT 30% POWER

Description: This test verifies the simulator computed values and meter indications for 30% Power conditions. The testing ensured critical and noncritical parameters were accurate, and within tolerance when compared to FCS Unit 1 at 30% of full power. Principal mass and energy balances were performed during this test.

Initial Conditions:

IC-11 BOC, 30% Power, Equil. Xe

<u>Test Precis:</u>

This test was performed by initializing into a 30% Power steady state configuration, with the controls in automatic. Steam Flow was then adjusted to the values given as baseline data. Main Condenser Vacuum, Circulating Water temperature, and power factor were adjusted as required to maintain the baseline value.

The plant was allowed to stabilize, then computer as well as Control Board instrument data collection was performed.

Personnel performed the following mass and energy balances:

TDB-V.6 Indication of Reactor Power Based on Delta T TDB-V.7 Reactor Power Based on Steam Flow ST-CTPC-1 Core Thermal Power Calculation ST-RLT-3 Reactor Coolant System Leak Rate Calculation

<u>Simulator Response Assessment:</u> Plant Data and Best Estimate Baseline:

Critical Parameters:

Charging Flow, Condenser pressures, inlet and outlet temperatures, Containment narrow and wide range pressures, Heater Drain Cooler inlet temperatures, Feed Pump pressures, Feedwater Heaters pressures and temperatures,

Test Number: 14.5.3.3.4

Critical Parameters: (cont.)

Main Feedwater pressure, Main Generator MWe, Feedwater Heaters outlet temperatures, Hydrogen Cooler outlet temp, RCS Loops, Delta T, Thot, Tcold, Tavg, Letdown flow and temperature, Main Steam Header pressure and temperature, Power Range Channels upper and lower detectors, Pressurizer levels, Pressurizer narrow and wide range pressure, Reactor Coolant Loop delta pressures, Reactor Coolant Loop total flows, Steam Generator Blowdown flows and temperatures, Steam Generator Steam flows, Feed flows and temperatures, Steam Generator wide range levels and pressures, RCS boron concentration, RCS flow, Reactor thermal megawatts, Stator Cooler outlet temperature, Steam Packing Exhauster inlet temperature, Main Turbine first stage pressure, VCT level, Wide range Log power levels, Pressurizer liquid and steam temperatures.

Monitored Parameters:

Steam Generator AFW flows, AFW Storage Tank levels, Boric Acid tank levels, Turbine Bearings vibration, CCW Pump discharge flow and temperature, CCW supply temperature, Core Exit Thermocouple temperatures, Charging Header pressure, Containment (CNTMT) ambient temperatures, CNTMT average ambient temperature, CNTMT Cooler outlet air temperatures, CNTMT temperatures, CNTMT H2 concentrations, CNTMT Spray flows, CNTMT Sump levels, CNTMT water levels, Control Rod positions for group 4, Control Valve Chest in and out metal temperatures, Diesel Generators KW and voltage, Main Turbine differential expansion, Emergency Feedwater Storage Tank temperature, Emergency Busses 1A3 and 1A4 volts, Generator field current and voltage, High CET temperatures by guadrants, Highest Core Exit temperature, High pressure extraction pressures and temperatures to Feed heaters, HPSI flows, Instrument Air pressure, Low pressure extraction pressures and temperatures to Feed heaters, LPSI flows, Main Turbine speed, PORV flows, Pzr. Quench Tank level, temperature and pressure, Reactor Vessel levels, Turbine Rotor expansion, SIT levels and pressures, Safety Injection Refueling

Test Number: 14.5.3.3.4

Monitored Parameters: (cont.)

Water Tank levels, Steam Seal Header pressure, Steam Separators inlet and outlet pressures, STG shell lower in and out metal temperature, Turbine eccentricity, Turbine Exhaust pressures, Turbine Steam Chest pressure and VCT pressure.

Other Parameters:

An additional 154 other parameters were monitored for balance of plant.

Test Status: 1 Date Completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANS!/ANS 3.5? No

APPENDIX 3.A TRANSIENT TESTS

INDEX OF TRANSIENT TESTS

67

TEST NO.	TEST NAME	DESCRIPTION	
14.5.4.1	Maximum rate power ramp	Verifies the ability of the simulator to respond to a maximum rate	
14.5.4.2	Main turbine stop and control valve	Verifies the ability of the simulator to respond to main turbine stop, intermediate stop, and control valve testing	
14.5.4.3	Inadvertent boration/dilution	Verifies the ability of the simulator to respond to a dilution and boration event at full power	
14.5.4.4	Reactor trip and recovery	Verifies the ability of the simulator to perform a reactor trip and subsequent restart	
14.5.4.5	Dropped rod test	Verifies the ability of the simulator	
14.5.4.6	Manual reactor trip	Verifies the ability of the simulator to produce and conform to a baseline	
14.5.4.7	Simultaneous trip of main feedwater pumps	Verifies the ability of the simulator to produce and conform to a baseline simultaneous trip of all feedwater	
14.5.4.8	Simultaneous closure of main steam isolation	Verifies ability of the simulator to produce and conform to a baseline simultaneous closure of MSIVs	
14.5.4.9	Simultaneous trip of all RCPs	Verifies the ability of the simulator to produce and conform to a baseline simultaneous trip of all BCPs	
14.5.4.10	Trip any RCP	Verifies the ability of the simulator to produce and conform to a baseline trip of any single reactor coolant	
14.5.4.11	Less of load	Verifies the ability of the simulator to produce and conform to a baseline main turbine trip.	
14.5.4.12	Maximum rate power ramp	Verifies the ability of the simulator to produce and conform to a baseline maximum rate power ramp	
14.5.4.13	LOCA with loss of all offsite power	Verifies the ability of the simulator to produce and conform to a baseline maximum size RCS rupture combined with a loss of all offsite power.	

9

e.

Ú

INDEX OF TRANSIENT TESTS

TEST NO.	TEST NAME	DESCRIPTION
14.5.4.14	Excess steam demand	Verifies the ability of the simulator to produce and conform to a baseline maximum size unisolable main
14.5.4.15	Slow RCS depressurization to saturation, no HPSI	steam line rupture. Verifies the ability of the simulator to produce and conform to a baseline slow primary system depressurization to saturated condition using pressurizer relief valve stuck open with activation of high pressure ECCS inhibited.

Test Number: 14.5.4.1

Test Name: MAXIMUM RATE POWER RAMP

Description: This test verified the ability of the simulator to respond to a maximum rate downpower in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% Power conditions, with the following systems in automatic:

Pressurizer Level Control Pressurizer Pressure Control Letdown Temperature Control Volume Control Tank Inlet Control Steam Generator Level Controls Steam Dump and Bypass System Control

Data collection was initiated, then in accordance with AOP-5, a rapid load drop to 20% Power was performed at a 10% per minute ramp. Manual control of Control Rods, Letdown pressure and Main Turbine Control were the only manipulations performed.

Testing resulted in the Reactor still critical, with no Safety Valves lifted, and in 10 minutes plant parameter trends were stabilizing.

Simulator Response Assessment: Best Estimate

Test Status: 1 Date Completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.2

Test Name: MAIN TURBINE STOP AND CONTROL VALVE TEST

<u>Description:</u> This test verified the ability of the simulator to respond to Main Turbine Stop, Intermediate and Control Valve testing in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% Power conditions, with the following systems in automatic:

Pressurizer Level Control Pressurizer Pressure Control Letdown Temperature Control Volume Control Tank Inlet Control Steam Generator Level Controls Steam Dump and Bypass System Control

Data collection was initiated, then in accordance with OI-ST-10-A, testing of the Main Turbine steam inlet valves was performed. With Generator loading allowed to swing, the Stop Valve was timed and shut, then the valve was reopened. All 4 Stops were tested in the same fashion.

Data collection was again initiated, then in accordance with OI-ST-10-A, testing of the Main Turbine Intermediate Valves was performed. With Generator loading allowed to swing, the Intermediate Valve was timed and shut, then the valve was reopened. All 4 Intermediate Valves were tested in the same fashion.

Data collection was again initiated, then in accordance with OI-ST-10-A, testing of the Main Turbine Control valve was performed. With Generator loading allowed to swing, the Control Valve was timed and shut, then the valve was reopened.

Test Number: 14.5.4.2

Test Precis: (cont.)

Testing continued with data collection, and then in accordance with OI-ST-10-A, tests of the Main Turbine Stop Valves SV-1 thru 4 and Intermediate Valves IV-1 thru 4 was performed. With Generator loading allowed to swing, the Valves were timed and shut, then the valves were reopened.

Testing showed the integrated plant response to be realistic, self dampening and that Station procedures could be used.

Response Assessment: Plant Data and Best Estimate

Baseline: CPPD Plant Data, Letter D-W-1537N-260, April 7,1989 OI-ST-10, Turbine Generator Tests

Test Status: 1 Date Completed: in review

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.3

Test Name: INADVERTENT BORATION/DILUTION TEST

<u>Description:</u> This test verified the ability of the simulator to respond to a dilution and boration event at full power in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into a 100% Power configuration, with the following systems in conditions:

CEAs at All Rods Out Pressurizer Level Control in Auto Pressurizer Pressure Control in Auto CVCS in normal operation Steam Generator Level Controls in Auto Steam Dump and Bypass System Control

Data collection was initiated, then a continuous dilution was initiated by aligning demineralized water to the Charging Pump suctions and starting an additional 2 Charging Pumps.

A Reactor trip on Thermal Margin/Low Pressure (TM/LP) or Variable High Power Trip was verified to occur then the dilution was secured and the plant allowed to stabilize.

The test continued following reinitialization to 100% power, and the initiation of data collection. A continuous boration was initiated by starting both Boration pumps, aligning the discharge to the Charging Pump suctions and starting an additional 2 Charging Pumps.

A Reactor trip on Thermal Margin/Low Pressure (TM/LP) was verified to occur then the boration was secured and the plant was allowed to stabilize.

Testing showed the plant response to be realistic.

Simulator Response Assessment: Best Estimate

Test Number: 14.5.4.3

Baseline: U.S.A.R. Section 14.3

Test Status: 1 Date Completed: 4/10/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

fest Number: 14.5.4.4

Test Name: REACTOR TRIP AND RECOVERY TEST

<u>Description:</u> This test verified the ability of the simulator to perform a Reactor trip and subsequent restart in a realistic fashion.

Initial Conditions:

IC-13 BOC, 80% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 80% of full rated power conditions, with the following systems in automatic:

Pressurizer Level Control Pressurizer Pressure Control Letdown Temperature Control Volume Control Tank Inlet Control Steam Generator Level Controls Steam Dump and Bypass System Control

Data collection was begun, and the Reactor trip Pushbutton was depressed, initiating the transient. Operator control manipulations were performed to model as closely as possible the FCS trip transient data being used. Following plant stabilization, simulator data and FCS trip data were compared.

Using Operating Procedures OP-1, 3 & 7, the Reactor was started up and returned to 100% Full Power conditions.

Simulator Response Assessment: Plant data and Best Estimate

Baseline: Fort Calhoun Reactor Trip Logbook 9/19/80, OP-1, Master Checklist for Start-up or Trip Recovery, OP-3, Plant Start-up from Hot Standby to Minimum Load, and OP-7, Reactor Start-up.

Test Status: 1 Date Completed: 3/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.5

Test Name: DROPPED ROD TEST

<u>Description:</u> This test verified the ability of the simulator to respond to a single dropped CEA in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% full rated power conditions, with the following systems in automatic:

Pressurizer Level Control Pressurizer Pressure Control Letdown Temperature Control Volume Control Tank Inlet Control Steam Generator Level Controls Steam Dump and Bypass System Control

Data collection was initiated, and CEA 40 was dropped to 0" withdrawn. Changes such as lowered NI readings in the affected quadrant, Core power shift, with lowered RCS temperatures and Pressurizer parameters were verified to occur.

Following plant stabilization, data analysis showed the plant response to be realistic.

Simulator Response Assessment: Best Estimate

Baseline: CEA Drop Accident Sheet B, 7-15-15

Test Status: 1 Date Completed: 3/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.6

Test Name: MANUAL REACTOR TRIP TEST

<u>Description:</u> This test verified the ability of the simulator to produce and conform to a baseline manual Reactor trip in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and the Reactor Trip Pushbutton was depressed, initiating the transient.

Other than manual letdown pressure control, no Operator control manipulations were performed. Hot Standby conditions were verified maintained in automatic, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Plant data and Best Estimate

Baseline: Fort Calhoun Reactor Trip Logbook 9/19/80

Test Status: 1 D te Completed: 12/31/90

1 = Salisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.7

Test Name: SIMULTANEOUS TRIP OF MAIN FEEDWATER PUMPS TEST

<u>Description:</u> This test verified the ability of the simulator to produce and conform to a baseline simultaneous trip of all feedwater pumps in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and the Main Feedwater Pumps were tripped simultaneously, initiating the transient.

Other than manual letdown pressure control, no Operator control manipulations were performed. Uncomplicated Reactor Trip Criteria were verified maintained in automatic, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 12/31/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.8

Test Name: SIMULTANEOUS CLOSURE OF MAIN STEAM ISOLATION VALVES TEST

Description: This test verified the ability of the simulator to produce and conform to a baseline simultaneous closure of Main Steam Isolation Valves in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and the MSIVs were manually shut simultaneously, initiating the transient.

Other than manual Letdown pressure control, no Operator control manipulations were performed. Uncomplicated Reactor Trip Criteria were verified maintained in automatic, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 12/28/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.9

Test Name: SIMULTANEOUS TRIP OF ALL RCPs TEST

Description: This test verified the ability of the simulator to produce and conform to a baseline simultaneous trip of all Reactor Coolant Pumps in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and using a malfunction, the RCPs were tripped simultaneously, initiating the transient.

Other than manual Letdown pressure control, no Operator control manipulations were performed. Uncomplicated Reactor Trip Criteria were verified maintained in automatic, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 12/31/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.10

Test Name: TRIP ANY RCP TEST

Description: This test verified the ability of the simulator to produce and conform to a baseline trip of any single Reactor Coolant Pump in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and one RCP was tripped initiating the transient.

Other than manual Letdown pressure control, no Operator control manipulations were performed. Uncomplicated Reactor Trip Criteria was verified maintained in automatic, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 12/28/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

O

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.11

Test Name: LOSS OF LOAD TEST

Description: This test verified the ability of the simulator to produce and conform to a baseline Main Turbine Trip in a realistic fashion.

Initial Conditions:

IC-12 ROC, 55% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 55% power conditions, with systems verified to be in a normal configuration. A five minute stability check was performed. Data collection was begun, and the Main Turbine was manually tripped, initiating the transient.

Other than manual Letdown pressure control, no Operator control manipulations were performed. Uncomplicated Reactor Trip Criteria was verified maintained in automatic, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Plant data and Best Estimate

Baseline: Plant Outage Report 76-4, May 28, 1976

Test Status: 1 Date Completed: 12/28/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? YES

Test Number: 14.5.4.11

Test Name: LOSS OF LOAD TEST

ANSI/ANS 3.5 Test Exception:

TRANSIENT TEST (APPENDIX B) B.2.2(6) TEST EXCEPTION

An exception to ANSI/ANS 3.5 is taken for this test, due to FCS Unit 1 plant configuration and operation.

FCS System Design criteria stipulate the automatic actuation of a Turbine Trip-Unit Trip Interlock at 15% power. Station procedures require main generator synchronization at 12% power. Block Load is then applied to avoid a Generator Reverse Power Trip. Block Loading and its subsequent Feedwater Heater Extraction Steam Load, combine to raise power to above the level at which Loss of Load is bypassed.

Therefore, for the FCS simulator, testing for Main Turbine Trip (maximum power level which does not result in an immediate reactor trip) is not performed, as there is no power level at which this test is applicable.

Test Number: 14.5.4.12

Test Name: MAXIMUM RATE POWER RAMP TEST

<u>Description:</u> This test verified the ability of the simulator to produce and conform to a baseline maximum rate power ramp in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> To minimize operator intervention, and optimize repeatability, this test was performed in the following fashion. The reactivity change between Full and 75% Power was determined, then testing was begun by initializing into 100% Power conditions, normal Full Power configuration. A five minute stability check was performed, and data collection was begun.

Using a boration malfunction with a 300 second ramp, the determined negative reactivity was inserted, while maintaining the RCS temperature program by lowering Turbine load to 75% Fower.

Following a 5 minute stabilization and parameters check, power was rapidly returned to 100% Power using the reverse of the above procedure.

Operator control manipulations were performed. Normal Full Power conditions were verified, and following trend stabilization, testing was concluded. Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 1/16/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.13

Test Name: LOCA WITH LOSS OF ALL OFFSITE POWER TEST

<u>Description:</u> This test verified the ability of the simulator to produce and conform to a baseline maximum size RCS rupture combined with a loss of all offsite power in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and the simulator set to simultaneously insert a maximum size LOCA with a concurrent total Loss of Offsite Power.

> No Operator control manipulations were performed. Safety Functions Status checks were verified, and following stabilization, testing was concluded. The Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 12/28/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.14

Test Name: EXCESS STEAM DEMAND TEST

<u>Description:</u> This test verified the ability of the simulator to produce and conform to a baseline maximum size unisolable Main Steam Line Rupture in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

Test Precis: The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. Data collection was begun, and the simulator set to insert a maximum sized unisolable Steam Line Rupture.

> No Operator control manipulations were performed. Safety Functions Status check was verified satisfied, and following trend stabilization, testing was concluded. The Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Updated Safety Analysis Report

Test Status: 1 Date Completed: 12/31/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.4.15

Test Name: SLOW RCS DEPRESSURIZATION TO SATURATION, NO HPSI TEST

<u>Description:</u> This test verified the ability of the simulator to produce and conform to a baseline slow primary system depressurization to saturated condition using pressurizer relief valve stuck open with activation of high pressure ECCS inhibited, in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The test was performed by initializing into 100% power conditions, with systems verified to be in normal full power configuration. A five minute stability check was performed. All high Pressure Safety Injection and non-running Charging Pumps were disabled, and data collection was begun.

The transient was initiated by inserting a 50% open PORV malfunction. As RCS pressure slowly lowered, Reactor Coolant Pumps were tripped in accordance with Plant procedures, the running Charging Pump was secured and no other Operator control manipulations were performed.

Safety Functions Status check was verified challenged, and following trend stabilization, testing was concluded. The Simulator data was then analyzed to meet the acceptance criteria.

Simulator Response Assessment: Best Estimate

Baseline: Best Estimate

Test Status: 1 Date Completed: 1/16/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

APPENDIX 3.A MALFUNCTION TESTS

INDEX OF MALFUNCTION TESTS

TEST NO. MALFUNCTION ID DESCRIPTION

14.5.5.1.4	AFW4	Emergency feedwater storage tank
14.5.5.1.5	AFW5	Auxiliary feedwater actuation relay
14 5 5 0 0	0489	failure.
14.0.0.2.2	CAB2	Service air system leak.
14.5.5.2.3	CASS	instrument air loop leak.
14.5.5.2.4	CAS4	Instrument air riser leak.
14.5.5.3.4	CCW4	CCW pump discharge header leak.
14.5.5.3.5	CCW5	CCW heat exchanger leak.
14.5.5.4.1	CND1	Loss of main condenser vacuum.
14.5.5.4.4	CND4	Condensate pump bearing failure.
14.5.5.4.5	CND5	Condensate cooler tube leak.
14.5.5.4.8	CND8	Hotwell level control failure.
145563	CRD3	Failure of individual rod raise relay.
145564	CRD4	Failure of individual rod lower
14.0.0.0.4	CIUA	ralay
14 E E C E	CPDE	Stuck rod
14.0.0.0.0	CRDS	Dad alutah failung
14.5.5.6.6	CRD6	Rod clutch failure.
14.5.5.6.7	CRD7	Failure of clutch power supply.
14.5.5.6.8	CRD8	Rod ejection.
14.5.5.7.9	CVC9	Charging line leak outside
		containment.
14.5.5.8.2	CWS2	Main condenser tube leak.
14.5.5.9.2	DSG2	Diesel generator fuel transfer
		pumps discharge leak.
14.5.5.9.8	DSG8	Diesel generator failure to start.
14.5.5.11.1	EDS1	4160 VAC bus fault.
1455112	EDS2	480 VAC bus fault.
1455113	EDS3	125 VDC hus fault
1455114	FDSA	120 VAC instrument hus fault
14.0.0.11.4	EDSC	120 VAC instrument bus raut.
14.0.0.11.0	ELSO	460 VAC supply transformer fault.
14.5.5.11.11	EDSII	Switchyard line fault.
14.5.5.11.12	EDS12	Switchyard breaker failure.
14.5.5.12.1	EHC1	WH fluid system leak.
14.5.5.12.6	EHC6	Load limit potentiometer failure.
14.5.5.13.1	ESF1	Steam generator low pressure logic
14 5 5 10 0	TETO	Containment high procesure logic
14.0.0.13.2	LOF 2	Containment ingh pressure logic
	TACIDA	matrix failure.
14.5.5.13.5	ESF5	Pressurizer low pressure logic
		matrix failure.
14.5.5.13.10	ESF10	Open safety injection valves
		actuation failure.
14.5.5.13.12	ESF12	Offsite power low voltage signal
		logic matrix failure.
14.5.5.14.2	FDW2	Main feedwater header leak.

INDEX OF MALFUNCTION TESTS

TEST NO.	MALFUNCTION ID	DESCRIPTION
14.5.5.14.3	FDW3	Main feedline break upstream of
		FCV.
14.5.5.14.5	FDW5	Main feedline break inside
1455161	FWH1	Feedwater heater tube leak
1455171	GEN1	Voltage regulator failure
1455174	CENA	Field breaker feilure
14.5.5.10.1	MSSI	Main steam line break inside
14.0.0.10.1	1410221	containment.
14.5.5.18.3	MSS3	Main steam line break outside
		containment (non-isolable).
14.5.5.18.5	MSS5	Main steam isolation valve failure.
14.5.5.18.6	MSS6	Main steam line to TDAFW pump
		leak.
14.5.5.18.7	MSS7	Main steam header leak.
14.5.5.19.2	NIS2	Wide range power supply failure.
14.5.5.19.7	NIS7	Power range power supply failure
14.5.5.20.4	PRS4	Pressurizer steam space leak.
14.5.5.20.5	PRS5	Pressurizer PORV failure.
14.5.5.20.9	PRS9	Pressurizer level instrumentation
14 5 5 01 1	DODI	tap leak.
14.5.5.21.1	ROPI	leak.
14.5.5.21.3	RCP3	Reactor coolant pump bearing
		failure.
14.5.5.21.9	RCP9	Reactor coolant pump lower seal
1455221	RCS1	Reactor coolant system loop leak
1455093	RCS3	Reactor fuel rode failure
14.5.5.94.1	PDC1	Foilure of interneting relay
14.0.0.24.1	DDCo	Pandre of interposing relay.
14.0.0.24.2	RP82	supply failure.
14.5.5.24.3	RPS3	Failure of axial power distribution
1455957	PDS7	Steam dump quick opening colonoid
1*.0.0.20.7	ILING /	valve failure
14.5.5.26.3	RWS3	Raw water supply line break.
14.5.5.27.2	SDC2	Shutdown cooling heat exchanger
		inlet header leak.
14.5.5.30.1	SGN1	Steam generator tube rupture.
14.5.5.30.2	SGN2	Reference leg leak on steam
		generator level instrumentation.
14.5.5.31.5	SIS5	Safety injection tank gas space leak.
14.5.5.32.3	GEN6	Stator cooling water pump suction
14.5.5.33.1	TUR1	Main turbine lube oil reservoir leak.

INDEX OF MALFUNCTION TESTS

TEST NO.	MALFUNCTION ID	DESCRIPTION
14.5.5 33.5	TUR5	Main turbine bearing high vibration.
14.5.5.33.6	TUR6	Main turbine turning gear failure.
14.5.5.34.2	WDS2	Gas decay tank leak.
14.5.5.35.1	MM1	LOCA with LOSP and one EDG failure.
14.5.5.35.2	MM2	Inadvertent PORV opening with LOSP and one EDG failure.
14.5.5.35.3	MM3	Inadvertent PORV opening, LOFW (all), LOSP, Loss of SI/ECCS
14.5.5.35.4	MM4	LOFW (all), LOSP, failure of one HPSI pump and one ECCS train.
14.5.5.35.5	MM5	LOCA with 1 S/G isolated, LOSP, 1 EDG failure.

PERFORMANCE TEST ABSTRACT MALFUNCTION TEST

OPPD Test Number: 14.5.5.1.4 Malfunction Identifier: AFW4

who is not state of the second state of the se	and a second		State significant and a strain the operated by	City is a second second second second second	and an and a state of the second s
Test Description:		Emergency Feedwa size leak occurs FW-339.	ter Storage on the disc	Tank Leak. harge line	A variable upstream of
Initial Con	nditions:	100% POWER, BOC,	IC#14		
Option	s Available:		Options Us	ed:	
Selection	N/A		Selection	N/A	
Magnitude	0-100% 10	0% = 8" line	Magnitude	100	
Ramp Time	0-3600 s		Ramp Time	60 s	
Delay Time	0-3600 s		Delay Time	0 s	

Mode D, R, or C Mode D Direct/Remote/Conditional

Test Parameters Monitored:

T:L1183 AFW TANK LEVEL

Test Precis:

Following malfunction actuation, observe: AFW storage tank level decreases continuously; LCV-1173 opens to fill tank; LCV-1190 opens to make up to condenser from CST; CST level low, AFW Tank Hi-Lo, AFW Tank Lo, Emergency FW Storage Tank Lo-Lo alarms annunciate; LCV-1189 opens to fill AFW tank from demin water; Waste Disposal System Malfunction alarm; Spent Regenerant Tank overflows.

Operator starts demin water pumps and secures makeup to the AFW Storage Tank, then verifies sump level returns to normal after tank empties. Plant is recovered when the operator re-fills the CST, secures demin water pumps, and observes CST Level and Waste Disposal System Trouble alarms clear, and Spent Regenerant Tank level returns to normal.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

PERFORMANCE TEST ABSTRACT MALFUNCTION TEST

OPPD Tes	t Nu ber:	14.5.5.	1.5	Malfunction	Identifier: AFW5
<u>Test Des</u>	cription:	Auxiliar selected	y Feedwater Ac relay(s) fail	tuation Rela to the sele	y Failure. The cted position.
Initial Co	nditions:	100% PO	WER, BOC, IC#1	4	
Options)	Available:			Options Use	ed:
Selection	A-H			Selection	А
Magnitude	D OR E	100% = DENRGZD, ENRGZD		Magnitude	E
Ramp Time	N/A			Ramp Time	0 s
Delay Time	0-3600 s			Delay Time	0 s
Mode	D, R, or	C Direct/	<u>R</u> emote/ <u>C</u> onditi	Mode onal	D

Test Parameters Monitored:

None

Test Precis:

- Following malfunction actuation, observe RC-2A CH A actuation relay light on, AFWS S/G RC-2A CH A actuated, HC-1107A & B and YCV-1045, -1045A all open, FW-6 and FW-10 start, and AFW flow to S/G A.
- Operator override/stops actuated components. Verify override alarms annunciate and that components respond properly. Verify cessation of AFW flow to S/G A.
- 3. Plant is recovered when operator clears malfunction and observes relay actuation light is off and AFWS actuated in clears. Then operator restores AFWS to normal and observes override alarms clear. System is restored per OI-AFW-2.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No
OPPD Test Number: 14.5.5.2.2

Malfunction Identifier: CAS2

Test Description: Service Air System Leak. A variable size leak occurs on the selected Service Air line(s).

Initial Conditions: 100% POWER, BOC, IC#14

Options	s Availabie:	Options Used:	
Selection	A, 8, C	Selection	А
Magnitude	0-100% 100% = N/A	Magnitude	100
Ramp Time	0-3600 s	Ramp Time	60 s
Delay Time	0-3600 s	Delay Time	0 s
Mode	D, R, or C Direct/Remote/Co	Mode	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction artuation, observe: plant air pressure drop, standby compressor starzs, air pressure low and low-low alarms actuate, at 80 psig PCV-1753 closes, instrument air pressure stabilizes; service air pressure fluctuates with PCV-1753. Operator isolates leak by closing valve CA-629, then verifies that pressure at PI-1700 stabilizes.

<u>Test Status:</u> 1 <u>Date Completed:</u> 2/14/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to "NSI/ANS 3.5? No

OPPD Test Number:14.5.5.2.3Malfunction Identifier:CAS3Test Description:Instrument Air Loop Leak. A variable size leak
occurs on the selected Instrument Air loop(s).

Initial Conditions: 100% POWER, BOC, IC#14

Options (<u>Available:</u>	Options Us	ed:
Selection	A, B, C	Selection	В
Magnitude	0-100% 100% = 2" BREAK	Magnitude	100
Ramp . 90.	0-3600 s	Ramp Time	60 s
Delay Time	0-3600 \$	Delay Time	0 s
Mode	D, R, or C Direct/Remote/Condi	Mode tional	D

Test Parameters Monitored:

None

lest Precis:

Following malfunction actuation, observe: plant air pressure decrease, standby compressor starts, air pressure low and low-low alarms actuate, service air stabilizes after automatic isolation, all air operated valves fail as per procedure attachments. Operator starts 3rd air compressor, isolates leak by closing valve PCV-1849. Then plant air pressure and air operated valves outside containment return to normal. Valves inside containment remain in fail-safe positions. Plant is restored when air pressure returns to normal and alarms

clear, then operator returns compressor lineup to normal.

<u>Test Status:</u> 1 <u>Date Completed:</u> 9/12/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 1.5.5.2.4 Malfunction Identifier: CAS4

Test Description: Instrument Air Riser Leak. A variable size leak occurs on the selected Instrument Air riser(s).

Initial Conditions: 100% POWER, BOC, IC#14

Options /	<u>Available:</u>	L			Options Use	ed:
Selection	A-J				Selection	Α
Magnitude	0-100%	100%	11	GUILLOTIN	Magnitude	100
Ramp Time	0.3600 s			E.	Ramp Time	60 s
Delay Time	0-3600 s				Delay Time	0 s
Mode	D, R, or	C	rt.	/Remote/Caudi	Mode	D

Test Parameters Monitored:

PCAS1700 Instrument Air Pressure Header Pressure

Test Precis:

Following malfunction actuation, observe: plant air pressure decreases; standby air compressor starts; air pressure low alarm annunciates; waste gas header, RC drain tank, AC to Det wells C/RS OTBD, SG blowdown and OTBD, SIRWT/LKAGE Header SW, mechanical penetration area Exh Sel Sw, SI CHK Valve leakage, HPSI cooler suction , and HCV-800B green lamps lit, HPSI cooler suction SW red lamp lit.

Operator follows AOP-17 and isolates leak by closing IA-532, then verifies the following: instrument air pressure returns to normal, low pressure alarm c'_ `s, valves listed above return to normal positions.

Plant is restored . : operator returns compressor lineup to normal and air pressure returns to normal.

Test Status: 1 Date Completed: 5/16/90 1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	t Number: 14.5.5.3.4	Malfunction Identifier: CCW4
<u>Test Des</u>	cription: CCW Pump Discharge Hea occurs at the tee to c	der Leak. A variable size leak containment.
Initial Con	nditions: 100% POWER, BOC, IC#1	4
Options /	Available:	Op* us Used:
Selection	N/A	Selection N/A
Magnitude	0-100% 100% = 16" BREAK	Magnitude 100
Ramp Time	0-3600 s	Ramp Time 60 s
Delay Time	0-3600 s	Delay Time O s
lode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditi	Mode D onal

Test Parameters Monitored:

BCCW2801	CCW Surge Tank Level
BKDSSPT	Spent Regen Tank Level
PCCW499	CCW Pump Disch Header Pressure
TCCW458	RCP-A Seal Cooler Outlet Temp
TCCW459	RCP-B Seal Cooler Outlet Temp
TCCW460	RCP-C Seal Cooler Outlet Temp
TCCW461	RCP-D Seal Cooler Outlet Temp
TCCW462	RCP-A Lube Oil Cooler Outlet Temp
TCCW463	RCP-B Lube Oil Cooler Outlet Temp
TCCW46	RCP-C Lube Oil Cooler Outlet Temp
TCCW465	RCP-D Lube Oil Cooler Outlet Temp
TLDS211	HX CH-7 Outlet Temp
WCCW498	CCW Pump Discharge Flow

Test Precis:

Following malfunction actuation, observe: CCW flow rises, pressure and surge tank level decrease, low level alarm, at approximately 42" LCV-2801 opens; flow decreases to seal oil, lube oil, CEDM coolers, Letdown heat exchanger, detector well cooling coil VA-14A & B,, containment cooling VA-1A & B, -8A & B, attendant listed alarms annunciate; temperatures rise on cooled components with attendant listed alarms; leakage flows to the spent regenerative tank via floor drains, Waste Disposal System Malfunction alarm annunciates; CCW pumps cavitate, letdown flow diverts; excore detectors read erroneously due to high temperature; containment dew point rises. Operator follows AOP-11 and provides Raw Water to components.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

All and

 \mathfrak{D}

and the second

OPPD Test Number: 14.5.5.3.5 Malfunction Identifier: CCW5

<u>Test Description:</u> CCW Heat Exchanger Tube Leak. Tube failure occurs to a selectable degree in the selected heat exchanger.

Initial Conditions: 100% POWER, BOC, IC#14

Options /	Available:			Options Use	ed:
Selection	A-D			Selection	A
Magnitude	0.100%	100% =	10% TUBE	Magnitude	100
Ramp Time	0-3600 s		FAILURE	Ramp Time	60 s
Delay Time	0-3600 s			Delay Time	0 s
Mode	D, R, or	C Direct	/ <u>R</u> emote/ <u>C</u> onditi	Mode onal	D

Test Parameters Monitored:

BCCW2801	CCW	Surge	T	ank	L	eve	1	
WCCW498	CCW	Pump D) i	sch	ar	ge	F	low

Test Precis:

Following malfunction actuation, observe: leakage from CCW into the Raw Water System with attendant indications of a CCW leak (see CCW4). When CCW pumps cavitate and raw water flows into CCW, observe increased raw water flow, and increasing CCW surge tank level with attendant alarm. Operator isolates faulted heat exchanger and verifies CCW system returns to normal. Plant is recovered by automatic action of vacuum deaerator, combined with operator action to maintain level in the primary water storage

tank and demineralized water surge tank.

<u>Test Status:</u> 1 <u>Date Completed:</u> 3/29/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.4.1	Malfunction	Identifier: CND1
<u>Test Des</u>	<u>cription:</u>	Loss Of Main Condens condenser causes pre	er Vacuum. Ai ssure to rise.	r leakage into the
Initial Co	nditions:	100% POWER, BOC, IC	#14	
Options /	Available:		Options Us	ed:
Selection	N/A		Selection	N/A
Magnitude	0-100%	100% = VAC BKR OPEN	Magnitude	100
Ramp Time	0-3600 s		Ramp Time	0 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condi	Mode tional	D

Test Parameters Monitored:

FNISWRM	Wide Range Detector Output
SGEN1R	Generator MWAH's meter
T:P975A	Condenser A Vacuum
T:P975B	Condenser B Vacuum
T:T974A	Condenser A Exhaust Neck Temp
T:T974F	Condenser B Exhaust Neck Temp

Test Precis:

Following malfunction actuation, observe: condenser A vacuum decreases faster than condenser B vacuum; standby vacuum pump starts with attendant alarm annunciation; exhaust high pressure alarms annunciate; exhaust hood temperature rises, generator output decreases, Rx trips at approximately 3 minutes after malfunction actuation. Operator follows EOP-01.

Test Status: 1 <u>est Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number	<u>r:</u> 14.5.5.4.4	Malfunction	Identifier: CND4
<u>Test Description</u>	<u>n:</u> Condensate Pump B condensate pump(s	Bearing Failure.	The selected ring failure.
Initial Condition	s: 100% POWER, BOC,	IC#14	
Options Availab	<u>le:</u>	Options Use	ed:
Selection A, B, (C	Selection	A
Magnitude 0-100%	100% = N/A	Magnitude	100
Ramp Time 0-3600	S	Ramp Time	0 s
Delay Time 0-3600	5	Delay Time	0 s
Mode D, R, d	or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> o	Mode enditional	D

Test Parameters Monitored:

T:P1181A	Cond Pum	PA	Disc	h Pres	SS
YFWPFW2A	Condensa	te P	ump	FW-2A	Amps

Test Precis:

Following malfunction actuation, observe: condensate pump A amps rise sharply, then decrease to O after pump seizes; pump trips with attendant overload trip alarm; discharge pressure decreases to O; standby condensate pump starts normally. Plant is recovered when operator clears malfunction, verifies normal alarm responses, returns condensate pump A to service and stops condensate pump B, and all flows and pressures are normal.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number	14.5.5.4.5	Malfunction Identifier: CND5	
Test Description	: Condensate Cooler selectable degree	Tube Leak. Tube failure occurs to in the condensate cooler.	ŝ
Initial Conditions	: 100% POWER, BOC,	IC#14	
Options Availabl	<u>e:</u>	Options Used:	
Selection N/A		Selection N/A	
Magnitude 0-100	100% = 10% TUBE	Magnitude 100	
Ramp Time 0-3600	S	Ramp Time O s	
Delay Time 0-3600	S	Delay Time O s	
Mode D, R, o	r C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> o	Mode D nditional	
	月辺 市営 開始 特許のない オ		

Test Parameters Monitored:

T:L1170A	Condenser Hotwell Level
T:L1191	CST Level
T:T1177	Condensate Cooler Outlet Header Temp.
T:T1178A	Stator Cooler Inlet Temp.

Test Precis:

Following malfunction actuation, observe: hotwell and condensate storage tank levels decrease, and heat exchanger temperature irregularities on stator coolers and H2 coolers. Operator isolates condensate cooler, then verifies that stator and H2 cooler temperatures stabilize at a higher temperature.

Test Status: 1 Date Completed: 5/19/90 1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.4.8	Malfunction	<u>identifier:</u> CND8
<u>Test Des</u>	<u>cription:</u>	Hotwell Level Control controller LC-1190 fa	Failure. Th ils to a sele	e hotwell level ctable setpoint.
Initial Con	nditions:	100% POWER, BOC, IC#	14	
Options /	Available	L	Options Us	ed:
Selection	0-48"		Selection	N/A
Magnitude	N/A	100% = N/A	Magnitude	48"
Ramp Time	0-3600 s		Ramp Time	0 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condit	Mode ional	D
Test Parame	eters Mon	itored:		

T:L1170A Condenser Hotwell Level T:L1191 CST Level

Test Precis:

Following malfunction actuation, observe: hotwell level increase, high level alarm annunciates at 38", level indication stabilizes at 48", condensate storage tank level decreases. Plant is recovered when operator resets malfunction and verifies that the hotwell level returns to a normal level.

<u>Test Status:</u> 1 <u>Date Completed:</u> 5/23/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.6.3Malfunction Identifier:CRD3Test Description:Failure of Individual Rod Raise Relay.The selected
relay fails to the state selected.Initial Conditions:100% POWER, BOC, IC#14Options Available:Options Used:
Selection 1-41

Magnitude	D, E	100% =	DE-ENRGZD,	Magnitude	Ε
Ramp Time	N/A		ENROLD	Ramp Time	N/A
Delay Time	0-3600 s			Delay Time	60 s
Mode	D, R, or	C	/Demote /Conditio	Mode	D

Direct/Remote/Conditional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe Gp 4 and rod 1 core mimic out motion position indication. Operator attempts to insert rods in MG and MI modes and observes: rod deviation alarms, a Rod Block signal, and the withdraw lights for Gp 4 remain on. Operator inserts Gp 4 rods as required to maintain Rx power below 100%.

Plant is recovered when the operator clears the malfunction and verifies: Gp 4 withdraw light is out and Continuous Rod Motion alarm clears. Operator selects MI mode and aligns rod 1 with Gp 4 and observes rod deviation alarms clear.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test releal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.6.4 Malfunction Identifier: CRD4

Test Description: Failure of Individual Rod Lower Relay. The selected relay fails to the state selected.

Initial Conditions: 100% POWER, BOC, IC#14

Options /	Available:			Options Use	ed:
Selection	1-41			Selection	1
Magnitude	D, E	100% =	DE-ENRGZD,	Magnitude	D
Ramp Time	N/A		ENROLD	Ramp Time	N/A
Delay Time	0-3600 s			Delay Time	60 s
Mode	D, R, or	C Direct	/Remote/Conditio	Mode nal	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, insert Gp 4 rods and observe: Gp 4 lower lights on, rod 1 position indication not changing, Gp 4 rods (except rod 1) inserting on core mimic. Operator selects rod 41 on Gp 4 rod selector switch and sees Gp 4 inserting. Operator selects MG, then MI on rod mode selector switch and verifies that rod 1 does not insert. Operator verifies normal outward motion of rod 1 in MI. Plant is recovered when the malfunction is cleared by the operator. Then, rod 1 is aligned with other Gp 4 rods. Rod mode selector switch is returned to MS and proper inward response of rod 1 is verified.

<u>t Status:</u> 1 <u>Date Completed:</u> 2/01/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory Test Status: 1

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.6.5Malfunction Identifier:CRD5Test Description:Stuck Rod.The selected rod sticks and does not
move; it may be trippable.Initial Conditions:100% POWER, BOC, IC#14

Options)	Available:				Options Use	ed:
Selection	A-J				Selection	Α
Magnitude	T, U	100% =		TRIPPABLE,	Magnitude	U
Ramp Time	N/A			UNIKIFFADLE	Ramp Time	N/A
Delay Time	0-3600 s				Delay Time	60 s
Mode	D, R, or (C Direct	t/[Remote/ <u>C</u> onditio	Mode nal	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, select MI on rod mode selector switch, Gp 4 on rod group selector switch and rod 1 on rod selector switch, then attempt to move rod 1 with the In-Hold-Out Switch. Verify that rod 1 does not move. Operator trips the reactor and observes: rod 1 does not insert, reactor power decreases normally, rod position deviation low, low-low, and reed switch alarms annunciate. Plant is recovered by clearing the malfunction and observing: rod 1 trips, rod deviation alarms (3) clear.

<u>Test Status:</u> 1 <u>Date Completed:</u> 2/01/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.6.6Malfunction Identifier:CRD6Test Description:Rod Clutch Failure.The selected rod falls into the
core or fails to trip.Initial Conditions:100% POWER, BOC, IC#14, GRP 4 ABOVE PDIL

Options /	Available:			Options Use	ed:
Selection	1-41			Selection	39
Magnitude	D, E	100% =	DE-ENRGZD,	Magnitude	D
Ramp Time	N/A		ENROLD	Ramp Time	N/A
Delay Time	0-3600 s			Delay Time	60 s
Mode	${\tt D},{\tt R},{\tt or}$	C	/Remote/Conditio	Mode	D

Test Parameters Monitored:

FNISLRL1	Linear	Range	Lower	Detector	(A)
FNISLRL2	Linear	Range	Lower	Detector	(B)
FNISLRL3	Linear	Range	Lower	Detector	(C)
FNISLRL4	Linear	Range	Lower	Detector	(D)
FNISLRU1	Linear	Range	Upper	Detector	(A)
FNISLRU2	Linear	Range	Upper	Detector	(B)
FNISLRU3	Linear	Range	Upper	Detector	(C)
FNISLRU4	Linear	Range	Upper	Detector	(D)

Test Precis:

Following malfunction actuation, observe: rod drop alarms (2), rod indication shows dropped rod, PDIL Gp 4 alarms, flux decreases most on Ch C and least on Ch B, wide range power decreases more on channels C & A than on B & D, power range decreases most on Ch C and least on Ch B, axial power goes more negative on Ch C and more positive on Ch B. Operator observes lower flux near the dropped rod on the flux map on ERF computer.

Plant is recovered when operator clears malfunction and recovers the dropped rod per AOP-2.

<u>Test Status:</u> 1 <u>Date Completed:</u> 9/12/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.6.7Malfunction Identifier:CRD7Test Description:Failure of Clutch Power Supply. The selected power
supply(ies) fails.

Initial Conditions: 100% POWER, BOC, IC#14

Options /	<u>Available:</u>		Options Use	ed:
Selection	A-D		Selection	А
Magnitude	N/A	100% = N/A	Magnitude	N/A
Ramp Time	N/A		Ramp Time	N/A
Delay Time	0-3600 s		Delay Time	60 s
Mode	D, R, or	C Direct/Remote/Condition	Mode	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: clutch #1 power supply current decreases to 0, nower on light extinguishes, clutch #2 power supply current inc. cases.

Plant is recovered when operator clears malfunction and observes: clutch power supply currents return to normal and DC power on light illuminates. Operator de-energizes PS1 & 2 and verifies that the rods supplied by the power supply trip.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD lest Number: 14.5.5.	. D. 8 <u>M</u>	altunction 1	dentifier: CRU8
Test Description: Rod Ejec reactor	ction. The sele vessel.	cted CRDM is	s ejected from the
Initial Conditions: 30% POW	WER, BOC, IC#10		
Options Available:		Options Use	ed:
Selection 1-41		Selection	1
Magnitude 0-100% 100% =	2.75"	Magnitude	100
Ramp Time N/A	DIAMETER HULL	Ramp Time	N/A
Delay Time 0-3600 s		Delay Time	0 s
Mode D, R, or C Direct	/ <u>R</u> emote/ <u>C</u> onditio	Mode nal	D
Test Parameters Monitored			

Test Parameters Monitored:

BRCS101X	Pzr Level Channel X
FNISUPL5	Linear Range Lower + Upper Detector
FNISUPL6	Linear Range Lower + Upper Detector
PRCMSTAR	RCS Globai Pressure
T:L599	Containment Sump Level
T:P745	Containment Pressure
T:R050	Containment Air Particulate Activity
T:R051	Containment Air Noble Gas Activity
T:R073	Fuel Transfer Canal Area Monitor
T:R075	Containment Operating Floor Area
T:T714	Containment Air Temp
YCNM861	Dew Point (YE-861)

Test Precis:

Following malfunction actuation, observe: flux rate and wide range power rise; positive startup rate; PDIL Gp 4 and rod deviation alarms; PZR level rises with Ch X & Y alarms; RCS pressure drops with Ch X & Y alarms; letdown goes to minimum; charging pumps start; containment sump level, temperature, dew point, pressure, and radiation levels rise; Rx trip, SIAS. Operator refers to EOP-3.

Test Status: 1	Date Completed:	6/01/90
<pre>1 = Satisfactory;</pre>	2 = More Testing Required;	3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No If Yes, documentation continues on attached page(s).

OPPD Tes	t Number:	14.5.5.7.9	Malfunction	Identifier: CVC9
<u>Test Des</u>	<u>cription:</u>	Charging Line Leak Out size leak occurs betwee header and FT-236.	tside Contain een the charg	ment. A variable ing pump discharge
Initial Co	nditions:	100% POWER, BOC, IC#1	14	
Options /	Available		Options Use	ed:
Selection	N/A		Selection	N/A
Magnitude	0-100%	100% = 2" LINE BREAK	Magnitude	100
Ramp Time	0-3600 s		Ramp Time	60 s
Delay Time	0-3600		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condition	Mode ional	D

Test Parameters Monitored:

BWDSSPT Spent Regen Tank Level	
RRMS060 Stack Gas Iodine Rad.	
RRMSO61 Stack Gas Air Particulate Ra	ad.
RRMS062 Stack Gas High Rad.	
T:F236 Charging Flow	
T:L101X Pressurizer Level	
T:L219 VCT Level	
T:L381 SIRWT Level	
T:T202 Regen HX Letdown Outlet Temp	2
T:T237 Charging Temp	
TCHS237 HX CH-6 Outlet Temp	
TLDS202 HX CH-6 Outlet Temp	
XRCS Global Boron Concentration	in RCS

Test Precis:

Following malfunction actuation, observe: charging flow, temperature, letdown temperature, VCT level decrease; charging flow-related alarms annunciate; standby charging pumps start, discharge pressure decreases; VCT auto makeup starts; PZR level and pressure decrease; VCT low, and low-low level alarms annunciate and charging pump suction switches to the SIRWT; when VCT isolates, its level rises; Waste Disposal System Malfunction alarm annunciates; letdown temperature rises, alarms and TCV-202 closes; CRHS and VIAS actuate with listed attendant alarms, Main Stack and process area monitor alarms annunciate. Operator isolates leak by following OI-CH-1, and terminating charging and letdown. <u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory <u>ANSI/ANS 3.5 Compliance:</u>

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.8.2Malfunction Identifier:CWS2Test Description:Main Condenser Tube Leak. The failure occurs to a
selectable degree in the selected bundle(s).Initial Conditions:100% POWER, IC#14

Options /	Available:			Options Use	ed:
Selection	A-D			Selection	A
Magnitude	0-100%	100% =	10% OF THE	Magnitude	100
Ramp Time	0-3600 s		TUBES	Ramp Time	N/A
Delay Time	0-3600 s			Delay Time	N/A
Mode	D, R, or	C	/Remote/Conditio	Mode	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: condenser A outlet pressure and hotwell level rise, hotwell high level alarm; condensate storage tank level rises; secondary sampling trouble alarm; generator MW decrease with no rod or operator actions. Operator follows AOP-10.

<u>Test Status:</u> 1 <u>Date Completed:</u> 4/26/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.9.2	Malfunction 1	dentifier: DSG2
<u>Test Des</u>	<u>cription:</u>	Diesel Generator Fue A variable size leak fuel transfer pumps'	1 Transfer Pum occurs on the discharge.	ps Discharge Leak selected diesel's
Initial Co	<u>nditions:</u>	100% POWER, BOC, IC# DG1 RUN	14, FILL 300 G/	AL DIESEL FO TK,
Options /	Available		Options Use	ed:
Selection	Α, Β		Selection	A
Magnitude	0-100%	100% = 1" LINE BREA	K Magnitude	100
Ramp Time	0-3600 s		Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condi	Mode tional	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation observe: fuel oil level in 300 gallon tank decreases, level rise in spent regenerative tank due to floor drain in-flow.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.9.8Malfunction Identifier:DSG8Test Description:Diesel Generator Failure To Start. The selected
diesel generator cranks but fails to start.Initial Conditions:100% POWER, BOC, IC#14Options Available:Options Used:
Selection A, BSelection A, BSelection AMagnitude N/A100% = N/ARamp Time N/ARamp Time N/A

Delay Time 0-3600 s

Mode D, R, or C

Mode Direct/<u>Remote/Conditional</u>

Delay Time 60 s

D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, operator attempts to start DG-1 with emergency pushbutton and observes: Start status light illuminates, then the Diesel Start Fail and Trouble alarms annunciate; the Engine Stopped status light illuminates. Operator attempts to start diesel again until starting air is exhausted. Plant is recovered when operator clears malfunction and verifies proper operation of DG-1.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.11.1	Malfunction	<u>Identifier:</u>	EDS1
Test Description:	4160 VAC Bus Fault. to a single-phase t	. The selected to ground fault	bus(ses) is on the bus.	lost due
Initial Conditions:	100% POWER, BOC, 1	IC#14, CLOSE DES	IGNATED CKT	BKRS
Options Available:		Options Use	ed:	
Selection A-D		Selection	С	
Magnitude N/A	100% = N/A	Magnitude	N/A	
Ramp Time N/A		Ramp Time	N/A	
Delay Time 0-3600 s		Delay Time	0 s	
Mode D, R, or	C Direct/Remote/Cond	Mode ditional	D	

Test Parameters Monitored:

AEDSTB3B	Breaker T1B-3B Ammeter
AEDSTB3C	Breaker T18-3C Ammeter
T:IT1A3	Transformer T1A3 Current
T:V1B3A	Bus 1B3A Voltage
T:V1B3B	Bus 1B3B Voltage
T:V1B3C	Bus 1B3C Voltage
T:WT1A3	Transformer T1A3 Sec. Watts
VEDS1A3	4160V Bus 1A3 Voltmeter

Test Precis:

Following malfunction actuation, observe: relay 51-1A33 picks up relay 86-1A33 causing DG-1 start, breaker 1A33 trip and lockout, 86/1A33 alarm; Lockout Relay Supervision Tripped, Diesel Auto Start Demand, Breaker Off Auto alarms; Bus 1A3 volts go to 0; transformer T1A-3 watts decrease and amps increase, 4160 bus ground alarm comes in then clears; Bus 1A3 Low Voltage and Bkr Auto Trip alarms; transformer lockout relay 86-1A3-TFB picks up and causes listed actions and alarms; 4160 V Bus 1A3 feeder auto trip, 480 V bus low voltage, Breaker Off Auto, Diesel Auto Start Demand alarms annunciate; 4150/480 V transformer voltages and currents go to 0; listed 4160V and 480V breakers trip with attendant alarms; power lost to busses 1A3, 1C3A, T1B-3D, 1B3A, 1B3A-4A, 1B3B, 1B3C & 1B3C-4C; Rx trip with low flow alarm. Operator opens all breakers on bus 1A3, selects DG-1&2, their output

breakers to OFF and the 43/1A1-1A3 transfer switch to Manual, and observes Diesel Off and 4160V 1A1-1A3 Transfer Off Normal alarms; resets the actuated 86 relays, then stops DG-1&2, verifies listed alarms clear, and stops charging pump 1B if needed.

Plant is recovered when operator clears malfunction, re-energizes 4160V and 480V busses per OI-EE-1&2, verifies listed bus voltages and alarms return to normal, then restarts listed loads and observes normal MW and amps behavior; restores DG-1&2 to normal standby conditions, as listed.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.11.2	Malfunction I	<u>dentifier:</u>	EDS2
<u>Test Des</u>	cription:	480 VAC Bus Fault to a single-phase 2.	t. The selected b e to ground fault	us(ses) is on the bus	lost due on phase
Initial Con	nditions:	100% POWER, BOC, RUNNING	IC#14, SI2A&2C, C	H1A, VA3A,	CAIC
Options /	Available:		Options Use	<u>ed:</u>	
Selection	A-I		Selection	Α	
Magnitude	N/A	100% = N/A	Magnitude	N/A	
Ramp Time	N/A		Ramp Time	N/A	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u>	Mode anditional	D	

Test Parameters Monitored:

None

Test Precis:

Following actuation, observe sequential 480V bus alarms followed by respective breaker tripping, then phase amps and volts go to 0. Selected 480V load breakers trip open (charging pump, ventilation, and containment spray). Operator starts another charging pump as needed, then transfers busses per 01-EE-02 and observes low voltage alarms clear. Operator places necessary breakers in the trip position and verifies that breaker trip alarms clear. Plant is recovered when the operator clears malfunction, strips, re-energizes and transfers 480V busses per 01-EE-2 and -28. Verify walts and amps return to normal following re-energization and restart

volts and amps return to normal following re-energization and restart of loads.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number: 14.	5.5.11.3	lalfunction	Identifier: EDS3
<u>Test Des</u>	<u>cription:</u> 125 to a	VDC Bus Fault. The short on the bus.	selected b	us(ses) is lost due
Initial Co	nditions: 100	₩ POWER, BOC, IC#14		
Options /	<u>Available:</u>		Options Us	ed:
Selection	A, 9		Selection	А
Magnitude	N/A	100% = N/A	Magnitude	N/A
Ramp Time	0-3600 s		Ramp Time	300 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or C <u>D</u> ir	ect/ <u>R</u> emote/ <u>C</u> onditio	Mode nal	D

Test Parameters Monitored:

AEDSBAT1	Battery	1 Ammeter
AEDSBC1	125V DC	Charger 1 Ammeter
VEDSDC1	125V DC	Bus #1 Voltmeter

Test Precis:

Following malfunction actuation, observe DC Bus #1 Ground alarm. After 5 minutes observe: DC Bus 1 ground light illuminates, battery charger feeder trips, output current goes to 0; output current goes to maximum; bus current goes to 0; inverter A, C & 1 trouble, DC Bus 1 low voltage, Panel AI-41A undervoltage, 125 VDC Aux Sup Not Avlble-D2 alarms; Normal Source 125 VDC, Battery #1 (Normal) 125 VDC, DC Distribution Panel 1 lights out; power loss to 125 VDC loads and listed control power. Operator transfers AI-41A and 125 VDC control power to listed busses, then verifies power returns and alarms clear. Plant is restored when operator clears malfunction, restores battery

chargers and inverters to listed pre-test configurations, and verifies listed alarms, power and voltage returned to normal.

Test Status: 1 <u>ate Completed:</u> 4/02/90 Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

E Compliance:

test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.11.4 Malfunction Identifier: EDS4 Test Description: 120 VAC Instrument Bus Fault. The selected bus(ses) is lost due to single-phase to ground fault on the bus. Initial Conditions: 100% POWER Options Available: Options Used: Selection A-F Selection A Magnitude N/A 100% = N/AMagnitude N/A Ramp Time 0-3600 s Ramp Time 300 s Delay Time 0-3600 s Delay Time 0 s Mode D, R, or C Mode D Direct/Remote/Conditional

Test Parameters Monitored:

AEDSINVA	120V	AC	Inverter	Ammeter
VEDSIBA	120V	AC	Bus A Vo	ltmeter

Test Precis:

Following malfunction actuation, observe bus ground light goes bright. After 5 minutes, observe: bus feeder breaker trips, inverter output current pegs high, then goes to 0, bus voltage goes to 0, low voltage alarm annunciates, and loss of power. Operator attempts to feed AI-40A from AI-40C per OI-EE-4.0, verifies that the AC-1 or -2 trips due to continuing ground, then opens AC-1 and -2.

Plant is recovered when operator clears malfunction, closes the normal feeder from inverter A, bus voltages and inverter current return to normal, low voltage alarm clears, and verifies power to loads.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

UPPD Test Number:		14.5.5.11.6	Malfunction 1	dentifie).	EDS6	
<u>lest</u> <u>Description</u> :		480 VAC Supply Tra the selected trans	nsformer Faul former(s).	t. A fault	occurs o	in
Initial Cor	nditions:	100% POWER, BOC, I	C#14			
Options	s Available:		Options L	lsed:		
Selection	A-G		Selection	N/A		
Magnitude	N/A	100% = N/A	Magnitude	N/A		
Ramp Time	N/A		Ramp Time	N/A		
Delay Time	0-3600 s		Delay Time	0 s		
Mode	D, R, or C Di	rect/ <u>R</u> emote/ <u>C</u> onditi	Mode onal	D		

Test Parameters Monitored:

None

Test Precis:

Following actuation, observe: xfmr hi temperature alarm, xfmr breakers trip, 4160V & 480V xfmr and bus tie, low voltage, xfer switch and Aux Sup Not Avaii alarms annunciate, 4160/480V xfmr voltage & amps at 0, power loss to loads, 480V pump bkrs open. Operator opens circuit breaker control switches and observes the breaker trip alarms clear, then starts a charging pump as needed.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any excertion to ANSI/ANS 3.5? No

OPPD Test	Number:	14.5.5.11.11	Malfunction 1	dentifier: EDS11
<u>Test Desc</u>	ription:	Switchyard Line Fault. fault occurs on Phase	A single ph A of the sele	nase io ground acted line.
Initial Con	di <u>cions:</u>	100% ER, BOC, IC#1	4	
Options A	vailable:		Op*ions Use	ed:
Selection	A, B, C		Selection	С
Magnitude	N/A	100% = N/A	Magnitude	N/A
Ramp Time	N/A		Ramp Time	N/A
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Conditi	Mode onal	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: relay 87 161 picks up causing Lockout Relay Supervision Tripped alarm; relay 86-161 trip with 161 KV alarm; relays 86-1/TIA-3 & -2/TIA-3 trip with listed breaker trips and DG-1 start at idle, and (5) alarms; relays 86-1/TIA-4 & -2/TIA-4 trip, with DG-2 start at idle and (2) alarms; breakers 1A13 & 1A24 close with alarms; transformers TIA-4 & -3 watts, current, and voltage go to 0; TIA-1 & -2 watts and current rise.

Operator follows breaker indications with control switches and verifies breaker trip alarms (3) clear.

Plant is recovered when operator clears malfunction, resets lockout relays, observes alarms clear, stop: DG-1 & -2, restores electrical lineup to pre-test conditions and observes listed normal indications and alarms.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory: <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Tid this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.11.12	Malfunction	<u>Ideptifier:</u>	EDS12
Test Description:	Switchyard Breaker Fa contacts weld shut or mechanism activates.	ilure. The s the selected	elected brea breaker tri	ker p
Initial Conditions:	100% POWER, BOC, IC#	14		
Options Available	1	Options Us	ed:	
Selection A, B, C		Selection	Α	
Magnitude O, C	100% = OPEN, FAILS	Magnitude	0	
Ramp Time N/A	TO OPEN	Ramp Time	N/A	
Delay Time 0-3600 s		Delay Time	0 s	
Mode D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode ional		

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe breaker 3451-4 opens with alarm. Operator opens breaker 3451-4 control switch and observes alarm clear. Plant is recovered when operator clears malfunction and closes breaker 3451-4.

<u>Tert Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

	OPPD Test	Number: 14.5.5.12.1	Malfunction	Identifier: EHC1	
	<u>Test Desc</u>	ription: EH Fluid System Leak. the EH fluid accumulate	A variable : or inlet line	size leak occurs or e.	
	<u>Initial Cor</u>	nditions: 100% POWER, BOC, IC#14	, LOI3A RUN	, LO13B STBY	
Options Available:			Options Used:		
	Selection	N/A	Selection	N/A	
	Magnitude	0-100% 100% = DOUBLE SHEAR	Magnitude	100	
	Ramp Time	0-3600 s	Ramp Time	60 s	
	Delay Time	0-3600 s	Delay Time	0 s	
	Mode	D, R, or C Direct/Remote/Condition	Mode onal	D	

Test Parameters Monitored:

BEHCRES	Hydraulic	Fluid Level in	Reservoir
PEHCFAS	FAS Fluid	Pressure	
YEHP13A	Hydraulic	Fluid Pump A	
YEHP138	Hydraulic	Fluid Pump B	

Test Precis:

Following malfunction actuation, observe: EHC pressure decrease, amps rise, pump B starts with alarm and pressure decreases more slowly; Hydraulic Oil Press Lo, Hydraulic Power Unit Fluid Level Hi-Lo alarms; turbine and Rx trip; EHC Mechanical, Emergency lights illuminate, Hydraulic Fluid Pressure light goes out; all turbine stop, control and combined intercept valves close. After 5-10 minutes, observe Hydr Fluid Press pump A & B stopped alarms.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.12.6Malfunction Identifier:EHC6Test Description:Load Limit Potentiometer Failure. The load limit
potentiometer's output fails to change in the selected
deadband.Initial Conditions:50% POWER, BOC, IC#12Options Available:Options Used:
Selection N/ASelection N/ASelection N/AMagnitude 0-5%100% = N/ARamp Time 0-3600 sRamp Time 0 s

Delay Time 0-3600 s

Mode D

Delay Time 0 s

Direct/Remote/Conditional

Test Parameters Monitored:

D, R, or C

None

Mode

Test Precis:

Following actuation, operator slowly raises load to 60% with the load limiter and observes erratic potentiometer behavior. Load is raised to 70%; observe smooth pot operation, then lower load to 40%. Observe erratic pot operation between 55% and 50%. Plant is recovered when operator clears malfunction. Operator then verifies a smooth load increase to 60% using the load limiter potentiometer.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.13.1	Malfunction I	dentifier: ESF1
Test Description:	Steam Generator Low Pressure Logic Matrix Failure. The logic matrix for the selected train(s) fails to the selected condition(s).		
Initial Conditions:	100% POWER, EOC, IC#2	4	
Options Available	<u>u</u>	Options Us	ed:
Selection A, B		Selection	A
Magnitude T, F	100% = ON (ACT), OFF	Magnitude	T
Ramp Time N/A		Ramp Time	N/A
Delay Time 0~3600 s		Delay Time	0 s
Mode D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode ional	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe indications of SGLS & SGIS actuation, reactor trips, RCS temperature response tracks MSSV cycling, PZR level response follows Tave, then program setpoint, PZR pressure and level CH X & Y alarms annunciate. Feedwater Control S/G RC-2A, -2B low level alarms annunciate, S/G pressures rise, S/G levels decrease, S/G feedwater and steam flows go to 0, feedwater pump discharge pressure rises and suction flow decreases, feedwater recirc valves open. Condensate pumps discharge low flow alarms annunciate. Observe the following: RCS temperature and pressure stabilize at temperature corresponding to MSSV setpoints, S/G levels decrease, AFAS actuation at 32% with appropriate alarms and actions. Observe proper AFW flow to S/G's, and that valves close and alarms clear when S/G levels reach 50%. Verify proper cycling of AFW valves and attendant alarms as S/G levels vary between 32% and 60%. Operator follows EOP-06. Recovery is achieved by shutting down feedwater and 2/4 RCP's, clearing malfunction, and resetting SGLS relay. Operator verifies: alarms clear, feedwater valves can be opened, MSIV's open. Operator

Test Status: 1 Date Completed: 4/19/90 1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

then starts and observes RCS cooldown.

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No If Yes, documentation continues on attached page(s).

. 5

<u>OPPD Test Number:</u> Test Description:		14.5.5.13.2	Malfunction Identifier: ESF2		
		Containment High Pressure Logic Matrix Failure. logic matrix for the selected train(s) fails to the selected condition(s).		The	
Options a	available:		Options Use	d:	
Selection	Α, Β		Selection	A	
Magnitude	T, F	* 70% = ON (ACT), OF	F Magnitude	Ť	
Ramp Time	N/A		Ramp Time	N/A	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	C Direct/Remote/Condi	Mode tional	D	

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: CPHS, SIAS, and 480V Load Shed actuate with listed alarms and indications; SGIS actuates with listed valve closures and alarm annunciation; Reactor Trip alarms. Diesel generators start, load sequencers S1-1 & S2-2 actuate with listed alarm annunciation; CIAS and VIAS actuate with listed alarms. Operator verifies listed valves can be opened after turning HC-AI-43A to test and resetting CPHS.

Plant is recovered when the operator clears the malfunction, resets listed 86 relays, observes alarms clear and, as desired, repositions valves and equipment operated during this test.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Numbe	<u>r:</u> 14.5.5.13.5	Malfunction I	dentifier: ESF5	
<u>Test Descriptio</u>	<u>n:</u> Pressurizer Low Press logic matrix for the selected condition(s)	Pressurizer Low Pressure Logic Matrix Failure. The logic matrix for the selected train(s) fails to the selected condition(s).		
Initial Condition	S: 100% POWER, BOC, IC#14 ON AI-30A/B RESET, DEF EMERG STBY	4, PPLS NOT B RIVED SIGNAL	LOCKED, ALL 86 RLY C/O ON AI-30A IN	
Options Availab	<u>le:</u>	Options Us	s Used:	
Selection A, B		Selection	A	
Magnitude T, F	100% = ON (ACT), OFF	Magnitude	т	
Ramp Time N/A		Ramp Time	N/A	
Delay Time 0-3600	5	Delay Time	0 s	
Mode D, R,	or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode ional	D	
Tost Dauamataus M	antipunda			

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: PPLS actuates with listed alarm annunciation; SIAS, diesel generator start, and CIAS signals received, Sequencers S1-1 and S2-2 actuate. Plant is recovered when operator clears malfunction, resets tripped 86 relays, and observes alarms annunciated during this test cleared.

<u>Test Status:</u> 1 <u>1</u> = Satisfaciory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

<u>DPPD Test Number:</u> 14.5.5.13.10	Malfunction Identifier: ESF10
Test Description: Open Safety In.	jection Valves Actuation Failure.
The actuation signal for the selected condition(s).	selected train(s) fails to the

Initial Conditions: 100% POWER, BOC, 1C#14, ESF RELAYS RESET, 480 V LOAD SHED A&B EMERG STBY, VA12A, FW34A,DW-41A,-43A,-46A, VA46A, FW30A, ST6A RUNNING

Options	Available:	Options Used:
Selection	Α, Β	Selection A
Magnitude	T, F 100% = ON (ACT), OFF	Magnitude T
Ramp Time	N/A	Ramp Time N/A
Delay Time	0-3600 s	Delay Time O s
Mode	D, R, or C Direct/Remote/Condit	Mode D

Test Parameters Monitored:

None

Test Precis:

- Following malfunction actuation, observe: SIAS actuation via 86A & 86AX relay flags, and SIAS alarms in ERF and on panel D1/004; 21 listed valves open, pump CH-4A starts, and verifies 10 listed valves close or cannot be opened. Observe VIAS actuation.
- 480V loads shed with attendant alarms and operator observes listed loads are de-energized; then after a 2½-50 second delay, verifies listed loads are, or can be, energized; then resets and verifies red light on HC-103-3 & -4 is lit.
- Plant is recovered when the operators clears the maliunction, resets all tripped 86 relays and then, as desired, reconfigures all valves and equipment operated during this test.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory <u>ANSI/ANS 3.5 Compliance:</u> Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.13.12	Malfunction	Identifier: ESF12
<u>Test Description:</u>		OPLS Logic Matrix Failure. The logic matrix for the selected train(s) fails to the selected condition(s).		
<u>Initial Co</u>	<u>nditions:</u>	100% POWER, BOC, I AC-10A,-10B,-10C,- 1A33, 1A24, 1A24, T1C-3A,-4A, FW-2C, MCC-3B2,-3B3,-3C-4	C#14, BKRS CI 10D, SI-1A,- 1A44, FW8A, -4C,-5C, CW10 C-1	LOSED: 1B, FW6, 1A13., VA52A, T1B3A, C,
Options /	Available:		Options Use	ed:
Selection	A, B		Selection	Α
Magnitude	T, F	100% = ON (ACT), OFF	Magnitude	T
Ramp Time	N/A		Ramp Time	N/A
Delay Time	0+3600 s		Delay Time	0 s
Mode	D, R, or	C _ <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditi	Mode onal	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: 86A/OPLS trips with alarm; breakers 1A13 & 1A33 trip, DG-1 starts and accelerates to 900 rpm, bus 1A3 load sheds; breakers 1A24 & 1A44 trip, DG-2 starts and accelerates to 900 rpm, bus 1A4 load sheds; supply breakers to MCC-3B2, -3B3, -3C-4C-1 de-energize; VA-52, CA-4, FW-8A breakers trip. Operator stops SI-1A, closes breaker 1AD1 and energizes bus 1A3, then stops SI-1B, closes breaker 1AD2 and energizes bus 1A4. Plant is recovered when operator clears malfunction; resets 86A/OPLS relay, observes 86A OPLS Trip alarm clears; closes breakers 1A13, 1A33, 1A24, and 1A44; unloads and shuts down DG-1 & -2, then restores equipment to pre-test configuration.

<u>Test Status:</u> 1 <u>Date Completed:</u> 2/24/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.14.2 Malfunction Identifier: FDW2

Test Description: Main Feedwater Header Leak. A variable size leak occurs on the main feedwater header between PT-1141 and PT-1397.

Initial Conditions: 50% POWER, IC#12

Options /	<u>Available:</u>		Options Used:	
Selection	N/A		Selection N/A	
Magnitude	0-100%	100% = 18" DIAMETER	Magnitude	50
Ramp Time	0-3600 s	BREAK	Ramp Time	600 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condi	Mode itional	D

Test Parameters Monitored:

None

Test Precis:

Following actuation, observe: reheater 6 A/B outlet, feedwater pump discharge pressures decrease; feedwater pump suction flow rises; S/G feedwater flows & levels decrease; Feedwater Control S/G low, Turbine Bld Sump hi level alarms annunciate. Rx trip. Operator follows EOP-06, Loss of Feedwater. Test concludes when operator attempts to clear malfunction.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number	<u>:</u> 14.5.5.	14.3	Malfunction I	dentifier: FDW3
<u>Test Des</u>	cription	: Main Fe leak oc flow el	edline Leak curs on the ement and th	Upstream of FCV selected feedli e FCV.	. A variable size ne(s) between the
Initial Co	nditions	<u>:</u> 100% PO	WER, BOC, IC	#14	
Options .	Availabl	<u>e:</u>		Options Us	ed:
Selection	А, В			Selection	А
Magnitude	0-100%	100% =	16" DIAMETE	R Magnitude	10
Ramp Time	0-3600	S	DREAK	Ramp Time	0 s
Delay Time	0-3600	S		Delay Time	0 s

Direct/Remote/Conditional

Mode

Test Parameters Monitored:

D, R, or C

None

Test Precis:

Following malfunction actuation, observe: S/G RC-2A feedwater flow rises. level decreases, level controller decreases, feedwater regulator flow rises, low level alarm annunciates, S/G B level decreases slower than S/G A, S/G A low level causes Rx trip. Operator verifies leck location after AFWS actuation by manipulating feedwater alignment. Observe Waste Disposal System Malfunction alarm. Operator closes HC-1384, then follows EOP-06, Loss of Feedwater. Test ends with attempt to clear malfunction.

Mode

D

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.14.5	Malfunction Identifier: FDW5
Test Description:	Main Feedline Leak I size leak occurs on downstream of the ch	nside Containment. A variable the selected feedline(s) eck valve.
Initial Conditions:	100% POWER, BOC, IC#	14
Options Available:		Options Used:
Selection A, B		Selection A

Magnitude0-100%100%16" DIAMETER
BREAKMagnitude100
BREAKRamp Time0-3600 sRamp Time0 sDelay Time0-3600 sDelay Time0 s

Mode

D, R, or C

Mode D Direct/Remote/Conditional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: S/G feedwater flow rises, S/G RC2-A pressure & level decrease; S/G RC-2A low level alarm annunciates; Rx trips; S/G low level, low pressure channel pre-trip & trip alarms annunciate. S/G 2A steam flow, pressure and level decrease to 0 and SGIS actuates as S/G boils dry. Containment sump high level alarm annunciates. RCS temperature & pressure, and PZR level decrease; SIAS actuates at 1600 psia. Containment high pressure alarms annunciate and CPHS actuates. The operator follows EOP-05, Uncontrolled Heat Extraction. When the S/G boils dry, observe that the RCS cooldown stabilizes.

<u>Test Status:</u> 1 <u>Date Completed:</u> 2/08/9C <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number: 14.5.5.16.1	Malfunction Identifier: FWH	1
<u>Test Des</u>	cription: Feedwater Heater selectable degree	Tube Leak. Tube failure occurs to in the selected heater(s).	o a
Initial Co	nditions: 100% POWER, BOC,	IC#14	
Options .	Available:	Options Used:	
Selection	A-L	Selection K (6A)	
Magnitude	0-100% 100% = 10% OF TU	BES Magnitude 100	
Ramp Time	0-3600 s	Ramp fime 0 s	
Delay Time	0-3600 s	Delay Time O s	
Mode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> o	Mode D nditional	

Test Parameters Monitored:

BSGN903X	S/G A Transmitted Level (NR%)
BSGN906X	5/G B Transmitted Level (NR%)
PCFWC1	Condenser Steam Pressure
STUR	Gross Generator Electrical Power Output (MW)
T:L1196A	Htr 6A Level Control
T:L1197A	Htr 5A Level Control
T:P958	2nd Stage Extraction Pressure
T:T1209A	Heater ÖA Drain Temp.

Test Precis:

Following malfunction actuation, observe: heater 6A level and extraction pressure rising, drain temperature decreases; heater 5A level rises rapidly; S/G level decreasing and FW flow rising; hotwell level rising, heater 6A extraction valve closes, and condenser vacuum decreasing due to 6A high level dump; standby vacuum pumps start; Htr 6A hi-lo level alarm; generator MW decrease. Operator isolates heater 6A and reduces power to 60% per EOP-5, Uncontrolled Heat Extraction.

 $\frac{\text{Test Status: 1}}{\underline{1} = \text{Satisfactory; } \underline{2} = \text{More Testing Required; } \underline{3} = \text{Unsatisfactory}$

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.17.1Malfunction Identifier:GEN1Test Description:Voltage Regulator Failure. The Voltage Regulator
changes the output voltage to the setpoint selected.Initial Conditions:100% POWER, BOC, IC#14

Options Available:			Options Used:			
Selection	А, В				Selection	A
Magnitude	80-120%	100% =	RATED	VOLTAGE	Magnitude	120
Ramp Time	0-3600 s				Ramp Time	60 s
Delay Time	0+3600 s				Delay Time	0 s
Mode	D, R, or	C Direct	/Remot	e/Conditic	Mode	D

Test Parameters Monitored:

AGENG1F	Generator Field Ammeter
PGEN1	Power Factor Meter
SGENI	Generator Output Imag. Power (MVARS)
T:IGEN1	Main Generator Current
VGENG1F	Gen Field Volts Meter

Test Precis:

Following malfunction actuation, observe: generator picks up more reactive load; leading power factor rises; voltage regulator transfer voltage rises; field amps and volts, and generator output amps rise with field overvoltage alarm. After 10 seconds, voltage regulator trips to manual mode with alarm; parameters effected return to pre-malfunction conditions, except the voltage regulator transfer volt meter. Operator places regulator switch in the manual position and observes the field overvoltage and regulator trip alarms clear, then manually adjusts the voltage regulator to maintain required reactive load.

Plant is recovered when the operator clears the malfunction and transfers the voltage regulator back to pre-test automatic operation.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.17.4	Malfunction Identifier: GEN4
Test Des	cription:	Field Breaker Failure the position selected	. The field breaker fails to
Options (available:		Options Used:
Selection	N/A		Selection N/A
Magnitude	0, C	100% = OPEN, CLOSED	Magnitude O
Ramp Time	N/A		Ramp Time N/A
Delay Time	0-3600 s		Delay Time O s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode D ional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, operator starts up generator per OI-ST-9 and observes: field breaker does not close, field breaker mismatch light illuminates, and Exciter Field Breaker Tripped alarm annunciates. Operator returns field breaker control switch to OFF and observes above alarms and indications return to normal. Plant is recovered when operator clears malfunction, starts up generator and verifies that the field breaker closes.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> =/ Unsatisfactory/

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	Number:	14.5.5.18.1	Malfunction 1	<u>(dentifier:</u> MSS1
Test Description:		Main Steam Line Leak size leak occurs on containment.	Inside Contair the selected st	nment. A variable team line inside
Initial Cor	nditions:	100% POWER, BOC, IC	#14	
Options /	Available		Options Use	ed:
Selection	Α, Β		Selection	A
Magnitude	0+100%	100% = 28" DIAMETER	Magnitude	100
Ramp Time	0-3600 s	DREAK	Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondi	Mode tional	D
Test Param	eters Mon	itored:		

BSGNWR S/G A Wide Range Level **BSGNWR2** S/G B Wide Range Level PCNM Total Containment Pressure RCS Global Pressure PRCMSTAR PSGNS S/G Steam Pressure PSGNS2 S/G B Steam Pressure Containment Temp TCNM TRCSWRC Wide Range Cold Leg Temp TRCSWRH Wide Range Hot Leg Temp Wide Range Hot Leg Temp Aux Feed Flow to Steam Generators TRCSWRH2 WAFWSGN WAFWSGN2 Aux Feed Flow to Steam Generators WCFWSGN Feedwater Flow to Steam Generators WCFWSGN2 Feedwater Flow to Steam Generators WSGNSLIN Steam Line Flow to Main Steam Header WSGNSLIN2 Unknown Variable

Test Precis:

Following malfunction actuation, observe: S/G RC-2A steam pressure drops, steam temperature and flow decrease; RC-2B, Main steam, and turbine first stage pressure and temperature decrease; S/G levels and RCS temperature decrease; Tref/Tavg deviation alarms annunciate; RCS pressure decreases with alarms; PZR heaters energize; letdown flow decreases to minimum; PZR level Ch X & Y alarms; S/G low level alarms; containment pressure rises with (4) alarms; Rx trips, CPHS, SIAS, VIAS, CIAS, SGLS, AFWS all actuate with listed alarms, actions, and indications; containment sump level rises with listed attendant alarms. Following AFWS, operator verifies no AFW flow to S/G RC-2A, RC-2B level recovers, RC-2B pressure rises to MSSV setpoint. Operator refers to EOP-5, Uncontrolled Heat Extraction Procedure. Plant is recovered when RCS is stable, operator resets all safeguards signals and begins RCS cooldown on S/G RC-2B.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.18.3	Malfunction Identifier:	MSS:
<u>Test Description:</u>	Main Steam Line L Isolable). A var selected steam li	eak Outside Containment (Non- iable size leak occurs on the ne outside of containment.	
Initial Conditions:	100% POWER, BOC,	IC#14	
Options Available		Options Used:	
Selection A. B		Selection A	

Magnitude	0+100% 100% =	28" DIAMETER	Magnitude	100
Ramp Time	0-3600 s	DREAR	Ramp Time	600 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D. R. or C		Mode	D

Mode D, R, or C Mode Direct/Remote/Conditional

Test Parameters Monitored:

PZR	Abbreviation for Pressurizer
PZR	Abbreviation for Pressurizer
SGA	S/G A Water/Steam Masses

Test Precis:

Following malfunction actuation, observe: S/G RC-2A steam pressure, temperature, and flow decrease; RC-2B pressure and temperature decrease, flow rises; main steam and turbine 1st stage pressure decrease; RC-2A level swells, then decreases with low level alarm; RC-2B level, RCS temperature and pressure decrease; Tref/Tavg deviation and PZR pressure Ch X & Y alarms; PZR backup heaters energize; TM/LOW Pressure Pretrip and trip, Subcooled Margin Low, High Power pretrip and trip alarms; Rx trip; (4) PZR SI signal lo-lo alarms; PPLS actuation with listed (4) alarms annunciated and (2) cleared, and ERF indications; PZR level drops, letdown flow goes to minimum, HI-LO Ch X & Y alarms, standby charging pumps start; VCT level decreases with suction switchover to SIRWT, VCT LO-LO level alarms; PZR LO-LO Ch X & Y alarms, backup heaters de-energize; SIAS, VIAS, CIAS, SGLS, and AFWS actuations with listed actions and alarms; AFW flow to RC-2B; RCP's cavitate; PZR and RC-2B levels recover; RC-2B pressure rises to MSSV setpoint. Operator stops RCP's when cavitation is observed and refers to EOP-5, Uncontrolled Heat Extraction Procedure.

Plant is recovered when parameters have stabilized, operator resets all safeguards signals, and RCS cooldown with RC-2B has started.

Test Status: 1Date Completed:5/03/901 = Satisfactory;2 = More Testing Required;3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No If Yes, documentation continues on attached page(s).

 OPPD Test Number:
 14.5.5.18.5
 Malfunction Identifier:
 MSS5

 Test Description:
 Main Steam Isolation Valve Failure. The selected MSIV(s) fails closed.

 Initial Conditions:
 100% POWER, BOC, IC#14

 Options Available:
 Options Used:

sponger strategies and designed as the	and a second of the Research of Additional Research of the	N/100 Englished out of the country of the	Broadblocker.
Selection	А, В	Selection	A
Magnitude	N/A 100% = N/A	Magnitude	N/A
Ramp Time	N/A	Ramp Time	N/A
Delay Time	0-3600 s	Delay Time	0 s
Mode	D. R, or C Direct/Remote/Condition	Mode onal	D

Test Parameters Monitored:

None

Test Precis:

SG-RC2A pressure and flow decrease, level decreases then increases; RCS Delta T decrese loop 1, increase loop 2; PRZ pressure increases; Gen. watts decrease; ASGT Lo Pressure Channel Pre-trip and Trip Reactor trips on ASGT. Operator refers to EOP-00, Reactor Trip.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.18.6Malfunction Identifier:MSS6Test Description:Main Steam Line To TDAFW Pump Leak. A variable size
leak occurs on the selected line(s) supplying the
TDAFWP between the stop valve & check valve.

Initial Co	nditions:	100%	P(OWER, BOC, IC#14		
Options .	<u>Available:</u>				Options Us	ed:
Selection	Α, Β				Selection	А
Magnitude	0-100%	100%		2" DIAMETER	Magnitude	100
Ramp Time	0-3600 s	BKLAK		Ramp Time	60 s	
Delay Time	0-3600 s				Delay Time	0 s
Mode	D, R, or	Direc	t,	/Remote/Condition	Mode	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe the FW-10 red light on and the aux oil pump stops. Operator closes HC-1045B and observes FW-10 red light off, recirc valves open, FW-10 running alarm clears, recirc flow = 0. Operator opens HC-1045B, resets trip latch and YCV-1045, then observes: FW-10 red light on then off, recirc valve opens, FW-10 running alarm.

<u>Test Status:</u> 1 <u>1</u> = Sat Sfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.18.7 Malfunction Identifier: MSS7 Test Description: Main Steam Header Leak. A variable size leak occurs on the common main steam header. Initial Conditions: 100% POWER, BOC, IC#14 Options Available: Options Used: Selection N/A Selection N/A Magnitude 0-100% 100% = 36" DIAMETER Magnitude 10 BREAK Ramp Time 0-3600 s Ramp Time 600 s Delay Time 0-3600 s Delay Time 0 s Mode D, R, or C Mode D Direct/Remote/Conditional Test Parameters Monitored: None Test Status: 1 Date Completed: 2/24/90 1 = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisf; tory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	Number:	14.5.5 19.2	Malfunction I	dentifier:	NIS2
<u>Test Desc</u>	ription:	Wide Range Power Sup supply for the selec	ply Failure, T ted channel(s)	ne selected fails.	power
Initial Cor	nditions:	100% POWER, BOC, IC	#14, SELECT CH	A	
Options A	Vailable		Options Use	ed:	
Selection	A-H		Selection	A	
Magnitude	N/A	100% = N/A	Magnitude	N/A	
Ramp Time	/A		Ramp Time	N/A	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondi	Mode tional	D	

Test Parameters Monitored:

None

1

Test Precis:

Following malfunction actuation, observe: POWER ON light goes out, power indications on MCB and NIS panel fail to 0, NIS startup rate fails to 0, HV indication fails low, NI channel inoperative alarm, bistables fail to trip position with NIS drawer lights off, zero power mode permissives enabled, extended range circuit de-energized. Operator performs surveillance ST-RPS-2 to verify circuit failure. Plant is recovered when operator clears malfunction and observes listed indications and alarms return to pre-test conditions.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.19.7Malfunction Identifier:NIS7Test Description:Power Range Power Supply Failure. The high voltage
power supply for the selected channel(s) fails.Initial Conditions:100% POWER, BOC, IC#14Options Available:Options Used:Selection A-FSelection E

SelectionA=rSelectionEMagnitudeN/A100% = N/AMagnitudeN/ARampTimeN/ARampTimeN/ADelayTime0-3600 sDelayTime60 sModeD, R, or CModeD

Direct/Remote/Conditional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: HV detector meter fails to O, bistable trip light illuminates, NI channel inoperative alarm, upper and lower power level meters fail to O, power ratio meter rises, rod drop bistable trip with alarms, Level 1 trip light goes out, POWER ON light remains lit. Operator checks ZERO and CALIBRATE positions on Channel 9 upper and lower function switches and observes readings of 200% in CALIBRATE and O% in ZERO positions. Plant is recovered when operator clears malfunction and observes all Channel 9 indications return to normal.

Test Status: 1 Date Completed: 1/28/90 1 = Satisfactory: 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

UPPD Test	<u>Number</u> :	14.5.5.20.4	Malfunction Identifier: PRS4
Test Description:		PZR Steam Space Leak from the upper head	. A variable size leak occurs of the pressurizer.
Initial Con	nditions:	100% POWER, BOC, IC#	14
Options	s Availabl	<u>e:</u>	Options Used:
Selection	N/A		Selection N/A
Magnitude	0-100%	100% = 8" DIAMETER	Magnitude 100
Ramp Time	0-3600 s	HULL	Ramp Time 60 s
Delay Time	0-3600 s		Delay Time O s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode D tional
* P		and the second	

Test Parameters Monitored:

PCNM	Total Conta	ainment Pressure
PRCMSTAR	RCS Global	Pressure

Test Precis:

Following malfunction actuation, observe: PZR pressure and level decrease, backup heaters energize; VCT level decreases with LO-LO Level alarm, and charging pump suction switches to SIRWT; charging flow, containment pressure, temperature, activity, dew point, and sump level rise. Operator implements EOP-O1, Reactor Trip.

 \bigcup

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.57 No

UPPH Tes	t Number:	14.5.5.20.5	mainunction .	l <u>dentifier:</u> PRS5
Test Description:		Pressurizer PORV Failure. The selected PORV(S) fails to the position selected.		
Initial Co	uditions:	100% POWER, BOC, IC#1	4	
Option	s Availabl	e:	Options 1	<u>Used:</u>
Selection	А, В		Selection	A
Magnitude	0-100%	100% = N/A	Magnitude	100
Ramp Time	0-3600 s		Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Conditi	Mode Ional	D

Test Parameters Monitored:

PCNM	Total Containment Pressur
PRCMSTAR	RCS Global Pressure
T:L101X	Pressurizer Level
T:L132	POT Level
T:P131	Quench Tank Pressure
TCNM	Containment lemp

Test Precis:

Following malfunction actuation, observe: acoustic monitor and alarm indicate PORV is open; PZR pressure decreases; PORV discharge temperature rises and alarm annunciates; PZR level goes solid and depressurization rate rises, HI-LO level Ch X & Y TM/LOW Pressure pretrip, and Subcooled Margin Low alarms annunciate; RX trips on TM/LP BTU with alarms; (4) PZR SI LO-LO pressure alarms; PPLS actuates; PQT pressure, temperature and level rise with attendant alarms, rupture disc blovs at 75 psig with rapid pressure drop; containment pressure, dew point, temperature, activity and sump level rise. Operator isolates PORV, observes related alarms clear and closed

indication, then PZR pressure stabilizes.

Test Status: 1	Date Completed:	3/27/90
<u>1</u> = Satisfactory;	<u>2</u> = More Testing Required;	3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ NS 3.5? No If Yes, documentation continues on attached Lige(s).

OPPD Test Number:		14.5.5.20.9 <u>Malfurtion Identifier:</u> PRS9		
<u>Test Des</u> :	<u>ription:</u>	Pressurizer Level Instrument tion Tap Leak. A variable size leak on the pressurizer instrument tap.		
Initial Cor	nditions:	100% POWER, BOC, IC	#14	
Options	s Availabl	<u>e:</u>	Options (Jsed:
Selection	A-D		Selection	A
Magnitude	0-100%	$100\% = 1^{n} DIAMETER$	Magnituo	100
Ramp Time	0+3600 s	HULE	Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condi	Mode itional	D

Test Parameters Monitored:

PRCMSTAR	RCS Global F	ressure
T:L101X	Pressurizer	Level
T:P102A	Pressurizer	Pressure

Test Precis:

Following malfunction actuation, observe: PZR pressure decreases to lower limit, SI LO-LO pressure alarms, Channel A TM/LP Trip with (3) alarms, PPLS Matrix lights change state. Operator bypasses trip unit and verifies yellow light on. Plant is recovered when operator clears malfunction, observes PZR pressure returns to normal and alarm clears, resets BTU 9 Ch A and verifies indications return to pre-test values.

<u>Test Status:</u> 2 <u>Date Completed:</u> <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

UFFD Test Number:	14.5.5.21.1	Malfunction	Identifier	C: RCP1
Test Description:	RCP Lube Oil Cooler occurs between CCW a selected RCP upper	Leak. A var and the lube lube oil cool	iable size oil system er.	leak of the
Initial Conditions:	100% POWER, BOC, ICA	14		

Option	<u>s Available:</u>	Options	Used:
Selection	A-D	Selection	Α
Magnitude	0-100% 100% = 10% OF TUBES	Magnitude	100
Ramp Time	0-3600 s	Ramp Time	60 s
Delay (ime	0-3600 s	Delay Time	0 s
Mode	D, R, or C Direct/Remote/Conditi	Mode	D

Test Parameters Monitored:

BRCP3101	RC ^D Upper Oil Reservoir Level
ORCP1	RCP Pump Speed (RPM)
TRCP3105	RCP Lower Thrust Bearing Temp
TRCP3106	RCP Upper Thrust Bearing Temp
TRCP3107	RCP Upper Bearing Temp
WCCW454	Lube Dil Cooler A Flow
WRCP3182	RC-3A Reverse Flow Switch
YRCP3108	Vibration Set Point (RC-3A)

Test Precis:

Following malfunction actuation, lube oil leaks into the CCW system. Observe: CCW from RCP-3A lube oil cooler high temperature alarm; lube oil flow and reservoir level decrease with attendant alarms; RCP bearing temperatures rise; lube oil levels fluctuate; RCP high vibration alarm; RCP trips with attendant alarm; Rx trip. Operator refers to EOP-1. Operator secures RCP-3A and observes RC-3A breaker trip alarm cleared, then stops an RCP in the opposite loop and begins a plant cooldown.

Test Status: 1				Date	Completed:			2/23/90
<u>1</u> = Satisfactory;	2	=	More	Testing	Required;	3	-	Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No If Yes, documentation continues on attached page(s).

OPPD Test Number:	14.5.5.21.3	Malfunction Identifier:	RCP3
Test Description:	RCP Guide Bearing bearing(s) fail.	Failure. The selected	

Initial Conditions: 100% POWER, BOC, IC#14

Options	s Availabl	<u>le:</u>	Options L	Jsed:
Selection	A-H		Selection	A
Magnitude	0-100%	100% = PUMP SEIZURE	Magnitude	100
Ramp Time	0-3600 s		Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Conditio	Mode nal	D

Test Parameters Monitored: RCP3

ORCP3	SCP Pump Speed (RPM)
T:T3107	RC-3A Upper Guide Bearing Temp
YCPPRC3A	RCP 3A Amps
YRCP3108	Vibration Set Point (RC-3A)

Test Precis:

Following malfunction actuation, observe: RCP-3A upper guide bearing temperature rises with attendant alarm, RCP-3A high vibration alarm, pump seizes.

Test Status: 1Date Completed:1/23/901 = Satisfactory: 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

9

OPPD Tes	t Number:	14.5.5.21.9	Malfunction Identifier: RC	P
<u>Test Des</u>	<u>cription:</u>	RCP Lower Seal Failu selected RCP(s) fai	ure. The lower seal on the ls.	
Initial Co	nditions:	100% POWER, BOC, IC	\$14	
Option	s Availabl	<u>e:</u>	Options Used:	
Selection	A-D		Selection A	
Magnitude	0-100%	100% = COMPLETE	Magnitude 100	
Ramp Time	0-3600 s	SEAL FAIL	Ramp Time 60 s	
Delay Time	0-3600 s		Delay Time O s	
Mode	D, R, or	C _ <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode D tional	

Test Parameters Monitored: RCP9

P3116	RC-3A Controlled Bleed-Off Pressure
P3117	RC-3A Middle Seal Pressure
P3118	RC-3A Upper Seal Pressure
T:T3114	RC-3A Seal bleedoff Temp
WSFA3115	RCP 3A Main Header Flow

Test Precis:

Following malfunction actuation, observe: RCP-3A middle seal inlet pressure rises from 1400 to 2100 psia with attendant ERF alarm; upper seal inlet and outlet pressures and seal bleedoff flow may rise, seal leakage high flow alarm annunciates.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	Number:	14.5.5.22.1	Malfunction 1	dentifier: RCS1
<u>Test Desc</u>	cription:	RCS Loop Leak. A var selected RCS loop(s).	iable size le	eak occurs on the
Initial Cor	nditions:	100% POWER, BOC, IC#1 DVM, SELECT TEMP ON S	14, SELECT PRE SCMMA & SCMMB	ETRIP ON CH A
Options	s Availabl	<u>e:</u>	Options (Used:
Selection	A-H		Selection	С
Magnitude	0-100%	100% = LINE DIAMETER	Magnitude	100
Ramp Time	0-3600 s		Ramp Time	0 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Condit	Mode ional	D

Test Parameters Mo., itored:

BRCMMGFN1	RC Vessel Mixture Level
T:F313	Loop 1B HPSI Flow Indication
T:F315	Unknown Variable
T:L101X	Pressurizer Level
T:L2904X	SI-6A Level Indication
T:L2924X	SI-6B Level Indication
T:L2944X	SI-6C Level Indication
T:L2964X	SI-6D Level Indication
T:LD383	SIRWT Level
T:P115A	Pressurizer WR Pressure
T:P783	Wide Range Containment Pressure
T:T714	Containment Air Temp
T:TCET12	T-8 Core Exit Thermocouple

Test Precis:

Following malfunction actuation, observe: RCS pressure drops rapidly with low pressure Ch X & Y alarms, backup heaters energize; TM/LP pretrip and Subcooled Margin low alarms; Rx trips on TM/LP with attendant alarms and indications. Operator verifies Rx trip response, then observes: (4) PZR SI Lo-Lo pressure alarms; PPLS actuation with attendant listed alarms and actions; PZR level drops rapidly with Ch X & Y alarms, letdown flow goes to minimum, standby charging pumps start; VCT level decreases with alarm, charging pump suction shifts to SIRWT; PZR lo-lo Ch X & Y alarms; Rx vessel decreases; PZR backup heaters de-energize; containment pressure rises with attendant alarms; CPHS actuation with attendant actions and alarms; RCP's cavitate; Safety Injection Tanks inject with listed attendant alarms; containment activity rises and CRHS actuates with listed attendant alarms and actions; SIAS, VIAS, CIAS, CSAS, SGIS actuate with listed attendant alarms and actions; containment sump/water level rises with listed attendant alarms; containment dew point rises; HPSI/LPSI pressure and flows; CSS flow causes containment pressure decrease; SIRWT level decreases with listed alarms and actions; RAS actuates at 10" H20 with alarms and actions. Operator performs EOP-3 and observes Rx vessel level recovers, RCS temperature and pressure stabilize.

<u>Test Status:</u> 2 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

TROUBLE REPORT #/DESCRIPTION:

4161 / Sequencer timers did not print out properly 3987 / RMS recorders not working

OPPD Test Number:14.5.5.22.3Malfunction Identifier:RCS3Test Description:RCS Fuel Failure.RCS fuel rcds fail causing the
RCS activity to increase.

Initial Conditions: 100% POWER, BOC, IC#14

Options Available:		Options Use	Options Used:	
Selection	N/A	Selection	N/A	
Magnitude	0-2% 100% = 2% OF ALL	Magnitude	2	
Ramp Time	0-3600 s	Ramp Time	60 s	
Delay Time	0-3600 s	Delay Time	N/A	
Mode	D, R, or C Direct/Remote/Conditio	Mode nal	D	

Test Parameters Monitored:

T:R053	CCW Pump Suction Header Activity
T:R214	Failed Fuel Detector

Test Precis:

Following malfunction actuation, observe rising readings on I-135 and gross activity monitors; Reactor Coolant Gamma Activity High alarm annunciates. Operator inserts a letdown Hx tube leak and observes the CCW radiation monitor signal rises rapidly and process radiation high alarm annunciates. Plant is recovered when operator clears malfunction and observes radiation monitor signal decays slowly.

<u>Test Status:</u> 2 <u>Date Completed:</u> <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.	24.1	Malfunction	Identifier: 1	RPS1
Test Description:		Failure of Interposing Relay. The selected interposing relay(s) fail to the position selected.				
Initial Co	nditions:	100% PO	WER, BOC, IC#	14		
Option	s Availabl	<u>e:</u>		Opti	ons Used:	
Selection	A-D			Selection	A	
Magnitude	D, E	100% =	DE-ENRGZD,	Magnitude	D	
Ramp Time	N/A		CNRULU	Ramp Time	0 s	
Delay Time	0-3600 s			Delay Time		
Mode	D, R, or	C Direct/	Remote/Condit	Mode ional	D	

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe that the interposing relays de-energize causing a half-trip as indicated by: control power ground, PS1 & PS3 AC trouble, AC on, and DC on lights extinguish; M1 coil voltage goes to 0, trip channel 1 light comes on; output current meters for PS1 & PS3 decrease, output current meters for PS2 & PS4 rise.

Plant is recovered when operator clears malfunction and observes that all indications return to normal.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.24.2	Malfunction	Identifier: RPS2
Test Description:	RPS Power Supply Fai logic power supply(i	lure. The se es) fails.	lected ladder
Initial Conditions:	100% POWER, BOC, IC#	14	
Options Availab	le:	Options Us	ed:
Selection A-L		Selection	A
Magnitude N/A	100% = N/A	Magnitude	N/A
Ramp Time N/A		Ramp Time	0 s
Delay Time 0-3600 s		Delay Time	
Mode D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode ional	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: power supply light 5 on PPS power supply drawer goes out, AB-1 & -2 matrix relays de-energize and status lights go out, a half-trip will occur with listed attendant indications. Operator performs ST-RPS-5, F.2, R10 for Ch A, but does not bypass Trip Unit; and observes TU-8A trip 2 & 3 lights illuminate, but trip 1 light does not. Plant is recovered when operator clears malfunction and observes that all RPS indications return to normal.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:14.5.5.24.3Malfunction Identifier:RPS3Test Description:Failure Of APD Positive Limit Calculator.
The output of the APD positive limit computer
fails to the range selected.

Initial Conditions: 100% POWER, BOC, IC#14

Options /	Available:		Options Use	ed:
Selection	A,B,C,D		Selection	A
Magnitude	50-150%	100% = NORMAL OUTPUT	Magnitude	50
Ramp Time	0-3600 s		Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Direct/Remote/Conditi	Mode onal	D

Test Parameters Monitored:

None

Test Precis:

- Following malfunction actuation, observe the APD positive limit meter decreases by 50%. Operator then verifies RPSCIP meter indication correlates with control board meter indication.
- Operator places TU-12 unit A in bypass, then performs surveillance ST-RPS-12, R33 to verify improper operation of APD summing amplifier.
- Plant is recovered when operator clears malfunction and verifies all indications have returned to normal. Remove TU-12A from bypass.

Test Status: 1 Date Completed: 1/28/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.25.7 Malfunction Identifier: RRS7 Test Description: Steam Dump Quick Opening Solenoid Valve Failure. The quick opening solenoid valve fails to the position selected. Initial Conditions: 100% POWER, BOC, IC#14 Options Available: Options Used: Selection A-E Selection A Magnitude D, E 100% = DE-ENRGZD, Magnitude E ENRGZD Ramp Time 0-3600 s Ramp Time 0 s Delay Time 0-3600 s Delay Time 0 s D D, R, or C Mode Mode Direct/Remote/Conditional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: TCV-909-1 red light on; TCV-909-2, -3, -4 green lights on; S/G RC-2A, -2B steam flows and levels rise; Rx-to-turbine power mismatch as nuclear power rises and turbine power decreases. Operator closes air to solenoid for TCV-909-1 and observes: green indication light on, RC-2A, -2B steam flows decrease, Rx-to-turbine power mismatch disappears, genera or megawatts return to normal. Plant is recovered when operator clears malfunction, opens air to solenoid for TCV-909-1, and observes that TCV-909-1 :emains closed.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.26.3	Malfunction Id	dentifier:	RWS3
<u>Test Des</u>	cription:	Raw Water Supply L occurs on the selecthe flow element.	ine Break. A van cted Raw Water 1	riable size ine downstre	leak am of
Initial Co	nditions:	100% POWER, BOC, I	C#14		
Options /	Available		Options Use	ed:	
Selection	А, В		Selection	A	
Magnitude	0-100%	100% = 16" PIPE	Magnitude	100	
Ramp Time	0-3600 s	BREAK	Ramp Time	60 s	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	С	Mode	D	

Direct/Remote/Conditional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: RW supply flow rises, supply header low pressure alarm annunciates, CCW Hx outlet temperature rises, RW supply pressure decreases, RW-cooled loads (listed) will heat up, Waste Disposal alarm annunciates. Operator isolates the leak by closing valves, then starts a pump in the not-faulted loop and observes supply header low pressure alarm clears. Operator secures pump in faulted loop, then shifts to alternate CCW Hx. Isolated header flow goes to 0 and temperatures return to normal.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.27.2	Malfunction Identifier: SDC2
<u>Test Des</u>	cription:	Shutdown Cooling He variable size leak Exchangers' inlet h	eat Exchanger Inlet Header Leak. A occurs on the Shutdown Cooling Heat header between SI-169 & SI-170.
Initial Co	nditions:	COLD S/D, BOC, IC	44
Options /	Available		Options Used:
Selection	N/A		Selection N/A
Magnitude	0-100%	100% = 12" pipe	Magnitude 100
Ramp Time	0-3600 s	Dreak	Ramp Time 60 s
Delay Time	0-3600 s		Delay Time O s

Mode D, R, or C

Mode Direct/<u>Remote/C</u>onditional n

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: shutdown cooling flow and pressure, and PZR level decrease; Waste disposal System Malfunction alarm; CRHS, VIAS actuation with listed attendant alarms and indications; listed high activity and radiation levels and alarms; RCS temperature rises; PZR pressure and temperature decrease along saturation curve. Operator follows AOP-19, Loss of Shutdown Cooling.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Uid this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.30.1 Malfunction Identifier: SGN1

<u>Test Description:</u> Steam Generator Tube Rupture. Tube failure occurs to a selectable degree in the selected steam generator(s).

Initial Conditions: 100% POWER, BOC, IC#14

Options /	<u>Available:</u>	Options Used:
Selection	Α, Β	Selection A
Magnitude	0-100% 100% = 10 TUBES	Magnitude 10
Ramp Time	0-3600 s	Pamp Time O s
Delay Time	0-3600 s	Delay Time O s
Mode	D, R, or C Direct/Remote/Cond	Mode D itional

Test Parameters Monitored:

F1101	S/G A Feedwater Flo.v
F1102	S/G B Feedwater Flow
L911D	S/G A Wide Range Level
P115A	Pressurizer Wide Range Pressure
P913A	S/G A Wide Range Pressure
P914A	S/G B Wide Range Pressure
PRCMSTAR	RCS Global Pressure
PSGN902A	S/G A Pressure in Level Ref. Leo
R057	Condenser Off Gas Radiation
T112H2	Unknown Variable
T:L219	VCT Level
TRCSWRH	Wide Range Hot Leg Temp
WRCSSGNL	SGTR Liquid Flow
WRCSSGNS	SGTR Steam Flow

Test Precis:

Following malfunction actuation, observe: PZR level and pressure decrease, backup heaters energize; HI-LO, then LO-LO Ch X & Y level alarms annunciate, backup heaters trip, PZR Off-Normal Ch X & Y alarms; condenser off-gas radiation rises; letdown flow stops; S/G RC-2A level and pressure rise, feedwater flow decreases; RC-2A high level alarm; Rx trip; S/G blowdown monitor alarms; PPLS, SIAS, CIAS, and VIAS actuate with listed alarms and indications; PZR level rises due to SI flow, then backup heaters energize, RCS pressur rises to 1300 psia where leak flow and SI flow are balanced. Operator performs EOP-1 and S/G Tube Leak procedures. Plant is recrired when plant conditions are stable and operator unsuccessfully attempts to clear malfunction.

I = Satisfactory;I = More Testing Required;4/19/90ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No
OPPD Test Number: 14.5.5.30.2 <u>Malfunction Identifier:</u> SGN2

<u>Test Description:</u> Reference Leg Leak. A variable size leak occurs at the top of the selected reference leg(s).

Initial Conditions 100% POWER, BOC, IC#14

Options /	<u>Available:</u>	. ÷		Options Use	ed:
Selection	A-D			Selection	Α
Magnitude	0-100%	100% =	3/8" LINE	Magnitude	100
Ramp Time	0-3600 s		DREAK	Ramp Time	60 s
Delay Time	0-3600 s			Delay Time	0 s
Mode	D, R, or	C Direct	/ <u>R</u> emote/Conditio	Mode nal	D

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: S/G RC-2A control channel level indicator level rises, feedwater regulating valve closes, reducing flow; RC-2A actual level decreases with low level alarm; RC-2A pressure drops with listed attendant alarms and Ch A ASGT trip; containment dew point and sump level rise. Operator manually controls RC-2A level, bypasses S/G Pressure Trip A, observes bypass alarm annunciates and Low Pressure Trip alarm and trip lights clear; Ch A ASGT trip lights remain on.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Tes	t Number:	14.5.5.31.5	Malfunc	tion Ic	lentifier:	SISS
<u>Test Des</u>	cription:	Safety Injection size leak occurs tank(s).	Tank Gas Sp from the ga	ace Lea is space	k. A variat of the sele	ole ected
Initial Co	nditions:	100% POWER, BOC,	IC#14			
Options (Available		<u>Opti</u>	ons Use	ed:	
Selection	A-D		Sele	ction	A	
Magnitude	0-100%	100% = 1" DIAME	TER Magn	itude	100	
Ramp Time	0-3600 s	HULE	Ramp	Time	60 s	
Delay Time	0-3600 s		Dela	y Time	0 s	
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u>	Mode onditional		D	

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: SI tank 6A pressure drops, SI-6A Hi-Lo Press, then at 243 psig SI-6A Lo Press alarms annunciate.

Test Status:1Date Completed:1/25/90 $\underline{1}$ = Satisfactory; $\underline{2}$ = More Testing Required; $\underline{3}$ = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	Number:	14.5.5.32.3	Malfuncti	on Identifier:	GEN6
Test Desc	ription:	Stator Cooling Wate	r Pump Suct	ion Line Leak.	
Options	Available:		Options	Used:	
Selection	А,В		Selection	A	
Magnitude	0-100% 10	0% = Double end	Magnitude	100%	
Ramp Time	0-3600 s	suction snear	Ramp Time	60 s	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or C		Mode	D	

Direct/Remote/Conditional

Test Parameters Monitored

T:T3235	Stator Cool	ing Inlet Temperature
T:T5028	Stator Cool	ing Outlet Temperature
T:T3234	Stator Wind	ing Temperature
PTGAMU	Stator Cool	ing Water Pressure

<u>Test Precis:</u> Stator cooling pump 6A cavitates and trips; associated alarms annunciate. 70 seconds later, turbine and reactor trip. Operator refers to AOP- and EOP-00.

<u>Test Status:</u> 2 <u>Date Completed:</u> <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.33.1

Malfunction Identifier: TUR1

Test Description: Main Turbine Lube Oil Reservoir Leak. A variable size leak occurs at the base of the main turbine lube oil reservoir.

Options /	Available:	Options Used:
Selection	N/A	Selection N/A
Magnitude	0-100% 100% = 1" LINE BRE	AK Magnitude N/A
Ramp Time	0-3600 s	Ramp Time N/A
Delay Time	0-3600 s	Delay Time N/A
Mode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ond	Mode D fitional

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: bearing oil pressure decreasing, Turb Oil Tk Level HI-LO and Bearing Oil Press Low alarms; motor suction, emergency bearing, and turning gear oil pumps running with attendant alarms; after oil tank empties, oil pumps cavitate, then trip with attendant alarms; turbine vibration alarm and trip; turbine coasts down quickly. Operator follows EOP-O1, Reactor Trip. Malfunction is non-recoverable.

<u>Test Status:</u> 2 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number:	14.5.5.33.5	Malfunction I	dentifier:	TUR5
<u>Test Description:</u>	Main Turbine High Vib experiences excessive selected.	ration. The solution of	selected bea the magnitu	ring de
Initial Conditions:	100% POWER, BOC, IC#1	4		
Options Available	<u>.</u>	Options Use	<u>ed:</u>	
Selection A-K		Selection	C	
Magnitude 0-20 mil	100% = 20 mils	Magnitude	10m	
Ramp Time 0-3600 s		Ramp Time	900 s	
Delay Time 0-3600 s		Delay Time	0 s	
Mode D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondit	Mode ional	D	

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, observe: turbine vibration alarm annunciates; vibration readings rise on bearings (highest to lowest) 3, 2, 4, 5, 1, and 6; turbine trip when vibration is > 10 mils; vibration decrease except through resonance speeds. Plant is recovered when operator clears malfunction and observes vibration decreases to normal.

Test Status: 1 Date Completed: 2/21/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	: Number:	14.5.5.33.	.6	Malfunction]	<u>Identifier:</u>	TUR6
<u>Test Desc</u>	ription:	Turning Gea engage wher	ar Failur n needed.	e. The turning	gear fails 1	to
<u>Initial Cor</u>	<u>iditions:</u>	0% POWER, CONDENSER	IC#14, 1	URBINE OFF LINE	, STEAM DUMP	то
Options #	Available:			Options Use	ed:	
Selection	N/A			Selection	N/A	
Magnitude	N/A			Magnitude	N/A	
Ramp Time	N/A			Ramp Time	0 s	
Delay Time	0-3600 s			Delay Time	0 s	
Mode	D, R, or	C _ <u>D</u> irect/ <u>R</u> e	mote/ <u>C</u> on	Mode ditional	D	

Test Parameters Monitored:

None

Test Precis:

Following malfunction actuation, Operator follows OI-ST-3, Turbine Generator Shutdown, observes bearing oil pressure stable and the turning gear oil pump starts. At 200 rpm, operator starts bearing lift pumps and observes listed normal indications. At 0 rpm, operator observes turning gear not started, then attempts manual start. Turning Gear Stopped or Disengaged alarm annunciates. After a long time turbine eccentricity increases. Plant is recovered when operator clears malfunction, starts turning gear motor and observes alarm clears, then eccentricity decreases.

<u>Test Status:</u> 1 <u>Date Completed:</u> 4/20/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSJ/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test	Number:	14.5.5.34.2	Malfunction 1	Identifier: WDS2
<u>Test Desc</u>	ription:	Gas Decay Tank Leak. / Gas Decay Tank B.	A variable s	ize leak occurs on
Initial Con	<u>ditions:</u>	100% POWER, BOC, IC#14 OPEN	, PPPWDS5 AT	10E5 CPM, LOA WD57
Options A	vailable	L Contraction of the second	Options Use	ed:
Selection	N/A		Selection	N/A
Magnitude	0-100%	100% = 1.5"	Magnitude	100
Ramp Time	0-3600 s	DIAMETER HOLE	Ramp Time	60 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditi	Mode onal	D

Test Parameters Monitored:

RM060	Stack Gas Iodine Monitor
RM061	Stack Gas Air Particulate Monitor
RM062	Stack Gas High Rad Monitor
RM079	Area Rad Monitor - Gas Decay Tank Corr

Test Precis:

Following malfunction actuation, observe: high activity indicated in the Main Stack with listed alarms, CRHS and VIAS actuations with listed actions and alarms; listed process monitor meters and recorders read high; listed containment stack monitor alarms and indications; corridor area monitors read high; tank WD-29B pressure decreased. Operator follows AOP-9, High Radioactivity, and AOP-29, Waste Gas Incident. After isolating tank and compressor rooms, observe radiation readings decrease.

<u>Test Status:</u> 2 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

TROUBLE REPORT # / DESCRIPTION;

3987 / RMS recorders not working

OPPD Test Number: 14.5.5.35.1 Malfunction Identifier: MM1 Test Description: LOCA With LOSP And One EDG failure. Initial Conditions: 100% POWER, BOC, IC#14 Malfunctions Used: Selection N/A Selection N/A Magnitude N/A 100% = N/A Magnitude N/A Ramp Time 0-3600 s Ramp Time 0 s Delay Time 0-3600 s Delay Time 0 s Mode D, R, or C Mode D Direct/Remote/Conditional

Test Parameters Monitored:

BRCMMGFN1	RC Vessel Mixture Level
BRCSPHC	Pzr Hot Calibrated Level
BSGNWR1	S/G A Wide Range Level
BSGNWR2	S/G B Wide Range Level
BSIS2904	SIT SI-6A Level
PRCMSTAR	RCS Global Pressure
PSGNS1	S/G A Steam Pressure
PSGHS2	S/G B Steam Pressure
T:T113	Loop 1A Cold Leg Wide Range
T:T123	Loop 2B Cold Leg Wide Range
TRCSWR2	Unknown Variable
TRCSWRH1	Wide Range Hot Leg Temp
TRXCCE	Core Exit Temp
TSMMMARG1	Unknown Variable
WAFWSGN1	Aux Feed Flow to Steam Generator
WAFWSGN2	Aux Feed Flow to Steam Generator

Test Precis:

 Following malfunction actuation, observe: Rx trips, LOSP occurs, RCP's and Main Feedwater pumps trip, AFWS (except FW-6) actuates, Rx vessel head bubble forms, Hot Legs saturate, MSSV's open, SIAS actuates, PZR empties, DG-1 does not start.

21

 HPSI flow begins from Train B. Rx core uncovers, then recovers. Operator follows EOP-20.

Test Status: 1	Date Completed:	4/03/90
<pre>1 = Satisfactory;</pre>	2 = More Testing Required; 3	= Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No If Yes, documentation continues on attached page(s).

1

OPPD Test Number:14.5.5.35.2Malfunction Identifier:MM2Test Description:Inadvertent PORV Opening With LOSP And One EDG
Failure.Initial Conditions:100% POWER, BOC, IC#14Malfunctions Used:Malfunction RCS25Selection N/ASelection N/AMagnitude 100%100% = Full OpenMagnitude 100%Ramp Time N/ARamp Time N/A

Delay Time 0-3600 s Delay Time 0 Mode D, R, or C Mode D <u>Direct/Remote/Conditional</u>

Malfunction DSG8A

Options	s Availabl	<u>le:</u>	Options Use	ad:
Selection	8A/8B		Selection	AB
Magnitude	N/A	100% = N/A	Magnitude	N/A
Ramp Time	N/A		Ramp Tine	N/A
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditio	Mode nal	D

Malfunction EDS-11A, EDS-11B, EDS-11C

Options Available:		Options Use	d:
Selection	N/A	Selection	N/A
Magnitude	N/A 100% = N/A	Magnitude	N/A
Ramp Time	0-3600 s	Ramp Time	0 s
Delay Timr	0-3600 s	Delay Time	0 s
Mode	D, R, or C Direct/Remote/Condit	Mode vional	С

Test Parameters Monitored:

BRCMMGFN1	RC Vessel Mixture Leve?
BRCS101Y	Pzr Level Channel Y
BSGNWR1	S/G A Wide Range Level
BSGNWR2	S/G B Wide Range Level
ES1S2904	SIT SI-6A Level
PRCMSTAR	RCS Global Pressure
PSGNS1	S/G A Steam Pressure
PSGNS2	S/G B Steam Pressure
1:907	Unknown Variable
T:F908	Steam Line B Steam Flow
T:T113	Loop 1A Cold Leg Wide Range
Y:T123	Loop 28 Cold Leg Wide Range
TRCSWRH1	Wide Range Hot Leg Temp
TRCSWAH2	Wide Range Hot Leg Temp
TRXCCE	Core Exit Temp
TSMMMARG	Temperature Margin
WAFWSGNI	Aux Feed Flow to Steam Generator
WAFWSGN2	Aux Feed Flow to Steam Generator

Test Precis:

 Following malfunction actuation, observe: POR'/ opens, Rx trips, LOSP occurs, RCP's and Main Feedwater pumps trip, MSSV's open SIAS actuates, DG-1 does not start, HPSI flow from Train B starts, Hot Leg saturates, Rx Vessel head bubble forms, steam flow indicated through PDRV, core remains covered.

ŝ

Operator fellows EOP-20 and does not take any action to isolate the PORV.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

 Malfunction Identifier:
 MM3

 Lest Nescription:
 Inag entent PORV Opening, LOFW (all), LOSP, Loss

 Initial Conditions:
 IDO% POWER, BOC, IC#14

 Malfunctions Used:
 Malfunctions Used:

Malfunction RCS24

Options Ava lable:		Uptions Used:			
Magnitude	100%	100% = FULL OPEN	Magnitude	100%	
Ramp Time	N/A		Ramp Time	N/A	
Delay Time	0-3600 s		Delay Tim	0 s	
Mode	D, R, or	C <u>D</u> ire t/ <u>R</u> emote/ <u>C</u> ondi	Mode tional	D	

Malfunction FBW1, FDW2, FDW3

Option.	Availabl	Options Used:			
Selection	Tripped		Selection	Tripped	
Magnitude	N/A	1(0% = N/A	Magnituáe	N/A	
Rainp Time	N) A		Ramp Time	N/A	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	C Diract/Remote/Condition	Mode nal	С	

Malfunction SIS4, SIS6

d

<u>Opt Cns Available:</u>		Options Use	ed:	
Seliection	Tripped	Selection	Trippe	
Magnitude	N/A 100% = N/A	Magnitude	N/A	
Ramp Time	N/A	Ramp Time	N/A	
Delay Time	0-3600 s	Delay Time	0 s	
Mode	D, R, or C Direct/Remote/Condition	Mode onal	D	

Malfunction ESF1, ESF2, ESF3, ESF4, ESF5, ESF6, ESF7, ESF8, ESF9, ESF10, ESF11, ESF12, ESF13

Options	Options Use	ed:		
Selection	А, В	Selection	,Α,	
Magnitude	T, F 100% = TRUE, FALSE	Magnitude	F	
Ramp Time	0-3600 s	Ramp Time	0 s	
Delay Time	0-3600 s	Delay Time	0 s	
Mode	D, R, or C Direct/Remote/Condition	Mode onal	D	

Malfunction EDS-11A, EDS-11B, EDS-11C

Options Available:		Options Used:		
Selection	N/A	Selection	N/A	
Magnitude	N/A 100% = N/A	Magnitude	N/A	
Ramp Time	0-3600 s	Ramp Time	C s	
Delay Time	0-3600 5	Delay Time	0 s	
Mode	D, R, or C Direct/Remote/Condit	Mode	С	

Test Parameters Monitored:

BRCMMGFN1	RC Vessel Mixture Level
BRCSPHC	Pzr Hot Calibrated Level
BSGNWR1	S/G A Wide Range Level
BSGNWR2	S/G B Wide Range Level
BS1S2904	SIT SI-6A Level
PRCMSTAR	RCS Global Pressure
PSGNS1	S/G A Steam Pressure
PSGNS2	S/G B Steam Pressure
T:F907	Steam Line A Steam Flow
TRCSW9H1	Wide Range Hot Leg Temp
TRCSWRH2	Wide Range Hot Leg Temp
TRXCCE	Core Exit Temp
TSMMMARG	Temperature Margin
WAFWSGN1	Aux Feed Flow to Steam Generators
WAFWSGN?	Aux Feed Flow to Steam Generators

Test Precis:

- Following malfunction actuation, observe: loss of Main Feedwater occurs, Rx and RCP's trip, MSSV's open, SIAS actuates, HPSI Train A flow starts, Rx Vessel head bubble forms, Hot Leg saturates, loss of natural circulation.
- Operator follows EOP-20 and does not take any actions to isolate the PORV.

<u>Test Status:</u> 1 <u>Date Completed:</u> 4/22/90 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

 OPPD Test Number:
 14.5.5.35.4
 Malfunction Identifier:
 MM4

 Iest Description:
 LOFW (all), LOSP, Failure Di One HPSI Pump And One

 Initial Conditions:
 100% POWER, BOC, IC#14

 Malfunctions Used:
 Malfunctions Used:

Malfunction FDW1

Options Available: Selection Tripped Magnitude N/A 100% = N/A Ramp Time N/A Delay Time 0-360C s Mode D, R, or C

Options Used: Selection Tripped Magnitude N/A Ramp Time N/A Delay Time O s Mode D

Direct/Remote/Londitional
Malfunction FDW2, FDW3

 Options Available:
 Q

 Selection Tripped
 Selection

 Magnitude
 N/A
 100% = N/A
 Magnitude

 Ramp Time
 N/A
 N/A
 Magnitude
 Magnitude

 Delay Time
 0-3500 s
 Delay
 <

Options Used: Selection Tripped Magnitude N/A Ramp Time N/A Delay Time O s Mode C

and the round i

Malfunction AFW1, AFW2

Options Available: Selection Tripped Magnitude N/A 100% = N/A Ramp Time N/A Delay Time 0-3600 s Mode D, R, or C

Options Used: Selection Tripped Magnitude N/A Ramp Time N/A Delay Time O s Mode D

Direct/Remote/Conditional

Malfunction SIS5

Option	s Availab	<u>1e:</u>	Options Used:				
Selection	Tripped		Selection	Tripped			
Magnitude	N/A	100% = N/A	Magnitude	N/A			
Ramp Time	N/A -		Ramp Time	N/A			
Delay Time	0-3600 s		Delay Time	0 s			
Mode	n, R, or	C <u>D</u> irect/ <u>Resote/C</u> onditio	Mode nal	D			

Malfunction ESF1, ESF2, ESF3, ESF4, ESF5, ESF6, ESF7, ESF8, ESF9, ESF10, ESF11, ESF12

Option	Options Used:			
Selection	A, B A≈TRAIN A, B≈TRAIN B	Selection	В	
Magnitudo	N/A 100% = N/A	Magnitude	N/A	
Ramp Time	0-3500 s	Ramp Time	0 s	
Delay Time	0-3600 s	Delay Time	0 s	
Mode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditi	Mode onal	D	

Malfunction EDS-11A, EDS-11B, EDS-11C

Options Available:		Options Used:			
Selection	FAULT		Selection FA		
Magnitude	N/A	100% = N/A	Magnitude	N/A	
Ramp Time	0-3600 s		Ramp Time	0 s	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	C Direct/Remote/Condition	Mode al	C	

OPPD Test Number:	14.5	.5.35.4		Malf	unc	tion	Iden	tifie	<u>r:</u> 1	MM4
Test Description:	LOFW ECCS	(all), Train.	LOSP,	Failure	Of	One	HPS1	Pump	And	One
Initial Conditions:	100%	POWER,	BOC,	IC#14						
Malfunctions Used:										

Malfunction FDW1

Option	s Available:	Options Us	ed:
Selection	Tripped	Selection	Tripped
Magnitude	N/A 100% = N/A	Magnitude	N/A
Ramp Time	N/A	Ramp Time	N/A
Delay Time	0-3600 s	Delay Time	0 s
Mode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditio	Mode onal	D

Malfunction FDW2, FDW3

Options Available:		le:	Options Us	ed:
Selection	Tripped		Selection	Tripped
Magnitude	N/A	100% = N/A	Magnitude	N/A
Ramp Time	N/A		Ramp Time	N/A
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> ondition	Mode mal	C

Malfunction AFW1, AFW2

Options Available:			Options Used:		
Selection	Tripped		Selection	Tripped	
Magnitude	N/A	100% = N/A	Magnitude	N/A	
Ramp Time	N/A		Ramp Time	N/A	
Delay Time	0~3600 s		Delay Time	0 s	
Mode	D, R, or	C Direct/Remote/Conditio	Mode nal	D	

Malfunction SIS5

Option	s Available:		Options Use	ed:
Selection	Tripped		Selection	Tripped
Magnitude	N/A 1	00% = N/A	Magnitude	N/A
Ramp Time	N/A		Ramp Time	N/A
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or C <u>D</u>	irect/ <u>R</u> emote/ <u>C</u> onditio	Mode nal	D
	Malfunction E	ESF1, ESF2, ESF3, ESF SF8, ESF9, ESF10, ESF	4, ESF5, ESF 11, ESF12	6, ESF7
Option	s Available:		Options Use	ed:
Selection	A, B A=TR	AIN A, B=TRAIN B	Selection	B
Magnitude	N/A 1	00% = N/A	Magnitude	N/A

Option	<u>s Available:</u>	Options Used:		
Selection	A, B A=TRAIN A, B=TRAIN B	Selection	В	
Magnitude	N/A 100% = N/A	Magnitude	N/A	
Ramp Time	0-3500 s	Ramp Time	0 s	
Delay Time	0-3600 s	Delay Time	0 s	
Mode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditi	Mode onal	D	

Malfunction EDS-115, EDS-118, EDS-11C

Options Available:		Options Used:	
Selectica	FAULT	Selection	FAULT
Magnitude	N/A 100% = N/A	Magnitude	N/A
Ramp Time	0-3600 s	Ramp Time	0 s
Delay Time	0-3500 s	Delay Time	0 s
Mode	D, R, or C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditio	Mode nal	C

Test Parameters Monitored:

BRCMMGFN1	RC Vessel Mixture Level
BRCSPHC	Pzr Hct Calibrated Level
BSGNWR1	S/G A Wide Range Level
BS1S2904	SIT SI-6A Level
PRCMSTAR	RCS Global Pressure
PSGNS1	S/G A Steam Pressure
PSGNS2	S/G B Steam Pressure
TRCSWRH1	Wide Range Hot Leg Temp
TRCSWRH2	Wide Range Hot Leg Temp
TRXCCE	Core Exit Temp
TSMMMARG	Temperature Margin
WAFWSGN1	Aux Feed Flow to Steam Generators
WAFWSGN2	Aux Feed Flow to Steam Generators
WRCSAFT	Safety Line Flow
WRCSPORV	PCV-102-1/2 Flow

Test Precis:

- Following malfunction actuation, observe: loss of Main Feedwater, Rx and RCP's trip, MSSV's and PORV's open, Hot Leg reaches saturation. Operator follows EOP-06.
- Plant is recovered when operator restarts charging, TPCW, air compressors, CCW and RW Cooling.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

OPPD Test Number: 14.5.5.35.5 <u>Malfurction Identifier:</u> MM5 <u>Test Description:</u> LOCA With 1 S/G Isolated, LOSP, 1 EDG Failure. <u>Initial Conditions:</u> 100% POWER, BOC, IC#14 <u>Malfunctions Used:</u>

Malfunction RCS1C

Options	<u>s Available:</u>	Options Use	ed:
Selection	N/A	Selection	N/A
Magnitude	100% 100% = 24 inch	Magnitude	2.75%
Ramp Time	0~3600 s	Ramp Time	10 s
Delay Time	0-3600 s	Delay Time	0 s
Mode	D, R, or C Direct/Remote/Conditio	Mode nal	D

Malfunction SGN12

Options Available:			Options Use	ed:
Selection	As Is/Pos	ition	Selection	Position
Magnitude	0-100	0-Closed, 100-Ope	n Magnitude	0
Ramp Time	0-3600 s		Ramp Time	0 s
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C Dispect (Demote (Con	Mode	С

Direct/Remote/Conditional

Malfunction AFW2

Option	s Available:	Options Used:	
Selection	As Is/Position	Selection Position	
Magnitude	0-100 0-Closed, 100-Open	Magnitude O	
Ramp Time	N/A	Ramp Time N/A	
Delay Time	0-3600 s	Delay Time 0 s	
Mode	D, R, or C Direct/Remote/Condit	Mode D ional	

则与这相供当

Malfunction EDS-11A, EDS-11B, EDS-11C

Opt on	s Availab	le:	Options Use	d:
Selection	FAULT		Selection	FAULT
Magnitude	N/A	100% = N/A	Magnitude	N/A
Ramp Time	N/A		Ramp Time	N/A
Delay Time	0-3600 s		Delay Time	0 s
Mode	D, R, or	C <u>D</u> irect/ <u>R</u> emote/ <u>C</u> onditio	Mode nal	C

Malfunction DSG8A

Options Available:			Options Used:		
Selection	8A/8B			Selection	88
Magnitude	N/A	100%	= N/A	Magnitude	N/A
Ramp Time	N/A			Ramp Time	N/A
Delay Time	0-3600 s			Delay Time	0 s
Mode	D, R, or	CDir	t/Remote/Conditio	Mode	D

Malfunction AFW1

Options Available:			Options Used:		
Selection	Tripped		Selection	Tripped	
Magnitude	N/A	100% = N/A	Magnitude	N/A	
Ramp Time	N/A		Ramp Time	N/A	
Delay Time	0-3600 s		Delay Time	0 s	
Mode	D, R, or	C Direct/Remote/Condition	Mode nal	D	

Malfunction AFW12

Options Available:			Options Used:		
Selection	N/A			Selection	N/A
Magnitude	0-100	0-Closed,	100-0pen	Magnitude	0
Ramp Time	N/A			Ramp Time	N/A
Delay Time	0-3600 s			Delay Time	0 s
Mode	D, R, or	C Direct/Re	mote/ <u>C</u> ondit	Mode ional	D

Malfunction CVC3, CVC4, CVC5

Option	: Available:	Options Used:		
Selection	Tripped	Selection	Tripped	
Magnitude	N/A	Magnitude	N/A	
Ramp Time	N/A	kamp Time	N/A	
Delay Time	0-3600 s	Delay Time	0 s	
Mode	D, R, or C Direct/Remote/Conditio	Mode nal	D	

Test Parameters Monitored:

BRCMMGFN1 BSGNWR1 BSGNWR2 BSIS2904 PRCMSTAR	RC Vessel Mixture Level S/G A Wide Range Level S/G B Wide Range Level SIT SI-6A Level RCS Global Pressure
PSGNS1	S/G A Steam Pressure
PSGNS2	S/G B Steam Pressure
T:F907	Steam Line A Steam Flow
T:T113	Loop 1A Cold Leg Wide Range
T:T123	Loop 2B Cold Leg Wide Range
T:1908	Unknown Variable
TRCSWR2	Unknown Variable
TRXCCE	Core Exit Temp
TSMMMARG1	Unknown Variable
WAFWSGN1	Aux Feed Flow to Steam Generators
WAFWSGN2	Aux Feed Flow to Steam Generators

Test Precis:

 Following malfunction actuation, observe: S/G 2 MSSV's open, Rx trips, LOSP, RCP's and Main Feedwater pumps trip, S/G 1 MSIV closes, S/G 1 MSSV's open, SIAS actuates, Rx Vessel head bubble forms, HPSI flow starts, PZR empties, core does not uncover.

<u>Test Status:</u> 1 <u>1</u> = Satisfactory; <u>2</u> = More Testing Required; <u>3</u> = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

APPENDIX 3.A OTHER TESTS

INDEX OF OTHER TESTS

TEST NO.	TEST NAME	DESCRIPTION
$14.2.1 \\ 14.2.2$	Panel visual inspection Verification of instrumentation scales	OPPD hardware inspections. Verifies that the simulator control board panel instrument faceplate
14.2.3	Verification of nameplate and	verifies that the FCS Unit 1 control boards match the FCS Unit 1 control
14.4.4	Electrical bus tests	Verifies that the simulated plant electrical bus loads are connected to
14.5.5	Plant air tests	Verifies that simulated air supplied components are connected to the
14.5.1.1.1	Reactor coolant system testing	Verifies that operator conducted surveillance testing can be performed on the reactor coolant
14.5.1.1.4	Chemical and volume control system testing	Verifies that operator conducted surveillance testing can be performed on the chemical and volume control system
14.5.1.1.5	Safety injection system testing	Verifies that the operator conducted surveillance testing can be performed on the safety injection system.
14.5.1.1.6	Component cooling water system testing	Verifies that the operator conducted surveillance testing can be performed on the component cooling water system.
14.5.1.1.16	Auxiliary feedwater system testing	Verifies that the operator conducted surveillance testing can be performed on the auxiliary feedwater system
14.5.1.1.17	Raw water system testing	Verifies that the operator conducted surveillance testing can be performed on the raw water system
14.5.1.2.1	Reactor core testing	Verifies that the operator conducted surveillance testing can be
14.5.1.2.2	Control rod drive system testing	Verifies that the operator conducted surveillance testing can be performed on the control rod drive mechanism system.

INDEX OF OTHER TESTS

TEST NO.	TEST NAME	DESCRIPTION
14.5.1.2.5	Containment ventilation system testing	Verifies that the operator conducted surveillance testing can be performed on the containment ventilation system
14.5.1.2.9	Diesel generating system testing	Verifies that the operator conducted surveillance testing can be performed on the diesel generating system.
14.5.1.2.10	Inplant electrical distribution system testing	Verifies that the operator conducted surveillance testing can be performed on the inplant electrical distribution system.
14.5.1.2.12	Diesel generator sequencer testing	Verifies that the operator conducted surveillance testing can be performed on the diesel generator sequencers.
14.5.1.2.15	Reactor protective system testing	Verifies that the operator conducted surveillance testing can be performed on the reactor protective system.
14.5.1.2.16	Engineered safeguards system testing	Verifies that the operator conducted surveillance testing can be performed on the engineered safeguards system.
14.5.1.2.17	Nuclear instrumentation system testing	Verifies that the operator conducted surveillance testing can be performed on the nuclear instrumentation system
14.5.1.2.18	Incore nuclear instrumentation testing	Verifies that the operator conducted surveillance testing can be performed on the incore nuclear instrumentation
14.5.2.1	Rod worth tests	Verifies the simulator's core physics calcul of banked rod worths as ma FCS Unit 1 data
14.5.2.2	Boron worth tests	Verifies the sinulator's core physics calculations of boron worth at differing core ages correspond to FCS Unit 1 data for the same conditions
14.5.2.3	Isothermal temperature coefficient test	Verifies the simulator's core physics calculations for the isothermal temperature coefficient correspond FCS Unit core physics data

Page 2

INDEX OF OTHER TESTS

TEST NO.	TEST NAME	DESCRIPTION
14.5.2.4	Power coefficient test	Verifies the simulator's core physics calculations for the power coefficient correspond to FCS Unit 1
14.5.2.5	Xenon tests	Verifies the simulator's core physics calculations for Xenon correspond to FCS Unit 1 core physics data
14.5.2.6	Estimated critical position tests	Verifies the simulator's integration of core physics data, and that the FCS estimated critical position
14.5.6.1	Emergency auxiliary feedwater panel test	Verifies the ability of the simulator to allow operation of the emergency auxiliary feedwater panel in a realistic fashion
14.5.6.2	Alternate shutdown panel test	Verifies the ability of the simulator to allow operation of the alternate shutdown panel.
14.5.6.3	Neutron monitoring panel test	Verifies the ability of the simulator to allow operation of the neutron monitoring panel in a realistic fashion.
14.5.6.4	D-2 diesel generator and engine control panel test	Verifies the ability of the simulator to model Appendix R requirements for control room fire isolation criteria on diesel generator 2.
14.5.7	Initial condition checklist	Documents the parameter readings used by the simulator for the protected initial condition set.

Test Number: 14.2.1

Test Name: PANEL VISUAL INSPECTION

Description: This test documents OPPD hardware inspections.

<u>Test Precis:</u> An inspection of each shipped section of simulator panels and hardware was performed. Fabrication, paint and wiring was checked as satisfactory. The type and number of power supplies, and input/output cards were checked.

Test Status: 1 Date Completed: 3/06/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.2.2

Test Name: VERIFICATION OF INSTRUMENTATION SCALES

Description: This test verified that the simulator control board panel instrument faceplate scales match the FCS Unit 1 boards.

<u>Test Precis:</u> A comparison was made between "as installed" simulator instrumentation scales and controlled OPPD approved instrument scale sheet documents. Discrepancies were noted and are being resolved.

Baseline: OPPD Acceptance Test Plan, Approved Instrument Scale Sheets, OP-4032 and 4033

Test Status: 2 Date completed: future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description:

2410 / RM PANELS METER SCALE DATA SHEETS

Test Number: 14.2.3

Test Name: VERIFICATION OF NAMEPLATE AND ANNUNCIATOR ENGRAVING

Description: This test verified that the simulator control boards match the FCS Unit 1 control boards.

<u>Test Precis:</u> Comparison checks were made between as installed simulator control boards and FCS Unit 1 boards.

Panel hand switch engraving, labeling, mimics, demarcation, color padding and annunciator engraving were checked to verify physical fidelity with Unit 1. Discrepancies were noted and are being resolved.

Baseline: Control Room Design Review, MR FC 88-22

Test Status: 2 Date completed: future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description

2046	1	LABEL	DISCREPA	MCIES	FOR	PANEL	CB-1,2,	3
2047	1	LABEL	DISCREPA	NCIES	FOR	PANEL	CB-10,1	1
2048	1	LABEL	DISCREPA	NCIES	FUR	PANEL	CB-20	
2049	1	LABEL	DISCREPA	NCIES	FOR	PANEL	CB-4	
2051	1	LABEL	DISCREPA	NCIES	FOR	PANEL	AI-54A	
2052	1	LABEL 66A/B	DISCREPA	NCIES	FOR	PANEL	AI-65A/	B AND
2054	1	LABEL	DISCREPA	NCIES	FOR	PANEL	AI-44	
2055	1	LABEL	DISCREPA	NCIES	FOR	PANEL	AI-43A	AND
2056	1	I AREL	DISCOFDA	NCIES	FOR	DANEL	AT-30A	(01)
2057	1	LABEL	DISCREPA	NCIES	FOR	PANEL	N1-30N	(01)
		A1-42	A AND AI-	42B				
2061	1	LABEL	DISCREPA	NCIES	FOR	PANEL	A1-45	
2062	1	LABEL	DISCREPA	NCIES	FOR	PANEL	AI-30B	(D2)
2063	1	LABEL AI-33	DISCREPA A,33B,33C	NCIES	FOR	PANEL		

Test Number: 14.2.3

Trouble Report, # / Description

•

2064	1	LABEL	DISCREPANCIES	FOR	PANEL	AI-31A, B, C, D, E
2067	1	LABEL	DISCREPANCIES	FOR	PANEL	AI-128B
2069	1	LABEL	DISCREPANCIES	FOR	PANEL	AI-179
2070	1	LABEL	DISCREPANCIES	FOR	PANEL	AI-185

e a mar

PERFORMANCE TEST ABSTRACT ELECTRICAL BUS & AIR PLANT TESTS

Test Number: 14.4.4

Test Name: ELECTRICAL BUS TESTS

Description: This test verifies that the simulated plant electrical bus loads are connected to the correct bus.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis:</u> Simulator electrical distribution calculations were verified correct thru the following methods. A database inspection was performed, and verified that all bus loads were connected to the correct bus.

The simulator was then run, each bus was in turn deenergized, and verified that the components supplied by that bus were verified to have deenergized by spot checking the loads.

Baseline: FCS Electrical Load Studies for 4160, 480 and 120 VAC and 125 VDC busses. Technical Data Book V.11, Operating Instructions OI-EE-2,3 & 4.

Test Status: 2 Date completed: future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description - future

PERFORMANCE TEST ABSTRACT ELECTRICAL BUS & AIR PLANT TESTS

Test Number: 14.4.5

Test Name: PLANT AIR TESTS

<u>Description:</u> This test verifies that simulated air supplied components are connected to the correct air header.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis</u>: Simulator air supply calculations were verified correct thru the following methods. A database inspection was performed, and verified that all air loads were connected to the correct header.

The simulator was then run, each air header was in turn depressurized and verified that the components supplied by that header were verified to go to their failed position by spot checking the loads.

Baseline: FCS Instrument Air and Compressed Air Diagrams 11405-M-263 and 264, OPPD Acceptance Test Plan, Loss of Instrument Air Abnormal Operating Procedure, AOP-17, Compressed Air DBD 103.10, and the Simulator Data Base.

Test Status: 2 Date completed: future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description - future

PERFORMANCE TEST ABSTRACT PLANT FLUID SYSTEM TESTS

Test Number: 14.5.1.1.1

REACTOR COOLANT SYSTEM TESTING Test Name:

Description: To verify that operator conducted surveillance testing can be performed on the Reactor Coolant System (RCS), the following surveillances were performed:

> Pressurizer Level Instruments PORV Block Valves Operation Low Temperature-Low Pressure PORV System RCS Leak Rate Test Subcooled Margin Monitor

Initial Conditions:

BOC, 100% Power, Equil Xenon IC-14

Test Precis: The Pressurizer (Pzr.) Level Instruments surveillance tested the redundant Pzr. Level Control channel signals.

> By varying the Pzr. Level Transmitter signal, a check of start and stop signals for the charging pumps, on and off signals for the Pzr. Proportional and Backup Heaters, LOW, LO-LO, HIGH and HI-HI alarm setpoints and resets was performed. Train separation was tested by verifying that the controlled system responded to only the tested signal.

The PORV Block valve test stroked each PORVs Block valve, and verified the proper operation and position indication of the valves.

The Low Temperature-Low Pressure PORV test was conducted by verifying the logic circuit indicators were enabled and the appropriate annunciators actuated.

The RCS Leak Rate testing used two differing methods. The first test was a normal Leak Rate calculation performed by the Emergency Response Facilities Computer System. For the second method, data was gathered from Control Board instruments and a water inventory balance performed.

PERFORMANCE TEST ABSTRACT PLANT FLUID SYSTEM TESTS

Test Number: 14.5.1.1.1

Test Precis: (cont.)

The Sub Cooled Margin Monitor surveillance tested the A & B Subcooled Monitors and the A & B channel Qualified Safety Parameter Disclay System (QSPDS) calculations of P_{sat}, T_{sat} and margins, to correspond to saturated steam table calculations for RCS conditions.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Procedures for the RCS.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

Pressurizer Level Instruments - ST-PL-1-1 PORV Block valve - ST-PORV-2-1 Low Temperature-Low Pressure PORV - MST-PORV-1-1 RCS Leak Rate - ST-RLT-3-1 Sub Cooled Margin Monitor - ST-SMM-1

Test Status: 1 Date completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

PERFORMANCE TEST ABSTRACT PLANT FLUID SYSTEM TESTS

Test Number: 14.5.1.1.4

Test Name: CHEMICAL AND VOLUME CONTROL SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Chemical and Volume Control System (CVCS), the CVCS Valves In-Service Testing surveillance was performed.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis:</u> Various CVCS Containment Isolation, Safety Grade and Control Grade Valves were time stroked shut and compared to FCS Unit 1 Stroke Time criteria.

Nomenclature of the valves tested follows:

Train A Boric Acid Pump Recirc Flow Control Valve Train B Boric Acid Pump Recirc Flow Control Valve Charging Control Valve to Loop 1A (2 valves) Charging Control Valve to Loop 2A (2 valves) Makeup to Volume Control Tank Flow Control Valve Volume Control Tank Inlet Diversion Valve Train A to Train B Boric Acid Tank Outlet Control Valve Train B to Train A Boric Acid Tank Outlet Control Valve Reactor Coolant Pump Bleed-Off Inside Containment Isolation Valve (2 valves) Letdown Regen Hx Temperature Control Inside Containment Stop Valve Letdown Outside Containment Stop Valve Volume Control Tank Outlet Valve Auxiliary Pzr. Spray Control Valve (2 valves) Unfiltered Boric Acid to Charging Pump Header Control Valve

Flow test of the following was performed:

Boric Acid to Charging Pump Suction Header Check Valve Gravity Feed Header to Charging Pump Suction Check Valve
Test Number: 14.5.1.1.4

Test Precis: (cont.)

Valve Lineup test of the following were performed:

Train A Boric Acid Pump Discharge Check Valve Train B Boric Acid Pump Discharge Check Valve

The results of the above surveillance showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Inservice Surveillance Test for the CVCS.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Chemical and Volume Control Valves In-Service Testing, ST-ISI-CVCS-1

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.1.5

Test Name: SAFETY INJECTION SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Safety Injection System (SIS), the following surveillances were performed:

> Safety Injection Valves In-Service Testing SI/CS Pumps and Valves Shutdown Cooling Valve Interlock Test

Initial Conditions:

IC-14	BOC,	100% Power, Equil Xenon	
IC-01	BOC	Cold Shutdown-RCS drained	
IC-06	BOC	RCS Hot Shutdown - Borated	

Test Precis: For the Safety Injection Valves In-Service refueling interval test, Category A, B, and C Safety Related Safety Injection valves were time stroked to verify operability. Valve stroke times were verified to be within the allowable band.

> The SI/CS Pumps and Valves quarterly test was performed. Safety Related valves were time stroked to verify operability. High and Low Pressure Safety Injection Pump inservice inspections were performed on all SI pumps. Si Tank Check Valve refueling check was performed by draining 1% level from each SIT, and verifying pressure and level decrease.

The Shutdown Cooling (SDC), Valve Interlock refueling test was performed. SDC suction valve controls, annunciators, automatic actions and overrides were tested and verified to actuate in response to varying the Pressure Transmitter inputs.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for SIS.

Test Number: 14.5.1.1.5

Simulator Response Assessment: Plant Data and Best Estimate Baseline: Safety Injection Valves In-Dervice Testing, ST-ISI-SI-1 SI/CS Pumps and Valves, ST-SI/CS-1 Shutdown Cooling Valve Interlock Test, ST-SDC-1 Test Status: 1 Date completed: 3/6/90 1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.1.6

Test Name: COMPONENT COOLING WATER SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Component Cooling Water System (CCW), the SCW Pump Inservice Test surveillance was performed.

In'tial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

Test Precis: CCW Pump AC-3A was run for an inservice inspection. CCW Pump AC-3B and 3C were verified off.

The pump was run for five minutes, then suction and discharge pressure, and indicated pump flow rate were recorded. Total pump head was calculated, and compared to FCS Unit 1 Kead vs. Flow Pump Curve for that pump.

Acceptance flowrate criteria also showed that the other 2 CCW pump discharge check valves were shut and operable. Pumps AC-3B and AC-3C were tested in the same fashion.

The results of the above surveillarce showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Inservice Surveillance Test for CCW.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Component Cooling Water Pump Inservice Testing, ST-ISI-CC-3

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.1.16

Test Name: AUXILIARY FEEDWATER SYSTEM TESTING

<u>Description:</u> To verify that operator conducted surveillance testing can be performed on the Auxiliary Feedwater System (AFW), the following surveillances were performed:

> Auxiliary Feedwater Pumps Inservice Inspection Auto Initiation of Auxiliary Feedwater

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon IC-01 BOC, Cold Shutdown - RCS Drained

Test Precis: AFW Motor Driven Pump FW-6 and Turbine Driven Pump FW-10 were run for an inservice inspection.

The pumps were run on miniflow for ten minutes, then suction and discharge pressures, and pump flow rates were recorded. Total rump head was determined to be at least 92 psig greater than Steam Generator pressure. Amps for FW-6 and Steam Inlet Valve stroke time for FW-10 were verified within specification.

Steam Generators RC-2A and RC-2B, AFW Initiation and Override Logic Testing was performed. AFW flow was blocked from entering the Generators.

All logic matrices were then tested, with A-B, A-C, A-D. C-D, B-D and B-C in turn given low level signals. In each matrix, the actuation alarm, Emergency Safeguards Feature indicating lamp and matrix actuation relays were verified to actuate and reset

The AFW System Functional refueling interval test of initiation and control circuits was performed in a Cold Shutdown mode, so Steam Driven FW-10 was not tested.

Test Number: 14.5.1.1.16

Test Precis: (cont.)

Functional testing verified AFW valves opened, Pump starts, and AFW flow to the S/Gs. Emergency Saveguards Features Actuation System logic lamps and annunciators were verified to actuate Operator overrides and reset of the initiation were verified.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for AFW.

Simulator Response Assessment: Plant Data and Bes. Estimate

Baseline: Auxiliary Feedwater, ST-FW-1 Auto Initiation of Auxiliary Feedwater, ST-FW-3

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.1.17

Test Name: RAW WATER SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Raw Water System (RWS), the following surveillances were performed:

> Raw Water System Valve Actuation Raw Water Valves Inservice Testing

Initial Conditions:

IC-02 BOC, Cold Shutdown - Pzr Bubble

Test Precis:

The Raw Water System Valve Actuation refueling test was performed. This test verified an ability to isolate any portion of the RWS from the Control Room, and verified the operability of all Raw Water Backup valves.

The Raw Water Valves Inservice quarterly test was performed. This test performed a time stroke of RWS Category A and B valves. Category C check valves were flow tested.

The Kaw Water Inservice Pump monthly test was performed. Pump differential pressures, amps and check valve operabilities was verified.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for AFW.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Raw Water System Valve Actuation ST-RWS-1 Raw Water Valves Inservice Testing ST-ISI-RW-1

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.1

Test Name: REACTOR CORE TESTING

<u>Description:</u> To verify that operator conducted surveillance testing can be performed on the Reactor Core, the Reactivity Anomalies surveillance was performed.

Initial Conditions:

IC-14 BOC, 100% Power. Equil Xenon

<u>Test Precis:</u> This test analyzed for reactivity deviations by performing a reactivity balance. The balance was a comparison of the excess reactivity available from fuel to the reactivity from rods, xenon, samarium, boron, temperature, and power.

The test begins with collecting Reactor power, CEA group positions, Boron concentration, and average core burnup data.

Excess fuel reactivity was predicted using the Technical Data Book (TDB).

Inserted Rod worth, Boron, Xenon, Samarium and Power Defect (Fuel Defect + Moderator Defect), were calculated or determined using the TDB.

The summation of negative reactivity was performed and was equal to measured excess fuel reactivity.

The deviation between the measured excess reactivity and the predicted excess reactivity was determined. The deviation was then determined to be within the acceptance criteria.

Testing continued by performing a Boron deviation analysis. Predicted Boron concentration was determined from the TDB. A reactor power weighted, soluble boron correction factor was determined from the TDB, and applied to actual boron concentration.

The deviation between Predicted Critical Boron and corrected Boron concentration was determined. The deviation was then determined to be within the acceptance criteria.

Test Number: 14.5.1.2.1

Test Precis: (cont.)

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Reactor Core.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Reactivity Anomalies Surveillance, ST-RA-1 FCS Technical Data Book

Test Status: 1 Date completed: 1/7/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.2

Test Name: CONTROL ROD DRIVE SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Control Rod Drive Mechanism System (CRDM), the following surveillances were performed:

> Control Element Assemblies Secondary CEA Position Indicating, Interlocks, Alarms, and Display System

Initial Conditions:

IC-06 BOC, RCS Hot Shutdown, Borated

Test Precis:

The Control Element Assemblies (CEAs) test verified the CEA Drive System Interlocks, and Alarms.

The Regulating Group Withdrawal Prohibit, Shutdown Group Insertion Permissive, and Regulating Group Upper and Lower Sequential Permissives, were tested using in Manual Group, and Manual Sequential, control modes for trippable and non-trippable CEAs.

Each Train of the Reactor Protective System (RPS) Rod Rundown Relays was manually energized and verified to insert and stop insertion of all full length CEAs.

The RPS (2/4) High Power and High Startup Rate Pre-Trip Rod Withdrawal Prohibit was tested to prohibit outward CEA movement in both Manual Individual and Manual Group mode control. Reset of the Withdrawal Prohibit was tested.

A Reactor Trip test was performed to verify all full length CEAs inserted.

The simulator was then initialized to IC-14, 100% Power, Equil. Xenon.

The shiftly Regulating CEA Groups/Transient Insertion Limits Check was performed by verifying that PDIL alarms were not in alarm.

Test Number: 14.5.1.2.2

Test Precis: (cont.)

The daily Regulating CEA Groups/Long Term Insertion Limit Chack was performed using the plant computer to verify CEA positions were greater than the Transient Insertion limit for 100% Power. An Effective Full Power Day calculation was also performed.

The bi-weekly Manual Individual exercise of CEAs was performed by laterting and withdrawing each Reg Group and S/D CEA 6 inches.

The monthly Plant Computer Power Dependant Insertion Limits (PDIL), Deviation, and Sequence Monitoring System test was performed. Permissives and alarms associated with CEA movement, deviation, Pre-PDIL, PDIL were verified. CEA mimic board status lamp checks were verified. Permissive and alarm setpoints were verified to correlate to expected setpoints within the allowable band.

The Secondary CEA Position Indicating System, PDIL, Deviation, Out Of Sequence, and Overlap Monitoring System Test was performed. A temporary keyboard was attached to the Secondary CEA Position Indicating System (SCEAPIS) keypad.

Regulating Group 1 insertion below PDIL was simulated, with Pre-PDIL, PDIL and Rod Block annunciators verified to actuate. MI control of CEAs was verified blocked, then the Rod Block Bypass was verified by CEA movement in MI.

CEA deviation in S/D Group A, Out of Sequence /Overlap for Reg Group 3, their annunciators, Rod Block and Bypass testing was performed.

CEA Group Indication Light Check and CEA Drop Time testing was performed with the simulator at IC-06, BOC, RCS Hot Shutdown, Borated, All Rods In. Each trippable CEA was individually withdrawn to the Upper Electrical Limit (126"), with control, reed switch, and indication lamps verified to function.

Test Number: 14.5.1.2.2

Test Precis: (cont.)

Power to that CEA was interrupted in accordance with OI-ERFCS-1, and the insertion was timed to 90% inserted. Initial and Final Synchro readings were verified to match. Rod Drop times were verified to be within allowable bands.

Secondary CEA Position Indicating, Interlocks, Alarms, and Display System testing was performed. This test used the SCEAPIS temporary keyboard.

Single CEA Deviation, Regulating Group Withdrawal Prohibit, Shutdown Group Insertion Permissive, Group Out Of Sequence, and Overlap, permissives, annunciators and setpoints were tested.

Rod Block and Override was functionally tested for Single CEA Deviation, Regulating Group Out Of Sequence, Overlap and Regulating Group insertion to PDIL. Pre-PDIL and PDIL annunciators and interlocks for different configurations were tested.

Using MI control, each CEA was fully withdrawn and inserted with Primary, Secondary, and Synchro, position crosschecks performed.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the CRDM. System.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Control Element Assemblies, ST-CEA-1 Secondary CEA Position Indicating, Interlocks, Alarms, and Display System, ST-SCEAPIS-1

Test Status: 1 Date completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.5

Test Name: CONTAINMENT VENTILATION SYSTEM TESTING

<u>Description:</u> To verify that operator conducted surveillance testing can be performed on the Containment Ventilation System, the following surveillances were performed:

> Containment Air Cooling and Filtering System Containment Hydrogen Monitors Ventilating Air Valves Inservice Testing

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis:</u> Containment Emergency Air Cooling Units were run, with the operational check of Cooling Unit Dampers performed. Fan amperages and Damper strokes were satisfactory.

Containment Hydrogen monitors were placed in service and the readings were crosschecked to be within the allowable band.

Containment Pressure Relief Valves were time stroked shut, and closing times were verified to be within the allowable band.

Containment Radiation Monitor Isolation Valves were time stroked shut and closing times were verified to be within the allowable band.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

Containment Air Cooling and Filtering System, ST-VA-1 Containment Hydrogen Monitors, ST-VA-6 Ventilating Air Valves Inservice Testing, ST-ISI-VA-1

Test Status: 1 Date completed: 3/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.9

Test Name: DIESEL GENERATING SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Diesel Generating System, the Diesel Start and Diesel Fuel Oil Transfer Pump surveillance was performed.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

<u>Test Precis:</u> The Emergency Diesel Generators responses to auto starts were tested. Slow speed starts, with the governor set to idle speed followed by raise to full speed, were performed. Fast speed starts, with the Diesel going immediately to full speed were tested. Both types were followed by loading to full power.

> An operational check of both Diesels was performed. A slow speed manual start, with data recorded for governor minimum and maximum speed, minimum and maximum voltage, followed by shutdown, Emergency restart and 2 hour full load run, was performed.

A slow speed, timed, manually initiated auto start, of Emergency Diesel DG-1 to idle speed was performed, followed by synchronization and loading to full rated load on its 1E Bus. Electrical parameters were monitored on the ERF computer system, with Diesel parameters, ie. cooling water and oil, temperatures and pressures manually recorded. Fuel oil transfer pumps operability was verified. The Diesel was unloaded, removed from the bus, stopped, then returned to auto standby.

Emergency Diesel DG-2 was tested in the same fashion.

Diesel Generator monthly fast speed auto starts were tested in a similar fashion for each Generator. For this surveillance, a one hour full load run and a Diesel HVAC dampers timed stroke was performed.

Test Number: 14.5.1.2.9

Test Precis: (cont.)

The Refueling Interval Surveillance was performed. A functional Loss of Offsite Voltage test with DG-1 response, with concurrent Pressurizer Pressure Low, Safety Injection, Containment Isolation, Ventilation Isolation Actuation and Safeguards Equipment Loading was performed.

Load Shed. Sequencing, Control Circuits, Safeguards Loads, Safety Injection flowrates, and PORV operabilities were verified. Offsite power was returned to service and Safeguards loads were transferred from the Diesel. DG-1 was returned to standby.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Emergency Diesel System.

Simulator Response Assessment: Plant Data and Best Estimate

<u>Baseline:</u> Diesel Start and Diesel Fuel Oil Transfer Pump, ST-ESF-6-1

Test Status: 1 Date completed: 3/4/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.10

Test Name: INPLANT ELECTRICAL DISTRIBUTION SYSTEM TESTING

<u>Description:</u> To verify that operator conducted surveillance testing can be performed on the Inplant Electrical Distribution System, the following surveillances were performed:

> 13.8 KV Emergency Power D.C. Transfer Switches

Initial Conditions:

IC-01 BOC cold Shutdown - RCS drained

Test Precis: This test verified that 13.8 KV Emergency Power was capable of performing its design function following the simultaneous loss of 345 KV, and 161 KV, off-site AC power and the failure of both on-site Diesel Generators (ie. limited Station Blackout).

Breakers from the Control Room and Turbine Building were opened and power was isolated to the site. The 13.8 KV transformer and feeds were then verified capable of carrying Boric Acid Heat Tracing, Pressurizer Backup Heater Bank No. 2, Charging Pump CH-1B, and Battery Charger No. 3 loads. Battery Charger 3 is capable of alternately charging DC Busses 1 or 2 and was selected to charge DC Bus 1.

D.C. Transfer Switches testing verified the proper transfer from the normal to emergency power supply for transferrable inplant 125 V.D.C. control busses.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Inplant Electrical Distribution System.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

13.8 KV Emergency Power, ST-ED-1 D.C. Transfer Switches, ST-DC-3

Test Number: 14.5.1.2.10

Test Status: 1 Date completed: 3/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.12

Test Name: DIESEL GENERATOR SEQUENCER TESTING

<u>Description:</u> To verify that operator conducted surveillance testing can be performed on the D.G. Sequencers, the Automatic Load Sequencers surveillance was performed.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

Test Precis: This test verified the AC and DC Engineered Safeguards Load Sequencer circuits and time setpoints. The ERF computer was used to capture the sequence of events to the equipment receiving a timer operate signal. Testing was performed by inhibiting operation of equipment with Sequencer S1-2 Isolation Switches, placing the Sequencer Auto Start Test Switch to Test, and verifying Sequencer Lockout Relay trip. Safeguards Equipment for that train was verified to have received a start signal. The Sequencer Lockout Relays were reset and Sequencer Timers were verified to reset. Equipment start inhibition was removed and auto standby indications were verified. Actuation signal times were verified to be within the allowable band.

Sequencer S2-2 for Train B was tested in the same fashion.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the D.G Sequencers.

Simulator Response Assessment: Plant Daia and Best Estimate

Baseline: Automatic Load Sequencers, ST-ESF-5

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.15

Test Name: REACTOR PROTECTIVE SYSTEM TESTING

Description: To verify that operator conducted surveillance testing can be performed on the Reactor Protective System (RPS), the following surveillances were performed:

> RPS Normal Operation RPS Thermal Margin/Low Pressure/T_{cold} Reactor Coolant Flow Thermal Margin/Low Pressure Channels High Pressurizer Pressure Channels Steam Generator Level Channels Steam Generator Pressure Channels High Containment Pressure Channels High Containment Pressure Channels Turbine Loss of Load Channels Manual Trip Channels RPS Logic Units Axial Power Distribution Channels

Initial Conditions:

IC-14	BOC, 100% Power, Equil Xenon	
IC-01	BOC Cold Shutdown - RCS Drai	ned
IC-06	BOC KCS Hot Shutdown - Borat	ed

<u>Test Precis</u>: RPS Normal Operation performed a switch alignment and lamp illumination verification.

The Thermal Margin/Low Pressure/T_{cold}, daily channel check and calibration, was performed. This test ensured the four RPS channels T_{cold} were in the allowable band.

The Reactor Coolant Low Flow, monthly alarm and trip thannel check was performed. This test verified the four RPS channel's RCS Low Flow Pre-trip and Trip logic actions, and annunciator setpoints for 4 pump operation to be in the allowable band.

The Thermal Margin/Low Pressure Channels, monthly alarm and trip channel check and calibration, was performed.

Test Number: 14.5.1.2.15

Test Precis: (cont.)

Calculations using Delta T Power, Nuclear Power, T cold cal, Internal Tilt, and correction factors, were performed for each channel and installed. Testing verified the four RPS channel's Thermal Margin Pre-trip and Trip logic actions, and annunciator setpoints to be in the allowable band.

The High Pressurizer Pressure Channels, monthly alarm and trip channel check, was performed. This test verified the four RPS channel's High Pressurizer Pressure Pre-trip and Trip logic actions, and annunciator setpoints to be in the allowable band.

The Steam Generator Level Channels, monthly alarm and trip channel check, was performed. This test verified the four RPS channel's for each Steam Generator's Level Low Pre-trip and Trip logic actions, and annunciator setpoints to be in the allowable band.

The Steam Generator Pressure Channels, monthly alarm and trip channel check, was performed. This test verified the four RPS channel's for each Steam Generator's Pressure and Asymmetric Steam Generator Low Pre-trip and Trip logic actions, and annunciator setpoints to be in the allowable band.

The Turbine Loss of Load Channels, shutdown alarm and trip channel check, was performed. This test verified that with the Turbine offline, the four RPS channel's Turbine Loss of Load Trip logic actions, subsequent Trip, and annunciations, occurred at 15% Nuclear power.

The High Containment Pressure Channels, monthly alarm and trip channel check, was performed. This test verified the four RPS channel's for High Containment Pressure Trip logic actions, and annunciation.

Test Number: 14.5.1.2.15

Test Precis: (cont.)

The Manual Trip Channels, shutdown alarm and trip channel check, was performed. The RPS Cabinet Manual Trip Pushbutton was verified to open RPS Circuit Breakers CB-AB and CB-CD, trip the Clutch Power Supplies, and trip the Turbine. Diesel Generator start, annunciators, Station Computer reaction and Post Trip Review Log printout was verified. Reset was performed and verified. Main Control Board Manual Reactor Trip was performed, and the same results verified, with the following exceptions, Trip Contactors M1 thru M4 opened and the other train Diesel started.

The RPS Logic Units, monthly operation of logic networks and clutch power contactors, was performed. RPS power supplies were tested for nominal voltage, amps and ground indications. Each Trip unit for each Matrix Coincidence Trip Logic combination was tested to actuate. Each Matrix Trip Circuit was in turn, tested to trip each Matrix Relay, it's Clutch Power Supply, Load Contactor and actuate indicating lamps.

The Axial Power Distribution Channels, monthly alarm and trip channel check and calibration was performed. This test verified the High Power Trip and also verified the four RPS channel's Internal and External Axial Power Distribution, Pre-trip and Trip logic actions, and annunciator setpoints to be in the allowable band.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Reactor Protective System.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

RPS Normal Operation, OI-RPS-1 RPS Thermal Margin/Low Pressure/T_{cold}, OI-RPS-2 Reactor Coolant Flow, ST-RPS-3 Thermal Margin/Low Pressure Channels, ST-RPS-4 High Pressurizer Pressure Channels, ST-RPS-5 Steam Generator Level Channels, ST-RPS-6

Test Number: 14.5.1.2.15

Baseline: (cont.)

Steam Generator Pressure Channels, ST-RPS-7 High Containment Pressure Channels, ST-RPS-8 Turbine Loss of Load Channels, ST-RPS-9 Manual Trip Channels, ST-RPS-10 RPS Logic Units, ST-RPS-11 Axial Power Distribution Channels, ST-RPS-12

Test Status: 1 Date completed: 5/30/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.16

ENGINEERED SAFEGUARDS SYSTEMS TESTING Test Name:

Description: To verify that operator conducted surveillance testing can be performed on the Engineered Safeguards System (ESF), the following surveillances were performed:

> Pressurizer Pressure Low Signal Safety Injection Actuation Containment Pressure High Signal Containment Spray Logic SIRW Tank Low Level Signal Steam Generator Low Pressure Signal Recirculation Actuation Logic Offsite Power Low System

Initial Conditions:

IC-14	BOC,	100%	Power,	Equ	111	Xenon
IC-01	BOC	Cold	Shutdown	-	RCS	Drained

Test Precis: The Pressurizer Pressure Low Signal (PPLS), monthly alarm and trip channel check, was performed. This test verified the four RPS channel's Pressurizer Pressure Low Trip actions, indications and reset setpoints to be in the allowable band. The PPLS and Blocking Logic Calibration refueling test was performed. This test was a functional check of the integrated ESF signals and resulting equipment actuation signals initiated by low Pressurizer Pressure Transmitter signals. Each Transmitter pair (A-B, A-C, A-D, B-C, B-D, C-D) in turn, had a lowering pressure inputted to it. PPLS, SIAS, CIAS, and VIAS alarm and lockout relay actuations were verified to occur. The PPLS Block (override) actuation and annunciators were verified operable.

> The Safety Injection Actuation Signal monthly test was performed. This test was a functional check of the Train A integrated ESF signals and resulting equipment actuation signals. Train A PPLS, CPHS, SIAS, CIAS, VIAS lockout relays, Containment Isolation Valves and ERF computer printouts were verified to actuate. Following reset, Train B testing was conducted in a similar fashion.

Test Number: 14.5.1.2.16

Test Precis: (cont.)

Channel A Automatic Engineered Safeguards Actuation, Manual Safety Injection Initiation, Manual Containment Spray Initiation and Manual Containment Isolation Initiation was performed. These tests were functional verifications of the initiating circuits, lockout relays, overrides, sequencers, manual control circuits, and affected equipment responses for the Train A individual tests. Following component repositioning and reset, Channel B was tested in a similar fashion.

The Containment Pressure High Signal (CPHS), monthly operation check was performed. The CPHS matrix logic was verified to deenergize by actuating pressure switch pairs. The CPHS Calibration refueling surveillance was performed. This test was a functional check of the Train A CPHS signal and resultant relay actuation signals initiated by high Containment Pressure Transmitter inputs. Each Transmitter pair (A-B, A-C, A-D) in turn, had a rising pressure inputted to it. CPHS, SIAS, CIAS, and VIAS relays were verified to actuate. Following component repositioning and reset, Train B was tested in a similar fashion.

The Containment Spray Logic Signal Train A monthly test was performed as a subtest of the Safety Injection Actuation Test. This test verified the operability of the PPLS and CSAS relays. Train B was tested in a similar fashion. The Containment Spray Actuation refueling test was performed. Train A PPLS, CPHS, SIAS, CIAS, VIAS lockout relays, breakers, and Containment Isolation Valves were verified to actuate. Following reset, Train B testing was conducted in a similar fashion.

The Safety Injection Refueling Water (SIRW) Tank Low Level Signal monthly channel check was performed. The matrix lamps were verified to deenergize by failing SIRW tank level bistables.

100

Test Number: 14.5.1.2.16

Test Precis: (cont.)

The SIRW Tank Low Level Signal refueling surveillance was performed. This test was a functional check of the Train A SIRW tank low level circuitry and resulting relay actuation signals initiated by SIRW level bistables. Each Bistable pair (A-B, A-C, A-D) in turn, had a low level inputted to it. Matrix lamps and STLS relays were verified to actuate. Following component repositioning and reset, Train B was tested in a similar fashion.

The Steam Generator Low Pressure Signal (SGLP), monthly indication and trip channel check was performed. This test verified the four RPS channel's Steam Generator Pressure Low Trip actions, indications and reset setpoints to be in the allowable band. The SGLS and Blocking Logic Calibration refueling test was performed. This test was a functional check of the ESF Train A signals and resulting equipment actuation signals initiated by low Steam Generator Pressure Transmitter signals. Each Transmitter pair (A-B, A-C, A-D, B-C, B-D, and C-D) in turn, had a lowering pressure inputted. SGLS alarm, lockout relays and valve actuations were verified to occur. The SGLP Block (override) and attendant annunciators were verified to be operable during each actuation. Train 8 was tested in a similar fashion.

The Recirculation Actuation Logic (RAS) monthly channel check was performed as a subtest of the Safety Injection Actuation Test. This test verified the operability of the Train A RAS relays, overrides, matrix lamps and isolation valve. Train B was tested in a similar fashion. The RAS Logic and Switch refueling test was performed. Train A CPHS, SIAS, CIAS, VIAS, STLS and RAS lockout relays, breakers, and Containment Isolation Valves were verified to actuate. Following reset, Train B testing was conducted in a similar fashion.

Test Number: 14.5.1.2.16

Test Precis: (cont.)

The Offsite Power Low System (OPLS), monthly channel check was performed. This test verified the individual operability of OPLS annunciators, matrix relay and sequencer indications for incoming transformers, busses and switchgears. The OPLS Matrix refueling check was performed. This test was a functional check of OPLS matrix signals and resulting breaker actuations, crossties, load shed and equipment actuation signals initiated by test switch operation.

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Engineered Safeguards System.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline:

Pressurizer Pressure Low Signal, ST-ESF-1 Safety Injection Actuation, ST-ESF-2 Containment Pressure High Signal, ST-ESF-3 Containment Spray Logic, ST-ESF-4 SIRW Tank Low Level Signal, ST-ESF-7 Steam Generator Low Pressure Signal, ST-ESF-11 Recirculation Actuation Logic, ST-ESF-13 Offsite Power Low System, ST-ESF-14

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.17

NUCLEAR INSTRUMENTATION SYSTEM TESTING Test Name:

Description: To verify that operator conducted surveillance testing can be performed on the Nuclear Instrumentation System (NIS), the following surveillances were performed:

> Power Range Safety Channels Wide Range Logarithmic Channels Rod Drop Indication

Initial Conditions:

BOC, 100% Power, Equil Xenon IC-14 IC-01 BOC Cold Shutdown - RCS Drained

Test Precis: The Power Range Safety Channels Adjustment daily check and calibration was performed. This test compared Plant Computer calculated core power to RPS Delta T and NI power, and recalibrated those powers to calculated power as required. The "in lieu of Plant computer calculated" manual Core Thermal Power calculation was also performed. The Power Range Safety Channels monthly test was performed for each channel. Variable Over Power Pre-trip and Trip setpoints were calibrated with respect to Linear and Delta T Power. Linear Power Upper and Lower Subchannels, Linear Power Pre-trip and Trip were calibrated. Two of Four Control Element Assembly Withdrawal Prohibit (CWP), was verified to actuate on all Pre-trip combinations.

> The Wide Range Logarithmic Channels shutdown functional check was performed. The High DPM (Start Up Rate of change) Prestrip and Trip functions were verified to actuate above 10⁻⁴% Power. Linear Power was set to 15% and the Pre-trip only was verified enabled. Two of Four CWP was verified to actuate on all Rate of Change Pre-trip combinations.

> The Rod Drop Indication refueling check was performed. This test verified that a sudden lowering of any channel's Linear Power readings would give Rod Drop annunciation.

Test Number: 14.5.1.2.17

Test Precis: (cont.)

The results of the above surveillances showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Nuclear Instrumentation System.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Power Range Safety Channels, ST-RPS-1 Wide Range Logarithmic Channels, ST-RPS-2 Rod Drop Indication, ST-RD-1

Test Status: 1 Date completed: 4/1/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.1.2.18

Test Name: INCORE NUCLEAR INSTRUMENTATION TESTING

<u>Description:</u> To verify that operator conducted surveillance testing can be performed on Incore Instrumentation, the Core Exit Thermocouples surveillance was performed.

Initial Conditions:

IC-14 BOC, 100% Power, Equil Xenon

Test Precis: The Core Exit Thermocouples (CET), monthly channel check was performed. This test verified minimum QSPDS Channel A & B valid quadrant CETs operability criteria.

The results of the above surveillance showed the simulator capable of performing within the acceptance criteria of the Fort Calhoun Station Surveillance Testing for the Incore Nuclear Instrumentation System.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: Core Exit Thermocouples, ST-CET-1

Test Status: 1 Date completed: 1/6/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.2.1

Test Name: ROD WORTH TESTS

Description: This test verified the simulator's core physics calculations of banked rod worths as matching FCS Unit 1 data over core age.

Initial Conditions:

Temp.IC-81 BOC, Hot Zero Power, Xenon Free, T_{cold} = 532 F.

Temp IC-86 MOC, Hot Zero Power, Xenon Free, T_{cold} = 532 F.

Temp.IC-16 EOC, Hot Zero Power, Xenon Free, Tcold = 532 F.

Test Precis: The test was performed by initializing the simulator to HZP at BOC and EOC conditions, then withdrawing banked rods in 12.5" increments. The data values for integral and sequential worths of the shutdown and regulating banks were plotted and then compared to FCS BOC and EOC core data.

Results showed Total integral worth 4% delta RHO, Group integral worth 5% delta RHO, and Regulating Groups 1-4 sequential integral worth curves 10% of baseline data.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: FCS Unit 1 Technical Data Bock Fig. II.B.1a, II.b.2a & II.B.2b, Post Refueling Core Physics Testing and Power Ascension, SP-PRCPT-1.

Test Status: 1 Date Completed: 4/16/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.2.2

Test Name: BORON WORTH TESTS

Description: This test verified the simulator's core physics calculations of boron worth at differing core ages correspond to FCS Unit 1 data for the same conditions.

Initial Conditions:

Temp.IC-81BOC, Hor Zero Power, Xenon Free, $T_{cold} = 532$ F.Temp.IC-86MOC, Hot Zero Power, Xenon Free, $T_{cold} = 532$ F.Temp.IC-16EOC, Hot Zero Power, Xenon Free, $T_{cold} = 532$ F.

Test Precis: The test was performed by initializing the simulator to HZP at BOC, MOC and 50C conditions, collecting data, then comparing the boron worth obtained with FCS Unit 1 data for those conditions. Results showed boron worth within 5% delta RHO of the baseline data.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: FCS Unit 1 Technical Data Book Figure II.A.4.

Test Status: 1 Date Completed: 4/16/90

1 = Satisfactory; 2 = Kore Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.2.3

Test Name: ISOTHERMAL TEMP COEFFICIENT TEST

Description: This test verified the simulator's core physics calculations for the Isothermal Temperature Coefficient to correspond to FCS Unit 1 core physics data.

Initial Conditions:

Temp.IC-80 BOC, Hot Zero Power, Xenon Free, Tcold = 532 F.

<u>Test Precis</u>: The test was performed by begun by initializing the simulator to HZP conditions and initiating data collection.

Holding Power constant with CEAs, temperature was then raised and lowered with Steam Dump and Bypass or Atmospheric Dump.

The reactivity data values collected were then compared to FCS Unit 1 values.

Results showed boron worth within $.3C \times 10^{-4}$ delta RHO per degree F of the baseline data.

Simulator Response Assessment: Plant Data and Best Estimate

<u>Baseline:</u> FCS Unit 1 Cycle 11 Low Power Physics Test Report, June 4 thru June 7, 1987

Test Status: 1 Date Completed: 3/06/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/AMS 3.5? No

Test Number: 14.5.2.4

Test Name: POWER COEFFICIENT TEST

Description: This lest verified the simulator's core physics calculations for the Power Coefficient to correspond to FCS Unit 1 core physics data.

Initial Conditions:

Temp.IC-81 BOC, Hot Zero Power, Xenon Free, Trold = 532 F.

<u>Test Precis:</u> The test was begun by initializing the simulator to HZP conditions, and collecting data.

Holding temperature constant with Steam Dump and Bypass or Atmospheric Dump, CEAs were then used to lower Power.

Moderator Temperature Coefficient Test ST-MTC-1.F.2 was then performed.

The reactivity data values collected were then compared to FCS Unit 1 values.

Results showed calculated power defect to be within 20% and values for ST-MTC-1.F.2 to be realistic compared to baseline data.

Simulator Response Assessment: Plant Data - Best Estimate

Easeline: FCS Unit 1 Moderator Tempera e Coefficient Surveillance Test ST-MTC-1, FCS Completed fest ST-MTC-1, Technical Data Book, Fig. II.C.3 and Fig. II.B.2.a

Test Status: 1 Date Completed: 3/06/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.2.5

Test Name: XENON TESTS

Description: This test verified the simulator's core physics calculations for Xenon to correspond to FCS Unit 1 core physics data.

Initial Conditions:

emp.1C-89	MOC,	25% Power, Equil. Xe.
emp.IC-88	MCC,	50% Power, Equil. Xe.
emp.IC-87	MOC,	75% Power, Equil. Xe.
emp.1C-85	MOC,	100% Power, Equil. Xe.
emp.IC-80	LJC,	100% Power, Equil. Xe.
emp.1C-83	BOC,	50% Power, Equil. Xe.
emp.IC-82	BOC,	50% Power, Equil. Xe.
emp.IC-21	MOC,	100% Power, Equil. Xe.

Test Precis: The test performance was begun by initializing into 25, 50, 75 & 100% Power levels at MOC. The Xenon reactivity data obtained was then compared to FCS Unit 1 values for the same condition.

> Post trip xenon data was obtained by initialization to 100% Power, BOC, Xenon equilibrium conditions, performing a Reactor trip and a 48 elapsed hour plot of Power, Xenon and Thot. The data obtained was then compared to FCS Unit 1 values for the same condition.

> The sale Post trip test was then performed for 50% Power BOC, and the results were compared to FCS Unit 1 values for the same condition.

Up-Power xenon data was obtained by initializing into 50% Power, BOC, Equilibrium Xenon, and performing a normal power increase to 100% full rated power. A 40 elapsed hour plot of Power, Xenon and fhot was collected and the data obtained was then compared to a power increase curve.

Down-Power xenon data was obtained by initializing into 100% Power, BOC, Equilibrium Xenon, and performing a normal power decrease to 50% rated power.

Test Number: 14.5.2.5

Test Precis: (cont.)

A 40 elapsed hour plot of Power, Xenon and Thot was collected and the data obtained was then compared to a power decrease curve.

A radial Xenon oscillation was induced by initializing into 100% Power, MO⁺ Equilibrium Xenon, dropping and recovering dropped rods. ² oscillation obtained was verified to dampen with normal rod control.

An axial Xenon oscillation was induced by initializing into JCO% Power, BOC, Equilibrium Xenon, inserting then withdrawing rods. The oscillation obtained was verified to dampen with normal rod control.

Results showed Xerion worth to be within 10% of baseline, with transient Xeron magnitude and direction realistic.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: FCS Technical Data Book Figure II.D.4 and II.D.1, Westinghouse Reactor Theory and Core Physics Training Manual

Test Status: 1 Date Completed: 2/16/90

1 - Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS_3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

Test Number: 14.5.2.6

Test Name: ESTIMATED CRITICAL POSITION TESTS

<u>Description</u>: This test verified the simulator's integration of core physics data, and verified that the FCS Estimated Critical Position Procedure can be used.

Initial Conditions:

Temp.IC-80BOC, 100% Power, Equil. XenonTemp.IC-16EOC, 100% Power, Equil. XenonTemp.IC-89BOC, Cold Shutdown, Xenon Free

<u>Test Precis:</u> The test was performed by initializing into 100% Power, BOC, equilibrium Xe. conditions, then performing a Reactor trip. and calculating an ECP.

A Reactor start-up was performed to low in the power range, then the critical data and ECP were verified to correlate.

The test and evaluation was then performed again using an EOC configuration.

A third ECP was performed, using cold shutdown, Xenon free conditions at BOC. A Reactor startup was then perform. The results of the critical data and ECP were found to correlate satisfactorily.

The results of testing showed criticality rod height to be within .5% delta RHO of the ECP.

Simulator Response Assessment: Plant Data and Best Estimate

Baseline: FCS Technical Data Book TBD V.1

Test Status: 1 Date Completed: 4/16/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No
Test Number: 14.5.6.1

Test Name: EMERGENCY AUXILIARY FEEDWATER PANEL TEST

Description: This test verified the ability of the simulator to allow operation of the Emergency Auxiliary Feedwater Panel in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> Following Manual Reactor Trip, the Control Room was evacuated and within the scope of simulation, the Emergency AFW Panel (AI-179) was used to verify and maintain Core and RCS heat Removal Safety functions.

> The test was performed in accordance with AOP-7, FORCED EVACUATION OF CONTROL ROOM and AOP-6, FIRE EMERGENCY. This integrated test used AI-179, and the Alternate Shutdown Panel, (AI-185), the Neutron Monitoring Panel, (AI-212), the #2 Emergency Diesel Panel (AI-133B), installed controls, local operator actions and overrides.

> The test verified the simulator was able to conduct post trip plant stabilization, followed by boration and cooldown to cold shutdown conditions.

> To fully test the simulator using AOP-7, where the procedure directed alternative actions upon a condition not met, the alternative method was tested.

The test results showed, that following the correction of trouble reports, the Emergency Auxiliary Feedwater Panel will be operable.

Simulator Response Assessment: Best Estimate

Baseline: Abnormal Operating Procedure, AOP-7, FORCED EVACUATION OF CONTROL ROOM and AC 3, FIRE EMERGENCY

Test Number: 14.5.6.1

Test Status: 2 Date completed: *future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description

4037 / No LOA exists for Pzr Heaters in Alt. Shutdown panel area

4253 / SBM switch overrides are difficult to implement

Test Number: 14.5.6.2

Test Name: ALTERNATE SHUTDOWN PANEL TEST

Description: This test verified the ability of the simulator to allow operation of the Alternate Shutdown Panel in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The Reactor was tripped manually, the Control Room was evacuated and within the scope of simulation, the Alternate Shutdown Panel (AI-185), was used to verify and maintain Reactivity, RCS Inventory and RCS Pressure Safety functions.

> The test was performed in accordance with AOP-7, FORCED EVACUATION OF CONTROL ROOM and AOP-6, FIRE EMERGENCY. This integrated test used A1-185, Emergency Auxiliary Feedwater Panel (AI-179), the Neutron Monitoring Panel, (AI-212), the #2 Emergency Diesel Fanel (AI-133B), installed controls, local operator actions and overrides.

> The test verified the simulator was able to conduct post trip plant stabilization, followed by boration and cooldown to cold shutdown conditions.

> To fully test the simulator using AOP-7, where the procedure directed alternative actions upon a condition not met, the alternative method was tested.

The test results showed, that following the correction of trouble reports, the Alternate Shutdown Panel will be operable.

Simulator Response Assessment: Best Estimate

Baseline: Abnormal Operating Procedure, AOP-7, FORCED EVACUATION OF CONTROL ROOM and AOP-6, FIRE EMERGENCY

Test Number: 14.5.6.2

Test Status: 2 Date completed: *future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description

- 4037 / No LOA exists for Pzr Heaters in Alt. Shutdown panel area
- 4253 / SBM switch overrides are difficult to implement

Test Number: 14.5.6.3

Test Name. NEUTRON MONITORING PANEL TEST

Description: This test verified the ability of the simulator to allow operation of the Neutron Monitoring Panel in a realistic fashion.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

<u>Test Precis:</u> The Reactor was tripped, the Control Room was evacuated and within the scope of simulation, the Neutron Monitoring Panel was used to verify the Reactivity Safety function.

The test was performed in accordance with AOP-7, FORCED EVACUATION OF CONTROL ROOM and AOP-6, FIRE EMERGENCY. This integrated test used the Neutron Monitoring Panel, (AI-212), the Alternate Shutdown Panel (AI-185), the Emergency Auxiliary Feedwater Panel (AI-179), the #2 Emergency Diesel Panel (AI-133B), installed controls, local operator actions and overrides.

The test verified the simulator was able to conduct post trip plant stabilization, followed by boration and cooldown to cold shutdown conditions.

To fully test the simulator using AOP-7, where the procedure directed alternative actions upon a condition not met, the alternative method was tested.

The test results showed, that following the correction of trouble reports, the Alternate Neutron Monitoring Panel will be operable.

Simulator Response Assessment: Best Estimate

Baseline: Abnormal Operating Procedure, AOP-7, FORCED EVACUATION OF CONTROL ROOM and AOP-6, FIRE EMERGENCY

Test Number: 14.5.6.3

Test Status: 2 Date completed: *future

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

Trouble Report, # / Description

- 4037 / No LOA exists for Pzr Heaters in Alt. Shutdown panel area
- 4253 / SBM switch overrides are difficult to implement

Test Number: 14.5.6.4

Test Name: D-2 DIESEL GENERATOR AND ENGINE CONTROL PANEL TEST

Description: This test verified the ability of the simulator to model Appendix R requirements for Control Room Fire Isolation Criteria on Diesel Generator 2.

Initial Conditions:

IC-14 BOC, 100% Power, Equil. Xenon

Test Precis: The test was performed by planing the Diesel Generator DG-2 Master Emergency switch 183' ES in the Emergency position. This limits Train B redation from a fire by initiating an Emergence condition and a 480 V load shed of Channel B concents.

> Local control of the Diesel was then taken to the Engine Control Panel by rotating 143/SS to Local Maintenance position. This disables all Automatic starts, Control Room signals and isolates to local control all Diesel control functions.

Testing was then performed on breaker controls, annunciators and Diesel control circuits to verify remote functions were isolated.

Testing results showed the Diesel Controls to function in a replicit fashion.

Simulator Response Assessment: Best Estimate

<u>Baseline:</u> ST-ESF-14 Appendix A, Surveillance Test of Diesel Emergency Transfer Switch 183/MES for DG2

Test Status: 1 Date Completed: 5/19/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

PERFORMANCE TEST ABSTRACT INITIAL CONDITION CHECKLIST

Test Number: 14.5.7

Test Name: INITIAL CONDITION CHECKLIST

Description: This test documents the parameter readings used by the simulator, for the protected Initial Condition (IC) Set. ICs were developed using FCS critical and monitored parameter value data, and by taking snapshots of conditions achieved during startup testing.

Initial Conditions:

.

b.

C-01		BOC Cold Shutdown - RCS Drained
C-03		BOC DCS Heatup in Progress
C-04		BOC DCS Cooldown in progress
0-05		BOC BCS Cooldown in progress - on soc
0-05		DOC RCS COOLOOWN IN progress - prior to SUC
0-07		DOC Dy Stantun in programs
0-09		POC Dy Critical - Cold Turbing Stantus
C-00		DOC 15% Down 2% Vanon
C-09		BUC 15% FOWER - 2% ACTION
C-11		BUC 50% FOWER ~ 5% ACTION
C-12		JOC 55% Power - IO% ACTON
1-12		BOC 80% Power - Equil Yeron
10-14		BOC 100% Power - Equil Yenon
C-15		MOC Ry Startup in progress - Post Trip - 150%
10-10		Xenon
IC~16		MOC Rx Critical - Warm Turbine - 150% Xenon
(C-17		MGC 15% Power - Post trip
IC-18		MOC 30% Power - Extended Low Power Run - 50%
		Xenon
IC-19		MOC 55% Power - Post trip - 105% Xenon Decreasin
IC-20		MOC 55% Power Decreasing - 105% Xenon
IC-21		MOC 100% Power - Equil. Xenon
IC-22		EOC Reactor Startup in progress, Xenon Free
IC-1 *		EOC 80% Power Decreasing - 110% Xenon -
		Deboration
IC-24		EOC 100% Power - Equil. Xenon
IC-25		귀에 여행에 앉은 사람들이 한 것이 못했는 것이 가지?
Thru		
IC-30	are	Reserved

PERFORMANCE TEST ABSTRACT INITIAL CONDITION CHECKLIST

Test Number: 14.5.7

Test Precis:

The test was performed by initializing into each IC and recording the following:

RCS Thot RCS Tcold Pzr Pressure and Level RCS Boron Wide Range NI Power Core Megawatts CEA Position Generator Megawatts RCS Tavg Xenon RCPs Core Age

Simulator Response Assessment: Plant Data and Best Estimate

<u>Baseline:</u> Letter WFCS-89-305, dated Feb. 28, 1989 to Mr. R.P. Clemens - Critical and Monitored Parameter Views.

Test Status: 1 Date Completed: 7/28/90

1 = Satisfactory; 2 = More Testing Required; 3 = Unsatisfactory

ANSI/ANS 3.5 Compliance:

Did this test reveal any exception to ANSI/ANS 3.5? No

If Yes, documentation continues on attached page(s).

OMAHA PUBLIC POWER DISTRICT

.

-

FORT CALHOUN STATION

Simulator Certification Submittal

Section 4

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION

Simulator Certification Submittal Section 4

4.1 INTRODUCTION

The purpose of this section is to describe the simulator modification process and discrepancy resolution schedule. The methods used to identify, log, correct and test reported simulator discrepancies will be described. The methods used to identify and track the design changes made to the reference plant, but not yet incorporated into the simulator will be described also.

4.2 SIMULATOR DISCREPANCIES

Simulator discrepancies are identified by two different means. The first method is the ongoing acceptance testing program that is still being carried out during the warranty period from the simulator manufacturer. The second method is the Discrepancy Report (DR) process.

Since acceptance testing continues, and will continue through the warranty period, the performance of these tests is a suitable means of finding and documenting problems by using Trouble Reports (TRs). The process of retesting TRs also sometimes leads to the uncovery of "new" discremancies that are then in turn documented with TRs. There are also over 100 outstanding TRs still remaining from the Factory Acceptance Testing that was done at the simulator manufacturer's facilities. The TRs are numerically generated, and maintained in a database that resides on the SUN computers used for the Configuration Management Database. Any TR can be called up on various CRTs located in the simulator complex. A number of different reports can group the TRs by various subjects and can be generated and printed for use at any time. The TR database is also accessible via modem from the simulator manufacturer's site, and allows the warranty work to continue without having to send physical paper copies of the TRs back and forth.

The other method for identifying discrepancies is the DR. There is a discrepancy report log book that is normally kept in the simulator instructor booth that is used by the simulator instructors to document problems that they have found during actual training sessions. These DRs end up being a culmination of problems that the trainees have noticed and indicated to the instructor and problems that the instructors have noticed themselves while operating the simulator. These DRs are reviewed regularly by simulator services department personnel for accuracy. This means that sometimes duplication of the p oblem is necessary to ascertain where the problem exists, or a simple explanation of why the simulator acted the way it did is needed. If there is a real problem, and the problem is deemed to be a warranty problem, a TR is written to document it. If the problem is deemed to actually be a design flaw or other problem that demands a simulator modification, it will still be written as a TR with a special flag indicating that it concerns a modification. After review, the DR is then kept in the DR log book as an active DR, or it is cleared and entered into another log book; the Cleared DR log book. This allows the instructors to check the DR log book for a problem that they have found, and prevents duplication. The initiator of the DR is also informed of the disposition of the DR which he initiated.

4.3 SIMULATOR MODIFICATIONS

Simulator modifications are necessary to ensure that the simulator matches the reference plant as closely as possible. Since the simulator design was frozen in July 1988, there have been two refueling outages performed at the plant. These outages were the cycle 12 outage, and the cycle 13 outage. Therefore, the simulator lags behind the current configuration of the plant. The modifications that have been done to the plant have been tracked since those outages however, so that they could be incorporated into the simulator. Information of the modifications to catch the simulator up with the plant, as well as general modification performance is discussed below:

4.3.1 Plant Modifications To Be Done To The Simulator

Section 1.2 of this certification submittal listed the modifications to be made to the simulator as a result of the last two refueling outages. This list appeared in a prioritized order according to importance to operations training, as well as other criteria. Since these modifications had already been tracked, identifying which ones were to be done was relatively simple. A review of all the modifications was done to determine which ones had impact on the simulator.

Another pass was made to determine which modifications involved hardware changes, software changes or both types of changes.

These modifications were then subjected to a numerical rating process in order to try and determine the order in which the modifications should be installed. This rating process took into consideration the following categories and their respective subcategories:

Training Impact

Availability Physical Fidelity Operations Modification Training Software Fidelity

Simulator Operability Reliability

Stimulation vs. Simulation

° Simulation Impro: nent

Math- inal Fidelity

Modification Type

Regulatory

Regulatory & Commitments

After going through this process, the numerically rated list was presented to the Operations Training Department and the Operations Supervisor at the plant. Input was solicited from them as to which modifications were important to them to be installed ahead of other modifications. Their input was factored into the process and a final priority was determined. This list was used to prioritize modification work of the simulator support department. The actual sequence for installation of a modification is determined by availability of parts and complexity of the modification in conjunction with its priority.

4.3.2 General Modification Process

All of the modifications referred to above are subjected to the same general modification process as any other modification. The only difference is how they were identified initially. In general, simulator modifications can come from a number of different sources. They can originate from modification TRs or they can originate from the other tracking process. Figure 1-4 indicates a general flow path taken by the modification as it transverses the modification procedure.

Modifications that are generated for the plant are tracked by a mainframe computer type of database known to us as the Automated Modification Request Tracking System (AMRTS). The simulator department has a program that ties into the AMRTS system to download modifications that are ongoing at the plant. Other plant configuration changes that may occur are identified by the Training Program Configuration Management system (TPCM). These types of plant changes (procedures, setpoints, operating experience, etc.) are reviewed by a panel, of which a member is a simulator cognizant individual. This individual will flag any item that the panel may review as having possible impact on the simulator.

Once a plant modification has been identified as having possible simulator impact, the System Acceptance Committee (SAC) approved modification package is requested from the plant. This package is reviewed by the simulator department to determine if indeed there is a modification necessary. If it is determined that a modification is

FIGURE 4-1 Simulator Modification Flow Path

needed, the design package is subjected to a checklist to determine specific areas of the simulator design that will be affected. This checklist is shown in Figure 4-2. A simulator Design Change package is then initiated, and the modification to the simulator may begin.

After the software and/or hardware enhancements are performed, the testing of the modification must be done. This testing includes integration testing, system testing, acceptance testing, and any certification testing that must be done to ensure that the modification to the simulator operates as closely to the actual plant as possible. The Configuration Management System (CMS) database must then be updated as well as the necessary simulator documentation. The simulator design change package is then reviewed for acceptance and closed out.

The list of modifications that appeared in Section 1.2 of this certification submittal is reproduced in Appendix B of this submittal in a form that generally shows the status of each modification at a given time. We have currently scheduled a seven week simulator outage this year beginning on February 25, 1991. As many of the modifications as possible that were done to the reference plant during the last two refueling outages will be incorporated into the simulator during this seven week outage. Appendix B is listed in order of priority that was assigned to the modifications during the review process described above.

FORT CALHOUN SIMULATOR MODIFICATION PACKAGE CHECKLIST

MOD TITLE	MOD #
HARDWARE	ERF/PLANT COMPUTER
Hardware needs to be ordered?	ERF Database update required?
Hardware ordering lead time?	Display update needed?
D BOM Update required?	Program code change required?
Wire list generation needed?	Vendor documentation update needed?
Panel modifications required?	OPPD documentation update needed?
Hardware functional testing required?	
DBD UPDATE	
Component listing update required?	
DBD drawing update required?	Program code change required r
System description update required?	
Software interface diagram update required ?	
Reference listing update required?	U Overnoes update needed ?
Instrument loop drawing update required?	C Manunctions update needed?
Lu Annunciator drawing update required?	HANDLER UPDATE
DATABASE UPDATE	Interlock handler update needed?
SQL scripts required?	Component logic handler update needed?
Reference documentation update need: 1?	Auto action handler update needed?
Component data entry required?	Controller handler update needed?
Card decks need to be re-inited?	Valve handler update needed?
Update info recorded for certification?	Pump handler update needed?
	Instrumentation handler update needed?
MODEL UPDATE	Bistable handler update needed?
DBD changes reflected in model?	Alarm handler update needed?
Change log update required?	Heat exchanger handler update needed?
DBD model documentation update?	Control valve handler update needed?
Performance criteria needed?	Delay handler update needed?
Actual test data required?	Status light handler update needed?

FIGURE 4-2 Simulator Modification Checklist

FORT CALHOUN SIMULATOR MODIFICATION PACKAGE CHECKLIST

MOD TITLE __

MOD # ____

STAND ALONE TESTING MCB hardware tests necessary? Levels, pressures, flows and temps checked?	CERTIFICATION TEST UPDATE Any certification tests affected by this mod? Certification tests need to be run this year?
System logic testeo?	MALFUNCTION TESTING
INTEGRATION TESTING	 System transient behavior checked? Instructor system interface tested? Baseline data (plots) need to be obtained?
Database printouts for system checked? Stability with other systems checked?	CLOSE OUT MR DATABASE
	 Status needs to be updated in MR database Any interfaces with TR database? Training notified of modification completion?

FIGURE 4-2 Cont. Simulator Modification Checklist

.

APPENDIX A

MODIFICATION PRIORITY LISTING/STATUS

Modification Status Sheet (as of 1/18/91)

		-		SDCP	Pkg	Cklist	HDW	HDW	HDW	SW	Test	SDCP	
PRI	MOD #		MOD TITE	Gen	Rec	Done	Ord	Rec	In	In	Done	Comp	RFT
1	FC81-051		Control Room Ventilation System Modification								1		
2	FC85-128	T	Meter Scale Modifications			a traine				_	in the second		
3	FC88-017	1	Addition of a Third Aux Feedwater Pump			1							
4	FC85-136	*	SGLS Block Permissive Setpoints	· · · · · ·		L					1		
5	FC75A-061		Component Cooling Valves Control Circuits										
6	FC88-011		Instrument Air Containment Isolation Valve Replacement						1.2.2.2	and at some			
7	FC88-110		SI-3A/3B/3C Start Signal Logic Change	1							L		
8	FC89-025	T	RCS Narrow Range Level Instrument			1					1		
9	FC83-004B	*	Remaining VA-66 Flow Problems	-									
10	FC81-064		RCS Hot Leg Level Indication										
11	FC83-074		DC Sequencer Relay Replacement										
12	FC85-151		Replace Oddly Shaped Switch Handles	1							and a second		
13	FC87-037		Diesel Generator Electrical Modifications									in the second	
14	FC84-075	-	Redundant Power Supply for RW-CCW Interface Valves	1									
15	FC87-048		Diverse Scram System (DSS) Testing	1			N/A	_			in the second second		
16	FC85-132	*	RCS Loop RTD Indicator Replacement						·				
17	FC88-067		Dedicated N2 Supply for Isolation Valves				N/A				į		and the second
18	FC86-033		Evaluate Replacement of Proc/Area Radiation Monitors										
19	FC87-055	1	ERF Computer Terminal Upgrade				1.200						
20	FC85-196		Increased minimum flow for Pumps FW-4A/B/C				N/A						
21	FC86-046	*	Qualification of PZR Level Control Instrumentation										-
22	FC87-016	*	Containment Sump Temperature Indication				N/A						
23	FC82-150B		Vac Dearator Pumps (DW-46A/B) Replacement				N/A						
24	FC86-096		RPS Power Supplies	1									
25	FC85-022	*	Control Room Annunciation for Limitorque Operators	f									
26	FC84-159	*	Metrascope Changeout										
27	FC86-049	T	Redistribute Loads/DC Buses and Inverters				N/A			_			
28	FC87-038		Diesel Generator Mechanical Modifications				N/A						
29	FC85-005		Heater Drain Pump Suction Relief Valves				N/A		_				
30	FC87-054	*	Fire Protection Systems Upgrade				N/A	_					
31	FC87-063		Diesel Generator Radiator Exhaust Damper Valves	-			N/A						
32	FC88-009	*	Control Room Iodine Monitor (RM-065) Modification	h									
33	FC85-126	*	Condensate/Feedwater Switch (43/FW) Alarm								-		1
34	FC83-174	1	Reactor Reg/Steam Dump & Bypass Alarm										

Modification Status Sheet (as of 1/18/91)

	1	T		SDCP	Pkg	Cklist	HDW	HDW	HDW	SW	Test	SDCP	
001	MOD #	+	MOD TITLE	Gen	Rec	Done	Ord	Rec	In	In	Done	Comp	RFT
35	EC87-032		Air Compressors for Fire Protection Deluge System	1									
36	FC88-022		CRDR Labeling/Demarcation/Mimic/Etc.						1200				
37	FC88-074	+	DCRDR Meter Banding Project										
38	FC85-138	*	Guard Rail on Edge of Control Boards										
39	FC85-142	-	Replacement of Sigma Meter Scales										
40	FC84-176		Letdown Level and Backpressure Control				N/A					per internet	
41	FC87-014	1	Replacement of HCV-249 and HCV-2988				N/A			1.1.1			-
42	FC85-148	*	CIAS Emergency Operate Button Relocation				N/A			-			
43	FC83-133	1	Control Room Indication-Diesel Gen Malfunction	CA	NCELL	ED			1.1.1				
44	FC88-036	1	Aux Controller for Feedwater Reg System	1									
45	FC85-137		Reactor Trip Pushbutton Guard								-		
46	FC83-166		Containment Sump Pump Level Indication and Control										
47	FC84-092B	*	Steam Generator Nozzle Dam Control Console								1		
48	FC85-130	*	Keylock Switch Changes	-						-	H.C. A.S.		
49	FC85-150		Plastic Switch Guards			1							
50	FC88-049	T	Installation of Instrument Air Dryer							_		-	-
51	FC89-051		Diesel Fuel Transer Pump Install	1244									
52	FC89-068		AI-179 Indications	1000		1	N/A			- Carlos and			
53	FC86-091		Limitorque Motor Operator Update			1	N/A						
54	FC84-206		Setpoint Selector Switch for RM-061	CA	NCELL	ED		-		-	1		
55	FC74B-057	*	Power System Stabilizer			-	N/A						
56	FC85-088	*	Acoustic Noise Generator	-			N/A						
* ind	icates a Cycle	12	modification										

APPENDIX B

SCHEDULE FOR PERFORMANCE AND OPERABILITY TESTS

Appendix B: Schedule for Performance and Operativity Tests

Test	Test	Test	Assoc.	Test	Test
Number	Title	1.D.	System	Cycle	Туре
Hardware Tests					
14.2.1	Panel Visual Inspection			Initial	Hardware
14.2.2	Verification of Instrument Scales			Initial	Hardware
1423	Verification of Nameplate and Annuc. Engravings			Initial	Hardware
Computer System Tesis					
1433	Verification of Spare Computer Time			All	Operability
Handler Tests					
14 4 4	Electrical Bus Test			1	Performance
14.4.5	Air System Test			3	Performance
Plant Fluid Systems					
14.5.1.1.1	Reactor Coolant System		ACS	2	Performance
145114	Chemical and Volume Control		CVC	2	Performance
145115	Safety Injection System		SIS	3	Performance
145116	Component Cooling Water		CCW	1	Performance
14.5.1.1.16	Auxiliary Feedwater System		AFW	1	Performance
14.5.1.1.17	Raw Water System		RWS	2	Performance
Non Fluid System Tests					
145.1.2.1	Reactor Core		FXC	2	Performance
145122	Control Rod Drive System		CHD	4	Performance
145125	Containment		CNM	4	Performance
145129	Diesel Generator		DSG	1	Performance
14.5.1.2.10	Inplant Electrical Distribution		EDS	1	Performance
1451212	D-G Sequencer		080	3	Performance
14.5.1.2.15	Reactor Protection System		H'S	1	Performance
14 5 1 2 16	Engineered Safeguards System		1.St	3	Performance
1451217	Nuclear Instrumentation System		NIS	4	Performance
1451218	Incore Nuclear Instrumentation System		ICI	4	Performance
Core Performance Tests					
14521	Rod Worth Test			2	Ferformance
14522	Boron Worth Test		-	2	Performance
14523	Isothermal Moderator Temp. Coefficient Test			2	Performance
24524	Power Coefficient Test			2	Performance

- . · · ·

100 M

and all with a share they

Tact	Test	Test	Assoc.	Test	Test
Number	Title	I.D.	System	Cycle	Туре
14.5.2.5	Xenon Test			2	Performance
14.5.2.6	ECP Test			2	Performance
Steady State Plant Operations					
14531	Normal Operations Test			All	Operability
Steady State Drift Tests					
145321	Steady State Drift @ 100%			All	Operability
145322	Steady State Drift @ 80%			All	Operability
145323	Steady State Drift @ 55%			All	Operability
14.5.3.2.4	Steady State Drift @ 30%			All	Operability
Steady State Accuracy Tests					
145331	Steady State Accuracy 100%	_		All	Operability
145332	Steady State Accuracy 80%			All	Operability
145333	Steady State Accuracy 55%			All	Operability
14 5 3 3 4	Steady State Accuracy 30%			AII	Operability
Induced Transient Tests					
14 5 4 1	Maximum Rate Power Ramp			All	Operability
14542	Main Turbine Stop and Control Valve Testing			All	Operability
14 5 4 3	Inadvertent Boration Dilution			All	Operability
14544	Reactor Trip and Recovery			All	Operability
14545	Dropped Rod			AII	Operability
14546	Reactor Trip Test			All	Operability
14547	Simultaneous Trip of MFW Pumps Test			All	Operability
14548	Simultaneous Closure of MSIVs Test			All	Operab lity
14549	Simultaneous Trip of All PCPs Test			A11	Operatility
14 5 4 10	Trip Any RCP Test		1	All	Operability
14 5 4 11	Loss Of Load			All	Operability
14 5 4 12	Maximum Rate Power Ramp (100-75-100)			All	Operability
14 5 4 13	LOCA With Loss of All Offsite Power		1	All	Operability
14 5 4 14	Excess Steam Demand			All	Operability
14 5 4 15	Slow RCS Depressurization To Saturation - No HPSI			All	Operability
Malfunction Tests					
145514	Emergency Feedwater Storage Tank Leak	AFW-4	AFW	1	Performance

Test	Test	Test	Assoc.	Test	Test	
Number	Title	I.D.	System	Cycle	Туре	
145515	Auxiliary Feedwater Activation Relay Failure	AFW-5	AFW	1	Performance	
14.5.5.2.2	Service Air System Leak	CAS-2	CAS	3	Performance	
14.5.5.2.2	Instrument Air Loop Leak	CAS-3	CAS	3	Performance	
14.5.5.2.5	Instrument Air Riser Leak	CAS-4	CAS	3	Performance	
14.5.5.2.4	CCW Pump Discharge Header Leak	CCW-4	CCW	1	Performance	
14.5.5.3.4	CCW Heat Exchanger Tube Leak	CCW-5	CCW	1	Performance	
14.5.5.5	Loss of Main Condenser Vacuum	CND-1	CFW	4	Performance	
14.5.5.4.1	Conde sate Pump Bearing Failure	CND-4	CFW	4	Performance	
14.5.5.4.4	Condensate Cooler Tube Leak	CND-5	CFW	4	Performance	
14.5.5.4.5	Hotwell Level Control Failure	CND-8	CFW	4	Performance	
14.5.5.0.0	Eailure of Individual Rod Baise Belay	CRD-3	CRD	4	Performance	
14.5.5.6.4	Eailure of Individual Rod Lower Relay	CRD-4	CRD	4	Performance	
14.5.5.0.4	Stuck Rod	CRD-5	CRD	4	Performance	
14.5.5.0.5	Dranned Bod	CRD-6	CRD	4	Performance	
14.5.5.6.5	Eailure of Clutch Power Supply	CRD-7	CRD	4	Performance	
14.5.5.6.7	Pad Election	CRD-8	CRD	4	Performance	
1.5.5.6.6	Charging Line Leak Outside Containment	CVC-9	CVC	2	Performance	
14.5.5.7.9	Main Condenser Tube Leak	CWS-2	CWS	2	Performance	
14.5.5.8.2	Discol Congrator Fuel Transfer Pump Discharge Leak	DSG-2	DSG	1	Performance	
14.5.5.9.2	Direct Constator Failure to Start	DSG-8	DSG	1	Performance	
14.5.5.9.8	Atco VAC Pus Fault	EDS-1	EDS	1	Performance	
14.5.5.11.1	4100 VAC Dus Fault	EDS-2	EDS	1	Performance	
14.5.5.11.2	460 VAC DUS Fault	EDS-3	EDS	1	Performance	
14.5.5.11.3	125 VDC BUS Fault	EDS-4	EDS	1	Performance	
14.5.5.11.4	120 VAC Instrument Bus Failure	EDS-6	EDS	1	Performance	
14.5.5.11.6	480 VAC Supply Transformer Fault	EDS-11	FDS	1	Performance	
14.5.5.11.11	Switchyard Line Fault	EDS-12	FDS	1	Performance	
14.5.5.11.12	Switchyard Breaker Fault	EHC-1	FIC	4	Performance	
14.5.5.12.1	EHC Fluid System Leak on Accumulator	EHC.6	E.	4	Performance	
14.5.5.12.6	Load Limit Potentiometer Failure	ESE 1	ESE	3	Performance	
14.5.5.13.1	SGLS Logic Matrix Failure	ESE 2	ESE	3	Performance	
14.5.5.13.2	CPHS Logic Matrix Failure	ESEE	ESE	3	Performance	
1455135	IPPLS Logic Matrix Failure	Cor-5	1 4	0	1. onormanoo	

4

Appendix	8:	Schedule	for	Performance	and	Operability	Tests
----------	----	----------	-----	-------------	-----	-------------	-------

Test	Test	Test	Assoc.	Test	Test
Number	Title	1.0.	System	2 2	Dorformance
14.5.5.13.10	SIAS Logic Actuation Signal Failure	ESF-10	FOF	3	Performance
14.5.5.13.12	OPLS Logic Matrix Failure	ESF-12	COM	3	Performance
14.5.5.14.2	Main Feedwater Header Leai	FDW-2	OFW	4	Performance
14.5.5.14.3	Main Feedline Leak Upstroam of the FCV	FDW-3	CFW	4	Performance
14.5.5.14.5	Main Fe Idline Leak Inside Containment	FDW-5	CFW	4	Performance
14.5.5.16.1	Feedwater Heater Tube Leak	FWH-1	FWH	2	Performance
14.5.5.17.1	Voltage Regulator Failure	GEN-1	GEN	4	Performance
14 5 5 17 4	Field Breaker failure	GEN-4	GEN	4	Performance
14 5 5 18 1	Main Steam Line Break Inside Containement	MSS-1	MSS	3	Performance
14 5 5 18 3	Main Steam Line Break outside Containment	MSS-3	MSS	3	Performance
14 5 5 18 5	Main Steam Line Isolation Valve Failure	MSS-5	MSS	3	Performance
14.5.5.18.6	Main Steam I to AFW Pump Leak	MSS-6	MSS	3	Performance
14.5.5.18.7	Main Steam der Leak	MSS-7	MSS	3	Performance
14.5.5.10.2	Wide Range Power Supply Failure	NIS-2	NIS	2	Performance
14.5.5.10.7	Power range Power Supply Failure	NIS-7	NIS	4	Performance
14.5.5.15.7	Pressurizer Steam Space Leak	PRS-4	PRS	2	Performance
14.5.5.20.4	Pressurizer PORV Failure	PRS-5	PRS	2	Performance
14.5.5.20.5	Pressurizer Level Instrumentation Failure	PRS-9	PRS		Performance
14.5.5.20.5	BCP Lube Oil Cooler Leak	RCP-1	RCP	i.	Performance
14.5.5.21.1	BCP Badial Bearing Failure	RCP-3	RCP	2	Performance
14.5.5.21.3	Beactor Coolant Primp Lower Seal failure	RCP-9	RCP	2	Performance
14.5.5.21.9	BCS1 con Leak	RCS-1	ACS	2	Performance
14.5.5.00.0	Fuel Failure	RCS-3	RCS	2	Performance
14.5.5.22.3	Eailure of Internosing Belay	RPS-1	RPS	1	Performance
14.5.5.24.1	IDDS Power Supply Failure	RPS-2	RPS	1	Performance
14.5.5.24.2	Eailure of APD Positive Limit Calculator	RPS-3	RPS	1	Performance
14.5.5.24.3	Main Foodwater Master Controller Failure	RRS-2	RRS	1	Performance
14.5.5.25.2	Steam Dump Quick Opening Solenoid Failure	RRS-7	RRS	1	Performance
14.5.5.25.7	Deve Water Supply Line Break	RWS-3	RWS	2	Performance
14.5.5.26.3	Chutdown Cooling Hoat Exchanger Inlet Header Leak	SDC-2	SDC	3	Performance
14.5.5.27.2	Shuldown Cooling real Exchanger milet reader Leak	SGN-1	SGN	3	Performance
14.5.5.30.1		SGN-2	SGN	4	Performance

Test	Test	Test	Assoc.	Test	Test
Number	Title	1.0.	System	Cycle	Destermance
14.5.5.31.5	Safety Injection Tank Gas Space Leak	SIS-5	SIS		Performance
14.5.5.32.3	Stator Cooling Water Pump Suction Line Leak	GEN-6	GEN	2	Performance
14 5 5 33 1	Main Turbine Lube Oil Reservoir Leak	TIJR-1	TUR	4	Performance
14 5 5 30 5	Main Turbine High Vibration	TUR-5	TUR	4	Performance
14 5 5 33 6	Turning Gear Failure	TUR-6	TUR	1	Performance
14.5.5.34.2	Gas decay Tank Leak	WDS-2	WDS	2	Performance
Multiple Malfunction Tests					
14 5 5 35 1	LOCA with Loss of Offsite Power & One D/G Failure			3	Performance
14 5 5 35 2	Inadvertent PORV Opening with Loss of Offsite Power			3	Performance
	and one D/G Failure				
14 5 5 35 3	Inadvertent PORV Opening with I.OFW, Loss of one			3	Performance
	HPSI and one ECCS Train				
14 5 5 35 4	LOFW, with Loss of Offsite Power, One HPSI Pump and			3	Performance
	one ECCS Train				
14 5 5 35 5	LOCA with one S/G Isolated, LOSP, and One Diesel			3	Performance
	Failure				
Remote Panel Tests					
14561	Emergency Auxiliary Feedwater Panel Test			Initial	Hardware
14562	Alternate Shutdown Panel Test			Initial	Hardware
14563	Neutron Monitoring Panel 7est			Initiai	Hardware
14564	D-2 Diesel Generator and Engine Control Panel Test			Initial	Hardware
Initial Conditions Test					
14.5.7	Initial Condition Checklist	1		Initial	Operability

Appendix B: Schedule for Performance and Operability Tests

APPENDIX C

2

8

SIMULATOR ADMINISTRATIVE MANUAL

a

NUCLEAR OPERATIONS DIVISION TRAINING SIMULATOR ADMINISTRATIVE MANUAL

1.0 · INTRODUCTION

The U.S. Nuclear Regulatory Commission enacted changes to Title 10 Part 55 of the Code of Federal Regulations specifying that by 1991, all NRC administered nuclear control room operator and senior operator license examinations shall include an operating exam administered on a full scope control room simulator that has been certified by the NRC. Each utility shall certify to the NRC that their operator license candidates can be operationally examined on a simulator which conforms to the reference plant configuration by which it was designed and on which the operator candidates shall be performing their licensed duties. NRC Regulatory Guide 1.149, NUREG 1258 and American National Standard ANSI/ANS 3.5-1985 clearly delineate the requirements necessary for satisfactory simulator performance and subsequent NRC certification including a description of the methodology to be employed by the NRC for simulator facility evaluation.

This Simulator Administrative Manual addresses the policies and procedures for meeting the requirements of maintaining and utilizing a referen port simulator in support the Nuclear Training Organization similator training commitments.

2.0 MISSION AND OBJECTIVES

2.1 Mission

The mission of the Simulator Services Department is to continuously maintain a full scope simulator that replicates the Fort Calhoun Station control room and is certified by the Nuclear Regulatory Commission as a training and examination tool.

2.2 Objectives

The objectives of the Simulator Services Department are to:

- 2.2.1 Achieve a "Standard of Excellence" in the performance of its mission.
- 2.2.2 Maintain a simulator availability necessary to support Fort Calhoun Station training requirements.

Rev. 0 Date 06/08/90

Page 1 of 5

Ø

- 2.2.3 Maintain the simulator's configuration such that the operational and environmental fidelity replicates the Fort Calhoun Station.
- 2.2.4 Comply with applicable regulatory requirements and satisfy Institute of Nuclear Power Operations (INPO) guidelines while accommodating cost, manpower and schedule constraints.
- 2.2.5 Maintain a competent, motivated simulator staff that is capable of satisfying the above objectives.

3.0 SOURCES OF REQUIREMENTS AND COMMITMENTS

- 3.1 <u>Current OPPD Documents and Directions</u>
 - OPPD Policies
 - Updated Final Safety Analysis Report
 - Nuclear Training Administrative Manual
 - Simulator Services Department Administrative Manual
 - Quality Assurance Manual
 - Technical Specifications
- 3.2 U. S. Nuclear Regulator Commission Regulations, Regulatory Guides and Communications
 - 3.2.1 Title 10 Code of Federal Regulations
 - o 10 CFR 55 Operators' Licenses
 - 3.2.2 Regulatory Guides
 - RG 1.149 Nuclear Power Plant Simulators for use in Operator Training; endorses and modifies ANSI/ANS 3.5-1985
 - 3.2.3 Office of Nuclear Reactor Regulation Reports
 - o NUREG-1021 Operator Licensing Examiner Standards
 - o NUREG-1258 Evaluation Procedure for Simulation Facilities Certified under 10 CFR 55
 - NUREG-1482 Nuclear Power Plant Simulators Their Use in Operator Training and Regualification

Page 2 of 5

- 3.3 Industry Standards
 - 3.3.1 Technical Organizations

o ANSI/ANS 3.5 - Nuclear Power Plant Simulators for Use in Operator Training; endorsed by RG 1.149

- 3.3.2 Institute of Nuclear Power Operations
 - INPO 82-005 Simulator Training.
 INPO 86-025 Guidelines for Continuing Training of Licensed Personnel
 - o INPO 86-026 Guideline for Simulator Training
 - o TQ-505 Institute of Nuclear Power Operations Good Practice, Simulator Configuration Management System

4.0 THE SIMULATOR ADMINISTRATIVE MANUAL

4.1 Purpose

The purpose of the Simulator Administrative Manual is to:

- Facilitate the pursuit of excellence in all simulator activities.
- Ensure consistent, uniform practices.
- Provide guidance to the simulator staff.
- Establish policies for the conduct of simulator operations.
- 4.2 Scope

This manual applies to the simulator activities that are the responsibility of the Manager - Training.

- 4.3 <u>Responsibilities</u>
 - 4.3.1 Responsibilities are defined in TOP-33 of the TAM.

Page 3 of 5

à

4.4 Format

The format used to prepare this manual is that specified by TOP/TAP 28, "Preparation and Approval of Training Organization Polices and Procedures".

This manual is comprised of three primary sections, which are:

- o General
- o Simulator Department Policies (SP)
- Simulator Administrative Procedures (SA)

4.4.1 General

This section includes an introduction to the manual and presents the mission and objectives of the simulator organization. The overall administrative organization is presented with a general statement of simulator responsibilities of the key leadership positions.

4.4.2 Simulator Policies

This section presents the department policies of simulator organization. The policies are included as individual sections. This allows ease in introduction, revision or revocation of the policy of the simulator organization. The SPs establish policy and the SAs provide procedures for guidance in implementing the policy.

4.4.3 Simulator Administrative Procedures

These administrative procedures are intended to give direction in the implementing policy. In general, for every policy section, there will be a procedure. However, it is conceivable that some policies may be so brief that procedures would not be necessary.

Appendices are included in many of the Simulator Administrative Procedures. These appendices provide additional guidance only. They do not establish requirements.

Rev. 0 Date 06/08/90

Page 4 of 5

4.4.4 Revisions

The manual is organized into individual sections to facilitate changes to only one SP or SA when required. This will encourage efforts to keep the manual current and accurate. Thus, the SPs and SAs will be changed when improvements or deficiencies have been identified. Revisions are to be made in accordance with TAP-7.

Rev. 0 Date 06/08/90

Page 5 of 5

SIMULATOR ADMINISTRATIVE MANUAL INDEX

General	General
SP-1	Simulator Operation Policy
SP-2	Not Used
SA-3	Simulator Certification Procedure
SA-4	Simulator Configuration Management Procedure
SA-5	Simulator Operability and Performance Testing Procedure
SA-6	Simulator Trouble/Action Item/ Design Change Reporting Procedure
SA-7	Simulator Maintenance and Modification Procedure
SA-8	Not Used
SP-9	Not Used
SA-9	Not Used
SA-10	System Security, Data Integrity, and Proprietary Data Control Procedure
SA-11	Not Used
SA-12	Simulator Software Quality Assurance Procedure