RETURN ORICINAL TO POR, HQ, December 18,1990

Mr, Ramon Hall
Licensing Branch 1
U. S. Nuclear Regulatory Commission Uranium Recovery Field Office, RIV
P. O. Box 25325

Denver, C0 80225

Ref: License Condition 23 . Source Materials License SUA-551

In accordance with the requirements of License condition 23, we are submitting herewith the revised estimated costs for completion of the approved reclamation plan as requested by Mr. Paul Michad of your office. Total estimated cost is $\$ 4,729,387$. The cost estimate generally follows the outlines provided in "Reconmended Outline for Site Specific Reclamation and Stabilization Cost Estimates," and Section 4.0 of the "Technical Position on Pi= nancial Assurances for Reclamation, Decommissioning, and Long -Term Surveillance and control of Uranium Recovery Facilities," October, 1988.

Five copies of the cost estimate are enclosed.
A check for the amendment application fee was submitted in June 1989 for the annual update of our surety, Since approval of our new reclamation plan was imminent, Mr, Rose informed us that no further review would be done under the old surety and that the application fee would be applied to the submittal of the new surety based on the final approval of the new reclamation design. Since this amendment is still open, no additional application fee is being sent.
please contact us if you have any questions.

SJP:sjp
pe

$$
\text { iE: OHO OZ } 330 \text { ab. }
$$

PETROTOMICS

ESTIMATED COST FOR RECLAMATION

NRG LICENSE SUA-551

CONDITION NO, 23

December, 1990

PETROTOMICS COMPANY ESTIMATED COST FOR RECLAMATION SUMMARY

PETROTOMISS COMPANY

ESTIMATED COH, FOR RECLANATION

The following calculations are based on October 1989 dollars. The dollar amounts are adjusted in Item No. 10 , page 18 , to account for inflation since January 1990 submittal. Completed work is iraicated.

1. Facility Decommissioning
A. Salvageable building and equipment decontamination - None.

Petrotomics Mill was decommissioned in 1985. Minor salvage only is anticipated from the remaining office complex. Costs are estimated under non-salvageable buildings below.
B. Non-Salvageable building and equipment disposal.

Four one-story sheet metal bujldings remain in the office complex, In addition, two small building foundations remain,

	CF	SF	CY	
Office	42,841	4,284	53	concrete
Accounting	37,639	3,764	47	concrete
Warehouse	33,472	3,347	41	concrete
Shop concrete				
Foundations only-2 each		9,005	112	concrete
Total	135,865	22,125		274

Demolish \& bury buildings.
Unit cost (Appendix. Section B,1) - $\$ 0.082 / \mathrm{CF}$ $135,865 \mathrm{CF} \times \$ 0,082 / \mathrm{CF}=$
$\$ 11,141$
Light building foundation demolition.
Unit cost (Appendix. Section B.1) $-\$ 0.052 / \mathrm{SF}$ $22,125 \mathrm{SF} \times \$ 0.052 / \mathrm{SF}=\quad \$ 1,151$

Removal of electrical power distribution system.
Unit cost (Appendix. Section B.1) - $\$ 0.85 / \mathrm{LF}$

$$
21,600 \mathrm{LF} \times \$ 0,85 / \mathrm{LF}=\$ 18,360
$$

Subtotal Non-salvageable buildings/equipment \$ 30,652
C. Restoration of contaminated areas.

Reclamation of the ore storage pad was completed in 1988 , Clean cover was placed on the process area in 1985. Removal of
contaminated soil, topsoil placement and revegetation of 27.5 acres located north of the process area was completed in 1988. An bdditional 12,3 acres was cleaned up in 1986.

Remaining cover material, contouring, topsoil and revegetation for the process area and office complex area are included under Item 4, - Tailings Impoundment Area Reclamation. Also included under Item 4 is 143,000 cubic yards estimated excavation and cleanup reguired outside of the tailinge area which will be used in shaping the tailings area. Cleanup of access roads and the East drainage sin cleanup is included in this quantity.

Placement of topeoil and revegetation for remaining cleanup areas is included in Item 4.

Subtotal Section 1. Facility Decommissioning
 \& 30,652

2. Groundwater Restoration and Well Plugging
A. Method of restoration.

The corrective action prozram is continuing in accordance with License Condition 47C. Fcur additional wells were installed in the down-gradient area late in 1990 .

Pumping is planned for ten wells north of the tailings (seepage, $\quad 51-\mathrm{SC}, \quad 54-\mathrm{SC}, \mathrm{PT}-6, \mathrm{PT}-7,58-\mathrm{SC}, 59-\mathrm{SC}, 62-\mathrm{SC}, 63-\mathrm{SC}$, and 64-SC). Wells 55-SC, 56-SC, and 57-SC (completed in 1989), 60-SC and 61-SC (completed in 1990), encountered little or no saturation and are not pumpable.

It is anticipated that corrective action will be complete about mid - 1992.

The Stage I and II clay-lined evaporation ponds have been completed in the tailings area and are in operation, as is the enhanced evaporation system.

In addition, tallings dewatering is continuing with 12 wells.
8. Volume of aquifer, pumping cycles, and cycling time.

Full data concerning the upper sand is not currently known. Recent reported data, October 1989, indicates substantia: ly less saturation than previously estimated. There are indications that the flaid may consist of leachate only in the downgradient area of the upper sand. The basis of this corrective action estimate is a plan to continue pumping from tailings and from upper sand until the pumpable water is removed. One and one-half years (until mid $1992)$ are estimated for multiple well pumping. The seepage collection system in the upper sand will have been pumped for about 11 years.

It is anticipated, as the annual reviews and interim reports are developed in accordance with License Condition 47D, that modifications to the corrective action plan may be made.
C. Labor and equipment cost estimate - corrective action.

Install three upper sand wells.
Est. unit cost (Appendix Section B. 2) $-\$ 3,780 /$ well
$3 \times \$ 3,780=\$ 11,340$
Install four tailings wells
Est, unit cost (Appendix B.2) - $\$ 1,448 /$ well
$4 \times \$ 1,448=\$ 5,792$
Completed 1990
Well and enhanced evaporation operation and maintenance
Est, unit cost (Appendix B,2) - $\$ 42,541 / \mathrm{yr}$.
Est, remaining time requirement -1.5 years
1.5 years $\times \$ 42,541 / \mathrm{yr}=$
$\$ 63,812$

Subtotal labor/equipment
\$ 75,152
D. Verification Sample Analysis.

It is anticipated that verification sampling and testing would be performed over approximately a six month period in accordance with License Condition 47 A requirements for constituents. A full set of constituents would be analyzed at the beginning, middle and end of the six month period to d-termine verification.

Twenty five wells - sampled three tilu
Est, unit cost (Appendix Section B.4) - \$ 281.04
25 wells X $3=75$ samples
75 samples $X \$ 281.04 /$ sample $=\$ 21.078$
E. Well Plugging.

The anticipated number of wells to be plugged is 51. Depths range from 19 feet to 400 feet. Well casing size ranges from two inch to six inch. Total footage to be plugged is about 5,960 LF .

Est, unit cost (Appendix Section 3.2) - \$ 2.53/LF
5960 LF $\times \$ 2.53 / \mathrm{LF}=$
$\$ 15,079$
F. Estimated total cost .. Groundwater restoration completion.

Subtotal Section 2. Groundwater Restoration and Well Plugging
$\$ 111,309$
3. Tnterim Stabilization of Tailings During the Drying-out Phase

The drying of surface water on the tailings was substantially complete in leecembe, 1987. Final interim soil cover placement was coinplated in 1988.

Operation and maintenance costs for the enhanced evaporation system, and seepage control cost, are included in Item 2 above.
4.

Tailings Impoundmeat Area Reclamation

Estimated costs of work required to complete reclamation of the area are computed below. Estimated unit costs for this work are developed in Appendix Seciions A and B,4,
A. Shaping, grading, and cover material.

1. Tailings ercaration and shaping.

Est, quantity of 57,000 CY remain.
ist, unit cost (Appendix Section B, 4 and
Table $R, 4-1)=\$ 0.57 / \mathrm{CY}$
$57,000 \mathrm{CY} X \$ 0.57 / \mathrm{CY}=\$ 32,490$
Completed 1990
2. Outside excavation and cleanup.

Est. quantity of $1+3,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.72 / \mathrm{CY}$
143,000 CY X $\$ 0.72 / \mathrm{CY}=\$ 102,960$
Completed 1930

Hotrok la omplata shapins cocept reserve depression.
Est. quantity of $50,000 \mathrm{CY}$
Est. unit $\cos t=\$ 0.63 / \mathrm{CY}$
$50,000 \mathrm{CY} \times 80,63 / \mathrm{CY}=\$ 31,500$
Completed 1990

1. Excavate and plate clay cover except reserve depression.

99 arres remain to be completed, thickness 61 Cm .
Ohtain cover material from clay stockpile.
Est. quantity of $320,000 \mathrm{CY}$
$\mathrm{F}<\mathrm{t}$, whit cost $=\quad \$ 0.77 / \mathrm{CY}$
320,007 CY X $\$ 0.77 / \mathrm{CY}$
$=\$ 246,100$
Completed 1990
5. Borrow to shape reserve depression.
Est. guantity of $10,000 \mathrm{CY}$
Est. U. $t \operatorname{cost}=\$ 0.63 / \mathrm{CY}$
$10,000 \mathrm{CY}$ X $\$ 0.63 / \mathrm{CY}=$
$\$ 6,300$
6. Escavate and place clay cover - reserve depression.

7 acres remain to be completed, thickness 61 Cm . Obtain cover material from clay stockpile.

Est. quantity of $23,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.77 / \mathrm{CY}$
$23,00 \mathrm{CY} \mathrm{CY} \$ 0.77 / \mathrm{CY}=\$ 17,710$
7. Regrade tind recompact surface of clay cover. 145 aspes of the clay cover to regrade and recamsact, . $5^{\text {' }}$ a erage thickness.

Est, quantity of $117,000 \mathrm{CY}$
Est, unit cost $=\$ 0.33 / \mathrm{CY}$
117,000 CY X $\$ 0.33 / \mathrm{CY}=\$ 38,610$
8. Excavate and place silty-sand cover.

145 acres to be covered, thickness 62 Cm . Ubtain the cover material from the north channel, southwest channel and southwest borrow area.

Est. quantity of $476,000 \mathrm{CY}$
Est. unit cost $=\$ 0.88 / \mathrm{CY}$
$476,000 \mathrm{CY}$ X $\$ 0.88 / \mathrm{CY}=\$ 418,880$
9. Excavate and place topsoil on tailings area.
137.1 acres to be covered, thickness 25 Cm , Obtain topsoil from topsoil piles \#8 and \#9 directly west of the tailings area.

Fst. quantity of $182,000 \mathrm{cY}$
Est, unit cost $=\quad \$ 0.76 / \mathrm{CY}$ $182,000 \mathrm{CY}$ X $\$ 0.76 / \mathrm{CY}$
$\$ 138,320$
10. Dam Outslope Shaping.

Cut the existing dam to the designed configuration.
Est. quantity of $532,000 \mathrm{CY}$
Est, unit cost $=\quad \$ 0,47 / \mathrm{CY}$
$532.000 \mathrm{CY} \mathrm{X} \$ 0.47 / \mathrm{CY}=\$ 250,040$
11. Ecst Drainage Basin Shaping,

Fill the bottom to elevation 7085 and shape the slope into the basin. Obtain the material from the clay pile.

Est, quantity of $108,000 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.60 / \mathrm{CY}$
$108,000 \mathrm{CY}$ X $\$ 0,60 / \mathrm{CY}=\$ 64,800$
Completed 1990
12. Construct the east and west dump channels.

Minor cuts and fills along the face of the dump area for PMF drainage control.

Est. quantity of $22,000 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.59 / \mathrm{CY}$
$22,000 \mathrm{CY} \mathrm{X} \$ 0.59 / \mathrm{CY} \quad=\$ 12,980$
Completed 1990
13. Complete shaping of the north channel.

After excavating the material for the silty-sand cover, finish shaping will be required.

Est, quantity of $87,000 \mathrm{CY}$
$\begin{array}{ll}\text { Est. unit cost }= \\ 87,000 \mathrm{CY} X \$ 0.68 / \mathrm{CY} & \$ 0.68 / \mathrm{CY}\end{array}$
14. Complete shaping of the southwest channel.

After excavating the material for the silty-sand cover, finish shaping will be required.

Est. quantity of $34,000 \mathrm{CY}$
$\begin{array}{ll}\text { Est, unit cost }= & \$ 0.67 / \mathrm{CY} \\ 34,000 \mathrm{CY} X \$ 0.67 / \mathrm{CY} & =\$ 22,780\end{array}$
15. Remove topsoil from the dam face and below.

Est. quantity of $40,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.61 / \mathrm{CY}$ $40,000 \mathrm{CY}$ X $\$ 0.61 / \mathrm{CY}=\$ 24,400$
16. Replace topsoil on shaped dam outslope.

Est. quantity of $40,000 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.61 / \mathrm{CY}$ $40,000 \mathrm{cY} \mathrm{X} \$ 0.61 / \mathrm{CY}$
17. Remove and replace topsoil in north and southwest drainage channel areas.

Est, quantity to be removed $88,000 \mathrm{CY}$
Est. quantity to be replaced $88,000 \mathrm{CY}$
Est, unit cost $=\$ 0.51 / \mathrm{CY}$
$170,000 \mathrm{CY} \times \$ 0.51 / \mathrm{CY}=\$ 89,760$
18. Place topsoil on east and west dump channels and south dump slope repair.
53.6 acres will require 0.5 , of topsoil from topsoil pile 41

Est, city to be removed $43,3000 \mathrm{C}$
Est. $\operatorname{cost}=\quad \$ 0.97 / \mathrm{CY}$
$43,3 \mathrm{CY} \mathrm{C} \$ 0.97 / \mathrm{CY}=\$ 42,001$
Completed 1990
19. Place topsoil on remaining disturbed areas.
89.7 acres will require 0.5^{\prime} topsoil from topsoil piles \#1 and \#10.

Est. quantity of $72,400 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.97 / \mathrm{CY}$
$72,400 \mathrm{CY} X \$ 0.97 / \mathrm{CY}=\$ 70,228$
20. Millsite clay cover.

An additional 52 Cm , - (Use 21") of clay cover will be placed over 4 acre process area. Clay from clay stockpile.

Est, quantity of $11,300 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.57 / \mathrm{CY}$ $11.300 \mathrm{CY} \times \$ 0.57 / \mathrm{CY}=\$ 6.441$
21. Office area cover.

4 acres to be covered with 1.5 ' of clean clay from the clay stockpile.

Est, quantity of $9,700 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.57 / \mathrm{CY}$
$9,700 \mathrm{CY} \times \$ 0.57 / \mathrm{CY}=\$ 5,529$
Subtotal shaping, grading, and cover material $\overline{\$ 1,172,558}$
B. Revegetation of disturbed areas.

AREAS

ACRES

1. Tailings area 137.1
2. Tailings dam, SW channel,
and North Channel
128.0
3. Southwest borrow area $\quad 28.6$
4. East and West dump channels
14.0
5. South dump slope repair 39.6
6. East drainage basin area $\quad 38.0$
7. Clay stockpile area 22.2
8. Millsite and office area 23.5
9. Access roads $\quad 6.0$

Est, total
437.0 acres

Est. unit cost (Appendix Section B,4) - \$311/acre
437 acres X $\$ 311$ /acre $=\$ 135,907$
C. Riprap/rock armor.

Riprap and rock armor are required as follows:
North and SW Channels and Swale Discharges - $11,100 \mathrm{CY}$ of riprap, 1.9 feet thick, underlain by a 6 -inch thick coarse filter, $2,900 \mathrm{CY}$, and a 6 -inch thick fine filter, $2,900 \mathrm{CY}$. The dam outslope and the north swale discharge transitions require a 4,5 -inch layer of rock armor, total $2,900 \mathrm{CY}$, underlain by a 4 -inch thick layer of fine filter material, $2,600 \mathrm{cY}$. The 5:1 slope above tailings requires $7,200 \mathrm{CY}$ of rock armor 5, 75-inches thick, underlain by 5,000 CY of fine filter material 4-inches thick. All of these materials will require processing by crushing and/or screening. For purposes of this cost estimate, it is assumed that all of the above materials will be obtained from a quarry approximately fifteen miles East of the site.

Mat rial from this site is currently being tested.

In summary, required quantities are as follows:
Quantity, CY

1. Riprap 11,100
2. 5.75" rock armor 7,200
3. $4.5^{\prime \prime}$ rock armor 2,900
4. 6" coarse fititer 2,900
5. fine fizter 10,500

Est. Total $34,600 \mathrm{CY}$
Categories for estimating the cost for these materials are drilling and blasting, crushing and screening, haulage and placement, and royalty.

Drilling and blasting:
$34,600 \mathrm{CY}$ product required
Est, unit cost (Arnendix Section
B.4) $-\$ 2.54 / \mathrm{CY}$
$34,600 \mathrm{CY}$. $\$ 2.54 / \mathrm{CY} \quad \$ 87,884$

Crush and Screen:
Riprap and coarse filter
Est. $14,000 \mathrm{CY}$ product required
Est. unit cost (Appendix Section
B.4) $-\$ 4.84 / \mathrm{CY}$
$14,000 \mathrm{CY} \mathrm{X} \$ 4.84 / \mathrm{CY}=\$ 67,760$

Rock armor
Est. $10,100 \mathrm{CY}$ product required
Est, unit cost (Appendix Section
B.4) $-\$ 7.77 / \mathrm{CY}$
$10,100 \mathrm{CY}$ X $\$ 7.77 / \mathrm{CY}=\$ 78,477$

Fine filter
Est. $10,500 \mathrm{CY}$ product required
Est, unit cost (Appendix Section
$\mathrm{B} .4)-\$ 9.54 / \mathrm{CY}$
$10,500 \mathrm{CY} \times \$ 9.54 / \mathrm{CY}$
$=$
$\$ 100,170$
Haul and place
All materials estimated at the same rateof production.
Est. $34,600 \mathrm{CY}$ product requiredEst, unit cost (Appendix SectionB.4) - \$7.66/CY
$34,600 \mathrm{CY}$ X $\$ 7,66 / \mathrm{CY}$ $=$
$\$ 265,036$
RoyaltyAll materials estimated at therate of $\$ 1.50 / \mathrm{CY}$$34,600 \mathrm{CY}$ X \$1.50 $=\$ 51,900$Subtotal Riprap/rock armor\$651,227
D. Special engineered features.
There are no special engineered features which require ad-ditional costs.
E. Quality assurance program.
Compacted clay and silty-sand cover:For these materials, quality assurancetesting frequency is as follows:

Field density	$1 / 1000 \mathrm{CY}$
Gradation	$1 / 5000 \mathrm{CY}$
Atterberg limits	$1 / 5000 \mathrm{CY}$
Proctors	$1 / 20,000 \mathrm{CY}$

The material quantities and number of tests by type are:

* Probably nonplastic and will not be needed, but are included in estimate.

```
1. Clay cover tailings - 99 acres. - $30,323
```

Completed 1990
2. Clay cover - 7 acres reserve depression.

Assume Approx. Production of $6000 \mathrm{CY} /$ day $=6$ field density test/day Days technician required $=23$ test $/ 6$ test $/$ day $=4$ days Assume a 10 hour day. Rates are from a local consultant and are current.

Technician cost $\$ 35 / \mathrm{Hr}$,
4 days X $10 \mathrm{Hr}, /$ day $\mathrm{X} \$ 35 / \mathrm{Hr}=\$ \$ 1,400$
Mileage @ $\$ 0.30 / \mathrm{mile}$
4 days X 130 miles X $\$ 0.30 /$ mile $=\$ 156$
Field Density (included in cost
of inspection)
Atterberg Limits @ $\$ 40 /$ test
5 lest X $\$ 40 /$ test $=\$ 200$
Gradations @ $\$ 52 /$ test
5 test X \$52/test $=\$ 260$
proctors @ $\$ 79 /$ test
1 test X \$79/test $=\$ 79$
Project Engineer @ $\$ 75 / \mathrm{Hr}$.
$3 \mathrm{Hr}, \mathrm{X} \$ 75 / \mathrm{Hr}$.
Est. total - clay 7 acres $\$ 2,320$
3. Regrade \& compact clay.

```
Assume Approx, Production of
6000 CY/day = 6 field density test/day
Days technician required = 117 test/6 test/day = 20
days
Assume a }10\mathrm{ hour day,
Rates are from a local consultant and are current,
```


4. Silty-sand cover.

Assume Approx, Production of
$6000 \mathrm{CY} /$ day $=6$ field density test/day
Days technician required ≈ 476 test $/ 6$ test/day $=79$
days
Assume a 10 hour day.
Rates are from a lozal consultant and are current,
Technician cost $\$ 35 / \mathrm{Hr}$.
79 days X $10 \mathrm{Hr}, /$ day X $\$ 35 / \mathrm{Hr}=\$ 27,650$
Mileage @ $\$ 0.30 / \mathrm{mile}$
79 days X 130 miles $X \$ 0,30 /$ mile $=\$ 3,081$
Field Density (included in cost
of inspection)
itterberg Limits @ $\$ 40 /$ test
95 test X : $\$ 40 /$ test $=\$ 3,800$
Gradations @ \$52/test
95 test X $\$ 52 /$ test $=\$ 4,940$
Proctors@\$79/test.
24 test X $\$ 79 /$ test $=\$ 1,896$
Project Engineer@ $\$ 75 / \mathrm{Hr}$.
$51 \mathrm{Hr}, \mathrm{X} \$ 75 / \mathrm{Hr}$. $=\$ 3,825$
Est. total - regrade clay $\$ 45,192$
5. Riprap, Ruck Armor, and filter material.

For these materials, quality assurance testing criteria are as follows:

Riprap Durability: Initial + Final + test at $1 / 3$ \& $2 / 3$ of total Q

Rock Armor: Same as for riprap + 1 gradation/1000 CY
Coarse Filter: Same as for riprap +1 gradation $/ 1000 \mathrm{CY}$
Fine Filters: 1 gradation/1000 CY

5. Radiological Survey and Environmental Monitoring

A radiological survey consisting of gamma surveys and soil samples was conducted on the areas outside the restricted boundary in 1985 , Cleanup of contaminated areas was performed in $1986,87,88$ and 90.

All equipment salvaged from the mill was surveyed prior to being re* leased for unrestricted use in 1985 and 86 . Records are on file at Petrotomics.
A. Soil samples for radium-226.

It is anticipated that 25 additional soil samples for radium-226 will be collected on areas surrounding the tailings as reclamation proceeds on site.

Est, unit cost (Appendix Section B.5) - \$71.36/sample 25 samples X $\$ 71.36 \quad \$ \quad \$ 1,784$
B. Decommissioning equipment and building smear samples.

The mill and the associated buildings were decommissioned in 1985.
C. Gamina Survey.

Two gamma surveys are planned. The first is to locate any contamination which may have been missed by previous surveys and flag it for cleanup. The second would be done prior to completion of the tailings cover to insure all areas meet the established standards for closure.

Est. unit cost (Appendix Section B.5) - \$2, 210/survey 2 surveys X $\$ 2,210 /$ survey $=\$ 4,420$
D. Environmental Monitoring.

Environmental monitoring will be conducted in accordance with License Condition Nos. 41 and 47 . The monitoring program is subject to change as additional wells are brought on line or wells are abandoned due to construction requirements. Sampling is projected through 1994 when completion of the tailings cover is planned.

The environmental monitoring program consists of air, radon, groundwater, surface water, and direct radiation measurements as prescribed in License Condition 41 and 47 .

Est. cost of Environmental Monitoring $\$ 165,151$. Individual Item cost and total costs are shown below.
E. Total cost of Radiological Survey \& Environmental Monitoring.

Cost shown represent the cost of the sampling and analysis to be done through 1994 .

1. 25 soil samples (Item 5.A.)

Est. unit cost (Appendix B.5) - \$71.36
25 samples $X \$ 71.36 /$ sample
2. 2 gamma surveys (Item 5.C.)

Est, unit cost (Appendix B.5) - \$2,210
2 surveys X $\$ 2,210$ /survey $=\$ 4,420$
3. 16 air samples

Est. unit cost (Appendix B.5) - $\$ 677$
16 samples X $\$ 677 /$ sample $=\$ 10,832$
4. 32 radon samples

Est, unit cost (Appendix B.5) - $\$ 70$
32 samples X $\$ 70 /$ sample $=\$ 2,240$
5. 300 quarterly groundwater samples

Est, unit cost (Appendix B.5) - $\$ 359.92$
300 samples X $\$ 359.92$ sample $\$ 107,976$
6. 100 annual groundwater samples

Est, unit cost (Appendix B.5) - $\$ 407.92$
100 samples X $\$ 407.92 /$ sample $=\$ 40,792$
7. 16 surface water samples

Est, unit cost (Appendix B.5) - $\$ 161$
16 samples X $\$ 161 /$ sample $=\$ 2,576$
8. 32 direct radiation

Est, unit cost (Appendix B.5) - \$22.95
32 samples X $\$ 22.95 /$ sample $=$
\$ 735
Total cost of Radiological survey,*

* (Includes cost of environmental monitoring) \$171,355

Subtotal Section 5, Radiological Survey and Environental Monitoring
6. Project Management and Miscellaneous

Reclamation work is anticipated to be complete by year-end 1994. Project management and miscellaneous cost are therefore estimated for a four year period.
A. Site representative - One.

Est. $\$ 40 / \mathrm{Hr}, \mathrm{X} 2,000 \mathrm{Hr}, / \mathrm{Yr}=\$ 80,000 / \mathrm{Yr}, \mathrm{X} 4 \mathrm{Yr}=\$ 320,000$
Transportation - 250 day $/ \mathrm{Yr}$.
250 day/Yr, X $130 \mathrm{mi}, \mathrm{X} \$ 0.30 / \mathrm{mi}, \mathrm{X} 4 \mathrm{Yr}, \quad=\$ 39,000$
B. Clerical - One half time.

Est. $\$ 20 / \mathrm{Hr}, \mathrm{X} 1000 \mathrm{Hr}, / \mathrm{Yr},=\$ 20,000 / \mathrm{Yr}, \mathrm{X} 4 \mathrm{Yr},=\$ 80,000$
C. Field Survey - 3 construction seasons.

Est, 5 months each or 13 months total
Est. $15 \mathrm{mos}, \mathrm{X} 20$ days $/ \mathrm{mo}, \mathrm{X} 10 \mathrm{Hr}, / \mathrm{day}=3,000 \mathrm{Hr}$. Est. 2-man crew e $\$ 50 / \mathrm{Hr}$, (equipped)
$3,000 \mathrm{Hr}, \mathrm{X} \$ 50 \mathrm{~m}=\$ 150,000$
Transportation -15 mos. $X 20$ days $/ \mathrm{mo}=300$ days 300 days X 130 mi . X $\$ 0,30 / \mathrm{mi}$.
D. Telephone and Miscellaneous Supplies.

Est. $\$ 500 / \mathrm{mo}, \mathrm{X} 48 \mathrm{mos}$.
$=$
$\$ 24,000$
E. Radiological Safety,

Personnel monitoring, Instrument calibration, and bioassay.
Est. \$4,900/Yr, X 4 = $=$ $\$ 19,600$
F. Electrical power.

Est, average $\$ 5,000 / \mathrm{mo}$, to mid 1992 or 18 months, then $\$ 1,500 / \mathrm{mo}$, through 1994 .
$\$ 5,000 \times 18 \mathrm{mo}=\$ 90,000$ $\$ 1,500 \times 30$ mo.
=
$\$ 45,000$
G. Legal and Technical Consulting.

Est. $\$ 10,000 / \mathrm{Yr}, \mathrm{X} 4$ Years
$=$
$\$ 40,000$
H. Equipment Mobllization.

Est, equifment mobilization (contractor)

Earthwork spread - mobilize 1992

Scrapers -	6	@	$\$ 400 /$ each X $1=\$ 2,400$	
D9H	3	@	$\$ 500 /$ each X $1=\$ 1,500$	
$140 G$ M.G.	2	@	$\$ 400 /$ each X $1=\$ 800$	
Water Truck	2	@	$\$ 200 /$ each X $1=\$ 400$	
Compactor	1	@	$\$ 400 /$ each X $1=\$ 400$	
Subtotal				$\$ 5,500$

Drills \& Compressors	2	(\$400	$=$	\$	800
Grizzly	1	(e)	\$700	$=$	\$	700
Crushing Plant	1	e	\$2,400	$=$, 400
D9H Dozer	1	(1)	\$500	$=$	\$	500
988 Loader	1	e	\$500	$=$	\$	500
Trucks	7	e	\$200	$=$, 400
140 G Motor Grader	1	(e)	\$400	$=$	\$	400
Truck scale	1	(e)	\$900	=	\$	900
235 Backhoe	1	(e)	\$500	$=$	$\$$	500
Subtotal						, 100

Est. Total Mobilization

Subtotal Section 6. Project Management and Miscellaneous

7. Labor and Equipment Overhead, Contractor Profit

The labor and equipment overhead and contractor profit are included in the labor and equipment rates used. Rates are developed in the Appendix.

Summary of closure cost:

1. Facility Decommissioning
2. Groundwater Restoration and Well Plugging
3. Interim Stabillzation of Tailings
4. Tailings Impoundment Area Reclamation
5. Radiological Survey and Environmental Monitoring
6. Project Management and Miscellarieous
7. Labor and Equipment Overhead, Contractor Profit Included in rates used.

Total closure cost for reclamation
$\$ 30,652$
111,309
Completed
2,042,059
171,355
832,900
-.-......

$\$ 3,188,275$
8. Long Term Surveillance and Control Fee based on October 1989 CPI

$\$ 250,000$ in 1978 dollars

Using the 1982 base CPI, October $1989=125.6$ December 1978 = 67.7 $125.6 / 67.7=1.855$
$\$ 250,000 \times 1.855=$
9. Contingencies
A. Engineering Contingency.

Reclamation cost estimate $\$ 3,188,275$
$15 \% \times \$ 3,188,275=$
B. Contract Administration Contingency.
$10 \% \times \$ 3,188,275=$
\$ 318,828

Estimated Total Bond Cost Items 1 thorough 9
10. Adjustments for Inflation based on October 1990 CPI

Adjustment for inflation by using the 1982 base CPI,
October $1990=133.5$
October $1989=125.6$
$133.5 / 125.6=1.063$
$\$ 4,449,094 \times 1.063=\$ 4,729,387$
Amount to be bonded $=$
$\$ 4,729,387$

APPENDIX

A. Equipment and Labor Costs

Equipment proposals for three Petrotomics Company projects, bid in 1988 and 1989, were analyzed to determine estimated equipment rates for completion of the reclamation work. The high bidder for each project was eliminated. Remaining bid rates for like units among twelve proposals were averaged to yield conservative rates. Equipment rates shown include ownership costs, operation, maintenance, supervision, overhead and profit. The rates determined on this basis are:

Cat 631 Scraper	Hourly Rate
Cat 627 Scraper	$\$ 124.00$
Cat D9H Dozer/Rip	107.00
Cat D7G Dozer/Rip	105.00
Cat 140G Motor Grader	81.00
Water Truck - 4000 gal.	67.00
Cat 815 Compactor	40.00
Dump Truck $10-12 \mathrm{CY}$	60.00

A sim_ar analysis of labor rate bids results in the following labor rates, which include wages, payroll tax and insurance, transportation, overhead and profit:

Classification
Foreman
Operator
Truck Driver
Laborer

Hourly Rate
$\$ 18.00$
16.40

Rates for equipment units other than shown above are estimated based on the Cost Reference Guide For Construction Equipment, 1982. "Total llourly Costs" from the guide are increased by 15% for contractor overhead and profit, and the appropriate operating labor cost above is added. Comparison of these rates with the current average bid rates shown above for the major equipment (Scrapers, D9H dozer, and trucks) shows that current bid rates are about 10 to 20 percent less than the adjusted Cost Reference Guide rates. The support equipment bid rates approach or exceed the adjusted cost Reference Guide rates, from slightly less for the compactor to about 25% more for the water truck. Since production equipment spreads are heavily weighted with the major equipment, estimated costs on the 1982 Cost Reference Guide basis for equipment for which current bids are not available are believed to yleld conservative values. These rates are as follows:

	CRG Total $\mathrm{Hr}, \mathrm{Cos} \mathrm{t}$	Contr. $\mathrm{OH} \& \mathrm{P}$ - 15%	Operating labor \qquad	Total	Est. Hrly, Rate
Cat 235 Backhoe	\$84.70	\$12.71	\$16.40	\$113.81	\$114
Cat 988 Loader	\$102.22	\$15.33	\$16.40	\$133.95	\$134
Tractor-Hwy					
80 M GVW	\$25.19				
Trailer-					
Rear dump-21CY	$\$ 9.09$	\$5,14	\$14	\$53.65	
Air Trac (12)	\$14.07				
$21 / 2^{\prime \prime}-4$ "drill	\$ 3.82				
600 cfm Cmpr.	\$33.13				
Subtotal	\$51.02				
Bits \& Steel-					
Est, \$0,12/ft					
25'/hour	\$ 3,00				
Total	\$54.02	\$8.10		\$62.12	\$6
Crushing Plant					
Cedarapids					
544 VS-M	\$94.86				
250 hp motor	\$ 9.24				
Total	\$104.10	\$15.62		\$119.72	\$120
Portable Screen Plant					
5'x 10' 3 deck	\$37.64				
Motor - allow	\$ 5.00				
Total	\$42.64	\$6.40		\$49.04	\$50
Grizzly	\$25.99				
Motor - allow	\$ 5.00				
Total	\$30.99	\$4.65		\$35.64	\$36
Generator Set - 200 KW					
Cat 3406 DITA	\$30.55	\$4,58		\$35.13	\$36
Truck Scales					
$10^{\prime} \mathrm{x}$ 60'Tandem					
60 ton	\$8.20	\$1.23	\$11.88	\$21.31	\$22

B. Reclamation Crews, Production Rates and Unit Costs

1. Facility Decommissioning

Demolish and bury buildings.

Crew:
1 Cat D9H
1 Cat 235 /Backhoe
2 Laborers © $\$ 11.88$ each
Small tools - est. 10\% labor cost Total

Hourly Cost
$\$ 105.00$
$\$ 114.00$
$\$ 23.76$
$\$ \quad 2,38$
$\$ 245.14 / \mathrm{Hr}$.

Production rate estimate - 3,000 CF per hour
Est, unit cost $\$ 245.14 / 3,000 \mathrm{CF} / \mathrm{Hr}=\$ 0.082$ per CF

Light building foundation demolition.
Demolition crew item 1 . $\$ 245.14 / \mathrm{Hr}$.
Less - Cat 235 Backhoe
Total
<114.00?
$\$ 131.14 / \mathrm{Hr}$.

Production rate estimate - $2,500 \mathrm{SF}$ per Hr ,
Est. unit cost $\$ 131,14 / 2,500 \mathrm{SF} / \mathrm{Hr}=\$ 0,052$ per SF

Removal of electrical power distribution system.
Cost estimate obtained by personal contact with local (Casper, Wyoming) electrical contractor, January, 1990 ,

Remove electrical power distribution system - unit cost - $\$ 0.85 / \mathrm{LF}$
2. Ground-Water Restoration and Well Plugging,

Install wells:

```
Uppor sand wells - depth est. 220 LF each
    Drill, case and develop:
    Drilling rates for Petrotomics in 1988 and 1989 ranged
    from $92/Hr}\mathrm{ , to $ $125/Hr
```

$$
\begin{aligned}
& \text { Est, Drilling contractor } \$ 125 / \mathrm{Hr} \text {, } \\
& \text { Overall production - Est, } 20 \mathrm{LF} / \mathrm{Hr} \text {. } \\
& \text { Cost per well - Est, } 11 \text { hours } \$ 125= \\
& \text { \$1,375/well } \\
& \text { Casing, sand, bentonite \& supplies } \\
& \text { Est. \$3.50/LF X } 220= \\
& = \\
& \text { \& 770/well } \\
& \text { Pumps, piping, \& installation supplies: } \\
& \text { Install pumps and piping: } \\
& \text { Est, } 1 \text { electrician \& } 1 \text { labor - } 5 \text { hours } \\
& \$ 35 / \mathrm{Hr},+\$ 11.88 / \mathrm{Hr}=\$ 46.88 / \mathrm{Hr} \text {. } \\
& \text { Est, total per upper sand well }
\end{aligned}
$$

Well and enhanced evaporation operation and maintenance:
Operation and maintenance labor.
1 laborer@ $\$ 11.88 / \mathrm{Hr}$, - Est, one-half time $\$ 11.88 \times 0.5 \times 176 \mathrm{Hr} . / \mathrm{Mth} . \mathrm{X} 12 \mathrm{Mth} / \mathrm{Yr},=\$ 12,545 / \mathrm{Yr}$.

1 electrician @ $\$ 35 / \mathrm{Hr}$, - Est. 1 day $/ \mathrm{Mth}$.
$8 \mathrm{\| r}$./day +2 hours travel

Well pumps - replace
Tailings - Est. 50\%/Yr, - 12 wells $6 \mathrm{X} \$ 300=\$ 1,800 / \mathrm{Yr}$. Upper Sand - Est. $25 \% / \mathrm{Yr},-8$ wells $2 \times \$ 850$ Pump replacement
$=\frac{\$ 1,700 / \mathrm{Xr}_{1}}{\$ 3,500 / \mathrm{Yr} .}$

Enhanced evaporation system
Pump - 60 HP 480 v
Equipment Cost Quide $-1982=\$ 5.59 / \mathrm{Hr}$.
Less electrical power \$<2.01)
Est. cost/Hr. $\$ 3.58 / \mathrm{Hr}$.
Est. 8 months/Yr, $24 \mathrm{Hr}, / \mathrm{day}$ $24 \mathrm{Hr}, \mathrm{X} 30 \mathrm{X} 8 \mathrm{Mths},=5,760 \mathrm{Hr}, / \mathrm{Yr}$. $5,760 \mathrm{Hr}, / \mathrm{Yr}, \mathrm{X} \$ 3,58 / \mathrm{Hr}, \quad=\$ 20,621 / \mathrm{Yr}$,

Small tools and supplies Est. 10\% of labor
$0.10 \times \$ 16,745=\$ 1,675 / \mathrm{Yr}_{\mathrm{C}}$
Est, total unit cost $\$ 42,541 / \mathrm{Yr}$.

Verification sample analysis

```
Sample 25 wells
    Est. 3-10 hour days for 25 wells
    Technician - $35/Hr, X 30 Hrs, =$ 1,050
    Vehicle - Est, $0,40/mile + $40/day
    ($0.40 < 130 miles + $40) X 3 days =$ 276
    Supplies - Est. $ 100
    Laboratory analysis © $224/sample
    L5 samples X $224/sample 
    Est, total unit cost/sample period
    $7,026 / 25 samples = $ 281.04
```

Well plugging

Drilling Contractor - ream and plug hole Production rate - Est. $50^{\prime} / \mathrm{Hr}$.
Cost Est, $\$ 100 / \mathrm{Hr}$, plus bits, plus mud
from communication with local (Casper, Wyoming) drilling contractors - January 1990.

```
Estimated unit cost - 51 holes - 5,960 LF
    Ream - $100/Hr, / 50'/Hr, = $ 2.00/LF
    Bit cost - 800%/bit, $120/bit
    $120/bit / 800'/bit = $0.15/LF
    Drilling mud - Est, 223 bags
    223 bags X $5.25/bag = $1,171
    Abandonment mud - Est. 60 bags
    60 bags X $6.75/bag $ $ 405
    Backhoe ( 1/2 CY)
    0.5 Hr./hole@ $26/Hr.
    l}\begin{array}{l}{0,5 Hr, X $26/Hr, X 51 holes = $ %63}\\{\mathrm{ Subtotal }}
    Est,., unit cost per LF
    $2,239 / 5,960 LF =$0.38/LF
    Est, total unit cost
= $0.38/LF
```

4. Tailings Impoundment Area Reclamation

Earthwork

```
Tailings excavation and shaping - 57,000 CY
    Use 631 scraper crew
    Haul distance 1,200 feet
    Grade - Est. 3%
    Rolling resistance equivalent - Est, 3%
    Cycle time data from Caterpillar - Performance
    Handbook, Edition No. 11
```

 Cycle time: Minutes
 Load \(\quad 0.7\)
 Haul \(\quad 3 \%+3 \%=6 \quad 1.2\)
 Return \(3 \%-3 \%=0 \quad 0.6\)
 Dump \& turn \(\quad \frac{0.7}{3.2}\)
 Efficiency adjustment - use 50 minute hour
 Efficiency adjustment - 1 imit D9H to 50 pushes/Hr.
 \(50 / 3.2=15.5\) loads \(/\) scraper \(/ \mathrm{Hr}\).
 \(50 \mathrm{pph} / 15.6=3.2\) scrapers - use 3
 Scraper yield. Est. struck capacity \(=21 \mathrm{CY} / 10\) ad
 Hourly production
 3 scrapers X 15,6 loads \(/ \mathrm{Hr}, \mathrm{X} 21 \mathrm{CY}=983 \mathrm{CY} / \mathrm{Hr}\).
 Crew:
 | $3-631$ scraper @ $\$ 124 / \mathrm{Hr}$, | $=\$ 372 / \mathrm{Hr}$, |
| :--- | :--- |
| $1-\mathrm{D} 9 \mathrm{H} @ \$ 105 / \mathrm{Hr}$, | $=\$ 105 / \mathrm{Hr}$, |
| $1-140 \mathrm{G}$ Motor Grader @ $\$ 67 / \mathrm{Hr}$. | $=\$ 67 / \mathrm{Hr}$, |
| $1 / 2-$ Water Truck $\$ 40 / \mathrm{Hr}$. | $=\$ 20 / \mathrm{Hr}$, |
| Total hourly cost | $\$ 564 / \mathrm{Hr}$, |

Estimated unit cost $\$ 564 / \mathrm{Hr}, / 983 \mathrm{CY} / \mathrm{Hr}$.
$=\$ 0.57 / \mathrm{CY}$
The remaining estimated unit costs for scraper crew hauls were developed in a similar manner. Crews, haul characteristics, production and unit costs are summarized in Table B,4-1.

Regrade and recompact clay surface
Use Cat 815 Compactor, 140 G Blade and 4,000 Gallon Water Truck
Compactor performance from the Caterpillar - Performance Handbook, Edition No. 11

Compactor yield 0.5^{\prime} layer is $616 \mathrm{CY} / \mathrm{Hr}$, compacted Efficiency adjustment - use 50 minute hour $=513 \mathrm{CY} / \mathrm{Hr}$. Requires 70 additional hours of 140 G blade to scarify, grade and regrade.
Used one 4,000 gallon water truck for moisture control and dust abatement onerhalf of the time.
The total quantity of $117,000 \mathrm{CY}$ is used to calculate the total equipment hours required.

Crew:

Dam outslope shaping.
Shaping the existing tailings dam is estimated utilizing Cat D9H dozers, Using the Caterpillar - Performance Handbook, Edition No. 11 yields the following production;

Cat D911 production for a dozed distance of 200 feet is 640 $\mathrm{LCY} / \mathrm{Hr}$.

Correction factors are:

30% swell	$=0.769$	
Hard packed clay	$=0.80$	
Grade correction	$=1.10$	
Average operator	$=0.75$	
Jobefficiency		$=0.833$

Therefore:
$640 \mathrm{LCY} / \mathrm{Hr}, \mathrm{X} 0.769 \times 0.80 \times 1.10 \times 0.75 \times 0.833=271 \mathrm{BCY} / \mathrm{Hr}$ 3 dozers X $271 \mathrm{CY} / \mathrm{Hr} . \quad=813 \mathrm{CY} / \mathrm{Hr}$.

IIE/4	Est. quantily M CY	Haul Length	PRRCENT GHADE	$\begin{aligned} & \text { Cycle } \\ & \text { Tise } \\ & \text { Minutes } \end{aligned}$
Tailing Exc. A Shapines	57,00	$1,200.00$	3.00	3.20
Outside ExC. Clonitup	143.00	2,000.00	2.00	3.90
Borrow to Complete Shapins	50.00	1,840,00	-1.00	3.40
Olay Cover 61 Ca	343.00	2,900,00	-1.00	4.20
Regrate a Recoupact Olay Surface	117.00	0.00	0.00	
Silty-nand Cover 62 ca	476.00	3,800,00	1.00	4. 80
Topsoil, Top of Taitings 25 Ca .	182,00	2,720,00	1.00	4,40
Dax butslope Shapine	532,00	200.00	-12.00	
Fati Dramaner Banion	108.00	900.00	-5.00	2.75
Eand o Keat Dusw Charuets	22.90	1,500,00	1.00	3.20
*orth Chamme 1	87.00	1,200,00	-1.00	3.10
5. H. Chaturel	34.00	1,000.00	-1.00	2.65
Romove Toprso i 1 - Dan Face \& Below	46.00	1,100,00	-10.00	2,80
Keplane Topsosil + Dase Outstope	40.00	1.100 .00	5.00	3.30
R(woye a Keplace Toprosil Draiface Arwas	176.00	600.00	0.00	2.35
	115.00	5,000,00	0.00	6.10
Mill bite clay Cover and office Cover	21.00	975.00	-1.00	2.60

3.00	1.00	1.00	0.50		564,00	883.00	0.57
3:00	1.00	1.00	1.00		584.00	807.00	0.72
3.00	1.00	1.00	1.00		584.00	927.00	0,63
4.00	1.00	1.00	1.00	1.00	768.00	1,000.00	0.77
0.00	0.00	298 Hr .	114 Hr	228 Hr .			0.33
4.00	1.00	1.00	1.00	1.00	768,00	874.00	0.88
4.00	1.00	1.25	1.00		725.00	954.00	0.76
3.20	3.00	1.00			382,00	813.00	0.47
2.00	1.00	1.00	1.00		460.00	764.00	0.60
3.00	1.00	1.00	1.00		$58.84,00$	985.00	0.59
3.00	1.00	2.00	2.00		681.00	1.016.00	0.65
2,00	1.00	2.00	2.00		567,00	842.00	0.67
2.00	1.00	1,00	1.00		460.00	750,00	0.61
3.00	1.00	1.00	1. 00		584.00	955.00	0.61
2.00	1.00	1.00	1.00		460.00	894.00	0.51
5.00	1.00	1.00	1.00		832.00	861.00	0.97
2.00	1.00	1.00	1.00		460,00	807.00	0.57

401150232-al

Crew:

3 -Cat D9H Dozerse $\$ 105 / \mathrm{Hr}$,	$=\$ 315 / \mathrm{Hr}$,	
1 -Cat 140 G Blade $\$ 67 / \mathrm{Hr}$,	$=\$ \frac{67 / \mathrm{Hr},}{}$ Total	$\$ 382 / \mathrm{Hr}$,

Est, unit cost of $\$ 332 / \mathrm{Hr}, / 813 \mathrm{CY} / \mathrm{Hr} .=\$ 0.47$

Revegetation of disturbed areas.

```
Shallow ripping (scarification)
    Est. cost per acre -
$ 74
    The shallow ripping cost is the average
    of ilve bids for State of Wyoming
    Abandoned Mine Land Project #13, Shirley
    Basin, Wyoming, for performance in 1989.
```

Disking
Est. cost per acre - \$ 50
The disking cost is the contract rate from
Petrotomics site for fall 1989 work.
Seeding
Est. cost per acre - \$ 50
The seeding cost is the contract rate
from Petrotomics site for fall 1989 work.
Seed Cost
Est. cost per acre - \$137
The cost for seed is that used in the
State of Wyoming Mine Permit Surety,
Due to seasonal variations in prices
this value is higher than fall 1989
actual seed costs.
Est, total unit cost for revegetation

Riprap/rock armor
Est, total $34,600 \mathrm{CY}$ required
Drill and Blast
Est, drille $5^{\prime \prime} / \mathrm{min}$, rate
Efficiency adjustment - use 54 min hour
Allow for load and blast delays and equipment availability:
Est. total 20\% reduction for average rate per hour.
$0.42^{\prime} / \mathrm{min} \mathrm{X} 60 \mathrm{~min} / \mathrm{Hr}, \mathrm{X} 0.80=20.2 \mathrm{Ft} / \mathrm{Hr}$,
Est. pattern - 6.5 ${ }^{\prime} \times 6.5^{\prime}=1.56 \mathrm{BCY} / \mathrm{Ft}$
Est. swell factor $1 / .75=1.33$
$1.56 \mathrm{CY} / \mathrm{Ft} \mathrm{X} \mathrm{1.33}=2.07$ in place CY/Ft
Allow 5\% not usable $2.07 \mathrm{X} .95=1.97$ in place $\mathrm{CY} / \mathrm{Ft}$
$1.97 \mathrm{CY} / \mathrm{Ft} \mathrm{X} 20.2 \mathrm{Ft} / \mathrm{Hr}=39.7$ in place $\mathrm{CY} / \mathrm{Hr}$.

Estimate using 2 drills:
Production: 2 drills X $39.7 \mathrm{CY} / \mathrm{Hr}=79.4$ in place $\mathrm{CY} / \mathrm{Hr}$.

Crew:
$\mathrm{Cost} / \mathrm{Hr}$.
2 Air Trac \& compressor @ $\$ 63 / \mathrm{Hr}=\$ 126.00$
drillers
e $\$ 16.40 / \mathrm{Hr}$.
$=\$ 32.80$
2 helpers $\$ 11.88 / \mathrm{Hr}$.
$=\$ 23.76$
Blasting supplies:
Est. $\$ 0.30 / \mathrm{BCY} \times 62.7 \mathrm{BCY} / \mathrm{Hr},=\$ 18.81$
Est, total
Est, unit cost $=\$ 201.37 / \mathrm{Hr}, / 79.4$ in place CY/Hr. Est, unit cost $=\$ 2.54 / \mathrm{CY}$

Crush and Screen

Riprap and coarse filter - $14,000 \mathrm{CY}$, will nec lequire crushing.

Est. $165 \mathrm{lbs} / \mathrm{BCF} X 0.75=123.75 \mathrm{lbs} / \mathrm{in}$ place CF or 1.67 tons/in place CY

Separate materials through grizzly @ 300 tons/! 1 r , 300 tons $/ \mathrm{Hr}, / 1.67$ tons $/$ in place $\mathrm{CY}=179.6 \mathrm{CY} / \mathrm{Hr}$. Efficiency factor 85\% $0.85 \times 179.6 \mathrm{CY} / \mathrm{Hr}=153$ in place $\mathrm{CY} / \mathrm{Hr}$.

Est. one D9 Dozer and one 988 Loader sorting and stockpiling from blasting to Grizzly and from Grizzly to product areas.
Est. $120 \mathrm{CY} / \mathrm{HR}$.
Net $60 \mathrm{CY} / \mathrm{Hr}$.
60 CY/ - 3 in place $C Y / H r=0.39$ Grizzly operation factor.

Crew:
1 Grizzly @ $\$ 36 / \mathrm{Hr}, \mathrm{X} 0.39 \mathrm{~m} 14.04$
1 Generator Set @ $\$ 36 / \mathrm{HR}, \mathrm{X} 0.39=\$ 14.04$
1 Foreman $@ \$ 18 / \mathrm{Hr} \times 0.39=\$ 7.02$
1 Operator@ $\$ 16.40 / \mathrm{Hr}, \mathrm{X} 0.39 \mathrm{~F}$. 6.40
1 Oiler@ $\$ 14.23 / \mathrm{Hr}, \mathrm{X} 0.39=\$ 5.55$
1 Laborer © $\$ 11.88 / \mathrm{Hr}$. X $0.39=\$ 4.63$
1 D9H Dozer @ $\$ 105 / \mathrm{Hr}$. $=\$ 105.00$
1988 Loader @ $\$ 134 / \mathrm{Hr}$. $=\$ 134.00$
Est. Total $\$ 290.68$
Est. unit cost $-\$ 290.68 / 60 \mathrm{CY} / \mathrm{Hr}=\$ 4.84 / \mathrm{CY}$

Rock Armor - $10,100 \mathrm{CY}$
Est. 123.75 lbs/CF in place or 1.67 tons/in place CY Est. production through crushing plante145 ton/Hr, 145 tons/ $11 \mathrm{r}, / 1.67$ tons/in place $\mathrm{CY}=86.8 \mathrm{CY} / \mathrm{Hr}$. Efficiency factor $=85 \%$ $86.8 \mathrm{CY} / \mathrm{Hr}, \mathrm{X} 0.85=74$ in place $\mathrm{CY} / \mathrm{Hr}$, Estimate 1.5 D9's and $1.5988^{\prime} \mathrm{s}$ sorting, stockpiling, ieeding, tramming finished product.

Crew:
1 Crushing Plant nerator Set
eman

1 operator
1 Oiler
1 Laborer
1.5 D9H Dozer@ $\$ 105 / \mathrm{Hr}$.
. 5988 Loader @ $\$ 134 / 11 \mathrm{r}$.
Est. Total
$\frac{\operatorname{Cos} t / H r}{\$ 120,00}$.
$=\$ 120.00$
$=\$ 36.00$
$=\$ 18.00$
$=\$ 16.40$
$=\$ 14.23$
$=\$ 11.88$
$=\$ 157.50$
$=\$ 201.00$
$\$ 575.01 / \mathrm{Hr}$.

Est. unit cost - $\$ 575.01 / \mathrm{Hr}, / 74 \mathrm{CY} / \mathrm{Hr}=\$ 7.77 / \mathrm{CY}$

Fine filter - $10,500 \mathrm{CY}$
Est. $128.7 \mathrm{lbs} / \mathrm{CF}$ in place or 1.74 tons/in place CY Est, production through crushing plant e 90 tons $/ \mathrm{Hr}$. 90 tons/Hr, / 1.74 tons/in place $\mathrm{CY}=51.7 \mathrm{CY} / \mathrm{Hr}$. Efficiency factor $=85 \%$
$51.7 \mathrm{CY} / \mathrm{Hr}, \mathrm{X} 0.85=44$ in place $\mathrm{CY} / \mathrm{Hr}$.
Estimated, 85 D9's and .85988 's feeding \& tramming
Crew:
1 Crushing Plant
Cost/ $/ \mathrm{Hr}$.
1 Generator Set
$\$ 120.00$
1 Foreman $=\$ 36.00$
1 Operator
$\$ 18.00$
$\$ 16.40$
1 Oiler
$\$ 14.23$
1 liaborer
\$ 11.88
.85 D 9 H Dozer @ $\$ 105 / \mathrm{Hr}$.
\$ 89.25
.85988 Loader @ $\$ 134 / \mathrm{Hr}$.
Est. Total
$\$ 113.90$
$\$ 419.66$

Est. unit cost - $\$ 419.66 / \mathrm{Hr}, / 44 \mathrm{CY} / \mathrm{Hr}=\$ 9.54 / \mathrm{CY}$

Haul and Place
All materials estimated at the same rate of production.
Fist. 34,600 CY required,
Est. truck cyole time for round trip of 31 miles
equals 1.34 hours at 90% efficiency.
Est. trucks haul $14 \mathrm{CY} / \mathrm{cycle}$

```
    14 CY/cycle / 1.34 hours = 10.45 cY/Hr.
    Est, 7 trucks used for haul
    Production = 10.45 CY/Hr, X 7 trucks = 73.15 cY/Hr.
    Use 1.1 blade and water truck for haul road maintenance
    . 20 backhoe and , 30 blade for placement.
    Crew:
7rucks $54
Scale $22
    1.1 Blade e $67
    1.1 Water Truck * 40
.2 Backhoe @ $114
.3 Blade e $67
Est. Total
Cost/Hr.
= $378.00
= $22.00
=$ $3.70
$ 44.00
$ 22.80
$ 20.10
Est, unit cost = $560.60/Hr./ 73.15 CY/Hr. = $7.66/\textrm{CY}
```

Royalty
All materials estimated at the rate of $\$ 1.50 / \mathrm{CY}$.
5. Radioiogical Survey and Environmental Monitoring

Prices used for technician, vehicle, mileage, and analysis are based upon current prices charged by a local (Casper, Wyoming) consultant laboratory from their December, 1989 price list.

Soil samples for Radium

```
25 samples X $30/sample = $900
Technician@ $35/Hr.
Est. 2 days ampling
    2 days X 10 Hr,/day X $35/Hr, = $700
    vehicle $0.40/mıle + $40/day
    ($0,40/mi, X X 130 mi, + $40/day) X 2 trips = $ $1,784
    ($0,40/mi, X 130 mi, + $40/day) X 2 trips = $ $ $184
    Est. unit cost $1,784/25 samples = $71.36/sample
```

Decommissioning equipment and Building smear samples.
The Mill was decommissioned in 1985.

Gamma Survey
Tectinictan@ $\$ 35 / \mathrm{Hr}$.
Est. 10 days sampling (5 days initial,
5 days verification)
10 days X $10 \mathrm{Hr} . /$ day $\mathrm{X} \$ 35 / \mathrm{Hr} .=\$ 3,500$

vehicle $\$ 0.4 \mathrm{C} / \mathrm{mile}+\$ 40 /$ day
 $(\$ 0,40 / \mathrm{mi}, \mathrm{X} 130 \mathrm{mi},+\$ 40 / \mathrm{day}) \times 10$ trips $=\$ 920$
 Est. Total $\$ 4,420$
 Est. unit cost $-\$ 4,420 / 2$ surveys $=\$ 2,210 /$ survey

 Environmental Monitoring

 Environmental Monitoring}

Monitoring performed according to the requirements in License Condition 41 and 47 .

Ait Sampling - one site
One site sampled quarterly
Quarterly analysis of radionuclides $=\$ 131 / \mathrm{gr}$.
Est, one trip per month by techaician On site personsl will check sempler Technician@ $\$ 30 / \mathrm{Hr}$.
Est. 3 days'quarter 3 days X $3 \mathrm{Hr}, /$ day $\mathrm{X} \$ 30 / \mathrm{Hr}=\$ 270 / \mathrm{gr}$, vehicle $\$ 0.40 / \mathrm{mile}+\$ 40 /$ day ($\$ 0.40 / \mathrm{mi}, \mathrm{X} 130 \mathrm{mi},+\$ 40 / \mathrm{dey} ;$ $X 3$ trips $=$ Est. Total
$\$ \quad 276$
$\$ \quad 677$
Est. unit cost $=\$ 677 / \mathrm{samp}{ }^{3}$ e
Radon Sampling - two sites
2 sites sampled quarterly
Transportation and technician cost
included in Air Sampling.
Cost $\$ 70 \times 2=\$ 140 / \mathrm{qr}$.
Unit cost $\$ 70 /$ sample
Groundwater
Groundwater is sampled at 25 locations on a quarLerly basis according to License Condition 41 and 47. Cost of analysis is taken directly from a price sheet of a local laboratory,

25 locations sampled quarterly
Quarterly analysis of constituents $=\$ 7,672 / \mathrm{gr}$.
Est, three trips per quarter by technician
Technician e $\$ 35 / \mathrm{Hr}$.
Est. 3 days/quarter
3 days X $10 \mathrm{Hr}, /$ day $X \$ 35 / \mathrm{Hr}=\$ 1,050 / \mathrm{qr}$,
vehicle $\$ 0.40 / \mathrm{mile}+\$ 40 /$ day
($\$ 0,40 / \mathrm{mi}, \mathrm{X} 130 \mathrm{mi},+\$ 40 / \mathrm{day})$
X 3 trips $=$
Est. Total
$\$ \quad 276 / 9 r$.
$\$ 8,998 / \mathrm{qr}$.

```
    $8,998/qr, / 25 samples/qr, =$359,92/8ample
    Est, unit cost =$359,92/sample
    25 locations sampled annually
    Annusl analysis of constituents = % $8,872/qr
    Est, three trips per quarter by technician
    Technician $35/Hr,
    Est. 3 days/quarter
    3 days X 10 Hr,/day X $35/Hr, = $1,050/qr.
vehicle $0,40/mile + $40/day
($0,40/mi, X 130 mi, + $40/day)
X 3 trips =
    &.276/gr,
Est. Total $10,198/gr,
$10,198/gr, / 25 samples/gr. = $407.92/sample
Est, unit cost = $407,92 /sample
```

Surface Water
1 location sampled quarterly
Quarterly analysis of constituents $=\$ 161 / \mathrm{qr}$.
Transportation and technician included
in cost of Groundwater sampling,
Est, unit cost $=\$ 161 /$ sample
Direct Radiation
2 locations sampled quarterly,
Unit cost of sample $\$ 22.35$

REFERENCES

Cedarapids, Incorporated, 1985, Eleventh Edition. Pocket Reference Book. Form $11060-\mathrm{CR}$-Rev, 7-85. Cedar Rapids, 1nc, 916165 S . NE, Cedar Rapids, IA 52402

Caterpillar Tractor Company, October 1980, Edition Eleven. Caterpillar Performance Handbook. Caterpillar Tractor Company, Peoria, IL

Equipment Industry Services of Nielsen/DATAQUEST, Inc. 1982. Cost Reference Guide for Construction Equipment. Nielson/DATAQUEST, Inc, 2800 West Bayshore Rd., Palo Alto, CA 94303

