PRESSURE-TEMPERATURE CURVES PER
 REGULATORY GUIDE 1.99 , REVISION 2
 FOR THE OYSTER OREEK
 nuclear aenerating station

Prepared by:

Materials Monitoring \&
Structural Analysis Services

Materials Monitoring \&
Structural Analysis Services

IMPORTANT NOTICE REGARDING

This report was prepared by the General Electric company. The information contained in this report is believed by General Eleotric to be an acourate and true representation of the facts known, obtained or provided to General Electric at the time this report was prepared

The only undertakings of the General Electric company respecting information in this document are contained in the contract between the customer and the General Electric Company, as identified in the purchase order for this report, and nothing contained in this wocument shall be construed as changine said contract. The use of this information except as defined by said contract, or for any purpose other than that for which it is intended, is not authorized; and with respect to any such unauthorized use, neither General Electric Company nor any of the contributors to this document makes any representation or warranty (express or implied) a a to the completeness accuracy or usefulness of the information contained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from such use of such information.

TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1.1
2.0 INITIAL REFERENCE TEMPERATURES $2 \cdot 1$
3.0 ADJUSTED REFERENCE TEMPERATURES FOR BELTLINE 3.1
3.1 Rev 2 Methods 3.1
3.2 Limiting Beltline Material $3 \cdot 1$
3.2.1 Chemistry 3-2
3.2.2 Fluence 3.2
3.3 ART vs EFPY 3. 3
4.0 PRESSURE-TEMPERATURE CURVES 4.1
4.1 Background $4 \cdot 1$
4. 2 Non-Beltline Regions $4 \cdot 1$
4.2.1 Non-Beltline Monitoring During 4. 3
Pressure Tests
4.3 Core Beltine Region 4-4
4.4 Closure Flange Region 4-5
4.5 Core Critical Operation Requirements of 4.6
10CFR50 Appendix G
5.0 REFERENCES $5 \cdot 1$
APPENDICES
A CHARPY CURVES OF SELECTED VESSEL PLATES A-1
B BELTLINE P-T CURVE CALCULATION METHOD B-1
C IMPACT ON P-T CURVES OF HEATUP/COOLDOWN RATE C-1

1.0 INTRODUCTION

The pressure-temperature ($\mathrm{P} \cdot \mathrm{T}$) curves in the Technical Specifications are established to the requirements of $10 C F R 50$, Appendix $G[1]$ to assure that brittle fracture of the reactor vessel is prevented. Part of the analysis involved in developing the $P \cdot T$ curves is to account for irradiation embrittlement effects in the core region, or beltline. The method used to account for irradiation embrittlement is described in Regulatory Guide 1.99, Revision 2 (2), or Rev 2.

In addition to beltiine considerations, there are non beltilne disoontinuity limits at nozzles, penetrations and flanges which affect the P.T curves. The non-beltilne limits are based on generic t alyses which are adjusted to the maximum reference temperature ($\mathrm{RT}_{\mathrm{NDT}}$) fo: the applicable Oyster Creek vessel components. The non-beltline limits are also governed by requirements in $[1]$, based on the closure flange region RTNDT,

This report presents P-T curves incorporating irradiation effects for the beltine per Rev 2 and appropriate non-beltline limits. The curves have been developed to present steam dome pressure versus minimum vessel metal temperature. In addition, a refinement has been made which may minimize heating requirements prior to pressure testing, specifically:

A curve has been included to allow monitoring of the non-beltine regions of the vessel, such as the bottom head, separate from the beltline

The report contains a description of the methods used to calculate P.T Linics and has example calculations for the v ssel beltine for pressure testing and heatup/cooldorm conditions

Temperature monitoring requirements and metheds are available in GE Services Information Letter $(S, L\rangle 430$. The specific issue oi maintaining a heatup or cooldown rate of $100^{\circ} \mathrm{F} / \mathrm{hr}$, as it relates to the P.T curves, is discussed in this report.

2. Ω INITIAL REFERENCE TEMPERATURES

In order to perform a complete analysis of the vessel P.T requirements, inftial RTNDT values are needed for all low alloy steel vessel components. The requirements for establishing the vessel component toughness per the ASME Code prior to 1972 are summarized as follows:
a. Test specimens shall be longitudinally oriented Charpy V-Notch specimens.
b. At the qualification test temperature (specified in vessel purchase specification, no impact test result shall be less than $25 \mathrm{ft} \cdot \mathrm{lb}$, and the average of three test results shall be at least $30 \mathrm{ft}-1 \mathrm{~b}$.
C. Pressure tests shall be conducted at a temperature at least $60^{\circ} \mathrm{F}$ above the qualification test temperatu e for the vessel materials.

The current requirements establish a $\mathrm{RT}_{\mathrm{NDT}}$ value, and are significantly different For plants constructed to the ASME Code after Summer 1972 the requirements are as follows:
a. Charpy V-Notch specimens shall be oriented normal to the rolling direction (transverse).
b. $\quad{ }^{R T} T_{N D T}$ is defined as the higher of the dropweight NDT or $60^{\circ} \mathrm{F}$ below the temperature at which Charpy V-Notch $50 \mathrm{ft}-1 \mathrm{~b}$ energy and 35 mils lateral expansion are met.
c. Bolt-up in preparation for a pressure test or normal operation shall be performed at or above the RTNDT or lowest service temperature (LST), whichever is greater.

10CFR O Appendix G states that for vessels constructed to a version of the ASME Code prior to the Summer 1972 Addendum, fracture toughness data and data analyses must be supplemented in an approved manner. GE has developed methods for analytically converting fracture toughness data for vessels constructed before 1972 to comply with current requirements. GE developed
these methots from date in WRC Bulletin 217 (3) and fros data co:lected to respend to NRC questions on FSAR subulttals in the late 1970s. The GE methods have not been generically spproved by the NRC, but they have been accepted on a case-by case basis in suhuittals by about 20 utilities. The data used in developing the GE methods cover A533 plate material and submerged aro and shielded metal arc welds. Since the oyster Creek vessel plates are 3028 mate ial, some $s L_{f}$ femental evaluation of $\mathrm{KT}_{\mathrm{NDT}}$ has been done in this report on some of the vessel plates. These methods and example RTNDT calculations for vessel plate, weld, weld HAZ, forging, and buiting material are summarized ift the remainder of this section. Calculated RTNDT values for selected RPV locations are given in Table 2.1 .

For vessel plate material, the first step in calculating RTNDT is to establish the $50 \mathrm{ft} \cdot \mathrm{lb}$ transverse test temperature from longitudinal test specimen data. There are typically three energy values at a given test temperature. The lowest energy Charpy value is adjusted by adding $2^{\circ} \mathrm{F}$ per $\mathrm{ft}-1 \mathrm{~b}$ energy to $50 \mathrm{ft} \cdot \mathrm{lb}$. For example, for plate 0.309 .2 in the closure head, the tust temperature and lowest Charpy energy from Table 2.1 is $28,5 \mathrm{ft} \cdot 1 \mathrm{~b}$ at $+10^{\circ} \mathrm{F}$. The equivalent $50 \mathrm{ft}-1 \mathrm{~b}$ longitudinal test temperature is:

$$
\mathrm{T}_{50 \mathrm{~L}}=10^{\circ} \mathrm{F}+\left[(50-28.5) \mathrm{ft} \cdot 1 \mathrm{~b} * 2^{\circ} \mathrm{F} / \mathrm{ft} \cdot 2 \mathrm{~b}\right)=53^{\circ} \mathrm{F}
$$

The transition from longitudinal data to transvarse data is made by adding $30^{\circ} \mathrm{F}$ to the test temperature. In this case, the $50 \mathrm{ft} \cdot 1 \mathrm{~b}$ transverse Charpy test temperature is $T 50 T=83^{\circ} \mathrm{F}$. The RTNDT is the greater of NDT or (T50T . $60^{\circ} \mathrm{F}$). The value based on Charpy data, (T50T. $60^{\circ} \mathrm{F}$), is $23^{\circ} \mathrm{F}$. For Oyster Creek materials, dropweight testing to establish NDT was not performed, but NRC Branch Technical Position MTEB 5-2 [4] recommends that NDT be estimated as the $30 \mathrm{ft}-1 \mathrm{~b}$ Charpy test temperature, which in this case is $10^{\circ} \mathrm{F}$ Thus, the RTNDT for plate 6.309 .2 is $23^{\circ} \mathrm{F}$. Note that the conservative nature of estimating ThoT will always result in the estimated (T50T - $60^{\circ} \mathrm{F}$) value being higher than the estimated NDT,

Some of the 302 B plate materials used in the Oyster Creek vessel exhibit a rather low upper shelf energy (USE). Fortunately, there are full Charpy curves for these materials. In exanining the Charpy curves, it was found that the $2^{\prime} F$ per $f t-l b$ correction was not conservative for the materials with lower USE values. In these cases, the Charpy data were fit with a hyperbolic tangent relationship to determine the best.ostimate T50L. The standard deviation of the data relative to the curve-fit (by temperature) was calculated to serve as of for the beltline waterials. For non-beltifne materials, the value of $\mathrm{T}_{50 \mathrm{~L}}$ used to determine RTNDT was the besc-estimate value plus twice the standard deviation. Plots of the Charpy curves for all of the beltline plates and for the most limiting non-beltine plates with low USE are provided in Appendix A. The RTNDT values in Table $2 \cdot 1$ for these plates are based on the Appendix A curves.

For vessel weld material, the Cherpy V-Notch results are usually more imiting than dropweight results in establishing RTNDT. The $50 \mathrm{ft} \cdot \mathrm{lb}$ test temperature is established as for the plate material, but the $30^{\circ} \mathrm{F}$ adjustment to convert longitudinal data to transverse data is not applicable to weld metal. For example, weld heat 86054 B with flux $\operatorname{lot} 4 \mathrm{D} 4 \mathrm{~F}$ has a lowest Charpy energy of $29 \mathrm{ft} \cdot 1 \mathrm{~b}$ at $10^{\circ} \mathrm{F}$. The $2^{\circ} \mathrm{F}$ per $\mathrm{ft} \cdot 1 \mathrm{~b}$ adjustment gives a T 50 T value of $52^{\circ} \mathrm{F}$. The GE procedure requires that, when no NDT is avallable, the resulting $\mathrm{RT}_{\mathrm{NDT}}$ be $.50^{\circ} \mathrm{F}$ or higher. In this example, (T50T $\cdot 60^{\circ} r^{\circ}$) is $-8^{\circ} \mathrm{F}$, so the RTNDT is $-8^{\circ} \mathrm{F}$. Since the method of estimating RTNDT operates on the lowest Charpy energy value, and provides a conservative adjustment to the 50 $f t \cdot l b$ level, the value of of is taken to be $0^{\circ} \mathrm{F}$,

For the vessel weld HAZ material, the RTNDT is assumed to be the same as for the base material since ASME Code weld procedure qualification test requirements and post-weld heat treat data indicate this assumption is valid.

For vessel forging moterial, such as nozzles and closure flanges the method for establishing $R T N D T$ is the same as for vessel plate material. For the CRD return nozzle 0.319 , the lowest Charpy data at $40^{*} \mathrm{~F}$ is $25 \mathrm{ft} \cdot 1 \mathrm{~b}$. In this case, ($\left.\mathrm{T}_{50 \mathrm{~T}} \cdot 60^{\circ} \mathrm{F}\right)$ is $(40+(50-25) * 2+30-60)$, or $60^{\circ} \mathrm{F}$.

For bolting material, the current ASME Code requirements define the LST as the temperature at which transverse Charpy V-Notch energy of $45 \mathrm{ft} \cdot \mathrm{ib}$ and 25 ails lateral expansion (MLE) are schieved. If the required Charpy results are not met, or are not reported, but the Charpy V. Notch energy reported is above $30 \mathrm{ft}-1 \mathrm{~b}$, the requirements of the ASME Code at construction are spplied, namely that the $30 \mathrm{ft}-\mathrm{lb}$ test tempersture plus $60^{\circ} \mathrm{F}$ is the LST for the bolting materials. Charpy data for the studs did not meet the $45 \mathrm{ft}-1 \mathrm{~b}, 25$ MLE requirement, but $30 \mathrm{ft}-1 \mathrm{~b}$ energies were met at $10^{\circ} \mathrm{F}$. Therefore, the bolting material LST is $70^{\circ} \mathrm{F}$.

Tab1e 2-1
INITIAL RTNDT VALUES OF BELTLINE AND OTHER SELECTED RPV MATERIALS

-medreation	1 dent. Number	Heat Number	Test Temp. ('E)	$\begin{aligned} & \text { Charpy } \\ & \text { Energy } \\ & \text { (ft-1b.) } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{50 \mathrm{~T}^{-60}} \\ & \hline\left({ }^{\circ} \mathrm{E}\right) \\ & \hline \end{aligned}$	$\begin{gathered} o_{1} \\ \left.d^{*} F\right) \end{gathered}$	$\begin{aligned} & { }^{R T} \mathrm{NDT}^{2} \\ & \left.\mathbf{C}^{6} \mathrm{~F}\right) \\ & \hline \end{aligned}$
Be1tilne:							
Lower Shell Plates	Q.307.1	T1937.2	860	App. A	30	12.6	(a)
	Q.308.1	1193\% 1	see	ApF, A	21	14.2	(a)
	$6 \cdot 307 \cdot 5$	P2076.2	see	APP, A	3	13.9	(a)
Lower Intermediate	6.8.7	P2161-1	see	App. A	17	10.7	(b)
Shell Plates	6.8.8	\$2136.2	see	App, A	8	12.8	(a)
	6.8.6	P2150.1	see	APP, A	31	12.7	(a)
Lower Long.	2. 564	$86054 \mathrm{~B}$	10	$64,65,66$. 50	0.0	. 50
k 1 ds	A, B, C	Lot 4E5F					
Lover-Int, Long. Welds	2.564	860548	10	$2 ?, 31.5,32$	- 8	0.0	. 8
	D, E, F	Lot $4 D 4 \mathrm{~F}$					
Lower to Lower-Int. Girth Weld	$3 \cdot 564$	$\begin{aligned} & 1248 \\ & \text { Lot } 4 \mathrm{M} 2 \mathrm{~F} \end{aligned}$	10	$53.5,57,65$. 50	0.0	- 50

Non: Bed.L2ine

Upper \$hell Plate	$6 \cdot 307 \cdot \mathrm{R1}$	12112.2	868	APP. A	25	5.3	36 (b)
Vessel Flange	Q. 306	X -4.3162	10	72,143,153	. 20	0.0	- 20
Head Flange	0.305	$x-431.62$	10	$212,261,261$.20	0.0	.20
Top Head Torus	$6 \cdot 309.2$	P2076-1	10	$28,5,35.39 .5$	23	0.0	23
Bottom Head Torus	$6 \cdot 301 \cdot 4$	A 7153 - 2	506	App,A	45	10.3	66 (b)
CRD Return Nozzle	6. 310	BT-1676	40	25,34,38	60	0.0	60
Recire Inlet Forg	6.312.1	D. 4936.2	102	$28,5,30,5,31$	23	0.0	23

(a) The values of ($\left.\mathrm{T}_{50 \mathrm{~T}}+60\right)$ and σ_{I} are used in section 3 according to the methods in Rev? ,
(b) The RT NDT values for these non-beltline materlals are the (T $\mathrm{T}_{50 \mathrm{~T}}$ - 60) plus 20_{1}

3.0 ADJUSTED REFERENCE TEMPERATURES FOR BELTLINE

The adjusted reference temperature (ART) of the limiting beltiline material is used to correct the beltline P-T curves to account for irradiation effects. Rev 2 provides the methods for determining the ART. These methods, and the ifmiting material properties used, are discussed in this section.

3.1 REV 2 METHODS

The value of ART is computed by adding the SHIFT term for a given value of effective full power years (EFPY) to the initial RTNDT. For Rev 2, the SHIFT equation consists of two terms:

SHIFT $=\triangle R^{2} T_{N D T}+$ Margin

$$
\text { where } \begin{aligned}
\triangle R T_{\mathrm{NDT}} & =(C F) * f(0.28 \cdot 0.10 \mathrm{log} f) \\
\text { Margin } & =2\left(o_{1}{ }^{2}+o_{\Delta}{ }^{2}\right)^{0.5} \\
f & =\text { fluence for the given EFPY } / 10^{29}
\end{aligned}
$$

Chemistry factors (CF) are tabulated for welds and plates in laples 1 and 2 , respectively, of Rev 2. The margin term of has set values in Rev 2 of $17^{\circ} \mathrm{F}$ for plate and $28^{\circ} \mathrm{F}$ for weld. However, o o_{\triangle} need not be greater than $0.5 * \triangle R^{T}$ NDT. Uncertainty on inftial RTNDT, o_{1}, is discussed in Section 2.0

3.2 LIMITING BELTLINE MATERIAL

An evaluation of all beltline plates and submerged are welds was made, and is summarized in Tables 3.1 and 3.2 . The inputs used in determining the limiting beltline material are discussed in the remainder of this section.

3.2.1 chemistry

The vessel material certification records provided much of the detail of the beltifne material chemistries. However, critical information on copper and, in some cases nickel, were not provided with the material certificates GPUN established values for the missing data in Technical Date Report (TDR) 725 (5). The data from the material records and from TDR 725 are presented in Table 3-3. The copper and nickel values showt there were used in the Rev 2 calculations

3.2.2 Eluence

The Oyster Creek surveillance test report [6] presents a calculated value of 32 EFPY fluence at the inside vessel surface. GPUN thade an adjustment to the value in $|6|$ to reflect some new information on power history, resulting in a 52 EFPY fluence of $3.74 \times 10^{18} \mathrm{n} / \mathrm{cm}^{2}$ reported in TDR 725. GE has fust completed an evaluation of lead factor (fluence ratio between the survelllance capsule and the vessel peak) and has computed values very close to those in (6). Therefore, the fluence value in TDR 725 is used in the Rev 2 calculations.

Rev 2 provides a method of calculating the vessel $1 / 4$ T fluence based on the fluerice at the vessel inside surface $\mathrm{f}_{\text {surf }}$. However, Rev 2 also allows for the use of displacement per atom (dpa) analysis to determine the attenuation to the $1 / 4 \mathrm{~T}$ location. A dpa analysis was performed in [6], resulting in an attenuation relationship as follows:

$$
\mathrm{f}_{1 / 4 \mathrm{~T}}=0.63 * \mathrm{f}_{\text {surf }}
$$

The resulting $1 / 4 \mathrm{~T}$ fluence is:

$$
\mathrm{f}_{1 / 4 \mathrm{~T}}=2.36 \times 10^{18} \mathrm{n} / \mathrm{cm}^{2}
$$

This $1 / 4$ T fluence is about 3% less than the value calculated with the attenuation relationship in Rev 2.

3.3 ART US EFPY

Combining the inputs of initial RTNDT, chemistry and fluence, Rev 2 is used to compute ART as a function of EFPY. Table $3-1$ shows ART values for 32 EFPY of operation. Table 3.2 shows ART for 17 EFPY of operation. In both cases, plate G.8.6 has the highest ART, due to the fact that it also has the highest initial RTNDT. The limiting submerged arc veld has a higher SHIFT value, but a lower initial RTNDT such that the ART is less than that of the plate. Therefore, plate 6.8 .6 is the limiting material throughout the operating period of 32 EFPY. ART is plotted versus EFPY in Figure 3.2. The ART values at 17 and 32 EFPY are used in the P-T ourve development in Section 4.

Table 3-1

BELTLINE EVALUATION FOR OYSTER CREEK
AT 32 EFPY OF OPERATION

Shell Thickness $=$	25 inches Peak I.D. fluence $=3.74 \mathrm{E}+18$ Peak $1 / 4$ T fluence $=2.36 E+18$											
	I.D.	HEAT OR HEAT/LOT	8 Cu	*Ni	CF	Initial RTndt	Sigma-I	32 Delta	EFPY RTndt	Margin	$\begin{aligned} & 32 \text { EFPY } \\ & \text { Shift } \end{aligned}$	32 EFPY ART
PLATES:												
Lower Shell	G-307-1	T-1937-2	0.17	0.11	79.5	30	12.6		48.4	42.3	90.8	120.8
Lower Shell	G-308-1	T-1937-1	0.17	0.11	79.5	21	14.2		48.4	44.3	92.7	113.7
Lower Shell	G-307-5	P-2976-2	0.27	0.53	173.9	3	13.9		106.0	43.9	149.9	152.9
Low-Int Sheil	G-8-7	P-2161-1	0.21	0.48	139.4	17	10.7		84.9	40.2	125.1	142.1
Low-int shell	G-8-8	$\mathrm{p}-2136-2$	0.18	0.46	120.7	8	12.8		73.5	42.6	116.1	124.1
Low-Int Shell	G-8-6	p-2150-1	0.2	0.51	138.2	31	12.7		84.2	42.4	126.6	157.6

Peak I.D. fluence $=3.74 E+18$
Peak $1 / 4 \mathrm{~T}$ fluence $=2.368+18$

WELDS:

Lower Long.	$2-564$ $86054 B$, ARCOS A, B,C FLUX LOT 4ESF	
Low-Int Long.	$2-564$	$86054 B$, ARCOS
	D,E,F	FLUX LOT 4D4F
	$3-564$	1248, ARCOS

0.35	0.2	168	-50

56
158.4 108.4

Low-Int Girth

Table 3-2

BELTLINE EVALUATION FOR OYSTER CREEK AT 17 EFPY OF OPERATION

Sbell
Thickness
COMPONENT I.D. HEAT OR HEAT/LOT SCu \&NI CF

PLATES:

Lower Shell	G-307-1	T-1937-2	0.17	0. 11.1	79.5	30	12.6	36.8	42.3	79.2	199.2
Hower Sheli	G-308-1	$\mathrm{T}-1937-1$	0.17	0.11	79.5	21	14.2	36.8	44.3	81.1	192-1
Wower Shell	G-307-5	$\mathrm{P}-2076-2$	0.27	0.53	173.9	3	13.9	80.6	43.9	124.5	127.5
Low-Int Shell	G-8-7	P-2161-1	0.21	9. 48	139.4	17	10.7	64.5	40.2	104.8	121.8
Low-Int Shel1	G-8-8	$p-2136-2$	0.18	0. 46	120.7	8	12.8	55.9	42.5	98.5	106.5
Low-Int Shell	G-8-6	$p-2150-1$	0.2	0.51	138.2	31	12.7	64.0	42.4	106.5	137.5

WEIDS:

Lower Long.	$\begin{aligned} & 2-564 \\ & A, B, C \end{aligned}$	860545, ARCOS ELUK LOT 4ESE	0.35	0.2	168	-50	0	77. 6	56.0	133.8	83.8
Low-Int Long.	$\begin{aligned} & 2-5,64 \\ & D, E, F \end{aligned}$	860545, ARCOS FLUX LOT 4D4F	0.35	0.2	168	-8	0	77.8	55.01	133.8	125.8
Lower to	3-564	1248, ARCOS	0.22	B. 11	105.3	-50	0	48.8	48.8	97. 5	47.6
Eow-int Girth		FLUX LOE 4M2F									

Table 3-3
CHEMTCAT, COMPOSITION OF RPV BELTLINE MATERIALS

[^0]

4.0 PRESSURE.TEMPERATURE CURVES

4.1 BACKGROUND

Operating limits for pressure and temperature are required for three categories of operation: (a) hydrostatic pressure tests and leak tests, referred to as Curve A_{i} (b) non-nuclear heatup/cooldown and low-level physics tests, referred to as Curve B; and (c) core critical operation, referred to as Curve C. There are three vessel regions that affect the operating limits: the closure flange region, the core beltline region, and the remainder of the vessel, or non-beltline regions. The closure flange region limits are controlling at lower pressures primarlly because of 10 CFR 50 Appendix 0 (1) requirements. The non-beltline and beltline region operating limits are evaluated acsording to procedures in 10CFR50 Appendix G, Appendix G of the ASME Code [7] and Welding Research Council (WRC) Bulletin 175 [8], with the beltline region minimum temperature limits adjusted to account for vessel irradiation.

Figure 4.1 has curves applicable, per Rev 2, for 17 EFPY of operation. Figure 4.2 has curves applicable for 32 EFPY. The requirements for each vessel region influencing the $P=T$ curves are discussed below. Tables 4.1 and 4.2 have tabulations of the P.T values for Figures 4.1 and 4.2 , respectively.

4.2 NON-BELTLINE REGIONS

Non-beltline regions are those locations that receive too little fluence to cause any RTNDT increase. Non-beltline components include the nozzles, the closure flanges, some shell plates, top and bottom head plates and the control rod drive (CRD) penetrations. Detailed stress analyses, specifically for the purpose of fracture toughness analysis, of the non-beltline components were performed for the BWR/6. The analyses took into account all mechanical loadings and thermal transients anticipated. Transients considered included $100^{\circ} \mathrm{F} / \mathrm{hr}$ startup and shutdown, SCRAM, loss of feedwater heaters or flow, loss of recirculation pump flow, and all transients involving emergency core
cooling injections. Primary membrane and bending stresses and secondary membrane and bending stresses due to the most severe of these transients were used according to (7) to develop plots of allowable pressure (P) versus temperature relative to the reference temperature ($T \cdot \mathrm{RT}_{\mathrm{NDT}}$). Plots were developed for the two most limiting BWR/6 regions; the feedwater nozzle and the CRD penetration regions. All other non-beltline regions are categorized under one of these two regions.

The BWR/6 results have been applied to earlier BWR non-beltline vessel components, based on the facts that earlier vessel component geometries are not significantly different from BWR/6 configurations and mechanical and thermal loadings are comparable.

The BWR/6 non-beltline region results vere applied to Oyster Creek by adding the highest oyster creek RTNDT values for the non-beltilne discontinuities to the appropriate P versus (T. RT ${ }_{N D T}$) curves for the BWR/6 CRD penetration or feedwater nozzle. Table 2.1 shows the most limiting non-beltline RT $_{\text {NDT }}$ values for the non-beltline components. The CRD return nozzle $R^{T} T_{N D T}$ of $60^{\circ} \mathrm{F}$ is used with the BWR/6 feedwater nozzle curve. The bottom head $\mathrm{RT}_{\mathrm{NDT}}$ of $66^{\circ} \mathrm{F}$ is used with the CRD penetration curve.

There are two nozzles in the Oyster Creek vessel which are not found in later BWR vessels. These are the recirculation inlet nozzle and the isolation condenser nozzle. These nozzles were reviewed to assure that the limits developed for BWR/6 would apply.

The recirculation inlet nozzle is a 1.41 inch thick ring forging welded to the outside of the vessel at the inlet penetration. Since the forging is less than 2.5 inches thick, it is exempt from fracture toughness analysis per ASME Appendix G, paragraph 6.2223 (c), as long as tha $\mathrm{RT}_{\mathrm{NDT}}$ is at least $60^{\circ} \mathrm{F}$ below the lowest service temperature. Table 2.1 shows the RT^{2} ND for the forging, $23^{\circ} \mathrm{F}$. This is more than $60^{\circ} \mathrm{F}$ below the lowest service temperature for this nozzle, based on a boltup temperature of $85^{\circ} \mathrm{F}$, so adequate fracture toughness is assured.

The isolation condenser nozzle is approximately the same geometry as the feedweter nozzle. The Oyster Creek stress report [9] states that the thermal stresses for the feedwater nozele are more severe than those for the isolation condenser nozzle. Therefore, the BWR/6 feedwater nozzle linits, adjusted to the highest RTNDT for oyster Creek nozzles, will provide conservative P.T inits for the isolation condenser nozzle.

4.2.1 Non-Beltidne Monitoring Duting Pressuxs Tests

While the beltilne curves are limiting for pressure test conditions, the non-beltifne 1 infos can still be epplied to the other regions of the vessel It is likely that, during leak and hydrostatic pressure testing, the botion head or top head temperature may be significantly cooler than the beltline, This condition cen occur in the botton head when the recirculation pumps are operating at low speed, or are off, and injection through the control rod drives is used to pressurize the vessel. It is also possible that heat losses from the top head could make it difficult to maintain the same temperatures as those in the beltline.

Monitoring the bottom head or top head separately from the beltilne region may reduce the required pressure test temperature by $10^{\circ} \mathrm{F}$ to $20^{\circ} \mathrm{F}$ Some hypothetical temperatures demonstrating the potential benefit of separate bottom head monitoring are shown in Figure 4.3. The Technical Specifications currently require that all vessel temperatures be above the limiting conditions on the P.T curve. That would mean that, for a leak test, the bottom head would have to be heated above $203^{\circ} \mathrm{F}$ at 17 EFPY, as shown in case (a) of Figure $4 \cdot 3$. The bottom head temperature reading would likely be the inmiting reading on the vessel during the test. If, by using the botton head curve, the required temperature for the bottom head were only $187^{\circ} F$, the limiting reading would probably be near the beltilne, as shown in case (b), and the actual vessel temperatures could be lowered compared to case (b)

One condition on monitoring the bottom head or top head separately is that it must be demonstrated that the vessel beltline temperature can be accurately monitored during pressure testing. An experiment has been conducted at a BWR. 4 which showed that thermocouples on the vessel near the
feedwater nozzles, or temperature measurements of water in the recirculation loeps provide goed estimetes of the beltline temperature during pressure testing. GPUN may need to confirm this before implementing separate monitoring of the bottom head or top head. First, however, it should be determined whether there are significant temperature differences between the beltifne region and the botton head or top head regions.

4. 3 CORE BELTLINE REGION

The pressure temperature (P.T) limits for the beltilne region are detereined according to the methods in ASME Code Appendix 6 [7). As the beltiine fluence increases during operation, these curves shift by an amount discussed in Section 3. Typically, the beltline curves shift to become more limiting than the non-beltilne curves at some point during operating life. For the oyster Creek vessel, the non-beltilne ourves vere 1 imiting through about 7 EFPY, at which point the beltifne curves became more $1 i m i t i n g$ at typical operating pressures.

The stiess intensity factors $\left(K_{1}\right)$, calculated for the beltilne region according to ASME Appendix G procedures, were based on a combination of pressure and thermal stresses for a $1 / 4 \mathrm{~T}$ flaw in a flat plate. The pressure stressee were calculated using thin-walled cylinder equations. Thermal stresses were calculated assuming the through-wall temperature distribution of a flat plate subjected to a $100^{\circ} \mathrm{F} / \mathrm{hr}$ thermal gradient. The ART values shown on Figure 3.1 were used to adjust the (T $~$ RTNDT) values from Figure 6.2210.1 of (7). More details on the methods used in computing beltline curves are contained in Appendix B.

The beltifne $p \cdot T$ curves are calculated assuming an instantaneous heatup/cooldown rate of $100^{\circ} \mathrm{F} / \mathrm{hr}$. It is permitted to exceed this rate in the Technical Specification, as long as a $100^{\circ} \mathrm{F}$ change in any one hour period is not exceeded (also note that exceeding the $100^{\circ} \mathrm{F} / \mathrm{hr}$ rate should not be normal practice). The impact on the P.T curves of heatup/cooldown rates in excess of $100^{\circ} \mathrm{F} / \mathrm{hr}$ is discussed in Appendix C.

10CFR50 Appendix 6 sets several winimum requirements for pressure and temperature, in addition to those outlined in the ASME Code, based on the closure flange region $\mathrm{RT}_{\mathrm{NDT}}$. In some cases, the results of analysis for other regions exceed these requirements and they do not affect the shape of the P.T curves. However, some closure flange requirements do impact the curves. In addition, General Electric has compared the current requirements and the original requirements in determining the minimum boltup temperature.

The current boltup temperature of $100^{\circ} \mathrm{F}$ is based on the assumption that materials were qualified to meet $30 \mathrm{ft}-1 \mathrm{~b}$ Charpy energy at $40^{\circ} \mathrm{F}$, based on the vessel purchase specification. The original Code requirement was that boltup be done at qualification temperature (730 L) plus $60^{\circ} \mathrm{F}$. Current Code requirements state, in Paragraph $6.2222(c)$ of [7], that for application of full bolt preload and reactor pressure up to 20% of hydrostatic test pressure, the RPV metal temperature must be at $\mathrm{RT}_{\text {NDT }}$ or greater. The approach used for Oyster Creek is to determine the highest value of ($\mathrm{T}_{30 \mathrm{~L}}+60$) and the highest value of $\mathrm{RT}_{\text {NDT }}$ and base the boltup temperature on the more conservative value.

Table 2.1 shows the $\mathrm{RT}^{\mathrm{NDT}}$ values for the closure flanges, the liniting closure had plate connected to the closure head flange and the limiting upper shell plate connected to the vessel flange. Connecting weld materials are not shown because they are less limiting than the plates. Table 2.1 shows the highest RTNDT for the closure region to be $36^{\circ} \mathrm{F}$ for upper shell plate Q. $307 \cdot \mathrm{Ri}$. Figure 4.4 shows the charpy curve for $3 \cdot 307 \cdot \mathrm{R1}$. The value of T 301 is shown as $14^{\circ} \mathrm{F}$, with $20_{1}=10.6^{\circ} \mathrm{F}$, so that T_{301} can be conservatively estimated as $25^{\circ} \mathrm{F}$, and $\left(\mathrm{T}_{30 \mathrm{~L}}+60\right)$ is $85^{\circ} \mathrm{F}$. Selecting the boltup temperature to be $85^{\circ} \mathrm{F}$ provides $49^{\circ} \mathrm{F}$ margin on the current Code requirement based on $\mathrm{RT}_{\text {NDT }}$. This margin is appropriate, because boltup is one of the more limiting operating conditions (high stress and low temperature) for brittle fracture.

10CFRSO Appendix 0 , paragreph IV. A. 2 , sets minimum temperature requirements for pressure shove 20% hydrotest pressure based on the RTNDT of the closure region. Curve A temperature must be no less than (RT $N D+90^{\circ} \mathrm{F}$) and Curve B temperature no less than $R^{2} T_{N D T}+220^{\circ} \mathrm{F}$). The Curve A requirement causes a $41^{\circ} \mathrm{F}$ shift at 20% hydrotest pressure (375 psig) as shown in Figures 4.1 and $4 \cdot 2$. The Curve B requirement has essentially no impact on the figures because the analytical results for the non-beltline regions require that temperature be greater than 10CFR50 Appendix 6 requirement of (R' $^{\prime} \mathrm{NDT}^{2}+120^{\circ} \mathrm{F}$) at 375 psig .

4.5 CORE CRITICAL OPERATION REQUIREMENTS OF 1OCFRSO, APPENDIX G

Curve C, the core critical operation curve shown in Figures 4.1 and 4.2, is generated from the requirements of lOCFRSO Appendix 6, paragraph IV.A.3. Essentially paragraph IV. A. 3 requires that core crilical P.T 1 imits be $40^{\circ} \mathrm{F}$ above any Curve A or B limits. Curve B is more limiting than Curve A, so Curve C is Curve B plus $40^{\circ} \mathrm{F}$.

Another requirement of IV.A.3, or actually an allowance for the BWR, concerns ainimum temperature for inftial criticality in a startup. The BWR, given that water level is normal, is allowed initial criticality at the closure flange region ($\mathrm{RT}_{\mathrm{NDT}}+60^{\circ} \mathrm{F}$) at pressures below 375 psig . This requirement makes the minimum criticality temperature $96^{\circ} \mathrm{F}$, based on the $\mathrm{RT}^{\mathrm{NDT}}$ of plate $0.307-\mathrm{R1}$. Above 375 psig , the Curve C temperature must be at least that required for the hydrostatic pressure test (Curve A at 1100 psig). In Figure $4 \cdot 1$, the non-beltline curves are more limiting than this requirement at 375 psig. so there is no impact on the shape of the P.T curves. However, in Figure 4.2 there is a step at 375 psig in Curve C due to this requirement.

Table 4-1
P-T CURVE VALUES FOR 17 EFPY

Pressur	Limiting Curve			Non-Beltline Curve\qquad
$(p s \wedge g)$				
	$\frac{1}{85,0}$	$\begin{aligned} & 8 \\ & 85.0 \end{aligned}$	$\begin{aligned} & c \\ & 96.0 \end{aligned}$	$85,0$
10	$\begin{aligned} & 85.0 \\ & 85.0 \end{aligned}$	$\begin{aligned} & 85.0 \\ & 85.0 \end{aligned}$	$\begin{aligned} & 96.0 \\ & 96.0 \end{aligned}$	85.0
20	85.0	85.0	96.0	85.0
30	85.0	85.0	96.0	85.0
40	85.0	85,0	100.0	85.0
50	85.0	85.0	113.0	85.0
60	85.0	85.0	124.0	85.0
70	85.0	93.5	133.5	85.0
80	85.0	101.7	161.7	85.0
90	85.0	108.7	168.7	85.0
100	85.0	114.8	154.8	85.0
110	85.0	120.4	160.4	85.0
120	85.0	125.3	165.3	85.0
130	85.0	130.1	170.1	85.0
140	85.0	134.7	176.7	85.0
150	85.0	139.0	179.0	85.0
160	85.0	142,9	182.9	85.0
170	85.0	146.3	186.3	85.0
180	85.0	149.3	189.3	85.0
190	85.0	152.1	192.1	85.0
200	85.0	154.8	194.8	85.0
210	85.0	157.5	197.5	85.0
220	85.0	160.1	200.1	85.0
230	85.0	162.4	202.4	85.0
240	85.0	164.7	204.7	85.0
250	85.0	166.9	206.9	85.0
260	85.0	169.0	209.0	85.0
270	85.0	171.0	211.0	85.0
280	85.0	173.0	213.0	85.0
290	85.0	174.9	214.9	85.0
300	85.0	176.7	216.7	85.0
310	85.0	178.5	218.5	85.0
320	85.0	180.2	220.2	85.0
330	85.0	181.8	221.8	85.0
340	85.0	183.4	223.6	85.0
350	85.0	185.0	225.0	85.0
360	85.0	186.5	226.5	85.0
370	85.0	188.0	228.0	85.9
375	85.0	188.8	228.8	85.0
375	126.0	188.8	228.8	126.0
380	126.0	189.5	229.5	126.0
390	126.0	191.0	231.0	126.0
400	126.0	192.5	232.5	126.0
410	126.0	194.0	234,0	126.0
420	126.0	195.4	235.4	126.0
430	126.0	196.8	236.8	126.0
440	126.0	198.2	238.2	126.0
650	126.0	199.5	239.5	126.0
660	136.0	200.8	240.8	126.0
470	126.0	202.1	242, ${ }^{24}$	126.0
480	126.0	203.3	243.3	126.0

Teble 4-1
P-T CURVE VALUES FOR 17 EFPY


```
Table 4-1
```

P-I CURY等 YALVES FOR 27 EFPY

$\begin{aligned} & \text { Pressure } \\ & \text { (psig) } \end{aligned}$	Limiting Curve			$\begin{gathered} \text { Non-Beltline } \\ \text { Curve } \\ \text { Temp. (or) } \end{gathered}$
1000	202.6	${ }_{256.8}^{8}$	t 204,8	$\frac{1}{187.0}$
1010	202.6 203.9	256,8 255,6	296.8 295.6	188.0
1020	205.1	256.6	296.6	188.9
1030	206.3	257.1	207, 1	189.8
1060	207.6	257.9	297,9	190.7
1050	208.6	258.6	298.6	191.6
1060	209.7	259.3	290.3	192.5
1070	210.8	260.1	300.1	193.3
1080	211.9	260.8	300.8	194.2
1090	213.0	261.5	301.5	195.0
1100	216.0	262.2	302.2	195.8
1110	215.1	262.9	302.9	196.7
1120	216.1	263.6	303.6	197.5
1130	217.1	264,2	304.2	198.3
1160	218.1	264,9	304.9	199.1
1150	219.1	265,6	305.6	199.9
1160	220.1	266.2	306.2	200.6
1170	221,0	266.9	306.9	201,6
1180	226.0	267.6	307.6	202,2
1190	222.9	268,2	308.2	202.9
1200	223.8	268.8	308.8	203.7
1210	224.7	269,5	309.5	204,4
1220	225.6	270.1	310.1	205,1
1230	226,5	270, 7	310.7	205,8
1260	227.4	271.3	311.3	206.5
1250	228.3	271.9	311.9	207.2
1260	229.1	272.5	312.5	207.9
1270	229.9	273.1	313.1	208.6
1280	230.8	273.7	313.7	209.3
1290	231.6	276.3	314.3	210.0
1300	232.4	276.9	316.9	210.7
1310	233.2	275,5	315.5	211.3
1320	234.0	276.0	316.0	212.0
1330	236,8	276.6	316.6	212.6
9360	235.6	277.?	317.2	213.3
1350	236.3	277.7	317.7	213.9
1360	237.1	278.3	318.3	214,5
1370	237.8	278.8	318.8	215.2
1380	238.6	279,6	319.6	215.8
1390	239,3	279.9	319.9	216.6
1400	260.0	280.5	320.5	217.0

Table 4-2
P-T CURVE VALUES FOR 32 EFPY

	Limiting Curve			Non-Beltline Curve Temp. (OF
Pressure (psig)	Tempe	ature	(OF)	
0	$\hat{85.0}$	$\begin{aligned} & \mathrm{B} \\ & 85.0 \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & 96.0 \end{aligned}$	E5.0
10	85,0	85.0	96.0	85.0
20	85.0	85.0	96.0	85.0
30	85.0	85.0	96.0	85.0
40	85.0	85.0	100.0	85.0
50	85.0	85.0	113.0	85,0
60	85,0	85.0	124.0	85.0
70	85.0	93,5	133,5	85.0
80	85.0	101,?	161.7	85.0
90	85.0	108, 7	168,7	85.0
100	85,0	114.8	154.8	85.0
110	85.0	120.6	160.6	85.0
120	85.0	125.3	165.3	85.0
130	85,0	130.1	170.1	85.0
160	85.0	136.7	174.7	85.0
150	85.0	139.0	179.0	85.0
160	85.0	142.9	182.9	85.0
170	85.0	166.3	186.3	85.0
180	85.0	169.3	189.3	85.0
190	85.0	152.1	192.1	85.0
200	85.0	154.8	196,8	85.0
210	85.0	157.5	197.5	85.0
220	85.0	160.1	200.1	85.0
230	85.0	162.4	202.6	85.0
240	85.0	164.7	204, 7	85.0
250	85.0	166.9	206.9	85.0
260	85.0	169.0	209.0	85.0
270	85.0	171.0	211.0	85.0
280	85.0	173.0	213.0	85.0
290	85.0	174.9	214.9	85.0
300	85.0	176.7	216.7	85.0
310	85.0	178.5	218.5	85.0
320	85.0	180.2	220.2	85.0
330	85.0	181.8	221.8	85.0
340	85.0	183.6	223.4	85.0
350	85,0	185.0	225.0	85.0
360	85.0	186.5	226.5	85.0
370	85.0	188.0	228.0	85.0
375	85.0	188.8	228.8	85.0
375	126.0	188.8	234.0	126.0
380	126.0	189.9	234.0	126.0
390	126.0	192.5	236.0	126.0
400	126.0	197.2	237.2	126.0
410	126.0	199.6	239.6	126.0
620	126.0	201.8	261.8	126.0
630	126.0	204.0	266, 0	126.0
460	126.0	206.2	246,?	126.0
450	126.0	208.2	268.2	126.0
460	126.0	$210 . ?$	250.2	126.0
470	126.0	212.2	252.2	126.0
480	126.0	216.1	254.1	126.0

Ta) 1 e $4-2$
P-T CURVE VALUES FOR 32 EFPY

	Limiting			Non-Beltline Curve Temp. (of)
$(p s 12)$	Temperature (0F)			
	126.0	215.9	${ }_{255.9}^{\text {c }}$	$\stackrel{1}{126.0}$
690 500	126.0 126.0	215.9 219.7	255.9 257.7	126.0
510	126.0	219.5	259,5	126.0
520	126.0	221.2	261.2	126.0
530	126.0	222.9	262.9	126.0
540	126.0	224.5	264.5	126.0
550	126.0	226.1	266,1	126.0
560	126.0	227.7	267, 7	126.0
570	126.0	229.2	269, 2	126.0
580	127,9	230.7	270.7	127.9
500	130.3	232.1	272.1	130.1
600	134.8	233.6	273.6	132.3
610	139.1	234.9	274.9	134.3
620	163.2	236.3	276.3	136.3
630	147.0	237,7	277.7	138.3
660	150.6	239,0	279.9	160.2
650	154.1	240.3	280.3	142.0
660	157.3	24, 5	281.5	143.8
670	160.5	242.8	282.8	145.6
680	163.5	246,0	284, 0	147.3
690	166.3	245,2	285.2	149.0
700	169.1	266.6	286.4	150.6
710	171.7	267.6	287.6	152.2
720	174.3	268,7	288.7	153.7
730	176.7	249,8	289.8	155.2
760	179,1	250.9	290.9	156.7
750	181.4	252.0	292.0	158.2
760	183.6	253,1	293,1	159.6
770	185.8	256.2	294.2	161.0
780	187.9	253.2	295.2	162.3
790	189.9	256.2	296.?	163.7
800	191.9	257.2	297.2	165.0
810	193.8	258.2	298.2	166.3
820	195.6	259.2	299.2	167.6
830	197,6	260.2	300.2	168.8
840	199.2	261.1	301.1	170.0
850	200.9	262.1	302.1	171.2
860	202.6	263,0	303.0	172.4
870	204.2	263.9	303.9	173.5
880	205.8	264, 8	304.8	174.7
890	207,4	265.7	305.7	175.8
900	208.9	266.6	306.6	176.9
910	210.6	267.5	307.5	178.0
920	211.9	268.3	308.3	179.0
930	213.3	269.2	309.2	180.1
$9: 0$	216,7	270.0	310.0	181.9
950	216.1	270.8	310.8	182.2
960	217.5	271.6	311.6	183.2
970	218.8	272.5	312.5	184.1
980	220.1	273.3	313.3	185.1
990	221.4	274.0	314.0	186.1

Table 4-2
P-T CURVE VALUES FOR 32 EFPY

(91-7b) 12933 NB 10 VdW

5.0 REFERENCES

11) "Fracture Toughness Requirerients," Appendix 6 to Part 50 of Title 10 of the Code of Federal Regulailons, July 1983
i2) "Radiation Embrittlement of Reaccor Vessel Materials," USNRC Regulatory Quide 1.99, Revision 2, May 1986.
[3] Holge, J. M., "Properties of Heavy Scution Nuclear Reactor Steels," Walding Research Council Bulletin 217, jul) 1976
(4) "Fz cture Toughness Requirements," U§NRC Branch Technical Position MTEL $\mathrm{S}_{\mathrm{L}} 2$, Revision 1, July 1981.
(5) Mi; ir, R, L., "Testing and Evaluation of Irradiated Reactor Vessel Materials Surveillance Program Specimen. " GPU Nuclear TDR 725. Revision 3 (to be published).
(6) ipahan et, al., "Examination, Testing and Evaluatit of Specimens from the $\mathrm{L}^{1} 0^{\circ}$ Irradiated Pressure Vessel Surveillance Cap: \therefore for the Oyster C eek N Lear Generating Station, "Battelle Columbea La'stsiories Report BCL. $382 \cdot 45 \cdot 2$, Revision 1, Oetober 1985.
(7) "Fracture Toughness Criteria for Protaction Against Failure," Appendix 6 to Section XI of the ASME Boller \& Pressure Vessel Code, 1989 Edition k^{*}.th 1989 Addends.
12) ₹VRC B4commendations on Toughness Requirements for Ferritic Materials," lis2c'rg Researeh Councif Bulletin 175. August 1972.
13) Pierson f a . "Analytical Report for Jersey Central Reactor Vessel," Combustion Sng'neering Report CENC. 1143.

APPENDIX A
CHARPY CURVES OF SELECTED VESSEL PLATES

In order to establish an appropriate, conservative RTNDT for the beltline plates and several other plates with low USE values, the Charpy data for each plate were curve fit with a hyperbolic tangent relationship:

```
ENERGY = A + B tanh ; (T * To)/C)
```

where A, B, T_{0} and C are constants determined by statistically fitting the Charpy data to minimize variance.

Once the curve ift for each material was established, the standard deviation of the data relative to the curve (in terms of temperature) was calculated. These values are reportct as ol in Section 2 of the report. The value of T_{501} is ow on the curves in this appendix as well.

Initial Reference Temperature for Plate G-307-1
(91-7) คอy3NZ LOVdWI

120
110
100
90
80
70
60
50
40
30
20
10
0
IEST TEMPERATURE (F)
Initial Reierence Temperature for Plate G-307
(91-7j) 人อ\&13N3 LOVEW

Initial Reference Temperature for Plate $G-8-7$
(91-71) ᄉอปヨNヨ LכVdW

Initial Reference Temperature for Plate G-8-6

$$
\text { 을 } 88888 \text { i 아 is ㅇN } 0
$$

$$
(\mathrm{q} \mid-7) \text {) } 1 \supset \searrow \exists \mathrm{~N} \exists 10 \forall \mathrm{dWI}
$$

TEST TEMPERATURE (F)
HEST TEMPERATURE (
Initial Reference Temperature for Plate G-301-4
(al-71) คอมבNZ $12 \mathrm{~V} d \mathrm{~W}$

APPENDIX B

BELTLINE P.T CURVE CALCULATION METHOD

The beltline is the region of the vessel that will accumulate more than $1017 \mathrm{n} / \mathrm{cm}^{2}$ fluence during operation. The vessel wall from the bottom of active fuel to the top of active fuel meets these conditions. The oyster Creek vessel beltilne consists of two shells of plates and the connecting welds. Therefore, there are no discontinulty regions to consider in the beltilne curve analyses. The methods used for the pressure test and heatup/coolcown curves are described below. The core critical operation curve is simply the heatup/cooldown curve plus $40^{\circ} \mathrm{F}$, as required in 100 FR 50 Appendix $0[1]$, so the methods for the heatup/cooldown curves apply to the core critical curves as well.

B. 1 PRESSURE TEST

In general, the methods of ASME Code Section III, Appendix G [7] are used to calculate the pressure test beltline limits. The vessel shell, with an inside radius (R) to minimum thickness ($t_{m i n}$) ratio of 15 , is treated as a thin-walled cylinder. The maximum stress is the hoop stress, given as $\sigma_{\mathrm{m}}-P R / t_{\mathrm{m}} \mathrm{n}$

The stress intensity factor, K_{Im}, is calculated using Figure 6.2214 .1 of [7], Acoounting for the proper ratio of stress to yield strength. Figure G-2214-1 was taken from Welding Research Council (WRC) Bulletin 175 [B], and is based on a $1 / 4$ T radial flaw with a six-to one aspect ratio (length of 1.5 T). The flaw is oriented normal to the maximum stress, in this case a vertically oriented flaw. This orientation is used even in the case where the circumferential weld is the limiting beltine material, as mandated by the NRC in the past.

Pressure test $K_{I R}$ is the calculated value $K_{\text {Im }}$ multiplied by a safety factor of 1.5 , per (7). The relationship between $K_{I R}$ and temperature relative to reference temperature (T. $\mathrm{RT}_{\mathrm{NDT}}$) is shown in Figure G-2210.1 of (7), represented by the relationship

$$
\begin{equation*}
\mathrm{K}_{I R} \cdot 26.78=1.233 \text { e }\left\{0.0145\left(\mathrm{~T} \cdot \mathrm{RT}_{\mathrm{NDT}}+160\right)\right\} \tag{B-1}
\end{equation*}
$$

This relationship is derived in (8) as the lower bound of all dynamic fracture toughness and crack arrest toughness data. This relationship provides values of pressure (from $K_{I R}$) versus T (from ($T \cdot$ RT $_{\text {NDT }}$)).

B. 2 HEATUP/COOLDOWN

The beltline curves for heatup/cooldown conditions are influenced by pressure stresses and thermal stresses, according to the relationship in (7)
$K_{I R}=2.0 K_{I m}+K_{I t}$.
where $\quad \mathrm{K}_{\text {Im }}$ is primary membrane K due to pressure and $\mathrm{K}_{\text {It }}$ is radial thermal gradient K due to heatup/0001down.

The pressure stress intensity factor K_{Im} is calculated by the method described in section B.1, the only difference being the larger safety factor applied. The thermal gradient stress intensity factor calculation is described below.

The thermal stresses in the vessel wall are caused by a radial thermal gradient which is created by changez in the adjacent reactor coolant temperature in heatup or cooldown conditions. The stress intensity factor is computed by multiplying the coefficient M_{t} from Figure $0.2214-2$ of [7] by the through-wall temperature gradient ΔT_{w}, given that the to rature gradient has a through-wall shape similar to that shown in Figure 6.2214.3 of [7].

The relationship used to compute through.wall ΔT_{w} is based on one-dimensional heat conduction through an insulated flat plate:

$$
\begin{equation*}
\delta^{2} T(x, t) / \delta x^{2}=1 / \beta(\delta T(x, t) / \delta t) \text {, where } \tag{B-3}
\end{equation*}
$$

```
I}(x,t)\mathrm{ is temperature of the plate at depth }x\mathrm{ and time t
\beta is thermal diffusivity (ft2/hr).
```

Maximue stress will occur when the radiel thermal gradient reaches a quasi-steady state distribution, so that $\delta T(x, t) / \delta t=d T(t) / d t=G$, where G is the heatup $/ c 001$ down rate, in this case $100^{\circ} \mathrm{F} / \mathrm{hr}$. The differential equation is integrated over x for the following boundary conditions, shown in Figure B-1:

1. Vessel inside surface $(x-0)$ temperature is the same as the coolant temperature, T_{0}.
2. Vessel outside surface $(x-C)$ is perfectly insulated, so the thermal gradient $d T / d x=0$.

The integrated solution results in the following relationship for wall temperature:

$$
\begin{equation*}
T=G x^{2} / 2 \beta \cdot G C x / \beta+T_{0} \tag{B-4}
\end{equation*}
$$

This equation is normalized to plot (T. T_{0}) $/ \Delta T_{W}$ versus x / C in Figure $B \cdot 2$. The resulting through-wall gradient compares very closely with Figure 6.2214.3 of [7]. Therefore, ΔT_{w} calculated from Equation B-4 is used with the appropriate M_{t} of Figure $6 \cdot 2214-2$ of [7] to compute $K_{I t}$ for heatup and cooldown.

The M_{t} relationships were derived in [8] for infinitely long cracks of $1 / 4 \mathrm{~T}$ and $1 / 8 \mathrm{~T}$. For the flat plate geometry and radial thermal gradient, orientation of the crack is not important

The stress generated by the thermal gradient is a bending stress that changes sign from one side of the plate to the other. In combining pressure and thermal stresses, it is usually necessary to evaluate stresses at the $1 / 4$ T location (inside surface flaw) and the $3 / 4 \mathrm{~T}$ location (outside surface flaw). This is because the thermal gradient tensile stress of interest is in the inner wall during cooldown and is in the outer wall during heatup. However, as a conservative simplification, the thermal gradient stress at the $1 / 4 \mathrm{~T}$ is assumed to be tensile for both heatup and cooldown. This results in the conservative approach of applying the maximum tensile stress at the $1 / 4 \mathrm{~T}$ location. This approach is conservative because irradiation effects cause the allowable toughness, $K_{I R}$, at $1 / 4 \mathrm{~T}$ to be less than that at $3 / 4 \mathrm{~T}$ for a given metal temperature. This conservatism of the approach causes no operation difficulties, since the BWR is at steam saturation conditions during normal heatup or cooldown, well above the heatu, /cooldown curve limits.

B. 3 EXAMPLE CALCULATION - 17 EFPY PRESSURE TEST AT 1000 PSIG

The following inputs were used in the beltline limit calculation:

ART	$138{ }^{\circ} \mathrm{F}$
Vessel Height	766 inch
Bottom of Active Fuel Height	209.3 inch
Vessel Radius	106.7 inch
Vessel Thickness	7.125 inch
Beltline Material Sy	62.7 ksi

Pressure was calculated to include hydrostatic pressure for a full vessel:

$$
\mathrm{p}=1000 \mathrm{psi}+(766-209.3) \text { inch } * 0.0361 \mathrm{psi} / \text { inch }-1020.1 \text { psig }
$$

Pressure stress:

$$
\sigma=\mathrm{PR} / \mathrm{t}=1020.1 \mathrm{psig} * 106.7 \text { inch } / 7.125 \text { inch }=15276 \text { psi }
$$

The factor M_{m} depends on $\left(0 / S_{y}\right)$ and $\sqrt{ } t$:

$$
\begin{aligned}
0 / S_{y} & =15276 / 62700=0.24\left(\text { use } 0 / S_{y}=0.5\right) \\
\sqrt{t} & =(7.125)^{1 / 2}=2.67 \\
M_{m} & =2.57
\end{aligned}
$$

The stress intensity factor, K_{Im}, is $\mathrm{M}_{\mathrm{m}} *$ o

$$
\mathrm{K}_{\mathrm{Im}}=2.57 * 15276=39259 \mathrm{psi} / \mathrm{in}-39.3 \mathrm{kEi} / \mathrm{in}
$$

Equation $(B-1)$ can be rearranged, and $1.5 * K_{I m}$ substituted for $K_{I R}$, to solve for ($T \cdot \mathrm{RT}_{\text {NDT }}$):

$$
\begin{aligned}
& \left(\mathrm{T} \cdot \mathrm{RT}_{\mathrm{NDT}}\right)=\ln \left[\left(1.5 * \mathrm{~K}_{\mathrm{Im}}-26.78\right) / 1.233\right] / 0.0145 \cdot 160 \\
& \left(\mathrm{~T} \cdot \mathrm{RT}_{\mathrm{NDT}}\right)=\ln [(1.5 * 39.3-26.78) / 1.233) / 0.0145=160 \\
& \left(\mathrm{~T} \cdot \mathrm{RT}_{\mathrm{NDT}}\right)=\underline{65^{\circ} \mathrm{E}}
\end{aligned}
$$

Adding the adjusted RT ${ }_{\text {NDT }}$ for 17 EFPY of $138^{\circ} \mathrm{F}$:

$$
T=203^{\circ} \mathrm{F}
$$

B. 4 EXAMPLE CALCULATION - 17 EFPY HEATUP/COOLDOWN CURVE AT 1000 PSIG

The heatup/cooldown curve at 1000 psig uses the same $K_{\text {Im }}$ as the pressure test curve, but with a safety factor of 2.0 instead of 1.5 . In addition, there is a KIt term for the thermal stress. The additional inputs used to calculate KIt are:
$G=100^{\circ} \mathrm{F} / \mathrm{hr}$
$\mathrm{C}=7.34$ inches, including clad thickness
$\beta=0.354 \mathrm{ft}^{2} / \mathrm{hr}$ at $550^{\circ} \mathrm{F}$ (most conservative value)

Equation B. 4 can be solved for the through-wall temperature ($x * C$), resulting in the absolute value of ΔT for hatup or cooldown of

$$
\Delta T=G C^{2} / 2 B
$$

For the values above, $\Delta T=52,8^{\circ} E$.

The analyzed case for thermal stress is a $1 / 4 \mathrm{~T}$ flaw depth wath 112 thickness of 7.34 iuches. From ASME Appendix G Figure 6.2214-2, the corresponding value of M_{t} is

$$
M_{t}=0.32
$$

Thus the thermal stress intensity factor, $K_{I t}=M_{t} * \Delta T$, is calculated to be

$$
\mathrm{K}_{I t}=16.9 \mathrm{ksi} \mathrm{\sqrt{10}}
$$

The pressure and thermal stress terms are substituted into Equation B-1 to solve for ($T \cdot \mathrm{RT}_{\text {NDT }}$):

$$
\begin{aligned}
& \left(T \cdot \mathrm{RT}_{\mathrm{NDT}}\right)=\ln [((2.0 * 39.2+16.9) \cdot 26.78) / 1.233) / 0.0145 \cdot 160 \\
& \left(T \cdot \mathrm{RT}_{\mathrm{NDT}}\right)=\underline{1} 7^{\circ} \mathrm{F}
\end{aligned}
$$

Adding the adjusted RT ${ }_{\text {NDT }}$ for 17 EFPY of $138^{\circ} \mathrm{F}$:

$$
\mathrm{T}=255^{\circ} \mathrm{F}
$$

Reactor Coolant Cooldown Rate $\mathrm{G}=100^{\circ} \mathrm{F} / \mathrm{hr}$

Figure B-1. Boundary Conditions for Heatup/Cooldown Temperoture

Figure B-2. Assumed Through-Wall Temperature During Heatup/Cooldown

APPENDIX C
IMPACT ON P.T CURVES OF HEATUP/COOLDOWN RATE

Given the form of the equation by which ΔT_{w} is determined, the heatup/cooldown rate of $100^{\circ} \mathrm{F} / \mathrm{hr}$ for brittle fracture purposes refers to an instantaneous rate. Instantaneous rates in excess of $100^{\circ} \mathrm{F} / \mathrm{hr}$ are allewed for in the Technical specification, as long as a temperature change of $100^{\circ} \mathrm{F}$ in a one hour period is not exceeded. This is based on the fact that the $1 / 4 \mathrm{~T}$ location of the assumed flaw sees little if any effect of small perturbations in the $100^{\circ} \mathrm{F} / \mathrm{hr}$ rate, due to the thermal inertia of the vessel wall. It is understood in this Tech spec allowance that operators will track vessel coolant heatup or cooldown to stay as close to a $100^{\circ} \mathrm{F} / \mathrm{hr}$ rate as possible.

The method of calculating $K_{\text {It }}$ in Appendix B can be used to conservatively adjust the P-T curves for higher heatup/cooldown rates. While it is expected that short periods of excessive rates will not affect the $1 / 4 \mathrm{~T}$ location, a conservative approach is to increase the thermal K proportionally to the increased rate. Thus, for a $200^{\circ} \mathrm{F} / \mathrm{hr}$ heatup or cooldown, K_{It} would double.

The calculation of beltine P.T limits was mocified to includa a $200^{\circ} \mathrm{F} / \mathrm{hr}$ heatup/cooldown rate. The resulting P.T curve for 17 EFPY of operacion is shown in Figure C.1. The non-beltline limits are not changed because they are based on more severe transient conditions at the discontinuities. In cases where the vessel coolant instantaneous heatup or cooldown rate, as measured by the steam dome pressure, exceeds $100^{\circ} \mathrm{F} / \mathrm{hr}$ but is less than $200^{\circ} \mathrm{F} / \mathrm{hr}$, Figure C .1 can be used to assure that vessel P.T requirements have not been exceeded.

MINIMUM REACTOR VESSEL METAL TEMPERATURE (${ }^{\circ} \mathrm{F}$)

Figure $\mathrm{C}-1$. Oyster Creek P-T Curve Valid to 17 EFPY

[^0]: a Values reported in TDR 725.

