Evaluation of Severe Accident Risks: Sequoyah, Unit 1

Appendices

Prepared by
J. J. Gregory, W. B. Murfin, S. J. Higgins,
R. J. Breeding, J. C. Helton, A. W. Shiver

Sandia National Laboratories
Operated by
Sandia Corporation

Prepared for
U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE
 Avalatility of feference Materials Cited in NFRC Putbications

Most documents cited in NFC publications will be avaliable from one of the following sources

1. The NRC Fublic Document Room, 2120 L Street. NW, Lower Level, Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, OC 20013-7082
3. The National Technioal Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents clied in NRC publications, it is not intengled to be exhaustive

Referenced documents avallabie for inspection and copying for a fee from the NFIO Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspeotion and investigation notices; Licensee Eivent Reports; vendor reports and correspondence: Commission papers; and applicant and licensee documents and curtespondence.

The following documents in the NUREG series are avallable for purchase from the GPO Sales Program: formal NRC staff and contractor reports. NRC-sponsored conference proceedings, and NRC booklets and brochures. Also avallable are Regulatory Guides, NRC regulations in the Code of fedecal Regulations, and Nuclear Regulatory Commission Issuances

Documents avallable from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents avallabie from public and special technical libraries include all open iterature fiems, such as books, fournal and periodical articles, and transactions. Federal Register notices, federal and state legislawon, and congressional reports oan usually be obtained from the se librarlos

Douments such as theses, dissertations, foreign reports and translations and non-NRC conference proceedings are avaliable for purchase from the organization sponsoring the publication olted

Single coples of NRC draft reports are avallable free, to the extent of supply, upon written request to the Office of information Resources Management, Distribution Section, U.S. Nuciear Regulatory Commission. Washington. DC 20555

Coples of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 torfolk Avenue, Bethesda, Maryland, and are avallable there for reter. ence use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or. If they are American National Standards, from the Arnerican National Standards Institute, 1430 Broadway. New York. NY 10018

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Govemment. Neither the United States Government nor any agency thereot, or any of their employees, rmakes any warranty, expresed or implied, of assumes any legal liability of responsibility for any third party's use, or the resuits of such use, of any intormation, apparatus, product or process disclosed in this report, or represents that its use by such third party would not intringe privately owned rights.

Evaluation of Severe Accident Risks: Sequoyah, Unit 1

Appendices

Manuscript Completed. December 1990
Date Published: Decernber 1990

Prepared by
J. J. Gregory, W. B. Murfin', S. J. Higgins,
R. J. Breeding, J. C. Helton², A. W. Shiver

Sandia National Laboratories
Albuquerque, NM 87185

Prepared for
Division of Systems Research
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555
NRC FIN A1228

[^0]APPENDIX A
SUPPORTING INFORMATION FOR THE ACCIDENT PROGRESSION ANALYSIS
INTRODUCTION A. 1
A. 1 ACCIDENT PROGRESSION EVENT TREE A. 1
A.1.1 Detailed Description of the Sequoyah APET A. 1, 1.1
A.1.2 Listing of the Accident Progression Event Tree A. 1.2-1
A.1.3 Description of the Sequoyah Binner A.1.3-1
A.1.4 Listing of the Sequoyah Binner A. 1. 4-1.
A.1.5 Description of the Sequoyah Rebinner A. 1. 5-1
A.1.6 Listing of the Sequoyah Rebinner A. 1, 6-1
A.1.7 References A. 1, 7-1
A. 2 DESCRIPTION AND LISTING OF THE USER FUNCTION A. 2.1-1
A.2.1 Description of the User Function for the Sequoyah APET A. 2, 1-1
A.2.2 Listing of the Sequoyah APET User Function A. $2.2 \cdot 1$
A. 3 SUPPORTING INFORMATION FOR THE ACCIDENT PROGRESSION ANALYSIS. A. 3.1-1
A.3.1 Summary of Plant Information A. 3. 1-1
A. 3. 2 Initialization Questions A. 3, 2-1
A.3.3 Additional Discussions of Selected Questions A. 3. 3-1
A.3.4 References A. 3.4-1
FIGURES
A.2-1 Process used to Determine the Mode of Containment Failure for Fast Pressure Rise A. 2, 1-4
A.3.1 Mean and 908 Bounds of the Offsite Power Recovery Distributions for Sequoyah A. 3, 3-2

TABLES

A.2-1 Sequoyah User Functions Description A. 2. 1-6
A.3-1 SBO PDSs for Sequoyah A. 3. 3-2
A. 3-2 Timing in STCP PWR Blackout Sequences A. 3. 3-4
A. 3-3 Timing ir. STCP PWR LOCA Sequences A. 3, 3-4
A.3-4 Timing Information for Sequoyah Blackout PDSs A. $3,3-5$
A.3.5 Electric Power Recovery Times for Sequoyah A. $3,3.6$
A. 3-6 Electric Power Recovery Periods for Sequoyah A. 3. 3-7

APPENDIX A

SUPPORTING INFORMATION FOR THE ACCIDENT PROGRESSION ANALYSIS

INTRODUC "ION

Appendix A contains information and details about the accident progression analysis. Subsection A. 1 contains a detalled description and listing of the Accident Progression Event Tree (APET) and the binner that groups the outcomes of evaluating the APET. Subsection A. 2 contains a description and listing of the user function. The user function is a FORTRAN function subprogram called by EVNTRE when instructed to do so by the event tree. Subsection A. 3 contains additional information about the accident progression analysis: basic information about the plant, a listing of the initialization Questions (1 through 11) in the APET for each plant damage state (PDS), and a description of the ac power recovery data used in this analysis.

A. 1 ACCIDENT PROGRESSION EVENT TREE

A brief description of the Sequoyab APET is given in Section 2.3, and the binner is treated in Section 2.4 . The material in these sections is not repeated here. The 111 questions in the Sequoyah APET are iisted concisely in Table 2.3-1. This appendix consists of four subsections. Subsection
1.1 contains a discussion of each question to the Sequoyah APET. The event tree itself is too large to be depicted graphically and exists only in computer input format, which appears in Subsection A.1.2. Subsection A.1.3 is a detailed discussion of the binner, and Subsection A.1.4 contains a listing of the binner, which, like the APET itself, exists only in computer input format.

A.1.1 Detailed Desoription of the Sequoyah APET

Question 1. Size and Location of the Reactor Coolant System Break When the Core Uncovers?
6 Branches, Type 1
The branches for this question are:

1. Ark-A A large break in the reactor coolant system (RCS), equivalent to the break of a pipe greater than 2 in . in diameter.
2. Brk-S2 A small break in the RCS, equivalent to the break of a pipe between 0.5 and 2 in . in diameter.
3. Brk-S3 A very small break in the ROS, equivalent to the break of a pipe less than 0.5 in . in diameter.
4. Brk-V A break in an interfacing system has opened a path from inside the RCS to outside the containment. The size is equivalent to an A break.
5. B-SGTR A steam generator tube rupture (SGTR) has occurred. The size is equivalent to an S_{3} break.
6. B-PORV There is no break in the ROS; any loss of coolant will be through the cycling power-operated relief valve (PORV) or safety relief valve (SRV).

The branch taken in this question depends solely on the first PDS characteristic.

There is no branch for S_{1} breaks; they are grouped with the A breaks. If there is no break in the RCS pressure boundary, the RCS pressure will be maintained near the PORV setpoint, around 2500 psia. B-PORV is used to represent this situation. A stuck-open PORV or SRV is considered to be an S_{2} break. Note that this question determines the condition of the RCS pressure boundary at the time the water level had decreased to the top of active fuel (TAF). This is taken to be the onset of core damage and marks the transition from the accident frequency analysis to the accident progression analysis. If an accident initiated by a transient event has had a reactor coolant pump seal failure before the uncovering of top of active fuel (UTAF), the first characteristic of the PDS is " S_{3} ", and the third branch is taken. Similarly, a transient event in which the PORVs stick open before the UTAF is desjgnated an " S_{2} " PDS and the second branch is indicated at this question of the APET. Thus the branch taken in this question may not reflect the original accident initiator.

For some PDS groups, all the probability is assigned to one branch in an obvious manner, e.g., Branch 6 (B.PORV, no break) fo: Groups 2 (fast SBO) and 5 (Transients) and Branch 4 (Brk.V) for Group 4 (Event V). Other groups contain several PDSs that have different size breaks or no break at A11. For example, PDS Group 1, Slow SBO, contains " T ", " S_{3} ", and " S_{2} " PDSs. For groups like this, the probability is divided among the branches
according to the frequency of the relevant PDSs relative to the total group frequency. In the sampling mode, the quantification of this question depends upon the relative frequency of the RCS break classification, as provided by the TEMAC4 Code. For PDS Group 1, the TEMAC4 mean value quantification for this question is:

Branch 1:	Brk-A	-	0.000
Branch 2:	Brk-S2	-	0.028
Branch 3:	Brk-S3	-	0.954
Branch 4:	Brk-V	-	0.000
Branch 5:	B-SGTR	-	0.000^{2}
Branch 6:	B-PORV	-	0.018

For PDS Group 2, all the probability is assigned to Branch 6, B-PORV,
For PDS Group 3, the TEMAC4 mean value quantification for this question is:

Branch 1:	Brk-A	-	0.226
Branch 2:	Brk-S2	-	0.168
Branch 3:	Brk-S3	-	0.606
Branch 4:	Brk-V	-	0.000
Branch 5:	B-SGTR	-	0.000
Branch 6:	B-PORV	-	0.000

For PDS Group 4, all the probability is assigned to Branch 4, Brk-V.
For PDS Group 5, all the probability is assigned to Branch 6, B-PORV
For PDS Group 6, the TEMAC4 mean value quantification for this question is:

Brarich 1:	Brk-A	.	0.000
Branch 2:	Brk-S2	-	0.000
Branch 3:	Brk-S3	-	0.757
Branch 4:	Brk-V	-	0.000
Branch 5:	B-SGTR	-	0.135
Branch 6:	B-PORV		0.108

For PDS Group 7, all the probability is assigned to Branch 5, B-SGTR.

Question 2. Has the Reaction Been Brought under Control?
2. Branches, Type 1

The branches for this question are:

1. Scram The nuclear reaction in the core has been brought under control by insertion of the control rods or boron injection.
2. no-Scram The nuclear reaction in the core has not been brought under control

The branch taken in this question depends upon the PDS group being analyzed. No PDS characteristic was defined for the branching in this question.

Branch 1 is taken for all PDS groups except Group 6. PDS Group 6 consists of accidents initiated by ATWS; Branch 2 is taken for this group.

This question is used with the previous question to determine the RCS pressure at UTAF. For example, if the PORVs are stuck open in the absence of steam generator (SG) cooling, the RCS pressure will be much lower at UTAF if scram oocurred than if scram did not occur. If scram occurred, the bolling rate in the core would be relatively low, and the RCS pressure with the PORVs stuck open is expected to be around 500 psia or lower. If the control rods cannot be inserted, boiling would occur at a rate high enough to keep the PORVs open all the time, so the RCS would be at the PORV setpoint pressure, determining the RCS pressure ac vessel breach (VB). As the water level decreases below TAF, more and more of the core will lose the neutron-moderating effect of the liquid water, and the nuclear reaction will decrease

Question 3. For SGTR, Are the Secondary System SRVs Stuck Open? 2 Branches, Type 1

The branches for this question are:

1. SSRV-SO The safety/relief valves on the secondary system are stuck in the open position.
2. SSRVnSO The safety/relief valves on the secondary system are not stuck in the open position.

The branch taken in this question depends solely on the first PDS characteristic.

This question is used to discriminate between those PDSs that have "H" for the first characteristic (SGTR with the SRVs on the secondary system stuck open) and those which have "G" for the first characteristic ("normal" SGTR), This question is used for PDS Groups 6 and 7 . Whether the secondary SRVs are stuck open is important in determining the source term, For all PDS groups except Group 7, the second branch is indicated (for PDS Group 6, any SGTR initiator PDS involves a "G" category SGTR). The quantification for Group 7 is a function of the relative frequency of the "G" and "H" PDSs. When the APET is evaluated in the sampling mode, this changes from observation to observation. For each observation, the quantification is provided by TEMAC4.

[^1]The branches for this question are:

1. B-ECCS The high pressure injection system (HPIS) and low pressure injection system (LPIS) are operating, but not necessarily injecting water into the RCS.
2. BaECCS The ECCS is available and can operate when electric power is restored.
3. BfECCS The ECCS is falled, and is not recoverable.
4. B-LPIS The LPIS is operating; the HPIS is failed.

The branch taken depends upon the second PDS characteristic and upon the branch taken at Questions 1 and 3.

The first branch is taken for those PDSs where both HPIS and LPIS are operating when the TAF is uncovered. However, water may not be actually reaching the core because the RCS pressure is too high. Indeed, the fact that the onre is uncovered indicates that sufficient injection is not taking place. Branch 1 is taken, for example, when all auxiliary feedwater (AFW) has failed, the RCS is intact, and bleed and feed has failed because the PORVs cannot be opened.

The second branch is used in blackout situations with no ECCS fallures; if or when power is recovered, the ECCS will function. The third branch is selected when the failures are in the ECCS itself, and there is no recovery within the timeframe of this analysis. Since the period in which the ECCS operates in the infection mode occurs before the uncovering of the core, the third branch is taken for those PDSs in which the ECCS never operates as well as those PDSs in which the ECCS operates in the injection mode and fails in the reciroulation mode. The fourth branch indicates that HPIS is failed, but that LPIS is operating. As in the situation for which Branch 1 applies, core damage occurs because the RCS pressure is so high that no injection results. The third branch is taken for Event V since much of the water infected by the LPIS goes out the break and a sufficient amount does not reach the core

Cise 1: There was a large break in the RCS when the core uncovered (used for PDS Group 3), or there was a SGTR initiator with a stuck open secondary SRV (used for PDS Group 7). For PDS Group 7, all the probability is assigned to Branch 3, BfECCS. For PDS Group 3, this case is used to single out the A and S_{1} PDSs so that the status of the ECCS can be assigned appropriately. In the sampling mode, the quantification of this case depends upon the relative frequency of the A and S_{1} PDSs in PDS Group 3, as determined by TEMACL. Based on the mean values of the PDSs in Group 3, the quantification for this case is:

Branch 1:	B-ECCS	-	0.000
Branch 2:	BaECCS	-	0.000
Branch 3:	BfECCS	-	0.246
Branch 4:	B-LPIS	-	0.754

Case 2: There was a small break in the RCS when the core uncovered. This case is used to single out the S_{2} PDSs in PDS Group 3 so that the status of the ECCS can be assigned appropriately. Some portion of PDS Group 1 will also satisfy the requirement for this case, and all the probability is assigned to Branch 2, BaECCS. In the sampling mode for PDS Group 3, the quantification of this case depends upon the relative frequency of the S_{2} PDSs, as determined by TEMAC4. Based on the mean values of the PDSs in Group 3, the quantification for this case is:

Branch 1:	B-ECOS	-	0.000
Branch 2:	BaECCS	-	0.000
Branch 3:	BfECCS	-	0.224
Branch 4:	B-LPIS	-	0.776

Case 3: There was a very small break in the RCS when the core uncovered. This case is used to single out the S_{3} PDSs in PDS Groups 3 and 6 so that the status of the ECCS can be assigned appropriately. Some portion of PDS Group 1. will also satisfy the requirement for this case, and all the probability is assigned to Branch 2, BaECCS. For PDS Group 6, all the probability is assigned to Branch 3, BfECCS. In the sampling mode for PDS Group 3, the quantification of this case depends upon the relative frequency of the S_{3} PDSs, as determined by TEMAC4. Based on the mean values of the PDSs in Group 3, the quantifioation for this case is:

Branch 1:	B-ECCS	-	0.000
Branch $2:$	BaECCS	-	0.000
Branch 3:	BfECCS	-	0.256
Branch 4:	B-LPIS	-	0.744

Case 4: This case applies if the RCS is intact when the TAF uncovers, if there is an interfacing systems loss-of-coolant accident (LOCA) (Event V), or if there is an SGTR initiator without a stuck open secondary SRV. The quantification for each PDS Group depends upon the second PDS characteristic.

Question 5. Is the RCS Depressurized by the Operators? 3 Branches, Type 2, 3 Cases

The branches for this question are:

1. Op-DePr The operators opened the PORVs to depressurize the RCS before UTAF.
2. OpmDePr The operators did not open the PORVs to depressurize the RCS before UTAF, but they may do so after UTAF.
3. OpnDePr The operators did not open the PORVs to depressurize the RCS before UTAF when they should have, so no credit can be given for their opening of the PORVs after UTAF.

The branch taken depends upon the PDS Group and upon the branch taken at Questions 1 and 3.

For use in Question 19, it is necessary to know if the operators can be given credit for opening the PORVs after UTAF. The Sequoyah emergency procedures direct the operators to open the PORVs when the core exit thermocouples reach $1200^{\circ} \mathrm{F}$ if at least one centrifugal charging pump or safety injection pump is running. If the PORVs were not opened before UTAF when they should have been, due to efther human error or hardware fallures, no credit is given for deliberate opening of the PORVs after UTAF.

For the A, S_{1}, and S_{2} breaks, opening the PORVs will have a negligible effect and the question is moot. For the Transient PDS Group and the S_{3} PDSs in the LOCA Group, the operators have falled to open the PORVs before UTAF or the PORVs are stuck closed. In either case, no credit is given for deliberate opening of the PORVs in the accident progression analysis and Branch 3 is chosen. For the anticipated transient without scram (ATWS) initiators, it was estimated that the operators would be too busy attempting to shut down the reaction before UTAF to open the PORVs, and the porvs would be kept continuously open by the escaping steam in any event. Thus, the operators may open the PORVs after UTAF and Branch 2 is taken, For the SGTR inftiators, if the operators falled to follow procedures and did not depressurize the RCS by normal means, no credit is given for their opening the PORVs after UTAF.

Caso 1: There was a very small break in the RCS when the core uncovered. This case is used to separate out the S_{3} PDSs in FDS Group 3. The operators have falled to open the PORVs bofore UTAF. No credit is given for deliberate opening of the PORVs. All the probability is assigned to Branch 1, OpnDePr.

Case 2: This case applies only to the SGTRs in PDS Group 7 with stuck open SRVs; the operators falled to follow procedures and did not depressurize the RCS by normal means. No credit is given for their opening the PORVs after UTAF and Branch 1 is specified. When the APET is evaluated in the sampling mode, the quantification of this case depends upon the relative frequency of the SGTR PDSs.

Case 3: This case incluaies all the initial conditions not covered in the first two cases: RCS intact, or any break except an S_{3}, or a SGTR in which the SRVs are not stuck open. For PDS Groups 1 and 2, there is no electrical power, and therefore, the required pumps are not running, so the procedures prohibit depressurization and Branch 3 is specified. For PDS Group 3, LOCAS, Branch 3 is chosen. In the other PDSs, the break is more effective in depressurizing the RCS than the open PORVs would be, so whether the PORVs are opened is irrelevant. For PDS Group 4, Event V, the break is large and opening the PORVs will have no effect on the RCS pressure. For PDS Group 5, Transients, Branch 3 is specified since the PORVs cannot be opened from the control room due to hardware fallures or the operators falled to open the PORVs before UTAF. For the ATWS Group, Branch 2 is taken as discussed above. In the SGTR Group GLYY-YNY, the PORVs are open (Branch 1) since the operators are attempting to cool the core by bleed and feed.

Question 6. Status of Sprays?
4 Branches, Type 1,4 Cases
The branches for this question are:

1. B-Sp The containment sprays are operating or are operable in the recirculation mode.
2. BaSp The containment sprays are available and can operate when electric power is restored.
3. BESp The containment sprays are failed in the recirculation mode and are not recoverable.
4. nob-SW The sprays themselves are operable, but heat removal from the spray heat exchangers by the service water system is falled and cannot be restored.

The branch taken depends upon the third PDS characteristic, and upon the branch taken at Questions 1, 3, and 4.

At Sequoyah, long-term containment heat removal is provided by the containment spray system. The spray system consists of two pump trains capable of drawing suction from the refueling water storage tank (RWST) and discharging through spray headers in the dome of the containment building. Water sprayed into containment passes through drains in the upper compartment floor to the containment sump. When the RWST reaches a low level, the pump suction is transferred by operator action to the sump. In this mode of operation, heat is removed from the containment atmosphere by a heat exchanger in each of the pump trains; the heat exchangers are in turn cooled by a service water system. It is worth noting that the fallure to remove the upper compartment drain covers following refueling operations was assessed in RSSMAPA.1-1 to be an important source of fallure for both the spray and core cooling systems in the recirculation phase, since water from spray flow would be trapped in the upper compartment and would never reach the sump. Recent improvements in maintenance pri edures have significantly reduced the likelihood that the drain covers cou+d be left in place.

This question concerns the sprays during the period of core degradation, so only the recirculation mode of the containment sprays is of interest. The branch BfSp does not mean that the sprays did not operate in the injection mode. The spray injection pumps are high capacity pumps (4750 gpm) and the entire contents of the RWST can be injected into the containment in about 20 min if both spray injection pumps and all high pressure injection (HPI) pumps are operating at capacity. If little HPI is required, then it may take about half an hour for the spray pumps alone to empty the RWST. Thus, the injection mode of containment spray is over before or shortly after the core uncovers. Whether or not the water from the RWST has been transferred to the containment is addressed in Question 7 .

For Event V, it is assumed that due to the break location, pressures high enough to actuate the spray system do not occur in the containment, so the sprays are not inftiatect. Recirculation sprays and heat removal from the heat exchangers by service zater, as well as availability of ioe in the $1 C$, are required for containment heat removal. For branch BaSp, service water flow to the heat exchangers is assumed to be restored when the containment sprays are restored to operation following power recovery. The fourth branch is taken for the service water failure sequences which lead to containment failure before core melt (the "Core Vulnerable" sequences). No significant core vulnerable sequences were identifled for Sequoyah, so this branch is not used.

Case 1: There was a large break in the RCS when the core uncovered and the ECCS is falled (used for PDS Group 3), or there was an SGTR inftiator with a stuck open secondary SRV (used for PDS Group 7). For PDS Group 7, all the probability is assigned to Branch 3, BfSp. For PLS Group 3, this case is used to single out the A and S_{1} PDSs so that the status of the sprays can be assigned appropriately. In the sampling mode, the quantification of this case depends upon the relative frequency of the A and S_{1} PDSs without ECCS in PDS Group 3, as determined by TEMAC4. Based on the mean values of the PDSs in Group 3, the quantification for this case is:

Branch 1:	B-Sp	0.486	
Branch 2:	BaSp	0.000	
Branch 3:	BfSp	$:$	0.514
Branch 4:	noB-SW		0.000

Case 2: There was a small break in the RCS when the core uncovered and the ECCS is failed. This case is used to single out the S_{2} PDSs in PDS Group 3 so that the status of the sprays can be assigned appropriately. Some portion of PDS Group 1 will also satisfy the requirement for this case, and all the probability is assigned to Branch 2, BaSp. In the sampling mode for PDS Group 3, the quantification of this case depends upon the relative frequency of the S_{2} PDSs without ECCS, as determined by TEMAC4. Based on the mean values of the PDSs in Group 3, the quantification for this case is:

| Branch 1: | B-Sp | 0.413 |
| :--- | :--- | :--- | :--- |
| Branch 2: | BaSp | 0.000 |
| Branch 3: | BfSp | 0.587 |
| Branch 4: | noB-SW | 0.000 |

Case 3: There was a vary small break in the RCS when the core uncovered. This case is used to single out the S_{3} PDSs in PDS Groups 3 and 6 so that the status of the sprays can be assigned appropriately. Some portion of PDS Group 1 will also satisfy the requirement for this case, and all the probability is assigned to Branch 2, BaSp. For PDS Group 6, all the probability s assigned to Branch 1, B-Sp. In the sampling mode for PDS rroup 3, the quantification of this case depends upon the relative frequency of the S_{3} PDSs without ECCS, as cletermined by TEMAC4. Based on the mean values of the PDSs in Oroup 3, the quantification for this case is:

Branch 1:	B-Sp	0	0.419
Branch 2:	BaSp	0.000	
Branch 3:	BfSp	0.81	
Branch 4:	noB-SW	$:$	0.00

Case 4: This case applies if the RCS i: intact at UTAF, if there is an interfacing systems LOCA (Event V), if there is a LOCA without loss of ECCS, or if there is an SGTR initiator vithout a stuck open secondary SRV. The quantification for each PDS Grrup depends upon the third PDS characteristic.

Question 7. Status of ac Power? 3 Branches, Type 1

The branches for this question are:

1. B-ACP ac electrical power is available from offsite or from the diesel generators (DGs) throughout the accident.
2. BaACP ac electrical power is not available, but may be recovered.
3. BEACP ac electrical power is not ava.able, and cannot be recovered.

The branch taken depends upon the fourth PDS characteristic.
For internal events, loss of offsite power and fallure of the DGs to start (station blackout) leads to the second branch since offsite power may always be restored. Thus, for PDS Groups 1 and 2, all the probability is assigned to the second branch, BaACP. For the remaining PDS Groups 3 through 7, all the probability is assigned to the first branch, B-ACP.

Question 8. Are the RWST Contents Infected into Containment? 3 Branches, Type 2, 2 Cases

The branches for this question are:

1. RWST-I The contents of the RWST have been injected into the containment.
2. RWSTaI The contents of the RWST have not been injected into the containment, but can be if ac power is recovered.
3. RWE1E1 The sontents of the RWST have not been injected into the concainment, and cannot be injected even if power is recovered.

The branch taken depends upon the fifth PDS characteristic and upon the branch taken at Questions 1 and 3.

For the V breaks, the water in the RWST will be injected into the RCS, but it is assumed that most of it will escape through the break and will not end up $1 \pi \mathrm{th}$ the containment. Thus the third branch is taken for Event V. For some SGTRs, while some of the water in the RWST will escape through the tube rupture and thus out of the containaent, it is assumed that a good portion of the water in the RWST will pass out of the RCS throwgh the PORVs and thus will be retained in the containment. Further, the water escaping through the PORVs may cause the contairment sprays to be initiated, which will also transfer the water from the RWST to the containment. Enough of the water from the RWST is expected to be transferred into the containment sumps that the first branch is taken for SCTRs.

For all of the PDSs with the exception of V and some SGTRs, if the water from the RWST is transferred from the RWST, it will end up in the containment. If it is not injected directly into the containment by the spray injection system, it is injected into the vessel and escapes into the contaimment through the break, the PORVs or the SRVs.

The branch taken in this question as well as the amount of ice melt is used to deteruine the level of water in the re ctor cavity. At Sequoyah, there is no connection between the cavity a ${ }^{\text {t }}$ t'a sumps at the floor (basemat) level in the lower compartment. If, f ever, enough water accumulates on the floor o: the lower compartment $\left(-52, j \jmath 0 \mathrm{ft}^{3}\right)$, it will start to spill over into the reactor cavity. This occurs when the RWST contents have been injected to containment and approximately one quarter of the ice has been melted. Neither RWST injection nor total ice melt alone enable water to enter the reactor cavity. Thus, che only way to fill the cavity, capacity of approximately $18,000 \mathrm{ft}^{3}$, is for the RWST to be injected to containment. The smount of ice melt and the level of cavity flooding are addressed in Questions 29 and 63.

Case 1: This case addresses a PDS in which there is an SGTR initiator and the SRVs on the secondary systam stick open (PDS HINY-NXY in PDS Group 7). For this case, there is no RWST injection to containment, and all of the probability is assigned to Branch 3, RWSTfI.

Case 2: This case applies for PDS Groups 1 through 6, or for an SGTR initiator without a stuck open secondary SRV in PDS Group 7. The quantification for each PDS Group depends upon the fifth PDS characteristic.

Question 9. Heat Removal from the Steam Generators? 4 Branches, Type 2, 2 Cases

The branches for this question are:

1. SC-HR Heat is removed from the secondary side of the SGs throughout the accident.
2. SGaHR There was no heat removal from the secondary side of the SGs at the start of the accident, but it may be recovered if electrical power is recovered
3. SGfHR Heat removal from the secondary side of the SGs was fatled at the start of the accident, and it cannot be recovered.
4. SGdHR There is no heat removal from the secondary side of the SGs at the uncovering of the core, but the steam-turbine-driven auxiliary feedwater (STD-AFW) operated until battery depletion. The electric-motor-driven AFW pumps could be started when power is recovered.

The branch taken depends on the sixth PDS characteristic and upon the branch taken at Questions 1 and 3. Whether the operators depressurize the secondary system by blowing down the steam generators is determined in the next question.

In blackout situations, the sole means of heat mamoval from the SGs is the STD AFW (STD-AFW) puap, which is not dependent on ac power. The "fast" and "slow" tlackout cases are distinguished by the second and fourth branches of this question. If the STD.AFW is failed at the start of the accident as in fast blackouts, core melt ensues rapidly, and Branch 2 of this question is chosen. If the STD-AFW operates for several hours, until battery depletion as in slow blackouts, the onset of core degradation will be considerably delayed and Branch 4 of this question is chosen.

For the cases with an S_{3} break, the secondary systam may be used initially to reduce the pressure in the primary system. This method is effective if the pressure in the secondary system is reduced to nearly atmospheric or to just enough to run the STD-AFW. By this means, the RCS may be brought down to a few hundred psia; the reduced pressure will reduce the flow out the break. However, if there is no water injection to the primary, eventually enough inventory is lost from the RCS so that the presence of steam in the primary side of the steam generators will limit heat removal by this method. The RCS pressure may then increase to a value limited by the S_{3} break.

Case 1: This case applies if there was a SGTh when the core uncovered and the SRVs on the secondary system were not swick open (PDS GLYY-YNY In PDS Group 7 and PDS GLYY-YXY in PDS Group 6). For the "G" category SGTRs in Group 6, all of the probability is assigned to Branch 1, SG. $H R$. For the " G " category SGTRs in Group 7, all of the probability is assigned to Branch 3 , SGfHR.

Case 2: All situations except those for Case 1 are addressed by this case. The quantification for each PDS Group except Groups 6 and 7 depends upon the sixth PDS characteristic. For PDS Groups 6 and 7, all of the probability is assigned to Branch 1, SG-HR.

Question 10. Is the Secondary Depressurized before the Core Uncovers? 2 Branches, Type 2, 3 Cases

The branches for this question are:

1. SecDP The fecondary system has been ciepressurized before the core uncovers.
2. nosecDP The secondary system has not been depressurized before th.e core uncovers.

The branching at this question depends upon the branch aken at Questions 1 and 9 and upon the sixth letter of the PDS characteristic.

The procedures direct the operators to depressurize the secondary system in many situntions as long as AFW is available. In most cases, reducing the pressure in the secondary system will reduce the pressure and temperature of the water is the primary system as well. It would, for example, redts. the flow rete out a break.

Whether the operators will depressurize the secondary system is most important in the long-term blackout scenario in which there are no tempe:eture-1nduced breaks 1π the RCS. In this sequence, the STD.AFW system falls after battery depletion. Although the RCS will repressuriae to the setpoint level before core degradation commences, blowdown of the secondary before AFW fallure determines whether the accumalators discharge before the core uncovers or at vessel breach.

Case 1: There is an s_{2} break in the RCS and STD-AFWS operated until battery depletion. This case applies to slow blackouts (PDS Group 1) with a very emall break. In the sampling mode, the quantification of this case depends upon the relative frequencies of the two $\$_{3}$ PDSs in Group 1 as defermined by TEMAC4. Based on the mean values of these PDSs, the quantification for this case is :

$$
\begin{array}{llll}
\text { Branch 1: SecDP } & 0.978 \\
\text { Branch } 2: & \text { noSecDP } & 0.022
\end{array}
$$

Case 2: There is an S_{2} break in the RCS and STD-AFWS prerated unt 1: battery depletion. This case applies to slow blackcats (PDS Group 1) with a small bresik, and all of the probability is assigned to Branch 2 , nosecDP.

Case 3: All situations except those for Cases 1 and 2 are included in this case. The quantification for each PDS Group depends upon the sixth PDS characteristic. For PDS Group 1, all of che probability is assigned to Branch 1, SecDP

Question 11. Cooling for RCP seals? 3 Branches, Type 2, 3 Cases

The branches for this question are:

1. B-PSC Cooling water is dellvered to the seals of the RCPs throughout the accident
2. BaPSC
3. BEPSC

Cooling weter is not being delivered to the seals of the RCPs when the core uncovers, but cooling can be reoovered if power is recovered.

Cooling for the seals of the RCPs is failed and cannot be recovered.

The branch taken depends upon the seventh letter of che PDS and upon the branch taken at Questions 1 and 4 .

Weter to cool the RCP seals normally comes fror the charging pumps. If thes pumps fail and the alternate teans of cooli,g the seals is not activated, or if all electrical power is lost, there is a good probability that the seals will fail, resulting in an $S_{3}+$ size break in the RCS.

Case 1: There is a large break LDCA with low pressure infection (LPI) avallable (PDS Group 3). This case is used to single out the A and \mathbb{S}_{1} PDSs 1π PDS Group 3 with LPI avallable so that the status of the RCP seal cooling can be assigned appropriately. In the sampling mode, the quantification of this case depends upon the relative frequencies of the "A" PDSs in Group 1 as determined by TEMAC4. Based on the mean velues of these PDSs, the quantification for this case is:

Branch 1:	B-PSC	-	0.191
Branch 2:	BaPSC	$*$	0.000
Brench 3:	BfPSC	-	0.809

Case 2: There is an ATws inftiating event, with an S_{3} size break and failure of the ECOS (PDS Group 6). For this case, all of the probability is assigned to Branch 3, BfPSC.

Case 3: All situations except those for Cases 1 and 2 are included in this case. The quantification for each PDS Group depends upon the seventh PDS characteristic. For PDS Groups 1 and 2, all of the probability is assigned to Branch 2, BaPSC.

Question 12. Initial Containment Leak or Ibolation Failure? 2 Branches, Type 1

The branches for this question are:

1. B-Leak The containment leaks at a rate signifinditiy above the design leak rate; the rate is large enougn to preclude further fallure overpressurization.
2. nob-Leak The containment is intact and leaks at the design leak rate, or at some slightly greater rate which is insufficient to preclude gradtal overpressurization faiture.

The split between the two branches is sumpled from a distribution that was quantified internally in the accident frequency analysis. The first branch includes both isolation fallures and pre-existing leaks, equivalent to a hole between $4 \mathrm{in}^{2}$ and $1 \mathrm{ft}^{2}$ in size. A hole smaller than $4 \mathrm{in}^{2}$ is not of interest because it is too small to arrest a slow pressure buildup.
A.1.1.13

The probability of a pre-existing leak large enough to be of concern is negligible. The main threat is due to isolation fallures which are caused by air lock fallures, purge valve fallures or other similar, undetected failures of the containment boundary. The size of these failures is on the order of $1 \mathrm{ft}^{2}$. The failure of these types of events were considered to be $5.0 E-3$ per demand, es described in the acoident frequency analysis. This is discussed in Section 4.11 of NUREG/CR-4550, Volume 5, Part 1.4.1-2 In the sampling mode, the mean value of the distribution provided by the acoldent frequency analysts for the quantification of this question is:

$$
\begin{array}{lll}
\text { Branch 1: B-Leak } & \text { - } & 0.005 \\
\text { Branch } 2 \text { : noB-Leak } & \text { - } & 0.995
\end{array}
$$

Question 13. Do the Operators Turn on the Hydrogen Igniters? 2 Branches, Type 2, 2 Cases

The branches for this question are:

1. B.Ig The igniters ate actuated by the operators.
2. BnIg The igniters are not actuated by the operators.

This question is not sampled; tise quantification was done internally in the accident frequency analysis. The branch taken depends upon the branch taken at Question 7.

The hydrogen ignition system at Esquoyah is provided to help preclude large hydrogen burns by burnisig relatively small quantities of hydrogen as it is generated, Hydrogen igniters are located in the upper ?lenum of the IC, the tome, and the lower compartment. The igniters depend upon ac power and must be actuated by the operators. If there is no ac power at the time of UTAF, the igniters will not be switched on. For the times in which ac power is operational, the accident frequency analysts assessed the unavailability of the igniters due to failure of the operators to switoh
iem on, A.1-2 The igniters are energized as a standard procedural step, not 7. response to a partloular set of containment conditions. The operator
tions for igniter activation were considered step-by-step under moderate stress.

Case 1: At UTAF, ac power is operational. This question is not sampled; the accident frequency analysts provided a point value estimate for the probability of igniter activation based on human reliability analysis. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch } 2: & \mathrm{B}=\mathrm{Ig} & \text { - } & 0.990 \\
\text { Branch 2: } & \mathrm{BnIg} & \text { - } & 0.010
\end{array}
$$

Case 2: All situations in which ac power is not operational nt UTAF, This case applies for PDS Groups 1 and 2 and all of the probaality is assigned to Branch 2, Bnlg.

Question 14. Status of Air Return Fans?
3 Branches, Type 2, 2 Cases

The branches for this question are:

1. B.Fan The air return fans (AREs) are operating during core degradetion.
2. JaFan Due to unavailability of ac power, the ARFs are not operating during core degradation, but the fans can operate if power is recovered.
3. BfFan The ARFs heve falled and cannot operate upon demand.

This question is not sampled; the quantification was done internally in the accident frequency analysis. The branch taken depends upon the branch taken at Question?.

The ARF system consists of two recirculation fans, each supplied with its own separate duct system and dampers. The operation of che fans ensures that gas, displaced into the upper containuerit by the blowdown of steam from the primary system, is returned rapidly to the lower containment. The fans provide mixing of the containment atmosphere, thereby reducing the hydrogen concentration in stagnant areas of containment. The fans draw gases from the dome and dead-ended regions of containment and exhaust into the lower compartment. This mainteins forced circulation from the lower compartment through the IC to the dome. A signal for high containment pressure (3 psig) actuates the fans after a short delay time. The ARF system is ac-powered, consists of an exhaust damper, an inlet damper, and a fan, and has two redundant trains. The accident frequency analysts assessed the unavailability of the fans, due to syetem reliability, A.1-2

Case 1: At UTAF, AC power is operetional. This question is not sampled; the accident frequency analysts provided a point value estimate for the probability of ARF system failure. The quantification for this case is:

| Branch 2: | B-Fan | 0.999 |
| :--- | :--- | :--- | :--- |
| Branch 2: | BaFan | 0.000 |
| Branch 3: | BfFan | 0.001 |

Case 2: All situations in which ac power is not operational at UTAF, This case applies for PDS Groups 1 and 2 and all the probability is assigned as follows:

Branch 1:	B-Fan	0.000	
Branch 2:	BaFan	-	0.999
Branch 3:	BeFan	-	0.001

Question 15. Event V . Break Location Scrubbed by Sprays? 2 Branches, Type 1

The branches for this question are:

1. V. Wet The break location outside containment is located so that the radioactive releases will be scrubbed by fire sprays in the auxiliary building.
2. V-Dry The break location outside containment is located so that the radioactive releases will not be scrubbed by fire sprays in the auxiliary building.

The split between the two branches is sampled from a distribution that was quantified internally.

For sequoyah, the low-pressure fumps are located in the auxiliary building, which has area fire sprays. If the break in the interfacing system is such that the fire sprays scrub the releases, the effects of the V sequence can be mitigated. In Draft NUREG-1150, $\frac{\kappa .1-3}{}$ this question was addressed within the decontamination factor (DF) for tha V-sequence scrubbing and was related to Containment issue 8 for Surry. For Surry, however, the break location has the potential to actually be submerged. The probability that the break location will be subject to scrubbing from fire sprays is reasonably high. Iive distribution used here is a uniform distribution from 0.60 to 1.00 . The mean of this distribution is 0,80 . The mean vaiue of the distribution used to determine the branching gives the following quantification:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { V-Wet } & \text { - } & 0.80 \\
\text { Branch 2: } & \text { V-Dry } & 0.20
\end{array}
$$

Question 16. RCS Pressure at the Start of Core Degradation? 4 Branches, Type 2, 4 Cases

The branches for this question are:

1. E.SSPr The vessel is at the system safety setpoint pressure, approximately 2500 psia.
2. E-HiPr The vessel is at high pressure, about 1000 to 1400 psia.
3. E-ImPr The vessel is at intermediate pressure, about 200 to 600 psia.
4. E.LoPr The vessel is at low pressure, below 200 psia,

This question is not sampled. The branch taken at this question depends upon the bianches previously taken at Questions 1,2 , and 10 .

The pressure in the vessel at the start of core degradation is largely a function of the break size that has occurred, whether an auxiliary feedwater system (AFWS) is operating, and whether the secondary system has been depressurized. Once core pelt is well underway, whether the AFW is operating and whether the secondary system is depressurized are less
important since a gas bubble will form in the SGs, rendering this means of cooling ineffective. Thus the system may eventually repressurize to a pressure determined solely by the break size. The relationship between bresk size, AFWS state, and RCS pressure was primarily determined from the results of many STCP runs, although other code results were consulted as well. The high pressure range is mean: to cover all pressures between 600 and 2000 psia . The code results indicate that in the majority of acoidents with an S_{3} or an S_{2} break, where the secondary system has not been depressurized, the RCS will be in the 1000 to 1400 psia range at UTAF, but the pressure at UTAF is a function of the accident tiring and the exact site of the break

If the RCS pressure boundary remains intact and the RCS has been depressurized by operation of the AFWS, repressurization of the primary system is required before the onset of core damage. Core degradation will not begin until a substantial portion of the primary system water inventory has been lost. With no break in the RCS, the only way for water to escape is through the PORVs or SRVs, and the system must be fully repressurized to force epen the PORVs or SRVs.

Cass 1: There was an inftiating large break (A or S_{1}) or Event V occurred, In either case the RCS pressure is low (below 200 psia) The quantification for this case is:

Branch 1:	E. SSPr	\quad	0.0
Branch 2:	E. HiPr	-	0.0
Branch 3:	E. ImPr	-	0.0
Branch 4:	E. LoPr	-	1.0

Case 2: There is no break in the RCS at the time the core uncovers, so the only escape path for the water is through the PORVs or the SRVs Thus the RCS is at the system setpoint pressure (around 2500 psia) The quantification for this case is:

Branch 1:	E-SSPr	$:$	1.0
Branch 2:	E-HiPr	$:$	0.0
Branch 3:	E-IuPr	$:$	0.0
Branch 4:	E.LoPr	$:$	0.0

Case 3: The AFW is efther operating or has been operating. The secondary system is depressurized and there is either an S_{3} or an S_{2} break. SGTR is included here since it is S_{3} in size. The RCS pressure is intermediate (200 to 600 psia). The quantification for this case is:

Branch 1:	E.SSPr	0.0	
Branch $2:$	E. HiPr	$:$	0.0
Branch 3:	E.ImPr	$:$	1.0
Branch 4:	E.LoPr	0.0	

Case 4: Whether or not the AFW is or has been operating, the secondary system is not depressurized when the core uncovers and there is an S_{2}. or S_{3}-size break. The RCS pressure is high (1000 to 1400 psia). The quantification for this case is:

Branch 1:	E.SSPr	$*$	0.0
Branch 2:	E-HIPr	$*$	1.0
Branch 3:	E-ImPr	$*$	0.0
Branch 4:	E-LoPr	$*$	0.0

Question 17. Do the PORVs or SRVs Stick Open? 2 Branches, Type 2, 2 Cases

The branches for this question are:

1. PORV-SO At least one pressurizer PORV or RCS SRV is stuck open, resulting in an $\mathrm{S}_{2}-$ size leak.
2. PORVnSO There are no PORVs or SRVs stuck open.

This question is sampled; the distribution was determined internally. The branch taken at this question depends upon the branch taken ct Question 16.

With no breaks in the RCS pressure boundary, the only route by which water can escape from the RCS is through the PORV or SRVs. If the PORVs cannot be opened from the control room (as in PDS Group 5), they may still function in their relief mode. If they do not open in this mode, the SRVs will open at a slightly higher pressure. After the water level has decreased below the TAF and core degradation has comenced, the PORVs or SRVs will be passing superheated steam and hydrogen at temperatures well in excess of the temperatures for which they were designed. Further, they will open and close many times as they cycle about their setpoint. Thus, the probability that the valves will stick open during the core melt period may be fairly high. If one or more PORVs or SRVs stick open, the break is of S_{2} size.

Case 1: The RCS was at eystem setpoint pressure (about 2500 psia) at the start of core degradation, PORVs and SRVs stick open occasionally in normal service. After core melt begins, they will be operating at temperatures much higher than those they encounter in normal service, so the single-cycle failure to reclose probability is higher than the probability for failure to reclose at normal operating conditions. Further, the valves are expected to cycle many times during core melt. The distribution for the PORVs or SRVs sticking open during core melt was determined internally. Plausible rates of failure for a single cycle were estimated by increasing the normal failure rate to account for degraded performance at above-design temperatures. The number of cycles was estimated from code simulations. The probability estimates for the PORVs or SRVs sticking open during core meit obtained in this manner ranged from 0.1 to 1.0 . In the absence of any data on the operation of these valves at the temperatures in question, a uniform distribution from 0.0 to 1.0 was used for this case. Based on the mean value, the quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { PORV-SO } & \quad & 0.500 \\
\text { Branch 2: } & \text { PORVnSO } & 0.50
\end{array}
$$

Case 2: The RCS was not at system setpoint pressure at the start of core degradation, so the PORVs or SRVs will not be cycling. Thus, they will not stick open. The quantification for this case is:

Branch 1: PORV -SO $\quad 0.0$
Branch 2: PORVnSO . 1.0

Question 18. Temperature-Induced RCP Seal Fallure? 2 Branches, Type 2, 4 Cases

The branches for this question are:

1. E-PSS3 Due to lack of cooling, the seals of the RCPs fail, resulting in an " S_{3} "-size leak.
2. noEPSF The seals of the RCPs do not fall.

Cases 2,3 , and 4 of this question are sampled; the sampling is based on the conclusions of a special ASEP expert panel that considered only the question of RCP seal fallures. This question is sampled zero-one; that is, all the probability in an observation is placed in only one branch. The branching at this question depends upon the branches previously taken at Questions 11,16 , and 17.

The accident frequency analysis considered the failure of the RCP seals before the onset of core degradation. The accident progression analysis considers the failure of the RCP seals after the onset of core degradation. The accident frequency analysis considered different modes of failure, each of which resulted in a different flow rata. In the APET, only fallure or no fallure is considered. Selection of the no-faliure branch in Cases 2 , 3 , and 4 is rank correlated with the success state (design leakage only) in TEMAC. All RCP seal failures in this analysis are considered to be S_{3}

Case 1: Either seal cooling was available all along, or it was lost but re-established when power was recovered before the uncovering of the core. In either case, pump seal fallures do not occur. The quantification for this case is:

$$
\begin{array}{lll}
\text { Branch 1: E-PSS3 } & 0.0 \\
\text { Branch 2: noEPSF } & 1.0
\end{array}
$$

Case 2: There is no break in the RCS, so the RCS will be at the setpoint pressure determined by the PORVs, about 2500 psia. There is no cooling for the RCP seals by case 1. The expert panel concluded that seal fallure was more likely than not. Based on their aggregate results, the mean probability of seal fallure (all the leakage levels above design) for this case is 0.71 . As this question is sampled zero. one, that means that 71 of the observations have 1.0 for Branch 1 and 0.0 for Branch 2, and 298 of the observations have 0.0 for Branch 1 and 1.0 for Branch 2. More detall on RCP seal fallures can be found in NUREG/CR-4550, Volume 5, Appendix D. 5A.1-4 and NUREG/CR-4550, Volume 2,

Appendix C.4.A.1-5 Based on the the mean value of the sample, the quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E.PSS3 } & : & 0.710 \\
\text { Branch 2: } & \text { noEPSF } & 0.290
\end{array}
$$

Case 3: The RCS is at high pressure, about 1000 to 1400 psia . The experts considering this matter concluded that the degradation of the RCP $56 a l s$ is largely a mater of temperature and that the seals would degrade at any temperatures considerably in excess of their normal operating temperatures. Thus, the lower temperstures that accompany the lower ROS pressure (compared to Case 2) do not appreciably decrease the probabllity of seal fallure. The mean fallure value froll case 2 was reduced silghtly to obtain a mean fallure value of 0,65 . As in Case 2, the sampling is zero-one. Based on the the mean value of the sample, the quantification for this case is:

```
Branch 1: E-PSS3 0.650
Branch 2: noEPSF . 0.350
```

Casc 4) The RCS is at intermediate or loe pressure, below 600 psia . The reasoning for this case follows that for the previous case. The mean fatlure value from Case 3 was reduced slightly to obtain a mean failure value of 0.60 , As in Case 2, the sampling is zero-one. Based on the the mean value of the sample, the quantification for this case is.

Branch 1:	E.PSS3	0.600
Branch 2:	noEPSF	0.400

Question 19. Is the RCS Depressurized before Breach by Opening the Pressurizer PoRvs?
2 Branches, Type 2, 3 Cases
The branches for this question are:

1. PriDP The operators open the pressurizer PORVs and depressurize the RCS successfully before VB.
2. noPriDP The operators either do not open the pressurizer PORVs or they open the pressurizer PORVs so late that there is not enough time to depressurize the RCS before VB.

This question is not sampled and was quantified internally. The brench taken at this question depends upon the branch previously taken at Questions 4,5 , and ?

The pressure in the RCS may be reduced directly if the operators reach the point in the procedures where they are directed to open the PORVs on the pressurizer, and if there is sufficient time to blow down the ROS through the PORVs before core melt. If the accumulators have not been discharged before, reducing the RCS pressure will allow the accumulators to discharge
at this time. As opening the PoRVs is a last resort action, it is not clear that the operators will reach this step before core melt is well advanced, and, even if they do reach this step and open the PORVs, it is not clear that depressurization of the RCS will have been accomplished before VB.

The procedures at Sequoyah direct the operators to open the pressurizer PORVs when the core exit thermocouples reach $1200^{\circ} \mathrm{F}$ if at least one centrifugal charging pump or safety injection pump is running. For the operation of the pumps, ac power is required; so, deliberate depressurization is not credible in blackout situations. (Standard human reliability analyses do not consider actions that may be beneficial if they are in in contradiction to procedures.) Furthermore, operator depressurization is not allowed here if the operators have already falled to open the PORVs. The reasoning is that if the operators have already falled to follow procedures, they cannot now be given credit for returning to and following those procedures.

As an example, consider PDS TBYY-YNY in PDS Group 5, Transients. All AFW is falled and Bleed and Feed fails because the PORVs cannot be opened. Both LPIS and HPIS are operating but cannot inject because the RCS pressure is too high. The reason this is a core damage situation is that the operators falled to depressurize the RCS before the onset of core damage. Thus, for TBYY-YNY, no deliberate depressurization of the RUS is alloved in this question. For this PDS, however, when the system pressure reaches the SRV setpoint, the SRVs will be avallable to operate.

Although theoretically a viable means of reducing the pressure in the RCS, deliberate depressurization by the operators has little effect on the accident progression at Sequoyah. Of the five "T" (RCS intact at core uncovering) PDSs, deliberate depressurization is prohibited in tro of them because no ac power is avaliable, and deliberate depressurizailon is not credited in the other three because hardware faults make it inpussible to open the PORVs, or because the operators had falled to depressurize (and avold core damage) before the core was uncovered.

Branch 1 applies in a few cases where the operators had opened the PORVs before the onset of core damage but this is not reflected in the PDS indicntor. This is discussed in Question 5 .

Case 1: The operators opened the PORVs before the onset of core degradation. As this was part of their attempt to inject water into the vessel, there is no reason to think they wlll close the PORVs later. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { PriDp } & : & 1.0 \\
\text { Branch 2: } & \text { noPriDP } & : & 0.0
\end{array}
$$

Case 2; There is ac power available, there is at least one pump running, the PORVs are capable of being opened from the control room (there are no hardware PORV faults), and the operators have not previously falled to depressurize the RCS. Opening the PORVs is directed by procedures in these situations, and the operators should follow the procedures with high rellability. The core exit thermocouples should
indicate $1200^{\circ} \mathrm{F}$ well before core slump, and recent code calculations have shown that opening of the PORVs depressurizes the RCS fairdy quickly. There are, however, mafor uncertalnties as to when the upe. rators will reach this step in the procedures, and how much time will be available for depressurization before VB. Therefore, the depressurization probability is not unity. The quatification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { PriDP } & \text { - } & 0.900 \\
\text { Branch 2: } & \text { noPriDP } & * & 0.100
\end{array}
$$

Case 3: Either ac power is not avallable, or the operators have already failed to dopressurize the RCS by opening the PORVs. In the absence of ac power, opening the PoRvs is prohibited by procedures at Sequoyah. If the operators are in a core damage situation because they failed to open the PORVs earlier, no credit is given for them opening the PORVs now. The quantification for this case is:
Branch 1: PriDP
0.0
Branch 2: noFriDP
1.0

Question 20. Temperature-Induced SGTR? 2 Branches, Type 2, 2 Cases
The branches for this question are:

1. E.SGTR One or two $S G$ tubes rupture, resulting in an " S_{3} "-size leak.
2. noESGTR There is no temperature-induced SOTR.

Case 1 of this question is sampled; the distribution was provided by the In-Vessel Expert Panel (see Volume 2, Part 1, of this report). The branch taken at this question depends upon the branches taken at the preceding
four questions.

SGTRs are possible only if the SGs have dried out and very hot gas is circulating into the intake plenum from the vessel. The probability of the temperature-induced rupture of a nondefective tube before the hot leg or surge line falls is quite small. However, defects appear regularly in $S G$ tubes, and there are so many tubes in a pressurized water reactor that there are certain to be some defective tubes at any time except just after an inspection of all the tubes.

Case 1: There is no break in the RCS, so the RCS will be at the setpoint pressure determined by the PORVs, about 2500 psia. Thermal. hydraulic calculations show that the temperatures to be expected in the SG plenum and in the tube ends near the tube sheet can be quite high line by a significant they $l a g$ behind the temperatures in the hot leg and the surge line by a significant margin. If all the tubes were free of defects, temperature-induced SGTR would be highly unlikely. Taking defects into account, however, increases the probability of an SGTR. The mean value of the distribution provided by the experts for this case is

Branch 1:	E-SGTR	\cdot	0.014
Branch 2:	noESGTR	\cdot	0.986

Case 2: There is a break of some size in the RCS, so the RCS will not be at the setpoint pressure. Compared to the setpoint pressure case, the reduced pressure reduces the hoop stress on the tubes as well as the temperatures in the RCS. A temperature.induced SGTR was not considered credible by the experts. The quantification for this case is:

Branch 1:	E-SGTR	0.0
Branch 2:	noESGTR	1.0

Question 21. Temperature-Induced Hot Leg or Surge Line Break? 2 Branches, Type 2, 4 Cases

The branches for this question are:

1. E-HLA An "A"-size break oocurs in the hot leg or surge ine.
2. neE-HLA There is no fallure of a hot leg or surge Iine.

Cases 1 and 2 of this question are sampled; the distributions were provided by the In-Vessel Expert Panel. The branch taken at this question depends upon the branches taken at Questions 1 and 9 and at the previous five questions.

After much of the co.e is uncovered, the upper portion of the vessel and the piping connected t, it will be subjected to teroperatures well above the design temperatur The core will be above $2000^{\circ} \mathrm{F}$, so temperatures higher than $1000^{\circ} \mathrm{F}$ are possible in the vicinity of the hot leg nozzles and the surge line, If the RCS remains at high pressure during degradation, the hoop stress on the hot leg and the surge line will be high, and the elevated temperatures will weaken the metal consfderably. It is possible that the piping may fail before VB. Both the hot leg and the surge line are large pipes, so that all failures are of " A " size

Case 1: There is no break in the RCS, and the AFW is not operating: the RCS will be at the setpoint prassure determined by the PORVs, about 2500 psia . Some calculations show that temperatures high enough to cause creep rupture fallure may occur in the hot leg and the surge line (the pipe connecting the hot leg to the pressurizer). Although the surge line is farther from the upper plenum than the hot leg, the surge line has thinner walls than the hot leg, so it may fail before the hot leg. For the accident progression, it is immaterial which fails. The mean value of the experts' distribution for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-HLA } & - & 0.768 \\
\text { Branch 2: } & \text { noE-HLA } & - & 0.232
\end{array}
$$

Case 2: There is an S_{3} break in the RCS and the AFW is not operating. In these conditions, some code simulations show the RCS reaching pressures over 2000 psia late in the core melt scenario. There is less stress on the hot leg and surge 1 ine than in Case 1, and the natural circulation will not be as vigorous as in Case 1 , but ereep rupture of the piping is still credible. The mean value of the experts' distribution for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-HLA } & - & 0.035 \\
\text { Branch 2: } & \text { noE-HLA } & \because & 0.965
\end{array}
$$

Case 3: The only break in the RCS is a temperature-induced SGTR. The pressure will decrease from the PORV setpoint value efter the SGTR occurs, but perhaps not very quickly. This situation is similar enough to the situation in Case 2 that the same distribution is deemed applicable. The mean value of the distribution is:

| Branch 1: | E.HLA | 0.035 |
| :--- | :--- | :--- | :--- |
| Branch 2: | noE-HLA | 0.965 |

Case 4: The RCS pressure is below 2000 psia. A temperature-induced break of the hot leg or surge line was not considered credible by the experts. The quantification for this case is:
Branch 1: E-HLA
0.0
Branch 2: noE-HLA $\quad 1.0$

Question 22. Is ac Power Recovered Early (Between Core Uncovering and VB)? 3 Sranches, Type 2, Cases

The branches for this question are:

1. E-ACP $a c$ power is available in this time period,
2. EaACP ac power is not evallable in this time perlod, but it may be recovered in the future.
3. EfACP ac power is not avallable in this time period, and cannot be racovered

Cases 3 through 7 of this question are sampled; the distributions were obtained from an analysis of offsite power recovery for the sequoyah plant. The methods used for offsite power recovery are explained in more detail in Volume 1 of this report and in NUREG/CR-5032.A.1-6 The branching at this question depends upon the branch taken at Questions $1,7,9$, and 10 .

The probability of power recovery here is the probability that offsite electrical power is recovered in the period in question given that power was not recovered prior to the period. The derlvation of the time periods used in Cases 3 through 7 is presented in Subsection A.3.

The period of interest for the injection of water into the RCS is from UTAF A. 1.1. 24
to VB. The time period begins roughly 30 min before the UTAF and ends before VB. Because the end of the electric power recovery period in the acoident frequency analysis is the start of the power resovery period in this analysis, the start of the power recovery period here cannot be determined by UTAF. Instead, it must be the time at whish the accident frequency analysis terminated the consideration of power recovery. This is roughly 30 min before UTAF for some PDSs, but is thu harlier for other PDSs.

The power recovery periods are based on the conditian of the RCS at UTAF, of course, temperature-induced fallures or deliberate depressurization may change the rate of the accident progression, and thus the time between UTAF and VB, during the core degradation. Some of these occurrences may hasten the time to vessel failure (by allowing the RCS inventory to escape more quickly, for example) while others may delay it (by allowing the accumulators to discharge, for example). There are so many combinations of important factors contributing to the condition of the ROS that it was not possible to treat them all. The factors include original RCS conditions, AFWS status, secondary system status, and RCS pressure boundary fallure and fallure timing during core melt. Even if all of these pcssibilities could have been considered, the supporting database from which to obtain the required $t i m i n g$ information is lacking. Thus, power recovery was considered for only five time periods, based on the RCS condition at uncovering as explained in the discussions of Cases 3 through 7.

Case 1: Power was available at the start of the accident and remains available. The quantification for this case is:

Branch 1:	E-ACP	.	1.0
Branch 2:	EaACP	.	0.0
Branch 3:	E.fACP	.	0.0

Case 2: Power was failed at the start of the accident and is not recoverable. The quantification for this case is:

Branch 1:	E.ACP	.	0.0
Branch 2:	EaACP	$*$	0.0
Branch 3:	EfACP	.	1.0

Case 3: By the preceding two cases, this case and all the following cases have electric power not initially available, but recovery possible. In this case, the AFWS falled at the start of the accident. The only PDS Group that meets this condition is Fast SBO, so this case applies to PDS TRRR-RSR, when the RCS is intact at UTAF. The recovery period for this case is 1.0 to 2.5 h . The mean value for power recovery in this period $(0,410)$ gives the following quantification:

Branch 1:	E-ACP	0	0.41
Branch 2:	EaACP	$*$	0.59
Branch 3:	EfACP	\cdot	0.00

Cast 4: By the preceding case, the AFWS was operating at the start of the accident but falled after 4 h upon battery depletion. This case
applies to the $S_{2} R R R$-RCR PDS (slow blackout with stuck-open PORVs). With this large a break in the RCS, whether the operators depressurized the recondary system while the the AFW was operat ${ }^{4} n g$ is not very important. The recovery period for this case is 1.0 to 4.5 h . The mean value for power recovery in this period $(0,694)$ gives the following quantification:

Branch 1:	E-ACP	.	0.694
Branch 2:	EAACP	\cdot	0.306
Branch 3:	EEACP	.	0.000

Case 5: In this case, there is an S_{3} break and the operators did not: depressurize the secondary system while the AFWS was operating, so the PDS to which this case applies is $\mathrm{S}_{3} R \mathrm{RR} \cdot \mathrm{RCR}$. The recovery period for this case is 4.0 to 6.0 h . The mean value for power recovery in this period (0.320) gives the following quantification:

Branch 1:	E. ACP	-	0.320
Branch 2:	EaACP	-	0.680
Branch 3:	EfACP	.	0.000

Case 6: In this case, there is an S_{3} break and the operators did depressurize the secondary system while the AIWS was operating. This case applles to the $S_{3} R R R$.RCR PDS. The recovery period for this case is 4.0 to 10.5 h . The mean value for power recovery in this period (0.721) gives the following quantification:

```
Branch 1: E-ACP 0. . 0.721
Branch 2: EAACP . 0.279
Branch 3: EfACF . 0.000
```

Case 7: In this case, the operators depressurized the secondary system while the the AFWS was operating and the RCS was intact at UTAF, so Lie applicable pDS is TRRR.RDR. The recovery period for this case is 7.0 to 12.5 h . The mean value for power recovery in this period (0.612) gives the following quantification:

Branch 1:	E. ACP	-	0.612
Branch 2:	EaACP	-	0.388
Branch 3:	EfACP	-	0.000

Question 23. After Power Recovery, Is Core Cooling Re-established Promptly?
2 Branches, Type 2, 2 Cases
The branches for this question are:

1. E-RECC Core cooling is re.established promptly by the operators.
2. EnRECC Core cooling is not re-established promptly by the operators.

This question is not sampled; the quantification was done internally. The branching at this question depends upon the branches previously taken at Questions 4, 7, and 22 .

When power is recovered after a blackout, reinstating coolant flow to the core will certainly be the operators' first prisilty. The probability that the systems required would fail upon demand is so low that it can be neglected. The operators are trained in this operation.

Case 1: Power has been recovered, and restoration of core cooling in a timely manner is very likely. This is based on the fact that restoration of power and recovery of core injection are covered by both procedures and training. However, this will definitely be a high stress sicuation. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-RECC } & \text {. } & 0.950 \\
\text { Branch 2: } & \text { EnRECC } & - & 0.050
\end{array}
$$

Case 2: Power has not been restored or was never lost: the question is irrelevant. The quantiflcation for this case is:

```
Branch 1: E-RECC . 0.0
Branch 2: EnRECC * 1.0
```


Question 24. Rate of Blowdown to Containment? 4 Branches, Type 2, 4 Cases

The branches for this question are:

1. EBD-A The blowdown is equivalent to an " A " break.
2. EBD- 82 The blowdown is equivalent to an " S_{2} " break
3. EBD-S3 The blowdown is equivalent to an " S_{3} " break.
4. noEBD There is no blowdown to containment before vessel breach.

This question is not sampled; the blowdown to containment depends directly upon the size and location of the break in the RCS pressure boundary. The branching at this question depends upon the branches taken at Questions 1 , 17. 19, and 21.

Note that this question specifically concerns blowdown to containment. If the blowdown is to some location outside containment, as in Event V, then the fourth branch is chosen. There must, of course, be blowdown to somewhere or the core would not become uncovered. Blowdown due to both initiating and induced failures is considered. The blowdown from a cycling PORV is equivalent to the blowdown from an S_{3} break. The blowdown from a stuck-open PORV is equivalent to the blowdown from an S_{2} break.

Case 1: There is a large break inside containment. The quantification for this case is:

Branch 1:	EBD-A	$*$	1.0
Branch 2:	EBD-S2	$:$	0.0
Branch 3:	EBD-S3	$:$	0.0
Branch 4:	noEBD	$:$	0.0

vase 2; Event V has occurred. The break is of large size (A-size), but the blowdown is to the auxiliary bullding. The SOTRs are not fncluded in this case. It was the opinion of the accident frequency analysts that in an accident initiated by an SGTR, the operators would attempt to reduce the pressure in the RCS to reduce the flow out the tube rupture, Thas, some of the RCS inventory will escape through the PoRVs into the containment. As the main use of this question is in determining the baseline pressure inside the containment just before VB, SGTRs fit bettel in Case 4 of this question even though more water may escape through the ruptured tube than through the PORVs. Thus, only for event V is there considered to be no blowdown to the containment, The quantification for this case is:

Branch 1:	EBD-A	0.0	
Branch $2:$	EBD-S2	$:$	0.0
Branch 3:	EBD-S3	$:$	0.0
Branch 4:	noEBD	$:$	1.0

Case 3: There is an $\$_{2}$ break inside containment. This case includes deilbarate odening of the PORVs and also a stuck-open PORV or SRV. The quantification for this case is:

Branch 1:	EBD.A	$*$	0.0
Branch 2:	EBD-S2	$*$	1.0
Branch 3:	EBD-S3	-	0.0
Branch 4:	noEbD	$*$	0.0

Case 4: There is an S_{3} break inside containment. This case includes a cycling PORV and SGTRs as explained in the discussion of Case 2 above The quantification fer this case is:

Branch 1:	EBD - A	0	0.0
Branch 2:	EBD-S2	$:$	0.0
Branch 3:	EBD-S3	$:$	1.0
Branch 4:	noEBD	-	0.0

Question 25. Vessel Pressure Just before Breach? 4 Branches, Type 2,4 Cases

The branches for this question are:

1. I-SSPr The vessel is at the system safety setpoint pressure,
approximately 2500 psia.
2. I-HLPr

The vessel is at high pressure just before breach. The pressure is certainly above 1000 psia and may be as high as 2000 psia in some cases.
3. $1 . I \mathrm{mPr}$ The vessel is at intermediate pressure before breach, about 200 to 600 psia.
4. I-1.0Pr The vessel is at low pressure before breach, about 200 psia or less.

Cases 2 and 3 of this question are sampled zero-one; the distributions for these cases were determined internally. The branch taken at this question depends upon the branches previously taken at Questions $2,17,18,19,20$, and 24.

The pressure rise in the containment due to RCS depressurization at VB is dependent on the pressure in the RCS at the time the vessel fells. The pressure in the vessel fust before breach may be considerably higher than during most of the core degradation process. Many descriptions of the core melt procesa have a significant repressurization occurring shortly before breach when the core slumps into the bottom head and boils off the water remaining there This pressure decreases at a rate primarily dependent upon the size of the hole (s) in the RCS pressure boundary. Therefore, the RCS pressure at breach may depend strongly upon the time between slump and breach as the length of this period determines where on the decreasing pressure curve the breach eccurs Recent code caloulations have shown the pressure spike due to steam generation at core slump may be faster than that calculated by the source term code package (STCP). Thus, there is considerable uncertainty in the RCS pressure at VB for situations with S_{3} or $\$_{2}$ breaks.

Case 1: There was an initiating or induced large break that resulted in blowdown to the containment, or Event V occurred, which resulted in blowdown at a sitilat rate outside the containment. In either sase, the RCS pressure is low (200 psia or less). Cases with both an S_{2} break before UTAF and open PORV also result in low pressure in the ROS at VB. The quantification for this case is:

| Branch 1: | $I \cdot S S P r$ | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch $2:$ | $I \cdot I m P r$ | 0.0 |
| Branch $3:$ | $I \cdot I m P r$ | 0.0 |
| Branch 4: | $I-L o P r$ | 1.0 |

Case 2: There was an initiating or induced S_{2} break. Cases with both an S_{2} break and open PORVs were considered in Case 1 . With an $S_{2} \cdot$ size hole in the ROS, the pressuro due to the core slump dies away fairly quickly. The RCS pressure at VB could be in the low or intermediate ranges. The internal analysis, similar to the documented analysis for S_{3} breaks considered in the next case, indicated that low pressure was much more likely than intermediate pressure at VB. The sampling was zero-one, so each observation had all the probability assigned to one of these two branches. Taking the average over all the observations, the quantification for this case is:

Branch 1:	I-SSPr	:	0.00
Branch 2:	I- HiPr	$:$	0.00
Branch 3:	$1 \cdot \mathrm{ImPr}$	$:$	0.20
Branch 4:	$1 \cdot \mathrm{LoPr}$	$:$	0.80

Case 3: There was an initiating or induced S_{3} break. The increased pressure due to core slump dies away fairly slowly. The RCS pressure at the time of VB could be in the low, intermediate, or high pressure ranges. The internal analysis, described in Volume 2, Part 6, of this report, indicated that these three pressure ranges were equally likely The sampling was zero-one, so each observation had all the probability assigned to one of these three branches. Taking the average over all the observations, the quantification for this case is:

Branch 1:	I-SSPr	.	0.00
Branch 2:	I- HIPr	.	0.33
Branch 3:	$1 \cdot 1 \mathrm{mPr}$.	0.34
Branch 4:	I. LoPr	.	0.33

Case 4: There was no initiating break, and no induced break has occurred, so the RCS is near the PORV setpoint pressure (2500 psia) The quantification for this case is:

Branch 1:	I-SSPr	-	1.0
Branch 2:	1-H1Pr	,	0.0
Branch 3:	I- ImPr	.	0.0
Branch 4:	I-LoPr		0.0

Question 26. Is Core Damage Arrested? No VB? 2 Branches, Type 2, 9 Cases

The branches for this question are:

1. novB The process of core degradation is arrested and a safe stable state is reached with the vessel intact.
2. VB Core degradation continues, resulting in core melt and VB

Cases 2, 3, and 5 through 9 of this question are samplad from distributions that were determined internally. The branching at this question depends upon the branches sreviously taken at Questions $1,3,20$, and 22 .

If water flow to the core is restored, is core damage arrested and VB prevented? If injection from the ECCS is recovered before core degradation has progressed too far, there is certainly some chance that a safe stable state can be reached. The restoration of injection eventually terminated the core damage progression at Three Mile Island (TMI). There is also some chance that the addition of water does not arrest the melting of the core and that it proceeds on to VB. Wh1le there was no VB at TMI, some analysts have concluded that TMI came very close to vessel failure. Note that the threat to the bottom head, which occurred when about 15 to 20 tons of
molten material relocated from the "crucible" in the center of the core to the bottom head, occurred after core cooling had been re-established for shome tithe.

The infection of cald water could cause vessel failure due to pressurized thermal shock. If RCS fallure due to PTS ocours, it is likely to occur in the hot 1 eg or near the hot leg. Fallure of the bottom head by PTS is negligibie. If the RCS does fall by PTS, it is likely to be a failure equivalent to a temperature induced hot leg or surge ilne fallure, i.e., it will be a large break which depressurizes the RCS rapidiy. While this has some negative impacts on the accident progression (e.g., accelerating the rate of water loss from the vessel), it also has some ameliorative effects (e. g., containment fallure is less likely at VB if the RCS is at low pressure). In view of the low probability of the large break due to PTS, and the uncertain effects of such a break. PTS was not explicitly considered in this analysis.

The probability of recovering injection of the ECCS in time to arrest core degradation, establish a safe, stable state, and prevent vessel failure was estimated internally based on the probability of getting power back, the TM1-2 accident, and MELCOK analyses to determine the rate of accident progression for Sequoyah. The electric power recovery periods used were those of Question 22. More detail may be found in Subsection A. 3 of this volume and in Volume 2, Part 6, of this dooument. In the analysis done for this question, power recovery was considered in different time periods for each PDS or group of PDSs. The start of the time period must be the end of the power recovery period used in the accident frequency analysis to avoid gaps or overlap.

Case 1: Core cooling has not been restored, either because power was not recovered, or because the ECCS is falled. Continued core degradation and eventual vessel fallure is assured. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: noVB } & \text {. } & 0.0 \\
\text { Branch } 2: & \text { VB } & \text {. } & 1.0
\end{array}
$$

Case 2: At UTAF, there was a large initial break in the RCS, and the L.PIS was operating. The large break (A. or $S_{1} \cdot s i z e$) will effectively depressurize the RCS, Allowing successful LPI. There PDSs are core damage accidents because the FSAR response criteria require the successful operation of other systems to prevent any core damage. For an "A" initiator, the accumulators and the LPIS must function; the "A" Pdse have the accumulators falled. For an "S " initiator, both HPIS and LPIS must operate successfully; the " S_{3} " PDSs have the HPIS falled. With the LPIS functioning successfully throughout the accident, and a break large enough to rapidly depressurize the RCS below the LPIS shtitoff head, extenslve core damage seems unlikely. However, there were no code simulations to indicate just how much or how ifttle damage could be expected. It was estimated that che probability of this type of accident progressing to vessel failure was small. The distribution for avolding VB is uniform from 0.8 to 1.0 . The quantification for this case, based on the mean of the distribution, is:

| Branch 1: noVB | 0.950 |
| :--- | :--- | :--- |
| Branch 2: VB | 0.050 |

Case 3: This case is similar to Case 2, except that the RCS depressurization either occurs later in the accident or the depressurization is slower. This case includes the situations where LP1S has been operating since the start of the accident, but the pressure remains at the PORV setpoint unt11 well after UTAT when an RCP seal falls or the PORVs stick open. If the RCS pressure decreases below 200 psia , as determined in Question 25, then LPI is possible. dowever, as this infection starcs later than in Case 2, the probability of avolding $V B$ is less. Also included in this case are the accidents where both HPIS and LPIS are operating at the start of the accident, but the RCS pressure is too high to allow sufficient infection (e.g., TBYY-YNY), Any fallure of the RCS pressure boundary will allow infection, but whether sufficient injection will ocour in time to prevent VB depends on the size of the break and the time it occurs. Thus, halting the core damage process is probable, but not as likely as in the previous case. The distribution for avoiding VB is uniform froin 0.8 to 1.0. The quantification for this case, based on the mean of the distribution, is:

Branch 1: noVB	0.900	
Branch 2:	VB	0.100

Case 4: The ECCS is not recoverable when offsite electrical power is recovered. This case includes all the situations in which part of the ECOS is operating but the RCS pressure is not low enough for sufficient infection to occur. Case 1 accounted for the situations where power was not recovered or the ECCS is failed, and Cases 2 and 3 accounted for the situations in which part of the ECCS is operating and the pressure is low enough for injection to occur. All the probahility is assigned to Branch 4, VB. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: noVB } & : & 0.0 \\
\text { Branch 2: } & \text { VB } & : & 1.0
\end{array}
$$

Case 5: This case, and all the following cases, by Cases 1 and 4, are cases in which the ECCS is recoverable and electric power has been restored. In this case, heat removal from the SCs was not initially operating, so Case 5 applies to TRRR-RSR, PDS Group 2, Fast SBO. The period during which power must be recovered to ensure injection before VB is 1.0 to 2.5 h . For this case, the internal analysis concluded that the probability of getting power back in time to prevent vessel failure was fairly high; the distribution for avoiding VB is the same as for Case 3. The quantification for this case, based on the mean of the distribution, is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { noVB } & 0.900 \\
\text { Branch 2: } & \text { VB } & 0.100
\end{array}
$$

Wase 6: By the preceding case, this case and the three following cases all apply to accidents in which the AFWS operated for some hours until the batteries depleted. Case 6 applies to $S_{2} R R R-R C R$ in PDS Group 1.

Slow SBO, The PORVs stuck open before UTAF, Sc the accident goes to UTAF more rapidly than the other cases in which the AFWS operates for several hours. The electric power recovery period is 1.0 to 4.5 h . For this case, the internal smalysis concluane that the probsbllity of getting power back before about half the core was molten was reasonably good, and although not as good as for the previous case. The probability distribution for avoiding VB for Case 6 is quadratic from 0.0 to 1.0 . The quancification for this case, based on the mean of the distribution, is:

| Branch 1: novB | V | 0.780 |
| :--- | :--- | :--- | :--- |
| Branch 2: | VB | 0.220 |

Case 7: This case is similar to Case 6 (AFWS operates for several hours after UTAF), but the break is of size S_{3} (RCP seal fallure) instead of size S_{2}. For S_{3} breaks, whether the secondary system was depressurized while the AFWS was operating is important in determining the timing. In Case 7, the SGs are not depressurized and the applicable PDS is $S_{3} R R R \cdot R C R$. The electrlc power recovery period is 4.0 to 6.0 h . For this case, the internal analysis concluded that the probability of getting power back after it is too late to prevent VB is a little less than that of getting it back in time to prevent VB. The quantification for this case, based on the mean of the distribution, is:
Branch 1: noVB
0.670
Branch 2: VB
0.330

Case 8: This case is similar to Case 7, except that in Case 8 the SGs are depressurized. The applicable PDS is $S_{3} R R R$-RDR. The electric power recovery period is 4 to 10.5 h . The internal analysis concluded that the probability of getting power back before about half the core was molten is quite good. The distribution for Case 3 is used for this case: uniform from 0.8 to 1.0 . The quantification for this case, based on the mean of the distribution, is:

$$
\begin{array}{llll}
\text { Branch 1: noVB } & \text { V } & 0.900 \\
\text { Branch 2: } & \text { VB } & 0.100
\end{array}
$$

Case 9: This case has no break in the RCS before UTAF. The electric power recovery period is 7 to 12.5 h . The internal analysis concluded thint the probability of getting power back before about half the core was molten is quite good. The distribution for Case 3 is used for this case also; the quantification for this case, based on the mean of the distribution, is:

Branch 1: noVB	0.900	
Branch 2:	VB	0.100

Question 27. Early Sprays?
3 Branches, Type 2, 4 Cases

The branches for this question are:

1. E. $\$$ p The containment sprays are operating.

2: EaSp The contaiment sprays axe available to operate if power is recovered.
3. EfSp The containment sprays are falled and cannot be recovered.

This question is not sampled; the branch taken depends directly upon the branches taken at previous questions, Questions 6 and 22.

If power has been ecovered, and the sprays were initially in the "available" state, the sprays will operate in this period. If the blowdown has raised the containuent pressure to the spray sctuation setpoint (3 psig), the sprays will come on automatically when power is restored. If the sprays are not actuated by existing pressure when power is restored, they will be actuated by a hydrogen burn (if any) or by VB. There is a good chance that the operators will turn on the sprays before VB even if containment pressure is not high since the sprays are the only way to cool the water in the sumps, and this water is or may be used for recirculation cooling of the cote. If power is recovered and the sprays operate, the contents of the RWST will be transferred to the containment regardless of ECCS operation.

Case 1: The sprays were operating at or shortly after the start of the accident and they continue to operate. The quantification for this case is :

Branch 1:	E.Sp	1.0	
Branch 2:	EaSp	.	0.0
Branch 3:	EfSp	.	0.0

Case 2: The sprays were falled at tho start of the accident, or the loss of service water eventually falled the sprays. No recovery is possible, so the sprays remain failed. The quantifioation for this case is:

Branch 1:	E.Sp	.	0.0
Branch 2:	EaSp	-	0.0
Branch 3:	EfSp	-	1.0

Case 3: The sprays were available to operate at the start of the accident, and power has been recovered so the sprays now operate. The quantification for this case is:

Branch 1:	E.Sp	.	1.0
Branch 2:	EaSp	.	0.0
Branch 3:	EfSp	.	0.0

Case 4: The sprays were avallable to operate at the start of the accident, but power has not been recovered so the sprays remain avallable to operate in the future when power is recovered. The quantification for this case is:

Branch 1:	E-Sp	$*$	0.0
Branch 2:	EaSp	$*$	1.0
Branch 3:	EfSp	$*$	0.0

Question 28. Early ARFs?
3 Branches, Type 2, 4 Cases
The branches for this question are:

1. E.Fan The ARFs are operating.
2. EaFan The ARFs are available to operate if power is recovered.
3. EfFan The ARFs are failed and cannot be recovered,

This question is not sampled; the branch taken depends directly upon the branches taken at Questions 14 and 22.

If power has been recovered, and the ARFs were initially in the "available" state, the fans will operate in this period. If the blowdown has raised the contcinment pressure to the fan actuation setpoint (3 psig), the fans will come on automatically when power is restored. If the fans are not actuated by existing pressure when power is restored, they will be actuated by a hydrogen burn (if any) or by VB.

Case 1: The fans were operating at or shortly after the start of the accident and they continue to operate. The quantification for this case is:

| Branch 1: | E-Fan | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | EaFan | 0.0 |
| Branch 3: | EfFan | 0.0 |

Case 2: The fans were failed at the start of the accident, and no recovery is possible, so the fans remair failed. The quantification for this case is:

| Branch 1: | E-Fan | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | EaFan | 0.0 |
| Branch 3: | EfFan | 1.0 |

Case 3: The fans were avaliable to operate at the start of the accident, and power has been recovered so the fans now operate. The quantification for this case is:

| Branch 1: | E-Fan | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | EaFan | 0.0 |
| Branch 3: | EfFan | 0.0 |

Case 4: The fans were avallable to operate at the start of the accident, but power hes not been recovered so the fans remain available to operate in the future when power is recovered. The quantification for this case is:

Branch 1:	E.Fan	0.0	
Branch 2:	EaFan	0.	1.0
Branch 3:	EfFan	0.0	

Question 29. Has the Ice Melted out of the Ice Condenser before VB? 3 Branches, Type 2, 10 Cases

The branches for this question are:

1. E.Mltl The level of early ice melt is greater than 908 of the original ice inventory.
2. E.M1t2 The level of early ice melt is 50 to 90 of the original ice inventory.
3. E.Mlt3 The level of early ice melt is less than 50 of the original ice inventory.

This question is not sampled and was quantified internally. The branch taken depends upon the branches taken at Questions 1, 4, 6, 7, 21, 23, and 24.

To accomodate steam pressures generated during accident conditions, a compartment containing borated ice is located between the upper and lower portions of the containment. The ice condenser (IC) compartment is annular, subtending an angle of 300° at the containment center, and is located between the crane wall and the steel containment shell. As steam is blown down from the primary system during an accident, it is driven up through the 1ce, where it is condensed, thereby limiting the pressure in containment. The condensed water and melted ice then drains back into the lower compartment of the containment. In addition to its pressure suppression capability, the IC also plays an important role in the serubbing of fission product releases from the vessel. If the ice is melted from the $I C$, the benefits of the IC will not be realized. It is
therefore important to note the level of ice melt before the vessel is breachad.

The melted ioe and condensed water drain onto the lower compartment floor where it entars the sump region. If there is enough water, it can overflow Into the reactor cavity. The amount of water in the cavity depends upon Whether or not the RWST was infected into containment (Question q) and upon the amount of ice melt. The level of cavity flooding at VB is eiscussed in Question 63.

There are several analyses that have been done for sequoyah that indicate the amount of $i 0 e$ melt before VB for various sequences. These analyses Include IDCOR Task 23.2, BMI-2104, BMI-2139, BMI-2160, MARCH-HECTR caloulatlons, and NUREG/CP-0071, A.1-7-A.1-12 The analyses indicate that there can be Bignificant toe melt before UTAF in sequences in which the ECCS initially operates in the injection mode and contafnen: sprays are not operating. The larger the break size, the greater the lue melt before VB. For station blackouts in which the RCS is intact (cycling PORV), the loss of water from the RCS is gradual, and although sprays are not operating, the ice melt is minimal; the avallable analyses indicate less than 508 , There is a single calculation in BMI-2139, however, for a station blackout In which an induced hot leg LoCA ocours (A-size break), that indicates total foe melt before VB.

Case 1: There is no containment heat removal through the service water heat exchangers. If the service water system cannot remove heat from the containment via the spaay system, the lce will eventually melt after a substantial perlod of time. The quantification for this case 16:

| Branch 1: | E.M1t1 | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E.M1t2 | 0.0 |
| Branch 3: | E.M1t3 | 0.0 |

Case 2: There in no early blowdown to containment; there will be windmal melt of the ice. The quantification for this case is:

Branch 1:	E.M1t1	0.0	
Branch 2:	E.M1t2	0.0	
Bratich 3:	E. M1t		1.0

Cast 3: Thert In a large temperature-Induced LOCA with a transient initiator. The BMI-2139 calculation for this accident scenario indicates the the ACe is melted before VB. Because core degradation is well underway s.t the time the induced LOCA is presumed to occur, much of the ROS watet inventory is lost as steam when the LOCA occurs. This will cause substantial melting of the ice. The BMI-2139 calculation is the only calculation performed for this scenario, however, and there is much uncertainty associated with the timing of the LOOA with respect to VB. Thus, it 16 uncertain whether all the ice or simply a large portion will be melted; for this case, the quantification is

Branch 1:	E.Mlt1	-	0.50
Branch 2:	E.Mlt2	-	0.50
Branch 3:	E.Mlt3	-	0.00

Case 4: There is a large break LOCA (A or S_{1}) initiator, and ECCS injection is recovered after UTAF. A large portion of the sequences that qualify for this case will never attain VB, so the question of ice melt as far as containment loads at VB is immaterial. For IC scrubbing of in-vessel roleases, however, the çuantification of this case becomes more important. There are no analyses that explicitly address recovered sequences that progress to VB . It is known, however, that there is a large thermal load on the IC due to the blowdown steam. With ac power functioning, there is a good chance that igniters are operating and that hydrogen burns have ocourred, increasing the thermal load on the IC. It is believed that the chance of some ice remaining at v's is more likely than littie or no ice rea.aning. The cuantification for this case is:

Branch 1:	E-MLt1	.	0.30
Branch 2:	E-Mle2	.	0.70
Branch 3:	E-Mlt3	.	0.00

Case 5: The blowdown is typical of an $S_{3}-s i z e$ break, and either sprays are operating or there is a station blackout. The transient events with cycling PORVs without temperature-induced RCS fallures larger than a pump seal LOCA and $S_{3}-s i z e$ fallures of the RCS are included here. The blowdown rate is relatively low. If sprays are operating, or the ARFS is not operating, the thermal load on the IC is reduced. Also for station blackouts, the ECCS has not operated, so there is less loss of coolant from the RCS. There are station blackout pump seal LOCA calculations in the BMI-2139 and the BMI- 2160 reports that indicate about 25 ice melt before $V B$. There are transient event calculations In the IDCOR, BMI-2104, and HECTR reports that indicate between 358 to 50 ice melt before VB. The IDCOR calculation has an induced pump seal LOCA Also. There is a BMI-2160 calculation that indicates about 358 ice melt before VB for an accident with a pump seal LOCA in which the ECCS fails in recirculation but sprays are avallable throughout the accident. There are transient event calculations in which sprays are operating, in the IDCOR and BMI-2104 reports indicate 308 and 508 ice melt, respectively. It is likely that minimal ioe melt will occur. The quantification for this case is:

Branch 1:	E.Mlt1		0.00
Branch 2:	E.Mlt2	-	0.05
Branch 3:	E.M1t3	-	0.95

Case 6: The blowdown is typical of an $S_{3} \cdot s i z e$ break, and sprays are not operating and there is no station blackout. The transient events with cycling PORVs without temperature-induced RCS fallures larger than a pump seal LOCA and $S_{3}-$ size fallures of the RCS are included here. The blowdown rate is relatively low. If sprays are not operating, there is greater thermal load on the IC than in Case 5, above. There are pump seal LOCA calculations in which the ECCS and sprays fail in recirculation in the BMI -2139 and the BMI -2160 reports that indicate
about 50 ice melt before $V B$. It is believed that the chance of minimal ice melt before VB is more likely than greater than 50 ice me1t, although the chance of the higher level is not insubstantial. The quantification for this case is:

Branch 1:	E.M1t1	$:$	0.00
Branch 2:	E M1t2	$:$	0.36
Branch 3:	E.M1t3	$:$	0.70

Case 7: The blowdown is typical of an $\mathrm{S}_{2}-$ size break, and either sprays are operating or there is a station blackout. The transient events with stuck-open PORVs without large temperature-induced RCS hot-leg fallures are included here. The blowdown rate is quite substantial compared to the $5_{3}-s i z e$ blowdown rates of Cases 5 and 6 , above. If sprays are operating, or the ARFS is not operating, the thermal load on the IC is reduced. Also for station blackouts, the ECCS has not operated, so there is less loss of coolant from the RCS. There are S_{2} LOCA calculations in which the ECCS has falied in injection or recirculation but sprays are operating in the IDCOR and HECTR reports that indicate between 50 to 65 ice melt before VB . It is believed that the chance of greater than 50 toe melt before VB is more likely than minimal ice melt, although the chance of the lower level is not insubstantial. The quantification for this case is:

Branch 1:	E. Mlt2	$:$	0.00
Branch 2:	E-M1t2	$:$	0.80
Branch 3:	E-Mlt3	$:$	0.20

Case 8: The blowdown is typical of an $S_{2}-s i z e$ break, and sprays are not operating and there is no station blackout. The transient events with stuck-open PORVs without large temperature-induced RCS hot-leg failures are included here. The blowdown rate is quite substantial compared to the S_{3}-size blowdown rates of Cases 5 and 6 , above. If sprays are not operating, there is greater thermal load on the IC than in Case 7, above. There are S_{2} LOCA calculations in which the ECCS and sprays fall in recirculation in the IDCOR and BMI 2139 reports that indicate about 60 to 70 ice melt before VB. It is dilleved that the chance of greater that 50 ice melt before VB is ary likely. The quantification for this case is:

Branch 1:	E.M1t1	$:$	0.01
Branch 2:	E.M1t2	0.99	
Branch 3:	E-Mlt3	0.00	

Case 9: The blowdown is typical of an A-size or S_{1}-size break, and either sprays are operating or there is an SBO. The transient everts With large temperature-induced RCS hot-leg failures are not included here, but are addressed in Case 3, above. The blowdown rate is very substantial. If sprits are operating, or the ARFS is not operating, the thexmal load on the IC is reduced. Also for station blackouts, the ECCS has not operated, so there is less loss of coolant from the RCS. There is an A-size LOCA calculation in which the ECCS has failed in infection but sprays are operating in the IDCOR report that indicates
about 65 ice melt before VB. It is believed that the chance of greater than 50 ice melt before $V B$ is very likely. The quantification for this case is:

Branch 1:	E.M1t1	-	0.00
Branch 2:	E.M1t2	-	0.95
Branch 3:	E.M1t3	.	0.05

Casf 10: The blowdown is typical of an A-size or $S_{1}-s i z e$ break, and sprays are noz operating and there is no station blackout. The translant events with large temperature-induced RCS hot-ieg fallures are not includad here, but are addressed in Case 3, above. The blowdown rate is very substal cial. If sprays are not operating, there is graater thermal load on the IC than in Case 9, above. There is an S_{i} LOCA calculation in which the "COS and sprays fail in recirculation in the HECTR report that indicater about 808 ice melt before VB. It is believad that the chance of greater that 508 ice melt before VB is very likely. The quintiflcation for this case is:

Branch 1:	E-M1t1	-	0.01
Branch 2:	E-M1t2	-	0.99
Branch 3:	E-M1t3	0.00	

Question 30. H\& ve Bypass Paths Developed in the IC before VB? 3 Branches, Type 2, ? Cases

The branches for this question are:

1. E-IBP1 The IC is essentially totally byparned, and is ineffective for condensing steam, This will be ri ierred to in subsequent questions as a "Level 1" bypass.
2. E-IBP2 There is some degree of bypass of the ice in the IC. This will be referred to in subsequent questions as a "Level 2" bypass.
3. E-IBP3 The IC is intact, is not bypassed and is totally effective.

This question is not sampled and was quantified internally. The branch taken depends upon ti. branch taken at Question 29.

Flow of gases thro gh the IC is generally considerad to be axisymmetric However, substantial concentration and density gradients are apt to be present in the IC due to the condensation of steam. In fact, these gradients may lead to asymmetric flow in the IC. This will in turn lead to asymmetric ice melting and the possibility for developing channels through the 10 which in effect bypass the ice and defeat the steam condensation function.A.1-12 No test data are avallable for IC performance under conditions other than those experienced during design basis accidents. As the level of ice melt was addressed in the previous question, this question addresses the degree of bypass due to the level of ice melt.

Case 1: There is 908 or more of the original ice inventory melted. The remaining ice will not be unifoxmly distributed throughout the $I C$. It is suspected that there will have been asymmetrlc melting resulting in severe channeling in the $I C$ and a bypass of level 1 severity. There is a slight chance that the bypass will be of leval 2 severity. The quantification for this case is:

Branch 1:	E-IBP1	-	0.9
Branch 2:	E-IBP2	-	0.1
Branch 3:	-IBP3	-	0.0

Case 2: There if 508 tu 908 of the original ice inventory melted. It is suspected chat the channeling will sot be as likely nor as severe as in Case 1. The quantification for this case is:

| Branch 1: | E-IBP1 | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-IBP2 | 0.1 |
| Branch 3:: | E-IBP3 | 0.9 |

Case 3: There is less than 508 of the original ice inventory melted, Channeling should be minimal and the remaining ice is very likely to be fully functional. The quartification for this case is:

Branch 1:	E-IBP1	-	0.00
Branch 2:	E-IBP2	-	0.01
Branch 3:	E-IBP3	.	0.99

Question 31. Are the ARFs Effective Before Hydrogen Ignition? 2 Branches, Type 2, 3 Cases

The branches for this question are:

1. E-EfFan The ARFs are effective in mixing the containment atmosphere before hydrogen ignition occurs.
2. EnEfFan The ARFs are not effective in mixing the containment atmosphere before hydrogen ignition occurs.

Case 2 of this question is sampled; the distribution for this case was determined internally. The branch taken at this question depends on the branches previously taken at Questions 14.

This question is implemented to address station blackout sequences in which power is recovered during the period of core degradation. If power is recovered, the ARFs are automatically inftiated af ar a short period of time, when a signal is recelved indicating the containment pressure is 3 psig or greater. The subject of concern is whether or not the ARFs can mix the containment atmosphere before any hydrogen ignition accurs. If hydrogen ignition occurs before mixing is achieved, there are potentially high concentrations of hydrogen in certain areas of containment, especially in the IC and the upper plenum of the IC. These high concentrations pose the ihreat of $10 L$ detonations in those areas.

$$
\text { A. 1.1. } 41
$$

If the fans ire effective during this time regime, the containment atmosphere is assumed to be well-mixed, and the hydrogen released to containment that was generated in-vessel is distributed uniformly throughout containment. If ignition takes place, the hydrogen concentration is calculated on a global basis. If the fans are not effective and ignition takes place, the hydrogen concentration is calculated for the separate compartments of containment.

Case 1: From the start of the accident, ac power is functiuning and the fans initially operate. For this case, the fans are effective, and the hydrogen is uniformiy distributed throughout containment. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: E-EfFan } & \text { - } & 1.0 \\
\text { Branch 2: } & \text { EnEfFan } & - & 0.0
\end{array}
$$

Case 2: During a station blackout, ac power is recovered and the fans are avallable to operate upon power recovery, For this cas 3 , the probability of ignition itself is incorporated into the distribution. In other words, if Branch 2 is taken for this case, ignition is always assumed in Questions 49 through 51. Although the queaciticaiion for this case was performed internally, the distributions provided by the Containment Load Expert Panel for probability of ignition in unrecovered blackouts were considered and used as a basis for quantification. For recovered station blankouts, the chance of hydrogen ignition before the ARFs mix the containment atmosphere was considered to be somewhat unlikely, considering the mechanisms for ignition in the IC and upper plenum. The quantification for this case, based on the mean of the distribution is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-EfFan } & 0.83 \\
\text { Branch 2: } & \text { EnEfFan } & 0.17
\end{array}
$$

Case 3: Station blackouts without ac power recovery during core degradation or times in which the fans have failed upon demand. For this case, the fans will be ineffective in the time period considered, regardless of hydrogen ignition. The quantification for this case is:

Branch 1:	E-EfFan	0.0
Branch 2:	EnEfFan	1.0

Question 32. Is the Bulk of the Blowdown Flow Diverted from the Lower Compartment to the Upper Compartment via the Floor Drains? 2 Branches, Type 2,2 Cases

The branches for this question are:

1. E-FDiv Flow is diverted through the floor drain.
2. EnFDiv Flow is not diverted through the floor drain.

Case 1 of this question is sampled; the distribution was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report). The branch taken at this question depends upon the branches taken at Questions $1,8,23,27$, and 31 .

The IC containment is designed such that during an accident, blowdown gases are directed from the lower compartment to the upper compartment through the IC. There is, however, the potential for part of the blowdown gases to be directed to the upper compartment through two drains located in the refueling canal. These drains allow containment spray water and condensate In the upper compartment to drain into the lower osmpartment recirculation sump area. If the sprays are sperating, the refueling canal floor will be flooded, and the water flow through the drains will preclude the diversionary flow of gases from the lower to the upper compartment through these drains. For times in which the RWST has been injected into containment, the water level on the floor of the lower compartment will be above the locaticn of the drain outlets, again precluding the bypass of the IC.

The accident sequences of interest, in which some of the blowdown gases may be diverted through the two drains, are those in which ARFs are not operating, and there is no RWST injection before VB. These sequences are typlcally station blackout sequences. In most blackout sequences, HECTR and CONTAIN calculations indicate (using MARCH sources), that the nature of the blowdown is such that the relative amount of flow through these drains is negligible. There is a CONTAIN calculation, however, that indicates that for a station blackout sequence with a pump seal LOCA ($S_{3}-s i z e$), the blowdown rate is low and a substantial amount of blowdown gases enter the upper compartment through these drains, effectively bypassing the IC. Consideration of the CONTAIN calculation for this sequence was utilized by the expert panel for quantification of Case 1.

Case 1: There is an $S_{3}-s i z e$ break in the RCS before UTAF, fans are not operating, and the RWST has not been injected into containment. This case is described above. The expert panel concluded that for this case, the path from the lower compartment tr. the upper compartment was more likely to be through the IC than through the refueling canal dralns. This case was sampled zero-one, so each observation had all the probabillty assigned to either of these branches. Taking the mean value of the observations in the sample, the quantiflcation for this case is:

Branch 1:	E-FDiv	-	0.250
Branch 2:	EnFDiv	-	0.750

Case 2: Except for the conditions of Case 1, the diversion of flow through the refueling canal floor drains is assumed to be minimal. The quantiflcation for this case is:

$$
\begin{array}{llll}
\text { Branch 1: E-FDiv } & \text { F } & 0.0 \\
\text { Branch } 2: & \text { EnFDiv } & + & 1.0
\end{array}
$$

Question 33: What is the Steam Concentration in the Lower Compartment and the Oxygen Distribution in Containment During Core Degradation? 3 Branches, Type 4, 7 Cases

The branches for this question are:

1. E-LCInl The steam concentration in the lower compartment is greater than 60\% 'nominally 75\%).
2. E-LCIn2 The steam concentration in the lower compartment is between 258 and 608 (nominally 55\%).
3. EnLCIn The steam concentration in the lower compartment is less than 258 (nominally 108).

Four parameters are defined in this question:
P1. LC. 02 The amount of oxygen in the lower compartment, in kg -moles, is assigned to Parameter 1.

P?. IC.02 The amount of oxygen in the IC and upper plenum of the IC, in big-moles, is assigned to Parameter 2.

P3. UC-02 The amount of oxygen in the upper compartment, in kg-moles, is assigned to Parameter 3.

P4. LC-Stm The amount of steam in the lower compartment, in kg -moles, is assigned to Parameter 4 .

This question is not sampled; the quantification was performed internally. The branch taken and the parameters assigned at this question depend upon the branches taken at Questions 24, 27, 30, 31, and 32.

The compartmental nature of an IC is an important feature to the accident progression at Sequoyah. The containment is divided into three major compartments: the lower compartment, the $I C$, and the upper compartment. The upper plenum of the IC, when not addressed as a separate compartment for this analysis, is assumed to be part of the IC compartment. The compartmental nature poses the need to address the partitioning of the gaseous species in containment. The distribution of steam, hydrogen, and oxygen is important for the consideration of locally high concentrations of hydrogen, and local inerting of the atmosphere due to high steam concentrations, or depletion of oxygen.

There have been many studies conducted to explore the flammability limits of hydrogen-air-steam concentrations. The inerting level for nearly stoichlometric mixtures has been shown to range from about 50 o to 60% steam concentration. A. 1-13 The value of 60% steam concentration was chosen to represent the highest level of steam inerting for this question. The containment atmosphere is assumed to be an ideal gas for determining the amounts of the constituents in each compartment. The results of various calculations were used to ${ }^{2}$ tain the temperatures and pressures in containment during core degradation. For initialization of the oxygen in
A. 1, 1-44
containment, the pressure is considered to be 1 atmosphere and the temperature is considered to be $38^{\circ} \mathrm{C}$ in the apper and lower compartments and $0^{\circ} \mathrm{C}$ in the 1 C.

The distribution of oxygen throughout the compartments was addressed in this question. It was determined that the case structure for assigning the steam concentration to the lower compartment would be adequate for assigning the oxygen distribution. Nitrogen is assumed to be distributed throughout the containment corpartaents in quantities proportionate to the amount oxygen.

Case 1: No early blowdown to containment. For this case, all of the probability is assigned to the branch in which there is essentially minimal steam-inerting, Branch 3. The quantification for this case is:

Branch 1:	E.LCIn1	0.0	
Branch 2:	E-LCIn2	0	0.0
Branch 3:	EnLCIn	1.0	

For Branches 1 and 2, the assignment of the parameters is irrelevant. For Branch 3, the assignment of the parameters (kg -moles) is:

arameter 1: LC.02	88.40
Parameter 2: IC-02	46.70
Farameter 3: UC-02	163.00
Parameter 4: LC-Stm	46.6

Case 2: There is no ice or sprays in containment to condense the steam. With no containment heat removal, the amount of steam in containment is dependent upon the $t i$ g of VB with respect to the time of ice melt. There are still pas ve heat sinks in containment on which steam condenses unti; the containment atmosphere and structures attain equilibrium. Also, considering the probable time of the ice melt, it is believed that the amount of steam in containment will most likely correspond to the inert level with a nominal value of 50 s steam concentration. It is believed that the highest steam level with a nominal value of 758 steam concentration is very unlikely, and that the minimal value of nominally 10 steam concentration is somewhat likely, The pressures corresponding to the nominal levels of $108,50 \%$ and 758 steam concentrations are 21,38 , and 85 psia , respectively. The quantification for this case is:

| Branch 1: | E-LCIn1 | 0.010 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-LCIn2 | 0.740 |
| Branch 3: | EnLCIn | 0.250 |

The oxygen in containment is assumed to be distributed uniformly throughout the containment, adding the volume in the IC from where the ise has melted. For Branch 1, the assignment of the parameters (kg. voles) is:
Parameter 1: $1:$ LC. 02

Parameter 2: $1 \mathrm{IC}-02$$\quad$| 86.40 |
| :--- |

| Parameter 3: UC.02 | 161.00 |
| :--- | :--- | ---: |
| Parameter 4: LC.Stm | 1192.50 |

For Branch 2, the assignment of the parameters (kg-moles) is:

Parameter 1: LC-02	86.40
Parameter 2: 1C.02	50.70
Parameter 3: UC-02	161.00
Perameter 4: LC.Stm	397.50

For Branch 3, the assignment of the parameters (kg-moles) is:

Parameter 1:	LC-02	86.40
Parameter 2:	IC-02	50.70
Parameter 3:	UC-02	-
Parameter 4: $4:$ LC-Stm	161.00	
		44.20

Case 3: The blowdown is typical of an A-size break, the fans are operating, and the ice is functional, or the sprays are operating. There is available from a MARCH-HECTR analysis, A.1-11 compartmental gaseous concentration information for an S_{1} LOCA calculation in which the ECCS and sprays fail in recirculation. The initial phase of blowdown crates a significant amount of steam (~ 0.5 mole fraction) in the lower compartment, even when fans have been inftiated. The steam concentration decreases (to less than 0.2 mole fraction) until core slump when it again becomes significant, and then decreases until the time of VB. The APET considers only one time period during core degradation. For most of the times when the fans are operating, the igniters will also be operating. Ignition of hydrogen will occur for levels "steam concentration less than 60, only the burn completeness and amount of oxygen present in the lower compartment will be sensitive to what that level is. The quantification for this case is:

Branch 1:	E-LCIn1		0.00
Branch 2:	E-LCIn2	$:$	0.400
Branch 3:	EnLCIn	0.600	

For Branch 1, the assignment of the parameters is irrelevant. For Branch 2, the assignment of the parameters ($\mathrm{kg} \cdot \mathrm{moles}$) is:

Parameter 1: LC-02	51.20	
Parameter 2: IC.02		54.50
Parameter 3: UC-02	-	190.40
Parameter 4: LC-Stm		232.80

For Branch 3, the assignment of the parameters (kg -moles) is:

Case 4: The blowdown is typical of an S_{2}-size break, the fans are operating, and the ice is functional, or the sprays are operating. The MARCH-HECTR ansiysis provides information for an S_{2} LOCA calculation in which the ECCS has failed in injection but sprays are operating. The initial phase of blowdown creates a significant amount of steam (~ 0.5 mole fraction) in the lower compartment, even when fans have been initiated. The steam concentration decreases (to about 0.2 mole fraction) until core slump when it again becomes significant, and then the vessel is breached. The quantification for this case is:

Branch 1:	E-LCIn1	-	0.00
Branch 2:	E-LCIn2	-	0.70
Branch 3:	EnLCIn	-	0.30

For Branch 1, the assignn $7 t$ of the parameters is irrelevant. For Branch 2, the assignment of the parameters (kg -moles) is:

Parameter 1: LC.O2		51.20
Parameter 2: IC.O2		54.50
Parameter 3: UC.O2		190.40
Parameter 4: LC.Stm		232.80

For Branch 3, the assignment of the parameters (kg -moles) is:

Parameter 1: LC.O2		88.40	
Parameter 2:	IC-O2		46.70
Parameter 3: UC-O2		163.00	
Parameter 4: LC-Stm	-	46.60	

Case 5: The blowdown is typical of an $S_{3}-$ size break, the fans are operating, and the ice is functional, or the sprays are operating. The transient events with cycling PORVs without temperature-induced RCS fallures larger than a pump seal LOCA and $S_{3}-s i z e$ failures of the RCS are included here. The MARCH-HECTR analysis provides information for a degraded-core transient inftlated evetit (TMLU) in which sprays and fans are operating. The initial phase of blowdown creates a significant amount of steam (>0.5 mole fraction) in the LC, even when fans have been initiated. The steam concentration decreases somewhat and maintains a level of about 0.45 mole fraction. The quantiflcation for this case is:

| Branch 1: | E-LCIn1 | 0.05 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-LCIn2 | 0.95 |
| Branch 3: | EnLCIn | 0.00 |

For Branch 1, the assignment of the parameters (kg-moles) is:

| Parameter 1: LC-02 | 23.30 | |
| :--- | :--- | :--- | ---: |
| Parameter $2:$ | IC-O2 | 61.20 |
| Parameter $3:$ UC-02 | | 213.60 |
| Parameter $4:$ LC-Stm | | 349.10 |

For Branch 2, the assignment of the parameters (kg -moles) is:

Parameter $1:$	LC.02		51.20
Parameter $2:$	IC-02		54.50
Parameter	$3:$ UC.02		190.40
Parameter	4: LC.Stm		232.80

For Branch 3, the assignment of the parameters is irrelevant.
Case 6: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal. This only ocours sometimes for $\$_{3}-s i z e$ breaks (pump seal LOCAs) when the fans and sprays are not operating, as discussed in Question 32. The CONTAIN calculation performed for a station blackout sequence with a pump seal LOCA indicates a steam mole fraction of 0.80 in the lower compartment, with a containment pressure of 40 psia . The uncertainty associated with this case involves the amount of steam that enters the upper compartment by way of the floor drains. It is believed that the steam level with a nominal value of 75 o steam concentration is more likely than the steam level with a nominal value of 50 steam concentration. The pressure in containment associated with the 75% level is 35 psia and with the 508 level is 30 psia. The quantification for this case is:

Branch 1:	E-LCIn1	\sim	0.80
Branch 2:	E-LCIn2	-	0.20
Branch 3:	EnLCIn	\sim	0.00

For Branch 1, the assignment of the parameters (kg -moles) is:

| Parameter 1: LC.02 | | 41.00 |
| :--- | :--- | ---: | ---: |
| Parameter 2: IC.O2 | . | 97.40 |
| Parameter 3: UC.02 | . | 159.70 |
| Parameter 4: LC.Stm | | 506.20 |

For Branch 2, the assignment of the parameters (kg-moles) is:

Parameter $1:$	LC.O2		77.30
Parameter $2:$	IC.O2		83.70
Parameter $3:$ UC-02	-	137.10	
Parameter $4:$ LC-Stm		291.00	

For Branch 3, the assignment of the parameters is irrelevant.
Case 7: The ARFs are not operating, and the ice is intact and/or the sprays are operating. The MARCH-HECTR calculations for a station blackout sequence (TMLB') and a S_{2} LOCA in which fans are not operating, indicate levels of steam in the lower compartment at concentrations well above 608. For this case, the lower compartment is believed to be at the highest level of stearm-inerting. The quantification for this case is:

| Branch 1: | E-LCIn1 | 1.00 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-LCIn2 | 0.00 |
| Branch 3: | EnLCIn | 0.00 |

For Branch 1, the assignment of the parameters (kg -moles) is:

Parameter 1: LC.O2	23.30	
Parameter 2: IC.O2	-	61.20
Parameter 3: UC.02	-	213.60
Parameter 4: LC.Sta		349.10

For Branches 2 and 3, the assignment of the parameters is irrelevant.

Question 34: What is the Steam Concentration in the IC During Core Degradation?
 3 Branches, Type 4, 6 Cases

The branches for this question are:

1. E-ICIn The steam concentration in the IC is greater than 60% (nominally 758).
2. E-ICIn2 The steam concentration in the IC is between 258 and 608 (nominally 55\%).
3. EnICIn The steam concentration in the IC is less than 258 (nominally 108)

One parameter is defined in this question:
P5. IC-Stm The amount of steam in the IC, in kg -moles, is assigned to
Paraneter 5.
This question is not sampled; che quantification was performed internally. The branch taken and the parameter assigned at this question depend upon the branches taken at Questions $24,27,30,32$, and 33 .

For this question, the IC refers to the volumes of both the IC and upper plenum of the IC. In general, if the IC is intant, the steam concentration in the IC is minimal. The amount of the steam, however, is dependent upon the pressure in containment. The case structure and quantification for this question is relaced to that for Question 33

Case 1: No early blowdown to containment. For this case, all of the probability is assigned to the branch in which there is essentially minimal steam-inerting, Branch 3. This case is directly related to Case 1 in Question 33. The quantification for this case is:

Branch 1:	E-ICIn1	-	0.0
Branch 2:	E-ICIn2	-	0.0
Branch 3:	EnICIn	1.0	

For Branches 1 and 2, the assignment of the parameter is irrelevant, For Branch 3, the assignment of the parameter (kg -moles) is:

Parameter 5: IC.Stm
25.0

Case 2: There is no ice or sprays in containment to condense the ateam, and the lower compartment has a nominal steam concentration of 758. This case is directly related to Branch 1 of Case 2 in Question 33. The pressure in containment is 85 psia . The quantification for this case is:

| Branch 1: | E-ICIn1 | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-ICIn2 | 0.0 |
| Branch 3: | EnICIn | 0.0 |

For Branch 1, che assigrment of the parameter (kg-moles) is:
Parameter 5: IC-Stm $\quad 724.0$
For Branches 2 and 3 , the assignment of the parameter is irrelevant.
Case 3: There is no loe or sprays in containment to condense the steam, and the lower compartment has a nominal steam concentration of 55\%. This case is directly related to Branch 2 of Case 2 in Question 33. The pressure in containment is 38 psia . The quantification for this case is:

| Branch 1: | E-ICIn1 | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-ICIn2 | 1.0 |
| Branch 3: | EnICIn | 0.0 |

For Branch 1, the assignment of the parameter is irrelevant. For Branch 2 , the assignment of the parameter (kg -moles) is:

Parameter 5: IC-Stm . 240.50
For Branch 3, the asslgnment of the parameter is irrelevant.
Case 4: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal, and the lower compartment has a nominal steam concentration of 758 . This case is directly related to Branch 1 of Case 6 in Question 33. The pressure in containment is 35 psia . For this case, both the IC and the upper plenum are considered to have minimal amounts of steam, although the steam concentration in the upper compartment is high. It is believed that the communication between the upper pienum and the upper compartment will be low because the upper deck doors will not have been thrown open, as they normally are when the bulk of the flow from the lower to the upper compartment is through the IC. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-ICIn1 } & 0.0 \\
\text { Branch 2: } & \text { E-ICIn2 } & 0 & 0.0 \\
\text { Branch 3: } & \text { EnICIn } & 1.0
\end{array}
$$

For Branches 1 and 2, the assignment of the parameter is irrelevant For Branch 3, the assignment of the parameter (kg -moles) is:

Parameter S: IC-Stm
51,10
Case 3: Tnere is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal, and the lower compartment has a nominal steam concentration of 508 . This case is directly related to Branch 2 of Case 6 in Question 33. The pressure in ch. ainment is 30 psia. For this case, both the IC and the upper plenum are considered to have minimal amounts of steam, although the steam concentration in the upper compartment is high. It is believed that the communication between the upper plenum and the upper compartment will be low because the upper deck doors will not have been thrown open, as they normally are when the bulk of the flow from the lower to the upper compartment is through the IC. The quantification for this case is:

Branch 1:	E-ICIn1	-	0.0
Branch 2:	E-ICIn2	-	0.0
Branch 3:	EnICIn	-	1.0

For Branches 1 and 2, the assignment of the parameter is irrelevant For Branch 3, the assignment of the parameter (kg -moles) is:

$$
\text { Parameter 5: IC-Stm } \quad 43.80
$$

Case 6: Containment heat removal is available through the sprays or the IC, or if containment heat removal is not available, the lower compartment has minimal steam concentration. For this case, both the IC and upper plenum have minimal steam concentrations. The quantification for this case is:

Branch 1:	E-ICIn1	-	0.0
Branch 2:	E-ICIn2	-	0.0
Branch 3:	EnICIn	1.0	

For Branches 1 and 2, the assignment of the parameter is irrelevant. For Branch 3, the assignment of the parameter (kg -moles) is:

[^2]Question 35: What is the Steam Concentration in the Upper Compartment During Core Degradation?
3 Branches, Type 4, 6 Cases
The branches for this question are:

1. E-UCInl The steam concentration in the upper compartment is greater than 608 (nominally 75*).
2. E-UCIn2 The steam concentration in the upper compartment is between 258 and 608 (nominally 558)
3. EnUCIn The steam concentration in the upper compartment is less than 258 (nominally 108).

One parameter is defined in this question:
P6. UC-Stm The amount of steam in the upper compartment, in kg-moles, is assigned to Parameter 6.

This question is not sampled; the quantification was performed internally The branch taken and the parameter assigned at this question depend upon the branches taken at Questions $24,27,30,32$, and 33.

In general, if the $I C$ is intact, the steam concentration in the upper compartment is minimal. The amount of the steam, however, is dependent upon the pressure in containment. The case structure and quantification for this question is related to that for Question 33.

Case 1: No early blowdown to containment. For this case, all of the probability is assigned to the branch in which there is essentially minimal steam-inerting, Branch 3. This case is directly related to Case 1 in Question 33. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-UCIn1 } & - & 0.0 \\
\text { Branch 2: } & \text { E-UCIn2 } & - & 0.0 \\
\text { Branch 3: } & \text { EnUCIn } & 1.0
\end{array}
$$

For Branches 1 and 2, the assignment of the parameter is irrelevant For Branch 3, the assignment of the parameter (kg -moles) is:

$$
\text { Parameter 6: UC-Stm . } 85.80
$$

Case 2: There is no ice or sprays in containment to condense the steam, and the lower compartment has a nominal steam concentration of 75*. This case is directly related to Branch 1 of Case 2 in Question 33. The pressure in containment is 85 psia . The quantification for this case is:

| Branch 1: | E-UCIn1 | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-UCIn2 | 0.0 |
| Branch 3: | EnUCIn | 0.0 |

For Branch 1, the assignment of the parameter (kg -moles) is:

Parameter 6: UC-Stiin $\quad 2342.50$

For Branches 2 and 3, the assignment of the parameter is irrelevant.
Case 3: There is no 100 or sprays in containment to condense the steam, and the lower compartment has a nominal steam concentration of 558. This case is directly related to Branch 2 of Case 2 in Question 33. The pressure in containment is 38 psia . The quantification for this case is:

Branch 1:	E-UCIn1	0.0
Branch 2:	E-UCIn2	1.0
Branch 3:	EnUCIn	0.0

For Branch 1, the assignment of the parameter is irrelevant. For Branch 2 , the assignment of the parameter (kg -moles) is:

Parameter 6: UC-Stm . 780.80
For Branch 3, the assignment of the parameter is irrelevant.
Case 4: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal, and the lower compartment has a nominal steam concentration of 758 . This case is directly related to Branch 1 of Case 6 in Question 33, and is discussed in detail above. The pressure in containment is 35 psia. The CONTAIN calculation performed for this sequence indicates a steam mole fraction of 0.46 in the upper compartment, with 741 kg -moles of steam, and a containment pressure of 40 psia . The quantification for this oase is:

| Branch 1: | E-UCIn1 | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E-UCIn2 | 1.0 |
| Branch $3:$ | EnUCIn | 0.0 |

For Branch 1, the assignment of the parameter is irrelevant. For Branch 2, the assignment of the parameter (kg -moles) is:

$$
\text { Parameter 6: UC-Stm - } 722.70
$$

For Branch 3, the assignment of the parameter is irrelevant.
Case 5: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal, and the lower compartment has a nominal steam concentration of 508 . This case is directly related to Branch 2 of Case 6 in Question 33. The pressure in containment is 30 psia. The quantification for this case is:

```
Branch 1: E-UCIn1 0.0
Branch 2: E-UCIn2 . 1.0
Branch 3: EnUC%.. - 0.0
```

For Branch 1, the assignment of the parameter is irrelevant. For Branch 2 , the assignment of the parameter (kg -moles) is:

$$
\text { Parameter 6: UC-Stm } \quad 619.50
$$

For Branch 3, the assignment of the parameter is irrelevant.
Case 6: CHR is avallable through the sprays or the IC, or if CHR is not available, the lower compartment has minimal steam concentration. For this cass, the upper compartment has minimal steam concentrations. The quantification for this case is:

Branch 1:	E-UCIn1	-	0.0
Branch 2:	E-UCIn2	-	0.0
Branch 3:	EnUCIn	-	1.0

For Branches 1 and 2, the assignment of the parameter is irrelevant. For Branch 3, the assignment of the parameter (kg -moles) is:

$$
\text { Parameter 6: UC.Stm } \quad 85.80
$$

Question 36. Early Baseline Pressure? 1 Branch, Type 4, 8 Cases

The single branch for this question is always taken. The branch is:

1. E-PBase The baseline pressure in containment during core degradation.

One parameter is defined in this question:
P7, E-PBase The baseline pressure in containment during core degradation, in kPa , is assigned to Parameter 7.

This question is not sampled; the baseline pressure before VB is a direct function of the amount of steam in the containment. The avallable codes are in reasonable agreement about the value of the pressure in the containment before $V B$. The cases for this question depend upon the branches taken at Questions $12,24,27,30,31,32$, and 33.

Case 1: If there is no blowdown to the containment or if there is failure t isolate the containment, the containment is near normal operating pressure. The assignment of the parameter (kPa) is:

$$
\text { Parameter 7: E.PBase . } 103.40
$$

Case 2: There is no containment heat removal and the steam concentration in containment is nominally 75\%. The assignment of the parameter (kPa) is:

$$
\text { Parameter 7: E-PBase - } \quad 586.10
$$

Case 3: There is no containment heat removal and the steam concentration in containment is nominally 50\%. The assignment of the parameter (kPa) is:

Parameter 7: E-PBase . 262.0
Case 4: There is no containment heat removal and the steam concentration in containment is nominally 108 . The assignment of the parameter (kPa) is:

Parameter 7: E-PBase - 144.80
Case 5: Containment heat removal is available and the fans are operating. The assignment of the parameter (kPa) is:

Parameter 7: E-PBase . 144.80
Case 6: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal, and the lower compartment has a nominal steam concentration of 758 . The assignment of the parameter (kPa) is:

Parameter 7: E-PBase . 241.30
Case 7: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal, and the lower compartment has a nominal steam concentration of 508 . The assignment of the parameter (kPa) is:

Parameter 7: E-PBase $\quad 206.80$
Case 8: Containment heat removal is avallable, but fans are not operating. The assignment of the parameter (kPa) is:

Parameter 7: E-PBase - 144.80

Question 37. Time of Accumulator Discharge?
 3 Branches, Type 2, 3 Cases

The branches for this question are:

1. El-Acc The accumulators discharge before core degradation starts.
2. E2-Acc The accumulators discharge during core degradation.
3. I-Acc The accumulators discharge at VB.

This question is not sampled; the time of accumulator discharge may be reliably deduced from the values of the RCS pressure at UTAF and just before VB. The branch taken at this question depends upon the branches previously taken at Questions $9,10,16$, and 25.

The accumulators discharge at 600 psig . Whether they have discharged by the onset of core degradation or before VB is strictly a function of the pressure history of the RCS. Cenerally, any small (S_{2}) or large (A) break w111 depressurize the RCS enough that accumulator discharge before the onset of degradation is assured. If the AFWS is available and the operators depressurize the secondary system, the RCS pressure should become low enough to result in accumulator discharge even if there is no break or a very small $\left(\mathrm{S}_{3}\right)$ break.

Whether the operators will reduce the pressure in the primary system by blowing down the secondary system is particularly important in the long. term blackout scenario if there are no temperature-induced breaks in the RCS. In this sequence, the STD AFWS fails after battery depletion and the RCS repressurizes to the setpoint level before core degradation commences. Blowdown of the secondary before the AFWS fallure determines whether the accumulators discharge before core degradation commences, or when the lover head of the vessel fails.

Case 1: The RCS pressure was intermediate or low at the cnset of core degradation, or the secondary was depressurized while the AFWS was operating. Accumulator discharge takes place before the core has started to degrade. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E1-Acc } & - & 1.0 \\
\text { Branch 2: } & \text { E2-AcC } & - & 0.0 \\
\text { Branch 3: } & \text { I-AcC } & 0.0
\end{array}
$$

Case 2: The RCS pressure was intermediate or low just before VB. By Case 1 the pressure was not in this range at the start of core melt. Thus accumulator discharge takes place during core degradation. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E1-ACC } & - & 0.0 \\
\text { Branch 2: } & \text { E2-AcC } & & 1.0 \\
\text { Branch 3: } & \text { I-ACC } & - & 0.0
\end{array}
$$

Case 3: If the accumulators did not discharge before or during core degradation, they must discharge at VB. The quantification for this case is:

Branch 1:	E1-Acc	-	0.0
Branch 2:	E2-Acc	-	0.0
Branch 3:	I-AcC	-	1.0

Question 38. Amount of Hydrogen Release In-Vessel During Core Degradation? 1 Branch, Type 4, 7 Cases

The single branch for this question is always taken. The branch is:

1. E-H2InV The amount of hydrogen generated in-vessel before VB.

One parameter is defined in this question:
PB. E-H2InV The amount of hydroger generated in-vessel before VB in $k g$. moles, is assigned to Parameter 8

All cases of this question are sampled. The distributions for parameter 8 were provided by the In-Vessel Expert Panel. The conclusions of the experts and their aggregate distributions are presented in Volume 2, Part 1 . of this report. The applicable case for this question depends upon the branches taken at questions 16 and 37.

During core degradation, the presence of unoxidized metal in the very hot steam atmosphere leads to a metal-water reaction that produces hydrogen. 2irconfum is the primary metal oxidized, but some oxidation of steel and stainless steel may ocour as well. The amount of metal oxidized depends upon the temperatures present and the availability of steam. Sometimes a blockage is expected to form in the lower portion, severely limiting the steam nvailable for oxidation in much of the core volume. At other times, it is expected that no blockage forms, that the blockage is ineffective in limiting steam avallability, or that the zirconium is effectively oxidized in other locations before or after the blockage limits steam flow. Oxidation of the entire inventory of zirconium in the Sequoyah core would result in production of 507 kg -moles of hydrogen.

Case 1: The RCS is at system setpoint pressure and the accumulators discharge before or after core melt. This is Case 1A/1C of in-vessel Issue 5. The assignment of the parameter (kg -moles) based on the mean value of the aggregate distribution is:

Parameter 8: E-H2InV - 222.80
Case 2: The RCS is at system setpoint pressure and the accumulators discharge during core melt. This is Case $1 B$ of In-Vessel Issue 5. The assignment of the parameter (kg -moles) based on the mean value of the aggregate distribution is:

$$
\text { Parameter 8: E-H2InV . } 255.50
$$

Case 3: The RCS is at high pressure and the accumulators discharge before or after core melt. This is Case $2 \mathrm{~A} / 2 \mathrm{C} / 5$ of In -Vessel Issue 5. The assignment of the parameter (kg -moles) based on the mean value of the aggregate distribution is:

$$
\text { Parameter 8: E.H2InV - } 164.0
$$

Case 4: The RCS is at high pressure and the accumulators discharge during core melt. This is Case 2B of In-Vessel Issue 5. The assignment of the paramntor ($\mathrm{kg}-\mathrm{moles}$) based on the mean value of the aggregate distribution is:

Parameter 8: E-H2InV . 192.30

Case 5: The RCS is at intermediate pressure and the accumulators discharge before or after core melt. This is Case 3 A of In-Vessel issue 5. The assignment of the parameter (kg -moles) based on the mean value of the aggregate distribution is:

$$
\text { Parameter 8: E-H2InV . } 243.50
$$

Case 6: The RCS is at interpediate pressure and the accumulators discharge during core melt. This is Case 3B of In-Vessel Issue 5. The assigrment of the parameter (kg -moles) based on the mean value of the aggregate distribution is:

$$
\text { Parameter 8: E-H2InV . } 263.90
$$

Case 7: The RCS is at low pressure, This is Case 4 of In-Vessel Issue 5. The assignment of the parameter (kg-moles) based on the man value of the aggregate distribution is:

```
Parameter 8: E-H2Inv . 228.20
```


Question 39. Amourt of Zirconium Oxidized In-Vessel During Core Degradation? 2 Branches, Type 5

The branches for this question are:

1. Hi-Zrox More than 408 of the zirconium in the core is oxidized invessel prior to VB.
2. Lo-Zrox Less than 408 of the zirconium in the core is oxidized invessel prior to VB.

This question is not sampled; the branch taken depends directly upon the value of the parameter defined in the previous question.

This question concerns the amount of zirconium oxidized during core melt. Because steel may be oxidized also, it is theoretically possible to have over 100 equivalent zirconium oxidation. The fraction of zirconium oxidized in-vessel is related to the amount of hydrogen produced and is divided into two categories. This information is needed for the source term analysis by the SEQSOR code.

Question 40. Fraction of In-Vessel Hydrogen Released from the RCS During Core Degradation? 1 Branch, Type 4, 4 Cases

The single branch for this question is always taken. The branch is:

1. E-H2exV The fraction of hydrogen generated in-vessel that is released from the RCS to containment during core degradation.

$$
\text { A. 1.1. } 58
$$

One parameter is defined in this question:
P9. E-H2exV The fraction of in-vessel hydrogen released from the RCS is assigned to Parameter 9.

All cases of this question are sampled. The distributions for Parameter 9 were provided by the Containment Loads Expert Panel. The conclusions of the experts and theiz aggregate distributions are presented in Volume 2 , Part 2, of this report. The applicable case for this question depends upon the Lianches taken at Questions 1,20 , and 24 .

At Sequoyai. hydrogen is a threat to the containment during the time of core degradation. The amount of hydrogen generated in-vessel during core degradation is established in Question 38, It is necessary to establish what fraction of the in-vessel hydrogen is then released to containment. There may be areas of the RCS in which hydrogen accumulates and is not released until VB. One area in which hydrogen is helieved to accumulate is in the SGs. For sequences in which the RCS is at higher pressures during core degradation, there is less hydrogen released to containment than for those sequences in which the RCS is at lower pressures. The expert panel cited calculations in which the release of hydrogen from the RCS before VB was available.

Case 1: There was a transient initiator with the RCS intact at UTAF, There is quite a bit of hydrogen retention within the RCS for this case because the PORVs are cycling and the system is at high pressure. The absignment of the parameter based on the mean value of the aggregate cibution is:

$$
\text { Parameter 9: E-H2exV . } 0.64
$$

Case 2: There was an initial or induced SGTR, or there is blowdown to containment curiog core degradation that is typical of an S_{3}-size break. For the SGTRs, the hydrogen will be released outside of containment; this is addressed in Question 42. The assignment of the parameter based on the mean value of the aggregate distribution is:

$$
\text { Parameter 9: E-H2exv } \quad 0.66
$$

Case 3: The rate of blowdown of RCS inventory is typical of an S_{2}-size break. The assignment of the parameter based on the mean value of the aggregate distribution is:

$$
\text { Parameter 9: E-H2exV . } 0.70
$$

Case 4: The rate of blowdown to containment is typical of a large break, or the initiator was an interfacing systems LOCA (Event V). If Event V occurs, the hydrogen is released outside of containment; this is addressed in Question 42. The assignment of the parameter based on the mean value of the aggregate distribution is:

$$
\text { Parameter } 9: \text { E-H2exV } \quad 0.85
$$

Question 41. To What Degree is the Hydrogen Mixed In the Upper Compartment?
5 Branches, Type 2, 3 Cases
The branches for this question are:

1. W1Mxd The ARFs are operating, and the hydrogen is uniformly distributed throughout the containment.
2. Mxdl The ARFs are not operating, and bulk flow exists from the lower to the upper compartment by way of the refueling canal floor drains.
3. Mxd2 The ARFs are not operating, but the upper plenum and upper compartment atmospheres are well-mixed, and a "clear path" exists from the lower to the upper compartment through the IC.
4. Mxd3 The ARFs are not operating, but the upper plenum and upper compartment atmospheres are well-mixed, and no "clear path" exists from the lower to the upper compartment through the IC.
5. UnMxd The ARFs are not operating, there is no mixing of the upper plenum and upper compartment atmospheres, and no "clear path" exists from the lower to the upper compartment through the IC.

Case 2 of this question is sampled; the quantification of the cases in which fans are not operating was provided by the Containment Loads Expert Pane1 (see Volume 2, Part 2, of this report). The branch taken at this question depends upon the branches taken at Questions 31 and 32.

The branch taken in this question defines the manner in which the hydrogen will be distributed throughout the containment in Question 42 . For the times in which the flow is liverted from the lower to the upper compartment by way of the floor drains in the refueling canal, quantification was based upon the CONTAIN calculation discussed in Question 32. For other times in which the ARFs are not operating, the experts agreed to use a HECTR calculation of a TMLB' accident sequenceA.1-12 as a "base casen for the quantification of the hydrogen distribution in containment. The experts considered various factors that cause uncertainty associated with the base case quantification. The "clear path" mentioned above involves the intermediate deck doors between the IC and upper plenum. If a significant amount of the doors are stuck open, the path from the IC to the upper plenum and upper compartment is denoted as "clear." If there are few doors stuck open, then the path to the upper containment is denoted as "not clear," The mixing of the upper plenum and upper compartment atmosphere depends upon the opening of the upper deck doors between the upper plenum and upper compartment. Failure to mix could be explained by several upper deck doors remaining closed. If most of the upper deck doors are open, mixing is more likely.

For Branch 3, the base case distribution of hydrogen is used with no adjustments. For Branch 4, the hydrogen in the upper compartment for the base case is decreased by 508 and the remaining hydrogen is distributed throughout the other compartments in a manner proportionate with the compartmental amount for the base case. For Branch 5, the hydrogen in the dome for the base case is decreased by 90 and the remaining hydrogen is distributed throughout the other compartments in a manner proportionate with the compartmental amounts for the base case.

Case 1: There is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal. For this case, the distribution of the hydrogen is based solely upon a CONTAIN calculation that results in this scenario. The quantification for this case is:

Branch 1:	W1Mxd	-	0.0
Branch 2:	Mxd1	-	1.0
Branch 3:	Mxd2	-	0.0
Branch 4:	Mxd3	-	0.0
Branch 5:	UnMxd	-	0.0

Case 2: The ARFs are not effective in mixing tho containment atmosphera before ignition of hydrogen occurs. This case applies always to the station blackouts in which power is net recovered before $V B$, and sometimes to the station blackouts in which power is recovered before VB. The expert panel believed that Branches 3 and 4 are equally likely and that Branch 5 is less likely to occur. This case was sampled zero-one, so each observation had all the probability assigned to one of these three branches. Taking the mean value of the observations in the sample, the quantificaticn for this case is:

Branch 1:	W1Mxd		0.000
Branch 2:	Mxd1	-	0.000
Branch 3:	Mxd2	-	0.445
Branch 4:	Mxd3	-	0.450
Branch 5:	UnMxd	-	0.105

Case 3: The ARFs are effective in mixing the containment atmosphere before the ignition of hydrogen occurs. This case applies always to sequences that are not station blackouts, and sometimes to the station blackouts in which power is recovered. For this case, the containment atmosphere is well-mixed, and the hydrogen is distributed uniformly throughout the containment. The quantification for this case is:

Branch 1:	WlMxd	-	1.0
Branch 2:	Mxd1	-	0.0
Branch 3:	Mxd2	-	0.0
Branch 4:	Mxd3	-	0.0
Branch 5:	UnMxd	-	0.0

Question 42. Distribution of Hydrogen in Containment During Core Degradation?
 2 Branches, Type 6, 7 Cases

The uranches for this question are:

1. $\mathrm{E}-\mathrm{H} 2 \times \mathrm{V}$ There is hydrogen in containment before VB .
2. EnH2 xV There is no hydrogen in containnent before VB.

Four parameters are defined in this question:
P10. H2-LC The amount of hydrogen in the lower compartment, in kg-moles, is assigned to Parameter 10.

P11. H2-IC The amount of hydrogen in the IC, in kg -moles, is assigned to Parameter 11.

P12. H2-UP The amount of hydrogen in the upper plenum of the IC, in kg . moles, is assigned to Parameter 12.

P13. H2-UC The amount of hydrogen in the upper compartment, in kg -moles, is assigned to Parameter 13.

For this question, a module within the user function subprogram is ovaluated to distribute the hydrogen throughout the containment. The applicable case for this question depends upon the branches taken at Questions 12.24 , and 41.

The user function is a small FORTRAN subprogran that is linked with the EVNTRE code after compilation. The EVNTRE code is the computer code that evaluates the APET. The part of the user function evaluated at this question uses the amount of hydrogen generated in-vessel (Parameter 8, E$H 2 i n V)$ and the fraction of the hydrogen generated that is released from the RCS before VB (Parameter 9, E-H2exV), to establish the amount of hydrogen In each compartment (Parameters $10,11,12$, and $13 ; \mathrm{H} 2-\mathrm{LC}, \mathrm{H} 2-\mathrm{IC}, \mathrm{H} 2-\mathrm{UP}$, and $\mathrm{H} 2-\mathrm{UC})$. In the user function module, E-H2inV is nultiplied by E-H2exV and an appropriate factor is applied to distribute the hydrogen to each compartment. The hydrogen that is retainad in the RCS will be released to the containment at VB. For the sake of visulision cf this ouestion, the product of $\mathrm{E}-\mathrm{H} 2 \mathrm{~L} \mathrm{IV}$ and $\mathrm{E}-\mathrm{H} 2 \mathrm{exV}$ will be referred to as the ex-vessel hydrogen (EVH).

Case 1: There is no early blowdown to containment. Hydrogen will be released from the RCS to the outside of containment, but there will be no release of hydrogen to containment. The user function module denoted H 2 xV 1 is called from EVNTRE. The factor applied to EVH to obtain $\mathrm{H} 2 \cdot$-LC, $\mathrm{H} 2 \cdot \mathrm{IC}, \mathrm{H} 2 \cdot \mathrm{UP}$, and $\mathrm{H} 2 \cdot \mathrm{UC}$ is 0.0 .

Case 2: There is an isolation failure of containment. As the isolation failure is quite large, it is assumed that the hydrogen is leaked from containment in quantities sufficient to preclude further failure of containment. The user function module denoted $\mathrm{H} 2 \times \mathrm{V} 2$ is
called from EVNTRE, As in Case 1, the factor applied to EVH to obtain H2-LC, H2-IC, H2-UP, and H2-UC is 0.0 .

Case 3: The contaitument is well-mixed due to the operation of the ARFs. This case is directly related to Case 3 of Question 41. The hydrogen is distributed uniformly throughout containment. The user function module denoted $\mathrm{H} 2 \times \mathrm{XV} 3$ is called from EVNTRE. The factor applied to EVH to obtain H2-LC is 0.31 , to obtain H2-IC is 0.10 , to obtain H2-UP is 0.04 , and to obtain H2-UC is 0.55 ,

Case 4: The ARFs are not operating and there is diversion of flow from the lower to the upper compartment by way of the floor drains in the refueling canal flour. This case is directly related to Case 1 of Question 41. The values are obtained from a CONTAIN calculation as described in the discussion of Question 32. The user function module denoted $\mathrm{H} 2 \times \mathrm{V} 4$ is called from EVNTRE. The factor applied to EVH to obtain H2-LC is 0.44 , to obtain H2-IC is 0.13 , to obtain H2-UP is 0.01 , and to obtain $\mathrm{H} 2-\mathrm{UC}$ is 0,42 .

Case 5: The ARFs are not operating, but the upper plenum and upper compartment atmospheres are well-mixed, and a "clear path" exists from the lower to the upper compartment through the IC. The values are obtained from a HECTR calculation as described in the discussion of Question 41. The user function module denoted $H 2 \times V 5$ is called from EVNTRE. The factor applied to EVH to obtain H2-LC is 0.35 , to obtain H2-IC is 0.36, to obtain H2-UP is 0.03, and to obtain H2-UC is 0.26 .

Case 6: The ARFs are not operating, but the upper plenum and upper compartment atmospheres are well-mixed, and no "clear path" exists from the lower to the upper compartment through the IC. For this case, the hydrogen in the upper compartment for Case 5 is decreased by 508 and the remaining hydrogen is distributed throughout the other compartments in a manner proportionate with the compartmental amount for the base case. The user function module denoted H 2 xV 6 is called from EVNTRE. The factor applied to EVH to obtain H2-LC is 0.41 , to obtain H2-IC is 0.42 , to obtain H2-UP is 0.04 , and to obtain F 2 -UC is 0.13 .

Case 7: The ARFs are not operating, there is no mixing of the upper plenum and upper compartment atmospheres, and no "clear path" exists from the lower to the upper compartment chrough the IC. For Branch 5, the hydrogen in the dome for the base case is decreased by 90% and the remaining hydrogen is distributed throughout the other compartments in a manner proportionate with the compartmental amount for the base case. The user function module denoted $\mathrm{H} 2 \times \mathrm{VV} 7$ is called from EVNTRE. The factor applied to EVH to obtain H2-LC is 0.46 , to obtain H2-IC is 0.47 , to obtain H2-UP is 0.04 , and to obtain H2-UC is 0.03 .

Question 43. What is the Hydrogen Concentration in the Lower Compartment, and the Burn Completeness if Ignited? 3 Branches, Type 6, 2 Cases

The branches for this question are:

1. HLC >11 The hydrogen concentration in the lower compartment is greater than 118.
2. HLC>5.5 The hydrogon concentration in the lower compartment is between 5.5 and 11 .
3. LoHLC The hydrogen concentration in the lower compartment is less than 5.58.

One parameter is defined in this question:
P14. E-LCBC The completeness of combustion in the lower compartment, if hydrogen ignition occurs, is assigned to Parameter 14.

This question is not sampled; the quantification of Parameter 14 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report), and is calculated in a module within the user function subprogram. The user function module also $c: 1 c u l a t e s$ the hydrogen concentration, which is divided into the three categories defined by the branches. The applicable rase for this question depeule ' taken at Question 31.

The upward Ilammability limits for hydrogen-air-steam mixtures and the extent of hydrogen combustion depend upon the hydrogen and steam concentrations. For this question, the amounts of oxygen, steam, and hydrogen in the lower compartment are passed to the user function. The amount of nitrogen is proportionate to the amount of oxygen. The user function module then calculates hydrogen and steam mole fractions. The completeness of combustion is also dependent upon the amount of turbulence in the atmosphere. The completeness of combustion is calculatad using an empirical model specified by the experts. The model, developed by C. C. Wong, A. $1-17$ is different for times of turbulent mixing than for times in which the atmosphere is quiescent.

Case 1: The ARFs are operating when ignition occurs, the turbulent burn completeness model is used. The user function module denoted H2Cncl is called from EVNTRE.

Case 2: The ARFs are not operating when ignition occurs, the quiescent burn completeness model is used. The user function module denoted H2Cnc2 is called from EVNTRE.

Question 44. What is the Hydrogen Concentration in the IC, and the Burn Completeness if Ignited? 6 Branches, Type 6, 2 Cases

The branches for this question are:

1. HICS 21 The hydrogen concentration in the IC is greater than 218 .
2. HIC> 16 The hydrogen concentration in the IC is between 16% and 21 .
3. HIC >14 The hydrogen concentration In the $I C$ is between 148 and 168 .
4. HIC >11 The hydrogen concentration in the IC is between 118 and 148 .
5. HIC \quad 5.5 The hydrogen concentration in the IC is between 5.58 and 118 .
6. LoHIC The hydrogen concentration in the IC is lese than 5.5. .

One parameter is defined in this question:
P15. E-ICSC The completeness of combustion in the IC, if hydrogen ignition ocours, is assigned to Parameter 15.

This question is not sampled; the quantification of Parameter 15 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report?, and ts calculated is a moduta within the user function subprogram. The user function module also calculates the hydrogen concentration, which is divided into the six categories defined by the branches. The applicable case for this question depends upon the branch taken at Question 31.

The hydrogen concentration and burn completeness in the IC are calculated In the user function module as described for the lower compartment in Question 43, above.

Case 1: The ARFs are operating when ignition occurs, the turbulent burn completeness model is used. The user function module denoted H2Cnc3 is called from EVNTRE

Case 2: The ARFs are not operating when ignition occurs, the quiescent burn completeness model is used. The user function module denoted H2Onch is called from EVNTRE.

Question 45. What is the Hydrogen Concentration in the Upper Plenum of the IC and the Burn Completeness if Ignited?
6 Branches, Type 6, 2 Cases
The branches for this question are:

1. HUPS 21 The hydrogen concentration in the upper plenum is greater than 218 .
2. HUP>16 The hydrogen concentration in the upper plenum is between 168 and 218.
3. HUP >14 The hydrogen concentration in the upper plenum i between 148 and 16%.
4. HUP>1. The hydrogen concentration in the upper plenum is between 118 and 148 .
5. HUP>5.5 The hydrogen concentration in the upper plenum is between 5.58 and $1: 8$.
6. LoHUP The hydrogen concentration in the upper plenum is less than 5.58.

One parameter is defined in this question:
P16. E-UPBC The completeness of combustion in the upper plenum, if hydrogen ignition occurs, is assigned to Parameter 16.

This question is not sampled; the quantification of Parameter 16 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report), and is calculated in a module within the user function subprogram. The user function module also calculates the hydrogen concentration, which is divided into the six categories defined by the branches. The applicable case for this question depends upon the branch taken at question 31.

The hydrogen concentration and burn completeness in the upper plenum are calculated in the user function module as described for the lower compartment in Question 43.

Case 1: The ARFs are operating when ignition occurs, the turbulent burn completeness model is used. The user function module denoted H2Cnc5 is called from EVMTRE.

Case 2: The ARFs are not operating when ignition occurs, the quiescent burn completeness model is used. The user function module denoted H2Cnc6 is called from EVNTRE.

Question 46. Whist is the Hydrogen Concentration in the Upper Compartment, and the Burn Completeness If Ignited?
5 Branches, Type 6, 2 Cases
The branches for this question are:

1. HUC $>21 \begin{aligned} & \text { The hydrogen concentration in the upper compartment is } \\ & \text { greater than } 218 \text {. }\end{aligned}$
2. HUC $>16 \quad \begin{aligned} & \text { The hydrogen concentration in the upper compartment is } \\ & \text { between } 168 \text { and } 218 .\end{aligned}$
A. 1.1. 66
3. HUC >11 The hydrogen concentration in the upper compartment is between 11: and 168 .
4. HUC >5.5 The hydrogen concentration in the upper compartment is between 5.5 and 11 .
5. LoHUC The hydrogen concentration in the upper compartment is less than 5.5\%.

One parameter is defined in this question:
P17. E-UCBC The completeness of combustion in the upper compartment, if hydrogen ignition occurs, is assigned to Parameter 17.

This question is not sampled; the quantification of Parameter 17 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report), and is calculated in a module within the user function subprogram. The user function module also calculates the hydrogen concentration, which is divided into the five categories defined by the branches. The applicajle case for this question depends upon the branch taken at Question 31.

The hydrogen soncentration and burn completeness in the upper compartman: are calculated in the user function module as described for the lower compartment in Question 43, above.

Case 1: The ARFs are operating when ignition occurs, the turbulent burn completeness model is used. The user iunction module denoted H2Cncl is called from EVNTRE.

Case 2: The ARFs are not operating when ignition occurs, the quiescent burn completeness model is used. The user function module denoted H2Cnc2 is called from EVNTRE.

Question 47. Are the Hydrogen Igniters Operating During Core Degradation? 2 Sranches, Type 2,4 Cases

The branches for this question are:

1. E.Ig The igniters are operating during core degradation.
2. EnIg The igniters are not operating during core degradation.

This question is not sampled; the quantification was done internally by the accident frequency analysts. The branch taken depends upon the branches taken at Questions $7,13,22,44$, and 46 .

If ac power is initially operating, the initiation of the igniters by the operators is addressed in Question 13. This question addresses accidents involved with loss of offsite power and subsequent power recovery. If the hydrogen concentration in containment is less than 68 , the operating procedures instruct the operators to activate the igniters. If the hydrogen concentration is greater than 68 , the operators are directed to refrain from actlvating the igniters.

Case 1: The operato:s initially activated the igniters. Either ac power was operating when activation took place, or power was recevered, allowing the igniters to operate. The quantification for this case is:

Branch 1: $\mathrm{E}-\mathrm{Ig}$	-	1.0
Bransh 2: EnIg	0.0	

Case 2: The accident involves a station blackout with power recovery before $1 B$. The hydrogen concentration in containment is less than 5.58. '(RA indicates that fallure to initiate will be about 88 of the time. The quantification for this case is:
'sranch 1: E-Ig

- 0.92
Branch 2: Enlg
0.08

Case 3: The accident involves a station blackout with power recovery before VB. The hydrogen concentration in containment is greater than 5.58. HRA indicates that incorrect initiation will occur about 88 of the time. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { K.Ig } & * & 0.08 \\
\text { Branch 2: } & \text { EnIg } & * & 0.92
\end{array}
$$

Case 4: The accident involves a station blackout without power recovery before $V B$. The igniters will not be operating. The quantification for this case is:

| Branch 1: E-Ig | E | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: Enlg | En | 1.0 |

Question 48. Does Hydrogen Ignition Occur in che Lower Compertment During Core Degradation?
2 Branches, Type 4, 5 Cases
The branches for this question aie:

1. E-LCDef Ignition of hydrogen oocurs in the lower compartment during core degradation.
2. EnLCDef Ignition of hydrogen does not occur in the lower compartment during core degradation.

One parameter is defined in this question:
P18. E-IgL? Ignition in the low \% compartment is flagged by assigning a value of 1.0 to Parameter 18 .

This question is not sampled; the quantification of shis question was performed internally. The branch taker depends upon the branches taken at Questions 7, 22, 33, 43, and 47.

For accidents in which the ARF system is not operating; typically, for station blackout accidents, the lower compartment is steam inerted. For the other compartments in the containment, station blackouts are of concern, because the IC is effective in de-inerting gases that pass through it. The ignition of hydrogen in the other compartment during station blackout accidents was considered by the Containment Loads Expert Panel and w111 be addressed iri Questions 49 through 51. For accidents in which the hydrogen ignition system has been activated, and the lower compartment atmosphere has satisfied the flammability criteria, ignition is certain to occur.

For all cases, the ignition flag will be set if ignition occurs. The assignment of the parameter, if Branch 1 is taken, is:

$$
\text { Paramete: } 18: \text { E.IgLC } \quad 1.0
$$

If Branch 2 is taken the assignment of the parameter is:

$$
\text { Paraneter } 18: \mathrm{E} \cdot \mathrm{IgLC}
$$

Case 1: The ignitere are operating during core degradation, and the steam concentration the lower compartment is less than 608 . The ignition of hydrogen as assured. If the flamability linit is not attained, the burn completeness for the lowec compartment, Parameter 14, will hare been set to zero in Question 43. The quantification for
is case 4s:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-LCDef } & \text { - } & 1.0 \\
\text { Branch 2: } & \text { EnLCDef } & 0.0
\end{array}
$$

Case 2: The igniters are not operating, and either the hydrogen concentration in the lower compartment is less than 5.58 , or the steam concentration is greater than 25\%. It is assumed that the probability of ignition will be negligible for times in which there is a large quantity of steam in the lower compartment. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-LCDef } & 0 & 0.0 \\
\text { Branch :: } & \text { EnLCDef } & - & 1.0
\end{array}
$$

Case 3: Igniters are not operating, the steam concentration is less than 25\%, and the hydrogen concentration is greater than 5.58 . For this case, ac power has been operating since UTAF. It is believed that ignition will have occurred before VB due to random ac power sources. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E.LCDef } & \text { - } & 1.0 \\
\text { Branch 2: } & \text { EnLCDef } & \cdot & 0.0
\end{array}
$$

Case 4: Igniters are not operating, the steam concentration is less than 254, and the hydrogen concentration is greater than 5.58. For this case, ac power was recovered during core degradation. The probability of ignition of hydrogen in the lower compartment before VB is indeterminate. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E.LCDef } & : & 0.50 \\
\text { Branch 2: } & \text { EnLCDef } & 0.50
\end{array}
$$

Case 5: Igniters are not operating, the steam concentration is less than 258, and the hydrogen concentration is greater than 5.58. For this case, ac power has not operated at all in the accident, and ignition, if it occurs, will be due to de power and static sources only. It is believed that ignition is not very likely to oocur before VB. The quantification for this case is:
$\begin{array}{lll}\text { Branch 1: } & \text { E-LCDef } & 0.15 \\ \text { Branch 2: } & \text { EnLCDef } & 0.85\end{array}$

Question 49. Does Hyorogen Ignition Occur in the IC During Core Degradation?
2 Branches, Type 4, 5 Cases
The branches for thls question are:

1. E-ICDef Ignition of tydrogen occurs in the iC during core degradation.
2. EnICDef Ignition of hydrogen does not occur in the IC during core degradation.

Or parameter is defined in this question:
P19. E-IgIC Ignition in the IC is fiagged by assigning a value of 1.0 to Parameter 19.

Cases 3, 4, and 5 of this question are sampled; the distributions were provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report). The branch taken depends upon the branches taken at Questions $7,22,31,34,44$, and 48 .

For accidents in which the ARFS is not operacing; typically, for station blackout acoidents, the $1 C$ removes the steam from the gases that pass through it. Ignition of the hydrogen that begins to accumulate within the IC during station blackout accidents was considered by the Containment Loads Expert Pane2. The experts believed that the main ignition source for hydrogen in the 10 wuuld te due to static discharge caused by the opening and shutting of intermediate deck doors between the $I C$ and upper plenum. The intermediate deck doors consist of a urethane core sandwiched by galvanized steel as described in the Sequoyah FSAR.A.1-14 They open into the upper plenum and are stopped by impacting adjacent door panels against each othin The lower deck doors are not expected to contribute to
probability of ignition because the gases entering the IC are highly steaminerted. Thera are no igniters or no ac powered sources located within the 10, but for times in which the ARF systell is operating, burns initiated in the lower compartment can propagate into the IC.

For all cases, the ignition flag will be set if ignition occurs. The assignment of the parameter, if Branch i is taken, is:

$$
\text { Parameter 19: E-1gIC . } 1.0
$$

If Branch 2 is taken the assignment of the parameter is:
Parameter 19: E.IgIC . 0.0
Case 1: Steam concentration in the 10 is greater chan 604, or the hy drogen concentration is less than 5.58 . It is ceriain that ignition of hydrogen will not occur in the 1C. The quantification for this case is:

```
Branch 1: E.ICDef . 0.0
Branch 2: EnlCDef . 1.0
```

Case 2: Combustion is inftiated in the lower compartment, and flames propagate to the $I C$ by operation of the ARFs, or there is power recovery during a station blackout and the ARFs are not effective before hydrogen 1 gnition . For tiaes in which the ARFs are not effective, ignition is assumed to occur, by the definition of this criterion as discussed for Case 2 of question 31. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-ICDef } & \text { : } & 1.0 \\
\text { Branch 2: } & \text { EnICDef } & 0.0
\end{array}
$$

Case 3: Igniters are not operating, the steam concentration is less than 608, and the hydrogen concentration is greater than 168 . The mean value of the aggregate distribution for probability of ignition is:

$$
\begin{array}{lll}
\text { Branch 1: } & \text { E.ICD } 2 \text { I } & 0.197 \\
\text { Branch 2: } & \text { EnJ Def } & 0.803
\end{array}
$$

Case 4: Igniters are not operating, the steam concentration is less than 608, and the hydrogen concentration is between 118 and 168 . The mean value of the aggregate distribution for probability of ignition is:

Branch 1:	E. ICDef	0.157
Branch 2:	EnICDef	0.843

Case 5: Igniters are not operating, the staam concentration is less than 608, and the hydrogen concentration is between 5.58 and 118 . The mean value of the aggregate distribution for probability of ignition is:

Branch 1:	E.ICDef	0.123
Branch 2:	EniCDef	0.877

Question 50. Does Hydrogen Ignition Occur in the Upper Plenum During Core Degradation? 2 Branches, Type 4, 8 Cases

The branches for this question are:

1. E-UPDef Ignition of hydrogen occurs in the upper plentim during core degradation.
2. EnUPDef Ignition of hydrogen does not occur in the upper plenum during core degradation.

One parameter is defined in this question:
P20. E-IgUP Ignition in the upper plenum is flagged by assigning a value of 1.0 to Parameter 20.

Cases 6, 7, and 8 of this question are sampled; the distributions were provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report). The branch taken depends upon the branches taken at Questions $7,22,28,31,34,45,47$, and 49.

For accidents in which the ARFS is not operating; typically, for station blackout accidents, the IC removes the steam from the gases that pass through it. Ignition of the hydrogen that begins to accumulate within the upper plenum during station blackout accidents was considered by the Containment Loads Expert Panel. The experts believed that the main ignition source for hydrogen in the upper plenum would be due to static discharge caused by the opening and shutting of intermediate deck doors between the IC and the upper plenum; the construction of the doors is discussed in Question 49, It is expected that the probability of ignition in the upper plenum will be higher than in the IC, due to the nature of the impacting of the intermediate deck doors. There are igniters located within the upper plenun; thus, for accidents in which the hydrogen ignitic. system has been activated, and the upper plenum atmosphere has satisfied the flammability oriteria, ignition is certain to occur,

For all cases, the ignition flag will be set if ignition occurs. The assignment of the paraneter, if Branch 1 is taken, is:

$$
\text { Parameter 20: E-IgUP . } 1.0
$$

If Branch 2 is taken, the assignment of the parameter is:
Parameter 20: E-IgUP 0.0
Case 1: The igniters are operating during core degradation, and the steam concentration in the upper plenum is less than 60. The ignition of hydrogen is assured. If the flammability 11 mit is not attained, the burn completeness for the upper plenum, Parameter 16 , will have been set to zero in Question 45. The quantification for this case is:

```
Branch 1: E.UPDef . 1.0
Branch 2: EnUPDef . 0.0
```

Case 2: The igniters are not operating, and either the hydrogen concentration in the upper plenum is less than 5.58 , or the steam concentration is greater than 608. It is certain that ignition of hydrogen will not occur in the upper plenum. The quantification for this case is:

| Branch 1: | E-UPDef | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | EnUPDef | 1.0 |

Case 3: Combustion is initiated in the IC, and flames propagate to the upper plenum by operation of the ARFs, or there is power recovery during a station blackout and the ARFs are not effective before hydrogen ignition. For times in which the ARFs are not effective, ignition is assumed to occur, by the definition of this criterion as discussed for Case 2 of Question 31. The quantification for this case 1s:

Bratich 1:	E-UPDef	
Branch 2:	EnUPDef	1.0
	0.0	

Case 4: ignfters are not operating, the steam concentration is less than 258, and the hydrogen concentration is greater than 5.5%. For this case, ic power has been operating since UTAF. It is believed that ignition will have occurred before $V B$ due to random ac power sources. The quantification for this case is:

```
Branch 1: E-UPDef . 1.0
Branch 2: EnUPDef . 0.0
```

Case 5: Igniters are not operating, the steam concentration is less than 258, and the hydrogen concentration is greater than 5.5%. For this case, ac power was recovered during core degradation. The probabilty of ignition of kydrajon in the upper plenum before VB is indeterminate. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E.UPDef } & 0.500 \\
\text { Branch 2: } & \text { EnUPDef } & 0.500
\end{array}
$$

Case 6: Neither the igniters nor ac power is operating, the steam concentration is less than 608, and the hydrogen concentration is greater than 169. The mean value of the aggregate distribution for probability of ignition is:

```
Branch 1: E.UPDef . 0.347
Branch 2: EnUPDef 0.653
```

Case 7: Neither the igniters nor ac power is operating, the steam concentration is less than 608, and the hydrogen concentration is between 118 and 168 . The mean value of the aggregate distribution for probability of ignition is:

$$
\begin{array}{llll}
\text { Branch } 2: & \text { E-UPDef } & - & 9.257 \\
\text { Branch 2: } & \text { EnUPDef } & - & 0.743
\end{array}
$$

Case 8: Neither the igniters nor ac power is operating, the steam concentration is less than 60*, and the hydrogen concentration is between 5.58 and 118 . The mean value of the aggregate distribution for probability of ignition is:

| Branch 1: | E-UPDef | 0.178 |
| :--- | :--- | :--- | :--- |
| Branch 2: | EnUPDef | 0.822 |

Question 51. Does Hydrogen Ignition Occur in the Upper Compartment During Core Degradation?
2 Branches, Type 4, 8 Cases
The branches for this question are:

1. E-UCDef Ignition of hydrogen occurs in the upper compartment during core degradation.
2. EnUCDef Ignition of hydrogen does not occur in the upper compartment during core degradation.

One parameter is defined in this question:
P21. E.IgUC Ignition in the upper compartment is flagged by assigning a value of 1.0 to Parameter 21.

Cases 6, 7, and 8 of thi question are sampled; the distributions were provided by the Containment Loads Expert Panel (see. Volume 2, Part 2, of this report). The branch taken depends upon the branches taken at Questions 7, 22, 31, 35, 46, 47, and 50 .

For accidents in which the ARFS is not operating typically, for station blackout accidents, the IC removes the steam from the gases that pass through it. Ignition of the hydrogen that enters the upper compartment during station blackout accidents was considered by the Containment Loads Fxpert Panel. The experts belleved that the likelihood that ignition sources exist in the upper compartment would be small. The upper deck doors that separate the upper plenum and upper compartinent are panels of blanketed insulation. The opening of the upper deck doors does not involve the same type of frictional contact as the opening of the intermediate deck doors. There are igniters located within the upper compartment; thus, for accidents in which the hydrogen ignition system has been activated, and the upper compartment atmosphere has satisfied the flammability criteria, ignition is certain to ocour.

For all cases, the ignition flag will be set if ignition occurs. The assignment of the parameter, if Branch 1 is taken, is:

If Branch 2 is taken the assignment of the parameter is:

$$
\text { Parameter 21: E-IgUC * } 0.0
$$

Case 1: The igniters are operating during core degradation, and the steam concentration in the upper compartment is less than 608. The ignition of hydrogen is assured. If the flammability iimit is not attained, the burn completeness for the upper compartment, Parameter 17, will have been set to zero in Question 46 . The quantification for this case is:

Branch 1:	E.UCDef	.
Branch 2:	EriUCDef	0.0

Case 2: The igniters are not operating, and either the hydrogen concentration in the upper compartment is less than 5.58, cr the steam concentration is greater than 608. It is certain that ignition of hydrogen will not occur in the upper compartment. The quantification for this case is:

```
Branch 1: E-UCDef . 0.0
Branch 2: EnUCDef . 1.0
```

Case 3: Combustion is initiated in the upper plenum of the IC, and flames propagate to the upper compartment, or there is power recovery during a station biackout and the ARFs are not effective before hydrogen ignition. For times when the ARFs are not effective, ignition is assumed to occur, by the definition of this criterion as discussed for Case 2 of Question 31. The quantification for this case is:

```
Branch 1: E-UCDef 1.0
Branch ?: EnUCDef 0.0
```

Case 4: Igniters are not operating, the steam concentration is less than 258, and the hydrogen concentration is greater than 5.5%. For this case, ac power has been operating since UTAF. It is believed that ignition will have occurred before VB due to random ac power sources. The quantification for this case is:

```
Branch 1: E-UCDef . 1.0
Branch 2: EnUCDef * 0.0
```

Case 5: Igniters are not operating, the steam concentration is less than 258, and the hydrogen concentration is greater than 5.58 . For this case, ac power was recovered during core degradation. The probability of ignition of hydrogen in the upper compartment before VB is indeterminate. The quantification for this case is:
$\begin{array}{lll}\text { Branch 1: } & \text { E-UCDef } & 0.500 \\ \text { Branch 2: } & \text { EnUCDef } & 0.500\end{array}$
Case 6: Neither the igniters nor ac power is operating, the steam concentration is less than 60%, and the hydrogen concentration is
greater than 16t. The mean value of the aggregate distribution for probability of 1gnition is:

Branch 1:	E-UCDef	0.097
Branch 2:	EnUCDef	0.903

Case 7: Neither the igniters nor ac power is operating, the steam concentration is less than 608, and the hydrogen concentration is between 118 and 168 . The mean value of the aggregate distribution for probability of ignition is:

| Branch 1: | E.UCDef | 0.092 |
| :--- | :--- | :--- | :--- |
| Branch 2: | EnUCDef | 0.908 |

Case 8: Neither the igniters nor ac power is operating, the steam concentration is $2 e s s$ than 608, and the hydrogen concentration is between 5.54 and 118 . The mean value of the aggregate distribution for probability of ignition is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-UCDef } & * & 0.083 \\
\text { Branch } 2: & \text { EnUCDef } & - & 0.917
\end{array}
$$

Question 52. Is There a Transition to Detonation (DDT) in the IC During Core Degradation?
 2 Branches, Type 2, 4 Cases

The branches for this question are:

1. E-ICDet A deflagration in the IC is accelerated such that DDT occurs.
2. EnICDet There is no detonation in the IC.

Cases 1, 2 and 3 of this question are sampled; the distributions were provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report). The branch taken depends upon the branches taken at: Questions 13, 44, and 49.

Hydrogen concentrations in the IC can exceed detonable limits for times when fans and igniters are not operating. The expert panel that addressed this question belleved a hydrogen-air-steam mixture with a hydrogen mole fraction of 0.14 or greater will result in a non-negligible detonation load If ignition and flame acceleration ocour. The panel agreed that spontaneous detonation will not occur; however, the geometry of the IC is such that, if a deflegration occurs, the flames can be accelerated to supersonic speeds, thus resulting in a detonation. The impulsive load imparted by a detonation, if it ocours, is addressed in question 55.

Case 1: A deflagration has occurred in the IC, and the hydrogen concentration is greater than 218. The experts believed that it is likely that the deflagration will transition to detonation. The mean value of the aggregate distribution for probability of DDT is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E.ICDet } & 0 & 0.720 \\
\text { Branch 2: } & \text { EnlCDet } & 0.280
\end{array}
$$

Case 2: A deflagration has occurred in the IC, and the hydrogen concentration is between 168 and 214 . The experts believed that it is fairly likely that the deflagration will transition to detonation. The mean value of the aggregate distribution for probability of DDT is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E-ICDet } & + & 0.620 \\
\text { Branch 2: } & \text { EnICDet } & - & 0.380
\end{array}
$$

Case 3: A defiagration has occurred in the IC, and the hydrogen concentration is between 148 and 16%. The experts believed that it is about as likely as not that the deflagration will transition to detonation. The mean value of the aggregate distribution for probability of DDT is:

```
Branch 1: E-ICDet 0.453
Branch 2: EnICDet . 0.547
```

Case 4: A deflagration has occurred in the IC, and the hydrogen concentration is less than 148 . The experts believed that the mixture is not detonable, and the deflagration will not transition to detonation. The value for probability of DDT is:

```
Branch 1: E.ICDes 0.0
Branch 2: EnICDet . 1.0
```

Question 53. Is there a DDT in the Upper Plenum of the IC During Gcre Degradation?
2 Sranches, Type 2, 4 Cases
The branches tor this question are:

1. E-UPDet A deflagration in the upper plenum is accelerated such that DDT occurs.
2. EnUPDet There is no detonation in the upper plenum.

Cases 1, 2, and 3 of this question are sampled; the distributions were provided by the Containment Loads Expert Panel (see Volume 2, Pert 2, of this report). The branch taken depends upon the branchas taken at Questions 13,45 , and 50.

Hydrogen concentrations in the upper plenum can exceed detonable 1 imits for times when fans and igniters are not operating. Similarly for detonations in the IC as discussed in Question 52, the expert panel believed a hydrogen mole fraction in the upper plenum of 0.14 or greater will result in a threatening detonation load. The panel arreed that spontaneous detonation w111 not occur; however, the geometry of the upper plenum is such that, if a deflagration occurs, the flames can be accelerated to supersonic speeds,
thus resulting in a detonation. The geometry of the upper plenum is sonewhat less conducive to DDT than it is for the 10 . However, considering the uncortainty associrted with the distributions, the experts believed it was adequate to use the same distribution for DDT in the upper plenum as for DDT in the IC. The impulsive load imparted by a detonation, if it ocorurs, is addressed in Question 56.

Case 1: A deflagration has occurred in the upper plenam, and the ayorogen concentration is greater than 218. The experts believed that it is $1:$ kely that the deflagration will transition to detonation. The mean vulue of the aggregate distribution for probability of DDT is:

```
Branch 1: E-UPDet . 0.720
Branch 2: EnUPDet . 0.280
```

Case 2: A deflagration has occurred in the upper plenum, and the hydrogen concentration is between 168 and 218 . The experts believed that it is fairly likely that the deflagration will transition to detonation. The mean value of the aggregate distribution for probabi. ity of DDT is:

```
Branch 1: E-UPDet . 0.620
Branc.1 :: EnUPDet . 0.380
```

Case 3: A deflagration has occurred in the upper plenum, and the hydrogen concentration is between 148 and 168 . The experts believed that it is about as likely as not that the deflagration will transition to detonation. ate mean value of the aggregate distribution for probability of DDT is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E. UPJet } & \text { : } & 0.453 \\
\text { Branch 2: } & \text { Eruptet } & 0.547
\end{array}
$$

Case 4: A deflagration has occurred in the upper plenum, and the hydrogen concentiation is less than 148. The experts believed that the mixture is not detonaile, and the deflagration will not transition to detonation. The value for probability of DDT is:
$\begin{array}{lll}\text { Branch 1: } & \text { E-UP 7et } & 0.0 \\ \text { Branch 2: } & \text { EnUPLer } & 1.0\end{array}$

Question 54. Pressure Ris: in Containment due to Early Deflagration: 2 Branches, Tyje 6, 4 Cases

The branches for this question bre:

1. E-DPDef There is a prescure rise in containment due to a hydrogen deflagration duri:g core degradation.
2. EnDPDef There is no hydrogin deflagration during core degradetion.

One parameter is defined in this question:
P22. DP-EDef The pressure rise in containment due to a hydrogen deflagration during core degradation, in kPa , is assigned to Parameter 22.

This question is not sampled; the quantification of Parameter 22 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report), and is calculated in a module within the user function subprogram. The applicable case for this question depends upon the branches taken at Questions 13, 27, 30, and 32 .

For this question, the existing pressure in containment is passed to the user function. The other variables passed to the user function module are (for each compartment in containment): the flag for ignition, the burn completeness if ignition occurs, and the amounts of oxyger, steam, and hydrogen (the amount of nitrogen is proportionate to the amount of oxygen). The user function module calculates the pressure rise based upon a model provided by the expert panel. The model uses the adiabatic isochoric complete combustion (AICC) pressure ratio, or overpressure, which is then adjusted to account for various phenomena. The first adjustment is to multiply the overpressure by the completeness of combustion. Then, the overpressure is reduced by 58 for heat transfer losses to solid surfaces. This value is then adjusted for isentropic expansion (ideal gas is assumed) into volumes that are not participating in the deflagration. The participating volumes are flagged by Parameters 18 through 21 . Even if a detonation has occurred, the static overpressure due to the burn is still calculated. As well as computing the pressure rise in containment due to a burn, the user function also readjusts the values of hydrogen and oxygen due to their consumption in the burn.

Case 1: The igniters are operating at UTAF, the hydrogen is burned as it is released, with minimal pressure rise. For this case, the computed overpressure is decreased by a factor of 20.0 in the user function module. It was believed that if the igniters are operating, there will be negligible threat to containment. The consumption of the hydrogen and oxygen is still needed, and is calculated in the user function for this case. The user function module denoted Burnl is called from EVNTRE.

Case 2: Igniters are not operating at UTAF, and there is no containment heat removal in the containment. The AICC burn model in the user function module requires the temperature of the containment atmosphere in order to calculate the over pressure. For this case, the containment atmosphere is assumed to be $135^{\circ} \mathrm{C}$. The user function module denoted Burn2 is called from EVNTRE.

Case 3: Igniters are not operating at UTAF, and there is diversion of flow from the lower to the upper compartment by way of the floor drains in tho rofueling canal. The AICC burn model in the user function module requires the temperature of the containment atmosphere in order to calculate the over pressure. For this case, the containment atmosphere is assumed to be $115^{\circ} \mathrm{C}$. The user function module denoted Burn3 is called from EVNTRE.

Case 4: Igniters are not operating at UTAF, and there is containment heat removal by the IC and/or the sprays. The AICC burn model in the user function module requires the temperature of the containment atmosphere in order to calculate the over pressure. For this case, the containment atmosphere is assumed to be $38^{\circ} \mathrm{C}$. The user function module denoted Burn4 is called from EVNTRE.

Question 55. Impulse from Detonetion in IC During Core Degradation? ${ }^{5}$ Branches, Type 4, 2 Cases

The branches for this question are:

1. E-Impic There is an impulsive load delivered to containment structures due to a detonation in the IC.
2. EnlmpiC There is no detonation in the IC; therefore there is no impulsive load delivered to containment structures.

One parameter is defined in this question:
P23. Imp-IC The impulsive load in containment due to a hydrogen detonation in the IC during core degradation, in $\mathrm{kPa}-\mathrm{s}$, is assigned to Parameter 23.

This question is sampled; the distribution for Parameter 23 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report). The applicable case for this question depends upon the branch taken at Question 52.

The probability that a detonation oecurs in the IC before VB was addressed in Question 52. The load accompanying the detonation is provided in this question. The expert panel addressing the hydrogen threat before VB provided distributions for the impulsive load imparted by a detonation. The panel believed the load to be independent of hydrogen concentration, provided the concentration is at least high enough for a detonation to oceur.

Case 1: A detonation has occurred in the IC before VB, For this case, all of the probability is assigned to the branch in which there is an impulsive load delivered to containment suructures. The quantification for this case is:

$$
\begin{array}{lll}
\text { Branch 1: E-ImpIC } & \quad . & 1.0 \\
\text { Branch 2: EnImpIC } & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameter based on the mean value of the aggregate distribution ($\mathrm{kPa}-\mathrm{s}$) is:

$$
\text { Parameter 23: Imp-IC . } 10,40
$$

For Branch 2, the assignment of the parameter is irrelevant.

Case 2: A detonation has not occurred in the IC before VB. For this case, all of the probability is assigned to the branch in which there is no impulsive load delivered to containment structures. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch } 1: & \text { E-ImpIC } & \text { - } & 0.0 \\
\text { Branch 2: } & \text { EnImpIC } & \text { - } & 1.0
\end{array}
$$

For Branch 1, the assignment of the parameter is irrelevant. For Branch 2, the assignment of the parameter (kPa-s) is:

Parameter 23: Imp-IC 0.0

Question 56. Impulse from Detonation in Upper Plenum of IC During Core Degradation? 2 Branches, Type 4, 2 Cases

The branches for this question are:

1. E-ImpUP There is an impulsive load delivered to containment structures due to a detonation in the upper plenum.
2. EnImpUP There is no detonation in the upper plenum; therefort, there is no impulsive load delivered to concairment structures.

One parameter is defined in this question.
P24. Imp.UP The impulsive load in containment due to a hydrogen detonation during in the upper plenum core degradation, in $k P_{a-s}$, is assigned to Parameter 24.

This question is sampled; the distribution for Parameter 24 was provided by the Containment Loads Expert Panel (see Volume 2, Part 2, of this report). The applicable case for this question depends upon the branch taken at Question 53.

The probability that a detonation occurs in the upper plenum before VB is addressed in Question 53. The load accompanying the detonation is provided in this question. The expert panel addressing the hydrogen threat before VB provided distributions for the impulsive load imparted by a detonation. The panel believed the load to be independent of hydrogen concentration, provided the concentration is at least high enough for a detonation to oocur. The same distribution for the impulsive load due to a detonation in the IC for Question 55 is applied in this question for a detonation in the upper plenum.

Case 1: A detonation has occurred in the upper plenum before VB. For this case, all of the probability is assigned to the branch in which there is an impulsive load delivered to containment structures. The quantification for this case is:

Branch 1:	E-ImpUP	-	1.0
Branch 2:	EnImpUP	0.0	

For Branch 1, the assignment of the parameter based on the mean value of the aggregate distribution ($\mathrm{kPa} \cdot \mathrm{s}$) is:

Parameter 24: Imp-UP . 10,40
For Branch 2, the assignment of the parameter is irrelevant.
Case 2: A detonation has not occurred in the upper plenum before VB. For this case, all of the probability is assigned to the branch in which there is no impulsive load delivered to containment structures. The quantification for this case is:

Branch 1:	E-ImpUP	-	0.0
Branch 2:	EnlmpUP	1.0	

For Branch 1, the assignment of the parameter is irrelevant, For Branch 2, the assignment of the parameter $(\mathrm{kPa}-\mathrm{s})$ is:

$$
\text { Parameter 24: Imp-UP } \quad 0.0
$$

Question 57. CF Criteria for Pressure and Impulse Loadings? 1 Branch, Type 3

The single branch for this question is always taken. The branch is:

1. CF-Spec The containment failure criteria are specified.

Four parameters are defined in this question:
P25. CF-Pr The containment fallure pressure, is $k P a$, is assigned to Parameter 25.

P26. RndVal A. random number between 0.0 and 1.0 is assigned to Parameter 26. This number is used to determine the mode of CF .

P27. CFI-UP The impulsive failure criterion in the UP, in $k P a-s$, is assigned to Parameter 27.

P28. CFI-IC The impulsive failure criterion in the $I C$, in $k P a-s$, is assigned to Parameter 28.

This question is sampled, the distributions for the containment static failure pressure and the dynamic failure impulse were provided by the Structural Response Expert Panel. A detailed description of the conclusions of the structural experts who considered the strength of the Sequoyah containment,
and the formation of the aggregate distributions, is contained in Volume 2 , Part 3, of this report.

The random number introduced in this question, Parameter 26, is used to determine the mode of containment fallure. For both static and dynamic pressure loadings, the comparison of the fallure criterion with the loading, and the determination of the mode of fallure, take piace in a user function module, which is called from the APET in the : question in the event tree.

Based on the mean value of the experts aggregate distribution for the failure pressure, the assignment of the parameter is (kPa):

$$
\text { Parameter 25: CF-Pr } \quad=\quad 550.90
$$

The mean value of the random number distribution is:
Farameter 26: RndVal . 0.50
The assignment of the dynamic failure criteria, based on the mean values of the experts aggregate distribution is (kPa-s):

Parameter 27: CFI-UP * 12.00
Parameter 28: CFI-IC . 21.50

Question 58. Early Containment Fallure and Mode of Failure? 6 Branches, Type 6, 4 Cases

The branches for this question are:

1. EnCF There is no containment failure during core degradation.
2. E.CFUCL The containment fails during core degradation, and the fallure is a leak in the upper containment; the nominal hole area is $0,1 \mathrm{ft}^{2}$.
3. E-CFLCL The containment fails during core degradation, and the failure is a leak in the lower containment; the nominal hole area $180.1 \mathrm{ft}^{2}$.
4. E.CFUCR The containment fails during core degradation, and the failure is a rupture in the upper containment; the nominal hole size is $1 \mathrm{ft}^{2}$.
5. E.CFLCR The containment fails during core degradation, and the failure is a rupture in the lower containment; the nominal hole size is $1 \mathrm{ft}^{2}$.
6. E-CFCtR The containment fails during core degradation, and the failure is by catastrophic rupture; the area of the hole is at least 7.0 ft^{2} (and may be considerably larger) and there is extensive structural damage.

$$
\text { A. } 1.1 .83
$$

For this question, a module within the usor function subprogram is evaluated to determine whether the containment fails, and, if it falls, the mode of fallure. The user function module called in this question depends upon the branches previously taken at Questions $12,23,24,27,28,52,53$, and 54. The user function (see Subsection A.2) determines the branch taken at this question.

For a hydrogen detonation, the module of the user function evaluated at this question compares the impulsive load due to a detonation in either the IC or upper plenum, Parameter 23 or 24 , to the impulsive criterion in the 1 C or upper plenum, Parameter 28 or 27 . If the impulsive load exceeds the impulsive fallure criterion, the containment fails and the fallure is a rupture in the upper containment; that is, Branch 4 is taken for this question

For a hydrogen deflagration, the user function module adds the pressure rise due to a deflagration, Parameter 22 , to the existing baseline pressure In containment during core degradation, Parameter 7 , to obtain the load pressure. This is then compared to the containment fallure pressure, Parameter 25. If the load pressure exceeds the fallure pressure, the containment fails. The way in which the random number, Parameter 26 , is used to determine the mode of contalnment fallure differs depending on whether the rate of pressure rise is fast or slow relative to the rate at which a leak depressurizes the containment. For slow pressure rise, the experts provided an aggregate conditional probability for each fallure mode as a function of failure pressure, and a table containing this information is contained in the user function. The random number is used to select the mode based on these conditional probabilities. For fast pressure rise, the conditional probability for each fallure mode depends on both the fallure pressure and the load pressure, since the development of a leak at the fallure pressure will not arrest the pressure rise. The method of determining the mode of containment fallure is described briefly in Subsection A.2. (See also Issue 2 In Volume 2, Part 3,)

Case 1: A detonation has occurred in the IC or the upper plenum of the IC. The user function module denoted CFDet determines if fallure occurs. If fallure occurs, the branch for fallure in the upper containment, Branch 4, is taken.

Case 2: The containment was not isolated at the start of the accident, with an equivalent fallure size of a rupture. Further overpressure failures are precluded. The user function module denoted NoCF is called from EVNTRE. The value passed from the user function assures that the . \cdots fallure branch. Branch 1 , is taken.

Case 3: The pressure rise is rapld compered to the leak depressurization rate, that is, development of a leak does not arrest the pressure rise in this case. The portion of the user function denoted CFFst determines if fallure occurs and the mode of fallure.

Case 4: The pressure rise is comparable to the leak depressurization rate, that is, development of a leak arresis the pressure rise. This type of pressure rise would be expected if all contalnment heat removal systens falled before VB, leading to slow overpressure. The portion of
the user function denoted CFSlw determines if fallure occurs and the mode of fallure.

Question 59. Status of IC before VB?
3 Branches, Type 4, 3 Cases
The branches for this question are:

1. E2-1BP1 The IC as ineffective for condensing steam, and is essent $\quad y$ totally bypassed.
2. E2-IBP2 Ther some degree of ice bypass in the IC.
3. E2nIBP The 10 is intact and totally effective.

One parameter is defined in this question:
229. TBNL.vl The fractional level of ice bypass is assigned to Parameter 29.

This question is not sampled; the quantification was done internally. The branch taken and the parameter assignment at this question depends upon the branches taken at Questions 28, 30, 52, and 58,

The importance of the 1 C for its pressure suppressiun capability and for removal of $f i s s i o n$ products from the containment atmosphere is discussed in Question 29. The offective bypass of the IC due to melting of all the ice, and the partial bypass due either to the asymmetric melting of ice or to channeling was addressed in Question 30 . This question addresses the partial bypass of the IC as a result of a local detonation. The degree to which any partial bypass affects loads and fission product removal is also addressed.

Case 1: The IC is effectively bypassed due to total melting of the ice as established in Question 30, or because the containment has falled early in the lower region of the containment. All the probability is assigned to the highest level of bypass, for which the fractional level of bypass, Parameter 29, assumes a value of 1.0 . The quantification for this case is:

Branch 1:	E2-IBP1	.	1.0
Branch 2:	E2-IBP2	-	0.0
Branch 3:	E2nIBP	0	0.0

For Branch 1, the assignment of the parameter is:
Parameter 29: IBPLV1 . 1.0
For Branches 2 and 3 , the assignment of the parameter is irrelevant.

Case 2: There is a detonation in the IC, or there is some degree of early bypass, as established in question 30. The structural expert panel roughly addressed the degree of structural damage that would be imparted to the structures in the IC. It was believed that, at most, a few dozen ice baskets would be destroyed as a result of a detonation in the IC. This corresponds to less than 58 of the original ice Inventory.

Some HECTR calculations were performed to exemine the response of the IC to a given steam loading for various configurations of the ice. The pressure in containment was determined with all ice prosent, with no ice present, and with 258 of the ice removed. Two studies were performed for the times of 25 ice removal. The first study used nominal assumptions concerning cross flow, frictional loss coefficients, etc.; whereas the second study used conservative assumptions. When 258 of the $10 e$ is removed, the pressure suppression is essentially 838 effective for the first study, and 608 effective for the second study. Another calculation, performed for 28 ice removal, Indicated that only about 7 of the tota? steam blowdown entered the voided region of the ice bed. Considering either partial bypass due to channeling, asymmetric flow, or detonations, it is believed that effective bypass of the IC will be minimal. The quantification for this case is:

Branch 1:	E2-IBP1	.	0.0
Branch 2:	E2-18P2	.	1.0
Branch 3:	E2n1BP	.	0.0

For Branch 1, the assignment of the parameter is irrelevant; for Branch 2 the assignment of the parameter is:

Parameter 29: IBPLV1 . 0.062
For Branch 2, the assignment of the parameter is irrelevant.
Case 3: No early bypass, or no detonations have ocourred in the IC. The IC is considered totally effective in its pressure suppression and fission product removal caparity. The quantification for this case is:

Branch 1:	E2-IBP1	0.0	
Branch 2:	E2-IBP2	0.0	
Branch 3:	E2nIBP	\cdots	1.0

For Branches 1 and 2, the assignment of the parameter is irrelevant; for Branch 3 the assignment of the parameter is:

Parameter 29: TBPLV1 . 0.0

Question 60, Are ARFs or Ducting Impaired due to Early Burns? 3 Branches, Type 2, 5 Cases

The branches for this question are:

1. E2-Fan The ARFs are functional and operating before VB.
2. E2aFan The ARFs are functional and are available to operate if power is recovered.
3. E2fFan The ARFs are failed and cannot be recovered,

This question is not sampled; the quantification was done internally. The branch taken at this question depends upon the branches taken at questions 28,48 , and 51 .

The ARFs take suction from the upper containment and discharge into the dead-ended annular region in the lower containment. The fans are fitted to ductwork which serves as the collection and distribution system for the fans. If a global hydrogen burn occurs in the lower or upper compartment, the ARFs may be rendered inoperable due to the collapsing of ductwork, bending of fan blades or the sticking open of dampers. Because there are two independent ARF systems installed on opposite sides of containment, it is believed that it is not likely that both systems will be falled at the same time.

Case 1: There is no burn in the upper or lower compartment during core degradation and the ARFs are operating. The fans will remain operating through VB, The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E2-Fan } & - & 1.0 \\
\text { Branch 2: } & \text { E2aFan } & - & 0.0 \\
\text { Branch 3: } & \text { E2fFan } & - & 0.0
\end{array}
$$

Case 2: There is no burn in the upper or lower compartment during core degradation and the ARFs are avallable to operate if power is recovered, Tho fans wlll continue to be available through VB. The quantification for this case is:

```
Branch 1: E2-Fan * 0.0
Branch 2: E2aFan . 1.0
Branch 3: E2fFan . 0.0
```

Case 3: There is a burn in the upper or lower compartment during core degradation and the ARFs are operating. It is considered likely that fans will romain operating through VB. The quantiflcation for this case is:

Branch 1:	E2 - Fan	-	0.75
Branch 2:	E2aFan	-	0.00
Branch 3:	E2fFan	-	0.25

Case 4: There is a burn in the upper or lower compartment during core degradation and the ARFs are avallable to operate if power is
A. 1.1.87
recovered, It is considered likely that fans will remain available through VB. The quantification for this case is:

Branch 1:	E2-Fan	-	0.00
Branch 2:	E2aFan	-	0.75
Branch 3:	E2fFan	0.25	

Case 5: The fans had initially failed upon demand. The fans will remain failed throughout the accident. The quantification for this case is:

Branch 1: E2-Fan * 0.0
Branch 2: E2aFan . 0.0
Branch 3: E2fFan . 1.0

Question 61. Are sprays Impaired due to Early Containment Failure or Environment?
3 Branches, Type 2, 7 Cases
The branches for this question are:

1. E2-Sp The sprays are functional and operating before VB.
2. E2aSp The sprays are functional and are available to operate if power is recovered.
? 22:5r the spfays are talled and cannot be recovered,
This question is not sempled; the quantification was done internally. The branch taken at this question depends upon the branches taken at Questions 27 and 58.

The two CSS trains that penetrate containtent consist of $12.1 n$. pipes. The residual heat removal (RHR) spray system consists of two $8-i n$. pipes. The pipes penetrate the shield building in the vicinity of the ECCS penetrations, and span a circumferential arc of about 7 ft . Within the annulus between containment and the shield building, the four pipes rise a vertioal distance of about 100 ft . The pipes then penetrate the containment dome at about 40 ft above the containment springline.

The CSS and the RHR spray system might fail before VB due to clogging of the sumps by debris, direct damage to the piping by hydrogen burns, dislocation of the piping, or containment failure. At TMI, the sump water was laden with debris, yet the pumps operated normally. Some pumps in industrial servioe operate for years with debris laden fluid. The sump screens at Sequoyah are large, and there is a trash curb around the rump, so that blockage of the sumps severe enough to fail the pumps is deemed negligible. Hydrogen burns in the upper containment at Sequoyah would probably impart minimal damage to the sprays. Again, at TMI, the sprays survived the hydrogen burns that occurred. Spray failure due to hydrogen burns in the containment dome is considered negligible for this analysis.

The spray piping can fail due to dislocation of the pipe accompanying the swelling of the containment with an increase in pressure. As the containment wall expands with increasing pressure, the pipe sould be dislodged from its supports and subsequently fail. Because of the configuration of the containment within the shield building at Siquoyah, the piping can move due to the containment wall expansion, and yet be constralnad at the shield bullding penetrations. This factor may alss lead to mechanical failure of piping or piping supports. This failure mect anism is believed to be unlikely, as the pipes have supports and penetretions designed to accommodate the movements that accompany large chang is in temperature.

Structural engineers at SNL who are familiar with reactor containments were consulted about the proiability of spray failure upon containment failure at Sequoyah. They agreed that the probabillty of spray fallure for fi'lure modes other than catastrophie rupture was unlikely. for catastrophic rupture, it was their opinion that the probability of spray failure would be assured, as the Sequoyah containment is free-standing steel, and a catastrophic rupture faflure would be likely to involve such a large portion of the containment structure that all of the spray trains would be severely damaged. It is quite uncertain as to the probability of piping failure due to rupture fallures in the upper containment (mainly at the springline). If the rupture occurs in e location far removed from the spray piping penetrations, the sprays will probably remain intact. For rupture failures in the lower containment (mainly anchorage fallures), the containment may be uplifted, and the spray piping threatened. If the containment fails due to a lower containment rupture failure, it is quite likely that the the spray piping will remain intact, Leak failures are of minimal concern with regard to spray pipine fallure.

Case 1: The sprays are already falled, or the containment fails by catastrophic rupture. As mentioned above, it is believed that catastrophic rupture would involve failure of the sprays. A widiely accepted scenario for catastrophic rupture involves the "unzippering" of the containment shell at the springline. Because the spray piping penetrations are iocated above the sprimoline, the sprays are certain to be damaged. The quantification for this case is:

Branch 1:	E2-Sp	0	0.0
Branch 2:	E2aSp	$:$	0.0
Branch 3:	E2fSp	$:$	1.0

Case 2: The sprays are operating, and there is either no containment fallure or failure involving a leak in containment. The mechanisms for failing the sprays include clogging of the sumps by debris, direct damage to the piping by hydrogen burns, or dislocation of the piping, as discussed above. It is believed that the tureat due to these mechanisms is low. The quantification for this case is:

| Branch 1: | E2.Sp | 0.95 |
| :--- | :--- | :--- | :--- |
| Branch 2: | E2aSp | 0.00 |
| Branch 3: | E2fSp | 0.05 |

Case 3: The sprays are avallable to operate if power is recovered, and there is either no eontainment fallure or failure involving a leak in contaiment. As in Case 2, the mechanisms for failing the sprays include clogging of the sumps by debris, direct damag to the piping by hydrogen burns, or dislocation of the piping. The quantification for this case is:

Branch 1:	E2-Sp		0.00
Branch 2:	E2aSp	$*$	0.95
Branch 3:	E2£Sp	$*$	0.05

Case 4: The sprays are operating, and there is a rupture fallure in the upper containment. It is believed to be indeterminate whether the sprays will fail. The quantification for this case is:

Branch 1:	E2-Sp	-	0.50
Branch 2:	E2sSp	$*$	0.00
Branch 3:	E.2fSp	.	0.50

Case 5: The sprays are avallable to operate if power is recovered, and there is a rupture failure in the upper containment. It is believed to be indeterminate whether the sprays will fail. The quantification for this case is:

Branch 1:	E2-Sp	.	0.00
Branch 2:	E2aSp	.	0.50
Branch 3:	E2fSp	.	0.50

Case 6: The sprays are operating, and there is a rupture fallure in the lower containment. It is belfeved that spray fallure will be unlikely. The quantification for this case is:

Branch 1:	E2.Sp	$*$	0.80
Branch 2:	E2aSp	$*$	0.00
Branch 3:	E2ISp	$*$	0.20

Case 7: The sprays are available to operate if power is recovered, and there is a rupture failure in the upper containinent. It is believed that spray failure will be unlikely. The quantification for this case is:

Branch 1:	E2.Sp	.	0.00
Branch 2:	E2aSp	-	0.80
Branch 3:	E2fSp	$*$	0.20

Question 62. What Fraction of Hydrogen Reloased In-Vessel. Is in Containmenc at VB?
2 Branches, Type 5
The branches for this question are:

1. E2-H2Hi The hydrogen in containment at VB is greater than 508 of that which was generated in-vessel. The nominal value is assumed to be 858 .
2. E2-H2Lo The hydrogen in containment at $V B$ is less than 508 of that which was generated in-vessel. The nominal value is assumed to be 258.

For this question, a module within the user function subprogram is evaluated to determine which branch is taken.

At Sequoyah, when hydrogen ignition occurs before $V B$, much of the hydrogen that was generated in-vessel is consumed. Ignition occurs before VB when igniters are operating with probability of 1.0 , and when the igniters are not operating, ignition occurs with an estimated probability as discussed in Questions 48 through 51 . One of the experts addressing containment loads at VB felt that it was necessary to create an additional case. defining parameter to establish the containment hydrogen inventory at the time of VB. Thus, the level of pre-existing hydrogen was added as an additiona! parameter to consider in the experts' subcase definition. The level of hydrogen was defined to refer to the percentage of hydrogen released in-vessel that still remains in containment at the time of VB.

In this question, the user function module denoted H2Cont is called from EVNTRE. The amount of hydrogen generated in-vessel, the amount of hydrogen generated that is released from the vessel, and the amount of hydrogen in the lower containment, IC, upper plenum, and upper containment are passed to the user function. The amount of hydrogen initially contained in each of the compartments is adjustey for burns in Question 54 , as dictated by the burn completoness parameters, Parameters $14,15,16$, and 17.

Question 63. Level of Cavity Flood at VB?
3 Branches, Type 2, 3 Cases
The branches for this question are:

1. E2-CDry The reactor cavity contains little (less than $3,000 \mathrm{ft}^{3}$) or no water at the time of VB .
2. E2-CWet The reactor cavity contains between 3,000 to $10,000 \mathrm{ft}^{3}$ of water at VB. The nominsl depth of the water is 10 ft .
3. E2.CDp The reactor cavity is deeply flooded at VB, containing more than $10,000 \mathrm{ft}^{3}$ of water. The nominal depth of the water is 24 ft .
Case 2 of this question is sampled zero-one, and was quantified internally. For Cases 1 and 3, the amount of water in the reactor cavity may bs reliably deduced from the information available about the injection of the RWST water into the containment and the degree of ice melt. The branch taken at this question depends upon the branches previously taken at Questions 8, 22, 24, and 29.

As used here, the cavity includes not only the annular space around the vessel and the cylindrical space directly under the vessel, but also the instrumentation tunnel koyway which is completely open on one end to the cylindzical cavity proper. A personnel accesc located abovt 41 ft above the reactor cavity floor, above the ceiling of the instrumentation tunnel, provides a path which allows water on the lower vontainment floor to overflow into the reactor cavity. The bottom of the reactor vessel is located about 16 ft above the reactor cavity floor. Thus, the bottom of the reactor vessel can potentially be submerged in water, given a substantial amount of water in the cavity. The floor area of the cavity region is about $650 \mathrm{ft}^{2}$, and the cavity volume is irregularly shaped. The amount of water needed to contact the bottom of the reactor vessel is about $10,000 \mathrm{ft}^{3}$. At 41 ft above the reactor cavity floor, which is about at the location of the hot leg inlet to the reactor vessel, the volume of water is approximately $18,000 \mathrm{ft}^{3}$.

The cavity at Sequoyah has no direct connection at or near the basemat elevation with the sumps from the lower containment floor. Thus, the water that will collect in the cavity is due to the accumulation of water on the lower containment floor that overflows into the cavity, as described above. The amount of water needed on the lower centainment floor for overflow into the cavity is about $51,000 \mathrm{ft}^{2}$. The injection of the RWST into containment before VB can occur by operation of the ECCS and subsequent release through a break or the PORVs, or by operstion of the sprays. Whether or not the RWST is infected into containment is addressed in Question 8. If the RWST is injected, the amount of water in the lower containment is about 45,000 ft^{3}. The amount of water in the IC is about $39,000 \mathrm{ft}^{3}$. The level of ice melt before VB is addressed in Question 29. Neither infection of the RWST alone nor melt of all the ice alone is sufficient to assure water in the cavity. If one quarter of the ice melts, and the RWST is injected into containment, there will be about $3,750 \mathrm{ft}^{3}$ of water in the cavity, corresponding to a depth of about 5.5 ft . If half of the ice melts, and the RWST is injented into containment, there will be about $13,500 \mathrm{ft}^{3}$ of water in the cavity, erresponding to a depth of about 22 ft .

If the only water in the cavity is that due to accumulator dump at $V B$, the water depth will be at least 5 ft . What is of interest here is the presence of water for the DCH ant ex-vessel steam explosion (EVSE) events. The magnitude of the pressure rise due to $D C H$ depends upon whether there is water in the cavity. Whether an EVSE occurs also depends upon whether there is water in the cavity. If the accumulators discharge at VB, the accumulator water will enter the aavity only after the the molten core enters the cavity and after DCH occurs. Thus, whether the accumulators discharge at vessel breach is irrelevant for these two events.

Case 1: The RWST was not infected into the containment before breach, so the reactor cavity contains little or no water at breach. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E2-CDry } & : & 1.0 \\
\text { Branch 2: } & \text { E2-CWet } & : & 0.0 \\
\text { Branch 3: } & \text { E2-CDP } & : & 0.0
\end{array}
$$

Case 2: The RWST was injected into the containment before breach and there is less than half of the ice melted. If ther is blowdown of the ROS inventory to containment, there will be a substantial thermal load placed on the 10, as discussed in Question 29. It is believed that at least one quarter of the ice will be melted, which corresponds to a wet cavity as defined above. If as much as haif of the ice is melted, the cavity will be deeply flooded. Much uncertainty exists with respect to the exact anounts of water involved and the amount of ice melt. As this case was sampled zero-one, each observation had all the probability assigned to one of these two branches. Taking the average over all the observations, the quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { E2-CDry } & * & 0.00 \\
\text { Branch 2: } & \text { E2-CWet } & * & 0.50 \\
\text { Branch 3: } & \text { E2-CDp } & \cdot & 0.50
\end{array}
$$

Case 3: The RWST was injected into the containment before breach, and there is more than half of the ice melted. The cavity is assumed to be deeply flooded. The quantification of this case is:

Branch 1:	E2-CDry	$*$	0.0
Branch 2:	E2-CWet	-	0.0
Branch 3:	E2.CDp	-	1.0

Question 64. Does an Alpha Mode Event Fail Both the Vessel and the Containment?
2 Branches, Type 2, 3 Cases
The branches for this question are:

1. Alpha A very energetic molten fuel-conjant intaraction (steam explosion) in the vessel falls the vessel and generates a missile that falls the containment as well.
2. noalpha The vessel does not fail. in this manner.

This question is sampled; the distribution used was developed internally from the opinions expresaed by the steam explosion review group as documented in NUREG-1116, A.1.15 The experts' individual distributions and the aggregation of them are presented in Volume 2, Part 6, of this report. The branch taken at this question dopends upon the branches previously taken at Questions 25 and 26.

Sase 1: There is VB with the RCS at low pressure. Steam explosions are more likely when the ROS is at low pressure than when the ICS is at some higher pressure. The aggregate distribution developed from distribution in the SERG was used for this case. This distribution covers many orders of magnitude. Based on the mean value of the distribution, the quantification for this case is:

$$
\begin{array}{lll}
\text { Branch 1: Alpha } & \text { + } & 0.008 \\
\text { Branch 2: noAlpha } & 0.992
\end{array}
$$

Case 2: There is VB and the RCS is not at low pressure. Steam explosions are less likely when the RCS is not at low pressure. The aggregate distribution trsed in the preceding case was decreased by an order of magnitude for use in this case. Based on the mean value of the distribution, the quantification for this case is:
$\begin{array}{lll}\text { Branch 1: Alpha } & 0.0008 \\ \text { Branch 2: } & \text { noAlpha } & 0.90 .2\end{array}$
Case 3: The core degradation proceso has been arreswd and there is no VB. The quantification for this vase is:

| Branch 1: Alpha | 0.0 |
| :--- | :--- | :--- |
| Sranch 2: noAlpha | 1.0 |

Question 65. Type of VB?
5 Branches, Type 2, 6 Cases
The branches for this question are:

1. Pref The molten core material is ejected under considerable pressure from a hole in the bottom of the vessel.
2. Pour The molten core material pours slowly from the vessel, primarily driven by gravity
3. BtmHd A large portion of the bottom head fails, perhaps due to a circumferential failure.
4. Alpha Alpha mode fallure has occurred.
5. novb There is no failure of the reactor pressure vessel.

Cases 2,3 , and 4 are sampled zero-one; the type of VB was determined by the In-Vessel Expert Panel. The conclusions of the experts and their aggregate distilbutions are presented in Volume 2. Part 1, of this report. The branch taken at this question depends upon the branches previously taken at Questions 23, 24, and 35.

The pressurized ejection fallure mode requires that the RCS be at high pressure (greater than 200 psia) when the vessel fails. The expert panel generally had in mind the fallure of one or a few penetrations in the bottom head when discussing this failure mode. Although the pour failure mode is often considered to occur only with the RCS at low pressure (less than 200 psia), at least one expert conoluded that the probability of this failure mode with the RCS at high pressure at VB was non-zero. The scenario envisaged is that the RCS fails before the bulk of the core debris tolocates in the bottom head of the vessel. The failure occurs due to a small amount of molten debris that "dribbles" to the bottom head along an instrumentation tube and fails near a penetration. The RCS then blows down through this break, but no core debris is expelled. After the blowdown,
the bulk of the debris locates to the lower head, subsequently falling it, and the core debris pours out into the cavity. Although there could be a small driving force due to the gas pressure in the RCS, the pour fallure mode is distinguished by the fact that gravity is the primary force causing the molten core debris to leave the vessel.

The boteom head fallure mode can occur at any RCS pressure; the fallure could be a circumferential fallure in which the whole bottom head falls into the cavity or some other fallure in which a substantial portica of the bottom head falls. Bottom head fallure at high pressure has effects similar to high pressure melt ejection (HPME); bottom head fallure at low pressure has effects similar to a pour failure. Branches 4 and 5 are used to indicate that none of the three preceding branches applies.

Case 1: The core degradation process has been arrosted and there is no VB. The quantification for this case is:

Branch 1:	PrEf		0.0
Branch 2:	Pour	$:$	0.0
Branch 3:	BtmH	$:$	0.0
Branch 4:	Alpha	$:$	0.0
Branch 5:	noVB		1.0

Case 2: An Alpha mode fallure of both the vessel and the containment has occurred. The quantification for this case is:

Branch 1:	PrEj	0.0	
Branch 2:	Pour	0.0	
Branch 3:	BtmH	$:$	0.0
Branch 4:	Alpha	$:$	1.0
Branch $5:$	noVB	$:$	0.0

Case 3: The vessel fails when the RCS is at system setpoint pressure. The most likely failure mode is failure of a penetration, leading to HPME. This is Case 1 of In-Vessel Issue 6. The sampling was zero-one, so each observation had all the probability assigned to one of these three branches. Taking the average over all the observations, the quantification for this case is:

Sranch 1:	PrEj	0.79	
Branch 2:	Pour	$:$	0.08
Branch 3:	BtmH	$:$	0.13
Branch 4:	Alpha	$:$	0.00
Branch 5:	noVB		0.00

Case 4: The vessel fails when the RCS is at high pressure. The most likely failure mode is penetration failure leading to HPME, which is about twice as likely as the pour fallure mode, and four times as likely as the gross bottom head fallure mode. This is Case 2 of InVessel Issue 6. The sampling was zero-one, so each observation had all the probability assigned to one of these three branches. Taking the average over all the observations, the quantification for this case is:

Branch 1:	PrEj	-	0.60
Branch 2:	Pour	-	0.27
Branch 3:	BtmHd	-	0.13
Branch 4:	Alpha	-	0.00
Branch 5:	noVB	.	0.00

Case 5: The vessel fails when the RCS is at intermediate pressure, This is Case 3 of In-Vessel Issue 6. The branch assignment is identical to that for Case 2. Taking the average over all the observations, the quantification for this case is:

Branch 1:	PrEj	-	0.60
Branch 2:	Pour	-	0.27
Branch 3:	BtmHd	-	0.13
Branch 4:	Alpha	-	0.00
Branch 5:	noVB	-	0.00

Case 6: The vessel facls when the RCS is at low pressu The failure mode is gravity pour. The quantification for this case is :

Branch 1: PrEj * 0.0
Branch 2: Pour . 1.0
Branch 3: BtmHd - 0.0
Branch 4: Alpha . 0.0
Branch 5: noVB . 0.0

Question 66. Fraction of the Core Released from the Vessel at Breach? 1 Branch, Type 4, 2 Cases

The single branch for this question is always taken. The branch is:

1. FCorVB The fraction of the core released from the vessel at breach.

One par tater is defined in this question:
P30. FCorVB The fraction of core releasec from the vessel is assigned to Parameter 30 .

This question is sampled; the distributior was provided by the In-Vessel Expert Panel as part of Issue 6. The conclusions of the experts and their aggregate distributions are presented in Volume 2, Part 1, of this report. The case selected in chis question depends upon the branch taken at Question 26.

Case 1: VB occurs. Parameter 30 is primarily used to determine the amount of the core that participates in P : as a result of HPME. Based on the mean value of the experts' aggregace distribution, the assignment of the parameter is:

$$
\text { Parameter 30: FCorVB . } 0.30
$$

Case 2: VB does not occur. There is no core that escapes from the vessel. The assignment of the parameter is:

Psrameter 30: FCorVB . 0.0

Question 67. Level of the Core Released from the Vessel at Breach? 3 Branches, Type 5

Thi branches for this question are:

1. Hi-FCoR More than 40 of th core is released promptly from the vessel at breach.
2. Md-FCoR Less than 40% but more than 20% of the core is released promptiy trom the vessel at breach.
3. Lo-FCoR Less inas 208 of the core is released promptly from the vessel at breach.

This question assigns the fraction of the core released at VB, Parameter 30, to one of three groups as designated by the branches.

Question 68. Fraction of the Core Released at VB that is Diverted to th In-Core Instrumentation Room? 1 Branch, Type 4, 8 ases

The single branch for this question is always taken. The branch is:

1. CorIR The fraction of core released at $V B$ that is diverted to the ICIR.

One parameter is defined in this question:
P31. CorIR The fraction of the core released from the vessel that is diverted to the ICIR is assigned to Parameter 31.

Cases 2 through 8 for this question are sampled; the cistributions were determined internally. The case selected in this question depends upon the branches taken at Questions $1,24,25,63,65$, and 67.

The ejection of molten corlum under high pressure from the vessel at breach may lead to a containment failure involving direct thermal attack of the containment liner in the in-core instrumentation room, where the seal table is located. This failure mode is described in detall in SAND86-2141C.A.1-16 One of the ways for dispersed debris to exit the reactor cavity is directly through the personnel access to the instrumentation tunnel as described for question 63. Another exit from the cavity is deemed possible if the seal table falls. The seal table is the plate at which the instrumentation
A.1.1.97
tubes terminate. In this scenario, seal table failure is assumed to occur by a combination of thermal attack and mechanical loads. Debris is then inertially driven to enter the instrumentation room and accumulates on the floor. If a substantial amount of debris piles up against the wall, the debris may melt through the 1.5 in,-thick steel containment wall. Input to the quantification of this question was obtained from an ad hoc panel composed of M. Pilch and W. Tarbell of SNL. M. Pilch exeouted a series of GASBLOW calculations to aid in the quantification of the amount of debris expected to enter the instrumentation room.

Case 1: HPME does not oocur and the level of core ejected from the vessel is less than 408 of the initial core inventory, there is a very large break in the RCS assuring full depressurization, or the cavity is deeply flooded. The panel formed for quantification of this issue required that HPME occur as described for Question 65, with one exception. If the RCS is not fully depressurized, but at low pressure when the vessel fails, e.g., 200 psia, and more than 408 of the core is involved in the ejection of debris from the vessel, they believed that a small amount of the debris could enter the instrumentation room. If the initial break in the system was large (A-size or S_{1}-size), there will be no core debris that enters the instrumentation room. If the cavity is flooded with water, it is believed that there will be minimal dispersal of debris from the cavity. For this case, the assignment of the parameter 1 s :

Parameter 31: CorIR 0.0
Case 2: HPME does not oocur and the level of core ejected from the vessel is more than 40 of the initial core inventory. Based on the mean value of the distribution, the assignment of the parameter is:

Parameter 31: CorIR 0.146
Case 3: HPME occurs with the RCS at intermediate pressure (between 200 and 600 psia), and more than 408 of the core is ejected at VB. Based on the mean value of the distribution, the assignment of the parametec is:

Parameter 31: CorIR - 0.331
Case 4: HPME occurs with the KCS at intermediate pressure, and 208 to 40 r of the core is efected at VB. Based on the mean value of the distribution, the assignment of the parameter is:

Parameter 31: CorIR $\quad 0.326$
Case 5: HPME occurs with the RCS at intermediate pressure, and less than 208 of the core is ejected at VB. Based on the mean value of the distribution, the assignment of the parameter is:

Parameter 31: CorIR . 0.307

Case 6: HPME occurs with the RCS at high pressure (greater than 1000 psia), and more than 408 of the core is ejected at VB. Based on the ruean value of the distribution, the assignment of the parameter is:

Pafameter 31: CorIR . 0.419
Case 7: HPME occurs with the RCS at high pressure, and 208 to 408 of the core is ejected at VB. Based on the mean value of the distribution, the assignmsnt of the parameter is:

$$
\text { Parameter 31: CorIR . } 0.417
$$

Case 8: HPME occurs with the RCS at intermediate pressure, and less than 208 of the core is ejected at VB. Based on the mean value of the distribution, the assigntant of the parameter is:

Parameter 31: CorIR . 0.417

Question 69. Level of the Core Ejected to the In-Core Instrumentation Room at VB?
5 Branches, Type 5
The branches for this question are:

1. $60 T-I R$ More than 50 metric tons of the core (nominally 60 metric tons) is released to the instrumentation room at VB,
2. $40 \mathrm{~T}-I R$ From 30 to 50 metric tons of the core (nominally 40 metric tons) is released to the instrumentation room at VB.
3. $20 \mathrm{~T} \cdot \mathrm{IR}$ From 10 to 30 metric tons of the core (nominally 20 metric tons) is released to the instrumentation room at VB.
4. ST-IR Less than 10 metric tons of the core (nominally 5 metric tons) is released to the instrumentation room at VB,

This question operates on the fraction of core released at VB, Parameter 30, and the fraction of Parameter 30 that is ejected to the instrumentation room, Parameter 31. The parameters are multiplied, and then assigned to one of flve groups as designated by the branches.

Question 70. Does the Vessel Become a "Rocket" and Fail the Containment
or Bypass the IC?
3 Branches, Type 2,2 Cases
The branches for this question are:

1. Rkt-CF When the vessel fails it is accelerated upward at high speed and fails the containment.
2. RKt-IBP When the vessel fails, it is accelerated upward and impacts and damages the missile shield, thereby compromising the seal between the lower and upper compartment and effectively bypassing the IC.
3. noRkt When the vessel fails, it is not accelerated upward at high speed and does not fail the containment, nor does it bypass the 10 .

This question is not sampled and was quantified internally. The branch taken at this question depends upon the branches taken at Questions 25 and 65.

The "rocket" problem has not been well studied. A possible scenario is: there is gross failure of the bottom head of the vessel at high pressure. The gas inside the vessel is at about 2500 psia and its escape from the bottom of the vessel accelerates the vessel upwards. The bolts holding down the vessel fall, the tegs pl cold legs are sheared off, and the vessel attains enough momen ris Lear of the shield wall. Striking the containment wa!l, the vessel the pressure boundary. Before striking the containment wall or dome, the vessel must dislodge the control rod drive missile shield and avoid or dislodge the polar crane. If the containment is falled by the Rocket mode, it is assumed that the IC is totally bypassed.

Case 1: There is gross fallure of the bottom head of the vessel with the RCS at system setpoint pressure. The rocket type of event may be credible. The Sequoyah cavity is much larger than those in German PWRs, so the Rocket failure mode of containment is considered to be less likely than estimated for German reactors. It is believed that the probability Rocket mode failure of containment is about the same as the meen probability value for Alpha mude failure of containment. The compromise of the seal between the lower and upper compartments is deemed more likely than containment failure. The quantification for this case is:

Branch 1:	Rkt-CF		0.01
Branch 2:	Rkt-IBP	-	0.04
Branch 3:	NoRkt	-	0.95

Case 2: There is gross fallure of the bottom head of the vessel with the RCS at high pressure. The rocket failure of containment is not credible. However, the compromise of the seal between the lower and uppe compartments in the cavity is considered possible, though not very likely. The quantification for this case is:

Branch 1:	Rkt-CF	-	0.00
Branch 2:	Rkt-IBP	-	0.05
Branch 3:	NoRkt	-	0.95

Case 3: There is no gross fallure of the bottom head of the vessel at system setpoint pressure or high pressure: failure of containment or the control rod drive missile shield by the Rocket mode is not credible. The quantification for this case is:

| Branch 1: | Rkt-CF | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | Rkt-1BP | 0.0 |
| Branch 3: | NoRkt | 1.0 |

Question 71. Ex-Vessel Steam Explosion at VB? 3 Branches, Type 2, 4 Cases

The branches for this question are:

1. EVSE An energetic molten fuei-coolant interaction occurs in the reactor cavity upon VB.
2. EVSE-CF An energetic molten fuel-coolant interaction ocours in the reactor cavity upon $V B$, resulting in containunent failure.
3. noEVSE No energetic molten fuel-coolant Interaction occurs in the reactor cavity upon VB.

This question is not sampled and was quantified internally. The branch taken at this question depends upon the branches previously taken at Questions $25,63,65$, and 37.

The dropping of hot metal into water has been observed to cause energetic and violent reactions commonly known as steam explosions. They appear to be more likely when the water is considerably below the saturation temperature. At SNL, steam explosions were observed in 868 of the tests where hot metal was dropped into water. Some of these explosions were extremely energetic, others were not very energetic. In a severe reactor accident, a steam explosion may occur when the core slumps into the lower head of the vessel, known as an in-vessel steam explosion (IVSE), or when the lower head of the vessel fails and the core falls or is expelled into water in the reactor cavity beneath the vessel. This latter event is known as an EVSE. The Sequoyah containment is typically considered invulnerable to fallure due to an EVSE. Only for times when the cavity is deeply flooded is it considered possible for fallure to occur. The scenario involves the transmission of the impulse from an EVSE through the instrumentation tunnel that terminates at the seal table. If enough energy is imparted to the concrete skirt at the base of the seal table, it is possible that a missile could be generated and driven through the containment wall. The static pressure rise due to an EVSE was addressed by the containment loads expert panel that addressed pre ure rise at VB. A discussion of the quantification of this issue is in Vol. 2, Part 6, of this report.

The effects of EVSEs are considered in two places in this APET. If the RCS is at high pressure (greater than 200 psia) at VB, the effects of an EVSE at VB are considered in Questions 74 and 75 . The experts who considered pressure rise at VB included the pressure rise due to EVSEs in their distributions for total pressure rise. The other effects of an EVSE are considered to be small when compared with the effects of HPME.

As an EVSE is not deemed capable of failing the containment, whether an EVSE occurs following a low pressure VB determines:

1. Whether the debris bed in the reactor cavity after VB is in a coolable configuration;
2. If the pressure rise for a low pressure $V B$ is fast or slow; and
3. The amount of core involved in CCI.

A small steam explosion that involves only a very small fraction of the core will not have any discernible effect on this analysis. A "significant" EVSE is one that involves a considerable portion of the released core material and affects at least one of the three aspects of the analysis listed above.

Case 1: The cavity is dry at $V B$, the vessel fails by an Alpha mode event, or there is no VB, An EVSE is not possible. The quantification of this case is:

Branch 1:	EVSE	0.0	
Branch 2:	EVSE-CF	-	0.0
Branch 3:	noEvSE	-	1.0

Case 2: HPME accompanies vessel fallure and the water level in the reactor cavity is below the bottom head of the vessel. The quantification for this case is:

Branch 1:	EVSE	-	0.86
Branch 2:	EVSE-CF	$:$	0.00
Branch 3:	noEVSE	-	0.14

Case 3: The vessel failure resulted in the melt pouring out, driven primarily by gravity, and the water level in the reactor cavity is below the bottom head of the vessel; or the cavity is deeply flooded with less than 208 of the core ejected at VB. The probability of an EVSE is the same as for Case 2. The quantification for this case is:

Branch 1:	EVSE	0.86	
Branch 2:	EVSE-CF	$:$	0.00
Branch 3:	noEVSE	-	0.14

Case 4: The reactor cavity is deeply flooded and more than 208 of the core is ejected at VB. This is the only case in which containment fallure is deemed possible, and the 1 ikelihood of fallure is believed to be very small. The probability of an EVSE is the same as for Cases 2 and 3. The quantification for this case is:

Branch 1: EVSE - 0.85
Branch 2: EVSE-CF . 0.01
Branch 3: noEVSE - 0.14

Question 72. Size of Hole in Vessel (After Ablation)?
2 Branches, Type 2, 2 Cases
The branches for this question are:

1. LgHole The hole size, after ablation, excetis $0.4 \mathrm{~m}^{2}$. The nominal large hole size is $2.0 \mathrm{~m}^{2}$.
2. Smble The hole size, after ablation, does not exceed $0.4 \mathrm{~m}^{2}$. The nominal small hole size is $0.1 \mathrm{~m}^{2}$.

Case 1 is sampled zero-one; this question was quantified internally. The branch taken at this question depends upon the branch previously taken at Question 65.

In situations with HPME, the pressure rise at VB depends u_{i} on the size of the hole in the vessel. Note that this is the hole size after ablation, that is, the hole size after any enlargement during the expilsion of the molten core debris and at the beginning of the gas blowdown. It is the high-speed jet of gas impinging on the molten corium in the cavity, entraining it, and dispersing it throughout the containmen:, that is responsible for $D C H$ pressure rise. The experts who determined the distributions for pressure rise at VB concluded that the pressure rise depended on hole size.

Computer simulations for melt masses varying from 25 metric tons to 75 metric tons and for pressures ranging from 100 psia to 2500 psia have shown that the fallure of one PWR bottom head penotration will result in a hole, after ablation, that has an area on the order of 0.1 to $0.2 \mathrm{~m}^{2}$, or smaller. Holes sizes on the order of $0.4 \mathrm{~m}^{2}$ are te observed in computer simulations only if a number of penetrations fall simultaneously. At 2500 psia , the time required for melt efection is about 3 to 4 s , and at 500 psia, the time required for melt ejection is about 6 to 8 s . For the multiple penetration failures to be considered simultaneous, they must occur within a fraction of the melt ejection time. Thus, to be effective, the multiple penetration failures must occur within a fraction of a second of each other. This appears to be very unlikely. More information on the analysis used to determine hole size distribution may be found in Volume 2, Part 6, of this report.

Case 1: The failure of the vessel is accompanied by HPME. The hole size is important in determining the pressure rise in the containment. It was concluded that the probability of a small hole in the vessel when it fails in the HPME mode is 0.90 . As this question is sampled zero-one, 90 of the observations have 1.0 for the probability of the small hole branch and 10% of the observations have 1.0 for the probability of the large hole branch. Taking the average over all the observations, the quantification for this case is:

$$
\begin{array}{lll}
\text { Branch 1: } & \text { LgHole } & \\
\text { Branch 2: } & \text { SmHole } & 0.10 \\
& 0.90
\end{array}
$$

Case 2: The fallure of the vessel is not accompanied by HPME, the mode of failure involves a large portion of the bottom head, or the hole size is irrelevant. The quantifioation for this case is:

Branch 1: LgHole $\quad 1.0$
Branch 2: SmHole 0.0

Question 73. Maximum Peak Preseure Rise at VB? (For cases that do not involve HPME with subsequent dispersal from the reactor cavity,)
2 Branches, Type 4, 9 Cases
The branches for this question are:

1. DP1-VB The events at $V B$ do not involve containment pressurization due to events associated with high pressure ejection of the molten core from the vessel with subsequent dispersal from the reactor cavity.
2. nDP1-VB The pressure rise at $V B$ involves HPME and debris dispersal from the reactor cavity.

Two parameters are defined in this question:
P32. DP1.VB The peak pressure rise in containment, in $k P a$, is assigned to Parameter 32. The pressure rise for this question is due to all the events that ocour at VB for the times when HPME is not involved in the expulsion of melt from the vessel, or the cavity is deeply flooded. The IC is totally functional.

P33. DP1-IBP The peak pressure rise in containment, in $k P a$, is assigned to Parameter 33. The pressure rise for this queseion is due to all the events that occur at VB for the times when HPME is not involved in the expulsion of melt from the vessel, or the cavity is deeply flooded. The IC is totally ineffective.

The parameter values in Cases 4 through 8 are sampled. Distributions for the pressure rise at $V B$ were provided by the containment loads expert panel. The branch taken at this question depends upon the branches previously taken at Questions $25,27,30,39,62,63,64,65,70$, and 71

The experts provided distributions for pressure rise at VB that included the effects of all the events chat accompany vessel failure. These include EVSE, vessel blowdown, hydrogen combustion, and DCH. The effects of the various events are inseparable, so there is no way to extract, for example, the contribution of $D C H$ or hydrogen combustion to the total pressure rise. Because of the number of cases defined by the experts, three questions are used to determine pressure rise at $V B$. This question considers the Alpha and Rocket mode failures, the times when the melt is expelled from the vessel in a gravity-driven manner, and the times when the reactor cavity is deeply flooded. The next two questions conslder the pressure rise for times in which HPME occurs and the cavity is not deeply flooded.
A, 1, 1-104

The experts provided distributions for pressure for times in which the IC was assumed to be fully effective, and for times in which it was assumed to be fully ineffective (as in the case of total ice melt). Parameters 32, 34. and 36 (DP1.VB, DP2 $2 \cdot V B$, and $D P 3 \cdot V B$) are adjusted in Question 77 if it: is determined that there is any degree of ice bypass at VB. The adjustment is made by considering the effective level of ice bypass as defined in Question 76, and by using Parameters 33, 35, and 37 (DP1-1BP, DP2-IBP, and DP3.IBP)

More information on the determination of the aggregate distributions for pressure rise at $V B$ by the Containment Loads Expert Panel can be found in Volume 2, Part 2, of this report.

Case 1: The core degradation process has been arrested and there is no VB. The pressure rise is zero. The quantification for this case is:

```
Branch 1: DP1-VB . 1.0
Branch 2: nDP1-VB . 0.0
```

For Branch 1, the assignment of the parameters is:

```
Parameter 32: DP1.VB * 0.0
Parameter 33: DP1-IBP . 0.0
```

For Branch 2, the assignment of the parameters is irrelevant,
Case 2: The vessel failure involves low system pressure or gravitydriven expulsion of the melt, the sprays are not operating, the IC is ineffective, and the containment atmosphere has a steam concentration greater than 608. There will be no hydrogen burn at vessel fallure, because the atmosphere is steam inert. The existing containment pressure at $V B$ is high due to the steam partial pressure as specified in Question 36, Case 2. There will be minimal pressure rise at VB. The quantification for this case is:

```
Branch 1: DP1-VB . 1.0
Branch 2: nDP1-VB . 0.0
```

For Branch 1, the assignment of the parameters is:

```
Parameter 32: DP1.VB . 0.0
Parameter 33: DP1-IBP - 0.0
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 3: There is an Alpha or Rocket mode fallure of the vessel and the containment, or the containment fails by an EVSE at VB. The pressure rise at $V B$ is set to an arbitrary high value to ensure that containment failure occurs in Question 77. The quantification for this case is:

```
Branch 1: DP1-VB . 1.0
Branch 2: nDP1-VB . 0.0
```

For Branch 1, the assignment of the parameters is:

```
Parameter 32: DP1-VB . 9999.0
```

Parameter 33: DP1-IBP . 9999.0)

For Branch 2, the assignment of the parataters is irrelevant.
Case 4: The reactor cavity is deeply f, roded at VB, with water depth in the cavity nominally 24 ft . The expel s believed that DCH would be mitigated regardless of system pressu: at vessel fallure. The quantification of this case is the same as for Case 7 of this question, which involves VB without HPME, a wet cavily, and a significant amount of hydrogen burned before $V B$ (it is assumed that ignition has occurred because ac power is required for flooding of the cavity). The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP1-VB } & - & 1.0 \\
\text { Branch } 2: & \text { nDP1-VB } & - & 0.0
\end{array}
$$

for Branch 1, the assignment of the parametars, based on the mean values of the aggregate distributions, is:

Parameter 32: DP1-VB - 134.30
Parameter 33: DP1-IBP . 147.90
For Branch 2, the assignment of the parameters is irrelevant.
Case 5: VB does not involve HPME, the reactor cality is wet (nominal depth of 10 ft), and a significant amount of ydrogen remains in containment at VB. The quantificat $-n$ for this cas is :
$\begin{array}{llll}\text { Branch 1: } & \text { DP1-VB } & 1.0 \\ \text { Branch 2: } & \text { nDP1-VB } & 0.0\end{array}$
For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 32: DP1-VB - 325.10
Parameter 33: DP1-IBP . 357.40
For Branch 2, the assignment of the parameters is irrelezant.
Case 6: VB does not involve HPME, the reactor cavity is dry, and a significant amount of hydrogen remains in containment at VB. The quantification for this case is:

```
Branch 1: DP1-VB - 1.0
Branch 2: nDP1-VB 0.0
```

For Branch 1, the assignment of the parameters, based in the mean values of the aggregate distributions, is:
$\begin{array}{lll}\text { Parameter 32: } & \text { DP1-VB } & 215.10 \\ \text { Parameter 33: } & \text { DP1-IBP } & 292.30\end{array}$
Parameter 33: DP1-IBP . 292.30

For Branch 2, the assignment of the parameters is irrelevant.
Cese 7: VB does not involve HPME, the reactor cavity is wet (nominal depth of 10 ft), and a significant amount of hydrogen is burned before 'B. The quantification for this case is:

Branch 1: DP1.VB $\quad 1.0$
Branch 2: nDP1-VB . 0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 32: DP1-VB . 134.30
Parameter 33: DP1-IBP . 147.90
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 8: $V B$ does not involve HPME, the reactor cavity is dry, and a significant amount of hydrogen is burned before VB. The quantification for this case is:

```
Branch 1: DP1-VB - 1.0
Branch 2: nDP1-VB . 0.0
```

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 32: DP1-VB - 56.30
Parameter 33: DP1-IBP . 63.50
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 9: VB involves HPME, and dispersal of the debris from the reactor cavity. These scenarios are quantified in Questions 74 and 75 , with assignment of values to the parameters involved with HPME at intermediate and high pressures. Parameters 32 and 33 are therefore assigned values of zero. The quantification for this case is:

```
Branch 1: DP1,VB 0.0
Branch 2: nDP1-VB . 1.0
```

For Branch 1, the assignment of the parameters, is irrelevant. For Branch 2, the assignment of the parameters is:

```
Parameter 32: DP1-VB * 0.0
Parameter 33: DP1.IBP . 0.0
```

> Question 74. Maximum Peak Pressure Rise at VB? (For cases that involve HPME with the RCS at intermediate pressure and significant hydrogen present at VB,) 2 Branches, Type 4,20 Cases

The branches for this question are:

1. DP2-VB The events at VB involve containment pressurization due to events associated with high pressure ejection of the molten core from the vessel with the system at intermediate pressure and with a significant amount of hydrogen present in the containment at VB.
2. nDP2-VB The pressure rise at $V B$ either does not involve HPME or involves HPME in a situation other then that stated for Branch 1.

Two parameters are defined in this question:
P34. $D P 2 \cdot V B$ The peak pressure rise in containment, in $k P a$, is assigned to Parameter 34. The pressure rise for this question is due to all the events that occur at VB for the times when HPME at intermediate pressure occurs and there is a significant amount of hydrogen in the containment at VB. The IC is totally functional.

P35. DP2 - TBP The peak pressure rise in containment, in kPa , is assigned to Parameter 35. The pressure rise for this question is due to all the events that occur at VB for the t'Jus when HPME at intermediate pressure ocours and there is a significant amount of hy.. gen in the containment at VB. The IC is totally ineffective.

The parameter values in Cases 2 through 19 are sampled. Distributions for the pressure rise at $V B$ were provided by the Containment Loads Expert Panel. The branch taken at this questicas depends upon the branches previously taken at Questions $25,39,62,63,67,72$, and 73 .

Because of the number of cases for pressure rise at VB, three questions are used. The previous question addressed no vessel failure, Alpha and Rocket mode fallures, and vessel fallures in which HPMZ does not occur or debris dispersal from the reactor cavity does not occur, because it is deeply flooded. This question addresses vessel failures involving HPME when the system is at intermediate pressure (200 to 600 psia), and there is a significant amount of hydrogen in the containment (as disoussed in Question 62). The following question will address vessel failures involving HPME when the system is at intermediate pressure and a significant amount of hydrogen was burned before $V B$, and vessel failures involving HPME when the system is at high or setpoint pressure (greater than 1000 psia).

Case 1: The pressure rise at VB was either quantified in Question 73, or it will be quantified in Question 75. The quantification for this case is:

```
Branch 1: DP2.VB - 0.0
Branch 2: nDP2-VB . 1.0
```

For Branch 1, the assignment of the parameters is irrelevant. For Branch 2, the assignment of the parameters is:

```
Parameter 34: DP2-VB - 0.0
Parameter 35: DP2-IBP . 0.0
```

Case 2: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet (nominal depth of 10 ft), a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is high (greater than 40\%), and the vessel hole size after ablation is large (greater than $0.4 \mathrm{~m}^{2}$). The quantification for this case is:

Branch 1:	$\mathrm{n} 2 \cdot-V B$	-	1.0
Branch $2:$	nDP2-VB	-	0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter 34: } & \text { DP2-VB } & 363.10 \\
\text { Parameter } 35: & \text { DP2-IBP } & \\
\hline
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 3: VB Involves HPME with the reactor at intermediate pressure, the reactor cavity is wet a significant amount of hycicogen remains in the containment at VB, the fraction of core ejected from the vessel is moderate (from 208 to 40%), and the vessel hole size after ablation is large. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP2-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP2.VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter } 34: & \text { DP2-VB } & 252.70 \\
\text { Parameter } & 35: & \text { DP2-IBP }
\end{array} \quad 413.30
$$

For Branch 2, the assignment of the parameters is irrelevant,
Case 4: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is small (less than 208), and the vessel hole size after ablation is large. The quantification for this case is:

```
Branch 1: DP2-VB - 1
Branch 2: nDP2-VB . 0.0
```

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 34: DP2-VB . 193.80
Parameter 35: DP2-IBP . 238.50
For Branch 2, the assignment of the parameters is irrelevant.
Case 5: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at VB, the fraction of core ejected from the V ssel is high, the vessel hole size after ablation is small (less than). $4 \mathrm{~m}^{2}$), and the amount of in-vessel zirconium oxidation was high (gresier than 408). The quantification for this case is:

Branch 1: DP2-VB 1.0
Branch 2: nDP2-VB - 0.0
For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{llll}
\text { Parameter 34: } & \text { DP2-VB } & \text { : } & 328.20 \\
\text { Parameter 35: } & \text { DP2-IBP } & 567.60
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 6: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at VB, the fraction of core ejected from the vessel is moderate, the vessel hole size after ablation is small, and the amount of in-vessel zirconium oxidation was high. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP2-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP2-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{llll}
\text { Parameter 34: } & \text { DP2-VB } & \text { : } & 252.70 \\
\text { Parameter 35: } & \text { DP2-IBP } & 413.30
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 7: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at VB, the fraction of core ejected from the vessel is small, the vessel hole size after ablation is small, and the amount of in-vessel zirconium oxidation was high. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP2-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP2-VB } & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter 34: } & \text { DP2-VB } & \\
\text { Parameter } 35: & \text { DP2-IBP } & 193.80 \\
& 238.50
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 8: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is high, the vessel hole size after ablation is small, and the amount of in-vessel zirconium oxidation was low (less than 40\%). The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP2-VB } & - & 1.0 \\
\text { Branch } 2: & \text { nDP2-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:
$\begin{array}{lll}\text { Parameter 34: } & \text { DP2-VB } & 311.30 \\ \text { Parameter 35: } & \text { DP2.IBP } & 536.50\end{array}$

For Branch 2, the assignment of the parameters is irrelevant.
Case 9: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is moderate, the vessel hole size after ablation is small, and the amount of in-vessel zirconium oxidation was low. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP2-VB } & - & 1.0 \\
\text { Branch } 2: & \text { nDP2-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter } 34: & \text { DP2-VB } & \\
\text { Parameter } 35: & \text { DF2-IBP } & 252.70 \\
\hline & 413.30
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 10: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is small, the vessel hole slze after ablation is small, and the amount of in-vessel zirconium oxidation was low. The quantification for this case is:

```
Branch 1: DP2-VB - 1.0
Branch 2: nDP2-VB - 0.0
```

For Branch 1, the assignment of the parameters, based on the mean valies of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter 34: } & \text { DP2-VB } & 193.80 \\
\text { Parameter 35: } & \text { DP2-IBP } & 238.50
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 11: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the containment at VB, the fraction of core ejected from the vessel is high, the vessel hole size after ablation is large, and the amount of in-vessel zirconium oxidation was high. The quantification for this case is:

Branch 1: DP2-VB . 1.0
Branch 2: nDP2.VB . 0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 34: DP2-VB . 427.80
Parameter 35: DP2.IBP . 590.20
For Branch 2, che assignment of the parameters is irrelevant.
Case 12: VB irvolves HFrE with the reactor at intermediate pressure, the reactor carity is dry, a significant amount of hydrogen remains in containment oc vessel breach, the fraction of core ejected from the vessel is moderate, the vessel hole size after ablation is large, and the amount of in-vessel zirconium oxidation was high. The quantificaiion for this case is:

Braich 1: DP2-VB . 1.0
Branch 2: nDP2-VB . 0.0
For Franch 1, the assignment of the parameters, based on the mean valus of the aggregate distributions, is:

Parame 34: DP2.VB - 323.00
Parameter 35: DP2-IBP - 413.30
For Branch 2, the assignmant of the parameters is irrelevant.
Case 13: VB involves HPME wich the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the containment at VB, the fraction of core ejected from the vessel is small, the vessel hole size after ablation is large, and the amount of in-vessel Zirconium oxidation was high. The quantification for this case is:

Branch 1: DP2-VB . 1.0
Branch 2: nDP2-VB . 0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 34: DP2.VB . 189.70
Parameter 35: DF2-1BP . 238.50
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 14: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the contalnment at VB, the fraction of core ejected from the vessel is high, the vessel hole size after ablation is large, and the amount of in-vessel zirconium oxidation was low. The quantification for this case is:

| Branch 1: | DP2-VB | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | nDP2-VB | 0.0 |

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter $34:$	DP2-VB	418.70
Parameter $35:$	DP2-IBP	590.20

For Branch 2, the assignment of the parameters is irrelevant,
Case 15: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is moderate, the vessel hole size after ablation is large, and the amount of in-vessel zirconium oxidation was low. The quantification for this case is:
$\begin{array}{llll}\text { Branch 1: } & \text { DP2-VB } & 1.0 \\ \text { Branch 2: } & \text { nDP2-VB } & 0.0\end{array}$
For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter 34: } & \mathrm{DP2} 2 \cdot \mathrm{VB} \\
\text { Parameter } 35: & \mathrm{DP} 2-\mathrm{IBP} & 304.50 \\
\hline
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 16: VB involves HPME with the reactor at incermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is small, the vessel hole size after ablation is large, and the amount of in-vessel zirconium oxidation was low. The quantification for this case is:

Branch 1:	DP2-VB	-	1.0
Branch 2:	nDP2-VB	0.0	

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Parameter } 34: & \text { DP2-VB } & 180.50 \\
\text { Parameter } 35: & \text { DP2-IBP } & 238.50
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 17: VB involves HPME with the raactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is high, and the vessel hole size after ablation is small. The quantificaliou for chis case is:

Branch 1:	DP2-VB	-	1.0
Branch 2:	nDP2-VB	-	0.0

For Branch 1, the assignment of the parametera, based on the mean values of the aggregate distributions, is:

Parameter 34:	DP2-VB	342.40
Parameter 35:	DP2-IBP	567.60

For Branch 2, the assignment of the parameters is irrelevant.
Case 18: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is moderate, and the vessel hole size after ablation is small. The quantification for this case is:

$$
\begin{array}{lll}
\text { Branch 1: } & \text { DP2-VB } & 1.0 \\
\text { Branch } 2: & \text { nDP2-VB } & 0.0
\end{array}
$$

For Branch 1, the assignment of the paraneters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{llll}
\text { Parameter 34: } & \mathrm{DP} 2 \cdot \mathrm{VB} & \text { - } & 252.10 \\
\text { Paramecer } 35: & \mathrm{DP} 2-\mathrm{IBP} & - & 413.30
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 19: VB involves HPME with the reactor at intermediate pressure, the reactor cavlty is dry, a significant amount of hydrogen remains in the containment at $V B$, the fraction of core ejected from the vessel is small, and the vessel hole size after ablation is small. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP2-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP2-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the agg egate distributions, is:

Parameter 34:	DP2-VB	180.5
Parameter 35:	DP2-1BP	238.5

For Branch 2, the assignment of the parameters is irrelevant.
Case 20: VB involves HPME with the reactor at intermediate pressure and a significant amount of hydrogen was burned before VB, or the VB involves HPME with the reactor at high or system setpoint pressure. These scenarios are quantified in Question 75. Parameters 32 and 33 are therefore assigned values of zero. The quantification for this case is:

Branch 1:	DP2-VB	0.0
Branch 2:	rDP2-VB	1.0

For Branch 2, the assignment of the parameters, is irrelevant. For Branch 2, the assignment of the parameters is:

Parameter 34:	DP2-VB	0.0
Parameter	$35:$	DP2-IBP

Question 75. Maximum Peak Pressure Rise at VB? (For cases that involve FiPME with the ROS α : intermediate pressure and significant hydrogen burned before VB, or HPME occurs with the RCS at high pressure.)
2 Branches, Type 4, 20 Cases
The branches for this question are:

1. DP3-VB The events at $V B$ involve containment pressurization due to events associated with high pressure ejection of the molten core from the vessel with the system at intermediate pressure with a significant amount of hydrogen burned before VB, or the HPME occurs with the system at high pressure.
2. nDP3-VB The pressure rise at $V B$ either does not involve HPME or involves HPME in a situation other than that: stated for Branch 1.

Two paraketers are defined in this question:
P36. DP3-VB The peak pressure rise in containment, in kPa , is assigned to Parameter 34 . The pressure rise for this question is due to all the events that occur at VB for the times when HPMS at intermediate pressure occurs and a significant amount of hydrogen has burned before VB, or HPME occurs with the system at high pressure. The IC is totally functional.

P37. DP3-IBP The peak pressure rise in containment, in k Pa, is assigned to Parameter 35 . The pressure rise for this question is due to all the events that occur at VB for the times when HPME at
intermediate pressure occurs and a significant amount of hydrogen has burned before VB, or HPME occurs with the system at high pressure. The IC is totally ineffective.

The parameter values in Cases 2 through 19 are sampled. Distributions for the pressure rise at $V B$ were provided by the containment loads expert panal. The branch taken at this question depends upon the branches pra lously taken at Questions $25,62,63,67,73$, and 74.

Because of the number of cases for pressure rise at VB, three questions are used. The previous two questions addressed no vessel fallure, Alpha and Rocket mode failures, vessel fallures in which HPME does not ocour, and vozsel failuies invoiving HPME when the system is at intermediate pressure (200 to 600 psia$)$, and there is a significant amount of hydrogen in the containment. This question addresses vessel failures involving HPME when the system is at internediate pressure and a significant amount of hydrogen was burned before VB, and vessel failures involving HPME when the system is at high or setpoint pressure (greater than 1000 , sia).

Case 1: The pressure rise at $V B$ was either quantified in Question 73 or Question 74. The quantification for this case is:

Branch 1:	DP3-VB	-	0.0
Branch 2:	nDP3-VB	-	1.0

For Branch 1, the assignmer of the parameters is irrelevant. For Branch 2, the essignment of the parameters is:
$\begin{array}{lll}\text { Parameter 36: } & \text { DP3-VB } & 0.0 \\ \text { Parameter 37: } & \text { DP3-IBP } & 0.0\end{array}$
Case 2: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet (nominal depth of 10 ft), a significant amount of hydrogen was burned before VB, and the fraction of core ejected from the vessel is high (greater than 408). The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \mathrm{DP} 3-V B & - & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB - 307.70
Parameter 37: DP3-IBP . 497.50
For Branch 2, the assignment of the parameters is irrelevant.
Case 3: The VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen was burned before VB, and the fraction of core ejected from tha vessel is moderate (from 208 to 408). The quantification for this case is:

Branch 1:	DP3-VB	\quad.
Branch 2:	nDP3-VB	0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 36: DP3-VB . 231.10
Parameter 37: DP3-IBP . 356.00
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 4: The VB involves HPME with the reactor at intermediate pressure, the reactor cavity is wet, a significant amount of hydrogen was burned before VB, and the fraction of core ejected from the vessel is low (less than 208). The quantification for this case is:

```
Branch 1: DP3-VB \(\quad 1.0\)
Branch 2: nDP3-VB 0.0
```

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 36: DP3.VB . 183.00
Parameter 37: DP3-IBP . 214.70
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 5: The VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen was burned before VB, the fraction of core ejected from the vessel is high, and the vessel hole size after ablation is large (greater than $0.4 \mathrm{~m}^{2}$). The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP3-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36:	DP3-VB	385.40
Parameter 37:	DP3-IBP	497.50

For Branch 2, the assignment of the parameters is irrelevant.
Case 6: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen was burned before VB, the fraction of core ejected from the vessel is moderate, and the vessel hole size after ablation is large. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP3-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB . 290.30
Parameter 37: DP3-IBP . 366.00
For Branch 2, the assigrment of the parameters is irrelevant.
Case 7: VB involves HPME with the reactor at intermediate presuure, the reactor cavity is dry, a significant amount of hydrogen was burned before VB, the fraction of core ejected from the vessel is low, and the vessel hole size after ablation is large. The quantification for this case is:

```
Branch 1: DP3-VB - 1.0
Branch 2: nDP3-VB . 0.0
```

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:
$\begin{array}{lll}\text { Parameter 36: } & \text { DP3-VB - } & 173.30 \\ \text { Parameter 37: } & \text { DP3-IBP } & 214.70\end{array}$

For Branch 2, the assignment of the parameters is irrelevant.
Case 8: VB involves HPME with the reactor a: intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen was burned before $V B$, the fraction of core ejected from the vessel is high, and the vessel hole size after ablation is small (less than $0.4 \mathrm{~m}^{2}$). The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP3-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB . 311.30
Parameter 37: DP3-IBP . 497.50
Fo: Branch 2, the assignment of the parameters is irrelevant.
Case 9: VB involves पुME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen was burned before $V B$, the fraction of core ejected from the vessel is moderate, and the vessel hole size after ablation is small. The quantification for this case is:

Branch 1:	DP3-VB	-	1.0
Branch 2:	nDP3-VB	-	0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB . 232.30
Parameter 37: DP3-IBP . 366.00
For Branch 2, the assignment of the parameters is irrelevant.
Case 10: VB involves HPME with the reactor at intermediate pressure, the reactor cavity is dry, a significant amount of hydrogen was burned before VB, the fraction of core ejected from the vessel is low, and the vessel hole size after ablation is small. The quantification for this case 1s:
$\begin{array}{lll}\text { Branch 1: } & \text { DP3-VB } \\ \text { Branch 2: } & \text { nDP3-VB } & 1.0 \\ & 0.0\end{array}$
For Pranch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB . 144.30
Parameter 37: DP3.IBP - 214.70
For Branch 2, the assignment of the parameters is irrelevant.
Case 11: VB involves HPME with the reactor at high or system pressure, the reactor cavity is wet, and the fraction of core ejected from the vessel is high. The quantification for this case is:

Branch 1: DP3-VB - 1.0
Branch 2: nDP3-VB . 0.0
For Branch 1, the assignment of the parcmeters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB - 372.10
P6rameter 37: DP3-IBP - 641.40
For Branch 2, the assignment of the parameters is irrelevant,
Case 12: VB involves HPME with the reactor at high or system pressure, the reactor cavity is wet, and the fraction of core ejected from the vessel is moderate. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP3-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB - 289.90
Parameter 37: DP3-IBP - 464.40
For Branch 2, the assignment of the parameters is irrelevant.

Case 13: VB involves HPME with the reactor at high or system pressure, the reactor cavity is wet, and the fraction of core ejected from the vessel is low. The quantification for this case is:

```
Branch 1: DP3-VB . 1.0
Branch 2: nDP3-VB . 0.0
```

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB - 212.30
Parameter 37: DP3-IBP - 263.90
For Branch 2, the assignment of the parameters is irrelevant.

Case 14: VB invoives HPME with the reactor at high or system pressure, the reactor cavity is dry, the fraction of core ejected from the vessel is high, and the vessel hole size after ablation is large. The quantification for this case is:

Branch 1:	DP3-VB	-	1.0
Branch 2:	nDP3-VB	-	0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Paramezer 36: DP3.VB - 458.90
Parameter 37: DP3-IBP . 641.40
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 15: VB involves HPME with the reactor at high or system pressure, the reactor cavity is dry, the fraction of core ejected from the vessel is moderate, and the vessel hole size after ablation is large. The quantification for this case is:

$$
\text { Branch 1: DP3-VB } \quad 1.0
$$

Branch 2: nDP3-VB $\quad 0.0$
For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36: DP3-VB . 337.20
Parameter 37: DP3-IBP . 464.40
For Branch 2, the assignment of the parameters is irrelevant.
Case 16: VB involves HPME with the reactor at high or system pressure, che reactor cavity is dry, the fraction of core ejected from the vessel is low, and the vessel hole size after ablation is large. The quantification for this case is:

Branch 1:	DP3-VB	1.0	
Branch 2:	nDP3-VB	-	0.0

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 36: DP3.VB . 196.80
Parameter 37: DP3-IBP . 263.90
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 17: VB involves HPME with the reactor at high or system pressure, the reactor cavity is dry, the fraction of core ejected from the vessel is high, and the vessel hole size after ablation is small. The quantification for this case is:

Branch 1:	DP3-VB	-
Branch 2:	nDP3-VB	1.0
	0.0	

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

$$
\begin{array}{lll}
\text { Pacameter 36: } & \text { DP3-VB } \\
\text { Parameter 37: } & \text { DP3-IBP : } & 364.40 \\
642.40
\end{array}
$$

For Branch 2, the assignment of the parameters is irrelevant.
Case 16: OD Involves HPME with the reactor at high or system pressure, the reactor cavity is dry, the fraction of core ejected from the vessel is moderate, and the vessel hole size after ablation is small. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP3-VB } & : & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & : & 0.0
\end{array}
$$

For Branch 1, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

```
Parameter 36: DP3-VB . 263.60
Parameter 37: DP3-IBP . 464.40
```

For Branch 2, the assignment of the parameters is irrelevant.
Case 19: VB Involves HPME with the reactor at high or system pressure, the reactor cavity is dry, the fraction of core ejected from the vessel is low, and the vessel hole size after ablation is small. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { DP3-VB } & - & 1.0 \\
\text { Branch 2: } & \text { nDP3-VB } & - & 0.0
\end{array}
$$

For Branch 1, the assignment of the parametars, based on the mean values of the aggregate distributions, is:
$\begin{array}{lll}\text { Parameter 36: DP3-VB : } & 160.00 \\ \text { Parameter 37: DP3.7BP } & 263.90\end{array}$

For Branch 2, the assignment of the parameters is irrelevant.
Case 20: This cese is not used, as all relevant cases have been explicitly defined. The quantification of this case is:
Branch 1: DP3-VB
0.0
Branch 2: nDP3.VB
1.0

For Branch 1, the assignment of the parameters, is irrelevant. For Branch 2, the assignment of the parameters, based on the mean values of the aggregate distributions, is:

Parameter 36:	DP3-VB	160.00
Parameter 37:	DP3-IBP	263.90

Question 76. Level of Ice Bypass at VB? 3 Branches, Type 4, 6 Cases

The branches for this question are:

1. I-IBP1 The IC is ineffective for condensing steam, and is essenially totally bypassed.
2. I-IBP2 Thare is some degree of ice bypass in the IC.
3. InIBP The IC is intact and totally effective.

One parameter is updated in this question:
P29. IBPLV1 The value of the fractional level of ice bypass, Parameter 29 , is updated.

This question is not sampled; the quantification was done internally. The branch taken and the parameter assignment at this question depend upon the branches taken at Questions $59,63,64,70$, and 71.

The status of the IC at and immediately after VB is important because of its pressure suppression capability and capacity for removal of fission products from the containment atmosphere. This question addresses the degree of bypass of the IC as a result of events at VB. The events involve either the loss of the integrity of the seal between the upper and lower compartments of containment above the reactor vessel, or the direct release of fission products to the atmosphere by way of a path that bypasses the IC. The seal between the upper and lower compartments is formed by the missile shield. The seal may be compromised due to events involving $V B$ resulting in Alpha mode failure of containment, upward acceleration of the vessel due to gross bottum head fallure at system pressure (Rocket mode vessel fallure) or vessel failure resulting in an EVSE. Both total and parcial bypass of the IC are addressed.

Case 1: The IC is effectively bypassed as established in Question 59, or the containment fails by en Alpha mode event, a Rucket mode event, or by an EVSE. Alpha and Rocket mode failures of containment both involve compromise of the seal between the upper and lower compartments. Failure of containment by an EVSE could involve bypass due to compromise of the seal, or failure of containment in the in-core instrumentation room in which the seal table is located. For these times, it is assumed that the IC is effectively bypassed. All the probability is assigned to the highest level of bypass, for which the fractional level of bypass, Parameter 29, assumes a value of 1.0 . The quantification for this case is:

Branch 1:	I-IBP1		1.0
Branch 2:	I-IBP2	\sim	0.0
Pranch 3:	InIBP	-	0.0

Fo. Branch 1, the assignment of the parameter is:

$$
\text { Parameter 29: IBPLVI . } 1.0
$$

Fow Branches 2 and 3, the assignment of the parameter is irrelevant.
Case 2: The vessel is accelerated upward at VB, resulting in compromise of the seal be ween the upper and lower compartments, It is consicered to be indeterninate whether the bypass will be total or partial. The value that the Parameter 29 assumes for partial bypass is discussed in Question 59. Tie quantification for this case is:

Branch 1:	I.IEE1	$*$	0.50
Branch 2:	I.IBP2	$*$	0.50
Branch 3:	InIBP	$*$	0.00

Fut Branch 1, the assignment of the parameter is:
Parameter 29: TBPLVI . 1.0
For Branch 2, the assignment of the parameter is:
Parameter 29: IBPLvI . 0.062
For Kranch 3, the assignment of the parameter is irrelevant.
Case 3; The IC is partially bypassed prior to VB, and an EVSE occurs that does not fail tire containment. It is considered unlikely that total bypass will result. The quantification for this case is:

Branch 1:	I-IBP1	$*$	0.01
Branch 2:	I-IBP2	$*$	0.99
Branch $3:$	InIBP	$*$	0.00

For Brafich :, the assignment of the parameter is:
Parameter 29: IBPLV1 . 1.0
For Branch 2, the assignment of the parameter is:

Parameter 29: 1BPLV1 . 0.062

For Branch 3, the assignment of the parameter is irreievant.
Case 4: The IC is totally effective prior to VB, and an EVSE c curs that dues not fail the containment. It is considered unlikely tnat either total or partial hypass will result. The quantification for this case in:

Braz.ch 1:	I-IBP1		0.01
Branch 2:	I-IBP2	.	0.01
Branch 3:	InIBP	.	0.98

For Branch 1, the assignment of the parameter is:

Parameter 29: IBPLv1 . 1.0

For Branch 2, the assignment of the parameter is:

```
Parameter 29: 1BPLv1 . 0.062
```

For Branch 3, the assignment of the parsmeter is:

Parameter 29: IBPLV1
 0.0

Case 5: The IC is partially bypassed prior to VB. The events at VB that zesult in physical bypass of the IC are addressed in Cases 1 through 4. The bypass of the 7 C due to meliing by thermal loading at VB will be addressed in question 83. The quantification for this case is:

Branch 1:	I-IBP1	$*$	0.0
Branch $2:$	I-IBP2	$*$	1.0
Branch $3:$	InIBP	$*$	0.0

For Branch 1, the assignment of the parameter is irrelevant, For Branch 2, the assignment of the parameter is:

Parameter 29: IBPLV1 . 0.062
For Branch s, the assignment of the parameter is irrelevant.
Case 6: The IC is totally effective prior to VB. The events at VB that result in physical bypass of the $1 C$ are addressed in Cases 1 through 4. The bypass of the ice condenser due to melting by thermal loading at VB will be addressed in question 83. The quancification for this case is:

Branch 1:	I-IBP1	.	0.0
Branch 2:	I-IBP2	$*$	0.0
Branch $3:$	InIBP	.	1.0

For Branches 1 and 2, the assignment of the parameter is irrelevant. For Branch 3, the assignment of the parameter is:

Parameter 29: IBPLV1 . 0.0

Question 77. Peak Pressure Rise at VB? (Correction for times of ice bypass.)
2 Branches, Type 6, 3 Cases

The branches for this question are:
2. $1 D P \cdot V B$ The events at $V B$ involve pressurization of the containment.
2. IDPnVB The events at $V B$ do not involve pressurization of the containment.

For this question, a module within the user function subprogram is evaluated to determine the containment pressure rise associated with VB for times of partial IC bypass. The case selected in this question depends upon the branches previously taken at Questions 73 and 74.

For times in which there is a pressure rise in containment at $V B$, the resulting absolute pressure is calculated in Question 82 by sumuing the baseline pressure, Parameter 7, and one of the values of Parameters 32, 34, or 36. If the IC is determined in Question 76 to be totally effective and furistional at $V B$, Parameters 32,34 , and 36 with no corrections are utilized for the pressure rise at breach. If the $1 C$ is determined to be totally bypassed at VB, Parameters 32,34 , and 36 sssume the values of Paxameters 33,35 , and 37 , respectively, If the IC is partially bypassed, the degree of effective bypass, Parameter 29, operates on Parameters 32 and 33, 34 , and 35 , and 36 and 37 to establish the new values of rarameters 32. 34, and 36. The quantification of Parameter 24 is Ciscussed in Question 59.

Case 1: The pressure rise at VB was established in question 73. The correction for IC bypass is determined in the user function module DPVB.

Case 2: The pressure rise at $V B$ was established in question 74. The correction for IC bypass is determined in the user function modulo DPVB.

Case 3: The pressure rise ac VB was established in Question 75, or no pressure rise occurs at VB. The correction for IC bypass is determined in the user function module DPVB.

Question 78. Containment Failure by I rect Core Contact with the Containment Wall?
 2 Branches, Type 2, 5 Cases

The branches for this question are:

1. I-OFDCn The containment fails when molten core debris in the ICIR room accumulates on the floor by the containment wall, subsequently melting through the wall.
2. InCFDCn The contaimment does not fail by direct contact with molten core debris.

Cases 2 through 5 for this question are sampled; the distributions were cietermined internally. The case selected in this question depends upon the branches taken at Questions 69 and 71.

The direct contact mode of containment fallure is discussed in Question 68 . Questions 68 and 69 establish the amount of molten core debris that relocates to the in-core instrumentation room. This question addresses the probability of fallure due to the amount of core debris that enters the roon. The distributions estublished for oco rrence of failure include the consideration of the diatribution of the del..s in the room and the mass and depth of debris needed for subsequent melting of the wall. Input to the quantification was obtained from an ad hoc panel composed of M. Pilch and W. Tarbell of SML.

Case 1: There is no core debris that relocates to the in-core insfrumentation room, or an EVSE has ocourred at VB. If a steam expiosion cocurs, it is assumed that the debris will not cocumulate in the instrumentation room in the same amounts as when HPME is involved. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: ICF-DCn } & \text {. } & 0.0 \\
\text { branch 2: } & \text { ICFnDCn } & . & 1.0
\end{array}
$$

Case 2: A nominal level of 5 metrio tons of core debris is released to the instrumentation room. It is believed to be unlikely that meltthrough will occur. The quantification for this case, based on the mean value of the distribution is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { ICF-DOn } & \quad & 0.01 \\
\text { Branch 2: } & \text { ICFnDCn } & \cdot & 0.99
\end{array}
$$

Case 3: A nominal level of 20 metric tons of core debris is released to the instrumentation room. It is believed that melcthrough is about half as likely to occur as no meltthrough. The quantification for this case, based on the mean value of the distribution is:

$$
\begin{array}{lll}
\text { Branch } 1: & \text { ICF-DCn } & - \\
\text { Branch } 2: & \text { IOFnDCn } & 0.31 \\
\hline
\end{array}
$$

Case 4: A nominal level of 40 metric tons of core debris is released to the instrumentation room. It is believed that meltthtough is about as likely to oocur as no meltthrough. The quantification for this case, based on the mean value of the distribution is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { ICF-DCn } & - & 0.53 \\
\text { Branch } 2: & \text { 1CFnDCn } & 0.47
\end{array}
$$

Case 5: A nominal level of 60 metric tons of core debris is released to the instrumentation room. If is believed that meltthrough is a 1ittle more likely to occur than no meltthrough. The quantification for this case, based on the mean value of the distribution is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { ICF-DC7 } & - & 0.60 \\
\text { Branch 2: } & \text { ICFnDC: } & & 0.40
\end{array}
$$

Question 79. What Fraction of Potentially Oxidizable Metal in the Ejected Core Is Oxidized at Vis? 1 Branch, Type 4, 2 Cases

Tha single branch for this ques ion is always taken. The branch is:

1. I-Mtiox Fraction of available metal in the core released at VB that is oxidized in the reactor cavity ac VB.

One parameter is defined in this question:
P38. I-Mtiox The fractional level of avallable metal in the core released at $V B$ that is oxidized in the reactor cavity at VB is assigned to Parameter 38.

This question is sampled; the distribution for the fraction of metal oxidized was provided by the Containment Loads Expert Panel. The parameter assignment at this question depends upon the branches taken at Questions 25 and 65 .

Case 1: When the reactor vessel is breached, the RCS is at low pressure (less than 200 psia), or the vessel fallure involves a gravity driven pour. The experts that addressed this question believed thal the amount of metal oxidized for $V B$ at low system pressure is about 108 of the amount when high pressure ejection of the melt occurs. Based on the mean value of the experts' aggregate distribution, the assignment of the parameter is:

Parameter 38: I-Mt10x . 0.070
Case 2: VB involves $h^{i} g h$ pressure ejection f the molten core. It was believed that the level of metal oxidation would be quite high for this case. Based on the mean value of the experts' aggregate distribution, the assignment of the parameter is:

Parameter 38: I-Mt10x . 0.075

Question 80. What Amount of Hydrogen Is Released to Contsinment at VB? 2 Branches, Type 5

The branches for this question are:

1. I-H2aVB There is hydrogen released to containment at VB.
2. InH2@VB There is no hydrogen released to containment because there is no VB.

Two parameters are defined in this question:
P39. I-H2dVB The amount of hydrogen released to containment at VB, including the amount generated in-vessel that remains in the RCS, in kg -moles, is assigned to Parameter 39.
A. 1. 1-128

P40. I-FrZr The fraction of initial zirconiun that remains in the core for participation in core-concrete interaction (COI).

Fer this question, a module within the user function subprocram is evaluated to determine the values of Parameters 39 and 40 .
For times in which the vessel is breached, the amount of hydrogen released to containment and the fraction of zirconium in the initial core inventory that is available for participation in CCI are calculated. The other variables passed to the user function to determine these parameters are: the amount of in-vessel hydrogen production, the amount of in-vessel hydrogen released from the RCS before VB, the amount of core released from the vessel at breach, and the fraction of metal in the core that is released at breach that is oxidized. The user function module denoted $H 2 V B$ is called from EVNTRE.

Question 81. What Fraction of Hydrogen in Containment Is Consumed at VB? 1 Branch, Type 3

The single branch for this question is always taken. The branch is:

1. T. ActBC The burn completeness at VB,

One parsmeter is defined in this question:
P41. I-ActBC The fractional level of hydrogen that is in containment at VB that is burned upon breach is assigned to Parameter 41.

This question is sampled; the distribution for the fraction of metal oxidized was provided by the Containment Loads Expert Panel.

Whether hydrogen combustion is possible after CCI depends in part on the fate of the hydrogen produced before or at VB. If this hydrogen is either burned at VB or escapes from the containment, it will not be avallable for combustion after CCI.

Question 82. Containment Failure at VB and Mode of Containment Failure? 6 Branches, Type 6,6 Cases

The branches for this question are:

1. InCF There is no containment failure at VB.
2. I-CFUCL The containment fails at VB, and the failure is a leak in the UC; the nominal hole area is $0.1 \mathrm{ft}^{2}$.
3. I-CFLCL The containment feils at $V B$, and the failure is a leak in the lower compartment; the nomina? hole area is $0.1 \mathrm{ft}^{2}$.
4. I-CFUCR The containment fails at $V B$, and the failure is a rupture in the UC; the nominal hole size is $1 \mathrm{ft}^{2}$.
5. 1-CFLCR The containment fails at $V B$, and the failure is a rupture in the lower compartment; the nominal hole size is $1 \mathrm{ft}^{2}$.
6. I-CFCtR The containment tails at $V B$, and the failure is by catastrophic rupture; the area of the hole is at least 7.0 ft^{2} (and may be considerably larger) and there is extensive structural damage.

For this question, a module within the user function subprogram is evaluated to determine whether the containment fails, and if it faile, the mode of fallure. The usor function module called in this question depends upon the branches previously taken at Questions $12,58,64,70,71,73$, and 74.

For times in which the containment fails at VB by an Alpha event, the Rocket mode of failure, or an EVSE, the user function directly assigns the correct mode of failure. For a quasi-static pressure load as established in Question 73,74 , or 75 , the user function adds the pressure rise due to events at VB, Parameter 32, 34, or 36 , to the existing baseline pressure in containment at VB, Parameter 7, to obtain the load pressure. This is then compared to the containment fallure pressure, Parameter 25. If the load pressure exceeds the fallure pressure, the containment fails. The random number, Darameter 26 , is used to detirmine the mode of containment failure. The method of determining the mode of containment fallure is described briefly in Subsection A.2. (See also Issue 2 in Volume 2, Part 3.)

Case 1: The contafrment is falled by efther an Alpha mode event or a Rocket event. The user function assigns a comparison value so that rupture in the upper compartment, Branch 4, is selected. The user function module denoted AlphCF is called from EVNTRE.

Case 2: The containment is failed by an EVSE. The user function assigns a comparison value so that rupture in the lower compartment, Branch 5, is selected. The user function module denoted StExCF is called from EVNTRE.

Case 3: The containment was not isolated at the start of the accident, with an equivalent failure size of a rupture, or the containment failed during ecre degradation due to a hyarogen combustion or detonation. Further overpressure fallures are precluded. The user function assigns a comparison value so that the no-fallure branch, Branch 1, is taken. The user function module denoted NoCF is called from EVNTkE.

Case 4: VB involves low RCS pressure or events that do not involve ejection of the core debris from the cavity to containment (the pressure rise was quantified in Question 73). The pressure rise involves events such as hydrogen combustion and steam explosions, and is rapid compared to the leak depressurization rate, that is, development of a leak does not arrest the pressure rise in this case. The user function module denoted CFFst is called from EVNTRE.

Case 5: VB involves intermediate RCS pressure and a significant amount of hydrogen exists in containment (the pres*ure rise was quantified in Question 74). The pressure rise involves events such as DCH and hydro on combustion, and is rapid compared to the leak depressurization rate, that is, development of a leak does not arrest the pressure rise in this case. The user function module denoted CFFst is called from EUNTRE

Case 6: VB involves intermediate RCS pressure and a significant amount of hydrogen burned before breach, or VB involves high or setpoint RCS pressure (the pressure rise was quantified in Question 75). The pressure rise involves events such as DCH and hydrogen combustion, and is rapid compared to the leak depressurization rate, that is, development of a leak does not arrest the piessure rise in this case. The user funstion module denoted CFFst is called from EVNV 2 E .

Question 83. Status of the IC Immediately after VB?

 3 Branches, Type 2, 3 CasesThe branches for this question are:
1 T?-TRP1 The IC is ineffective for condensing steam, and is essentially totally lypassed.
2. 12-IBP2 There is some degree of ice bypass in the IC.
3. 12nIBP The IC is intact and totally effective.

Thin quention is not seaplec; the fuantification was done internaily. The branch taken and the parameter assignment at this question depends upon the branches taken at Questions $28,76,78$, and 82 .

The effectiveness of the IC for 5 to 30 min after VB can considerably reduce the amount of fission products released to the environment for the scenarios in which the RCS is at high or setpoint pressure just before breach. In these scenarios, a large fraction of the fission products :-? sessed from the fsel is still within the vessel at the time of breach, so their first exposure to the decontaminating effects of the IC is immediately after vessel failure. Total or partial bypass of the IC for events involving the loss of the integrity of the seal between the upper and lower compartments of containment above the reactor vessel is addressed in Question 76. This question addresses the total bypass of the 10 as a result of a rupture failure in containment in the lower compartment.

Case 1: The IC is effectively bypassed as established in Question 76, or because the containment has failed by rupture in the lower regicn of containment at VB. All the probability is assigned to the highest level of bypass; the quantification for this case is:

Branch 1:	I2-1BP1	1.0
Branch 2:	I2-1BP2	0.0
Branch 3:	12 nIBP	0.0

Case 8: The IC is partially bypassed as established in Question 76. The quantification for this case is:

Branch 1:	12.1 BP 1	0.0	
Branch $2:$	12.1 BP 2	.	1.0
Branch $3:$	12 n 1 BP	.	0.0

Case 3: There is no bypass of containment. The quantification fow this case is:

Branch 1: 12.1BP1 . 0.0
Branch 2: 12.1 BP 2 . 0.0
Btanch 3: I2nIBP . 1.0

Question 84. Are ARFs or Ducting Impaired due to Burns at VE? 3 Branches, Type 2, 5 Cases

The branches for this question are:

1. 12-Fan The ARFs are functional and operating after VB.
2. I2aFan The ARFs are functional and are available to operate if power is recovered.
3. I2fFan The ARFs are failed and cannot be recovered.

This question is not sampled; the quantification was done internally. The branch taken at this question depends upon the branches taken at Questions 60,63 , and 65 .

The energetic events that may accompany $V B$ can render the ARFs inoperable due to the collapsing of ductwork, bending of f an blades, or the sticking open of dampers. Because there are two independent ARF systems installed on opposite sides of the containment, it is believed that it is not likely that both systems will be failed at the same time.

Case 1: There is a deeply flooded cavity at VB or there is no VB and the fans are operating. It is assumed that the threat to the fans will be miniual in the cas of the deeply flooded cavity, because the pressurs rise at braach is due to EVSE or hydrogen burns. The fans will remain operating after VB. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { 12. an } & - & 1.0 \\
\text { Branch } 2: & \text { I2aFan } & - & 0.0 \\
\text { Branch } 3: & \text { I2fFan } & - & 0.0
\end{array}
$$

Case 2: There is a deeply flcoded cavity at VB or there is no VB and the fans are availabla to operate if power is recovered. The fans will remain avallable after VB. The quantificetion for this case is:

Branch 1:	12-Fan	-	0.0
Branch 2:	I2aFan	.	1.0
Branch $3:$	12 fFan	.	0.0

Case 3: VB occurs, the cavity is not deeply flooded and the ARFs are operating. It is considered likely that fans will remair operating after VB. The quantification for this case is:

Branch 1:	I2.Fan		0.75
Branch 2:	I2eFan	-	0.00
Branch 3: I2fFan	-	0.25	

Case 4: VB occurs, the cavity is not deeply flooded and the ArFa are available to operate if power is recovered. It is considered akely that fans will remain available after VB. The quantification for this case is:

Branch 1:	12-Fan	-	0.00
Branch 2:	12aFan	-	0.75
Branch 3:	I2fFan	-	0.25

Case 5: The fans had initially failed upon demand, or were damaged before VB. The fans will remain failed throughout the accident. The quantification for this case is:

Branch 1:	I2.Fan	$*$	0.0
Branch 2:	I2aFan	$*$	0.0
Branch 3:	I2fFan	$*$	1.0

Question 85. Are Sprays Impaired due to Containment Failure or Environment at VB?
3 Brenches, Type 2,7 Cases
The branches for this question are:

1. $12-5 p$ The sprays are functional and operating after VB.
2. 12aSp The sp:ayg are functional and are svailable to operate if power is recovered.
3. I2fSp The sprays are failed and cannot be recovered.

This question is not sampled; the quantification was done internally. The branch taken at this question depends upon the branches taken at Questions 61 and 82 .

As with the functioning of the IC after VB, the operation of the sprays for 5 to 30 min after breach can considerably reduce the amount of fission products released to the environment for the scenarios in which the RCS is at high or setpoint pressure just before breach. In these scenarios, a large fraction of the fission products released from the fuel is still
within the vessel at the time of breach, so their first exposure to the decontaminating effects of the sprays is immediately after vessel failure. The means by which the spray piping can fail and the quantification of failure probability are discussed in Question 61.

Case 1: The sprays are already failed, or the containment fails by catastrophic rupture. It is believed that catastrophic rupture would involve failure of the sprays. A widely accepted scenario for catastrophic rupture involves the "unzippering" of the containment shell at the springline. Because the spray piping penetrations are located above the springline, the sprays are certain to be damaged, The quantification for this case is:

Branch 1:	$12 . \mathrm{Sp}$	$*$	0.0
Branch $2:$	12 asp	$*$	0.0
Branch $3:$	12 fSp	$*$	1.0

Case 2: The sprays are operating at VB, and there is elther no containment failure or failure involving a leak in containment. The mechanisms for falling the sprays include clogging of the sumps by debris, direct damage to the piping by hydrogen burns, or dislocation of the piping, as discussed above. It is believed that the threat due to these mechanisms is low. The quantification for this case is:

Branch 1:	$12-\mathrm{Sp}$		0.95
Branch 2:	12 aSp	.	0.00
Branch 3:	12 fSp	.	0.05

Case 3: The sprays are avallable to operate if power is recovered, and there is either no containment failure or failure involving a leak in containment. As in Case 2, the mechanisms for failing the sprays include clrfging of the sumps by debris, direct damage to the piping by hydrogen buins, or dislocation of the piping. The quantification for this case is:

Branch 1:	$12 . \mathrm{Sp}$.	0.00
Branch $2:$	12 aSp	.	0.95
Branch $3:$	12 fSp	.	0.05

Case 4: The sprays are operating, and there is a rupture failure in the upper containment. It is believed to be indeterminate whether the sprays will fail. The quantification for this case is:

$$
\begin{array}{cccc}
\text { Branch 1: } & 12 . \mathrm{Sp} & - & 0.50 \\
\text { Branch } 2: & 12 \mathrm{ASp} & \cdot & 0.00 \\
\text { Branch } 3: & 12 \mathrm{FSp} & \cdot & 0.50
\end{array}
$$

Case 5: The sprays are available to operate if power is recovered, and there is a rupture failure in the upper containment. It is believed to be indeterminate whether the sprays will fall. The quantification for this case is:

Branch 1:	$12 \cdot \mathrm{Sp}$.	0.00
Branch 2:	12 aSp	.	0.50
Branch $3:$	12 fSp	.	0.50

Case 6: The sprays are operating, and there is a rupture failure in the lower containment. It is believed that spray failure will be unlikely. The quantification for this case is:

Branch 1:	$12 . \mathrm{Sp}$	-	0.80
Branch 2:	12 aSp	-	0.00
Branch $3:$	12 fSp	-	0.20

Case 7: The sprays are available to operate if power is recovered, and there is a rupture failure in the upper containment. It is believed that spray failure will be unlikely. The quantification for this case is:

Branch 1:	$12 \cdot \mathrm{Sp}$		0.00
Branch 2:	12 aS	-	0.80
Branch 3:	12 fSp	-	0.20

Question 86. Fraction of Core Not Participating in HPME That Is Aveilable for CCI?
1 Branch, Type 4, 9 Cases
The single branch for this questic* 2

1. Fr-cCI Fraction of core not participacing in HPME that is available for CCI.

One parameter is defined in this question:
P42. Fr-CCI The fractional level of core not participating in HPME that is available for CCI is assigned to Parameter 42.

This question is not sampled; it was quantified internally. The branch taken and the parameter assignment at this question depends upon the branches previously taken at Questions $25,26,65,67,70$, and 71 .

How much of the molten corium is available to interact with the concrete depends upon the mode of VB and the events that accompany VB. A high energy event may distribute the corium widely throughout the containment. A significant CCI will not take place if the corium is spread out in a thin uniform sheet throughout the containment. It is estimated that almost all of the core eventually leaves the reactor vessel. Most of the core not involved in the events that accompany vessel failure will melt and flow out of the vessel in the next few hours. This material is considered to be avallable for CCI.

Although SEQSOR subtracts out the fraction of the core material that
partieipates in HPME, there is no dotble subtraction of this fiaction as the HPME case is explicitly considered in the binner. See the discussion of binning Characteristic 10 in Section 2.4.1 and later in this appendix.

Case 1: An Alpha mode fallure of the vessel and containment has taken place or containment failure due to an EVSE has occurred. Some portion of the core debris is 11kely to be widely distributed throughout the containment. The assigment of the parameter is:

$$
\text { Parameter 42: Fr-CCI . } 0.80
$$

Case 2: The containment has failed by the Rocket mode, Some portion of the core debris is likely to be widely distributed throughout the containment. The assignment of the parameter is:

Parameter 42: Fr.CCI . 0.75
Case 3: The vessel failure resulted in HPME. Most of the material ef scted at breach is expected to be widely distributed throughout the containment, so it is not available for CCI. The core debris that is available for CCI is the material that leaves the vessel after the HPME event, and the materlal that was expelled from the vessel in the HPME but was not entrained and efected from the cavity by the ensuing gas blowdown. Although SEQSOR subtracts out the fraction of the core material that participates in HPME, there is no double subtraction of this fraction as the HPME case is explicitly considered in the binner. See the discussion of binning Characteristic 10 in section 2.4.1 and later in this appendix. The assignment of the parameter is:

Parameter 42: Fr.CCI . 1.0
Case 4: The vessel falled at low pressure or otherwise resulted in a gravity pour, and an EVSE did not occur. Essentially all of the core debris will be avallable for participation in CCI. The assignment of the parameter is:

$$
\text { Parameter 42: Fr-CCI - } 1.0
$$

Case 5: There was an EVSE involving more than 40 of the core. It is assumed that most of the core participating in the EVSE will be distributed outside the oavity. The essignment of the parameter is:

$$
\text { Parameter 42: Fr-CCI . } 0.70
$$

Case 6: There was an EVSE involving 20 to 40 of the core. It is assumed that about half of the core participating in the EVSE will be distributed outside the cavity. The assignment of the parameter is:

Parameter 42: Fr-CCI . 0.85
Case 7: There was an EVSE involving less than 208 of the core. It is assumed that some of the core participating in the EVSE will be distributed outside the cavity. The assignment of the parameter is:

Parameter 42: Fr.CCI . 0.95
Case 8: The vessel failed at low pressure or otherwise resulted in a gravity pour. There was no EVSE. Essentially all of the core debris will remain in the cavity and will be available for CCI. The assignment of the parameter is:

Parameter 42: Fr.CCI 0.95

Case 9: Core degradation was arrested and there was no VB, CCI does not take place. The assignment of the parameter is:

Parameter 42: Fr-CCI . 0.0

Question 87, Level of Core Not Participating in HPME That Is Available for CCI? 3 Branches, Type 5

The branches for this question are:

1. CCI-Hi Over 608 of the core is avallable for CCI.
2. CCI-Med Between 30 and 60 of the core is avallable for CCI.
3. CCI-Lo Less thar 30 of the core is available for CCI.

This question is not sampled; the branch taken depends directly upon the value of the parameter defined in the previous question. The fraction of Lne core not participating in HPME that is available for CCI, Parameter 42 , is aesigned to one of three groups as designated by the branches.

Question 88. Is the Debris Bed in a Coolable Configuration? 2 Branches, Type 2, 7 Cases

The branches for this question are:

1. L-CDB The debris bed is coolable; no CCI takes place as long as the debris remains covered with water.
2. LnCDB The debris bed is not coolable. CCI will begin as soon as the melt reheats whether water is present or not.

This question is not sampled and was quantified internally. The branch taken at this question depends upon the branches previously taken at Questions $4,25,63,65$, and 71.

CCIs will not occur if the debris bed is inherently coolable, and if there is water present to cool it. This question determines whether the debris bed is coolable depending upon the timing of arrival of water and the
amount of water in the cavity, Whethei the water is replenished is determined in the next question. The portion of che moizan core that participates in DCH is unavailable for CCI. Thus the core debris considered in this question is the debris expelled at VB that remains in tha cavity and the debris hat leaves the vessel some time after VB. More discussion of debris coolabality topic can be found in Volume 2, Part 6, of this report.

When water is presen in the reactor cavity, in order for the debris to form a coolable debris bed, it must fragment when it hits the water, the resulting particles must quench while falling through the water, and the size of the bulk of the particles must fall within a $1.0 \mu \mathrm{~m}$ size range, Further, if a portion of the debris bed is noncoolable, the wilable evidence is that this portion of the bed will grow in size until essentially the entire bed has become noncoolable.

Case 1: There vas no vessel fallure; CCI does not occur. The quantification of this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L-CDB } & * & 1.0 \\
\text { Branch 2: } & \text { LnCDB } & * & 0.0
\end{array}
$$

Cas 2: The reactor cavity is dry and vessel failure results in HPME or gross bottom head failure at a pressure greater than 200 psia. The core debris involved in HPME is likely to be widely distributed throughout the containment, Water from the accumulators or LPIS enters the cavity before the remaining debris pours out of the vessel. The quantification for this case is:

```
Branch 1: L-CDB . 0.80
branch 2: LnCDE - 0.20
```

Case 3: At vessel failure, debris arrives in a dry cavity coincident with water from the accumulators or LPIS. It is not likely that the debris will be coolable. The quantification for this case is:

```
Branch 1: L-CDB
Branch 2: LnCDB - 0.16
```

Case 4: At vessel fallure, debris arrives in a dry cavity without coincident water. The debris will not be coolable. The quantification for this case is:

```
Branch 1: L-CDB 0.0
Branch 2: LnCDB . 1.0
```

Case 5: The reactor cavity is wet and vessel fallure results in $H P M E$ or gross bottom head failure at a pressure greater than 200 psia . The core debris involved in HPME exite the cavity with the cavity water, but the water spilis back into the cavity. This case is similar to Case 2 ; the quantification for this case is:

Branch 1:	L.CDB	0.80	
Branch 2:	LnCDB	\cdots	0.20

Case 6: The reactor cavity is deeply flooded and vessel failure results in HPME or gross bottom head fallure at a pressure greater than 200 psia. As discussed in Question 73, it is assumed that the bulk of the core debris involved in HPME does not exit the cavity, but fragments as it passes through the cavity water. The leter debris deposits on top of the fragments. This case is similar to Case 3; it is unlikely that the debris will be cooled. The quantification for this case is:

Branch 1:	L-CDB	0.16
Branch 2:	LnCDB	0.84

Case 7: The reactor cavity is wet or deeply flooded and the vessel failed at low pressure or otherwise resulted in a gravity pour. The pouring of the debris into the cavity may causu reagglomeration of the debris. The quancification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L.CDB } & - & 0.16 \\
\text { Branch 2: } & \text { LnCDB } & * & 0.84
\end{array}
$$

Question 89. What is the Nature of the P ompt CCI? 5 Branches, Type 2, 6 Cases

The branches for this question are:

1. DryCCI CCI occurs promptly after VB in a dry cavity.
2. SSerOCI CCI occurs promptly after VB with limited water from accumulator dump.
3. DSCrCCI CCl occurs promptly after VB in a wet or deeply flooded cavity, i.e. water depth is at least 10 ft .
4. SDIyCCI A coolable debris bed boils off limited water from the accumulator dump, then after a short delay, prompt CCI ensues in a dry cavity.
5. noPrCCI Prompt CCI does not ocour.

This question is not sampled; whether prompt CCI occurs follows logically from the information available about the coolability of the core debris and the presence of water in the reactor cavity. The branch taken at this question depends upon the branches previously taken at yuestions 4, 25, 63, 65 , and 88.

Case 1: There is no VB. Prompt CCI does not occur; the quantification for this case is:

Branch 1: DryCCI - 0.0
Branch 2: SScrCCI . 0.0

Branch 3:	DSerCCI	0.0	
Branch 4:	CI	$:$	0.0
Branch 5:	II	$:$	1.0

Case 2: The debris is foom-coolable, there is only accumulator water in the cavity, and the water source in nonreplenishable. The prompt CCI is scrubbed only by a shallow pool. The quantification for this case is:

Branch 1:	DryCCI	$:$	0.0
Branch 2:	SScrCCI	$:$	1.0
Branch 3:	DScrCCI	$:$	0.0
Branch 4:	SDlyCCI	$:$	0.0
Branch 5:	noPrCCI	$:$	0.0

Case 3: The cavity is dry at VB, and accumulator dump has occurred before breach. The debris is non-coolable and CCI is initiated promptiy. The quantification for this case is:

Branch 1:	DryCCI	$:$	1.0
Branch 2:	SScrCCI	$:$	0.0
Branch $3:$	DScrCCI	$:$	0.0
Branch 4:	SDlyCCI	$:$	0.0
Branch 5:	noPrCCI	$:$	0.0

Case 4: The debris is non-coolable and the cavity is wet or deeply flooded. There is at least 10 ft of water that covers the debris. CCI is initiated promptly with maximal serubbing. The quantification for this case is:

Branch 1:	DryCCI		0.0
Branch 2:	SScrCCI	$:$	0.0
Branch $3:$	DScrCCI	$:$	1.0
Branch 4:	SDlyCCI	$:$	0.0
Branch 5:	noPrCCI	$:$	0.0

Case 5: The debris bed is coolable and entered the cavity with accumulator water only, and the cavity water is not replenished. The water boils off after a short delay, and then CCI ensues. The quantification for this case is:

Branch 1:	DryCCI	:	0.0
Branch 2:	SScrCCI	:	0.0
Branch 3:	DScrCCI	:	0.0
Branch 4:	SDlyCCI	$:$	1.0
Branch 5:	noPrCCI	:	0.0

Case 6: The debris bed is coolable and either entered a wet or deeply flooded cavity, or the water supply is replenishabla. CCT will not occur in this time period. If the water supply is non-replenishable, the question of long-delayed CCI is addressed in Question 111. The quantification for this case is:

Branch 1:	DryCC1	0.0	
Branch 2:	SScrCC1	$:$	0.0
Branch 3:	DScrCC1	$:$	0.0
Branch 4:	SDIyCCI	$:$	0.0
Branch 5:	noPrCC1	$:$	1.0

Question 90, Is ac Power Recovered Late?
3 Branches. Type 2, 7 Cases

The branches for this question are:

1. L-ACP $A C$ power is available during prompt CCI.
2. LaACP ac power is not avallable for this time period, but may be recovered in the future.
3. LfACP ac power is not available for this time period, and cannot be recovered.

Cases 3 through 7 of this question sre sampled; the distributions were obtained from an analysis of the recovery of offsite power (ROSP) for Sequeyah as discussed above for Question 22. The branching at this question depends upon the branches taken at Questions $1,9,10$, and 22.

The time period of interest here is between $V B$ and the end of the initial portion of prompt CCI. Because CCI tapers off very gradually, the end of this time period is somewhat arbitrary, but it is intended to be after the bulk of the hydrogen and radionuclides have been released. To simplify the number of cases in the nesit question about power recovery, the end of this period of CCI has been taken to be 9 h for Cases 3, 4, and 5 , and 17 h for Cases 6 and 7. In general, then, the coltial period of prompt CCI was taken to be between 3.0 and $6,5 \mathrm{~h}$.

The probability of power recovery is the probability that offsite electrical power is recovered in the period in question given that power was not recovered prior to the period.

Case 1: Power was available at the start of the acoident and remains available. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L-ACP } & \text { * } & 1.0 \\
\text { Branch 2: } & \text { LaACP } & \text { * } & 0.0 \\
\text { Branch 3: } & \text { LfACP } & \text { * } & 0.0
\end{array}
$$

Qase 2: Power was not available at the start of the accident and is not recoverable. The quantification for this case is:

Branch 1: L-ACP . 0.0
Branch 2: LAACP - 0.0
Branch 3: LfACP . 1.0

Case 3: Power was not initially available, but recovery was possible. The AFws was falled at the start of the accident, and the RCS was intact when the water level dropped below the TAF. This case applies to PDS TRRR-RSR (fast blackout). The recovery period for this case is 2.5 to 9.0 h . The mean value for power recovery in this period $(0,823)$ gives the following quantification:

Branch 1:	L-ACP	.	0.823
Branch 2:	LaACP	*	0.177
Branch 3:	LfACP	-	0.000

Case 4: Power was not initially available, but recovery was possible. The AFWS was operating at the start of the accident but failed after 4 h upon battery depletion and there is an S_{2} break in the RCS at UTAF,
 PORVs). With this large a break in the RCS, whether the operators depressurized the secondary system while the the AFWS was operacing is not very important. The recovery period for this case is 4.5 to 9.0 h . The mean value for per recovery in this period (0,667) gives the following quantification for this case:

Branch 1:	L-ACP	$*$	0.667
Branch 2:	LaACP	-	0.333
Branch 3:	LfACP	$*$	0.000

Case 5: Power was not initially available, but recovery was possible. The AFWS was operating at the start of the accident but falled after 4 h upon battery depletion. The operators did not depressurize the secondary system while the AFWS was operating. There is an S_{3} break in the RCS at UTAF. This case applies to the $S_{3} R R R-R C R$ PDS (slow blackout With reactor coolant pumps (RCP) seal failure and the secondary not depressurized). The recovery period for this case is 6.0 to 9.0 h . The mean value for power recovery in this period (0.521) gives the following quantification:

Branch 1:	L-ACP	.	0.521
Branch 2: LaACP	.	0.479	
Branch $3:$	LfACP	-	0.000

Case 6: Power was not initially available, but recovery was possible. The AFWS was operating at the start of the accident but failed after 4 h upon battery depletion. The operators depressurized the secondary system while the the AFWS was operaiing. There is an S_{3} break in the RCS at UTAF. This case applies to the SgkRR-RDR PDS (slow blackout with RCP seal failure and the secondary depressurized). The recovery perlod for this case is 10.5 to 17 h . The mean value for power recovery in this period (0.697) gives the following quantification:

Branch 1:	L-ACP	.	0.697
Branch 2:	LaACP	.	0.303
Branch 3:	LfACP	.	0.000

Case 7: Power was not initially available, but recovery was possible.

The AFWS was operating at the start of the accident, but failed after 4 h upon battery depletion. The operators did depressurize the secondary system while the the AFWS was uperating. The RCS was intact when the core uncovered. This case applies to the TRRR-RDR PDS (slow blackout). The recovery period for this case is 12.5 to 17 h . The mean value for power recovery in this period (0.578) gives the following quantiflcation:

Branch 1:	L-ACP	$*$	0.578
Branch 2:	LaACP	$*$	0.422
Branch 3:	LfACP	$*$	0.000

Question 91. Late Sprays?

3 Branches, Type 2, 4 Cases
The branches for this question are:

1. L- $\$ p$ The containment sprays are operating during prompt CCI.
2. LaSp The containment sprays are available and will operate when electric power is restored.
3. LfSp The containment sprays are failed and cannot be recovered.

This question is not sampled; if power has been recovered, and the sprays were "availeble" tefore, the sprays will operate in this period. The branch taken at this question depends upon the bramches tal et Questions 85 and 90 .

The time period of interest is the same as in the preceding question. If sprays are recovered during this period, the release from CCI will be considerably reduced. If the debris bed is coolable and water was present but was not being replenished, spray recovery can also prevent dryout and the start of CCI.

Case 1: The sprays were operating shortly after VB. The sprays continue to operate. The quantification is:

Branch 1:	L-Sp		1.0
Branch 2:	LaSp	-	0.0
Branch 3:	LfSp		0.0

Case 2: The sprays were failed in the previous time period, so the sprays remain failed. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L.Sp } & \text { * } & 0.0 \\
\text { Branch 2: } & \text { LaSp } & * & 0.0 \\
\text { Branch 3: } & \text { LfSp } & * & 1.0
\end{array}
$$

Case 3: The sprays were available to operate and power has been recovered, so the sprays are initiated during this time period. The quantification for this case is:

Branch 1: L. Sp $\quad 1.0$
Branch 2: LaSp . 0.0
Branch 3: LfSp . 0.0

Case 4: The sprays were available to operate, but power has not been recovered so the sprays remain available. The quantification for this case is:

Branch 1: L-Sp . 0.0
Branch 2: LaSp . 1.0
Branch 3: LiSp . 0.0

```
Question 92. Lete ARFs?
    3 Branches, Type 2, 4 Cases
```

The branches for this question are:

1. L-Fan The ARFs are operating during prompt CCI.
2. LaFan The ARFs are available to operate if power is recovered,
3. LfFan The ARFg are failed and cannot be recovered.

This question is not sampled. The branch chosen for this question depends upon the branches taken at Questions 84 and 90

The ARFs are important in the time in which CCI occurs in order to establish the degree of mixing of the containment atmosphere. Whether or not the atmosphere is mixed escablishes the conditions for hydrogen burns if ignition occurs.

Case 1: The fans were operating shortly after VB. The fans continue to operate. The quantification is:

Branch 1:	L-Fan	.	1.0
Mranch 2:	LaFan	*	0.0
B.anch 3:	LfFan	.	0.0

Case 2: The fans were failed in the previous time period, so the fans remain failed. The quantification for this case is:

Branch 1:	L-Fan	-	0.0
Branch 2:	LaFan	$*$	0.0
Branch 3:	LfFan	-	1.0

Case 3: The fans were available to operate and power has been recovered, so the fans are activated during this time period. The quantification for this case is:

Rranch 1:	L-Fan	-	1.0
Branch 2:	LaFan	-	0.0
Branch 3:	LfFan	0.0	

Case 4: The fans were avallable to operate, but power has not been recovered so the fans remain available. The quantification for this case is:

| Branch 1: | L-Fan | 0.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | LaFan | 0.0 |
| Branch 3: | LfFan | 1.0 |

Question 93. Is the Ice Melted or Bypassed Within the First Arur of Prompt CCI?
2 Branches, Type 2, 5 Cases
The branches for this question are:

1. L-IBP The IC is ineffective for condensing steam or for remova? of fission products from the a mosphere during prompt CC1.
2. LnIBP The IC is intact during this period.

This question is not sampled; the branch chosen depends dirently upon the branches taken at Questions 24 and 83.
The IC is important during the initial phase of CCI not only for its heat removal capability, but especially for its contribution to decontamination of the contafrment atmosphere. The analyses referenced in Question 29 for level of ice melt before VB also give some indication of ice melt after VB, These analyses include IDCOR Task 23.1, BMI-2104, BMI-2159, BMI-2160, MARCH-HECTR calculations, and NUREG/CP-0071, A.1-7-A.1-12 The enulyses indicate that a quarter to half the cee can remain up to 1 h or so past breach. Also indicated is that more ice remains for smaller initial breaks and for times in which the RCS is intact at breach than for larger initial breaks. These analyses include thermal loading on the IC due to blowdown at VB and hydiogen burns; not included in the thermal loading are events such as DCH and steam explosions.

Case 1: There was partial bypass immediately after VB, and there was either no early blowdown to containment, or the blowdown was typical of a small break or cycling PORV. It is quite likely that the IC vill still be effective. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L-IBP } & - & 0.15 \\
\text { Branch 2: } & \text { LnIBP } & \cdot & 0.85
\end{array}
$$

Case 2: The IC was intact immediately after VB, and there was either no early blowdown to containment, or the blowdown was typical of a small break or cycling PORV. It is more likely than for Case 1 that the IC will still be effective. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L.IBP } & - & 0.05 \\
\text { Branch 2: } & \text { LnIBP } & - & 0.95
\end{array}
$$

Case 3: There was partial bypass itamediately after VB, and the early blowdown to containment was typicel of a large break. It is indeterminate whether the IC will still \# effective. The quantification for this case is:

$$
\text { Branch 1: L-IBP } \quad 0.50
$$

Branch 2: LnIBP 0.50

Case 4: The IC was intact amediataly after VB, and the early blowdown to containment was typica: of a large break. It is more likely than for Case 3 that the IC will still be effective. The quantification for this case is:
Branch 1: L-IBP
0.25
Branch 2: LnIBP 0.75

Case 5: The IC was totally ineffective or bypassed immediately after $V B$. It will remain ineffective for this tiue period. The quantificacion for this case is:

$$
\begin{array}{llll}
\text { Branch 1: L-IBP } & \text { - } & 1.0 \\
\text { Branch 2: } & \text { LnIBP } & \text { * } & 0.0
\end{array}
$$

Question 94. Late Baseline Pressure? 1 Brench, Type 4, 6 Cases

The single branch for this question is always taken. The branch is:

1. L-PBase The late baseline pressure in containment.

One parameter is defined in this question:
P43. L-PBase The late baseline pressure, in $k P a$, is assigned to Parameter 43.

Cases 4 through 6 of this question are sampled; the distribution for the parameter was determined internally. The assignment of the parameter depends upon the branches taken at Questions $12,58,65,78,82,89,91$, 92 , and 93.

The late baseline pressure in containment is established to determine the pressure rise if a hydrogen burn occurs. It is then adied to the pressure rise to establish whether containment fallure occurs.

Case 1: Either the containment failed before or at VB, or VB was averted. The baseline pressure will be minimal. The assignment of the parameter is:

Parameter 43: L-PBase . 103.40

Case 2: No prior containment failure has occurred and containment heat
removal exists ei her because sprays are operating, the ic is functional and not bypassed, or both. The assignment of the parameter is:

Parameter 43: L-PBase . 131.0
Case 3: No prior containment fallure has ocourred and the IC is functional, but the sprays or fans are not operating. The assignaent of the parameter is:

Parameter 43: L.PBase . 151.70
Case 4: No prior containment failure has ocourred and no concainment heat removal exists. The CCI was prompt or slightly delayed without production of much steam. The assignment of the parameter, based on the mean value of the distribution is:

Parameter 43: L-PBase * 241.30
vase 5: No prior containment fallure has occurred and no containment heat removal exists. The CCI was prompt but deeply scrubbed, involving the production of more steam chan for Case 4. The assignment of the parameter, based on the mean value of the distribution is:

Parameter 43: L-PBase . 275.80
Case 6: No prior cuntainment failure has occurred and no containment heat removel exists. No prompt CCI has occurred. The assignment of the paramater, based on the mean value of the distribution is:

Parameter 43: L-PBase . 206.80

Question 95. Amount of Hydrogen (Plus Hydrogen-Equivalent of Carbon Konoxide and Carbon Dioxide) Generatad During Prompt coI? 2 Branches, Type 6, 3 Cases

The branches for this question are:

1. L-CCI Prompt CCI takes place and combustible gas is generated.
2. LnCCI No prompt CCI takes place with combustible gas generation.

Two parameters are defined in this question:
P44. L-H2 The amount of hydrogen and equivalent carbon monoxide produced during prompt CCI in $k g$-moles, is assigned to Parameter 44.

P45. L.CO2 The amount of carbon dioxide produced during prompt CCI, in kg -moles, is assigned to Parameter 45.

This question is not ampled, and was quantified internally. Modules in the user function subroutine are used to calculate the amount of hydrogen, carbon monoxide and carbon đioxide produced during Cct. The user function module utilized in this question depends upon the branches previously taken at Questions 65 and 89. The value that the user function returns for each case determines whioh branch is taken.

Hydrogen, carbon dioxide, carbon monoxide, and other inert gases are produced by the decomposition of the concrete in the reactor cavity caused by reaction with the non-coolable core debris. At Sequoyah, the concrete is 1 imestone coarse aggregate. A simple correlation that relates hydragen production to the amount of unoxidized zirconium in the core debris is used to estimate the hydrogen production during CCI. \$imilar correlations are used to estimate the production of carbon monoxide and carbon dioxide. These correlations are based on results obtained from relevant CORCON calculations. A discussion of the correlations may be found in Voluse 2 , Part 6, of this report. The variables passed to the user function modules from the event tree include: fraction of the core released at VB, the fraction of inftial zirconium that remains in the core for participation in CCI, and the fractional level of core not participating in HPME that is avallable for CCI.

For the sake of simplicity, moles of carbon monoxide are converted into equivalent moles of hydrogen. The conversion factor is based on the number of moles of hydrogen that must be burned to equal the energy released when one mule of carbon monoxide is burned. The conversion is:

$$
\mathrm{N}_{\mathrm{B} 2}=1.17 \mathrm{~N}_{\mathrm{CO}} .
$$

where $N_{k 2}$ is the equivalent number of moles of hydrogen and $N_{c o}$ is the number of moles of carbon monoxide.

Case 1: Prompt CCI does not occur. No hydrogen, carbon monoxide, or carbon dioxide is produced from reaction of the core debris and the concrete in the cavity. The user function module denoted CCIl is called from EVNTRE.

Case 2: Prompt CCI occurs and the release of the core debris from the vessel involved HPME. When HPME occurs, it is assumed that all of the core debris that is released at $V B$ is ejected from the cavity. Thus, only the material that is released after vessel breach participates in CCI and is involved in the production of hydrogen, carbon monoxide, or carbon dioxide. The user function module denoted CCI2 is called from EVNTRE.

Cise 3: Prompt CCI occurs and the release of the core debris did not i. volve HPME. The fraction of the core available to participate in co.. Parameter 42, was determined in the Question 86. The user func ion uses this parameter to determine what amounts of hydrogen, carbo monoxide, or carbon dioxide are produced. The user function module denoted CCI3 is called from EVNTRE.

Question 96. What Amount of Oxygen Remains in the Containment Late? 2 Branches, Type 5

The branches for this question are:

1. L. 02 There is oxygen remaining in containment during prompt CCI.
2. LnO2 There is no oxygen remaining in containment during this time perlod.

One parameter is defined in this question:
P46, L-02 The amount of oxygen remaining in containment during prompt CCI, in kg -moles, is assigned to Parameter 46.

This question is not sampled, and was quantified internally. A module in the user function subroutine is used to calculate the amount of oxygen remaining in the containment during prompt CCI. The value that the user function returns for each case determines which branch is taken.

The amount of oxygen that exists in the containment after the inftial portion of COI occurs is needed to determine whether the atmosphere will support late combustion of hydrogen or carbon monoxide. The oxygen initially in the containment has most probably been depleted by prior hydrogen burns. If burns occur during core degradation, whether ignition occurs by igniters or by random sources, the amount of oxygen consumed in the burns is determined a user function module in question 54. The amount of oxygen consumed at $V B$ is computed in the user function called in this question. The user function module denoted 02Late is called from EVNTRE.

Question 97. Amount of Hydrogen in the Containment after Prompt CCI? 2 Branches, Type 6, 3 Cases

The branches for this question are:

1. L-H2 There is hydrogen in the coritainment after the period of prompt CCI.
2. LnH2 There is no hydrogen in the containment after the period of prompt CC1.

One parameter is updated in this question:
P44. L-H2 The emount of hydrogen and hydrogen-equivalent of carbon monoxide produced during prompt $O C I$ in kg -moles is updated.

This ques ion is not sampled, and was quantified incernally. Modules in the user function subroutine are used to calculate the amount of hydrogen (and hydrogen-equivalent carbon monoxide) in containment after the bulk of gases have been released during CCI. The user function module used in this
question depends upon the branches previously taken at Questions 12,26 , 58,78 , and 82 . The value that the user function returns for each case detarmines which branch is taken.

The amount of hydrogen in the containment after CCI is calculated by sumuing the amount remaining after VB and the amount generated during CCI. These combustible gases can participate in combustion events during this late time period, The in-vessel hydrogen released to the containment during core degradation that remains after pre*vessel breach deflagrations is detormined in a user function module in question 54. The amount of hydrogen that is released from the RCS or produced at VB and consumed immediately after breach is computed in the user function called in this question.

Case 1: Containment rupture occurs before VB, or there is no VB. The amount of hydrogen in the containment is assumed to either be negligible or irrelevant. For the case of prior containment rupture, a regligible amount is assumed due to purging of the hydrogen through the rupture, or the amount is irrelevant because a rupture failure of containment precludes further failures. The user function module denoted H2CCIl is called from EVNTRE.

Case 2: Containment rupture occurs at VB. As in Case 1, the amount of hydrogen in the containment is assumed to be negligible or irrelevant. The user function module denoted H2CCII is called from EVNTRE.

Case 3: No prior containment ruptures have occurred. The amount of hydragen and hydrogen equivalent is computed accordingly. The user function module denoted H2CCI2 is called from EVNTRE.

Question 98. How Much Steam Is in Containment Late? 2 Branches, Type 4, 3 Cases

The branches for this question are:

1. L-HiStm The steam concantration in containment is greater than 60 e (nominally 758)
2. L-Lostm The steam concentration in containment is less than 60 . (nominally 10\%).

One parameter is defined in this question:
P47. L-Stm The amount of steam in containment during prompt CCI, in kg. moles, is assigned to Parameter 47.

This question is not sampled, and was quantified internally. The branch taken and the parameter assignment at this question depends upon the branches taken at Questions 91,92 , and 93.

If the containment atmosphere is steam inert after the bulk of combustible gases has been released from CCI, combustion will be precludtd. In general, If some form of containment heat removal is functional (ic or sprays), the steai concentration in the containment should be low. Hence, a nominal value of 10 was chosen for the low steam branch. If containment heat removal is not functional, the steam concentration w 111 probably be above the 60 cut-off for flamability limits.

Case 1: Either the containment sprays are operating or the IC is functional and the fans are operating. The steam level will be minimal. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: L.HiStm } & \text { - } & 0.0 \\
\text { Branch } 2: & \text { L-LoStm } & - & 1.0
\end{array}
$$

For Branch 1, the assignuent of the parameter is irrelevant, for Branch 2, the assignment of the parameter is:

$$
\text { Parameter 47: L-Stm . } 157.40
$$

Case 2: The ice was not bypassed during the first hour of prompt CCI, The ice may be melted by the time combustion might occur. It is indeterminate whether the steam concentration is at the high or low level.

$$
\begin{array}{llll}
\text { Branch 1: } & \text { L-HiStm } & \text { * } & 0.50 \\
\text { Branch 2: } & \text { L-LoStm } & - & 0.50
\end{array}
$$

For Branch 1, the assignment of the parameter is:
Parameter 47: L-Stm . 2000.0
For Branch 2, the assignment of the parameter is:
Parameter 47: L-Stm . 500.0
Case 3: There is no containment heat removal of any kind. The steam level, and pressure in containment, will be high.

```
Branch 1: L-HiStm . 1.0
Branch 2: L-LoStm . 0.0
```

For Branch 1, the assignment of the parameter is:
Parameter 47: L-Stm $\quad 4259.0$
For Branch 2, the assignment of the parameter is irrelevant.

Question 99. What Is the Inert Level in Containment, and Is There Sufficient Hydrogen or Oxygen for Burns?
4 Branches, Type 5

The branches for this question are:

1. I-Inert The containment atmosphere is steam inert, i.e., the steam concentration is greater than 608 .
2. L-noH2 There is an insufficient pmount of nombustible 998 in containment for combustion, l.e., the atmosphere is fuelstarved.
3. L-no02 There is an insufficient amount of uxygen to support combustion, i.e., the atmosphere is oxygen-starved.
4. Lninert The flammability limits for combustion are satisfied, and if ignited, the containment atmosphere will deflagrate.

This question is not sampled, and was quantified internally. A module in the user function subroutinc is used to calculate the gaseous species concentrations in the containment and establish the flamability of the atmosphere. The value that the user function returns for each case determines which branch is taken.

For late burns in the containment, the APET does not divide the cont ament volumes as was done for burns before VB. This is done to save computational time, and also because the state of contaiument compartmectalization at this late time period is unknown. If a large amount of hanneling has occirred in the IC, and many doors leading into or exiting th: iC and upper plenum are stuck open or damaged, re-circulation flow can occur between the lower and upper comp \circ rtments $\cap f$ the containment. To address the iate burns in containment, it is asomad that the containment compartments communicate with each other freely. The gaseous constituents are assumed to be homoger usly mixed. The nitrogen that was in the containment initiolly acts as a diluent, as well as the carbon dioxide that is generated during CCI. The carbon dioxide is treated as steam, i.e., it is assumed that the inerting qualities of carbon dioxide are similar to steam. The user function module dencted leconc is called from EVNTRE.

Question 100, Late Hydrogen Igniters?
2 Branches, Type 2, 4 Cases
Ti.e branches for this question are:

1. $\mathrm{L}-\mathrm{Ig}$ The igniters are operating during prompt CCI.
2. LiTg The igniters are not operating during prompt CCI.

This question is not sampled; the quantification was done internally by the accident frequency analysts. The branch taken depends upon the branches taken at Questions $22,47,90$, and 99.

If the igniters are operating at the time of $V B$, the threat from deflagration of the combustible gases generated during CCI is minimal. If the igniters are initiated during CCI, the containment may be threatered by a large-scale global burn. If the hydrogen concentration in containment is less that se the operating prswedures instruct the operators to activate the 1 gnilers. If the hydrogen concentration is greater than 63 , the operators are dizected to refrain from activating the igniters. The actuaiion of the i, niters by the operators during this time is a moot point because if ac power is recovr at it is assumed that if the flammability criteria as ment oned in question 99 are met, random sources will eventually ignite the atmosphere.

Case 1: The igniters were operating before $V B$, and will continue to operate through this iime period. The quantification for this case is:

| Branch 1: | $\mathrm{L}-\mathrm{Ig}$ | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | LnIg | 0.0 |

Case 2: The accident involves an SBO with power recovery during prompt CCI. The hydrogen concentration in the containment is less than 5.58 , Human reliability analysis (HSA) indicates that failure to initiate will be about 88 of the time. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \mathrm{L}-\mathrm{Ig} & \cdot & 0.92 \\
\text { Branch 2: } & \mathrm{LnIg} & \cdot & 0.08
\end{array}
$$

Case :. The accident involves an SBO with power recovery during prompt CCI. The hydrogen concentration in the containment is greater than 5.58. HRA indicates that * urrect initiacion will occur about 8% of the time. The quantificati for this case is:

$$
\begin{array}{lll}
\text { Branch } 1: & \mathrm{L}-\mathrm{Ig} & 0.08 \\
\text { Branch } 2: & \mathrm{LnIg} & 0.92
\end{array}
$$

Case 4: The accident involves a station blackout without power recovery before or during prompt CCI, or the igniters were not actuated earlier. The igniters will not be operating in this time period. The quantification for this case is:

$$
\begin{array}{llll}
\text { Branch 1: } & \mathrm{L}-\mathrm{Ig} & 0.0 \\
\text { Branch 2: } & \mathrm{LnIg} & - & 1.0
\end{array}
$$

Question 101. Is There a Late Deflagration in the Containment? 2 Branches, Type 2, 4 Cases

The branches for this question are:

1. L-Def Ignition of combustible pases occurs during prompt CCI.

2 InDef Igrition of combustible gases does not occur during prompt CCI.

This question is not samplid; the quantification of this question was performed internally. The branch taken depends upon the bjanches taken at Questions 90, 99, and 100.

If the flammablify criteria are not met, late ignition of combustible gas in the containment atwosphere does not ocour. If igniters are operating, ignition is assured. If ac power $2 s$ available, it is assumed that operation of electrical equipment will provide an ignition source for a flammable atmosphere, f ac power is not operating, static sources provide an ignition source with a lower probability.

Case 1: The flammability criteria are not met; a iate deflagration does not ocour. The quantification for this case is:

Branch 1:	L-Def	-	0.0
Branch 2:	LnDef	-	1.0

Case 2: The flammability criteria are mel and ignitars are operating. Ignition is assured. The quantification for this case is:

Branch 1:	L-Def	-	1.0
Branch 2:	LnDef	-	0.0

Case 3: The flamability criteria are met and ac power is operable. Eventual ignition is assured. The quantification for this case is:

| Branch 1: | L-Def | 1.0 |
| :--- | :--- | :--- | :--- |
| Branch 2: | LnDef | 0.0 |

Case 4: The flamability criteria are met and ac power is not operable. Ignition is by static sources mily, and considered to be unlikely. The quantification for this case s :

Branch 1:	L-Def	-	0.15
Branch 2:	LnDef	-	0.85

Question 102. Pressure Rise due to Late Deflagration?
2 Branches, Type 6,2 Cases
The branches for this question are:

1. L-DPDef Laie hydrogen combustion occurs.
2. LnDPDef Late iydrogen combustion does not occur.

One paramear is definea in this question:
P48. DP-LDef The pressure rise in containment due to a late hydrogen deflagration, in kPa , is assigned to Paramezer 48.

This question is not sampled; Parameter 22 is calculated in modules within the user function subprogiam. The applicable user function module for this question depends upon the branches taken at Questions 47, 91, 92, 93 and 101

For this question, the variables passed to the user function module are the amounts of oxygen, steam, carbon dioxide, and combustible gases (hydiogen and carbon monoxide) in contalnment. The user function module calculates the burn completeness based on the model described in Question 43, and the pressure rise based on the model described in Question 54. The burn completeness model, developed by C. C. Wong, A.1-17 is different for times of turbulent mixing than for times when the atmosphere is quiescent.

Case 1: The igniters are operating at $V B$, and the hydrogen is burned as it is released during CCI w... minimal pressure rise. The fans art operating, so the turbuler burn model is used to establish burn completeness. The user function module denoted Brnl is called f:om EVNTRE.

Case 2: The igniters are operating at $V B$, and the hydrogen : umen as it is released during COI. The fans are not operating, so the quies ent burn model is used to establish burn completeness. The user function module denoted Brn2 is called from FVNTRE.

Case 3: Igniters are not operating at $V B$, there is containment heat removal by the IC and/or the sprays, and the fans are operating. The AICC burn model in the user function module requires the temperature of the containment atmosphere in order to calculate the overpressure. For this case, the containment atmosphere is assumed to be $38^{\circ} \mathrm{C}$, and the turbulent burn model is used to establish burn completeness. The user function module denoted Ben3 is called from EVNTRE.

Case 4: Igniters are not operating at VB, there is no containment heat removal, and the fans are operating. For this case, the containment atmosptore is assumed to be $135^{\circ} \mathrm{C}$, and the turbulent burn model is used to estabish burn completeness. The uisei function module denoted Braf is called from EVNTRE.

Case 5: Igniters are not operating at VB, there is containment heat removal by the IC and/or the sprays, and the fans are not operating For this case, the containment acmosphere is assumed to be $38^{\circ} \mathrm{C}$, and the quiescent burn odel is used to establish burn completeness. The user function module denoted Brn5 is called from EVNTRE.

Case 6: Igniters are not operating at VB, there is no containment heat removal, and the fans are not operating. For this case, the containment atmosphere is assumed to be $135^{\circ} \mathrm{C}$, and the quiescent burn model is used to establish burn completeness. The user function module denoted Brnc is called from EVNTRE.

Case 7: There is no late deflagration. The user function module denoted NoBurn is called from EVNTRE, and assigns a val ee of 0.0 to Parameter 48.

Question 103. Late Containment Failure and Mode of Failure? 6 Branches, Type 6, 4 Cases

The branches for this question are:

1. LnCF There is no late containment failure.
2. L-CFUCL There is a late containment failure, which is a leak in the upper containment; the nominal hole area is $0.1 \mathrm{ft}^{2}$.
3. L-CFLCL There is a late containment failure, which is a leak in the lower containment; the nominal hole area is $0.1 \mathrm{ft}^{2}$.
4. L-CFUCR There is a late containment failure, which is a rupture in the upper containment; the nominal hole size is $1 \mathrm{ft}^{2}$.
5. L-CFLCR There is a late containment failure, which is a rupture in the lower containment; the nominal hole size is $1{ }^{\circ}+2$.
6. L-CFCtR There is a late containment failure, which is by catastrophic rupture; the area of the hole is at least $7.0 \mathrm{ft}^{2}$ (and may be considerably larger) and there is extensive structural damage.

For this question, a module within the user function subprogram is evaluated to determine whether the containment fails, and if it fails, the mode of fallure. The user function module called in this question depends upon the branches previously taken at Questions $12,58,78,82$, and 101.

For the quasi-static pressure load experienced for a late burn, the user function adds the pressure rise, Parameter 48 , to the late baseline piessure in containment, Parameter 43, to obtain the load pressure. This 18 then compared to the containment fallure pressure, Parameter 25 . If the load pressure exceeds the failure pressure, the containment fails. The random number, Parameter .6 , is used to determine the mode of containment failure. The method of determining the mode of containment failure is described briefly in Subsection A.2. (See also Issue 2 in Volume 2, Part 3.)

Case 1: The containment was not isolated at the start of the accident, with an equivalent failure size of a rupture, or the containment falled by rupture during core degradation. Further overpressure fallures are precluded. The user function assigns a comparison value so that the no-failure branch, Branch 1, is taken. The user function module denoted NoCF is called from EVNTRE.

Case 2: The containment Eailed by rupture at VB. Further overpressure failures are precluded. The user function assigns a comparisun value so that the no-failure branch, Branch 1, is taken. The user function module denoted NoCF is called from EVNTRE

Case 3: There is no previous rupture, and a late deflagration ocours. The pressure rise is rapid compared to the leak depressurization rate, that is, development of a leak does not arrest the pressure rise in this case. The user function module denoted CFFst is called from EVNTRE.

Case 4: The pressure rise is comparable to the leak depressurization rate, that is, development of a leak arrests the pressure rise. This type of pressure rise would be expected if all containment heat removal systems have falled, leading to slow overpressure. The user function module denoted CFSIw is called from EVNTRE.

Question 104. Are Sprays Impaired due to Late Containment Failure or Environment?
 3 Branches, Type 2, 7 Cases

The branches for this question are:

1. L.2-Sp The sprays are functional and operating after the bulk of CCI has occurred.
2. L2aSp The sprays are functional and are available to operate if power is recovered.
3. L2fSp The sprays are failed and cannot be recovered.

This question is not sampled; the quantification was done internally. The branch taken at this question depends upon the branches taken at Questions 91 and 103. The machanisms by which the sprays are failed are discussed in Question 61.

Case 1: The sprays are alraady failed, or the containment fails by catastrophic rupture. It is believed that catastrophic rupture would involve failure of the sprays. A widely accepted scenario for catastrophic rupture involves the "unzippering" of the containment shell at the $s, i n g i n e$. Because the spray piping penetrations are located above the springline, the sprays are certain to be damaged. The quantification for this case is.

Branch 1:	L.2-Sp	-	0.0
Branch 2:	L.2 $\mathrm{E} p$	-	0.0
Branch 3:	L.2 FSp	-	1.0

Case 2: The sprays are operating, and there is either no containment failure or failure involving a leak in containment. The mechanisms for failing che sprays include clogging of the sumps by debris, direct damage to the piping by hydrogen burns, or dislocation of the piping. It is believed that the threat due to these mechanisms is low. The quantifloation for this case is:

Branch 1:	L2-So	-	0.95
Branch 2:	L2aSp	-	0.00
Branch 3:	L2fSp	-	0.05

Case 3: The sprays are available to operate if power is recovered, and there is either no containment failure or failure involving a leak in containment. As in Case 2, the mechanisms for failing the sprays include ologging of the sumps by debris, direct damage to the piping by hydrogen burns, or dislocation of the piping. The quantification for this case is:

Branch 1:	L.2-Sp	-	0.00
Branch 2:	L.2aSp	-	0.95
Branch 3:	L2fSp	-	0.05

Case 4: The rays are operating, and there is a rupture failure in the upper cow-ainment. It is believed to be indeterminate whether the sprays will fail. The quantification for this case is:

Branch 1:	L.2-Sp	-	L.50
Branch 2:	L. 2 aSp	-	0.00
Branch 3:	L2fSp	-	0.50

Case 5: The sprays are available to operate if power is recovered, and there is a rupture failure in the upper containment. It is believed to be indeterminate whether the sprays will fail. The quantification for this case is:

Branch 1:	$\mathrm{L} 2 \cdot \mathrm{Sp}$	-	0.00
Branch 2:	L 2 aSp	-	0.50
Branch $3:$	L 2 fSp	-	0.50

Case 6: The sprays are operating, and there is a rupture failure in the lower containment. It is believed that spray failure will be unlikely. The quantification for this case is:

Branch 1:	L2-Sp	-	0.80
Branch 2:	L2aSp	-	0.00
Branch 3:	L2fSp	-	0.20

Case 7: The sprays are available to operate if power is recovered, and there is a rupture failure in the upper contsinment. It is believed that spray failure will be unlikely. The qur. ification for this case is:

Branch 1:	Li. - Sp	-	1.00
Branch 2:	L2aSp	-	.80
Branch 3:	L.2 fSp	-	0.20

Question 105. Is ac Power Recovered Very Late? 3 Branches, Type 2, 4 Cases

The branches for this question are:

1. L2-ACP ac power is available after prompt CCI.
2. L2aACP ac power is not avallable, but may be recovered in the future.
3. L2fACP ac power is not available for this time period, and cannot be recovered.

Cases 3 and 4 of this question are sampled. The distributions are based on the power recovery analysis for Sequoyah discussed in Question 22. The branch taken at this question depends upon the branches previously taken at Questions 1, 9, 10, and 90 .

The time period of interest here is from the end of the parind csnalioict in Question 90 to 24 h . The start of this period is generally after almost all the fission products have been released from the cuI. If power is restored during this period, eprays will become available.

Case 1: Power was avallahle at the start of the accident and remains available. The quantification for this case is:

```
Branch 1: L2-ACP . 1.0
Branch 2: L2aACP - 0.0
Branch 3: L2fACP - 0.0
```

Case 2: Power was not available at the start of the accident and is not recoverable. The quantification for this case is:

Branch 1:	L2-ACP	\quad	0.0
Branch 2:	L2aACP	$:$	0.0
Branch 3:	L2 fACP		1.0

Case 3: By Cases 1 and 2, this case and the following case have electrical power not initially available, but recoverable. The AFWS was operating at the start of the accident but failed a few hours later after battery depletion; the operatoss depressurized the secondsry system while the the AFWS was operating. Either there was no fail of the RCS pressure bo. adary before the TAF was uncovered or an $S_{3} \ldots \ldots$ pump seal fallure occurred. This case applies to PDSs TRRR-RDR, and $S_{3} R R R-R D R$. The recovery period for this case is 17 to 24 h . The mean value for power recovery in this period gives the following quantification:

Branch 1:	L2-ACP	0.897
Branch 2:	L2aACP	0.103
Branch 3:	L2fACP	0.000

Case 4: This case inciudss the blacko t PDSs not included in the previous cese: TRRR-RSR, $S_{2} R R R-R C R$, and $S_{3} R R R-R C R$. The recovery periad for this case is 9 to 24 h . This case applies to PDSs. The mean value for power recovery in this period gives the following quantification:

Branch 1:	L2 ACP	-	0.672
Branch 2:	L2 HACP	-	0.328
Branch 3:	L2 EACP	-	0.000

Question 106. Ve:y Late Sprays?
3 Branches, Type 2, 4 Cases
The branches for this question are:

1. $L 2 \cdot$ Sp The containment sprays are operating after prompt CCI.
2. L2aSp The concoish uptayb ale miluole and will operate when electric powe is restored.
3. L2fSp The containment sprays are failed and cannot be recovered.

This question is not samplnd. If ac power is recovered, the sprays operate if they are not failed. The branch taken at this question depends upon the branches previously taken at Questions 104 and 105.

The period of interest here is the same as in the previous question. If power has been recovered, and the sprays were "available" before, the sprays operate in this petiod. If sprays are recovered during this time period, and if the debris bed is coolable, spray operation during this period is required to prevent dryout and subsequent concrete attack.

Case 1: The sprays wer operating in the previous period or power has been recovered and the containment did not fail by catastrophic rupture. The sprays operate during this period. The quantification for this case is:

Case 2: The sprays were falled earlier and cannot be recovered. The sprays remain falled. The quantification for this case is:

Branch 1	1.2.Sp	-
Branch 2:	L2asp	-
Branch 3:	L2fSp	

Case 3: The sprays were available to opezate when power was recovered, and power has been recovered. The quantification for this case is:

Branch 1:	L.2.Sp	.	1.0
Branch 2:	L.2aSp	.	0.0
Branch 3:	L2fSp	-	0.0

Case 4: The sprays were avallable to operate when power was recovered, power has not been recovered, so the sprays remain unavailable. The quantification for this case is:

Branch 1:	L.2 -Sp	-	0.0
Branch 2:	L. aSp	-	1.0
Branch 3:	L. fSp	-	0.0

Question 107. Eventual Basemat Meltthrough (B*T)? 2 Branches, Type 2, 7 Cases

The branches for this question are:

1. BMT The prompt CCI eventually penetrates the basemat in the reactor cavity.
2. noBMT The basemat does not melt through, or the meltthrough is irrelevant because the containment has failed by some other mechanism.

This question is not sampled; it was quantified internally. The branch taken at this question depends upon the banches previously taken at Questions $4,25,58,65,78,82,87,89,103$, and 106.

The question of eventual BMT is considered here without respect to whether eventual overpressure failure of the containment occurs. From a risk perspective, if overpressure failuze occurs, whether BMT occurs is ifrelevant since most of the fission products releastd will be released through the aboveground failure. If the debris bed is coolable and there is a replenishable water supply, b, 价 is not credible. The basemat at Sequoyah consists of ai $\cdots . .10 \mathrm{ft}$ of 12 mestone concrete. Thus, even with a large fraction of the core invelved in CこL and no water available, eventual penetration of the basemat by the core debis is not assured. The amount of time required for meltthrough of the bascmat is on the order of a few days. This question was quantified by the analysts involved; advice was solicited from D, R. Bradley of SNL.

Case 1: The containment is failed alresdy, or there is no VB. In the first case, the probability of BMT is irrelevant, and in the second case, it is 0.0 . The quantification is:

Branch 1:	BMT	-	0.0
Branch 2:	noBMT	-	1.0

Case 2: There is no prompt CCI; BMT is not possible at this time. If the debris bed is coolable and eventually bolls off the cavity water, BMT would occur after lato overpressure failure of containment and thus would be irrelevant. The quantification for this case is:

```
Branch 1: BMT 0.0
Branch 2: noBMT - 1.0
```

Case 3: For this case and the following cases, CCI occurs and is of interest for Cases 1 and 2. For Case 3, a large fraction of the core is involved in CCI and the water supply to the core debris in the cavity is replenishable. There will be more heat loss upward into the water covering the debris than if the cavity were dry. Whether the concrese attack will penetrate the basemat is not known with any certainty but no meltthrough is estimated to be mere iikely than meltthrough. The quantification for this case is:

```
Branch 1: BMT . 0.25
Branch 2: noBMT . 0.75
```

Case 4: A large fraction of the core is involved in CCI and the water supply to the core debris in the cavity is not replenishable. More of the decay heat will be directed downward into the concrete than in Case 3, so BMT is more likely than in Case 3. The quantification for this case is:

Branch 1:	BMT	0.40
Branch 2:	no BMT	0.60

Case 5: An intermedlate frac:ion of the core is involved in CCI and the water supply to the core lebris in the cavity is replenishable. BMT is less likely than if a large portion of the core were involved in CCI. Considering the thickness of the Sequoyah basemat, BMT is unlikely. The quantification for this case is:

Branch 1: BMT	0.05	
Branch 2:	noBMT	0.95

Case 6: An intermediate fraction of the core is involved in CCI and the water supply to the core debris in the cavity is not replenishable. BMT is less likely than if a large portion of the core were involved in CCI in a dry cavity (Case 4), but more likely than if an intormediate fraction of the core is involved and the water supply is replenishable (Case 5). The quantification 1.

| Branch 1: | BMT | 0.20 |
| :--- | :--- | :--- | :--- |
| Branch 2: | noBMT | 0.80 |

Case 7: Only a small fraction of the core is involved in CCI. BMT is less likely than if a iarger fro tion of the core is involved, and does not depend strongly on whether the water supply to the debris is replenishable. The quantification for this case is:

Branch 1:	BMT	0.02	
Branch 2:	noBMT	-	0.98

Question 108, What Is the Very Late Pressure in the Containment? 1 Branch, Type 4,5 Cases

The single branch for this question is always taken. The branch is:

1. L2-PBase The baseline pressure in containment during the very late time period.

One parameter is updated in this question:
P43. L-PBase The late baseline pressure, Parameter 43, is updated in this question.

Cases 4 and 5 of this guestion are sampled; the distribution for the parameter was determined internally. The assignment of the parameter depends upon the branches taken at Questions $4,25,58,63,65,78,82,88$, 89,103 , and 106.

The baseline pressure in containment at a very late time is established to determine if eventual overpressure occurs. Late overpressure can be caused by condensible gases, noncondensible gases, or both.

If theis is no containment heat removal, and the vessel has been breached, late overpressure by steam is assured. An IDCOR calculation ${ }^{A \cdot 1-7}$ for an 52 HF sequence (small LOCA with fallure of ECCS and spravs in recirculation) indicates overpressure by steam at about 7 h after vessel failure and about 5 h after the ice has melted. A BMI-2160 calculati, A.1-10 for an S 3 HF sequence (small LOCA with failure of ECCS and sprays in recirculation) indicates overpressure by steam at about 12 h after vessel failure arid about 3 in after the ice has melted.

If there is containment heat removal, and prompt CCI occurs, it is not known with any certainty if the containment will fall due to noncondensible gases alone. A BMI-2104 calculationA.1-8 for a TMLB' δ sequence (fast station blackout with late fallure) indicates that overpressure ocours due to noncondensibles about 7 h after vessel failure while the IC is still funct ional. IDCOR calculationsA.1-7 for a TMLB' sequence (fast station black jut with temperature-induced pump seal failure) and an S2HF sequence (small LOCA with failure of ECCS and sprays in recirculation and retention of water in the upper containment) indicate that overpressure occurs due to noncondensibles more than 20 h after vessel failure. A BMI-2160A,1-10 calculation for an S3H sequence (small LOCA with failure of ECCS in recirculation, but operation of sprays) indicates that the containment never fails by overpressure due to noncondensibles when the calculation has been carried out to a time about 16 h after vessel falluxe. Essentially all of the metals in the debris were predicted $x o$ be consumed at the end of the calculation, and by overpressurization did not appear to be imminent.

Case ?: Either the contaiment falled before VB, at VB, or after the bulk of hydrogen and radionuelides release during CCI, or VB was averted. The baselins pressure w\$11 be minima. The assignment of the paramerer is:

Parameter 43: L-PBase . 103.40

Case 2: No prior containment failure has ocourred and CCI was not initiated promptly at VB. Either sprays are operating or there is late heat removal from the debris bed in the cavity due to a replenishable water supply, The containment pressure should be quite lnw. The assignment of the parameter is:

Parameter 43: L-PBase. 131.0

Case 3: No prior containment fallure failure has ocourred and there is no containment heat removal. Thete is a large amount of steam in containment. Containment failure is assured as discussed above. Failure should occur by about 12 h after $V B$. The pressure is set artificially high to assure failcice in Quescion 109. The assignment of the parame er is:

Parameter 43: L-PBase . 999.0

Case 4: No prior containment failure has occurred and containment heat removal exists. The CCI was prompt or slightly delayed. If containrent failure occurs, it will be due to noncondensibles generated during CCI, and it will occur about 20 h after VB. The assignment of the parameter, based on the mean value of the distribution is:

$$
\text { Parameter 43: L-PBase . } 189.60
$$

Case 5: No prior containment failure has occurred and no containment heat removal exists. The CCI was prompt and there is minimal steam in containment. The pressure will be somewhat higher than for Case 4. The assignment of the parameter, based on the mean value of the distribution is:

Parameter 43: L-PBase - 241.30

Question 109. Very Late Containment Failure and Mode of Failure? 6 Branches, Type 6, 2 Cases

The branches for this question are:

1. $L 2 n C F$ There is no very late containment failure.
2. L2-CFUCL There is a very late containment felure, which is a leak in the upper containment; the nominal hole area is $0.1 \mathrm{ft}^{2}$.
3. L2-CFLCL There is a very late containment failure, which is a leak in the lower containment; the nominal hole area is $0.1 \mathrm{ft}^{2}$.
4. L2-CFUCR There is a very late containment failure, which is a rupture in the upper containment; the nominal hole size is $1 \mathrm{ft}^{2}$.
5. L2.CFLCR

There is a very late containment failure, which is a rupture it. the lower containment; the nominal hole sise is 1 ft .
6. L2-CFCtR There is a very late containment failure, which is by catastrophic rupture; the area of the hole is at least 7.0 ft^{2} (and may be considerably larger) and there is extensive structural damage.

For this question, a module within the user function subprogram is evaluated to determine whether the containment falls, and, if it fails, the mode of fallure. The user function module called in this question depends upon the branch taken in Question 108.

For the quasi-static pressure load experienced for long-term overpressure of the containment, the user function assigns the very late baseline pressure in containment, Parameter 43 , to the load pressure. This is then compared to the containment fallure pressure, Parameter 25. If the load pressure exceeds the failure pressure, the containment fails. The random number, Parameter 26 , is used to determine the mode of containment fallure. "ie methc of determining the mode of containment fallure is described briefly in ubsection A.2. (See also Issue 2 in Volume 2, Part 3.)

Case 1: The pressure rise is comparable to the leak depressurization rate, that is, development of a leak arrests the pressure rise. This type of pressure rise is expecied for overpressure fallures. The user function module denoted CFSIw is called from EVNTRE.

Case 2: Since Case 1 is always taken, this case becomes irrelevant. It is provided to insure thet no containment fallure occurs during the very late time perlod. The user function module denoted NoCF is called from EVNTRF.

Question 110, Sprays After Very Late Containment Failure?
 2 Branches, Type 2, 4 Cases

The branches for this question are:

1. L3-Sp The sprays are functional and operating after the very late time period.
2. L3n3p The sprays are falled and cannot be recovered.

This question is not sampled; the quantification was done internally. The branch taken at this question depeads upon the branches taken at Questions 105, 106, and 109.

If the containment is still intact and is not bypassed, operation of the sprays in the final time period will prevent a conlable debris bed from drying out. The cime period of interest here is 24 h or more after the start of the accident. It is assumed that if ac power is not failed by this time period, it will always be recovered. If sprays were not falled
before this time, or do not fall by late overpressurization of containment, they will still cperate or be initiated. The mechanisms by which the sprays are falled are tiscussed in question 61.

Case 1: The sprays are already falled, ac power is nonrecoverable, or the containment fails by catastrophic rupture. It is believed that catastrophic rupture would involve failure of the sprays. A widely accepted scenario for catastrophic rupture involves the "unzippering" of the conteinment shell at the springline. Because the spray piping penetrations are located abova the springline, the sprays are certain to be damaged. The quantification for this case is:

Branch 1:	L3-Sp	0.0	
Branch 2:	$1.3 n s p$		1.0

Case 2: The sprays arz operating or ac power has been recovered, and there is either no onntainment fallure or fallure involving a leak in containment. The mechanisms for failing the aprays include clogging of the sumps by debris, di.ect damage to the ing by hydrogen burns, or dislocation of the piping. It is believec that the threat due to ti se mechanisms is low. The quantification for this case is:

Branch 1:	$1.3-\mathrm{Sp}$	0.95	
Branch 2:	L3nSp		0.05

Case 3: The sprays are operating or au power has been recovered, and there is a rupture failure in the upper containment. It is believed to be indeterminate whether the sprays will fall. The quantification for thi. case is:

Branch 1	L3-Sp	-	0.50
Branch 2:	L3nSp	-	0.50

Case 4: The sprays are operating or ac power has been recovered, and there is a rupture failure in the lower containment. It is believed that spray fallure will be unlikely. The quantification for this case is:

Branch 1: $\mathrm{L3}-\mathrm{Sp}$	0.80	
Branch 2:	$\mathrm{L3nSp}$	0.20

Questic 111 . Does Core Concrete Attack After Late Bofloff and Very Late Conteinment Failure?
2 Branches, Typs 2, ? Cases
The branches for this question are:

1. L3.CCI CCT ocours after a long delay to boil off the water in the cavity.

Case 2 of this question is sampled qero-one, and was quantified internally. The branch taken at this question depends upon the branches previously taken at Questions $4,25,26,63,80$, and 110 .

If the debris bed is coolable, and there is a replenishable water supply, very late CCi will not occur. If the debris bed is coolable and there is no replenishable source of water to the cavity, core-concrete attack may occur after the cavity watar is boiled off. When this is the situation, late overpressurization of the containment is assured, as is addressed in Questions 108 and 109. The time to boil the water from a deeply flooded cavity is on the order of 30 h . E . Copus of SNL performed HOTROX calculations in which the amount of zirconium metal and zirconium oxide in the dibitic wes veried Features of the HOTROX model for analysis of solidified core debris interaction with concrete are: transient conduction equations, zirconium interaction with gaseous by-products, and a threedimensional energy balance. The calculations indicated that remelting of the core debris would cocur in less than 4 h regardluss of zirconimm metal content, and CCI would initiate soon after at rates ranging from 10 to 40 cm / h.

Case 1: The debris bed is coolable, and the water supply to the cavity is replenishable. CCI will not be initiated at a very late time. The quantification for this case is:

```
Branch 1: L3.CCI 0.0
Branch 2: L3nCCI , 1.0
```

Case 2: The debris bed is coolable, the cavity was deeply flooded at VB, and at containment failure there is not a replenishable water supply to the cavity. It is believed that late concrete attack will ensue after very late containment failure, if there is no water supplied to the debcis. There is much uncertainty involved with whether there will be any means or attempts to supply water to the cavity when the time elapse since containment failure is on the order of a day. It is assumed to be likely that a water supply at this time will be uravailable. As this case was sampled zeroone, each observation had all the probability assioned to one of these two branches. Taking the average over all the observations, the quantification for this case is:

Branch 1:	L3-CCI	0.75
Branch 2:	L3nCCI	0.25

Case 3: Prompt CCI has already occurred. The quantification for this case is:

Branch i:	L3.CCI	-	0.0
Branch 2:	L3nCCI	-	1.0

A.1.2 Listing of the Accident Progression Event Tree

This subsection of Appendix A 11 ste the Sequoyah APET. The 111 questions in the Sequoyah APET are listed concisely in Table 2.3-1. The event tree itself is too large to be depicted graphically and exists only as the computer input listed here.

The Sequoyah APET used in the accident progression analyses for NUREC. $1150^{\text {A. } 2 \cdot 18}$ consists of 2690 lines that form a computer input file. This file is designed to be easily understood, with mnemonic abbreviations for each branch of every question. The structure of the input file is defined in the EVNTRE r ference manual, NUREG/CR 5174. A.1-18

The APET was developed on a PC spreadsheet program, which greatlv facilitates keeping track of the references to previous questions when questions are added or subtracted, or when the order of the questions is changed in the course of the development of the tree. The APET appears as developed on the spreadsheet program. Comments that describe the cases in the APET appear to the right and are ignored by EVNTRE. Comments that introduce the parameters in the APET begin with a " $\$$ " character, and are also ignored by ENVTRE.

The APET listing that is presented in this section is the one that was used for plant damage state Group 2. Fast Station Blackout. For the other PDS groups, quantification of Questions 1 through 11 may be different, depending upon the differences in the FDS group definition. Questions 1 through 11 are referred to as initialization questions, and a listing of these questions for each PDS group is provided in Subsection A. 3 .

Case 2: Station bleckout

Case 1: Large break - Low pressure.

Case 2: No break of renctor not icramed system setpoint pressure.

Case 3: Secondary depressurization and \$3 or $\$ 2$ break, or SGTR - internediate pressure.
-use a : b) break with NW or 52 break with nobePr - high pressure.

Case 1: PORVs are cycling

Case 2: RCS not at setpoint pressure,
water loss is not through the PORVs.

Case 1: Gave seal cooling

Case 2: RCS st system setpoint pressure, distribution from ASEP special panel.

Case 3: RCS at high proseure

Case 4: RCS at IM or low prossure.

Case 1: The operstors have opened tt. PORVs before the core uncovered.

Case 2: The operators are directed to open the PORVS by procedures (must have AC power and pumps running).

Case 3: Opening the PORVs is prohibitad, of the operator felled to follow procedures

```
    20 Tempersture-indueed SoTk
        2 E-SG7R noESOTR
    2
```



```
        0.014 0.086
        Otherwise 1.000
21 Truperature-induced hot leg or surge line break?
    2 E-HLA noE-El.A
    2 1 2
```



```
        E-SSPr & nOPzIDP & PORVnSO & noEPSF & noESOTR
```



```
        Brk-S3 or B-SGTk) &( SGaKR or SOdHR) & noPriDP & PORVnSO
        0.035 0.065
    1
        -1
        121,2,1 121,2,2
        Otherwise (1,0
22 Is AC power recovered early (Between uncovering and VB)?
        E-ACP EAACP EEACP
            2 2 3
                7
        B-ACP
        1.000 0.000 0.000
    1 7
        BEACP
        0.000
        SGaHR or SOTER 
        1 1
        2
        0.694 0.306
            - }1
        * 2
        & noSacD?
            0.880 0.000
        0.320 0.680
            - 10
        Brk-53 & SecDP
        0.721 0.278 0.000
        Otherwlse
        0.612 0.368 0.000
23 Afler power recovery, is core cooling re-established?
    E-RECC EnRECC
        1 2
\begin{tabular}{rrrrrr}
7 & & 22 & & 4 \\
2 & \(*\) & 1 & \(*\) & 2 \\
BaACP & \(\&\) & E-ACP & \(*\) & BaECCS \\
0.050 & & 0.050 & & \\
Otherwise & & \\
0.000 & & 1.000 & &
\end{tabular}
24 Rate of blowdown to containment?
```


Case I: Large break - initicl or induced

Case 2: Event V, no blowdown to containment.

Case 3: $\$ 2$ braak - initinl, induced, or deliberate, includes stuck open PORV.

Case 4: 53 break - initisl ot induced, or cycling PORV, or SGTR (w / eycling PORV).

Case 1: Large break of $\$ 2$ break with FORVs open, low pressure, 200 psit or less.

Case 2: S2 break, intermediate pressure, 200-600 psia.

Case 3: \$3 break, hish pressure, 1000-2000 psie (ERD-53 includes B-PORV).

Case 4: RCr pressure boundary intact, systom setpoint pressure, $\quad 2500$ psis.

Cese 1: No porer, no initial ECCS, or ne recovered ECCS.

Case 2: Larse break with LPIS available. RCS will depressurise before core damage has progressad very far.

Case 3: Depressurization was either later or oarlifor than case 2.

Case A: Sequencer without recoverable ECCS - includes nondepresaurizad cases with LPIS available.

Case 5: Recovered $\$ 30$ with no initial NFW (fast TMLS'), resovsry period is 1 to 2.5 hours.

Casa 6: Racovered SBO Nith initial AiW and 52 break, recovery period is 1 to 4.5 hours.

Case 7: Recovered sBo with initial AFW, no asecondary DePf and S3 break, recovery period is 4 to 6 hours.

Cace 8: Recovered $5 B O$ with initial AFW, eccondery DePr and S3 break, recovery

period is 6 to 10,5 hours.

Case 9: Recovered SBO with initici NFW, no break, x ecovery 7 to 12.5 hours

Case 1: Sprays operated initially.

Case 2: Spreys vere initiaily falled, or loss of sarvice weter eventwelly failed sprays.

Case 3: Sprays wert inltially available, and power was recovered.

Cese 6: No power recovery,

Case 1: Fans opereted inicially.

Case 2: Fans were intially failed.

Case 3: Fans were initially availiable, and power was recoverad.

Case 4: No powar recovery,

Case 1: No containment heat ramoval - ice is melted.

Case 2: No early blowdom to containment.

Case 3: Large induced LOCA with a Eransient initiator.

Cane h: A-aize early blawdom with ECCS injection efter power racovery.
L.se 5: S3-size blowdom with efther sproy or station blackout.

Case 6: S3-aize blowdown without sprays
(ECCS falled in either recirc, or inj.)

Case 7: S2-aize blowdown with either spray

Case 2: Fans operating, quiescent burn

Otherwise	1		
1	$L C-S L$	10	16
$L C-L C$	E-LCBC		

FUN- B 2 Cnc 2
GETRESE $2 \quad 0.110 \quad 0.053$
Determine B 2 mole fraction and parse into discrete levels

231 E-ICBC - Parmeter 15 Burn completeness in IC (for B2/02 consumption)
31 F E-ICBC Paraneter 15 Cese 1: Fans operating, turbulent burn
1 completeness model.

E-EEFan 15						
$1 \mathrm{C}-02$		C-Sta	82.10	\&-ICBC		
FUN-B2Cnc3 0.160 0.110 0.055						
GETHRESB	5	0.210	0.160	0.160	0.110	

Determine B 2 mole fraction and parse into discrete levels

5 What is the B2 concentration in the UP and burn completeness, if ignited

6	HUF>21	BUP>16	HUP>14	BUP>11	FUP>5.5	LOHUP
6	1	2	3	4	5	6

231 E E-UPBC - Parameter 16 Burn completeness in UP (for B2/02 consumption)

Case 1: Fans operating, turbulent burn completeness model.
Case 2: Fans operatins, quiescent burn completeness model.

Determine E_{2} mole fraction and parse into discrete levels

34	176，4，1，1		0.00				
35	176，6，2，1		0.00				
4	25		67		72		63
	3	＊	1	＊	2		2
	$1-158 \mathrm{Pr}$	6	Hi－FCor	6	Smilole		E2－CWet
	2.000		0.000				
2							
34	311.30		0.60				
35	536.50		0.00				
4	25		67		72		63
	3	＊	2	＊	2		2
	$1-1 m P r$	6	Md －5Cor	6	Smilole		E2－CWe：
	1.000		0.000				
2							
34	174，3，2，1		0.00				
35	176，3，2，1		0.00				
4	25		67		72		63
	3	＊	3	＊	2		2
	$\mathrm{I} \cdot \mathrm{ImPr}$	4	Le－FCor	6	Smbiole	6	E． 2 － CW et
	1.000		0.000				
2							
34	174，4，1，1		0.00				
35	174，6，2，		0.00				
4	25		67		72		38
	3	＊	1	＊	1		1
	$1-1 m P r$	8	Bi－FCor	6	Letiole	6	$\mathrm{Hi}=2 \mathrm{rOx}$
	1.000		0.000				
2							
34	427．80		0.00				
35	174，2，2，1		0.00				
4	25		67		72		30
	3	＊	2	＊	1		1
	$1-1 \mathrm{mPr}$	6	Md －FCor	6	$\mathrm{L}_{8} \mathrm{FHole}$	－	Bi－2rOx
	1.000		0.000				
2							
34	323.00		0.00				
35	174，3，2，1		0.00				
4	25		67		72		38
	3	＊	3	＊	．		1
	$1 \cdot \mathrm{ImPr}$	6	Lo－FCor	6	Lefrole	6	H1－2rOx
	1.000		0.000				
2							
34	189.70		0.00				
35	174.4 .2 .1		0.00				
3	25		67		72		
	3	＊	1	＊	1		
	$\mathrm{I} \cdot \mathrm{ImPr}$	\＆	Hi－FCor	6	$L_{8} \mathrm{HO}$		
	1.000		0.000				
2							
34	418.70		0.00				
35	174，2，2，1		0.00				
3	25		67		72		
	3	＊	2	＊	1		
	$\mathrm{I}-\mathrm{ImPr}$	6	$\mathrm{Hd}-\mathrm{FCor}$	6	L88010		
	1.000		0.000				
2							
34	304.50		0.00				
35	174，3，2， 2		0.00				
3	23		67		72		
	3	－	3	＊	1		
	$1-1 / 8 P^{1}$	6	Lo－PCor	6	Leflole		
	1.000		0.000				
2							
34	180.50		0.00				
35	176，4，2，1		0.00				
3	25		67		72		
	3	＊	1	＊	2		
	$1-\operatorname{lmPr}$	6	Hi－FCor	6	Smiliole		
	1.000		0.000				

> Cese B：EPFCE et intermediste pressure， hish core frection，smel：hole in vessel，wet cavity，low in－vessel Ir ozidation．Losds Issue fr，Case 3，3b

Case 8：KPPE at intermediate pressure， taedius core fraction，sanall hole in vessel，wet cavity，Low in－vessel Zr oxidation，Loads Issue 48 ，Case ？，3b

Case 10：牟位 at intermediste pressure， Low cors iraction，small hole in vessel，wet cavity，low in－vessel $2 r$ oxidation Loads Issue \＄6，Casa 3，3b．

Case 11：HPME st intermediate pressure， high core fraction，lazge hole in vessel，dry cavity，high in－vessel $2 r$ oxidation，Loads Issue $4 B$ ，Case $3 a, 3 b$

Case 22：RPME at intermediste pressure． oedium core fraction，large hole in vessel，dry cavity，high in－vessel Zf oxidation，Loads issue 48 ，Case $3 a, 3 b$ ．

Case 13：BPME at intermediate pressure， Low core iraction，large hole in vessel，dry cavity，high invessel Zr oxidation．Loads Issue 48，Case 3a， 3 b

Case 14：HPME at intermediate pressure， high core fraction，large hole in vessel，dry cavity，low in－vessel $2 r$ oxidation．Loads Izsue 48，Case 3a，3b

Case 15：EPME at interwediate pressure toedium core fraction，large hole in vessel．dry cavity，low in＂vessel Zr oxidation，Loads Issue 48，Case 3a，3b

Case 16：RPME at inturnediate pressure， Low core fraction，La＊ge hole in vessel，dry cavity，low in＊vessel Zr oxidation．Loads Issut fB，Case 3a，3b

[^3]

Wow cort fraction, Large sole in vessei, dry cavity, and significant R2 burned before VB, Loads Issue 46 , Cese 3a, 3b.

```
Case E: ERPM at intermediate pressure,
    high core frection, small hole in
    vessel, dry cavity, and significant BL
    burned before \(V B\), Loeds Issue \(f B\), Case
    3k, 3b.
```

Cese 8: HPTE et intermediete pressure, nedium core fraction, small hole in
 burlied before VB, Loeds Issue 4 , Cese 3a, 3b.

Cese 10: EPPC at interwediste pressure, low core fraction, small hole in vessel. dry cavity, and significant 82 burned befors VB . Loads Issue $\$ 8$, Case 3a, 3b.

Case 11: HPTE at high or setpoint pressute high core fraction, wet cavity, hoads Issue 48, Case 1, Lb

Case 12: GPME at high or setpoint pressure medium core fraction, wet cavity. Loads Issue 48, Gase 2, 1b.

Case 13: HPTE st high or eetpoint pressure low core fraction, wet cavity, Loads Issue © Case 1, Ib.

Case 14: HPME at high or setpoint pressure high core frection, large hole in vessel, and dry cavicy. Loads Issue 98 , Cse 1a, 1b.

Case 15: KPTE at high or setpoint pressure mediva core fraction, large hole in vessel, and dry cavity. Loads Issue fo, Case 1a, 2 b .

Case 16 : 日RPE at high or setpoint pressure low core Irsction, large hole in vessel, and dry cavity. Loads Issue 48 , Case 1a, ib.

Case 4: Low pressure or no Bipte, and no ex-vessel steam explosion.

Case 5: Ex-vesse: steam explosion end high level of core fraction released from vessel at VB .

Csse 6: Ex-vessel steam explosion and aedium level of core fraction released from vessel at VE.

Case 7: Kx-vessel steam explosion and low level of core fraction released from vessel ot VB,

Case 8: VB without EPTE, Alpha, rooket, or ex-vessel steam explosion.

Case 9: No vessel breach

Parse the fraction of core available for CCI into discrete levels.

Case 1: No vessel breach.

Case 2: At VB, most of debris leeves the cavicy, the later debria enters cavity with water from accumulators and/or LPIS in the cavity.
Case 3: At VB, debris arrives in a dry cavit, coincident with water from the eccumulators and/or LPIS.

Case a: At VB, debris arrives in a dry cavity, without coincident water.

Case 5: At VB, most of debris leaves the cavity with the cavity water; the later debris recelves water f ron the LPIS or froe LC water spilling back into cavity Case 6: At VB, the debris is fragmented

es 1 passes through the cavity water, and is held up it the cavity, the later debris deposits on top of the tregments
Cese 7: At VB, low RCS pressure may cause reageloneration of debris in cavity.

Cese 2: Spreys felled enrlier

Case 3: Spreys were evallable and power hes been recovered.

Cese 4: Ne power not recovered.

Crae 1; Fans operated at vessel breach

Case 2: Fans failed after vessed breach.

Case 3: Fans eveilable ofter vessel breach, power is recovered.

Case 4: Fans avallable after vessel breach, power not recovered.

Case 1: level 2 ice bypass et VB, and early $\$ 3-8 i z e$ blowdown, or no early blowdown.

Case 2; Ice intact et vessel breach, early S3-biza blowdown, or no eazly blowdown.

Case 3: Level 2 ice bypass after VB, with A or $\$ 2$ blowdown.

Case ": Ice intact after Vg, with other than A or S2 blowdown.

Casa 5: Total bypass at vessel breach.

Case 2: No containoent fallure, fans operating. ice intact or aprays operating, or both.

Case 3: No convainment fallure, ice intact, but no tans or eprays.

Cese 5: Initial AFw and (ho break w/ secondary depressurizetion). Recovery period is 17 to 26 hours.

Cast i: All other bleckauts, recovery period it 8 to 24 hours

Cese 1: Sprays operated ofter VB.

Ces. 2: Epreys falled earlier.

Cese 3: Spteys were evaliable and powez wat recovered.

Case 6: AC power not reoovered.

Case 1: No VB, or con'simment is already
feiled, welt-thru is irrelevent to risk

Case 2: No prompt ©c1, welt-thry is not possible et this time. If CDE and lete water boilotf, Bert would occur after CF.

Case 2: barge amount of core is involved in prompt CCI and water supply to cevity is replenishable.

Cese 4: Lerge anount of eore is involved in prompt CCI and water supply to cevity is not replenishable.

Case 5: Intermediste anount of core is involved in prompt CCI and water supply to cavity is replenishable.

Case 6: Intermediate amount of core is involved in proopt CCI and water supply to cavity is not replenishable.

Case 7: Seall amount of core is involved in CCI.

Cese 1: Conteinment failed or no VB.

[^4]

A.2.3 Description of the Sequoyah Binner

The binner is the computer input that instructs EVNTRE how to group the outcomes that are produced in the evaluation of the APET. There are too many outcomes for them all to be saved for analysis afterwards, so as each unfque path through the event tree is evaluated, the probability of that path is added to the probability for the appropriate accident progression bin (APB). The term "binner" refers to the set of computer input that defines these bins.

Section 2.4 of this volume gives a general description of the APBs anci defines each attribute of each characteristio. That material is not repeated here, The binner itself, a computer input file read by EVNTRE, defines the accident progression bins and is issted in Subsection A.1.4. This section of Appendix A contains a case by case description of the binner.

Characteristic 1. CF-Time (Time of conteinment fellure) 7 Attributes, 11 Cases

The attributes for this characteristic are:
A. V-Dry Check valve fallures resulted in a pipe break in an interfacing low pressure system. The releases are not serubbed.
B. V-Wet Check valve fallures resulted in a pipe break in an interfacing low pressure system. The releases are scrubbed.
C. CF.Early The containment failed during the period of core degradation.
D. CF-atVB The containment falled at the time of VB,
E. CF-Late The containment falled in the very late period, during the initial part of CCI (nominally a few hours after VB).
F. CF-VLate The containment falled in the very late period (from 12 to 24 h after $V B$) during the latter part of $C C I$.
G. NoCF The containment did not fail, nor did Event V occur.

This characteristic primarily concerns the time of containment failure. In addition to four time periods in which the containment may fail, there is an attribute for no contalnment fallure and two attributes concerning Event V, which initiates the accident and provides a large bypass of the containinent at the same time.

Case 1: This case defines the conditions for Attribute A, V-Dry. The conditions for this case are an Event V initiator and that the break is located such that the fire sprays in the auxiliary building will not scrub the releases.

Case 2: This case defines the conditions for Attribute B, V-Wet. The conditions for this case are an Event V initiator and that the break is located such that the fire sprays in the auxiliary building will scrub the releases.

Case 3: This case defines the conditions for Attribute G, NoCF. For this characteristic, no containment failure is interpreted to mean no fallure of the containment pressure boundary itself and no bypass by Event V. If an SGTR occurred, ens there was no other fallure or bypass of the containuent, it is inclubed in this case. SGTRs are considered separately in Characteristio 6, as they can occur in addition to failures of the containment itseli. The size or type of containment failure is treated in Characteristic 10 , and bypass of the containment is specifically identified there.

Case 4: This case defines the conditiuns for Attribute C, CF-Early, when there is a rupture failure of the containment. Early containment failure here means failure đuring core degradation, before VB, if it ocours. Cortainment failure due to hydrogen combustion before VB, as well as fallures to isolate the containment (from fallure to properly secure an airlock, for example) are included in this case. Isolation failures would provide an equivalent fallure area of about $1 \mathrm{ft}^{2}$, and thus are included in the rupture case.

Case 5: This case defines the condi+ions for Attribute D, CF-atVB, when there is a rupture failure of the containment. The containment fails within several uinutes of VB due to the events accompanying vessel fallure.

Case 6: This case defitas the conditions for Attribute E, CF.Late, when there is a rupture failure of the containment. The containment f alls during the 1 nitial part of CCI. It could occur anywhere from a few tens of minutes after VB to several hours after VB. Fallure in this time period is due to a burning of combustible gases created during CCI.

Case 7: This case defines the conditions for Attribute F, CF-VLate, when there is a rupture failure of the containment. The containment falls from several hours after VB to about 24 h after UTAF. Fallure in this time period is by eventual overpressurization of the containment due to steam and noncondensible gases.

Case 8: This case defines the conditions for Attribute C, CF-Early, when there is a leak failure of the containment. The containment fails by combustion or detonation of hydrogen during core degradation.

Case 9: This case defines the conditions for Attribute $D, C F \cdot a t V B$, when there is a leak failure of the containment. The containment fails by the events that accompany vessel fallure.

Case 10: This case defines the conditions for Attribute $E, C F-L a t e$, when there is a leak failure of the containment. The containment fails by burning of combustible gases created during CCI.

Case 11: This case defines the conditions for Attribute F, CF.VLate, when there is a leak failure of the containment. Failure for this case is by eventual overpressurization of the containment due to steam and noncondensible gases and BMT is also included in this case.

Characteristic 2. Sprays (Operstion of containment sprays) 9 Attributes, 9 Cases

The attributes for this characteristic are:
A. Sp-Early The sprays operate only in the early period, that is, during the time of core degradation.
B. $S p+E+1$ The sprays operate only in the early and intermediate periods, that is, before during core degradation, and immediately after VB.
C. $S p-E+I+1$ The sprays operate only in the early, intermediate, and late periods, that is, from UTAF through the initial part of CCI.
D. SpAlways The sprays always operate during the periods of interest for fission product removal, that is, for at least 24 h starting at UTAF.
E. Sp-late The sprays operate only in the late period, that is, during the initial part of CCI.
F. Sp-L+VL The sprays operate only in the late and very late periods, that is, from the start of CCI through the release of almost all the fission products from CCI.
G. Sp-VL The sprays operate only in the very late period, that is, during the latter part of CCI.
H. Sp-Never The sprays never operate during the accident.
I. Sp-Final The sprays operate only during the final period, which is not of interest for fission product removal.

This characteristic concerns the operation of the containment sprays. The sprays are important for reduction of aerosol concentrations in the containuent atmosphere.

Case 1: This case difines the conditions for Attribute A, Sp-Early, In this case, the sprays operate only in the period during core degradetion, before the UB (if it occurs).

Case 2: This case defines the conditions for Attribute $B, S p-E+I$. In this case, the sprays operate only before and at VB.

$$
A, 1,3 \cdot 3
$$

Case 3: This case defines the conditions for Attribute $C, S p-E+1+L$. In this case, the sprays operate only from the start of the accident through the initial part of CCI.

Case 4: This case defines the conditions for Attribute $D, S p A l w a y s$, In this case, the sprays operate continuously from UTAF for at least 24 h .

Case 5: This case defines the conditions for Attribute E, Sp-Late. In this case, the sprays operate only during the initial part of CCI.

Case 6: This case defines the conditions for Attribute F, Sp-L+VL. In this case, the sprays operate only during the late and very late perlods, that is, from the start of CCI through the release of almost all the fission products from CCI.

Case 7: This case defines the conditions for Attribute $6, \mathrm{Sp}-\mathrm{VL}$. In this case, the sprays operate only during the latter part of CCI, which includes release of almost all of the fission products from CCI.

Case 8: This case defines the conditions for Attribute H, Sp-Never. In this case, the containment sprays do not operate at all when they could contribute to fission product renoval.

Case 9: This case defines the conditions for Attribute I, Sp-Final. In this case, the sprays first operate 24 h or more after the start of the accident.

Characteristic 3. CCI (Core-concrete interactions) 6 Attributes, 6 Cases

The attributes for this characteristic are:
A. Frmt-Dry COI takes place promptly following VB in a dry cavity. There is no overlying water pool to scrub the releases.
B. PrmtShl CCI takes place promptly following VB. There is a shallow (about 5 ft) overlying water pool to scrub the releases.
C. No.CCI CCI does not take place.
D. PrmtDp CCI takes place promptly following VB. There is a deep (at least 10 ft) overlying water pool to scrub the releases.
E. SDly.Dry CCI takes place after a short delay, in a dry cavity. The debris bed is initially coolable, but the IImited amount of water in the cavity is not replenished. The delay time is the time needed to boil off the accumulator water.
F. LDly-Dry CCI takes place after a long delay, in a dry cavity, The debris bed is coolable, but the water in the cavity is not replenished. The delay is the time needed to boil off the water in a deep cavity.

This characteristic concerns the CCI; if it takes place, when it takes place, and whether there is overlying pool of water to sorub the fission products released from the CCI.

Case 1: This case defines the conditions for Attribute A, Prmt-Dry, CCI takes place promptly following VB in a dry cavity, As there is no water in the cavity after VB, whether the debris bed is coolable is not relevant. The cavity was dry before breach and the accumulators did not dischaige at VB.

Case 2: This case defines the conditions for Attribute B, PrmtShl. CCl takes place promptly following VB. The cavity was either dry just before vessel fallure and the accumulators discharge at VB, or the amount of water in the cavity was minimal and the debris was not coolable. When CCI starts there is about 5 ft of water in the cavity.

Case 3: This case defines the conditions for Attribute C. No-CCI, If neither prompt CCI nor delayed CCI takes place, there is no CCI. Either there was no VB, or the debris is coolable, water was present at $V B$, and the water supply is continuously replenished.

Case 4: This case defines the conditions for Attribute D, PrmtDp. CCI takes place promptly following VB, and the cavity water is deep (at least 10 ft) when CCI commences.

Case 5: This cass defines the conditions for Attribute E, SDly-Dry, CCI takes place after a short delay. The debris bed is initially coolable, and the cavity contains a limited amount of water (5 ft or less). The delay before the onset of CCI is the time needed to boil off the water.

Case 6: This case defines the conditions for Attribute F, LDly-Dry, CCI takes place after a long delay. The debris bed is initially coolable, and the cavity is full of water at VB. After all the water is boiled away, CCI commences in a dry cavity.

Characteristic 4. RCS-Pres (RCS pressure before VB)

 4 Attributes, 4 CasesThe attributes for this characteristic are:
A. SSPr Just before VB, the RCS is at system setpoint pressure, about 2500 psia. This pressure is determined by the setpoint of the PORVs.
B. HiPr Just before $\because \mathrm{B}$ tise RCS is in the range denoted high pressure. The nole in the RCS pressure boundary is small enough that the prescure spike that follows core slump decays away relatively slowly. The pressure at VB can range from 1000 to 2000 psia
C. ImPr Just before VB, the RCS is in the range denoted intermedfate pressure. The hole in the ROS is larger than for Attribute B, so the pressure at breach is within the range of 200 to 1000 psia.
D. LoPr Just before VB, the RCS is at low pressure, less than 200 psia.

This characteristic determines the pressure in the RCS just before the failure of the vessel. This pressure, together with the mode of VB , Characteristic 5, largely determines the events tim: take place in the containment immediately following VB. In most detailea, mechanistio analyses of core degradation, vessel fallure follows the relocation or slumping of many tons of molten core material into the lower head of the vessel. The lower head usually contains some water at this time, so the core slump generates a large amount of steam. This will increase the vessel pressure, at least temporarily, if the RCS was below the PORV setpoint pressure at the time of the slump. The pressure at $V B$ depends upon how fast the RCS pressure decreases after core slump and the delay between core slump and vessel fallure.

Case 1: This case defines the conditions for Attribute $\mathrm{A}, \mathrm{SSPr}$. The RCS is at system setpoint pressure, about 2500 psia, when the vessel falls.

Case 2: This case defines the conditions for Attribute $\overline{\mathrm{B}}, \mathrm{HiPr}$. The RCS is in the range denoted high pressure, 1000 to 2000 psia, when the vessel fails.

Case 3: This case defines the condtions for Attribute C, Impr, The RCS is in the range denoted intermediate pressure, 200 to 1000 psia, when the vessel fails.

Case 4: This case definee the conditions for Attribute D, LoPr. The RCS is at low pressure, less than 200 psia, when the vessel fails.

Characteristic 5. VB-Mode (Mode of vescel breach) 6 Attributes, 6 Cases

The attributes for this characteristic are:
A. VB-HPME $V B$ occurs when one or more penetration(s) fails and the vessel is above 200 psia . These conditions ensure HPME.
B. VB-Pour Molten core material pours out of the vessel at breach, driven primarily by the effects of gravity,
C. VB-Btmid Either there is a circumferentlal fallure of the bottom head of the vessel, or a large portion of the bottom head of the vese: falls
D. Alpha An Alpha mode failure occurs resulting in containment fallure as well as vegsel failure.
E. Rocket Upward acceleration of the vessel occurs, which results in contaimment failure as well as vessel failure (Rocket mode).
F. No-VB No VB occurs.

This characteristic determines the mode of vessel failure. The mode of vessel fallure and the pressure in the RCS just before the fallure of the vessel. Characteristic 4, largely determine the events that take place in the containment immediateiy folloving VB. In two of the failure modes, the fallure of the vessel directly causes the fallure of the containment as weli. Characteristic 5 is not used in SEQSOR. The information SEQSOR requires about HPME is obtained from Characteristic 9.

Case 1: This case defines the conditions for Attribute A, VB-HPME, HPME results when one or more penetration(s) fails and the vessel is above 200 psia.

Case 2: This case defines the conditions for Attribute B, VB-Pour. The molten core pours out of the vessel, driven primarily by the effects of gravity. This mode of vessel fallure always occurs if the vessel is at low pressure when it fails. It can also occur when the vessel is at higher pressures if the gases in the vessel escape before an appreciable nount of molten core material leaves the vessel.

Case 3: This case defines the conditions for Attribute $C, V B-B t m H d$, and the rocket mode failure of containment does not occur. The vessel fallure involves a substantial part of the bottom head.

Case 4: This case defines the conditions for Attribute 5 , Alpha, Alpha mode failure is defined to be a steam explosion in the vessel that falls the vessel and also results in containment failure.

Case 5: This case defines the conditions for Attribute E, Rocket. If gross bottom head fallure occurs and the vessel is at very high pressure, it is conceivable that the entire vessel could be propelled upward and somehow fail the containment.

Case 6: This case defines the conditions for Attribute F, No-VB. Core damage was arrested in time to preclude VB.

Characteristic 6. SGTR
3 Attributes, 3 Cases
The attributes for this characteristic are:
A. SGTR A steam generator tube rupture (SGTR) occurs. The SRVs on the secondary system are not stuck open.
B. SG-SRVO An SGTR occurs. The SRVs on the secondary system are stuck open.
C. No-SGTR An SGTR does not occur

This characteristic determines whether an SGTR occurs and, if it does, whether the SRVs on the secondary system are stuck open. Because the SGTR bypasses the containment, and can occur in addition to a direct containment failure, SGTRs are considered separately in this characteristic. The situation in which there was an SGTR but no failure of the containment pressure boundary itself was considered to be No-CF in Characteristic 1.

Case 1: This case defines the conditions for Attribute A, SGTR. An SGTR occurred and the SRVs on the secondary system are not stuck open. For a temperature-induced SGTR, the secondary SRVs do not stick open.

Case 2: This case defines the conditions for Attribute B, SG-SRVO. An SGTR occurred and the SRVs on the secondary system are stuck open.

Case 3: This case defines the conditions for Attribute C, No-SGTR. There is no SGTR.

Characteristic 7. Amt-CCI (Amount of core not in HPME available for CCI)

4 Attributes, 4 Cases
The attribuces for this characteristic are:
A. HI-CCI A large amount of the core (70-100t) not involved in HPME participates in the CCI.
B. Med-CCI An intermediate amount of the Core (30.708) not involved in HPME participates in the CCI.
C. Lo.CCI A small amount of the core (0.30%) not involved in HPME participates in the CCI.
D. No-CCI There is no CCI.

This characteristic determines how much of the core that is not in HPME participates in the CCI. Whether the CCI occurs at all and the timing and the conditions of the CCI are determined in Characteristic 3. The selection of one of the first three attributes in this characteristic implies that CCI occurs. The definition of this binning characteristic is different frow the definition used in the APET itself. In the APET, the amount of core in CCI was the amount of the total core avallable to participate in CCI, without respect to whether HPME had occurred. This value was used in determining the amount of hydrogen produced during CCI and the likelihood of SMT. The primary use of this binning characteristic is to pass information on to SEQSOR for the source term analysis. SEQSOR internally subtracts oat the amount of core involved in HPME from the amount passed to it in this characteristic. (The fraction of the core involved in HPME is determined by Characteristic 9.) Therefore, in the binner it is neofssary to define this characteristic as the amount of the core not involved in HPME that takes part in the CCI. Otherwise, the amount if the core participating in CCI would be subtracted twice.

Case 1: This case defines the conditions for Attribute D, No-QCI, If there is no prompt CCI and there is no delryed CCI, then there is no CCI.

Case 2: This case defines the conditions for Attribute A, Hi-CCI. Either a large amount of the core (70-1008) was determined to be avallable for CCI in the APET, or HPME occurred. In SEQSOR, the fraction of the core involved in HPME will be subtracted from the total amount of core material. Setting Characteristic 7 to large here ensures that a large fraction of the core not involved in HPME is available for CCI. HPME is meant to include all the events in which core material leaves the vessel first under high gas pressure, followed by blowdown of the gas. The PrEj case in the APET includes only those cases where the hole in the vessel involves only a small fraction of the area of the bottom head. Thus the situation where the bottom head fails at any pressure above a few hundred psia has to be specifically included.

Case 3: This case defines the conditions for Attribute B, Med-CCI, An intermediate amount of the core ($30-708$) was determined to be available for CCI in the APET.

Case 4: This case defines the conditions for Attribute C, Lo.CCI. A small amount of the core (0.308) was determined to be available for CCI in the APET.

Characteristic 8. $2 r-0 x$ (Zirconium oxidation in-vessel)
2 Attributes, 2 Cases
The attributes for this characteristic are:
A. Lo-Zrox A small amount of the core zirconium was oxidized in the vessel prior to $V B$. This implies a range from 0 to 408 oxidized, with a nominal value of 258 .
B. Hi-2rox A large amount of the core zirconium was oxidized in the vessel prior to VB. This implies that more than 40% of the zirconium was oxidized, with a nominal value of 658 .

This characteristic determines how much of the zirconium in the core was oxidized in the vessel before VB. The amount is really the amount of equivalent zirconium oxidized since it is possible to oxidize some of the iron and chromium in the stainless steel as well. Thus, the amount oxidized can exceed 100 at the very upper end of the distribution provided by the In-Vessel Expert Panel.

Case 1: This case defines the conditions for Attribute A, Lo-2rOx. The fraction of equivalent zirconium oxidized in the vessel prior to breach was low.

Case 2: This case defines the conditions for Attribute B, Hi-Zrox. The fraction of equivalent zirconium oxidized in the vessel prior to breach was high.

Characteristic 9. HPME
4 Attributes, 4 Cases
The attributes for this characteristic are:
A. Hi-HPME A high fraction (>408) of the core was ejected under pressure from the vessel at fallure.
B. Md-HPME A moderate fraction (20-408) of the core was ejected under pressure from the vessel at failure.
C. Lo-HPME A low fraction (<208) of the core was ejected under pressure from the vessel at failure.
D. No-HPME There was no HPME at vessel fallure.

This characteristic determines how much of the core participated in HPME. As mentioned in the discussion of Characteristic 7, HPME is not limited vo vessel fallure in which only a small part of the bottom head falled. Thus the requirements for Cases 1, 2, and 3 here are similar to those for Case 2 in Characteristic 7.

Case 1: This case defines the conditions for Attribute A, Hi-HPME. A high fraction (>408) of the core was ejected under pressure from the vessel at fallure. Pressurized ejection, as defined in the APET, implies ejection through one or a small number of penetration fallures. If the entire bottom head, or a large portion of it, fails at elevated pressure, the resulting situation is so similar to ejection through a relatively small hole that both are considered to be HPME. If the cavity is deeply flooded at breach, nominally 24 ft deep with submergence of the vessel bottom, there will be little dispersal of the core debris from the cavity; if this is the case, Attribute D, No-HPME, is specified.

Case 2: This case defines the conditions for Attribute B, Md-HPME. A moderate fraction (20.408) of the core was ejected under pressure from the vessel at failure. HPME is defined as in Case 1.
Case 3: This case defines the conditions for Attribute C, Lo-HPME. A low fraction (<204) of the core was ejected under pressure from the vessel at failure. HPME is defined as in Case 1.

Case 4: This case defines the conditions for Attribute D, No. HPME, There was no HPME at vessel failure. This case includes the Pour mode of vessel fallure, bottom head failures at low pressure, Alpha mode failures, situations where there was no VB, and deep flooding of the cavity (as discussed in Case 1).

Characteristie 10. CF-Size (Containment failure size or type) 6 Attributes, 6 Cases

The attributes for this characteristic are:
A. Cat-Rpt The containment falled by catastrophic rupture, resulting in a very large hole and gross structural fallure.
B. Rupture The containment falled by the development of a large hole or rupture; nominal hole size is $7 \mathrm{ft}^{2}$.
C. Leak The containment falled by the development of a small hole or a leak; nominal hole size is $0,10 \mathrm{ft}^{2}$.
D. BMT The containment failed by BMT, and there was no above-ground fallure or bypass.
E. Bypass The containment did not fail, but was bypassed by Event V or an SGTR.
F. No-CF The containment did not fail, and was not bypassed

This characteristic determines how the containment failed. The first three attributes define the hole size if the containment pressure boundary failed above ground. The fourth attribute is an underground failure. The fifth attribute implies that the pressure boundary itself did not fail, but that It was bypassed by Event V or an SGTR. Only the mest severe mode of failure is counted. That is, if the containment ruptures, a subsequent BMT is not of interest since essentially all the radioacive release will take place through the above-ground fallure. Bypass takes precedence over all the direct failure modes since it provides a direct path from the RCS to the outside of the containment during core degradation.

Case 1: This case defines the conditions for Attribute A, Cat-Rpt, The containment failed by catastrophic rupture or major structural fallure, This can ocour by events accompanying VB, by a hydrogen burn during core degradation or after $V B$, or by late overpressure fallure of the containment.

Case 2: This case defines the conditions for Attribute B, Rupture. The contoinment failed by the development of a large hole, denoted rupture in this analysis. This can ocour by isolation fallures, by a hydrogen detonation or burn during core degradation, by events accompanying vessel breach, by a hydrogen burn after VB, or by late overpressure failure of the containment.

Case 3: This case defines the conditions for Attribute C, Leak. The containment failed by the development of a small hole, denoted a leak in this analysis. This can occur due to a hydrogen burn during core degradation or after VB, by events accompanying VB, or by late overpressure failure of the containment.

Case 4: This case defines the conditions for Attribute D, BMT. The containment failed by BMT. There are no above-ground containment failures and the containment is not bypassed.

Case 5: This case defines the conditions for Attribute E, Bypass. The containment was bypassed by Event V or an SGTR. The SCTR may be either initiating or temperature-induced during the core melt. Even if core degradation is arrested before the vessel fails, a substantial portion of the fission products in the core may be released from the fuel and escape to the environment before a safe, stable state is reached.

Case 6: This case defines the conditions for Attribute F, No-CF. The containment did not fail above ground or below ground, and it was not bypassed.

Characteristic 11. RCS-Hole (Number of large holes in the RCS) 2 Attributes, 2 Cases

The attributes for this characteristic are:
A. 1-Hole There is only a single large hole in the RCS following VB.
B. 2 Holes There are two large holes in the RCS following VB,

This characteristic determines if there is effective natural circulation through the reactor vessel in the period following its breach. The source term experts gave two distributions for the parameter that determines the late release of fission products from the vessel; one distribution applied when there was natural circulation, and the other distribution applied when there was no natural circulation through the vessel. For effective natural circulation to take place, two large holes are requited, nefther of which involves a long path between the vessel and the containment atmosphere. The vessel failure, of course, creates one such hole. The question, then, is whether there is another hole that is not very small or does not lie at the end of a long or circuitous length of pipe.

Case 1: This case defines the conditions for Attribute $A, 1$ Hole. There is only one large hole in the RCS fol ${ }^{1}$ wing VB, " A " and " S_{2} ". size breaks are considered to be large has, so they are excluded. Event V is included here, as the pathwa, is too long for effective natural circulation. The same holds true for SGTR. "S S_{3} "-size breaks are too small to allow effective natura. circulation, and most S_{3} breaks are pump seal fallures, in which cise the path is too long anyway.

Case 2: This case defines the conditions for Attribute $B, 2$-Holes. There are two large holes in the RCS following VB. A-size breaks are obviously large holes, and S_{2} breaks are also considered to be large holes. The typical scenario for Alpha mode failure has the entire head of the vessel torn off. Natural circulation may be expected to be vigorous in this case due to the heat production in the vessel. In the

Rocket mode situation, there was gross failure of the bottom head, and the upward motion of the vessel tore off the hot and cold legs, so again natural circutation will be very effective.
$\begin{array}{ll}\text { Characteristic } 12 . & \text { E2-IG (Early ice condenser function) } \\ 3 \text { Attributes, } 3 \text { Cases }\end{array}$
The attributes for this characteristic are:
A. E2-InByp There is no bypass of the IC during the early period, i.e.. during the RCS releases. The IC is intact.
B. E2-IpByp There is partial bypass of the 10 during the early period.

C E2-1Byp There is total bypass of the IC or the ice is completely melted during the early period.

This characteristic in confunction with Characteristic 14 determines what DF should be credited to the IC for the RCS releases. The ice may be partially bypassed due to hydrogen detonations or preferential melting and subsequent channeling. The IC may be totally bypassed due to a rupture failure of containment in the LC or due to breach of the boundary between the lower and upper compartments. For times of c tainment failure in which catastrophic rupture occurs, the iC is ar aned to be totally bypassed; however, Characteristic 12 does not refloct this mode of bypass because SEQSOR already assumes ice bypass when catastrophic rupture occurs. Complete ice melt also constitutes total ice bypass.

Case 1t This case defines the conditions for Attribute A, E2-InByp. The 1 C is totally functional and is credited with the full DF for the RCS releases.

Case 2: This case defines the conditions for Attilbute B, E2-IpByp. There is partial bypass of the IC during the early period. The effecive bupass level is nominally 108 : $1 . e$. , the $I C$ is credited with an effective DF that is 908 of the DF for E2-InByp.

Case 3: This case defines the conditions for Attribute C, E2-IByp. There is total bypass of the IC during the early period. If the ice is melted and the fans are operating, the IC is credited with an effective DF that is 208 of the DF for E2-InByp.

Characteristic 13. 12-IC (Late IC function)
 3 Attributes, 3 Cases

The attributes for this characteristic are:
A. I2.InByp There is no bypass of the IC during the late period, 1.e., during CCI releases. The IC is intact.
B. 12-IpByp There is partial bypass of the IC during the late period.

There is total bypass of the IC or the ice is completely welted during the late period

This characteristic, in conjunction with Charsecteristic 14, determines what decontppination factor $D F$ should be uredited to the IC for the late releases. The same mechanisms for bypass as discussed above for Characteristic 12 apply here.

Case 1: This case defines the concitions for Attribute $A, 12 \cdot$ InByp, The IC is totally functional and is credited with the full DF for the late releases.

Case 2: This case defines the conditions for Attribute B, 12-IpByp, There is partial bypass of the ice condenser during the late perivd. The effective bypass level is nominally 108; i.e... the IC is credited with an effective DF that is 908 of the DF for 12 -InByp.

Cast 3: This case defines the conditions for Attribute C, I2. IByp. There is cotal bypass of the IC during the late period. If the ice is melted and the fans are operating, the IC is credited with an effective DF that is 208 of the DF for 12 - InByp.

Characteristic 14. ARFans (Status of ARFs)
The attributes for this characteristic are:
A. ARF.Erly The ARFs operate only in the early period, i.e., during the RCS releases.
B. ARF.E +L The ARFs operate in both the early and late periods, i.e., during RCS and CCI releases.
C. ARF-Late The ARFs operate only in the late period, 1.e., during the CCI releases.
D. No-ARF The ARFs do not operate for the early or late periods.

This characteristic concerns the operation of the ARFs before VB and during the initial phase of CCI. This characteristic is used in conjum con^{-n} with Characteristics 12 and 13 to establish the IC DF. The Source Term Expert Panel members who evaluated the IC DF, determined that the DF was sensitive to the number of passes through the IC. If fans are operating, there is more than one pass through the ice beds and larger DFs are attributed to the IC. If the fans are not operating, the aerosol-laden gases make only a single pass through the ice, and the DF is not as substantial as when they are operating.

Case 1: This case defines the conditions for Attribute A, ARF-Erly. The fans are operating only for the early period.

Case 2: This case defines the conditions for Attribute B, ARF $\cdot E+L$. The fans are operating for both the early and late periods.

Case 3: This case defines the conditions for Attribute C, ARF-Late. The fans operate only for the late period,

Gase 4: This case defines the conditions for Attribute D, No-ARF. The tans do not operate for either the early or late periods.

A.1.4 Listing of the Sequoyah Binner

Section 2.4 of this volume gives a general description of the APBs and defines each attribute of each characteristic. That material is not repested here. Subsection A.1.3 is a detailed case-by-case description of the binner. The binner itself, a compute rput file read by EVNTRE, is iisted in this section. When used as com er input, the binner follows directly behind the APET without any break in the input file. It has been separated here for clarity.

The sequoyah binner used in the accident progression analyses for NUREC. 1150 A. 1^{-3} consists of 225 innes of computer input. The binner file uses a format similar to that used in the APET, with the same minemonic abbreviations for each branch of every question. The structure of the binner file is explained in the EVNTRE reference manual, A, 1-18

The binner was developed along with the APET on a PC spreadsheet program, which greatly facilitates keeping track of the references to APET questions when questions are added or subtracted, or when the order of the questions is changed in the course of the development of the tree. The binner appears below as developed on the spreadsheet program.

A. 1.4-2

A. 1. 4. 3

A.1.5 Description of the Sequoyah Rebinner

Section 2.4 of this volume gives a general description of the APBs and defines each attribute of each characteristic. That material is not repeated here. The Sequoyah rebinner used in the accident progression analyses for NUREG-1150 0^{2-8} makes very few changes in the original binning of the APET output.

For binning Characteristic 2, containment spray operation, Attribute 8, 8 Sp . Never, and Attribute $9, S p-F i n a l$, are combined into one attribute in the rebinner because operation of the sprays in the final period does not affect the fission product release as calculatted by SEQSOR. For Characteristic 10 , containment fallure size, two pairs of attributes are coalesced, Attributes 3, Leak, and 4, BMT, are combined because SEQSOR treats BMT as a leak when computing releases. Attributes 5, Bypass, and 6 , No-CF, are combined because in either case the primary mode of fission product release is not through a fallure of the containment. For SGTR, in which early containment fallure is much more likely than for Event V, releases due to containment fallure are calculated separately and added to the SGTR releases.

Abstract

A.1.6 Listing of the Sequoyah Rebinner

Section 2.4 of this volume gives a general description of rebinning and defines each attribute of each characteristic of the accident progresaion bins. That material is not repeated here. Subsection A. 1.5 describes the function of the rebinner. The rebinner itself, a computer input file read by the EVNTRE postprocessing code, PSTEVNT, is listed in this section.

The rebinner file uses a format similar to that used in the APET binner. It uses mnemonic abbreviations for each attribute of each characteristic in a manher similar to the way in which the binner itself makes use of the minemonic question and branch mnemonic indicators of the APET. The structure of the rebinner file is explained in the PSTEVNT reference manual, NUREG/CR-3380.A.1-20

A.1.7 References

A.1-1. D.D. Carlson et al., "Reactor Safety Study Methodology Applications Program: Sequoyah \#1 PWR Power Plant," NUREG/CR1659, SAND80-1897, Vol. 1, Sandia National Laboratories and Battelle Coluabus Division, February 1981.
A.1-2. R.C. Bertucio and S.R. Brown, "Analysis of Core Demage Frequency from Internal Events: Sequoyah Unit 1," NUREG/CR-4550, SAND86. 2084, Vol. 5, Part 1, Revision 1, Sandia National Laboratories, January 1990.
A.1-3. U.S. Nuclear Regulatory Commission, "Reactor Risk Reference Document," NUREG-1150, Draft for Comment, February 1987.
A.1-4. R.C. Bertucio and S.R. Brown, "Analysis of Core Damage Frequency from Internal Events: Sequyah Unit 1," NUREG/CR-4550, SAND862084, Volume 5, Part 2, Sandia National Laboratories, January 1990.
A.1-5. R.C. Bertucio and S.R. Brown, "Analysis of Core Damage Frequency from Interval Events: Sequoyah Unit 1," NUREG/CR-4550, SAND862084, Volume 2, Part 1, Sandia National Laboratories, January 1990.
A.1-6. R.L. Iman and S.C. Hora, "Modeling Time to Recovery and Initiating Event Frequency for Loss of Off-Site Power Incidents at Nuclear Power Plants," NUREG/CR-5032, SAND87-2428, Sandia National Laboratories, January 1988.
A.1-7. Industry Degraded C_{e} ~ Rulemaking Plogram (IDCOR), "Sequoyah Nuclear Plant Integrated Contairment Analysis, IDCOR Task 23.1," Technical Report 23.1, Ternessee Valley Authorlty, Nuclear Engineering Branch, Knoxville, Tennessee, July 1984.
A.1-8. J.A. Gieseke, P. Cybulskis, R.S. Denning, M.R. Kuh1man, K.W. Lee, and H. Chen, "Radionuclide Release Under Specific LWR Accident Conditions, Volume IV: PWR, Ice Condenser Containment. Design," BMI-2104, Battelle Columbus Division, 1984.
A.1.9. R.S. Denning, J.A. Gieseke, P. Cybulskis, K.W. Lee, H. Jordan, L.A. Curtis, R.F. Kelly, V. Kogan, and P.M. Schumacher, "Radionuclide Release Calculations for Selacted Severe Aocident Scenarios, Volume 2: PWR, Ice Condenser Design," NUREG/CR-4624, BMI-2139, Battelle Columbus Division, 1986.
A.1.10. M.T. Leonard, P. Cybulskis, K.W. Lee, R.F. Kelly, H. Jordan, P.M. Schumacher, and L.A. Cur:is, "Supplemental Radionuclide Release Calculations for Selected Severe Accident Scenarios," NUREG/CR5062, BMI-2160, Bettelle Columbus Division, 1987.
A.1-11. A.L. Camp et al., "MARCH-HECTR Analysis of Selected Accidents in an Ice-Condenser Containment," NUREG/CR-3912, SAND83-0501, Sandia National Laboratories, December 1984.
A.1-12. S.E. Dingman and A.E. Camp, "Pressure-Temperature Response in an Ice-Condenser Containment for Selected Accidents," SAND85-1824C, Trans, 13ch Water Reactor Safety Information Meeting, NUREG/CP. 0071 , Gaithersburg, MD, 1985.
A.1.13. B.W. Marshall, Ir., "hydrogen:Air:Steam Flammability Limits and Combustion Characteristics in the FITS Vessel," NUREG/CR.3468, SAND84-0383, Sandia National Laboratories, December, 1986.
A.1-14. Tennessee Valley Authority, "Final Safety Analysis Report for the Sequcyah Nuclear Power Plant," 1974.
A.1-15. Steam Explosion Review Group, "A Review of the Current Understanding of the Potential for Containment Failure Arising from In-Vessel Steam Explosions," NUREG-1116, Feburary 1985.
A.1-16. S.E. Dingman and A.L. Camp, "Pressure-Temperature Response in an Ice-Condenser Containment for Selected Accidents," SAND85-1824C, Sandia National Laboratories, 1985.
A.1-17. C.C. Wong, "HECTR Analyses of the Nevada Test Site (NTS) Premixud Combustion Experiments," NUREG/CR-4916, SAND87-0956, Sandia National Laboratories, November 1988.
A.1-18, U.S. Nuclear Regulatory Commission, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants," NUREG-1150, Second Draft for Peer Review, June 1989.
A.1-19. ' 1. Griesmeyer, and L.N. Smith, "A Reference Manual for the Evint Progression Analysis Code (EVENTRE)," NUREG/OR-51-4, SAvD88-1607, Sandia National Laboratories, September 1989.
A. 1-20. S. J. Higgins, "A User's Manual for the Postprocessing Program PSTEVNT," NUREG/CR-5380, SAND88-2988, Sandia National Laboratorles, November 1989.

A. 2 DESCRIPTION AND LISTING OF THE USER FUNCTION

A.2.1 Description of the User Function for the Sequoyah APET

The user function is a FORTRAN function subprogram that is linked with EVNTRE after compilation. Without the user function, EVNTRE is applicable to any event tree evaluation problem. Once linked with the user function for the Sequuyah APET, however, an executable module of EVNTRE specific for Sequoyah is created. The user function allows calculations and manipulations to be performed as the event tree is evaluated that are too complicated so be treated in the tree itself.

The general types of calculations that are performed in the user function in support of the Sequoyah APET are:

- Compute the amount and distribution of hydrogen in the containment during the various time periods;
- Compute the concentration and the flammability of the atmosphere in the containment during the various time periods;
- Caloulate the pressure rise due to hydrogen burns and adjust the amounts of gases consumed in the burns accordingly; and
- Determine whether the containment fails and the mode of fallure.

The Sequoyah user function consists of a series of computational modules. Each module is identified by a character string, or name, that can consist of up to six characters. The APET accesses the computational modules through these names. APET question types 6 through 8 are used to access the user function. The command in the APET used to access the user function is FUN-\#\#\#, where \# represents an alphanumeric character. For example, the command FUN-H2xV1 in Question 42 accesses the computational module H2xV1 in the user function. The various computational modules in the Sequoyah user function are listed in Table A.2.1. In addition to the name of the module, the APET question number from which the module is called and a brief lescription of the calculation performed in the module is also included in this table.

The Sequoyah user function uses four other FORTRAN functions: PSLOW, PFAST, H2BURN and XINTRP. The functions PSLOW and PFAST determine whether the containment fails and the mode of failure for the slow and fast pressure rise methods, respectively. The logic coded in these two functions is explained more detail in the following paragre hs. The function H2BURN calculaces overpressure that results from the combustion of hydrogen in an air/ste mixture based on the adiabatic isochoric complete combustion (AICC) model. This function is used in conjunction with information provided by the Containment Loads Expert Panel to determine the peak pressure in the containment following a hydrogen burn. The function H2BURN calls the function UENERG, which is used to calculate the change in internal energy of the gaseous constituents as a result of the burn. The function XINTRP is a utility function used to linearly interpolate between points it a distribution.

The method of determining containment failure and the mode of failure warrants additional discussion. Fucthermore, the method as explained below considers three modes of fallure: loak, rupture, and catastrophic rupture. Two of the modes are associated with two failure locations: leak or rupture can oocur in either the lower or upper containment, thus establishing whether the 10 is bypassed when the containment fails. Catastrophio rupture is considered to be a global type of fallure and thus there is no fallure location variation for this failure mode. The methods can also be extended to more than three modes of failure. In fact, the routines coded in the functions PSLOW and PFAST can handle five locations with up to flve fallure modes at each location.

The method for determining the mode of containment failure for a pressure rise that is slow compared to the leak rate is straightforward, but the method for determining the mode of contalnment fallure for a pressure rise which is fast compared to the leak rate is more complex. For each observation in the sample, the LHS code selects a containment fallure pressure from containment fallure pressure distribution (see Volume 2, Part 6) and a random number between zero and one to be used to determine the mode of fallure. The load pressure depends on the progression of the accident and it can either be a fixed value or it can be sampled from a distribution. The load pressure is considered a known quantity in the following discussion.

The load pressure and the containment failure pressure are compared in either function PSLOW or function PFAST depending on whether the pressure rise is slow or fast. If the load pressure is less than the containment fallure pressure, the contalnment does not fail. If the load pressure is greater than or equal to the containment failure pressure, the containment Fails. If the containment fails, the random number is used to determine the fallure mode.

If the pressure rise is slow compared to the time it takes a leak to depressurize the containment, the conditional failure probabilities (contalned in the array PCONC) for the load pressure are used directly. If the random number is less than the leak conditional probability, the fallure mode is leak. If the random number is greater than the leak conditional probability but less than the sum of the leak conditional probability and the rupture conditional probability, the fallure mode is rupture. If the random number is greater than the sum of the leak conditional probability and the rupture conditional probability, the failure mode is catastrophic rupture.

Consider an example in which the fallure pressure is 412 kPa and the load pressure is greater than 412 kPa . The data statement for the array PCONC in the user function supplies random values for the modes and locations in the following order: leak, lower com,artment leak, upper compartment; rupture, lower compartment; rupture, upper compartment; catastrophic rupture; and no fallure (to fill the array). The conditional probability for leak at 412 kPa is 0.15 , so if the random number is less than 0.15 the fallure mode is leak. The interval conditional probability for rupture is 0.78 , so if the number is between 0.15 and 0.93 , the fallure mode is a
rupture. The interval conditional probability of catastrophic rupture is 0.07 , so if the random number is between 0.93 and 1.0 the failure mode is oatastrophic rupture.

If the pressure rise is fast compared to the time it takes a leak to depressurize the containment, the determination of the failure mode is more complicated. Development of a leak will not arrest the pressure rise in the containment, and a rupture or catastrophic rupture may ocour at a higher pressure, The pressure will keep on rising until the load pressure is reached or until a rupture or catastrophic rupture occurs and terminates the pressure rise. Figure A.2-1 illustrates the process for discrete steps. At the fallure pressure, there is some probability of rupture and catastrophic rupture. The bulk of the fallures are shown as leaks in this 111 ustration, and for them the pressure rises to the next step, where again a fraction are converted to rupture and catastrophic rupture. The process stops at the load pressure. The leak fraction remaining at that pressure is the total leak probability. The rupture probability is the total of all the rupture fractions at all the steps, and similarly for catastrophic rupture.

Function PFAST performs an analogous calculation for mode of containment failure considering all the pressures between the failure pressure and the load pressure. It calculates the probability of rupture or catastrophic rupture at all these intermediate pressures, and then sums them to obtain t cal conditional probabilities for each fallure mode. These probabilities are specific to the pair of failure and load pressures considered. Once the total conditional probabilities for fallure mode are computed, the random number is used to choose the fallure mode as in the slow pressure rise case.

Consider an example in which the fallure pressure is 412 kPa and the load pressure is 446 kPa . If the containment fails by rupture or catastrophic rusture at 412 kPa , the fallure is so large that the pressure rises no further. However, if a leak develops at 412 kPa , the pressure will keep on rising, and a rupture or catastrophic rupture may develop between 412 and 446 kPa . The probability of an additional failure between 412 and 446 kPa is proportional to the failure probability density (FPD) for this pressure interval. The portion of the cumulative failure probability (CFP) distribution below 412 kPa is discounted since fallure has occurred at 412 kPa . Thus, the probability used to determine if an additional failure will occur between 412 and 446 kPa is not $\operatorname{FPD}($ interval 412 to 446) $=0.041$ (1.0., CFP, 446) $\operatorname{CFP}(412))$, but $\operatorname{FPD}($ interval 412 to 446$) /(1-\operatorname{CFP}(412)$ $)=0.0 \frac{1}{2} /(1-0.083)=0.045$. The conditional probability of additional ruptures forming between 412 and 446 kPa is the conditional leak probability at 412 kPa times the conditional rupture probability for the interval times the fallure probability for the interval. For the conditional rupture probability, $C_{r p}$, for the interval between 412 and 446 kPa , the average of the rupture values for 412 and 446 kPa is used: $(0.78$ $+0.83) / 2=0.81$. Thus, the total conditional probability of rupture, for rapid pressure rise with a fallure pressure of 412 kPa and a load pressure of 446 kPa , 1d:

$$
0.78+0.22 * 0.81 * 0.045=0.79
$$

Figure A.2.1. Process Used to Determine the Mode of Containment Failure for Fast Pressure Rise

In general terms, this is:

$$
\begin{gathered}
R_{r p}(i)=R_{r p}(i-1)+R_{1 k}(i-1) * 0.5 *\left(C_{r p}(i)+C_{r p}(i-1)\right) \\
* \operatorname{FPD}(i) /(1-\operatorname{CFP}(i-1))
\end{gathered}
$$

where $C_{r p}$, FPD, and CFP have been defined above and $R_{r p}$ and $R_{1 k}$ are the conditional probabilities of rupture and leak for fast pressure rise. There is an analogous equation for $R_{c r}$, the conditional probability of catastrophic rupture for fast pressure rise. After $R_{r p}$ and $R_{o r}$ have been found, the remaining leak fraction is found from:

$$
R_{1 k}(i)=1 \cdot R_{r p}(i) \cdot R_{o r}(i)
$$

For a rapid pressure rise, a failure pressure of 412 kPa , and a load pressure of 446 kPa , the conditional probabilities of leak, rupture, and catastrophic rupture may be shown to be 0.13 and 0.79 , and 0.08 respectively. To determine the mode of containment failure for fast pressure rise, the random number is used as it is for slow pressure rise. In this example, if the random number is less than 0.13 the fallure mode is leak. If the random number is between 0.13 and 0.92 the failure mode is rupture, and if the random number is greater than 0.92 , the failure mode is catastrophic rupture.

So, to find the conditional fallure mode probabilities for fast pressure rise, function PFAST integrates from the failure pressure to the load pressure in 34.5 kPa increments, incrementing the rupture and catastrophic rupture conditional probabliities at each step, and decreasing the leak conditional probability, Partial intervals are used at the beginning and the end of this process.

Table A.2-1
Sequoyah User Function Description

UFUN Name	Question Number	Description
$\mathrm{H} 2 \mathrm{xV} \#$	42	During the time of core degradation, the hydrogen distribution between the four containment compartments is calculated ($\#=1.7$).
H2Cne\#	$43,44,45,46$	Computes the hydrogen concentration (mole \&) and burn completeness (if ignition oocurs) in the four containment compartments during the time of core degradation ($\#=1-6$).
Burn\#	54	Calculates the pressure rise in containment due to a hydrogen deflagration during the time of core degradation (\# = 1.4).
CFDet	58	Determines whether the containment fails during core degradation by hydrogen detonation. The failure mode is always set to upper compartment rupture.
NoCF	58,82,103,109	This is a dummy function that re ns a value associated with no containment failure. This function is called either if no events occur to cause failure or if an earlier rupture has occurred, thus precluding subsequent overpressure failure.
CFFst	58,82,103	Determines whether the containment fails and the mode of failure from quasi-static pressurization events.
CFS1w	58,103,109	Determines whether the containment fails and the mode of failure caused by slow pressurization events.
H2Cont	62	Calculates the fraction of hydrogen released in. vessel that exists in containment immediately before VB.

Table A.2-1 (continued)

UFUN Name	Question \qquad	Description
DPVB	77	Caloulates the peak pressure rise at VB when a correction is made for ice bypass (if any occurs).
H 2 VB	80	Determines the arount of hydrogen that is released to containment at VB .
AlphCF	82	This is a dummy function that returns a value associated with a rupture failure of containment and is called if Alpha mode fallure of the vessel and containment occurs.
StExCF	82	This is a dummy function that returns a value associated with a rupture fallure of containment, and is called if a steam explosion that falls containment occurs.
CCI\#	95	Calculates the amount of hydrogen, carbon monoxide (as well as its hydrogen equivalent), and carbon dioxide generated during prompt CCI ($\#=1-3$).
02Late	96	Determines the amount of oxygen that remains in containment after VB.
H2CCI\#	97	Determines the amount of combustible gas thet is in containment for the late time period ($\#=1-2$).
LtCono	99	Calculates the concentrations (mole 8) of hydrogen, oxygen, carbon dioxide and steam that exist in containment during the late time period.
Brn\#	102	Calculates the pressure rise in containment due to a late lydrogen deflagration ($\#=1-6$).
NoBurn	102	This is a dummy function that returns a value of zero for the pressure rise when no burn occurs.

A． 2.2 Listing of the Sequoyah APET User Function

This section contains a listing of the FORTRAN function subprogram SEQUFUN，FOR

```
SEQUOYAR APET USER FUNCTION SUBROUTINE
```

THE FUNCTION UFIN MANIPULATES THE PARAMETERS THAT ARE ASSIGNED IN THE CET．THE LOGIC FOR GALLING THE UFUN IS CONTAINED IN THE CET，UFUN ONLY MANIPULATES THE PARAMETER VALUES TEE PARAMETER NUMBERS ARE CONTAINED IN THE ARRAY IDARG（e．g．IDARG（1）CONTATNS THE FIRST PARAMETER NUMBER LISTED FOR A GIVEN FUNCTION CALL．）．THE ARRAY ARG CONTAINS THE VARIOUS PARAMETER VALUES FOR ALL．THE PARAMETERS DEFINED IN THE TREE PRIOR TO THE CALL FOR THE USER FUNCTION．NARG IS THE NUMBER OF PARAMETERS LTSTED FOR A OIVEN FUNCTION CALL．NAME CONTAINS THE NAME（ 6 CHARACTERS）OF THE MODULE IN UFUN TO BE ACCESSED．THIS CHARACTER STRING CORRESPONDS TO THE NAME ASSIGNED IN THE CET（e．g．，＂H2xV1＂FROM＂FUN－H2xV1＂）

FUNCTION UIFIN（NAME，NARG，IDARG，ARG）
DIMENSION ARG（＊），IDARG（＊），PTABLE（5，5）， $\operatorname{PX}(5), \operatorname{PY}(5), \operatorname{PC}(20), \operatorname{PTC}(20)$ ，
1 PCONC（20，3，2），MPC（5）
CHARACTER＊6 NAME
REAL N2，INERTS

INPUT DATA

STRUCTURAL CAPACITY INPUT FOR THE CONTAINMENT FOR QUASI-STATIC LOADS
PC = PRESSURE (kPa)
PTC = TOTAL CUMULATIVE FAILURE PROBABILITY CORRESFONDING TO EC
PCONC = CONDITIORAL FATLURE FOR EACH MODE AT EACH LOCATION
NHLC = NUMBER OF FAILURE LOCATIONS
NPPC $=$ NUMBER OF POINTS IN PC AND PTC
$\operatorname{MPC}(K)=$ TOTAL NUMBER OF MODESS AT LOCATION K
DATA PC $\quad 273.7,308.2,342.6,412.1,411.6,446.1,480.5$,
* $\quad 412.0,540.5,584.0,618.4,652.9,687,4,721.9$,
* $756.3,790,8,825.3,850,8,804,2,928.7 t$
C
DATA PTCI $0.000,0.018,0.038,0.060,0.083,0.124,0.197$,
* $0.395,0.527,0.706,0.780,0.833,0.878,0.822$.
* $0.848,0.875,0.887,0.884,0.897,1.0007$


```
ARG(11)=(1-ARG(12))*ARG(11)
GO TO 15
C Fans opereting, and thus the hydrogen is well-mixed in containment
C Compartment volumes are :
C LC - 10912 m*3,IC = 3475 m*3,UP = 1330 m*3,UC = 19355 m*3
        ELSEIF(NAME(5:6).EQ '0 ')TTL.N
            XLC=0,31
            XIC=0.10
            XUP=0,04
            XUC=0,55
                GO TO }1
C Fens not operating and flow diversion from the lower compartment to the upper compartment through
C the floor drains. The expert specified values to be obtained from the
C CONTAIN S3B calculation
        EL.SEIF(NAME (5;6),EQ.'4 ')THEN
            XLC=0,44
            XIC=0,13
            XUP=0.01
            XUC=0.42
                CO TO 10
C Fans not operatins but upper containment well-mixed and there is a
C "clear path" from the lower compartment to the upper compartment through the IC. The experts specified
C that values be obtained from HECTR calculations.
            ELSEIF (NAME (5:6), EQ.'5 ')THEN
                XLC=0.35
                XIC=0.36
                XUP=0,03
                XUC=0,26
                GO TO 10
C Fans not operating but upper contalmment well-mixed and there is no
C "clear path" from the lower compartment to the upper compartaent through the IC. The experts specified
C that values be obtained from HECTR caloulations, with 50% of the HECTR
C fraction of hydrogen in the dome, with the remainder distributed in
C proportionate quantities throughout the other compartments
                ELSEIF(NAME(5;6),EQ.'6')THEN
                XL.C=0.35 + 0.35/0.74*0.26*0.5
                XIC=0.36 + 0.36/0.74 * 0.26*0.5
                XUP=0.03+0.03/0.74*0.26*0.5
                XUC=0.26*0.5
                GO TO 10
C Fans not operating and no mixing. The experts specified that values
C be obtained from HECTR calculations, with 10% of the HECTR Eraction
C of hydrogen in the dome, with the remainder distributed in proportionate
C quantities throughout the othar compartments.
            ELSEIF (NAME (5:6) EQ,'7 ')THEN
                XLC*0.35 + 0.35/0.74*0.26*0.8
                XIC=0.36 + 0.36/0.74 * 0.26*0.8
                XUP=0.03+0.03/0.74*0.26*0.0
                XUC=0.25*0.1
            ENDIF
C Define the arguments and user function
    10 ARG(13) = XLC*ARG(I1)*ARO(12)
            ARG(I4) = XIC*ARG(I1)*ARG(I2)
            ARG(15) = XUP*ARG(IL)*ARG(I2)
            ARG(I6) * XUC*ARG(I1)*ARG(12)
            ARO(11)=(1-ARG(12))*ARG(I1)
            UFUN = ARG(I3)+ARG(I4)+ARG(I5)+ARG(I6)
    15 RETURN
C
C
C WHAT IS THE HYDROOEN CONCENIRATION IN THE LOWER COMPARTMENI, ICE
C CONDENSER, UPPER PLENUM AND UPPER COMPARTMENT BEFORE VB?
            QUESTIONS 40, 41, 42, AND 43 IN THE CET
```

```
C Ueer functions - H2Cnc(1-6)
C The following values are in kg-moles:
    ELSEIF(NAME (:5).EQ. 'B2CNC ')THEN
        11*IDARG(1)
        12=1DARO (2)
        13=1DARG(3)
        I4=1DARG(4)
        O2=ARG(11)
        H2O=ARO(I2)
    H2=ARO (13)
    N2 * 02/0.21*0.79
C Bydrogen concentration in lower compartment and upper compartment, fans operating, turbulent burn
C completeness model
            IF (NAME (6:6),EQ, '1')THEN
            TOTAL = H2+H2O+O2+N2
            X1=28.638
            X2 = 1.0463
            GO TO 2O
C Hydrogen concentration in lower compartment and upper compartment, fans not operating, quiescent
C burn completaness model
    ELSEIF(NAME(6;6), EQ,'2')THEN
        TOTAL = H2+H2O+O2+N2
        X1 = 30.499
        X2 = 1.2827
        GO TO }2
C Hydrogen concentration in IC, fans opereting, turbulent burn
C completeness model
    ELSEIF (NAME (6:6), EQ, '3')THEN
        TOTAL = H2+(H2O+O2+N2)*3475./ (1330,+3475,)
        X1}=28.63
        X2 = 1.0463
        GO TO 20
C Flydrogen concentration in IC, fans not operating, quiescent burn
C completeness model
    ELSEIF (NAME (6;6),EQ, '4')THEN
        TOTAL. = [12+(H2O+O2+N2)*3475./(1330.+3475.)
        XI = 30,498
        X2 = 1.2827
        \infty TO 20
C Hydrogen concentration in UP, fans operating, turbulent burn
C completeness model
    EL.SEIF (NAME (6;6), EQ '5')THEN
        TOTAL = H2+(H2O+O2+N2)*1330, f(1330,+3475.)
        X1 = 28.638
        X2 =1.0463
        CO TO 20
C Hydrogen concentration in UP, fans not operating, quiescent burn
C completeness model
    ELSEIF(NAME (6:6),EQ, '6')THEN
        TOTAL = H2+(B2O+O2+N2)*1330./(1330.+3475.)
        X1 = 30.499
        X2 = 1.2827
        ENDIF
    20 UFUN * B2/TOTAL
    XSTM = H2O/TOTAL
    A = XSTM* (-4,1966+3, 3985*XSTM)
    ARG(I4)=\operatorname{AMTN1((X1*UFUN - X2)*EXP(A),1.0)}
    RETUR:
```

C

```
PRESSURE INCREMENT FROH HYDROOEN BURNS
    QUESTION SI IN THE CET
        User functions * Burn(1-4)
            The values of O2, Stm, and H2 are in kg-moles
            ARG(11) = E-PBase, Early baseline pressure, kPa
            ARG(12) = E-LCBC, furn completeness in LC
            ARO(13)=E-ICBC, Burn completenecs in IC
            ARO(14) = E-UPBC, Burn completeness in UP
            ARO(15) = E-UCBC, Burn completeness in UC
            ARO(I6) = DP-EDef, Preseure rise in contsinment, kPe
            ARG(1) = LC-02, Amount of O2 in LCC
            ARG(2) = 1C-02, Athount of 02 in 1C, UP
            ARO(3) = UC-02, Amount of O2 in UC
            ARO(4) * L.C-Stm, Amount of steant in LC
            ARG(5) = IC-Stm, Amount of steam in IC, UP
            ARG(6) = UC-Stm, Anount of steam in UC
            ARO(10)= B2-LC, Amount of H2 in LC
            ARG(11) = H2-IC, Amount of H2 in IC
            ARG(12) = H2-UP, Amount of H2 in UP
            ARG(13) = H2-UC, Amount of H2 in UC
            ARG(18) = E-IgLC. Flag for ignition in LC
            ARG(1B) = E-IgIC, Flag for ignition in IC
            ARO(20) = E-IgUP, Flag for ignition in UP
            ARO(21) = E-IgUC, Flag for ignition in UC
            N2 = Nmount of N2 in combustion conpartments
    ELSEIF(NAME ( 4) EQ 'Burn')THEN
            11=1DARG(1)
            12=1DARG(2)
            13*IDARG(3)
            14=1DARG(4)
            15mIDARG(5)
            I6*IDARG(6)
            PBASE=ARO (11)
            BCL.C=ARO(12)
            BCIC=ARO(13)
            BCUP=ARG(14)
            BCUC=ARG(15)
            Q2LC*ARG(1)
            021C*ARO(2)
            02UC=ARO(3)
            B2OL.C=ARO(4)
            H2OIC=ARG(5)
            H2OUC=ARO(6)
            H2L.C=ARO(10)
            H21C*ARG(11)
            12UP=ARO(12)
            H2UC=ARG(13)
            FLOLCWARG(16)
            FLOIC=ARG(18)
            FLOUP=ARG(20)
            FLGUC=ARO (21)
C Determile combustion votume and non*participating expansion volume
C The compartment. volumes are included in the combustion volume if the
C ignition flag is non-zero.
    VERN = FLOLO*10812. + FLOIC*3475 + FLGUP*1330.
    1 + FLGUC*19355
        VEXP = 35072. - VBRN
        IF(VBRN,LT.0.0001) GO TO 30
C Adjust burn completeness for times of insufficient oxygen
    IF(021,C LTT.H2L.C*BCLC/2.) BCLC=BCLC*2. *O2LC/H2LC
    IF(021C*3A75./(1330.+3475.), LT , H2IC*BCIC/2.) BCIC=BCIC*2.*
    1 02TC*3475./(1330.+3475.)/H2IC
    IF(O21C*1330./(1330.+3475.). LT.H2UP*BCUP/2.) BCUP=BCUP*2 *
    1. 02IC"1330,/(1330.+3475.)/62UP
```

$10210 * 1330 \cdot /(1330,+3475) * F L O U P+$ O2UC*FLQUC H2 = H2LC*FLGLC + H21C*FLGIC + H2UP*FLGUP +
1 B2UC*FLGUC H2O = H2OLC*FLOLC + H2OIC*3475. ($13330 .+3475)$.$* FLGIC *$
1 H2O1C*1330./(1330.+3475.) 5 FLOUF + H2OUC*FLGUC $N 2=02 / .21 * .79$
C Determine combustion completeriess in combuation volume If (H2. EQ . 0,0) TREN
$C C O M P=0.0$
GO 1030
ENDIF
CCOMP $=(B C L C * B 2 L C * F L G L C+B C I C * B 2 I C * F L O I C+$
1 BCUP*H2UP*FLGUP + BCUC*H2UC*FLGUC)/H2
C The temperature of the containment atmosphere is low when containment
C heat removal is available, or there is no ioe bypass. When the igniters
C are operating early, temperature is irrelevant to the burn pressure rise. IF (NAME (5:5), EQ.'1' OR. $\operatorname{NAME}(5: 5)$, EQ, '4') II $=38,0$
C. Temperature is high for times without containment heat removal IF (NAME (5:5),EQ, '2') $\mathrm{II}=135.0$
C Temperature is high for times of flow diversion bypass of foe condenser IF (NAME (5:5) , EQ.'3') II m 115.0
C Compute final pressure for AICC burn and corresponding overpressure PFAICC = 日2BURN(B2, H2O,O2,N2, CCOMP, PBASE, TI) OVERP = PFAICC - PBASE
C Burn with igniters operating, minimal pressure rise IF (KAME (5:5) EQ.' ${ }^{\prime}$ ') OVERP $=$ OVERP * .05
C Overpressure correction with 5% reduction for heat transfer to
C solid surfaces
P1 = OVERP*. $85+$ PBASE
C Isentropio expansion correction for non-pazticipating volumes DV1 $=(($ P1/PBASE $) * *(1 / 1,4)-1) /(($ VEXP $/$ VBRN $)+$
$1($ P1/PBASE $) * *(1 / 1 / 4))$ DV2 $=$ DV1 * VEXP/VBRN P3 = P1/($1+$ DV2 $) * * 1.4$
Assign adjusted parametric values $\operatorname{ARG}(1)=02 L C-H 2 L C * B C L C / 2.0$

```
        ARG(2) = O2IC - H2IC*BCIC/2.0 - E2UP*BCUP/2.O
```

 \(\operatorname{ARO}(3)=02 U C-\) H2UC*BCUC \(/ 2.0\)
 \(\operatorname{ARG}(10)=\mathrm{B} 2 \mathrm{LC}-\mathrm{H} 2 \mathrm{LC} \mathrm{A}^{*} \mathrm{BCLC}\)
 \(\operatorname{ARG}(11)=\mathrm{B} 2 \mathrm{IC}-\mathrm{H} 21 \mathrm{C} *\) BCIC
 \(\operatorname{ARG}(12)=\) R2UP - B2UP*BCUP
 ARG(13) = H2UC - H2UC*BCUC
 \(\mathrm{ARG}(16)=\mathrm{P3}\) - PBASE
 UFUN \(=\) P3 - PBASE
 RETURN
 \(30 \quad \operatorname{ARG}(16)=0.0\)
 UFUN \(=0,0\)
 RETURN
 C
$\mathrm{C}=$
C CONTAINMENT FAILURE AND MDOE OF FAILURE?
C QUESTION 55 IN TEE CET
c

```
    14=1DARG(4)
The value of UFUN indicates type of containment failure
    0<X < 2 for oatastrophic rupture
    2<X < 3 for lower compartment rupture
    3<X<& for upper compartment rupture
    4< X < 5 for lower compartment :eak
    5 < X < 6 for upper compartment leak
    6<X<? for no oontainment fallure
Initialize X for no contairment failure
    x=6.5
Detonation containment fallure always reaults in upper compartment
rupture
    IF(ARC(I1),G1, ARG(13)) X = 3.5
    IF(ARO(12) GT,ARO(14)) X = 3.5
    UFUN = X
    RETURN
C
CONTAINMERT FATLURE AND MODE OF FAILURE?
    QUESTIONS 55, 79, 100, AND 106 IN THE CET
        User Function = NoCF
            ARG(II) = X-PBase, Baseline prassure at time 'X
            ARG(12) = Pressure rise in containment, kPa
The value of UFUN indicates ;ype of containment failure
    6 < MFUN < ? for no ~ ntainment failure
No containment fallure at very late time
    EL.SEIF (NAME (1:4), EQ. 'NoCF')THEN
    UFUN = 6.5
    RETURN
CONTATNMENT FAILURE AND MODE OF FAILURE?
    QUESTIONS 55, 70, AND 100 IN THE CET
        User Function - CFFst
            The following values are in kPa
            ARG(II) = X-PBase, Baseline pressure at time 'X'
            ARG(12) = Pressure rise in contalnment
            ARG(!3) = CF-Pr, Containment failure pressure
            ARG(14) = Rndrval, Random number for fallure mode
    ELSEIF(NAME (1:5),EQ.'CFFE\')THEN
        I1=1DARO(1)
        I2=IDARO(2)
        13=1DARG(3)
        14=TDARG(4)
        PL = ARO(11) + ARG(12)
        PF = ARG(13)
        RN = ARG(14)
The value of UFUN indicates type of containment failure
    0<X<2 for catastrophic rupture
    2 < X< & for lower compartment rupture
        3<X<4 for upper compartment rupture
        4<X<5 for lower compartment leak
        5< X < }6\mathrm{ for upper compartment leak
        6<X<7 for no contalnment fallure
            UFUN = PFAST(PL, PF, RN, PC, PTC, PCONC,NPLC,MPC,NPPC)
        RETURN
```

```
c
```



```
CONTAIRMENT FAILURE AND MODE OF FAILURE?
    QUESTIONS 55, 79, 100 AND 106 IN THE CET
        User Function - CFSIw
                    The following values are in kFa:
                    ARG(11) = X-Pbase, Baseline pressure at time 'X'
                ARG(12) = CF-Pr, Containment feilure pressure
                    ARO(13) = RndmVal, Kandom number for feilure mode
    ELSEIF(NAME (1:5),EQ 'CFS1w')THEN
        I1=IDARG(1)
        12=1DARG(2)
        13-1DARG(3)
        PL = ARG(11)
        PF = ARO(12)
        RN = ARO(13)
The value of UFUN indicates type of containment fallure
    0 < X < 2 for catastrophic rupture
    2<X<3 for lower compartment rupture
    3 < X < 4 for upper compartment rupture
    t < X < 5 for lower compartment leak
    5<X<6 for upper compartment laak
    6<X<7 for no containment fallure
    UFUN = PSLOW(PL, PF, RN, PC, PTC, FCONC, NPLC, MPC, NPPC)
    RETURN
C
C
CONTAINMENT FAILURE AND MODE OF FAILURE?
        QUESTION 79 IN THE CET
        User Functions - AlphCF, StExCF
            ARG(I1) = X-FBase, Baseline pressure at time 'X'
    The value of UFUN indicates type of containment fallure:
    0 < X < 2 for catastrophic rupture
    2<X<3 for lower compartment rupture
    3<X<4 for upper compartment rupture
    4 < X< 5 for lower compartmant leak
    5< X < 6 for upper compartment leak
    6<X<7 for no containment failure
Alpha-mode or rocket containment faslure always results in upper
compartment rupture
    EL.SEIF(NAME(1:6),EQ.'A1PhCF')THEN
        UFUN = 3.5
        RETURN
Containment fallure by steam explosion always results in rupture thas
bypasses the ice condenser (equivalent to lower compartment rupture)
    ELSEIF(NAME (1;6), EQ,'StExCF')THEN
        UFUN = 2.5
        RETURN
C
C=
WHAT FRACTION OF H2 RRLEASED IN VESSEL IS IN CONTAINMENT AT VB?
    QUESTION 59 IN THE CET
        User function - H2Cont
            Hydrogen values are in kg-moles:
            ARG(II) = E-H2inV, Amount of H2 generated In-vessel
            ARG(I2) = E-H2exV, Fraction of H2 released before VB
            ARG(I3) = H2-LC, Amount of H2 in lower compartment
            ARG(I4) = H2-IC, Amount of H2 in ice condenser
            ARG(I5) = H2-UP, Amount of H2 in upper plenum
```

```
C ARG(16) = H2+UC, Anount of H2 in upper nompartment
    FLSEIF(NAME (:6),EQ,'H2Cont')THEN
        11=1DARO(1)
        12mIDARG(2)
        13=IDARO(3)
        16=1DARO(4)
        15=1DARO(5)
        I6=1DARO(6)
C Determine the amount of hydrogen in conteinment now
    H2NOW = (ARG(13)+ARG(I4)+ARG(15)+ARG(I6))
C Determine the amount of hydrogen generated in-vessel
    IF (ARO(12),NE.1.) THEN
        H2INV = ARO(I1)/&1,-ARG(12))
    ELSE
        H2LC= = 0.0
        H2.IC=0.O
        H2UP = 0.0
        H2UC = 0.0
        BCLC = ARO(14)*ARG(18)
        BCIC = ARG(15)*ARG(10)
        BCUP = ARG(16)*ARG (20)
        BCUC = ARO(17)*ARG(21)
        IF(BCLC.NE, 1.) H2LC = ARG(13)/(1.-BCLC)
        IF(BCIC.NE, 1.) ER2IC = ARO(I4)/(1,-BCIC)
        IF(BCUP,NE, 1,) H2UP = ARO(I5)/(1,-BCUP)
        IF(BCUC.NE, 1.) B2UC = ARO(16)/(1.-BCUC)
        H2INV = H2LC + H2IC + H2UP + H2UC
        ENDIF
        IF(H2INV EQ.0.) H2=0.0
        IF(H2INV,NE,0,) H2 = H2NOW/H2INV
        UFUN = H2
        RETURN
C
C=
C
C PEAK PRESSURE AT VESSEL BREACH? (CORRECTION FOR ICE BYPASS)
C QUESTION 74 IN THE CET
C User function - DPVB
            Pressure rise values are in kPa
            ARO(II) = IBPLvL, Ice bypase level - volume
                fraction of volded region
            ARO(I2) = DPx-VB, Pressure rise with no bypass
            ARG(I3) = DPx-IBP, Pressure rise with total
                bypass
    ELSEIF(NAME (:5),EQ.'DPVB')THEN
        11*1DARO(1)
        12*10ARG(2)
        I3=1DARG(3)
C Model by S, Dingman using EECTR calculations indicatad 40% bypass
C level for }252\mathrm{ vold region, and }72\mathrm{ bypass for 2% void region
    IF (ARG(11),LE,0,02)THEN
            BP=3.5*ARG(11)
        CO TO }7
    ELSEIF(ARG(IL), LE ,0.25)THEN
        EP = (3.5 - (ARG(I1)-.02)/.23*1.9) * ARO(I1)
        GO TO 70
    ELSETF(ARG(I1), LE , 1.0)TREN
```

 A. 2. 2. 9
    ```
        BP = (1.6 - (ARO(II) - 25)/.75*.6) * ARO(I1)
        ENDIF
    70 ARO(12) = (t゙O(13) = ARO(12))*BP + ARO{I2)
        UFUN * ARG(12)
        RETURN
C
C=
c WHAT AMOUNT OF HYDROGEN IS RELEASED TO CONTAINMENT AT VESSEL BKISACH?
        QUESTION 77 IN THE CET
            User function - R2VB
                    Bydrogen values are in kg-moles:
                ARG(I1) = E-H2inV, Amourt of H2 genetated in-vessel
                ARO(12) = E-H2exV, Fraction of H2 released before VB
                ARO(I3) = FCorVB, Fraction of core released at VB
                ARG(I4) = I-Mt1Ox, Fraction of available metal that
                    is oxidized at VB
                ARG(15) = I-H2eVB, Hydrogen released at Vy
                ARG(16) = I-Fr2r, Fraction of initial Zr potentially
                                    avallable for CCI
    ELSFIF(NAME(:5),EQ, 'R2VB')THEN
        11=IDARG(1)
        I2=1DARG (2)
        13=1DARG(3)
        14=1DARG(4)
        IS=1DARG(5)
        16=1DARG(6)
C Ir in Sequoyah is 253.2 kg-moles and Fe is 392.0 kg-moles, assume
C uniform quantity of oxidizable metal in ejected debris
    ARG(15)=ARG(13)*ARO(14)*(1280.4-ARG(11))+ARG(11)*(1.0-ARO(12))
C Assume 2r is preferentially oxidized before VB
    ARG(16)=1..}(\operatorname{ARG(11)/506.4)
    IF}(\operatorname{ARG}(I1),GT,506,4) ARG(I6)=0,
    UFUN = ARG(I5)
    RETURN
C
C=
C AMDUNT OF H2 (PLUS EQUIVALENT CO) AND CO2 GENEFATED DURING FROMPT CCI?
c
    QUESTION 82 IN THE CET
        User function - CCI(1-3)
                    Bydrogen values are in kg-moles:
                    ARO(II) = FCorVB, Fraction of core released at VB
                    ARO(12) = I-FrZr, Fraction of initial Zr potentially
                    avallable for CCI
                    ARG(I3) = Fr-CCI, Fraction of core not participating
                    in HPME that is available for CCI
            ARG(I4) = L-H2, H2 (CO) in containment after prompt CCI
            ARO(I5) = L-CO2, CO2 in containmene efter prompt CCI
    ELSEIF (NAME (:3), EQ.'CCI')THEN
        I1*IDARO(1)
        I2=1DARG(2)
        13=1DARG(3)
        14*IDARO(4)
        I5=1DARO(5)
C
FCCI = FRACTION OF CORE THAT PARTICIPATES IN CCI
ZRCCI = FRACTION OF UNOXIDIZED 2r IN CAVITY
When there is no prompt CCI, thers is no gas liberation
    IF(NAME (4:A), EQ:'1')TEEN
        ARO(14) = 0.0
        ARG(15) = 0.0
        UFUN = 0,0
        RETURN
```

```
When there is prompt COI with prior HPME, the amount of core ejected
    at vessel breach is subtracted frot the core avellable for CCI
        ELEEIF(NAME(6:4) EQ '2')THMN
            FGCI = (2.0-ARO(11) *ARO(13)
                zRCCI * ARO(12)*(1.0-ARG(11))*ARO(13)
                GO TO }7
C When there is prompt CCI with no HPFME, the amount of core that
C purtioipetes in CCI is Fr-CCI
            ELSETY (NAME(4:4),EQ,'3')THEN
                FCCI = ARO(:3)
                ZRCCI * ARO(12)*ARO(13)
        ENDIP
    72 CONTINUE
C
C K2CO1 * Hydrogen produced dursmg ECI (kg-mole)
C COCCI = Carbon monoxide produced duriris CCl (kg-mole)
c CO2CCt = Carbon dioxide produced during CCI (kg mole)
C H2EQV = Hydrogen equivalent - moles of CO are converted to
C equivalant moles of EL2 based on the energy released
                during combustion
    IF( ZRCCI LEF, 0,B5 )THEN
        h2CCI = (C11H2*ZRCOI + C12H2 )*FCOI/3.4
        cocet = (C11co*zREC1 + C12C0 ) NFCCI/2,4
        CO2CCI = ( C11CO2*2RCCI + C12CO2 )*FCCI/3.%
        EL.SE
        H2CC1 = ( C21H2*ZRCC1 + C22H2 )*FCOO//3.4
        COCCI = (C21CO*ZRCCI + C22CO )*FCCL/3.4
        CO2CCI = ( C21CO2*2RCCI + C22CO2 )*FCCI/3.4
        ENDIF
        H2EQV = H2CC1 + COCO1*1.17
        ARO(14) = H2EQV
        ARG(IS) = CO2CCI
        UFUN = H2ROV
        RETURN
C
C=
C WHAT AMOUNT OF OXYGEN REMAINS IN CONTAINMENT LATE?
C QUESTION 93 IN TEE CET
C
C
C
C
c
C
C
c
C
        User function - O2Late
            Oxygen and hydrogen values are in kg-moles:
            ARO(I1) = LC-O2, Amount of O2 in LC
                    ARO(I2) = IC-02, Amount of O2 in IC, UP
            ARG(13) * UC-O2, Amount of O2 in UC
                    ARG(14) n I-H2&VB, Hydrogen released at VB
            ARG(15) = I-ActBC, Burn completeness at. VB
            ARO(16) = L-02, Amount of 02 in containment late
    ELSEIF(NAME(:6).EQ, 'O2Late')THEN
    11*IDARG(1)
    12=1DARO(2)
    13=1DARG(3)
    14=1DARO(4)
    15=1DARO(5)
    16*1DARG(6)
C Determine amount of oxygen before vessel breach, and maximum anount
C of oxygen consumed (when hydrogen is burned). Then edjust hydrogen burn
C
C
completeness accordingly to correspond to oxygen consumption
    O2DVB = ARG(11) + ARO(12) + ARO(13)
    O2MAX = ARG(I4 ** (1.-ARG(25))/2.
    IF(O2BVB,LT.0.001)THEN
        ARO(15)=0\.0
        ARO(16)=0.0
        ARO(16)=0.0
        RETURN
```

```
        ELSEIF (O2BVE.GT. O2MAX)THEN
        ARO(16) * O2BVE - O2MAX
        UFUN=ARG(16)
        RETURN
        gLSEIF(ON`N, LE O2MAX)THEN
        ARO 6) = 0.0
        AN',15) = 2.0* / }2\textrm{BVB}/\textrm{ARG(I4
        \F N=ARG(16)
        \kappaETURN
        NDIF
C
```



```
C
AMOUNT OF HYDROGEN IN CONTAINMENT AFTER CCI?
C QUESTION &A IN THE CET
        User functions - H2CCI(1-2)
                            Hydrogen values are in kg-moles:
                    ARO(11) = 1-H2eVB, Hydzogen released at VB
                ARG(I2) = I-AotBC, Burn completeness et VB
                ARO(I3) * L-H2, Hydrogen generated daring CCI
    ELSEIF (NAME(: 5), EQ, 'H2CCI')THEN
        I1=IDARG(1)
        12*IDARG(2)
        13-IDARO(3)
C Previous conteinment failure or no vessel breach
        IF (NAME (6;6),EQ,'1')THEN
            ARO(I3)=0.0
            UFUN=0,0
            RETURN
C No containment failure and vessel breach
    E1.SEIF (NAME (6;6),EQ.'2')THEN
        ARG(13)=ARG(11)*(1,-ARG(12))+ARG(I3)
        UFUN=ARG(13)
        RETURN
        ENDIF
c
C
C WHAT IS THE INERT LEVEL. IN CONTAINMENT, AND IS THERE SUFFICIENT
C H2 OR O2 FOR BURNS?
C QUESTION 96 IN THE CET
C User furction - L:Cone
C The following values are in kg-moles:
C ARG(I1) = L-H2, Amount of H2 in containment
C ARG(I2) * L-CO2, Amount of CO2 in containment
C ARG(I3) = L-02, Amount of O2 in containment
C ARG(I4)=L-Stin, Amount of steam in contairument
c
        ELSEIF(NAME (:6),EQ 'LtCono')THEN
            I1\proptoIDARG(1)
            12=1DARG(2)
            I3=1DARG(3)
            I4=IDARO(4)
            H2=ARG(II)
            CO2=ARG(12)
            02=ARG(I3)
            H2O=ARO(14)
            N2=1120.3
            TOTAL = H2 + CO2 + O2 + H2O +N2
C Initialize the concentration to be non-inert.
            UFUN = 0.5
C Check for steam/CO2 inerting
            IF((COO2+H2O)/TOTAL.GE, 0,55)THEN
                UFUN = 3.5
                RETURN
C. Cneck for insufficient hydrogen
```

```
    ELSEIF(H2/TOTAL LT, 0,05)THEN
        UPUF = 2.5
        RETURN
C Check for insufficiunt axygen
        ELSELF(O&/TOTAL.IT, 0.05)THEN
            UFUN = 1.5
            RETURN
        ENDIF
        RETURN
C
C
C FRESSURE RISE DUE TO VERY LATE DEFLAGRATION?
C QUESTION 99 IN THE CET
            User functions - Brn(1-6)
                    The values of O2, Stm, and H2 are in kg moles:
                ARG(I1) = L-PEase, Late baseline pressure, KPa
                ARO(12) = i,-H2, Amount of EL in contalmment
                ARO(I3) = L-CO2, Amount of CO2 in containment
                ARO(I4) = L-O2, Amount of O2 in containment
                ARO(I5) = L-Stm, Amount of stesm in contairment
                ARG(I6) * Pressure rise in containment, kPa
                N2 = Amount of N2 in combustion compartments
        ELSEIF(NAME(:3),EQ, 'Brn')THEN
        11=1DARO(1)
        12=1DARG(2)
        13*IDARG(3)
        14=1DARG(4)
        15*1DARG(5)
        I6=IDARG(6)
        PRASE=ARG(I1)
        H2=ARO(12)
        CO2*ARG(I3)
        02=ARG(14)
        H20=ARG(15)
        INERTS=H2O+CO2
        N2=1120.3
        TOTAL = H2 + CO2 + O2 + H2O +N2
        XH2 = H2/TOTAL
        XSTM = H2O/TOTAL.
        A = XSTM* (-4,1966+3.3985*XSTM)
    C Fans operating, turbulent burn completeness model
        IF (NAME (4;4),ER, '1',OR,NAME (4:4), EQ, '2')
        1 BC = AMIN1 ( (28.638*XH2 - 1.0463)*EXP(A),1.0)
C Fans not operating, quiescent burn completeness model
        IF (NANE (4;4), EQ, '2',OR,NAME (4;4), EQ, '4')
        1 BC = AMIN1((30.499*XH2 - 1.2827)*EXP(A),1.0)
C Readjust burn completeness if insufficient oxygen
            IF(O2,LT,H2*BC/2,) BC=BC*2,*O2/H2
C The temperature of the containment atmosphere is low when containment
C heat removal is available, and irrelevant if igniters are operating
C throughout the period of H2 Liberation
                IF(NAME (4:4),EQ, '1',OR,NAME(4:4),EQ,'2',OR,NAME (4:4),EQ,'3',OR,
            + NAME(4:4),EQ,'5') TI = 3B,0
                IF(NAME (4:4),EQ '4',OR.NAME (4:4),EQ.'6') TI = 125.0
C Compute final pressure for AICC burn and corresponding overpressure
                PFAICC = H2BURN(H2,INERTS,O2,N2,BC,PBASE,TI)
        OVERP = FFAICC - PBASE
C Burn with igniters operating, minimal pressure rise
                IF(NAME (4;4),EQ,'1',OR,NAME (4;4),EQ.'2') OVERP=OVERP*.05
Q Ovarpressure corxection with }37\mathrm{ reduction for heat transfer to
C solid surfacas
        P3 m OVERP*.B5 + PBASE
        ARG(I6 =P3-FBASE
        UFUN=P3-PBASE
        RETURN
```

```
C
C
PRESSURE RISE DUE TO VERY LATE DEFLAGRATION?
        QUESTION B6 IN THE CET
            User function - NoBurn
                ARG(11) * Pressure rise in containment, K.Pa
    ELSEIF(NAME(;6),EQ.'NoBurn')THEN
    I1=1DARO(1)
        ARG(11)=0.0
        UFUN=0,0
        RETURN
        ENDIF
        WRITE (6,500) NANE
    500 FORMAT (1X, 'USER FUNCTION NAME', A8,' NOT FOUND')
        8TOP
        END
c
```



```
C
THIS FUNCTION CALCULATES THE PRESSURE RISE RATIO (PF/PI) ASSOCIAYED
WITH THE ADIABATIC CMBUSTION OF H2 IN AH AIR/STEAM MIXTURE AT
CONSTANT VOLUME, IT IS ASSUMED THLAT ALL COMPONENTS ARE IDEAL. GASES.
C
    FUNCTION H2BURN(H2, H2O,O2,N2,CONV,PBASE,TI)
    PEAL. N2,N2P
O
R2BRN IS THE AMOUNT OF H2 (Kg-mole) THAT SURNS
    H2BRN=H2*CONY
T1 = INIIIAL GAS TEMPERATURE
    TREF = THE REFERENCE TEMPERATURE, CORRESPONDS TO THE TEMPERATURE
            AT WHICE THE HEATS OF FORMATION ARE EVALUATED.
        TREF=25.0
    INTERNAL ENERGY OF REACTANTS
    UR=UENERG(T1,TREF, H2,H2O,O2,N2)
GEAT OF REACTION
    UREACT=-2.406E5*H2BRN
C
c MOLES OF PROOUCT
C
    H2P = - 2-H2BRN
    H2OP=H2O+H2BRN
    O2P *O2-H2BRN/2
    N2P =N2
C
C THLOW AND TPHI CORRHSPOND TO THE RANGE THAT THE FINAL GAS TEMPERATURE
C
C
c
C THE GAS TEMPERATURE OF THE PRODUCTS IS DETERMINED BY SOLVING THE ENERGY
< EQUATION FOR A CONSTART VOLUME ADIABATIC COMBUSTION, BECAUSE THE
C INTERNAL ENERGY OF THE PRODUCTS &S CALCULATED ERCM HEAT CAPACITY DATA
WHICH IS IN THE FORM OF A FOURTH ORDER POLYNOHIIAL, THE TEMPERATURE OF
THE PRODUCTS IS CALULATED USING A TRIAL AND ERRC METHOD (BI-SECTION
METHOD )
```

```
INTERNAL ENERGY OF FRODUCTS (BASED ON TFLON)
    UPLOW=UENENO(%PLOK,TRKF,H2F,H2OF,O2F,N2F)
ENEROY BALANCE
    DUL.OWUUPLOWNUREACT-UR
INTERNAL ENEROY OF PRODUCTS (BAEED ON TPEI)
    UPH1=(UENERG(TPH1,TREF,H2P,H2OP,O2P,N2P)
ENERGY BALANC&
    DUHI NUPITI +UREAOT - UR
MAKE SURE PRODUCT TEMPERATURE IS IN THE ASSUMED TEMPERATURE
RANGE
    IF (DUHI*DULON,OT.O.0)THEN
    IF THE AMOUNT OF H2 IS TO BIOH (PREDICTING ADIABATIC BURN TEMPERATURES
GREATER THAN 3000 C), THEN AUTOMATICALLY SET PRESSURE RISE TO }10
            IF(TPHI.OT,3000)THEN
                    H2BURN=10.0
                    RETURN
            ENDIF
            TPGI=TPAI*1.5
            UPHI=UENERG(TPHI,TREF,H2P,H2OP,O2F,N2P)
            DUHI =UPEI +UREACT - UR
            GO TO 5
        ENDIF
C
MIDPOINT IN TEMPERATURE RANGE
    10 TPMED=(TPHI+TPLOW)/2.
    INTERNAL. ENEROY OF PRODU BASED ON MIDPOINT TEMP.,
        UPMED=UENERO(TPMED,TREF,H2P, R2OP,O2P,N2P)
    ENEROY BAL.ANCE
    DTNMED=UFMED+UREACT -UR
DETERMINE WHTCR SIDE OF MIDPOINT THE SOLUTION LIES
    IFCDULOW*DUMED,GT, 0,0)THEN
        TPLON=TPMED
        DULONW=DUMED
        ELSE
            TPHI=TPMED
            DUHI=DUMED
    ENDIF
C
SUCCESS CRITERION IS I C
    IF(ABS(TPLCW-TPHI), OT 1,0)G0 TO 10
    TF=(TPLOW+TPHI)/2
    PRESSURE RISE RATIO (Pf/Pi) BASE ON IDEAL GAS LAW
    PRATIO=(H2F+H2OP+O2P+N2P)/(H2+H2O+O2+N2)* (TF+273,15)/(TI+273,15)
    H2BURN= PRATIO*PBASE
    RETURN
    END
```

```
C
C=
THIE FUNCTION CALCULATES THE CHAMGE IN INTERNAL ENEROY ASSOCIATED
NITH A CHANOE IN TEMPERATURE (FROM TREF TO T1) OF GASROUS H2,H2O,02
AND N2. TIE INTERNAL ENEROY IS IN JOULES
FUNCTION UENEROCT1,TREF, H2, H2O,02,N2;
    REAL. N2
INTERNAL ENEROY OF BYDROOEN
    UN2*(20.53*(T1-TREF)+3.825E-5*(T1**2-TREF**2)+1.006E-6*
        T1**3*TREF**3)*2.175E-10* (71**4-TREF**4))
INTERNAL ENEROY OF STEAM
    UH20= (25.15*(TI-TREF)+3.44E-3*(11**2-TREF**2)+2.446E-6*
        T1**3-TREF**3)-8,863E-10*(T1**4-TREF***)
INTERNAL ENERGY OF OXYGEN
    U02* (20.78* (TI-TREF)+5.70E-3*(TI**2-TREF**2)-2.025E-8*(
        TI**3-TREF**3)+3.27EE-10*(T1**4-TREF**4))
INTERNAL ENEROY OF NITROGEN
    UN2=(20.69*(TI-TREF)+1.1E-3**(TI**2-TREF**2)+1.808E-6*(
        T1**3-TREF**3)=7.178E-10*(TI**4-TREF**4))
    UENEROMUH2*H2+UH2O*H2O+U02*O2+UN2*N2
    RETURN
    END
O
TABLE LOOKUF SUBROUTINE : 2-DIMINSIONAL TABLE
TiIS PUNCTION DETERMINES THE VALUE IN THE MATRIX TABLE FOR A GIVEN
& AND Y PAIR. THE ARRAYS XRANG AND YRANO CONTAIN THE INDEPENDENT
VARIABLES FOR THE MATRIX. THE VARIABLES NUMX AND NUMY ARE THE
NIMPER OF ELPMENTS IN THE ARRAYS XRANO IND YRANG RESPECTIVELY.
    FUNCTION TLOOK(X,Y, XRANG, NIMX, YRANG, NUMY, TABLEE, NAME)
    DTMENSTOH TABLE(NMMX,NHNY), XRANC (NURO), YRANO (NIMY),
        XBOUND (3),YBOUND (3),TBOUND (4)
    CHARACTER*6 NAME
CHECK TO MAKE SURE THE X AND Y VALUES ARE WITHIN THE RANTE OF THE
MATRIX, IF THE X AND Y VARLUYS FALL OUTSIDE THE RANGE, AN ERROR
MESSAGE IS RETURNED
    IF (X LTT, XRANG(1), OR X,GT, XRANG(NUNX))THEN
        WRITE (6,100)NAME
        FORMAT(2K,'ERROR IN FUK_',AE,' IN SUERDUTINE TLOOK, X RANGE')
        STOP
    END1F
    IF(Y, IT, YRANG(1), OR,Y,OT, YRANG(NUMY) )THEN
        WRITE (6,101) NAME
        FORMAT(IX,'ERROR IN FUN_',A6,' IN SUEROUTINE TLOOK, Y RANGE')
        STOP
    ENDIF
FINO THE 2 VALUES IN XRANG THAT SURROUND X
```

```
            I*1
    10 IF(X,6T, XRANO(I))THYN
            I=1+1
            \infty}70\quad1
        EL.SE
            IF(I,EQ,1)I=2
            XBOUND(1)=XRANG(1-1)
            XBOUND (2) =X
            XBOUND (3)=XRANG(1)
        ENDIF
C
C FIND THE 2 VALUES IN YRANG THAT SURROUND Y
C
    J=1
    20 IF(Y,GT YRANO(J))THEN
                J=J+1
                00 TO 20
        ELSE
            IF (J,EQ, 1)J=2
            YBOUND (1)=YRANO(J-1)
            YBOUND (2)=Y
            YBOUND (3)=YRANO (J)
        ENDIF
C
C FOUR VALUES IN THE MATRIX TABLE THAT CORRESPOND TO THE XRANO AND
TRANO VALUES THAT SURROUND X AND Y.
    TBOUND(1)=TABLEE(I-1,J-1)
    TBOUND (2)=TABLE (I,J-1)
    TBOUND (3)=TABLE (I-1,J)
    TBOUTD(4)=TABLE (I,J)
C
c INTERPOLATE TO FIND DEPENDENT VARIABLE THAT CORRESPONDS TO X AND Y.
    TLOOK=TINTRP(XBOUND,YBOUND,TBOUND)
    PRINT*,XBOUND
    PRINT*, YBOUND
    PRINT*,TBOUND
    PRINT*,TLOOK
    RETURN
    END
O
```



```
c
```



```
        FUNCTION PSL,OW(PL, PF, RN, P, PT,COND, NLOC,M,NF)
        DIMENSION P(NP), PT(NP), COND(NP,5,NLOC), M(NLOC), SFR(10),
    * FRX(5,5)
c
C FI = LOAD PRF SSURE
C PF = FAILURY FRESSURE
C RN = RAND A NUMBER USED TO DETERMINE FAILURE MODE
C P * FRE oURE
* PT = TAL CUMULATIVE FAILURE DISTRIBUTION
C CUND = CONDITIONAL FAILURE FOR EACH MODE AT EACH LOCATION
C NLOC = NUMBER OF LOCATIONS
c M(K) = NUMBER OF FAILURE MODES AT LOCATION K
C DP = PRESSURE INCREMENT OF P
C NP = TOTAL NUMBER OF PRESSURE INCREMENTS
C SFR = FAILURE FRACTION (RN IS COMPARED TO THIS NUMBER)
C
C IF PL IS .ESS THAN PF, NO FAILURE,
C SET PSLOWI = TOTAL OF LOCATION/MODE COMBINATIONS + 0.5
```

```
C
    IF (PL LT, PY ) THEN
c
C DETERMINE THE TOTAL NUMBER OF LOCATION/MODE COMBINATIONS
C
        ISUM = 0.0
        DO 60 K = 1, NLOC
            DO }70IM=1,M(K
                ISUM = ISUM + _ 
            CONTINUE
            CONTINUE
            PSLOW = 1SUM + 0.5
        ELSE
    CALCULATE TABLE SPACING
        DP=(P(NP)-P(1) )/(NP - 1)
    IF PL IS GREATER THAN PF THEN CALCULATE FAILURE MODE AT PF,
    FIND FRESSURE INTERVAL. CORRESPONDING TO THE SAMPLED FAILURE
    FRESSURE PF, IFO = LOWEER VALUE OF INTERVAL., IFI = UPPER VALUE
    IFO=((PF - P(1) )/DF) + 1
    IFI = IFO + I
INTERPOLATE TO GET THE CONDITIGNAL FAILURE MODE PROBABILITIES AT
PF. FRENT = FRACTION OF INTERVAL. TO EXTRAPOLATE FOR SAMPLED VAT,UE
    FRINT = (PF - P(IFO) )/DP
    111 MOTE - THIS METHOD OF SUMNING ASSUMES THAT EACH LOCATION HAS THE
        SAME NUMBER OF MODES 1:1
    THE INPUT ARRAY FOR THE CONDITIONALS IS IN THE ORDER LEAK, RUPTURE FOR
    LOCATION 1; LEAK, RUPTURE FOR LOCATION 2 EIC, THE VALUES RETURN BY PFAST
    ARE IN A DIFFERENT ORDER; LEAK LOCATION 1, LEAK LOCATION 2, RUPTURE
    LOCATION 1, RUPTURE LOCATION 2 ETC.
    ISUM = TOTAL. NUMBER OF MODES
    ISUM = 0
    DO 10 IM = 1,M(1)
        DO 20 K = 1, NLOC
            ISUM = ISUM + 1
            C1 = COND (IFO,IM,K)
            C2 = COND (IF1,TM,K)
            FRX(IM,K) = C1 + FRINT*( C2 - C1)
            IF(ISUM ,EQ, 1) THEN
            SFR(ISUM) = ERX(IM,K)
            ELSE
            SFR(ISUM) = SFR(ISUM - 1) + FRX (IM,K)
            ENDIF
        CONTINUE
    CONTINUE
    PSLCW = 0.5
    DO 30 I = 1, 1SUM - 1
            IF( I EQ, 1)THEN
            IF(RN LT, SFR(I)) RSLOW = ISUM - I + 0.5
            ELSE
            IF(RN,LT,SFR(I) AND, RN,GE,SFR(I-1))PSLOWm=1SUM-1+0.5
            ENDIF
        CONTINUE
    ENDIF
    RETURN
    END
C
C
```

C

```

```

 FUNCTION PFAST (PL,PF,RN,F,PT, COND ,NLOC,M,NP)
 DIMENSION P(NP), PT(NP), COND (NP,2,NLOC), M(NLOC), SFR(10),
 + FR(5,5), CQ (5,5), CL (5,5)
 c
C PL = LOAD PRESSUNE
C IF = FAILURE PRESSURE
C RN = RANDCM NUMBER USED TO DETERMINE FAILURE MODE
C F = FRESSURE
C FT = TOTAL. CUMULATIVE FAILURE DISTRIBUTION
COND = CONDITIONAL. FAILURE FOR EACH MODE AT EACH LOCATION
NLOC = NUMBER OF LOCATIONS
M(K) = NUMBER OF FAIlUURE MODES AT LOCATION K (MAX IS 2)
AP = TOTAL. NUMBER OF PRESSURE INCRRMENTS
SFR = FAILURE FFACTION (RN IS COMPARED TO THIS NUMBER)
IF PL IS LESS THAN EF, NO FAILURE.
SET PFAST = TOTAL LOCATION/MODE COMBINATIONS + 0.5
IF (PL, LT, PF) THEN
DETERMINE THE TOTAL NUMBER OF LOCATION/MDDE COMBINATIONS
ISTM = 0.0
DO 60 K = 1, NLOC
DO 70 IM = 1,M(K)
ISUM = ISUM +1
CONTINUE
CONTINUE
FFAST = ISUM + 0.5
ELSE
C
IF PL IS GREATER THAN PF THEN CALCULATE FATLURE MODE AT FF,
FIND PRESSURE INTERVAL CORRESPONDINO TO THE SAMPLED FAILURE
FRESSURE PF, TFO = LOWER VALUE OF INTERVAL, IFI ~ UPPER VALUE
DF = ((P(NF)-P(1))/(NP-1)
IFO = ((PF-P(1))/DP) +1
IF1 = IFO + 1
INTERPOLATE TO GET THE CONDITIONAL. FALLURE MODE PROBABILITIES AT
PF. FRINT = FRACTION OF INTERVAL. TO EXTRAPOLATE FOR SAMPLED VALUE
FRINT = (PF - P(IFO))/DP
DO 40 K = 1, NLOC
DO 50 IM = 1,M(K)
C1 = COND (IFO,IM,K)
C2 = COND (IF1,IM,K)
FR(IM,K)=C1 + FRINT* (C2 - C1)
CONTINUE
CONTINUE
C
C
NLOC=NIMPER OF LOCATIONS (MAX = 5) - K (MAX - 5)
A module tu caloulate fraction of failures in each of several modes and locations, for rapidly rising pressures,
Arguments are PF (failure pressure), PL (Load), the total
cumulative failure distribution (PT), and conditional fallurea
in each mode and location, given that failuze oucurs within
the stated pressure interval.
$P(I)=$ PRESSURE (EQUALLY SPACED POINTS)
$\operatorname{COND}(I, J, K)=\operatorname{CONDITIONAL}$ FAILURE FOR EACH MODE AT EACH LOCATION,
1.E. PROBABILITY THAT A FAILURE OCCURRING IN THE INTERVAL
$F(i-1)$ TO $P(i)$ IS MODE J AT LOCATION K IS COND (I, J, K)
$M(K)=$ TOTAL NUMBER OF MODES AT LOCATION K (MAX w 5)
NLOC=NUMBER OF LOCATIONS (MAX = 5)

```

C NFWNHEEK OF FOTNTS IN P, EY ARRAYS (MAX \(=200\) )
C PF =SNGPLED FALLURE FREHSURE
\(\pi\)
0

FReFHACTION of FAILURES IS EACB MODE (VALUES CALCULAYED BY MODULE,
*****
XF*PROBABILTTY OF FAILURE CRRRESPONDING TO PF
IF (PF LE. \(\mathrm{P}(1)\) )THEN \(X F=0\).
ELEE. 1F (PF, OE, P(NB) )TKEN \(X F=1.0\)
ELSE DO \(5 \mathrm{I}=2, \mathrm{NE}\)

1F(P(1).LT, FF ) Goto 5
11"1
00107 CONTINUE II=T?
    \(\mathrm{XF}=\mathrm{PT}(11-1)+(\mathrm{PF}-\mathrm{F}(11+1)) *\) 阬 \((11)-\mathrm{PT}(11-1)) /(\mathrm{P}(11)-\mathrm{P}(11-1))\)
    \(X F=\) NIINI \((X F, 1.0)\)
    \(\mathrm{XF}=\) NiAXI \((\mathrm{XF}, 0.0)\)

EWD IF
SPACING OF PRESSURE TABLE
\(D P=(P(N P)-P(1)) /(N P-1)\)
FIND POINT COKRESPONDINO TO FF
1F(FF.LE. F (1) )THLA
17501
ELSE:
\(1 F 0=(\mathrm{PF}-\mathrm{F}(1)) / \mathrm{DF}+3\)
END 15
FIND FOINT COKRESPONDENQ TO PL
IF (PL, GE P(NP))THEN
1FL = WF-1
2L5E
1FL=(PL=P(1))/DF+1
END IF
FIND UPEER AND LONER PARTIAL INTENVAL SISES
FRINTO \(=1,-(\mathrm{PF}-\mathrm{P}(\) IF07) \() / \mathrm{DF}\)
FRINTL=(PL \(-\mathrm{P}(\Sigma \mathrm{FL})) / \mathrm{DP}\)
IF1=1F0+1
IHLI*IFL. 1
STMLK=0,
DO \(10 \mathrm{~K}=1\), NLOC
Do \(1.1-T M=1, M(K)\)
FIND CONDITIONALS FUR LOWER PARTIAL. INTE.VAL.
C) \(* \operatorname{COND}(1 F 0\), IM, K)

CZ=COND (TF1, 1M, K)
IF (IF1.EQ.IFL.2)THEN
\(C O(I M, K)=(C 2+3,0 * C 1+(C 2-01) *(\) FRINTL \(+(1-\) FRINTO \())) / 4\).
RLSE
\(\mathrm{CO}(\mathrm{M}, \mathrm{K})=(\mathrm{C} 2+(\mathrm{C} 1+(\mathrm{C} 2-\mathrm{C} 1) *(1-\) TRINT0 \()) * 0.5\)
EidDIF
FIND CONDI:IONALS FOR UPYTQ PARTIAL INTERVAL
C1*COND (IFL, IM, K)
C2-COND (IILL , IM, K)
\(\mathrm{CL}(\mathrm{IM}, \mathrm{K})=(\mathrm{Cl}+(\mathrm{CL}+(\mathrm{C2} \cdot \mathrm{CL}) * F \mathrm{RINTL})) * 0.5\)
CONTINUE
sthe Kostert \(K: 7 \pi(1, K)\)
CONTINIE
NOW HORK UF FROM FY TO HI, DETERMINING FKOKABIIITY OF NEW RUPTURES
DO 31 IPwiF1, IFLI
sime \(=0,0\)
SUMR=0.0
DO \(32 \mathrm{~K}=1\), NLOC
DO \(34 \mathrm{IM}=2, \mathrm{M}(\mathrm{K})\)
IF (IP. BQ.IFI)THEN
LOWER PARTIAL INTERVAL IF (IF1.EQ.IFLI) TREN
```

 FX=FRINTL = (2.0 - FKINI0)
 ELSE
 Fx*FRINT0
 ENDLF
 CX=C0(IN, K)
 DTV=AMAX1(2,-午,1.E-E)
 ELSE IF(IP EQ.IFLI)THEN
 UPFER PARTIAL INTERVAL.
 FX=FRTNTL
 CX*CL.(IM, K)
 DIV=RMAX1(1--PT(1P-1),1,E-6)
 EL{E:
 WHOLL INTEKYALS
 FX=1
 CX={ COND (IP,IM,K) + COND (IP=1,IM,K))/2
 DIV=ANWX1(1,-PT (IP-1),1,E-6)
 END IF
 RUPTUEES IN THIS INTERVAL AND SUMNED RUETURES
 DFR"(FT(1P)-RT(IB+1))*CX+FX*SUML.K/DIV
 S(MM =SLRMR+DFR
 FR(IM,K)=FR(IM,K. +DFR
 CONTINUE
 CONTINUE
 SLPMU0=0.0
 D0 321 K=1, NLOC
 FR(1,K)=FR(2,K) - 8(##R*FR(1, K)/SUMLLK
    ```

```

 CONTINUE
 SLMLK=SUMMS
 CONTTNUE
 SET UF TO CORRECT VALUES
 ISIM = TOTAL. NUMMER OF MODES
 I1 NOTE - TH18 METHOD OF SIMMING ASSUA&S THAT SACH LOCATION HAS THE
 SANE NUMBER OF MODES 111
 THE INFUT ARRAY FOR THE CONDITIONALS IS IN SHE ORDER LEAK, RUPTURE FOR
 LOCATION I; LEAK, RUPTURE FOR LOCATIOR 2 ETC, THE VALUES RETURN BY PFAST
 AKE IN A DTFTERENT ORDER: LLAKK LOCATION 1, LEAK LOCATION 2, RUPTURE
 LOCATION 1, RUPTURE LOCATION 2 ETC.
 180M * 0
 DO 15 IM = 2, M(2)
 DO 20 K = 1, NLOC
 ISUM = ISUM + 1
 IF(ISUM EO. 1) THEN
 SFK(INM) * FW(IM,K)
 ELSE
 SFR(1SUM) = SFR(ISUMM -1) + FR(IM,K)
 ENDIF
 CON$INUE
 CONTINUE
 PFK.ST = 0.5
 DO 30 I = 1. ISuM = 1
 IF(I ,EC, 1)THEN
 IF(RN ,LT, SFR(I)) PFAST = ISLMM - I + 0.5
 FLSE
 IF(RN LT,SP:(1) AND, RN GE,SFR(1-1))PFAST=1SUM-1+0.5
 EMOIF
 30 CONTINUE
ENDIF
RETURN
END

```
C \(X(2)=X\) VALUE FOR WEITCR AN INTERPOLATED VALUE JF T WTLL EE GETATNED
c \(x(3)=x\) VALUE CORRESPONDIMO TO \(\tau(2,1)\) AND \(\tau(2,2)\)
C \(Y=\) ATRAY CONTATNS 3 ELEMENTS

    \(Y(3)=Y\) VKLUE CORRESPONDINO TO \(T(1,2)\) AND \(T(2,2)\)
    FUNCTION TINTRP \((X, Y, \Psi)\)
    DIMENSION \(X(3), Y(3), T(6)\)
    XRAT10: \((X(2)-X(3)) /(X(1)-X(3))\)
    YRATIO \(=(Y(2)-Y(3)) /(Y(1)-Y(3))\)
    T1* \((7(1)-\uparrow(2)) * X R A T 10+\tau(2)\)
    \(T 2 *(T(3)-T(4)) *\) XRATIO \(+T(4)\)
    TINTRP=(T1- 12\()\) *YRAT10 + T 2
    RETURN
    END

\section*{A. 3, SUPPORTING INFORMATION FOR THE ACCIDENT PROQRESSION ANALYSIS}

\section*{A.3.1 Sumary of Plant Information}

\section*{Sçubsah Numbar Power Stotion. Untt 2}

Type of Reactor
Manufacturer
Date of Commercial Operation
Reactor Core
\begin{tabular}{lll} 
Nominal Power & 3570 MWt & \(1217 \mathrm{E7} \mathrm{Btu} / \mathrm{h}\)
\end{tabular}

Number of fuel sssimblies 193
Fuel rods per assembly 264
Number of fuel ross 50,952
Core weight, total
Uranium dioxide Zircaloy
Miscellaneous

Reactor Vessel
Inside diameter
Overall height
Thickness at teltilne
Head thickness

RCS
Volume (nominal)
Water in systom (nominal)
Operating temperature (nominal)
Operating pressure (nominal)
PORV setpoint (nominal)
Number of RCF's
Number of SGB
Conteinment
Inside diameter \(\quad 35.1 \mathrm{~m}\)
cylinder height
Free volume
Free volume upper compartment
Free volune lower compartment
Free volume loe condenser
Design leak rate
Design pressure
Operating temperature
Construction
Bottom 1 iner plate thickness
Cylinder thickness
Dome thickness
Basemat thickness
Floor thickness above liner
Pressurized Water Reactor Westinghouse 1981
\begin{tabular}{rrr}
\(132,940 \mathrm{~kg}\) & \(292,810 \mathrm{lb}\) \\
\(101,120 \mathrm{~kg}\) & \(222,740 \mathrm{lb}\) \\
\(23,120 \mathrm{~kg}\) & \(50,910 \mathrm{lb}\) \\
\(8,700 \mathrm{~kg}\) & \(19,160 \mathrm{lb}\)
\end{tabular}
\begin{tabular}{cr}
4.4 m & 173 in \\
13.4 m & 43.8 ft \\
0.216 m & 8.5 in \\
0.140 m & 5.5 in
\end{tabular}
\begin{tabular}{ll}
\(374 \mathrm{~m}^{3}\) & \(13,200 \mathrm{ft}^{3}\) \\
\(248,520 \mathrm{~kg}\) & \(547,400 \mathrm{Ib}\) \\
\(304^{\circ} \mathrm{C}\) & \(580^{\circ} \mathrm{F}\) \\
\(15,6 \mathrm{MPa}\) & 2265 ps 1 a \\
17.2 MPa & 2500 psia \\
4 & \\
4 &
\end{tabular}
\begin{tabular}{ll}
35.1 m & 115 ft \\
34.7 m & 114 ft \\
\(36,400 \mathrm{~m}^{3}\) & \(1.286,000 \mathrm{ft}^{3}\) \\
\(11,000 \mathrm{~m}^{3}\) & \(388,000 \mathrm{It}^{3}\) \\
\(20,300 \mathrm{~m}^{3}\) & \(716,000 \mathrm{ft}^{3}\) \\
\(5,100 \mathrm{~m}^{3}\) & \(182,000 \mathrm{ft}^{3}\) \\
0.25 day & \\
176 kPa & 10.8 psig \\
\(48.9^{\circ} \mathrm{C}\) & \(120^{\circ} \mathrm{F}\) \\
Steel & \\
0.63 cm & 0.25 in \\
3.5 to 1.3 cm & 1.4 to 0.5 in \\
1.1 to 2.4 cm & 0.44 to 0.94 in \\
2.7 mm & 9.0 ft \\
0.61 m & 2.0 ft
\end{tabular}
```

 Reactor Cavsty
 Annular Cavity
 Floor Area
 Instrumentation tunne1)
 Shield Bu\lding
Inside diameter
oylinder height
Wall Thickness
Construction
10
Weight of 1ce
loe temperature
RWST
Containment spray pumps
Number 2
Design flow (each)
Containment spray heat exchangers
Number 2
Design capacity (each) 28 MW 95 E.6 Btu/h
Accumulators
Number
4
Pressure
Water capacity (total)
4.6 MPa 660 psig
253 m
Sources of Information:
Sequoyah FSARA.1-14
BMI - 2104 A.1-6

```

\section*{A. 3.2 Inditulization Questions}

The first 11 questions of the Sequoyah APET determine the initial conditions for the accident progression analysis; that is, the state of the plant at the time thet core degradation starts. This time has been taken to be the uncovering of the top of active fuel (UTAF), although it is realized that actual core damage will not start until a short time after VTAF. The first 11 questions were distinguished between the different PDS groups. The branoh probabilities and parameter values are the same for the remaining 100 questions in the APET, but the branch probabilities for the fisst 21 questions depend on the PDS group to be analyzed. This section concerns how the branch probabilities are determined for these first 11 questions. This group of APET questions is often referred to as the "tree top."

The branch probabilities for most of the first 11 questions in the APET follow directly from the definition of the PDS. For example, in the LOCA PDS group, three PDSs have " \(S_{9}\) " for the first characteristic, indicating that there is a very small break in the RCS. This implies that in the first question, Branch 3, Brk. \(\$ 3\), should have a probability of 1.0 .

Ideally, the PDS groups would contain so few PDSs, and the case structure of the inftialization questions would be so detailed that all the probability would be associated with only one branch of each infitalization question. This was not practical; to obtain a reasonable number of PDS groups, it was sometimes necessary to group together several different PDSs with the result that not all the probability could be assigned to only one branch for all the questions for some PDS groups. And making the case structure detailed enough to consider every combination of PDSs was not feasible either. Therefore fractional branch probabilites are required for most PDS groups. Determining the fractions to be assigned to each branch of the questions for which fractional branch probabilites are required is the subject of this appendix. The information required comes from manipulating the results of the accident frequency analysis.

The fractional branch probablilties are determined by taking the ratio of the frequency of one or more PDSs to the frequency of a group of PDSs. These ratios are defined below for each PDS group. The frequency of each PDS varies from one observation to the next in the sample, so each fractional branch probability varies with the observation as well. That is, the file prepared by TEMAC for the APET evaluation for internal initiators contains 22 pleces of information for each observation: the frequency for each of the 7 PDS groups, end the values of the 11 fractional branch probabilities defined below.
\(A\) PDS is by definition all the cut sets that are indistinguishable for the accident progression analysis. So, each PDS has all the probability assigned to only one branch for each initialization question. Thus, there are no fractional branch probabilities for PDS groups which have only a single PDS. The seven PDS groups for internal initiators are:
1. Slow Blackout,
2. Fast Blackout,
3. Loss of Coolant Accidents,
4. Event V,
5. Transients.
6. ATWS, and
7. SGTRs.

Groups 2,4 , and 5 are single-PDS groups (see Table \(2.2 \cdot 2\) ) and require no fractional branch probabilities in the initialization questions. The other four PDS groups for internal initiators require fractional branch probabilities for at least one question, and will be discussed in turn. Note that most of the cases where fractional branch probabilities are required involve only two branches. The final branch is the complement of the sum of the other branches and is calculated by EVNTRE. The following abbreviations are utilized:
\(\mathrm{FP}(\mathrm{Br}, \mathrm{n})=\) the fractional probability of branch n ,
\(f(\operatorname{PDS} n)=\) the frequency of \(\operatorname{PDS} n\), and
\(\Sigma f(P D S m+\operatorname{PDS} n)\) - the sum of the frequencies of PDSm and PDSn.
PDS Group 1 - Slow Blackout

PDS Group 1 consists of four slow blackout PDSs. One of these PDSs has the RCS intact at UTAF, two have \(S_{3}\) breaks, and one has \(S_{2}\) breaks. Therefore, Question 1, which determines the condition of the RCS at the start of the accident progression analysis, must have fractional bra ch probabilities.

Fractional Branch Probabilities for PDS Group 1 . Slow Blackout Question 1 - RCS State at UTAF

Brk-S2: \(\mathrm{FP}(\mathrm{Br}, 2)=\mathrm{f}\left(\mathrm{S}_{2} \mathrm{RRR} \cdot \mathrm{RCR}\right) / \Sigma \mathrm{f}(\) all \()\)
Brk-S3: \(I^{P}(B r, 3)=\Sigma f\left(S_{3} R R R-R C R+S_{3} R R R-R D R\right) /(\Sigma f(\) all \()\)
* (1 \(-\operatorname{FP}(\mathrm{Br}, 2)))\)

B-PORV: \(\mathrm{FP}(\mathrm{Br}, 6)\). Calculated by EVNTRE
Brk- 52 is a mnemonic abbreviation for Branch 2 of Question 1, etc., and \(\Sigma f(a l l)\) is the sum of the frequencies of all the PDSs in the group.

The difference between the two "S \({ }_{3}\) " PDSs in PDS Group 1 is whether the secondary system is depressurized while the AFW is operating before the core uncovers. This requires fractional branch probabilities for Case 1 of Question 10.

Fractional Branch Probabilities for PDS Group 1 . Slow Blackout Question 10 . Secondary System Depressurization, Case 1 - \(S_{3}\) breaks
\(\operatorname{SecDP} ; \mathrm{FP}(\mathrm{Br}, 1)=\mathrm{f}\left(\mathrm{S}_{3} R R R \cdot R D R\right) / \Sigma \mathrm{f}\left(\mathrm{S}_{3} R R R \cdot R D R+S_{3} R R R \cdot R C R\right)\)
noSecDP: \(\mathrm{FP}(\mathrm{Br}, 2)\). Calculated by EVNTRE

TOS Gioup 3 consists of 13 LOCA PDSs. Four of the PDSs have an A-size break, and three of the PDSs have an \(S_{1}\)-size break, which is considered to be the same thing in this portion of the analysis. There are three PDSs with an \(S_{2}\).size break and three PDSs with an \(\$_{3} \cdot s i z e\) break. Therefore, Question 1 must have fractional branch probabilities.

Fractional Branch Probabilities for PDS Group 3 - LOCAs Question 1 . RCS State at UTAF
\(B r k+A: F P(B r \cdot 1)=\Sigma \mathrm{I}(A I N Y \cdot Y Y N+A I Y Y-Y Y N+A L Y Y-Y Y N+A L Y Y-Y Y Y+\) \(\left.S_{1} I N Y \cdot Y Y N+S_{1} I Y Y \cdot Y Y N+S_{1} L Y Y \cdot Y Y N\right) / \Sigma f(a l l)\)
\(B r k \cdot S 2: E P(B r .2)=\Sigma f\left(S_{2} I N Y \cdot Y Y N+S_{2} I Y Y \cdot Y Y N+S_{2} L Y Y \cdot Y Y N\right) /(\Sigma f(\) all \()\)
* (1 . \(\mathrm{FP}(\mathrm{Br}, 1)\) ))

Brk-S3: \(\mathrm{FP}(\mathrm{Br}, 3)\).. Calculated by EVNTRE
Five of the PDSs in this group have the LPIS cperating at the onset of core damage as discussed in Section 2.2.2. For Question 4, the " \(A\) " and " \(S_{1}\) " breaks are treated 10 Case 1 , the " \(\mathrm{S}_{2}\) " breaks are treated in Case 2 and the " \(S_{3}\) " breaks are treated in Case 3.

Fractional Branch Probabilities for PDS Group 3 - LOCAs Question 4 . Status of ECCS, Case 1 - Large Break

B-LPIS: \(\mathrm{FP}(\mathrm{Br} .4)=\Sigma \mathrm{f}\left(\mathrm{ALYY}-\mathrm{YYN}+\mathrm{ALYY} \cdot \mathrm{YYY}+\mathrm{S}_{1}\right.\) LYY - YYN \() / \Sigma \mathrm{If}(\mathrm{A} N \mathrm{NY} \cdot \mathrm{YYN}\)
+ AIYY-YYN + ALYY• YYN + ALYY•YYY + S \(S_{1} I N Y \cdot Y Y N\)
\(\left.+S_{1} I Y Y \cdot Y Y N+S_{1} L Y Y \cdot Y Y N\right)\)
BfECCS: \(\mathrm{FP}(\mathrm{Br}, 3)\).. Calculated by EVNTRE
Fractional Branch Probabilities for PDS Group 3 - LOCAs
Question 4 . Status of ECCS, Case 2 . Small Break
B-LPIS: \(\mathrm{FP}(\mathrm{Br} \cdot 4)=\mathrm{f}\left(\mathrm{S}_{2} \mathrm{LYY} \cdot \mathrm{YYN}\right) / \Sigma \mathrm{I}\left(\mathrm{S}_{2} \mathrm{INY} \cdot \mathrm{YYN}+\mathrm{S}_{2} \mathrm{IYY} \cdot \mathrm{YYN}+\mathrm{S}_{2} \mathrm{LYY} \cdot \mathrm{YYN}\right)\)
\(B f E C C S: F P(B r, 3)\).. Calculated by EVNTRE
Fractional Branch Probablilties for PDS Group 3 - LOCAs Question 4 - Status of ECCS, Case 3 - Very Small Break

B-LPIS: \(\mathrm{FP}(\mathrm{Br}, 4)-\mathrm{f}\left(\mathrm{S}_{3} \mathrm{LYY} \cdot \mathrm{YYN}\right) / \Sigma \mathrm{If}\left(\mathrm{S}_{3} \mathrm{INY} \cdot \mathrm{YYN}+\mathrm{S}_{3} \mathrm{IYY} \cdot \mathrm{YYN}+\mathrm{S}_{3}\right.\) LYY-YYN \()\) BfECCS: \(\mathrm{FP}(\mathrm{Br}, 3)\).. Calculated by EVNTRE

Four of the PDSs in this group have the sprays failed at the onset of core damage as discussed in Section 2.2 .2 . For Question 6, the " \(A\) " and " \(S_{1}\) " breaks are treated in Case 1, the " \(S_{2}\) " breaks are treated in Case 2 and the " \(S_{3}\) " breaks are treated in Case 3.

Fractional Branch Probabilities for PDS Group 3-1OCAs Question 6 . Status of Sprays, Case 1 - Large Break with EOCS failure
\(B f S p: F P(B r, 3)=\Sigma f\left(A I N Y \cdot Y Y N+S_{1} I N Y \cdot Y Y N\right) / \Sigma f(A I N Y \cdot Y Y N+A I Y Y \cdot Y Y N\) \(\left.+\mathrm{S}_{1} I N Y \cdot Y Y N+\mathrm{S}_{1} \mathrm{IYY} \cdot \mathrm{YYN}\right)\)
B. Sp: \(\mathrm{FP}(\mathrm{Br}, 1)\). Calculated by EvNTRE

Fractional Branch Probabilitias for PDS Group 3 - LOCAs
Question 6 . Status of Sprays, Case 2. Small Break with ECCS fallure
\(B E S_{p}: F P(B r, 3)=f\left(S_{2} I N Y+Y Y N\right) / \Sigma Z\left(S_{2} I N Y+Y Y N+S_{2} I Y Y+Y Y N\right)\)
B.Sp: \(\mathrm{FP}(\mathrm{Br}, 1)\).. Calculated by EVNTRE

Fractional Branch Probabilities for PDS Croup 3 - LOCAs Question 6 . Status of Sprays, Case 3 . Very Small Break with ECCS failure
\(B f S p: F P(B r, 3)=f\left(S_{3} I N Y \cdot Y Y N\right) / \Sigma f\left(S_{3} I N Y \cdot Y Y N+S_{3} T Y Y \cdot Y Y N\right)\)
B-Sp: \(\mathrm{FP}(\mathrm{Br}, 1)\). Calculated by EVNTRE
One of the PDSs in PDS Group 3 has cooling for the ROP seals operating. The split for the large breaks for Question 11 is treated in Case 1.

Question 11 - Status of RCP Seal Cooling, Case 1 . Large Break with ECCS
\(B-P S C: E P(B r, 1)=f\left(A L Y Y \cdot Y^{\prime} Y Y\right) / \Sigma f\left(A L Y Y \cdot Y Y N+A L Y Y \cdot Y Y Y+S_{1} L Y Y \cdot Y Y N\right)\)
BfPSC: \(F P(B r, 3)\). Calculated by EVNTRE

\section*{PDS Group 6 - ATWS}

Group 6 contains the three ATWS PDSs. There are many differences between these three PDSs, but most of them are treated in the case atructure of the initialization questions. Ondy the differences in the RCS state at the onset of core damage need be treated by fractional branch probabilities.

Fractional Branch Probabilities for PDS Group 6. ATWS
Question 1 - RCS State at UTAF
```

Brk-S3: FP(Br, 3) =f(S_NYY-YXN) / \Sigmaf(all)
B-SGTR: FP(Br,5)=£(GLYY-YXY) / (2F(all) * (1-FP(Br,3))
B-PORV: FF (Br,6) .. Calculated by EVNTRE

```

PDS Group 7 - SGTRs
PDS Group 7 coneists of two PDSs that are initiated by SGTRs and that do not have scram fallures. PDS HINX-NXY has stuck-open SRVs in the secondary system while PDS GLYY-YNY does not. The difference requires fractional bratich probabilities for Question 3, and the remaining differences are treated in the case structure of other questions.

Fractional Branch Probabilities for PDS Group 7 . SGTRs
Question 3 - Secondary SRVs Stuck Open
SSRV-SO: \(\mathrm{FP}(\mathrm{Br}, 1)=\mathrm{f}(\mathrm{HINY} \cdot \mathrm{NXY}) / \mathrm{EF}(\mathrm{Al1})\)
SSRVnSO: \(\mathrm{FP}(\mathrm{Br}, 2)\). Calculated by EVNTRE

\section*{Listing of the First 11 APET Questlons for PDS Group 1.}
```

 SEQUOYAH Aceident Progreseion Event Iree - PDS Group 1 (Slow Blaokouts)
 111
 NQuest
 1 1.060
 Cent PInit
 1 \$ize and location of inftial break?

6	$B r k-A$	$B r k-S 2$	$B r k-83$	Brk-V	B-SOTR	E-FORV
1	1	2	3	4	5	6
0.000	0.028	0.054	0.000	0.000	0.018	

2 Has the reaction been brought under oontrol?
2. Soram noSuram
1 1.000 1 2 % 0.000
3 For SgTR, are the secondary system SRVs stuok open?
2 SSRV-80 SSRVnSO

```

```

4 Status of ECCS

4	B-ECCS	BaECCS	BfRCCS	B-LP18
2	1	2	3	4

 l}\begin{array}{l}{1}\\{1}\\{4}
 Brk-h or B-SOTR & ESRV-SO
 0.000 1.000 0.000 0.000
 1
 Brk-52
 0.000 1.000 0.000 0.000
 1 1
 Brk+$3
 0.000 1.000 0.000 0.000
 Otherwise
 0.000 1.000
 0.000 0.600
 5 Is the RCS depressurized by the operstors?
Op-DePr OpmDePr OpnDePr
1.
82k-83 0.000 1.0.000 1.000
S-1
0.000 % 0.000 1.000
Otherwise
0.000 0.000
1.000
6 Status of sprays?

4	$\mathrm{B}+\mathrm{Sp}^{\text {P }}$		BaSp		8 fSn		nol-sw
2	1		2		3		nob-sw
4							
4	1		4		1		3
	1	1	3	4	5	*	1
	Brk-A	8	BfECCS	of	B-SOTR	\%	SSRV-SO
	0.000		1.000		0,000		0.000
2	1		4				
	2	*	3				
	Brk-82	4	B EECCS				
	0.000		1.000		0.000		000

```
```

 2
 Mrk-83 % & Brvo0s
 7 Stetue of be power?
 3 D-ACP EANCP DIACP
 000 -
 SNe the refueling weter storsge tank contents injeoteg into pontalmment?
    ```

```

 L 2
 5
 2
 M
 0.000 1.000 0.000
 Otherwise
 0.000 2.000 0.000
 8 Heat removel from the steati generetors% l
 2
 ## }\begin{array}{lll}{1}\\{5}&{*}&{3}\\{2}
 | B-SOTR | | | | |
| ---: | ---: | ---: | ---: | ---: |
| 0.000 | \& | SRVnSi | | |
| Dtherwise | 0.000 | 0.000 | 1.000 | |

| 0.000 | 0.000 | 0.000 | 1.000 |
| :--- | :--- | :--- | :--- |

```


\section*{List.ing of the Firet di. APEA Questions for PDS Group ?}
```

SEQUOYAB Aocident Progression Event Tree - PDS Oroup 2 (Fast Blackouts) 121
NOUESt

```

```

 7 Stetub of ec powet?
 | 8 | $B-A C P$ | BAACP | BLACP |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 2 | 3 |
| 0.000 | 1.000 | 0.000 | |

B Are the refueling water storage tank contents injected into contaimment?
RWST-1 RWSTal RWSTf1

```

```

 2. 2% %
 8.Heat removel from the stean seneretora?
 2
 2
 B-SGTK & SSRVnSO
 0.000 1.000 0.000 0.00t
 Otherwise
 | 0.000 | 1.000 | 0.000 | 0.000 |
| :--- | :--- | :--- | :--- |

10 Is the secondery depressurized before the core uncovers?
2 SecDP nosecDP
2 1 2

```

```

 Brk-83 & SGdiIR
 0.000 I.000
 2
 #
 Brk-52 & SOdHR
 0.000 1.000
 Otherwise
 0.000 1.000
 12 Cooling for reactor coolant puny seals?
 B-FSC BAPSC BfPSC
 2 2 3
 4-MORV & SOdHR or Brk-A & E-LPIS
 B-PORV & SOdHR or Brk-A & E-LPIS
 2 1 4
 Brk-53 & BeECCS
 0.000 1.000 0.000
 Otherwise
 0.000 1.000
 0.000
    ```

Listing of the First 11 ApET Questions for Pps group 3 .
SEQUOYAH Accident Progression Event Tree - PDS Oroup 3 (LOCAs)
111
Nouest
12.000

Cent Plnit
1 Size and location of initial break?
\begin{tabular}{rrrrrrr}
6 & Brk-h & Brk-S2 & Brk-89 & Brk-V & B-EGTR & B-PORV \\
1 & 1 & 2 & 3 & 4 & 5 & \\
& 0.226 & 0.168 & 0.606 & 0.000 & 0.000 & 0.000
\end{tabular}
A. 3. 2-8


6 fre the refueling water storage tank contents injeoted into conteinment
3 RWST-1 RWSTal RWSTfI


10 Is the secondary depressurized before tha core uncovers?


11 Cooling for reaction coclent pump seals?


SEQUOYAB Accident Progression Event tree = pres Oroup \& (Event V)
111
NOUest
11.000

Cent PInit
1 Size and location of initial break?
\begin{tabular}{ccrrrrr}
6 & Frk-A & Brk- 82 & Brk- 23 & Brk-V & B-89TM & B-PORV \\
1 & 1 & 2 & 3 & 4 & 5 & 8
\end{tabular}
\begin{tabular}{llllll}
0.000 & 0.000 & 0.000 & 1.000 & 0.000 & 0.000
\end{tabular}

2 Has the reaction been brought under control?
2 Soram noSoram
112
\(1.000 \quad 0.000\)
3 For SGTR, are the secondary system SRVs stuck open?
2 SSRV-SO SSRVnSO

Otherwise
0.000
0.000
1. 000
(1) Heat temoval from the steam fenerstost?

10 Is the secondery depressurized before the core unoovers? SecDP resecDP

11 Cooling for resotor coolant pump seels?

Lanting of the First 11 APET Questions. for Pps groun. 5
SEquoyah Accident Progiession Event "res - FDS Group 5 (Transients)
111
NQuest
1.000
Cent PInit
1 Size and locetion of inltial break?
6 Brk-A Brk-S2 Brk-S3 Brk-V B-SOTR B-PORV
\begin{tabular}{llllll}
0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.000
\end{tabular}
2 Has the reaction been brought under control?
2 Scram noseram
\(1.000 \quad 0.000\)
3 For SGTR, are the secondary system SRvs stuck open?
2 SSRV-SO ESRVnSO
\(1 \quad 1 \quad 2\)
6. Status of ECCS?
4 B-ECCS BaECCS BEECOS B-L.P1S
4
A. 3.2.12



```

10. Is the secondary depressurized before the core uncovers?
```

```

11 Cooling for reactor coolant pump seals
3 B-PSC BaPSC EfPSC

2	2	2

 3
 | 4 | 1 | | 9 | | 1 | | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 6 | * | 4 | + | 1 | * | 4 |
| | B-PORV | 6 | SOdilir | or | Brk-A | a | B-LPIS |
| | 1.000 | | 0.000 | | 0.000 | | |
| 2 | 1 | | 4 | | | | |
| | 3 | * | 3 | | | | |
| | Bry-53 | 6 | Breces | | | | |
| | 0.000 | | 0.000 | | 1.000 | | |
| | Otherwis | | | | | | |
| | 1.000 | | 0.000 | | 0.000 | | |

Listing of the First Ad APZT Ruestions for PDS Groupz.
SEQUOYAH hociaent Frogression Evant Tree ~ PDS Group 7 (BOTks) 111
NQuest
11.000
Cont Pinit
1 Size and location of initial break?

6	Brk-A	Brk-82	Brk-83	Brk-V	B-SGTR	B-PORV
1	1	2	3	4	5	6
	0.000	0.000	0.000	0.000	1.000	0.000

2 Has the reaction been brought under control?
2 Scrain noSorati

1	2
$1 . .00$	0.000

3 For SGTR, are the secondary system SRVs stuck open?
${ }^{2}$ SSRV-SO SSRVnSO
$1-1$ 2
$0.782 \quad 0.208$
4 Stetus of ECCS?

4	B-ECCS	BaECCS	BEECCS	B-LPIS
2	1	2	3	4

$3 \quad$| 1 |
| :--- |
| 1 |
| 1 |$+\frac{1}{5}$.

Brk-A or	B-SGTR	GSSV-SO	
0.000	0.600	1.000	0.000

$1 \quad 1$
Brk-52 0.00
1 五
Brk-S $\begin{array}{llll}0.000 & 0.000 & 0.000 & 1.000\end{array}$

```



\section*{A.3.3 Additional Discussions of Selected Questions}

This section contains additional discussions for two questions in the APET that are too lengthy to fit conveniently in Subsection A.1.1. The two questions are:
22. Is ac power recovered early? (Also relevant to the other offsite power recovery Questions - 90 and 205.)
26. Is core damage arrested? No VB?

\section*{Question 21 Is ac power reccuared early?}

Whether offsite electrical power is recovered during a specified period following the onset of core degradation is determined by sampling from a set of distributions for power recovery, A. \(1 \cdot 6\). These distributions reflect the type of electrical switchyard at Sequoyah, as explained in NUREG. 1032. A.3-1 Figure \(A .3-1\) is a plot of 5 percentile, median, and 95 percentile of this set of distributions. A single curve of the set summarized in Figure A. \(3-1\) gives the probability that the time to offsite power recovery will be greater than time \(t\), where \(t\) is measured from the start of the aocident, i.e., from the LOSP. Figure A.3-1 shows that the probability of power recovery is quite high in the first \(2 \cdot 3 \mathrm{~h}\) and that the probability of power recovery is fairly small after 6 or 8 h .

The remainder of the discussion in this section concerns the deternination of the lengths of the periods used for the ROSP in the Sequoyah AWMT. The APET considers three time periods:

Early . from the end of the recovery period considered in the accident frequency analysis to vessel failure:

Late - from vessel fallure to the end of prorapt CCI; and
Very Late . from the end of prompt CCI to 24 h .
It may be possible to arrest the core degradation process, achieve a safe stable state, and avoid vessel failure if power is recovered in the early period. For internal Initiators, it is estimated that power will almost always be recovered about a day after the initial LOSP. The use of exactly 24 h for the end of the Very late period is arbitrary. In the interface with the accident frequency analysis, it is important to account for all the time since the start of the accident, and not count any period twice.

There are three questions in the Sequoyah APET concerning the ROSP: Question 22 for the Early period; Question 90 for the late period; and Question 105 for the Very Late period.


Figure A.3.1. Mean and 90 Bounds of the Offsite Power Recovery Distributions for Sequoyah

The five SBO PDSs for Sequoyah are given below with the percentage each PDS contributes (see Table \(2.2-2\) ) to the total mean core damage frequency and the nominal times to which power recovery wes considered in the accident fiequency analysis.

Table A. 3-1
SBO PDSs for Sequoyah
\begin{tabular}{|c|c|c|}
\hline PDS. & 1. MCDE & Accident Frequency Analysis (AFA) Becovery Time (h) \\
\hline TRRR-RSR & 17 & 1.0 \\
\hline \(\mathrm{S}_{2} \mathrm{RRR} \cdot \mathrm{RCR}\) & <1 & 1.0 \\
\hline \[
\begin{aligned}
& S_{3} R R R \cdot R C R \\
& S_{3} R R R \cdot R D R
\end{aligned}
\] & \[
\begin{array}{r}
<1 \\
7
\end{array}
\] & \begin{tabular}{l}
\(2.5-7.0\) \\
\(2.5-7.0(4.0)\) \\
\hline
\end{tabular} \\
\hline TRRR-RDR & \(<1\) & 7.0 \\
\hline
\end{tabular}

PDS TRRR-RSR is the only PDS in the Fast \(S B O\) group; the other four PDSs constitute the Slow SBO group. The AFWS driven by the steam turbine runs until bettery depletion fri the Slow SBO accidents; whereas it fails at or A. 3. 3-2
shortly after the start of the accident in the Fast \(\$ B O\) group. The start and end of the offsite power recovery time periods in clock time depend upon the PDS since some of the accidents develop much faster than others. Both whether the AFWS operates until battery depletion and the size of the break in the RCS determine the time until core damage commences, and the rate at which it progresses.

The end of the time period for electric power recovery is a sampled variable in the accident frequency analysis. Because the start of the perlod is fixed at the start of the accident, this is feasible for the accident frequency anaiysis. Tresting both the start of the period, the end of the period, and the power recovery distribution itself did not prove feasible in the accident progression analysis. Therefore, fixed time periods are used in the accident progression analysis. The start of the early power recovery period is fixed at the nominal time for the end of the period used in the accident frequency analysis. These times are given above.

The power recovery times for the \(S_{3} R R R-R C R\) and \(S_{3} R R R-R D R\) PDSs depend upon the cutset, and varied from 150 min to 420 min , as explained in the report of the accident frequency analysis.A.i-反 The bulk of the frequency for \(S_{3} R R R-R C R\) is concentrated in cutsets for which power recovery times of 201 \(\mathrm{min}(3.4 \mathrm{~h})\) and \(246 \mathrm{~min}(4.1 \mathrm{~h})\) were used, and the bulk of the frequency for \(S_{3} R R R-R D R\) is concentrated in cutsets for which power recovery times of \(216 \mathrm{~min}(3.6 \mathrm{~h})\) and \(252 \mathrm{~min}(4.2 \mathrm{~h})\) were used. Therefore, 4 h is used as the start of the early power recovery period in the accident progression analysis for these two PDSs. For the TRRR-RSR, the power recovery times were 1 h and \(234 \mathrm{~min}(3.9 \mathrm{~h})\), where the bulk of the cutsets considered power recovery at 1 h ; thus, 1 h was used as the start of the early power recovery period for this PDS. For \(S_{2} R R R-R C R\) and TRRR•RDR the power recovery times in the accident frequency analysis were 1 h and 7 h , respectively.

The time to the UTAF, taken to be the nominal time for the start of core degradation, and the time of VB, are taken from analysesA.1-6, A.1-10, A. 3-2-5 performed for the NUREG- 1150 project that used the STCP. While it would have been preferabie to rely on other codes that perform detalled modeling of the core melt progression as well, this did not prove feasible. The time from the start of the accident to UTAF is determined primarily by a water boll-off calculation, and this does not vary greatly from code to code. The rate of progression for the core melt and the time from core slump to VB may differ from code to code, but these differences are considered to be small relative to the uncertainty in the time at which offsite power will be recovered.

Tables A. 3.2 and A. 3.3 summarize the information available from the STCP runs made in the last few years for NUREG-1150.A.i-3 The information in these tables was analyzed to determine UTAF and VB times that were applicable to the five PDSs for \(S B O\) at Sequoyah. The results are summarized in Table A. \(3-4\). The end of the period for which power recovery was considered in the accident frequency analysis forms the start of the early APET period. This must be the case to avoid a period in which power recovery is not considered, even though the start of the early period is conceptually at UTAF. The end of the early period is at VB.

Table A. 3-2
Timing in STCP PWR Blackout Sequences
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Plant & [A11
Sequence & columns Break Time & \begin{tabular}{l}
are \\
AFW \\
On
\end{tabular} & times AFW OEf & \begin{tabular}{l}
minute \\
SG Dep \\
Start
\end{tabular} & res. End & ept the Accum. Start & \begin{tabular}{l}
last \\
Disch. \\
End
\end{tabular} & lumn
UTAF & ch is & in psia] RGS Pr.
at VB
\(\qquad\) & Source \\
\hline Surry & TB & -- & 0 & 300 & 90 & 150 & 250 & 340 & 668 & 758 & 2518 & Letter \\
\hline Surry & TMI \(B^{\prime}\) & -- & .- & -. & -- & -. & 155 & 155 & 96 & 155 & 2365 & 2104 \& 2139 \\
\hline Sequoyah & TMLB \({ }^{\text { }}\) & -- & -- & -- & -- & -- & 158 & 158 & 98 & 158 & 2375 & 2104 \\
\hline Surry & \(S_{3} B^{8}\) & 60 & 0 & 300 & 70 & 100 & 101 & 141 & 521 & 628 & 1900 & Letter \\
\hline Surry & \(\mathrm{S}_{3} \mathrm{~B}\) & 0 & -- & -- & -- & -- & 146 & 146 & 38 & 146 & 2012 & 2160 \\
\hline Sequoyah & \(S_{3} \mathrm{~B}\) & 60 & 0 & 300 & 70 & 100 & 121 & 143 & 507 & 617 & 1509 & Letter \\
\hline Sequoyah & \(\mathrm{S}_{3} \mathrm{~B}\) & 0 & 0 & 300 & -- & -- & 374 & 37/4 & 237 & 374 & 1996 & 2139 \\
\hline Sequoyah & \(\mathrm{S}_{3} \mathrm{~B}\) (del) & 180 & 0 & \(\infty\) & 10 & 70 & 30 & 510 & 362 & 510 & 724 & 2160 \\
\hline Sequoyah & TBA & 572 & 0 & 300 & - & -- & 572 & 572 & 518 & 986 & 15 & 2139 \\
\hline
\end{tabular}

Table A. 3-3
Timing in STCP PWR LOCA Sequences
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Plant & \begin{tabular}{l}
[A1] \\
Sequence
\end{tabular} & \[
\begin{aligned}
& \text { colum } \\
& \text { AFW } \\
& \text { On }
\end{aligned}
\] & \[
\begin{aligned}
& \text { is are } \\
& \text { AFW } \\
& \text { Off }
\end{aligned}
\] & \begin{tabular}{l}
times \\
SG Dep \\
Start
\end{tabular} & in mi res. End & \begin{tabular}{l}
es exce \\
Accum. \\
Start
\end{tabular} & ept the Disch. End & last eo PORVs Open & \begin{tabular}{l}
olumn \\
UTAF
\end{tabular} & \begin{tabular}{l}
h is \\
VB
\end{tabular} & \[
\begin{aligned}
& \text { in psia. } 1 \\
& \text { RSS Pr. } \\
& \text { at VB }
\end{aligned}
\] & Source \\
\hline Surry & \(S_{3} \mathrm{DS}\) & 0 & \(\infty\) & 30 & 60 & 40 & 80 & -- & 525 & 835 & 1659 & Letter \\
\hline Surry & \(S_{3} D Z\) & 0 & \(\infty\) & 30 & 60 & 40 & 80 & 658 & 525 & 849 & 22 & Letter \\
\hline Sequoyah & \(\mathrm{S}_{3} \mathrm{D}\) & 0 & \(\infty\) & 30 & 70 & 52 & 73 & -. & 541 & 962 & 32 & Letter \\
\hline Sequoyah & \(\mathrm{S}_{3} \mathrm{HF}\) & 0 & \(\infty\) & -- & -. & 410 & 410 & -- & 272 & 410 & 1993 & 2139 \\
\hline Sequoyah & \(\mathrm{S}_{3} \mathrm{HF}\) & - & \(\infty\) & - & -- & 428 & 428 & -- & 274 & 428 & 2159 & 2160 \\
\hline Surry & \(\mathrm{S}_{2} \mathrm{DY}\) & 0 & \(\infty\) & 30 & 60 & 44 & 65 & 148 & 115 & 314 & 16 & Letter \\
\hline Surry & \(\mathrm{S}_{2} \mathrm{D}-\mathrm{Y}\) & - & - & -. & -- & 55 & 91 & -. & 28 & 164 & 617 & 2104 \\
\hline Surry & \(\mathrm{S}_{2} \mathrm{D}-\mathrm{E}\) & - & - & -- & -- & 55 & 91 & -- & 28 & 227 & 18 & 2104 \\
\hline Surry & \(\mathrm{S}_{2} \mathrm{HF}\) & - & - & -- & -- & before & UTAF & -- & 163 & 260 & 41 & 2104 \\
\hline
\end{tabular}

Table A.3-4 TIming Information for Sequoyah Blackout PDSs
(Times in h)
\begin{tabular}{|c|c|c|c|c|}
\hline PDS & Start Farly
\(\qquad\) & UTAE & \(\xrightarrow{V B}\) & Relevant: Sequences* \\
\hline TRRR-RSR & 1.0 & 1.6 & 2.6 & Q,R-TMLA \({ }^{\prime}\) \\
\hline \(S_{2} R R R \cdot R C R\) & 4. 0 & 1.9 & 5.2 & \(\mathrm{R} \cdot \mathrm{S}_{2} \mathrm{HF}, \mathrm{R} \cdot \mathrm{S}_{2} \mathrm{DY}, \mathrm{Q} \cdot \mathrm{S}_{3} H F, Q \cdot S_{3} \mathrm{D}\) \\
\hline \(S_{3}\) RRR - RCR & 4.0 & 4.0 & 6.2 & Q. \(\mathrm{S}_{3} \mathrm{~B}\) (2139) \\
\hline \(S_{3}\) RRR - RDR & 4.0 & 8.6 & 10.4 & Q,R- \(\mathrm{S}_{3} \mathrm{~B}\) (Letter) \\
\hline TRRR-RDR & 7.0 & 11.1 & 12.6 & k-TB \\
\hline
\end{tabular}
*Q indicates a Sequoyah sequence: \(R\) indicates a Surry sequence, Where there are two sequences with the same identifier, the source is indicated in parentheses.

Estimating the time of VB for the \(S_{2}\) blackout PDS is more difficult than for the other PDSs since there are no STCP results for blackout accidents with the PORVs stuck open, so the UTAF and VB times are estimated from other sequences. For \(S_{2} R R R-R C R\), the operators do not depressurize the \(S G s\) and there are no comparable STCP analyses. Comparing Sequoyah \(S_{3} D\) with \(S_{3} H F\) shows a very marked effect of depressurizing the \(S G s\). But RCS pressures will be mueh lower in an \(S_{2}\) sequence, so this may not apply. The UTAF time is actually longer for the surry \(\mathrm{S}_{2} \mathrm{HF}\) sequence than for the Surry \(\mathrm{S}_{2} \mathrm{DY}\) sequence even though the \(\mathrm{S}_{2} \mathrm{HF}\) run did not have the AFW operating. It was estimated that the stuck-open PORV年 will depresst * the RCS enough so that the effects of the depressurization of the ondary system are minimal, so 4.5 h appears to be a reasonable VB time.

Table A. 3.5 recapitulates the start and end times of the early period, the period in which electric power recovery may lead to the arrest of the core degradation process. Times have been rounded off to the nearest half hour. Table A. \(3-5\) also contains two times for the end of rapid CCI. The time from VB to the start of CCI will depend on the amount of water to be boiled off if the core debris is coolable. Table A. \(3 \cdot 5\) shows the end of rapid CCI times for a cavity which is dry at VB and receives no substantial amount of additional water, and for a cavity which is dry at \(V B\) but receives the accumulator contents shortly after VB.

Table A. 3-5
Electric Power Recovery Times for Sequoyah
(Time in hours)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PDS & \begin{tabular}{l}
Total \\
MCDF
\end{tabular} & Start of Early Period & \begin{tabular}{l}
End \(O f\) \\
Early \\
Periad
\end{tabular} & \[
\begin{gathered}
\text { End CCI } \\
\text { Dry } \\
\text { Cayity }
\end{gathered}
\] & \begin{tabular}{l}
End CCI \\
Partially \\
Wet Cavity
\end{tabular} \\
\hline TRRR-RSR & 17 & 1.0 & 2.5 & 8.0 & 9.0 \\
\hline \(\mathrm{S}_{2} \mathrm{RRR}-\mathrm{RCR}\) & \(<1\) & 1.0 & 4.5 & 10.0 & 11.0 \\
\hline \(S_{3}\) PRR-RCR & \(<1\) & 4.0 & 6.0 & 11.5 & 12.5 \\
\hline \(S_{3} R R R\) - RDR & 7 & 4.0 & 10.5 & 16.0 & 17.0 \\
\hline TRRR-RDR & \(<1\) & 7.0 & 12.5 & 18.0 & 15.6 \\
\hline
\end{tabular}

The contal ent sumps are not connected so the cavity at a low level in the Sequoyah containment. The only way for water to overflow into the cavity is if the RWST is infected into the containment (through the break or by the sprays), and at least about one-quarter of the ice melts. As electric power is required to aferate the spray or ECCS pumps, it is not possible to nave a wet cavity \(a t \geqslant B\) for che blackout PDSs. The exception is the case in which electric power is recovered just before VB, but too late to arrest core damage and prevent \(V B\). In this case, it is conceivable that the cavity could be wer (see the discussion of Question 63 in Subsection. A.1.1). If power is recovered 1 h be:iore \(V B\), the chances of arresting core damage are very good. Thus, the probability of a full cavity at VB for SBO acridents is negligible.

The period of rapid CCI denotes the period in which most of the fission products that will eventually be released from the CCI are indeed released. As the releases decrease slowly over time, this period cannot be rigidly defined. Alength of about 5 to 6 h is used for this period here.

The power recovery distributions (Figure A. 3-1) are very flat after 8 to 10 \(h\), so many of the time distinctions in Table A.3-5 are not significant compared to the vaviation between the curves in the distribution. Therefore the \(s\) implified electric power recovery periods in Table A. \(3-6\) are used. This schome preserves the differences between cases in the early period in which power recover. is more likely and more important, but condenses cases at long times when power recovery is less likely and less important.

Table A. 3-6
Electric Power Recovery Periods for Sequoyah
(Times in hours)
\begin{tabular}{|c|c|c|c|c|}
\hline PDS & Total
\(\qquad\)
\[
\mathrm{MCDF}
\] & \begin{tabular}{l}
Start \\
Early \\
Period
\end{tabular} & \begin{tabular}{l}
Start \\
Late \\
Period
\end{tabular} & Start Very Late Period \\
\hline TRRR-RC & 17 & 1.0 & 2.5 & 9.0 \\
\hline \(S_{2} R R R \cdot F\) /ik & \(<1\) & 1.0 & 4.5 & 9.0 \\
\hline \(\mathrm{S}_{3} \mathrm{RRR}\)-RCR & -1 & 4.0 & 6.0 & 9.0 \\
\hline \(S_{3}\) RRR-KLR & 7 & 4.0 & 10.5 & 17.0 \\
\hline TRRR-RDR & \(<1\) & 7.0 & 12.5 & 17.0 \\
\hline
\end{tabular}

Given the time periods for each PDS as shown in Table A.3-5, the case structure for the offsite power recovery questions can be defined. The cases are listed below for the three offsite electric power recovery questions in the Sequoyah APET.

Question 22. Is ac power recovered early?
Case 1: Had power initially - have power now
Case 2: Power failed initially, not recoverable
Case 3: TRRR-RSR, recovery period \(=1.0=2.5 \mathrm{~h}\)
Case 4: \(\mathrm{S}_{2}\) RRR-RCR, recovery feriod \(=1.0-4.5 \mathrm{~h}\)
Case 5: \(S_{3} R R R-R C R, A F W\), no secondary depressurization,
recovery period \(=4.0-6.0 \mathrm{t}\).
Case 6: S3RRR-RDR, AFW, secondary depressurization, recovery period \(=4.0-10.5 \mathrm{~h}\)
Case 7: TRRR-RDR, recovery period \(=7.0=12.5 \mathrm{~h}\)
Quegtion 90, Is ac power recovered late?
Case 1: Had power earliex have power now
Case 2: Power failed, not recoverable
Case 3: TRRR-RSR, recovery period \(=2.5 \cdot 9.0 \mathrm{~h}\)
Case 4: \(S_{2} R R R-R C R\), recovery period \(=4.5 \cdot 9.0 \mathrm{~h}\)
Case 5: \(S_{3} R R R \cdot R C R\), AFW, no secondary depressurization, recovery period \(=6.0-9.0 \mathrm{~h}\)
Case 6: \(\mathrm{S}_{3} R \mathrm{RR}\)-RDR, AFW, secondary depressurization, recovery period \(=10.5-17 \mathrm{~h}\)
Case 7: TRRR-RDR, renovery period \(=12.5-17 \mathrm{~h}\)
Question 105 . Is ac power recovered very late?
Case 1: Had power earlier - have power now
Case 2: Power falled, not recoverable
Case 3: \(S_{3} R R R-R D R\) and \(T R R R-R D R\), recovery period \(=17-24 \mathrm{~h}\)

Case 4: TRRR-RSR, \(S_{2} R R R-R C R\), and \(S_{3} R R R-R C R\), recovery period \(=9 \cdot 24 \mathrm{~h}\)

\section*{Question 26. Is core damage arrested? No VB?}

The problem of arresting core damage before \(V B\) has received little attention since the accidents which are most important to risk are those which proceed on to core melt. The TMI-2 accident is the primary source of information on this subject. Based on the current understanding of the TMI-2 accident, a method has been devised for estimating the probability of core damage arrest for each of the SBO PDSs. This method uses the electric power recovery periods defined in the previocs portion of Subsection A.3.3 (see Question 22). The application of this method to the Sequoyah APET is described here, following a brief recapitulation of the relevant parts of the TMI- 2 accident.

The TMI-2 Accident. The TMI-2 core was finally quenched in a series of events starting about 200 min after the start of the accident when HPI operated for 17 min and filled the vessel.A.9-6,7 Evidently the core was not in a coolable configuration when first covered with water as the steaming rate was less than the decay heat generation rate until the relocation of about 25 metric tons of melt to the lower plenum at 224 min (Ref. A. 3-6, p. 56). After the relocation or slump, the core assumed a coolable configuration and the temperature in all parts of the core began to decrease. However, the temperature decrease of the molten material in the center of the lower part of the core may have been quite slow due to the thick insulating crust around it. The temperature decrease of the molten material that flowed down into the lower plenum is believed to have been much more rapid.

For reference, the estimated end state of the TMI-2 core is as follows (Ref. A. 3-6, Table 1, p. 26, updated with information from Ref. A. 3-8):

Region

\section*{Eraction of Total Core Mass}
Upper Core Debris (Rubble Bed) .....  24
Previously Molten Zone ..... 26
Standing Rods ..... 32
Debris in Lower Plenum ..... 18

If it is assumed that all of the lower plonum debris came from the molten zone at the time of relocation, then the molten zone at one time contained about 458 of the core (mass). Note that the computer simulations often track "fraction relocated" or some other measure of core damage, which may be reported as fraction of core molten. By these measures, the mass in the rubble bed would count as well; and the value for "core no longer in original geometry" would be about 608. Some computer codes assume core "slump" and vessel failure when the fractior molten or otherwise damaged reaches a threshold value. These threshold values have ranged from 50 o about 85\%.

Background. The problem is to determine distributions for the probability that power recovery in the early time period (see the discussion of Question 22 above) wlll arrest the core degradation process and prevent vessel fallure, Core damage arrest is envisaged to result in a safe stable state as in TMI-2, although the extent of damage may be much less than that at TMI-2. As discussed under Question 22, the period of interest for power recovery is from the end of the power recovery period used in the accident frequency analysis to \(V B\). Once power is restored, the initiation of appropriate core injection systems is considered highly iikely as the operators are periodically trained in this procedure (see the disoussion of Question 23 in Subse tion A.1.1).

The power recover:
iod in the APET that is of interest here is the Early period. The begi ang and end of this period (in minutes) for the SBO PDSs are given below:

\section*{Power Recovery Period \\ Start Ens}

PDS
PDS
Power Recovery Period
Start Enst
60
60

Accident
\begin{tabular}{cc}
\begin{tabular}{l} 
Frequency \\
Analysis \\
(AFA)
\end{tabular} & STCP \\
& UTAE \\
60 & 102 \\
60 & 111 \\
240 & 240 \\
240 & 516 \\
420 & 660
\end{tabular}

The accident frequency analysis UTAF column contains the nominal time used for UTAF and the onset of core damage in the accident frequency analysis. The STCP UTAF column contains UTAF times derived from STCP analyses as explained above in the discussion of Question 22. (The start of the early period is constrained to be the end of the power recovery period used in the accident frequency analysis so that there are no gaps in the times for which power recovery is considered.) The end of the APET early period was obtained by determining the VB times from available STCP calculations. This value was then rounded to the nearest 30 min as discussed above (see Question 22).

Basis of the Method, From the TMI-2 dataA.3-8 and subsequent analyses, it has been estimated for a core and vessel size similar to TMI-2, that if less than about 30 metric tons of the core is in debris form when ECCS flow refilis the vessel, the chances of VB are small; and if more than 60 metric tons is in debris form when the vessel is refilled, the chances of vB are large. If the amount of debris is between 30 and 60 metric tons, it is difficult to say what the outcome would be. If less than 30 metric tons is in debris form, then either all the debris is coolable in the core, or, if part of the debris relocates to the bottom head, then the mass in the bottom head is small enough that the bottom head will not be heated to the failure point. If more than 60 metric tons is in debris form, then it is not coolable. This was shown at TMI where the debris in the "crucible" or "teacup" In the central core region continued to heat up after the core was reflooded. If 60 metric tons of the core is in debris form, then about half that amount may relocate inco the bottom head as at TMI. With 30
metric tons of core debris located in the bottom head, heat transfer analyses show that the head will probably heat up to the point where its loss of strength is significant.

If an appropriate scaling could be done for the sequoyah core and reactor vessel, and if the ends of the power recovery periods were fairly close to UTAF and VB, then the relative amounts of time from UTAF to the equivalent of 30 and 60 metric tons of debris (as derived from the STCP runs) could be used to estimate the conditional probability of core damage arrest. This approach cannot be used because the start of the power recovery period is often not very close to the time of UTAF as shown above. Further, it appears that the STCP overestimates the rate of core degradation.

A comparison of the results of the different detailed, mechanistic codes indicates that the newer codes such as MELCOR, MELPROG, CORMLT, and MAAP predict a slower core melt progression than the MARCH module of the STCP. Therefore, the method used to estimate \(t\) : \& probal llity of core damage arrest is based on a MELCOR runA. 3-9 for Surry for which UTAF occurred at 100 min and with the PORVs stuck open (RCS at 6.6 MPa ). Allowing a few minutes for refiliing the vessel to the TAF, this simulation showed that injection had to start at 47 min after UTAF to have the core covered before 30 metric tons of the core was in debris form, and that injection had to start at 63 min after UTAF to have the core covered before 60 metric tons of the core was in debris form.

ARplication to Sequoyah. The results of the Surry MELCOR run can be scaled to Sequoyah with respect to percent of the total core that is molten if the ratio of the core mass to the surface area of the lower head is roughly the same for the two reactors. The mass of the Surry core is 103 metric tons and the inner diameter of the vessel is 3.99 m . For Sequoyah, the core mass is 133 metric tons, and the inner diameter of the vessel is 4.39 m . Thus, the ratio of core mass to the surface area of the lower head for Sequoyah is about 1.07 times that for Surry. Therefore, the MELCOR results for Surry can be applied to Sequoyah when considering relocation in terms of fraction of the total core. For Surry, 30 metric tons is about 308 of the core and 60 metric tons is about 608 of the core.

The results of MELCOR run are applied to the Sequoyah blackout PDSs according to the decay heat level by means of a multiplier on the times for 308 and 608 of the core in debris form. This multiplier is comprised of two factors: one based on the decay power level, and the other based on the latent heat of vaporization. These two factors suffice for this purpose because the rate of core degradation is largely a function of the rate at which water is boiled off. The rate of water boiloff depends directly on the heat avallable and the amount of heat necessary to change liquid water to steam, which is a function of pressure.

The following tal le gives the reactor power at UTAF (time derived from the STCP runs), the nominal pressure, latent heat of vaporization, and the total multiplier (MPX). The MPX is used to scale the MELCOR times and is calculated from tha equation
\[
\operatorname{MPX}=\left[1.11 / 8 \mathrm{Rr}_{5} ; *\left(\mathrm{~h}_{\mathrm{fg}} / 1.530\right] * 1.07\right.
\]
where 1.11 is the reactor power at 100 min ( of rated power) and 1530 is the latent heat of vaporization \((\mathrm{kJ} / \mathrm{kg})\) at 6.6 MPa . For the \(\mathrm{S}_{3} \mathrm{PDSs}\), values of \(h_{f k}\) in the middie of the range were used.
\begin{tabular}{|c|c|c|c|c|}
\hline PDS & \begin{tabular}{l}
Reactor \\
Bower (1)
\end{tabular} & Pressure (MPa) & \[
\begin{aligned}
& h_{f g} \\
& (k J / k g .)
\end{aligned}
\] & MPX \\
\hline MELCOR Run & 1.11 & 6.6 & 1530 & 1.00 \\
\hline TRRR-RSR & 1.10 & 15.2 & 990 & 0.66 \\
\hline \(\mathrm{S}_{2} \mathrm{RRR}\)-RCR & 1.06 & 2.8 & 1810 & 1.23 \\
\hline \(\mathrm{S}_{3}\) RRR-RCR & 0.85 & 7.14 & 1500-1100 & 1.10 \\
\hline \(\mathrm{S}_{3}\) RRR-RDR & 0.66 & \(7 \cdot 14\) & 1500-1100 & 1.43 \\
\hline TRRR-RDR & 0.57 & 15.2 & 990 & 1.25 \\
\hline
\end{tabular}

Using the multipliers given above, the times when 308 and when 608 the core is in debris form can be calculated for each PDS from the MELCOR results. That is, for the time after TTAF when 30 is in debris form, the value of 47 min caloulated by MELCOR is scaled by the appropriate MPX. The time when 608 is in debris form is similarly calculated from the 63 minute MELCOR value. The results are as follows:


For example, for TRRR-RSR, MPX is \(0.66,5047 \mathrm{~min}\) is multiplied by this value to obtain 31 min for the time to 308 core debris for TRRR-RSR relative to UTAF. UTAF is estimated by the STCP to occur 102 min after the start of the accident, so, for TRRR-RSR, 308 of the core is estimated to be in debris form 133 min after the start of the accident.

These times can be used to estimate the conditional probability for each PDS or groups of PDSs that, given power recovery in the period before VB, when the vessel has been refllled the core will have less than \(30 \%\) in debris form, between 308 and 608 is debris form, or more than 608 in debris form.
\(S_{2}\) RRR-RCR. The MELCOR analysis is almost directly applicable to \(S_{2} R R R \cdot R C R\) as the uncovering time and the pressures are close to those used in the MELCOR run. The nominal value for the intermediate pressure range ( 400 \(p s i a=2.8 \mathrm{MPa})\) is somewhat lower than the pressure observed as typical during core degradation in the MELCOR run, so there is an adjustment for the latent heat of vaporization. The total multiplier is 1.23 as given in the table above. The SCTP UTAF time for the \(S_{2}\) PDS is 111 min (decay power -1.068 ).

Let \(t_{u}(30 \mathrm{mR})\) be the time (minutes), relative to UTAF, at which injection has to start to refill the vessel to TAF before \(30 \%\) of the core is in debris form. Let \(t_{u}(60 \mathrm{mR})\) be the analogous time for \(60 \%\). Using the multiplier defined above, for \(S_{2} R R R-R C R, t_{u}(30 \mathrm{mR})=58\) and \(t_{u}(60 \mathrm{mR})=78\).

Let \(t_{n}(30 \mathrm{mR})\) be the time (minutes), relative to the start of the accident, at which injection has to start to refill the vessel to TAF before 308 of the core is in debris form. Let \(t_{A}\) ( 60 mR ) be the analogous time for 60 . From the table above, the UTAF time is 111 min , so \(\mathrm{t}_{\mathrm{a}}(30 \mathrm{mR})=169 \mathrm{~min}\), Based on these definitions, the relevant times for \(S_{2} R R R-R C R\) may be summarized:
\begin{tabular}{ll}
\(\mathrm{t}_{\mathrm{a}}(30 \mathrm{mR})\) & \(=169\) \\
\(\mathrm{t}_{\mathrm{a}}(60 \mathrm{mR})\) & \(=189\)
\end{tabular}
where the times are in minutes.
Let \(\Delta(<30)\) be the period when less than \(30 \%\) of the core is in debris form, which extends from the start of the APET power recovery period to \(t_{a}(30 \mathrm{mR})\). If power is recovered in this period, core damage arrest and the prevention of VB is very likely (on the order of 0.90 ). Let \(\Delta t(30-60)\) be the period when between \(30 \%\) and \(60 \%\) is in debris form. This period extends from \(t_{a}(30 m R)\) to \(t_{a}(60 m R)\). If power is recovered in this perlod, the probability of arresting core damage and preventing of VB is indeterminate (about 0.50 ). Finally, let \(\Delta t(>60)\) be the pertod when more than 60 of the core is in debris form. This period extends from \(t_{\mathrm{a}}(60 \mathrm{mR})\) to the end of the power recovery period. If power is recovered in this period, core damage arrest and the prevention of \(V B\) is very unlikely (on the order of 0.10 ).

Based on the information above, the lengths (minutes) of these three periods can be found for \(S_{2} R R R-R C R\) :
\begin{tabular}{ll}
\(\Delta t(>30)\) & \(=109\) \\
\(\Delta t(30-60)\) & \(=20\) \\
\(\Delta t(>60)\) & \(=81\)
\end{tabular}

If power recovery is equally likely at all times during the early period for \(S_{2} R R R-R C R\), the probability of core damage arrest would be on the order of 0.45 . However, from 1 to 4 h , the power recovery curve is not flat, and the probability of power recovery is much higher in the earlier part of the period than in the latter part. Considering the relative lengths of the three periods given above, and the shape of the power recovery curves (see Figure A.3-1 above in the discussion of Question 22), a cumulative probability distribution defined by \(y=x^{2}\), where \(y\) is the probability and \(x\) varies from 0.0 to 1.0 , was selected for the \(S_{2}\) PDS. The mean and median values for this distribution are around 0.8 .
\(S_{3} R R R-R C R\). The STCP UTAF time for \(S_{3} R R R-R C R\) is 240 min (decay power 0.85\%). Compared with the previous case, the longer time to UTAF results in a lower decay power at UTAF. But this is not as important as the lower value of the latent heat of vaporization due to the higher pressure in the

RCS. The result is that MPX -1.10 for this PDS. Scaling the 308 and 608 debris times from the MELCOR reference case by this value gives the following values:
\[
\begin{array}{ll}
\mathrm{t}_{\mathrm{u}}(30 \mathrm{mR}) & -52 \\
\mathrm{t}_{\mathrm{u}}(60 \mathrm{mR}) & -70 \\
\mathrm{t}_{\mathrm{t}}(30 \mathrm{mR}) & -292 \\
\mathrm{t}_{\mathrm{n}}(60 \mathrm{mR}) & =310
\end{array}
\]
and
\[
\begin{array}{ll}
\Delta t(<30) & =52 \\
\Delta t(30.60) & =18 \\
\Delta t(>60) & =50
\end{array}
\]

Based on the lengths of these three periods, the probability of core damage arrest would be about 0.41 if power zecovery is equally likely for all times in the early period for \(S_{9} R R R-R C R\). For the 4 to 6 h period for this PDS, the power recovery curves are not as nonlinear as they are for the 1 to 4 h period considered for the previous case. Nonetheless, the probability of power recovery early in the period is greater than that of recovery late in the period. Therefore, a uniform distribution from 0.33 to 1.0 was selected for the recovery probability density for this PDS, and is the maximum entropy distribution for this variable, indicating maxinum uncertainty. The mean and median values for this distribution are 0.67.
\(\mathrm{S}_{3}\) RRR-RDR. The STCP UTAF time for \(\mathrm{S}_{3}\) RRR-RDR is 516 min (decay power \(=\) 0.668 ). Scaling the 308 and \(50 \%\) debris times from the MELCOR reference case by the multiplier of 1.43 based on the ratios of the decay power at UTAF and the latent heat of vaporization gives the following values:
\[
\begin{array}{ll}
\mathrm{t}_{\mathrm{u}}(30 \mathrm{mR}) & -67 \\
\mathrm{t}_{\mathrm{u}}(60 \mathrm{mR}) & =90 \\
\mathrm{t}_{\mathrm{a}}(30 \mathrm{mR}) & =583 \\
\mathrm{t}_{\mathrm{a}}(60 \mathrm{mR}) & =606
\end{array}
\]
and
\begin{tabular}{ll}
\(\Delta t(<30)\) & \(=343\) \\
\(\Delta t(30.60)\) & \(=23\) \\
\(\Delta t(>60)\) & \(=24\)
\end{tabular}

For this PDS, the start of the power recovery period is so late that the power recovery curve is quite flat for the time period of interest. The length of \(\Delta t(<30)\) is much greater than the lengths of the other two periods together. Thus, the arrest of the core degradation process and the prevention of \(V B\) is quite likely. However, there are so many uncertainties involved in core melt progression and lower head failure, that core damage arrest cannot be considered certain or nearly certain. A linear cumulative distribution from 0.8 to 1.0 is considered appropriate for core damage arrest for \(S_{3} R R R \cdot R D R\). This results in a uniform probability density from 0.8 to 1.0 . The median and mean values of this curve are 0.90 .

TRRR-RSB. The STCP UTAF time for TRRR-RSR is 102 min (decay power 1.108), so the scaling by ratio of the decay power at UTAF is negligible. However, the difference in \(h_{f B}\) betwean this PDS and the reference MELCOR conditions is large. Thus, the total multiplier is 0.66 as explained above. This results in the following times:
\begin{tabular}{ll}
\(\mathrm{t}_{\mathrm{u}}(30 \mathrm{mR})\) & \(=31\) \\
\(\mathrm{t}_{\mathrm{u}}(60 \mathrm{mR})\) & \(=41\) \\
\(\mathrm{t}_{\mathrm{a}}(30 \mathrm{mR})\) & \(=133\) \\
\(\mathrm{t}_{\mathrm{a}}(60 \mathrm{mR})\) & \(=143\)
\end{tabular}
and
\begin{tabular}{llr}
\(\Delta t(<30)\) & \(=\) & 73 \\
\(\Delta t(30-60)\) & \(=\) & 10 \\
\(\Delta t(>50)\) & \(=\) & 7
\end{tabular}

If the RCS pressure boundary could be assumed to remain intact until VB, the relative lengths of these three periods, together with the steep descent of the power recovery curves for the times of interest for TRRR. RSR, imply that the arrest of core damage and the prevention of VB is likely. However, the probability of at least one depressurization event occurring after UTAF is large. If the hot leg or surge line fails, a great deal of the remaining core inventory is likely to be lost by flashing as the vessel depressurizes. This is more than compensated for by the discharge of the accumulators, however, so the time to \(t_{\mathrm{a}}(60 \mathrm{mR})\) will probably be longer than if the hot leg fallure did not ocour. The hot leg fallure will not occur until some time after UTAF, and whether it precedes or follow \(t_{a}(30 \mathrm{mR})\) is indeterminate.

The effects of a PORV sticking operi, or a RCP seal fallure are more uncertain. Which depressurization event will occur is uncertain, and the offects and the timing of the depressurization events are uncertain as well. Even though the period bofore 30 is in debris form is much longer than the period after 308 is in debris form, core damage arrest cannot be assured due to the many uncertalnties Involved, Therefore, the linear cumulative core damage arrest distribucion from 0.8 to 1.0 used for \(S_{3} R R R\) RDR is applicable to TRRR-RSR as well.

TRRR-RDR. This PDS is very lengthy due to the operation of the STD-AFWS until battery depletion and the abseace of a break in the RCS at UTAF. The STCP UTAF time for TRRR-RDR is 660 win (ciecay power \(=0.57 \%\) ). These two PDSs should not be confused with TRRR-RSR in which the STD AFWS falls at the start of the accident and the UTAF time is 102 min . The value of MPX (1.25) for TRRR-RDR is not as latge as might be expected from the from the low decay power level due to the low value of \(h_{c 8}\). The following times are obtained for TRRR-RDR:
\begin{tabular}{rl}
\(t_{u}(30 \mathrm{mR})\) & \(=59\) \\
\(t_{\mathrm{u}}(60 \mathrm{mR})\) & \(=79\) \\
\(t_{\mathrm{a}}(30 \mathrm{mR})\) & \(=719\) \\
\(t_{\mathrm{a}}(60 \mathrm{mR})\) & \(=739\) \\
A.3.3-14
\end{tabular}
and
\begin{tabular}{ll}
\(\Delta t(<30)\) & \(=299\) \\
\(\Delta t(30.60)\) & \(=20\) \\
\(\Delta t(>60)\) & \(=11\)
\end{tabular}

As in \(S_{3} R R R \cdot R D R, ~ \Delta t(<30)\) is much greater than \(\Delta t(30-60)\) and \(\Delta t(>60)\) together, and the power recovery surves are relatively flat. So the arrest of core damage in time to avoid vessel failure is rather likely. In addition to the uncertainties involved in core melt progression and lower head failure, TRRR-RDR has the uncertainties involved with the inadvertent, temperature-induced RCS depressurizetion events that were discussed above with respect to TRRR-RSR, so arrest cannot be considered certain or nearly certain. The linear cumulative core damage arrest distribution from 0.8 to 1.0 used for \(S_{3} R R R-R D R\) and TRRR-RSR is appropriate for TRRR-RDR also.
A.3-1. P.W. Barnowsky, "Evaluation of Station Blackout Accidents at Nuclear Power Plants," NUREG-1032, Draft, U. S. Nuclear Regulatory Commission, 1985.
A.3-2. J.A. Gieseke, P. Cybulskis, R,S. Denning, M.R, Kuhlman, K.W, Lee, and H. Chen, "Radionuclide Release Under Specific LWR Accident Conditions, Volume V: PWR-Large, Dry Containment Design (Surry Plant Recalculations)," BMI-2104, Battelle Columbus Laboratories, 1984.
A.3.3. R.S. Denning, J,A, Gieseke. P. Cybulskis, K.W. Lee, H. Jordan, L.A. Curtis, R.F. Kelly, V. Kogan, and P.M. Schumacher, "Radionuclide Release Calculations for Selected Severe Accident Scenarios, Volune 3: PWR, Subatmospheric Containment Design," NUREG/CR-4624, BMI-2139, Battelle Columbus Division, 1986.
A.3.4. Peter Cybulskis, "Effect of Emergency Operating Procedures on Severe Accident Progression", Letter report sent to C. Ryder, U.S. NRC, April 29, 1988. (This report is contained in NUREG/CR-4551, Volume 2, Part 6.)
A.3-5. Peter Cybulskis, "Effect of Emergency Operating Procedures on Severe Accident Progression .. Sequoyah Ice Condenser PWR", Letter report sent to C. Ryder, U.S. NRC, May 12, 1988. (This report is contained in NUREG-4551, Volume 2, Part 6.)
A.3-6. E.L. Tolman et al., "TMI-2 Accident Scenario Update," EGG-TMI7489, Idaho National Engineering Laboratory, Dec. 1986.
A.3-7. E.L. Tolman et al., "TMI-2 Accident Scenario Update," Trans. 15th Water Reactor Safety Information Meeting, Gaithersburg, MD, Oct. 26-29, 1987, pp. 22-3 to 22-6, published by the U. S. Nuclear Regulatory Commission, 1987.
A.3-8. J.L. Anderson and J.J. Sienicki, "Thermal Behavior of Molten Corium During the TMI-2 Core Relocation Event", Trans. ANS/ENS 1988 Int. Conf., Washington, DC, Oct. 30 - Nov. 4, 1988, pp. 429. 430.
A.3-9. E.A. Boucheron, "Core Damage Arrest for SBO at Surry," Informal report attached to a Memo from E.A. Boucheron to R.J. Breeding, dated January 24,1989 . (This report and memo are contained in Volume 2, Part 6.)

APPENDIX B
SUPPORTING INEORMATION FOR THE SOURCE TERM ANALYSIS
B. 1 LISTING OF SEQSOR ..... B. 1-1
B. 2 SEQSOR DATA FILE ..... B. 2-1
B. 3 SOURCE TERM RESULTS ..... B. 3-1
B. 4 INFORMATION USED IN SOURCE TERM PARTITIONING ..... B. 4. 1
FIGURES
B.3-1 Exreedance Frequencies for Release Fractions (iodine, cesium, strontium, lanthanum) ..... B. 3-2
B. 3-2 Total Release Fractions for Early Containment Failure ..... B. 3 - 4
B. 3-3 Total Release Fractions for Late Contairunent Failure ..... B. 3-4
B.4-1 Mean Early Fatalities vs. Released Activity for Sequoyah ..... B. 4-1
TABLES
B.4.1 Selected MACCS Mean Results for Single Isotope Releases for Sequoyah ..... B. 4-2
B.4-? PARTITION Input File for Sequoyah Analysis ..... B. 4-5

\title{
APPENDIX B \\ SUPPORTING INFORMATION FOR THE SOURCE TERM ANALYSIS
}

\section*{INTRODUCTION}

Appendix B contains information and detalls about the source term analysis. Subsection B. 1 contains a listing of the SEQSOR computer model. Subsection B. 2 provides a listing of the data file used by SEQSOR that contains the distributions for the source term variables described in Subsection 3.2 . Subsection B. 3 contains results from the source term analysis for Sequoyah internal events, and Subsection B. 4 provides information that was used in the partitioning of the source terms.

\section*{B. 1 LISTING OF SEQSOR}
B. 1-1
```

 PROCIRAM SEQSOR
 READ(5, *)IPRINT, IBINNR, ISAMPL, IWROUT, IRELOUT,
 $IETDAT
 C GET THE ISSUE NUMBERS
READ (5,*)NTSST,NISS,NSAM
READ WHTCF SUE NO, AFPLIES TS EACH ST ISSUE
READ (5,* - \&SST(K),K=1,N1SS)
IF DIAGNOSTICS ARE REQUIRED, DIAG = TRUE,
IF SOURCE TERMS ARE TO BE READ BY OBSERV.TION,
BYOBS = .TRUE,
READ (5,998)DIAG,BYOBS
WRITE THE IDENTIFICATION AND UNIT NUMBER
WRITE(IPRINT, 1004) NAMRUN, NSAM, IPRINT, ISAMPL, IBINNR, IRELOUT,
\& IWROUT, ISTDAT
WRITE(IPRINT, 1044)NISST, NIES
11CAL.L= TRUE.
IF(.NOT.BYOBS) THEN
READ (IBINNR,1000)NAMBIN
READ(IBINNR, *)NDIM, HBIN
NTOT=NBIN*NSAM
WRITE(IPRINT, 1005)NAMBIN, NDIM,NBIN,NTOT
READ (IBINNR,1006)(BINJ (J),J*1,NBIN)
C PUT A HEADER ON THE "RRLLEASE" OUTPUT FILE
WRITE(IRELOUT, 2002)NAMRUN, NDIM, NSP, NTOT, NSAM
ELSE
DO }890\mathrm{ ISAM=1,NSAM
PUT A HEADER ON THE "RELEASE" OUTPUT FILE
READ(IBINNR, 1001)IOBSD, NAMBIN
READ(IBINNR, *)NDIM,NBIN
NTOTeNTOT+NBIN
READ(IBINNR,1006)(BINJ (J),J=1,NBIN)
CONTINUE
WRITE(IPRINT, 1007)NAMBIN, NDIM, NTOT
WRITE(IRELOUT, 2002)NAMRUN,NDIM,NSP,NTOT,NSAM
REWIND IBINNP
ENDIF
DO 900 ISAM= 1,NSAM
C STEP THROUGH SAMPLE
READ (ISAMPL, *)IODSD,NLHS, (XNDX (J), J=1,NISST)

```
```

 2CALL= TRUE
 STEP THROUGH MASTER BIN LIST, BY OBSERVATION
 IF(BYOBS) THEN
 READ (2BINNR, 2001)1OBSD, NAMBIN
 RE.AD(IBINNR,*)NDIM,NBIN
 READ(IBINNR, 1006)(BINJ (J), J*_,NBIN)
 END IF
 C
\$
B
C
CALCULATE SOURCE TERMS
DO 810 1B=1,NBIN
CALL SORST (NSP,I1CALL,,BINJ (IB),NISS,TSSST, 12CALL,
XNDX,ST,STL, EARLY,ISTDAT,DIAG,IPRINT,
TW,T1,DT1,E1,T2,DT2,E2,ELEV,ISAM)
11CALL=.FALSE
12CALL=.FALSE
GET EARLY AND LATE EFFECT WEIGETS
WEE = EARLIY EFPECT OF EARLY RELEASE
WLE = LATE EFFEOI OF EARLY RELEASE
WEL = EARLY EFFECT OF LATE RELEEASE
WLL. = L.ATE EFFECT OF LATE RELEASE
DO 770 18Pm1,NSF
IF(EARLY)THEN
STE(ISF)=ST(ISP)
ST(ISP)=STE(ISP)+STL(ISP)
8L.SE
STE(ISP)=0,
STL(ISP)=ST (ISP)+STL(ISP)
ST(ISP)=STL(ISP)
END IF
CONTINUE
IF(EARLY)THEN
CALL WEIGHT(NEP, STE WEE WLE)
CALL. WEIGET (NSP, STL, NEL, WLLL)
ELSE
WEE=0,
WL.E=0
CALL WEIGHT (NSP,ST,WEL,WLL)
END IF
DO BB8 IJ=1,2C
IF(IJ,LE. NDIM)THEN
BINOUT(IJ:IJ)=BINJ(IB)(IJ:IJ)
ELSE
BINOUT(IJ:IJ)=',
END IF
CONTINUE
WR.ITE(IRELOUT, 1775) ISAM RINOUT,TW,T1,DT1,T2,DT2, ELEV
WRITE(IRELOUT,17751) E1,(STE(IS),IS=1,NSP)
WRITE(IRELOUT, 17751; E2,(STL(IS),IS=1,NSP)
WETaWEE+WEL
WL.T WWL.E +WL.L
WRITE(IWROUT, 1777) ISAM, IB, WEE, WLE, WEL, WLL, WET WLT
IF(DIAG)THEN
WRITE(IPRINT, 2010)IB,BINJ(IB),ISAM, (STE (ISP),
ISP=1,NSP),(STL,(ISP),ISP=1,NSP),
(ST(ISP),ISP=1,NSP)
WRITE(IPRINT, 2011),WEE,WL.E, WEL, WLLL, WET, WLT
END IF
CONTINUE
CONTINUE
FORMAT(L1,1X,L1)
FORMAT(A)
FORMAT (15,A)
1004 FORMAT(5X, 'RUN TITLE: ',A80/
\& SX,'SAMPLE SIZE = ',I3/
\$ 5X,'PRINT FILE ON UNIT ',I2/

```
```

 5X,'INPUT SNMPLE FILE ON UNIT ',12/
 5X, 'INPUT BIN FILE ON UNIT ',I2%
 5X, OUTPUT ST FILE ON UNIT ',121
 5X, OUTPUT WEIOHTS FILE ON UNIT ',121
 SX,'INPUT PARNMETERS ON UNIT ',12)
 1005 FORMAY(5X,'BIN TITLE: ,AB0/5X,'DIMENSIONS: ',13/
\$ 5X,'NUMBER OF BINS: ',I4/
5X,'TOTAL NUMBER OF SOURCE TERMS: ',17)
1006 FORMAT (1X, A20)
1007 FORMAT (5X, 'BIN TITLE: ',A80/5X,'DIMEHSIONS; ', 13/
\$ 5X,'TOTAL NUMBER OF SOURCE TERMS: ',17)
1044 FORMAT (5X, 'TOTAL. NO, OF ISSUES =',13/5X, 'NO, OF ST ISSUES=',13)
1275 YORMAT (14, 2X, A20/6(1PE12. 3))
1777 FORMAT(215,6(1PE11.3))
2002 FORMAT (2X,AB0/417)
2020 FORMAT (// 5X, 'OUTPUT FOR BIN ENTRY * *, 14, 2X, A20/5X,
\$ 'SAMPLE MEMBER',14/5X,'STE w ', 日(1PEO.1)/
S 5X,'3TL * ',9(1PE9.1)/5X,'STT = ,9(1PEG.1)
2011 FORMAT (5X,' WEE = ',FB,4,' WLLE = ',Y8.4,' WEL = ',F8,4.
\$, WLL = ',F8.4/5X,' WET = ',FB,4,' WLTT = ',FB,4)
17751 FORMAT(10(1PE12.3))
END
SUBROUTINE SORST(NSP, I1CALL, BIN,NISS,ISSST, I2CALL, XNDX,ST,
\$ STL, EARLY, ISTDAT,DIAG,IPRINT,TW,T1,
\$
DT1,E1,T2,DT2, E2, ELEV,ISAM)
0
c
C
C
C
C THE SOURCE TERM FOR SPECIES GROUP I (1.NE. 2 OR 3) IS
C
C
APPROXIMATED BY:
ST(I)*FCOR(I)*(FISO(I)*FOSO(I)+(I-FISO(I))*FVES(I)*((I.-FBYPV)
/DFTCV+FBYPV)*FCONV/DFE
+FPART*(1-FCOR(I))*FCCI(I)*((1.-FBYPC)/DIFCC+FBYPC)*FCONC(I)/DFL
+(1-FCOR(1))*FFME*FDCH(1)*FCONV*((1,-FBYPV)/DFICDH+FBYFV)+
+FLATE (I)*(FCOR (I)* (1-FVES (I)) +FREM* (1-FCOR (I))*FCONRL(I)/DFL (I)
WHERE:
ST(4)=FRACTION OF INITIAL INVENTORY RELEASED TO ENVIRONMENT,
FISG(I)=FRACTION OF INITIAL INVENTORY RELEASED INTO STEAM GENERATD
FOSG(I)=FRACTION OF INITIAL. INVENTORY RELEASED FROM STEAM GENERATO
FCOR(I)=FRACTION OF INITIAL INVENTORY RELEASED FROM FUEL PRIOR TO
BREACE.
FVES(I)=FRACTION OF FCOR NOT DEPOSITED IN TEE VESSEL
FCONVmFRACTION OF MATERIAL RELIEASED TO CONTAINMENT PRIOR TO
OR AT VESSEL BREACH WHICE WOULD BE RELEASED FROM CONTAINMENT IN
THE ABSENCE OF DECONTAMINATION MECHANISMS.
FBYPV EFFECTIVE BYPASS FRACTION OF ICE CONDENSER UP TO THE TIME OF
VESSEL BREACH
DFICV=DECONTAMINATION FACTOR FOR ICE CONDEINSER UP TO THE TIME OF
VESSEL. BREACH
DFE=DECONTAMINATION FACTOR APPLICABLE TO RCS RELEASE.
FPART=FRACTION OF CORE INVOLVED IN CCI
FCCI(I)=FRACTION OF INVENTORY REMAINING IM THE MELT
RELFASED DURING CORE-CONCRETE INTERACTION (CCI)
FCONC(I)=FRACTION OF CCI RELEASE ESCAPING CONTAINMENT.
FBYRC=EFFECTIVE BYPASS FRACTION FOR ICE CONDENSER DURING CCI RELEA
DFICC=DECONTAMINATION FACTOR FOR ICE CONDENSER DURING CCI RELEASE
DFL ")=DECONTAMINATION FACTOR APPLICABLE TO CC: RELEASE.
FFME=FRACTION OF CORE INVOLVED IN PRESSURIZED MELT EJECTLON
FDCH(I)=FRACTION OF MATERIAL INVOLVED IN PRESSURI ZRD MELT
EJECTION RELEASED FROM CONT:INMENT DUE TO DIRECT HEATING
DFICDH=DECONTAMINATION FACTOR FOR ICE CONDENSER APPLICABLE TO

```
```

DCH RELEASE
FLATE(I)=FPACTION OF MATERIAL REMAININO IN THE RCS AFTER YESSEL
BREACH WHICH IS REVOLATILIZED LATER
FREM=FRACTION OF CORE MATERIAL REMAINING IN VESSEL AFTER BREACH.
FCONRL(I)=FRACTION OF LATE REVOLASILIZED MATERIAL WHICH WOULD BE
RELEASED FROM CONTAIMMENT IN THE ABSENCE OF DECONTAMINATION
MECHANISMS
FOR IODINE, AN ADDITIONAL TERM IS ADDED:
+XLATE* (RELIV-RELIC)
WHERE
XLATE IS THE FRACTION OF IODINE REMAINING IN CONTAINPENT LATE
IN THE ACCIDENT WHICH IS CONVERTED TO ORGANIC IODIDES.
RELTV=FRACTION OF INITIAL. INVENTORY OF IODINE RELEASED TO
CONTAINI位T.
RELIT = FRACTION OF INITIAL INVENTORY OFIODINE RELEASED FROM
CONTAINMENT.
NISS=NUMBER OF ST ISSUES
ISSUE-1: 1N-VESSEL. RELEEASE FROM FUEL (FCON)
ISSUE-2: RRI.EASE YROM VESSEL. (IN-VESSEL RETENTION) (FVES)
ISSUE-3: V-SEQ. DF WITH SUBMERGED RELEASE (VDF)
ISSUE-4: RELEASE OF RCS SPECIES FROM CONTAINMENT (FCONV)
ISSUE-5: RELEASES FROM MELT IN CCI (FCCI)
ISSUE-6: RELEASE OF CCI SPECIES FROM CONTAINMENT (FCONC)
1SSUE-7: SPRAY DF'S (SPRDF)
ISSUE-8: LATE IODINE RELEASES FROM CONTAINMENT (XL.ATE)
1SSUE 9: LATE REVOLATILIZATION (FLATE)
ISSUE-10: RELEASE DUE TO DIRECT HEATING (FDCH)
ISSUE-11: DECONTAMIKATION FACTOR FOR ICE CONDENSER
ISSUE-12: STEAM GENERATOR TUBE RUPTURE FISG \& FOSG
ISSUE-13: POOL. SCRUBBING OF CCI
ST BINS ARE DEFINED BY A 14 LETTER WORD, "BIN"
1ST LETTER: CONTAINMENT FAILURE MODE
A=CONT. BYPASS, NOT SUBMERGED
B=CONT. BYPASS, SUBYERGED
C=CONT, VAILURE BEFORE VESSEL. BREACH
D=CONT, FAILURE NEAR THE TIME OF VESSEL FAILURE
E=L.ATE (CA. 6 ERKS AFTER VB) CONTAINMENT FAILURE
F=VERY LATE (CA, 24 GRS AFTER VB) CONTAINMENT FAILURE
G=NO CONTAINMENT FAILURE
2ND LETTER: SPRAY OPERATION
(E=EARL.Y, UP TO VESSEL BREACB)
(I=INTERMEDIATE, VB TO VB+45MIN)
(L=LATE, VB+45MIN TO END OF CCI)
(V=VERY LATE, AFTER CCI)
(-*NON-OPERATION)
A=E-\cdots
B=EI --
Ce:IL-
D\#ETLV
Ea*-L-
F=*-LV
G=----V
H=-\cdots.*
3RD LETTER: CORE-CONCRETE INTERACTION
A=PROMPT DRY --FULL, UNSCRUBBED CCI
B=PROMPT SEALLIOW SCRUBBED
C~NO CCI
D= PRONPT DEEP SCRUBBED
E*SHORT DELAYED, THEREAFTER DRY
F=LONG DELAYED, THEREAFTER DRY

```
```

c
c
C
c
0
C
C
C
C
c
l
C
C
c
C
C
C
0
0
0
0e
c
c

```
\begin{tabular}{l}
c \\
c \\
c \\
\hline
\end{tabular}
```\(c\)
```

c

```c
c
c
c\(c\)
\(c\)
```

4TH LET%ER PRESSURE IN RCS AT Vb

```
4TH LET%ER PRESSURE IN RCS AT Vb
A*AT SYSTEM SETPOINT; T SEQUENKES; OUTELOW THROUGH CYCLING PORV
A*AT SYSTEM SETPOINT; T SEQUENKES; OUTELOW THROUGH CYCLING PORV
f=H1OH PRLSSURE; 53 SEQUENOES; VERY SMALL. LEAK W/O SO COOLINO
f=H1OH PRLSSURE; 53 SEQUENOES; VERY SMALL. LEAK W/O SO COOLINO
f=INTERMEDIATE PRESSURE; S2 SEQUENCES; ACCURUULATORS DIRCHAROE
f=INTERMEDIATE PRESSURE; S2 SEQUENCES; ACCURUULATORS DIRCHAROE
I=LOW RRESSURE; A/BL SEQUENCES; NEAR ATMOSPHERIC PRESSUNE
I=LOW RRESSURE; A/BL SEQUENCES; NEAR ATMOSPHERIC PRESSUNE
5TH LETTER: MODE OF VESSEL BREACH
5TH LETTER: MODE OF VESSEL BREACH
A*HPPME
A*HPPME
B*POUR
B*POUR
OWGROSS BOTTOM HEAD FAILURE
OWGROSS BOTTOM HEAD FAILURE
D* Al.PHAR MODE
D* Al.PHAR MODE
E=ROCNE'T
E=ROCNE'T
F*HO VESSEL. BREACH
F*HO VESSEL. BREACH
67H LETTER: GOTR
67H LETTER: GOTR
A=DCCURS (ETTHER S2 OR S3), SRV CLOSES
A=DCCURS (ETTHER S2 OR S3), SRV CLOSES
BwOCCURB, SRV REMAINS OPEN
BwOCCURB, SRV REMAINS OPEN
CWNONE
CWNONE
7TH LETTERI AMOUNT OF CORE IN CCI
7TH LETTERI AMOUNT OF CORE IN CCI
A=LAROE AMOUNT (70-100%) NOMINALLY 85%
A=LAROE AMOUNT (70-100%) NOMINALLY 85%
BarMODERATE AMOUNT (30-70%) NOMINALLY }50
BarMODERATE AMOUNT (30-70%) NOMINALLY }50
C=SMALL AMOUNT(0-907) NOMINALLY 15%
C=SMALL AMOUNT(0-907) NOMINALLY 15%
D=NOHE
D=NOHE
8TH LETTKR: ZR OXIDATION
8TH LETTKR: ZR OXIDATION
A=LOW1 2R OXIDATYOM (0-402) NOMINALLYY 25%
A=LOW1 2R OXIDATYOM (0-402) NOMINALLYY 25%
BwHIGE 2R OXIDATION (>402) NOMIV4LLY 55%
BwHIGE 2R OXIDATION (>402) NOMIV4LLY 55%
0TH LETTER: GIOH PRESSURE MELT ENECTION
0TH LETTER: GIOH PRESSURE MELT ENECTION
A=HIOE HPME (75TE PERCENTILE OF IN-VESSEL PANEL)
A=HIOE HPME (75TE PERCENTILE OF IN-VESSEL PANEL)
BUMODERATE HPME (50TH PERCENTILE OF IN-VESSEL PANEL)
BUMODERATE HPME (50TH PERCENTILE OF IN-VESSEL PANEL)
ONLOm HPME (2.5TH PFRCENTILE OF IN-VEGSEL. PANEL)
ONLOm HPME (2.5TH PFRCENTILE OF IN-VEGSEL. PANEL)
DwNO LIPME
DwNO LIPME
10TH LETTER: CONTAINMENT FAILURE SIZE
10TH LETTER: CONTAINMENT FAILURE SIZE
A*CATASTROPHIC RUPTURE *-GROSS STRUCTURAL. FAILURE
A*CATASTROPHIC RUPTURE *-GROSS STRUCTURAL. FAILURE
BuRUPTURE--NOMINALLYY ? SQ, FT.
BuRUPTURE--NOMINALLYY ? SQ, FT.
CwLEAK--NOMINALLY 0.1 SQ. FT.
CwLEAK--NOMINALLY 0.1 SQ. FT.
I *NO FAILURE
I *NO FAILURE
11TH LETTER: HOLES IN RCS
11TH LETTER: HOLES IN RCS
A*ONE LARGE HOLE
A*ONE LARGE HOLE
I =TWO LAROE HOLES
I =TWO LAROE HOLES
12TH LETTER: ICE CONDENSER FUNCTION BEFORE VESSEL BREACE
12TH LETTER: ICE CONDENSER FUNCTION BEFORE VESSEL BREACE
A=NO BYPASS; IC FUNCTIONS AS DESIGNED
A=NO BYPASS; IC FUNCTIONS AS DESIGNED
B=PARITALLY BYPASSED
B=PARITALLY BYPASSED
C=COMPLETELY BYPASSED OR ICE MELTED
C=COMPLETELY BYPASSED OR ICE MELTED
13TH LETTER: ICE CONDENSER FUNCTION DURING CCI
13TH LETTER: ICE CONDENSER FUNCTION DURING CCI
A=NO BYPASS; IC FUNCTIONS AS DESIGNED
A=NO BYPASS; IC FUNCTIONS AS DESIGNED
B=PARTIAL BYPASS
B=PARTIAL BYPASS
C*COMFLETELY BYPASSED OR ICE MELTED
C*COMFLETELY BYPASSED OR ICE MELTED
14TH LETTER: AIR RETURN FANS
14TH LETTER: AIR RETURN FANS
A*FARLY; FANS OPERATE ONLY UP TO VESSEL BREACH
A*FARLY; FANS OPERATE ONLY UP TO VESSEL BREACH
B=EARLY AND LATE; FANS OPERATE BEFORE AND AFTER VESSEL BREACH
B=EARLY AND LATE; FANS OPERATE BEFORE AND AFTER VESSEL BREACH
CwLATE ONLY; FANS OPERATE ONLY AFTER VESSEL BREACH
CwLATE ONLY; FANS OPERATE ONLY AFTER VESSEL BREACH
DaNEVER; AIR RETURN FANS NEVER OPERATE
DaNEVER; AIR RETURN FANS NEVER OPERATE
PARAMETERS TO BE SET BY ISSUES GAVE 10 LEVELS-- LEVELLS 1-9
PARAMETERS TO BE SET BY ISSUES GAVE 10 LEVELS-- LEVELLS 1-9
DEFINE THE CDE, I.E., THEY ARE MINUMMM, MAXIMUM, AND 7 INTERMEDIATE
```

DEFINE THE CDE, I.E., THEY ARE MINUMMM, MAXIMUM, AND 7 INTERMEDIATE

```
PERCENTTLES, (17, 5\%, 25\%, 507, 75\%, 85\%, 99\%) OF CDF LEVEL. 10 FOR ANY ISSUE INDICATES THE "CENTRAL" LEVEL, HENCE IF ALI. LEVELS ARE SET TO 10. THE "CENTRAL" RELEASE WILL. BE GIVEN.
THE LEVELS FOR EACH SAMPLE MPMBER ARE SET BY A VECTOR, XNDX, WHERE XRDX(I) IS A REAL NUMBER. IF XNDX(I) IS SET TO A VALUE GREATER THAN OR EQUAL TO 1.0, THE "MAXIMUM" PERCENTILE VALUES FOR THE GIVEN DARAMETER ARE SELECTED, IF XNDX(I) IS SET TO 0,O, THE "MINIMKM" PERCENTILE VALUES FOR THE GTVEN PARAMETER ARE SELECTED. IF XNDX(I) IS SPECIFIED AS A REAL VALUE BETWEEN 0.0 AND 1.0, EITHER A LINEAR OR A LOGARITHMIC INTERPOLATION SCHEME IS INVOKED TO SELECT THE PROPER VALUE FOR A OIVEN PARAMETER. TO OET THE "CENTKAL" RELEASE MENTIONED IN THE PREVIOUS PARAGRAPH, SPECTFY A NEGATIVE REAL VALUE FOR XNDK (I).
DIMENSION FCORL \((10,9,4), \operatorname{FCOR}(9), \operatorname{FVHB}(10,9), \operatorname{FVHP}(10,8), \operatorname{FVIF}(10,9)\),
S FVLP \((10,9), \operatorname{FVV}(10,9), \operatorname{FVSG}(10,9), \operatorname{FVES}(9)\),
S FCCNVI \((10,6), \operatorname{VDFL}(10), \operatorname{DFICVI}(10,5), \operatorname{DFICCI}(10,5)\),
\(\operatorname{SCCI}(10,9,4), \operatorname{FCCI}(9), \operatorname{FCONCI}(10,9,6), \operatorname{DFSPR1}(10)\),
SDFSER2 (10), DFSPRC(10),FPMEL (4), FPARTL(4),
SLATEIL (10), FLATE \((10,9,4), \operatorname{FLATEX}(9), \operatorname{FCONC}(9)\),
\$FDCHL \((10,9,2), \operatorname{DLATE}(9), \operatorname{DFL}(\theta), \operatorname{FCONRLX}(9)\),
SLVL (20), XNDX (300), VPSL \((10,9,2), \operatorname{VPS}(9)\),
\(\operatorname{SXSG}(6), \mathrm{ST}(8), \mathrm{STL}(8), \operatorname{FISG}(10,8,2), \operatorname{FOSG}(10,9,2), \mathrm{XOSO}(8)\),
C SFCONRL(9),DST (9), ISSST(20)
SDST (8), ISSST (20)
REAL. LATEIL, LVL
LOGICAL. ISPR (4), IFAN (2), DIAG, EARLY, TEST, IICALL, 12C:LL
CHARACTER*20 BIN
CHARACTER CFR
C FRACTION OF CORE REMAINING IN VESSEL; THIS MAY EVENTUALLY BE
C PASSED BY CEI, FOR THE PRESENT, THIS QUANTITY IS FIXED AT 52.
DATA FREM/.03/
DATA FPARTI. \(/ 1,1,5,15,0.1\)
FOR THE FIRST CALL TO THIS SUBROUTINE, READ IN ST DATA
tr (wor H1cult coro esso
BLOCK 1: FCOR FRACTION OF EACH NUCLIDE RELEASED FRCH CORE
CASE 1 =LOW ZR OXIDATION (HIGR 2R RYMAINING)
CASE 2=HIGH ZR OXIDATION (LOW ZR REMAINTNG)
READ (ISTDAT, *) (((FCORL, (L,TSP, IC), ISP=1,NSY), L=1,10),IC=1,2)
IF(DIAG)WRITE (IPRINT, 2004) \((((F C O R L(L, I S P, I C), I S P=1, N S P)\),
\$ \(\mathrm{L}=1,10), \mathrm{IC}=1,2)\)
2004 FORMAT (/5X, 'FCORL: '/(9(1PE10.1)))
gLOCX 2: FVES; FRACTION RELLEASED FROM VESSEL
BASED ON RCS PRESSURE AT TIME OF VESSEL BREACE
FVHH: SYSTEM SETFOINT PRESSURE
FVHP: HIGH PRESSURE (LUMPED WITH INTERM, BY EXPERTS)
FVIP: EIGH OR INTERMEDIATS PRESSIPE
FVLP: LOW PRESSURE
FVV: LARGE INTERFACING SYSTEM LOCh́
READ (ISTDAT, *) ((FVHH(L, ISP), ISP*1, NSP), \(\mathrm{L}=1,10\))
IF (DIAU)WRITE (IPRINT, 2010) ((FVHH (L,ISP), ISP=1,NSP),
8 \(\mathrm{L}=1,10\))
2010 FORMAT \(/ 5 \mathrm{X}\), 'FVHH: ' \(/(9(1 \mathrm{PE} 10,1)))\)
READ (ISTDAT, *) (\((\) EVHP \((L, I S P), 13 P=1, N S P), L=1,10)\)
IF (DIAG)WRITE(IPRINT, 2011) ((FVHP (L, ISP), ISPw1,NSP),
\$ \(\mathrm{L}=1,10\))
2011 FORMAT (/5X, 'FVHP:'/(8(1PE10.1)))
READ (ISTDAT * \()((\) FVIP \((L, I S P), I S P=1, N S P), L=1,10)\)
IF (DIAG)WRITE (IPRINT, 2012) ((FVIP(L,ISP), ISP=1,NSP),
S \(\mathrm{L}=1,10\))
2012 FORMAT (/5X. 'FVIP;'/(8(1PEL0.1)))
```

```
 READ(ISTDAT, *)((FVLP(L,TSP),ISF=1,NSP), L=1,10)
 IF(DIAO)WRITE(IPRINT, 2014)((FVLP(L,ISP),ISP=1,NSP),
 $ L=1,10)
 2014 FORMAT(/5X, 'FVLP:'/(8(1PE10.1)))
 READ(ISTDAT, *)((FVV(L,ISP),1SP=1,NSP), L=1,10)
 IF(DIAG)WRITE(IPRINT, 2016)((FVV(L, ISP),ISP=1,NSP),
 L=1,10)
 2016 FORMAT(/5X,'FVY:'/(0(1PE10.1)))
 FVES FOR SGTR
 READ(ISTDAT, *)((FYSO(L, ISP), ISP*1,NSP), L=1,10)
 IF(DIAG)WRITE(IFRINT, 2018)((FVSG(L,ISP),ISP=1,NSP),
 $ L=1,10)
 2018 FORMAT (/5X,'FVSO:'/(8(1PE10,1)))
 BLOCX 3: FISG AND FOSG
 FISGmFRACTION LNTERINO SG IN 3GTR
 FOSG-FRACTION LEAVING STEAM GENERATOR
 CASE 1: SRV CLOSES. CASE 2: SRV DOES NOT CLOSE
 READ(ISTDAT,*)(<(FISQ(L,ISP,IC),ISP=1,NSP),L=1,10),IC=1,2)*
 IP(DIAG)THEN
 DO 20201 IC=1,2
 WRITE(IPRINT, 2020)IC, ((EISG(L,ISP,IC),ISP=1,NSP),
 % L=1,10)
 CONTINUE
 ENDIY
 2 0 2 0
 READ(ISTDAT, *) (((FOSG(L,ISP,IC),ISP=1,NSP),L=1,10),IC=1,2)
 IF(DIAG)THEN
 DO 20221 IC=1.2
 WRITE(IPRINT, 2022)IC, ((FOSG(L,ISP,IC),ISP=1,NSP),
 l=1,10)
20221
 CONTINUE
 ENDIF
 2022 FORMAT(/5X,'FOSO:'/5X,'CASE ',I3/(8(1PE10.1)))
 BLOCK 4: VDF=DF APPLIED TO SCRUBBED V SEQUENCE.
 READ(ISTDAT,*) (VDFL(L),L=1,10)
 IF(DIAG)WRITE(IPRINT, 2024)(VDFL.(L),L=1,10)
 2024 FORMAT (/5X,'VDF:'/(5(5PE10.1)))
c
 BLOCK 5; FCONV=FRACTION OF RCS RELEASE LEAVING
 CONTAINMENT; SIX CASES
 CASE 1: EARLY LEAK, DRY CONTAINMENT
 CASE 2: EARLY LEAK, WET CONTAINMENT
 CASE 3: EARLY RUPTURE, UPPER COMPARTMENT
 CASE 4: EARLY RUPTURE, LOWER COMPARTMENT
 CASE 5: LATE RUPTURE
 CASE 6: V SEQUENCE
 READ(ISTDAT,*)((FCONVI (L, ICASE), L=1,10),ICASE=1,6)
 IF (OIAO)THEN
 DO 2222 ICASE=1,6
 HEITE(IPRINT, 2025)TCASE, (FCONVI(L,ICASE), L=1,10)
 CONTINUE
 END IF
 2025 FORMAT(5X,'FCONV--CASE ',13/(10(1PE10.1)))
C
C BLOCK 6: FCONC=FRACTION OF CCI RELEASE LEAVINO
 CONTAINMENT; FIVE CAEES
 CASE 1: EARLY LEAK (DEFORE CCI), DRY CONTAINMENT
 CASE 2: EARLY LEAK (BEFORE CCI), WET CONTAINMENT
 CASE 3: EARLY RUPTURE (BEFORE CCL), UPPER COMP.
 CASE 4: EARLY RUPTURE (BEFORE CCI), UPPER CCMP.
 CASE 5: LATE RUYTURE (AFTZR CCI)
 CASE 6: V-SEQUENCE:
 READ(ISTDAT, *)(((FCONCI (L,ISP,ICASE), ISP=1,NSP), L=1,10),
```

\$ ICASE =1,6)
IF (DIAO)THEN DO 222.3 ICASE=1,6 WRITE (IPRINT, 2026)ICASE, ( (FCONCI (L,ISP,1CASE)
8
ISP=1,NSP), $\mathrm{L}=1,10$ )

END IF
FORMAT (5X, 'FCONC--CASE ', I3/(B(1PE10.1)))
BLOCK 7: CCI $=F R A C T I O N$ OF MATERIAL REMAINING YN DEBRIS
RELEASED IN CCI
CASE 1: LOW ZR OXIDATION (HIGH ZR REMAINING), NO WATER
CASE 2: HIOH ZR OXIDATION (LOW ZR REMUINING), NO WATER
CASE 3: LOW ZR OXIDATION, WATER PRESENT
CASE 4: HIOH ZR OXIDATION, WATER PRESENT
READ (ISTDAT, *) ( ((CCI (L, ISP,IC),ISP=1,NSP), L=1,10),IC=1, 4)
IF (DIAO)WRITE(IPRINT, 2028) ( ( (CCI (L,ISP,IC), ISP=1,NSP)
$\mathrm{L}=1,10), 1 \mathrm{C}=1,4$ )
FORMAT (/5X, 'CCI:'/रB(2PE10,1)))
BLOCK B: SPRAY DF-S
DFSPRL=SPRAY DF FOR EILGH PRESSURE, EARLY
CONTAINMENT RUPTURE FOR RCS RELEASE
CURR\&NTLY ONE VALUF FOR ALL NUCLIDE GROUPS (EXCEPT NG)
READ (ISTDAI, *) (DFSPR1 (L) , L=1, 10)
IF (DIAG)WRITE(IPRINT, 2034)(DFSPR1(L), L=1,10)
FORMAT(/5X, 'DFSYR1: ${ }^{\prime} /(10(1$ PE 10,1$\left.))\right)$
DFSPR2-SPRAY DF FOR ALL. OTHER CASES, FOR RCS RELEASE,
READ (ISTDAT, *) (DFSPR2 (L), L=1,10)
1F (DIAG)WRITE (IPRINT, 2036) (DFSFR2 (1) , 1=1,10)
FORMAT $\left(/ 5 X\right.$, DFSPR2: ${ }^{\prime} /(10(1$ PE10.1) $)$ )
DFSPRC=SPRAY DF FOR CCI RELEASE.
READ (ISTDAT, *) (DFSPRC(L), Le1,10)
IF (DIAG) WRITE(IPRINT, 2038) (DFSPRC(L) , La 1,10 )
BLOCK 日: FRACTION OF IONZH二 REMAINING IN CONTAINMENT WHICE IS CONVERTED TO VOLATILE FORMS
READ (ISTDAT, *) (LATEIL (L) , $\mathrm{L}=1,10$ )
IF (DIAG)WRITE (IPRINT, 2044)(LATEIL(L), L=1, 10)
FORMAT (/5X, 'LATETL: '/(10(1PE10.1)))
BLOCK 10: FRACTION OF MATERIAL. REMAINING IN RCS WHICH IS REVOLATILIZED LATE IN THE ACCIDENT,
CASE 1: ONE HOLE IN RCS
CASE 2: TWO HOLES IN RCS
READ (ISTDAT, *) ( ( (FLATE (L, ISP, IC), ISP=1,NSP), $\mathrm{L}=1,10), \geqslant(=1,2)$ IF (DIAG)WRITE (IPRINT, 2046) (( (FLATE (L, ISP, IC), ISPw , NSP),

$$
\mathrm{L}=1,10), T \mathrm{C}=1,2)
$$

FORMAT $(/ 5 X$, 'FLATE:' $/(8(1$ PE 10.1$)))$
BLOCX 11: FOR IIRECT EFATING
FDCH=FRACTION OF FPME RELEASED FROM CONTAINMENT (FOR EARLY CF ONLY)
READ (ISTDAT, *) ( (FDCHL, (L,ISP,1),ISP=1,NSP), L=1,10)
IF (DIAG)WRITE (IPRINT, 2051) ( (FDCHL (L,ISP,1),ISP=1,NSP), L=1,10)
FORMAT ( $/ 5 \mathrm{X}$, ;DCHL ; HI PRESSURE'/(9(1PE10.1)))
READ (ISTDAT, *) ( (FDCHL (L, ISP, 2), ISP=1,NSP), L=1,10)
IF (DTAG)WRITE (IPRINT, 2052) ( (FDCHL (L,ISP, 2), ISP=1,NSP), L=1,10)
FORMAT (/5X, 'FDCHL: INT PRESSURE'/(9(1PE10.1)))
BLOX A A. DF FOR POOL SCRUBBING.
CASE 1: ACCUMULATOR WATER ONLY
CASE 2: FULL CAVITY
READ (ISTDAT, *) (( $(V P S L(L, I S P, I C), I S P=1, N S P), L=1,10), I C=1,2)$
IF (DIAG)WRITE(IPRINT, 2056) (((VPSL (L, ISP, IC), ISI $=1$. NSP)
B $\mathrm{L}=1,10), \mathrm{IC}=1,2)$
2056 FORMAT $\left(/ 5 \mathrm{X}\right.$, 'VPSL: $\left.{ }^{\prime} /(8(1 \mathrm{PE} 10.1))\right)$
BLOCK 13: FRACTIONS OF CORE IN HPME (HIOH, MODERATE, L.OW) READ (ISTDAI, *) (FPMEL (L) , $\mathrm{L}=1,3$ )
FPMEL ( 4 ) $=0.0$

```
 IF (DIAG)WRITE(IPRINT, 2056C) (FFMELL(L),L~1,3)
2056B FORMAT(5X,'FRACTION OF CORE IN HPME:'/5X,'HIGH,
 $ 5X,'MODERATE ',FB.3/5\lambda, 'LON '.PE. 3)
 BLOCK 14:
 DATA FOR ICE CONDENSEK DECONTAMINATION FACTOR FOR RCS RELEASE
 FOUR CASES-*
 CASE 1: FANS OPERATING, NO CF
 CASE 2: FANS OPERATING, CONTAINMENT FAILED
 CASE 3: FANS NOT OPERATING,DEFAULT CASE
 CASE 4: HPME OR DCH EVENT
 READ(ISTDAT,*)((DFICVI (L,IC),L=1,10),1C=1,4)
 IF(DIAG)THEN
 DO 16456 ICw1,4
 WF,ITE(IPRINT, 16457)IC,(DFICVI(L,IC),L=1,10)
 16436 CONTINUE
 END IF
15457 PORMAT(/5X,'DF1CV, CASE ',12/2X,(10(1PE8,1)))
C 5,OCK IS
C DATA FOR ICI CONDENSER DECONTAMINATION FACTOR FOR COI RELIEASE
C THREE CASES--
C CASE 1: FANS OPERATING, NO CF
C CASE 2: FANS OPERATING, CONTAINMENT FAILED
C CASE 3: FANS MOT OPERATING, DEFAULT CASE.
 READ(ISTDAT,*)((DFICCI (L,IC),L=1,10),IC=1,3)
 IF (DIAG)THEN
 DO 16458 IC=1,3
 WRITE(IPRINT,16458)IC,(DFICCI(L,IC),L=1,10)
 CORTINUE
 END IF
16459 FORMAT(/5X, 'DFICC, CASE, ',12/1X,(10(1PE9,1)))
 C THIS IS THE END OF THE DATA INPUT.
 8550 CONTINUE
 IF(I2CALLL) THEN
 DO 10 1SS=1,N1SS
 ISSUE=ISSST(ISS)
 LVL(ISS)=XNDX(ISSUE)
 CONTINUE
 END IF
 CHH=BIN(1:1)
 EARLY=,FAL.SE
 IF(C&H,LE, 'D',OR,BIN(6;6),LT, 'C')EARL,Y=, TRUE
 IF(DIAG)WRITE(IPRINT, 1009)BIN,ISAM, (LVL,(ISS),ISS=1,NISS)
 1008 FORMAT ////5X, 'DIAGNOSTIC OUTPUT FOR BIN',A2O.
 $ ' SAMPLE MEMBER ', I4/
 $ 5X,'ST LEVELS = ', 4(5F5,1,3X))
 MAIN CALCULATION
 SET UP SPRAY INDICES
 "TRUE" INDICATES SPRAY IS OPERATING DURING THE FOLLOWING TIME
 PERIODS.
 PERIOD 1: UP TO VESSEL BREACH (EARLY)
 PERIOD 2: VESSEL BREACH TO START OF CCI (INTERMEDIATE)
 PERIOD 3: DURING CCI (LATE)
 PERIOD 4: AFTER CCI (VERY LATE)
 CALL SPRAY(BIN,ISPR)
 IF(DIAG)WRITE(IPRINT, 1010)(ISPR(L),L=1,4)
 FORMAT (5X,' "SPRAY" CAlLED; ISPR = ',4L1)
 SET UP FAN INDICES
 PERIOD 1: UP TO VESSEI. BREACH
 PERIOD 2: AFTER VESSEL, BREACH
 CAL.L FAN(BIN,IFAN)
 IF(DIAG)WRITE(IPRINT, 1011)(IFAN(L), L=1, 2)
 1011 FORMAT (5X, "FAN" CALLED; IFAN = ',2L1)
C RELEASE CHARACTKRISTICS
 CALL. RELCHAR(BIN,TW,T1,DT1,E1,T2,DT2,E2,ELEV,ISPR)
```

```
 DTW=T1-TW
 1F(D1AO)WRITEE(IPRINT, 2145)TW,DTW,T1,DT1,E1,T2,DT2,E2,ELEEV
2165
FORFANT(5X, '"RELCHAR" CALLED; RELEASE CHARACTERISTICS;'/
 8X,'TW',7X,'DTW',EX,'T1',7X,'DT1',6X,'E1',7X,'T2',
 7X, 'DT2', EX, 'E.2',7X, 'ELEV'/5X, B(1PE日,1)/5X,
 'TIMES IN SEC,*-REL. RATES IN WATTS*-ELEV, IN METERS')
 IN VESSLL RELEASE FOR EACH GROUP (FCOR)
 CALL CORER(BIN,NQF,FCOR,FCORL, LVL(1))
 IF(D1AG)WRITE(IPRINT,1014)(YCOR:1S),18*1,NSP)
 1014 FORNAT (5X, ""CORER" CALLED'/5X,'FCOR = ',B(1PEB,1))
 IN-VESSEL RETENTION
 CALL. VESREL (BIN,FVES,FVHH,FVHP,FVIP,FVLP,FVV,
 B FVSO,NSP,LVL(2))
 IF(DIAG)KRITE (IPRINT,1016)(PVES(25),15=1,NSP)
 1016 FORMAT(5X,'"VESRRL" CALLED'/5X,'SVES = ', B(1PE日, 1))
C CALCULATE FISSION PRODUCTS EHTERING STENM GENERATOR
C (FOR SGTR ONLY)
 NO 1.S ISP=1.NSP
 XSO(ISF)=0.
 XOSQ(ISP)=0.
 IF(BIN(5;6),EQ.'C')OOTO 195
 ICASE=1
 IF(BIN(6;6),EQ,'B')ICASE-2
 XSO(ISP)=XINTERPLSC(LVL(12),FISG,ISP,ICASE,1LOO)
 XOSQ(ISP)=XINTERPLSC(LVL(12), FOSG,ISP,ICASE, ILOO)
 195 CONIINUE
 IF(DIAG)WRITE(IPRINT, 2078)(XSG(ISP),1SP=1,NSP)
2078 FORMAT(SX,'RELEASE TO SG-5:'/5X,9(1PEQ.1))
 IF(DIAO)WRITE (IPRINT, 20781)(KOSO(ISP),ISP=1,NSP)
20782 FORMAT(5X,'RELEASE FROM SG-S:'/5X,9(1PED.1))
 1L.00=1
 VDF=1.0
 IF(CHH, EQ. 'B')VDF=XINTERPL.(LVL.(3),VDFL,ILOG)
 IF(DIAO)WRITE(IPRINT, 20781)VDF
20791 FORMAT (5X, 'VDT = ',1PE10.1)
C RELEASE OF MATERIAL FROM CUNTAINMENT (FCONY AND FCONC)
 CALL. FCONVC(BIN, ISPR,FCONYI, FCONV, FCONCI,
 8 FCONC,LVL.(4),LVL.(6),NSP)
 IF(DIAG)WRITE (IPRINT, 1018)FCONY, (FCONC(1S),18=1,NSP)
 FORMAT(5X, "FCONVC" CALLED'/5X,'FCONV = 1,1PE10.1/
 $
```



```
C CCI RELEASE
 CALL CCIREL,(BIN,NSP,CCI, FCCI, LVL(5))
 IF(DIAO)WFITE(IPRINT,1020)(FCCI(18),18=1,NSP)
1020 FORMAT(5X'HCCIREL" CALLED'/5X, 'FCCI = ',
C DCH RELEASE
 IDCH=1CHAR(BIN(B:日))-64
 FPME=YFMEL (IDCE)*(1,-FREM)
 IF(DIAG)WRITE(IPRINI, 20777)FPME
20777 FORMAT(5X,'FRACTION OF CORE IN HPAE = 1.F6 4)
C FRACTION OF CORE PARTICIPATING IN COI
 ICCI=ICHAR(BIN (7:7))-64
C MATERIAL REMAINING IN VESSEL, AND MATERIAL INVOLVED IN HIGH
C PRESSURE MELT EJECTION, CANNOT PARTICIPATE IN CCI
 FPART-FPARTL (ICCI)*(1,-FREM-FPME)
 IF (DIAO)WRITE(IPRINT, 10200)FPART
10200 FORMAT;5X,'FRACTION OF CORE IN CCI * ',FB,3)
C EFFECTS OF SPRAYS
 CALL SPRDF(BIN,ISPR,DFSPR1,DFSPR2,DFSPV,DFSPRC,DFSPC,
 SLVL.(7))
 IF\DIAG)WKITE(IPRINT, 1022)DFSPV,DFSPC
 1022 FORMAT (5X,'"SPRDF" CALLED; DFSPY = ',F7.1,' DFSPC = 'F7 1)
C POOL. SCRUBBING DF
C FIND CASE (SHALLOW OR DEEP)
 ICASE=3
```

```
 TLOC=1
 IF(BIN(3,3) EQ 'B')ICASE=1
 IF(BIN(3:3),EQ.'D')ICASE=2
 DO 185 ISPw1.NSP
 IF(ICASE, EQ, 3)THEN
 VPS(ISP)=1.
 ELSE
 VPS(1SP)=XINTERPLSC(LVL(13),VPSL,ISP,1CASE,1LOO)
 END IF
1.5 CONTINUE
 IF(DIAG)WRITE(IPRINT, 2077)(VPS(ISP),ISP*1,NSF)
2077 FORMAT (5X,'DF(POOL SCRUB):'/5X,9F7,1)
C FIND EFFECTS OF ICE CONDENSER
 CALL ICE(BIN,IFAN,DFICVI, DFICCI, DFICV, DFICC,DFICDH,FBYPV,
 S FBYPC,LVL(11))
 IF (DIAG)WRITE(IFRINT, 20877)DFICV,FBYPV,DFICC,FBYPC
20877 FORMAT(5X,'ICE CONDENSER DFS:'/5X,'RCS; ',1PE10,1,
 $ BYPASF FRACTION: ',1PE10.1/
 $ 5X, 'CCI: ',1PE10,1, BYPASS FRACTION: ',1PE10,1)
C FIND OVERAL.L. DF
 ILOO=1
 DFE*1.0
 DO 22620 ISP=1,NSP
 DFL(ISP)*1.0
2.2625 CONTINUE
C FOR V-SEQUENCE WITH WATER
 IF(CHH,EQ.'B')THEN
 DFE=VDF
 DO 2.621 1SP=2,NSP
 DFL.(ISP)=AMAX1(VDF,VPS(ISP))
22*21 CONTINUE
 ELSE
C FOR ALL. OTHERS:
C OVERALL DF IS SET EQUAL TO THE LARGEST FOR ALL OPERATIVE
C MECHANISMS FOR EARLY CF (BEFORE CCI) DFL CANNOT BE GREATER
C THAN WHLT THE SPRAY DF WOULD BE, IF SPRAYS WERE OPERATING.
 DWE WHAT THE SPRAY DF WOULD BE,, IF SPRAYS WERE OPERATINGY
 DFE=DFSPV
 DFE=DFE/({1.-FBYPV)/DFICV+FBYPV)
 ILOC=1
 DO 2.2622 ISP=2,NSP
 DFL(ISP)=AMAX1(VPS (ISP),DFSPC)
 IF((BIN(1:1),EQ,'D',OR,BIN(1:1),EO,'C')
 AND.DPL(ISP),GT, 1.)DFL(ISP)=
 AMIN1(DFL(ISF),XINTERPL(LVL(7),DFSPRC,ILOG)
 DFL(ISP)=DFL(ISP)/((1,-FBYPC)/DFICC+FBYPC)
22622 CONTINUE
 END IF
C DO HOT ALLOW OVERALL DF-S T: EXCEED 10,000,
 DFE=AMIN1 (DFE,1,E4)
 DO 11211 ISP=2,NSP
 DFL(ISP)=AMIN1(DFL.(ISP),1.E4)
 T*'(IPRINT, 1026)DFE, (DFL(ISP),ISP=1,NSP)
 * ',F7,1/5X,'DFL;'/4X,(9(1PE10,1)))
 ,DCith,LVI.(10),NSP,DET,FCOR,DIAG,IPRINT
 (IPRINT, 17775)(DST(ISP),ISP*1,NSP)
1777. DCH RELEASE TO CONTAIMEENT:'/9(1PE10.2))
 - RE OR LARGE LEAK, NO EYFECT OF SPRAYS ON DCH RELEASE
 DO 176 , ,P=2,NSP
 DST(ISP)=DST(ISP)*FCONY
 COMTTMIF
 IF(BIN(1:1),EQ, 'G')DST(1)=,005*DST(1)
 IP(DIAG)WRITE(IPRINI, 17776)(DST(ISP),ISP=1,NSP)
```

```
17776 FORMMT(5X,'TNCH RELLEASE FROH CONTAIMMENT:'/9(2PE10,1))
C CALCULATE SOURCE TEMMS
 FCNG=1
 IF(BIN(1:1),EQ '0')PCNOm,005
 8T(1) *FCOR(1)*(XSG(1)*XOSG(1)+(1,-XSO(1))*FVES (1)*FCNG)+DST(1)
 STL(1)=FPART*(1,-FCOR(1))*FCCCI (1)*FCNG
 GRCS=ST(1)
 GCCI=STL(1)
 DO 200 1SP=2,NSP
 ST(ISP)*FCOR(ISP)* (XSG(ISP)*XOSG(ISP)+(1,-XSG(ISP))*
 8 FVES(ISP)*FCONV/DFE)+DST(1SP)
 STL (1SP)=(1.-FCOR(ISF))*FFART*FCEI (ISP)*FCONC (ISP)/
 $ DFL(ISP)
 200 CONTINUE
C "LATE" RELEASES OF GROUPS 3-3 ARE TRANSFERRED TO EARLY
C RELEASES, IF COS IS PRONIPT AND CONTAIMMENT FAILURE IS EARLY
C IF SOTR OCCURS NOBLE GAS RRLEASE IS TERMED EARLY
 IF((BIN(1:1),GI,'D',OR,BIN(3;3),EQ,'F'),AND,BIN(6;6),EQ,'C4)
 $ GOTC 2.33
 DO 230 ISP=1,3
 ST(ISP)*ST(ISP)+STL(ISP)
 STL(ISP)=0.
 CONTINUE
C LATE REVOLATILIZATION FROM THE RCS, RELEASE FRACTIONS FRC::
C CONTAINMENT ARE SET EQUAL TO THOSE FOR "LATE" (CCI) Te.
2333 11.0G=0
 FCONRLX (1)=1.
 FLA*TSX(1)=1.
C NOBLE GASES RELEASED IN VESSEL, NOT YET RELEASED TO CONTAINMENT
 SOQ1-FCNO
 IF(BIN(6;6),EQ. 'B')SOQ1=1.
 DL. 1*FCOR(1)*(XSO(1)*(1,-XCSO(1))*SOQ1+(1,-XSG(1))*
 $ (1.-FVES(1))*FCNG)
 NOBLE GASES NOT YET RELLEASED, FROM MATERIAL, REMAINING IN RCS
 DL.2=(1,-FCOR(1))*FREM*FCNG
 NOBLE GASES IN MATERIAL LEAVING VESSEL. BUT NOT IN CCI
 DL3*(1,-FCOR(1))*(1,-FPART-FREM-FPME)*FCNG
 REVOLATILIZED NOBLE GASES
 DL.ATE (1)=(DL 1 +DL.2+DL3)
 GTOT=GRCS+GCCI+DLATE(1)
 IF(DIAO)WRITE(IPRINT,7763)GRC8,GCCI DL1,DL2,DL3,GTOT
 FORMAT(//5X,'NOBLE GASES:'/5X,'FRCM RCS: ',1PE12.3/
 5X,'FROM CCI: ',,1PE12.3/5X,'LATE RCS: ',1PE12.3/
 $ 5X,'LATE REM: ',1PE12.3/5X,'LATY NCC: ',1PE12.3/
 5X,'TOTAL ',2PE12.3)
 NO REWOLATILIZATIOH IF NC VESSEL BREACH
 IF(BIN(5;5), EO 'F')THEN
 DO }09570\mathrm{ ISP=1,NSP
 DLATE (ISP)=0
 CONTINUE
 ELSE
 ICASE - ICHAR(BIN(11:11))-64
 DO 9957 ISP=2,NSP
 DFLX=DFSPC
 IF (.NOT.ISPR(4))DFLX=1.
 FCONRLX(ISP)=FCONC(4)
 FLATEX(ISP)*XINTERPLSC(LVL(9),FLATE, ISP, ICASE, ILOO)
 SGQ=0.
 IF(BIN(6;6),EQ.'B')SGQmFCOR(ISP)*XSQ(ISP)
 *(1. - XOSO(ISP))
 DLATE(ISF)=FLATEX(ISP)*(FCOR(ISP)*(1.-XSO(ISP))*
 $ (1.-FVES(ISP))+FREM* (1.-FCOR(ISP)))*FCONRLX(ISP)/DFLX
 +FLATEX(ISP)*SGQ
 STL(ISF)=STL.(ISP)+DLATE(ISP)
9957 CONTTNUE
```

```
 END 1F
 STL(1)=STL(1)+DLATE(1)
 IF(DIAO)WRITE(IPRINT, 1050)(FLATEX(ISP),1SP*1,NSP),
 & (DLATE(ISF),1SP*1,NSP)
```



```
 & SX,'DL.ATE = ',B(1PE10,1))
C MISCELIANEOUS LATE SOURCES OF IODINE
 XLATE=XINTERPL(LVL (B),LATEIL, 1LOO)
 CALL. CLATEI2 (FCOR(2),FVES (2),FCCI (2),
 $ FL.ATEX(2),XL,ATE,DIAG,TPRINT,BIN,FPART,
 S ST(2),STL(2),DI2,DLATE(2),XSG(2),XOSG(2))
 IF EMRLY RELEASE OVERLAFS LRTE RELEASE, A FRACTION OF THE EARLY
 RELEASE IS PUT INTO THE LATE RELEASE.
 IF(T1+DT1.GT,T2) THEN
 OVERLAP=(T1+DT1-T2)/(T1+DT1)
 DT1=AMAX1(T2-T1,0.)
 DO }7772\mathrm{ 1SP=1,NSP
 FRACT=OVERLAP*ST(ISP)
 ST(ISP)=ST (ISP)-FRACT
 STL(ISP)*STL(ISP)+FRACT
 CONTINUE
 ENDIF
C MASS BALANCE OF CORE MATERIAL.
 IF (DIAG)THEN
 FM1=FREM
 FM2=FPMR
 FM3=FPART
 FMA*(1, -FREM-FPME)-FPART
 SUM=FM1+FM2+FM3+FM4
 WR:TE(IPRINT, 1058), FM1, FM2, FM3, FM4, SUM
1058 FORMAT(/5X,'CORE DISTRIBUTION:'/
 10X,'IN RCS -,F7.3/
 10X,'HPME ',F7.3/
 10x,'CCI ,F7.3/
 10X,'OTHER ',F7.3/
 10X,' *-*-...*1
 10X,'TOTAL , F7.3)
 WRITE(IPRINT, 1032)(ST(IS),IS=1,NSP),
 (STL(IS),IS=1,NSP)
 1032 FORMAT(5X,'SOURCE TERMS:'/5X,'RCS: ',8(1P89,1)/
 $ 5X,'CCI: ',9(1PE9,1))
 END IF
C TEST TRAT RELEASES FOR ALL SPECIES DO NOT EXCEED 1.0
 TEST*, FALSE
 DO 300 ISP=1,NSP
 IF(ST(ISP)+STL.(ISP)-1..GT.1.E-3)TREN
 TEST= TRUK
 BAD=ST (ISP)+STL(TSP)
 WRITE (IPRINT, 5000)BIN, ISP, BAD
 END IF
 300 CONTINUR
 IF(TEST)STOP0999
 5000 FORMAT(' BIN ',A20,' GROUI ', I1.
 $' ERROR IN SOURCE TERM; TOTAL. RELEASE = ', E\5.7)
C NOBLE GAS RELEASE SHOULD EQUAL 1.0. EXCEPT FOP MEL.TTGROUGH OR NO
C CONTAINMENT FATLURE
 RNG=ST(1)+STL(1)
 IF(CHH,LT, 'G',AND,ABS(1, -RNG),GE, 1, E-2,AND,BIN(5;5),NE,'F')THEN
 WRITE(IPRINT,5010)BIN,RNG
 8TOP 9998
 END IF
 5010 FORMAT!' BIN ', A20,' GROUP 1 ',
 $ ' TOTAL RKLEASE = ',E15.7,' SHOULD BE 1.0')
 RETURN
 END
```

```
 BUBROUTINE RELCHNK(B1N,TW,T1,DT1,E1, 12,DT2,E2, ELIV,IBFK)
```

```
 LOOICAL 1SPB(6)
 CHARACTEK+80 BIN
 CHtrActere ktm1, coth3, CHbd, CHM10
```

THIS BUBROUTINE COMPUTES THE RELLEASE CHARACTERISTICS *-
WRRNING TIME, RELEASE TIMES, AND ENERGY OF THE RELLASE
ALL. TIMES ARE IN BECONDS
TW = WARNINO TIME $\rightarrow$ USUALLY THE TIME OF CORE COLLAPEE, BUT
THE TIME THE CORE UNCOVERED (TAF) FOR V OR CF BEYORE CM
HOTE: TW IE NOT THE WARNING TNTERVAL, DUT TIME STHCE THE
ETART OF THE ACCIDENT
T1 - TIME OF START OF THE FLRST OR EARLY RELEASV
( 71 IS THE SAME AS T2, IF THERE 15 NO EARLY RKL RASE)
DTH = WhRNtMC 3 NTtmVAL $=71=$ Th
DT1 = DURATION OF THE EARLY RELEASE
E1 = ENKROY RELEASE RATE OF THE EARLY GELEASE (WATTS )
12 - TIME OF 8TART OF THE SECOND OR LATE RELEASE,
DT2 = DURATION OF THE LATE RELEASE
E2 = ENERGY RELEASE FATY OF THE LATE KLLEASE (NATTS )
ELEV - ELEVATION OF THE RELEASE ( METERS )
OET THE LETTK FOR FOUR CHKRACTERIBTICE OF SHE BIK:
CHARACTERISTIC 1 - CF TIME
C"ARACTERIETIC 3 - COI
CHARACTERISTIC 6 - SOTR
CHARACTERIRYTC 10 - CF SIZE
CHIT1 - BIN (1:1)
CHH3 - EIN $(3 ; 3)$
CKH6 $=\operatorname{BIN}(6 ; 6)$
CHE10 * BIN (10:10)
SET THE DEFAULT CORE UNCOVERY TTME TO 300 MINUTES " 5 hUURS
TCU $* 28000$
SET DEFIULT RELEASE DURATIONS - -
CHE1O = A FOR SATASTROPHIC RUPTURE ( 10 EECONDS)
Critlio = 5 FOR RUPTURE ( 3.3 MINUTES )
CHH10 - C FOR LEAK OR BASEMAT MEI.T-THRU ( a HOURS )
CHH10 = D FOR NO CF OR BYFASS ONLY ( 26 HOURS )
IF (CHE20 EQ. ' $A$ ') THEN
$D T 1=10$.
$D T 2=10$
ELSEIF (CHB10 EQ. 'B') THEN
DT1 $=200$.
DT2 $=200$,
ELSEIF (CHH10 EQ. 'C') THEN
DT1 $=10800$.
DT2 $=30800$.
ELSEIF (CHB10 EQ. 'D') THEN
$D T 1=86400$.
DT2 $=86400$.
EKD1F
$c$
c
SET DEFAULT ENERGIES AND ELEVATIOH
$E 1=0$.
$\mathrm{E} .2=0$.
ELEV $=10$.

```
C
 F7kOT cowsloyk THE somks
 1F { CHEB NE, 'C') 00 10 70
t
C NLXT CONSIDER THE V'B, AND THEN SORT ON CF TIME
 IF (CRHI LE, 'H') OO TO 20
 IF (CHHI .LE, 'D') O0 70 30
 IF (CHEL, EO. 'E') OO \%' }4
 IF (CHiH1 EQ. 'F') 00 T0 50
 IF (CHB1 EO, '0') 00 T0 60
c
c v-sROUENCR: . CHH1 = A FOR V-DRY, -4H1 = B POR V-WET
(t) TCU = 1250
 TW = TCU
 T1 = 2400, + TCU
 DT1 = 1500,
 E1 = 8.7E6
```



```
 T2 = 8000 + TCU
 DT2 = 21600,
 E2 * 1.7E.5
 ELEV *% O.
 RETHAN
c
C! AT OR BBPGRE VB .. CIBI * C FOR CF BEFORE VB, * D FOR CF AT VB
 TW = 4300, + TCU
 T 1 = 1 0 0 0 0 . + T C U ~
 E1 = 5.6E8 / D11
 IF (ISPK(1) OR, ISPR(2)) E2 = E1 / 10.
 DT2 * 21600.
 E2=1.6E6
 IF (18PR(8)) E2 = $2 / 20.
c
C DITERMINE IF COI WILL. BE PROMPT OR DELAYED ..
 CHH3 - A FOR PROKIPT - DRY CHH3 = B FOR FROMPT - SHRLLON
 CHH3 * C FOR NO CCI CHH3 = D FOR FROMPT - DEEP
 CHH3 - E FOR SHORT DEL.AY - DRY CHB3 = F FOR LONG DELAY - DRY
 IF (CHI3 .EQ. 'C') GO TO 34
PROMPT CCI =- CHH3 = A, B, OR D
 IF (CHH3 .LE. 'D') 12 * 11000 + TCU
SHORT DELAYED CCI -- CHH3 = E
 IF (CHH3 EQ. 'E') T2 = ' % %000, + TCU
LONG DELAYED CCI ... CHH3 = F
 IF (CHH3 EQ. 'F') }12=28000.+TC
 RETURN
C
C NO CCI .. CHH3 = C
34 T2 = 1. E6
 DT2 = 1.E6
 RETURN
C
C LATE OR VERY LATE FRILURE =- CHH1 * E
40 TW = 4300 + TCU
 T1 = 28000. + TCU
 DT1 = 0.
 T2 = 29000 + TCU
 E2 = 7.EP / DT2
 IF (15`R(3)) E.2 = E.2 / 10.
 RETU:3
C
FAILURE IN THE EINAL PERIOD (AFTER 24 HOURS) * CHH1 = F
 TW = 4300. + TCU
 11=29000.+TCU
 DT1 = 0.
```

```
 T2 = 86600, + T1
 E2 = 7.EB / DTE
```



```
 RETURN
c
```



```
*0 TW = 6300 + TCU
 T1 = 20000 + TCU
 D71 = 0.
 \tau2 = %1
 DT2 = 8tth0t
 ELEV = 0.
 RETURN
c
c ETLNM GENELATOR TUBE RUPTURES -. BOTRS
70 E1 = 1.026
C USE THE DEFAULT VALUES YOR DT2 UNLESS thfRE TS NO CF,
 THEN USE 6 BOUFS
 IF (CIIIIO EO 'D') DT2 = 21000.
c sothe -- sepalute the "B" BOTR Fucm the "0" sotre
 IF (CHB6 EO. 'A') ©% %0 80
c
```



```
 TN = 20 BOURS, T1 = 14.2 HOURS, DT1 = 1 HOUR
 TW = 36000.
 11 = $1000
 0+1 = 3600
 (0) TO 63
c
c satRe WITH THE BECONDARY BRVB RECLOBING -- OLYY-YAY
 TW = 2.5 HOURE, T1 = 5.5 HOURS, DT1 = 2 HOUR
 TW = 12600
 71 = 10800,
 DF1 = 3600
c
C NON SORT OUT THE CCI RELEABES
83 IF (CHH3, EQ, 'C') 00 70 88
C PRONIT CCI * CHHS = A, B, OR D *- ADD 26.7 MINUTES
 IF (CHB3 LEE 'D') T2 = I1 + 1000.
G SHORT DELAYED CCI *- CHH3 - E -- ADD 1.67 HOUNS
 IF (CHH3 EQ 'E') T2 - T1 + 6000
```



```
 IF (CHH3 EO. 'F') T2 = T1 + 18000.
 RETURN
c
c NO EC1 *- Cmis = C
88 72 = 1.086
 DT2 = 1.0E6
 RETURN
 ENO
 SUBROUTINE CORER(BIN.NSP,FCOR,FCORL, LVL)
 REAL LVL.
 CHARACTER*2O BIN
C RE:EASE OF RADTONUCLIDES FROM THE CORE
 DIMENSION FCOR(B),PCORL(10,8,4)
 10=ICHAR(BIN(8:8))-66
 1L00"1
 DO 10 ISP=1, NSP
 FCOR(ISP)*XINTFRPLSC(LVL, FCORL,1SP,10,1LOG)
1 0
 CONTINUE
 RETURN
 END
 SUBROUTINE CCIREL(BIN,NSP,CCI,FOCI,LVL)
 DIMENSION CCI (10,8,4),FCCI (8)
 REAL LVL
```

        GHARACTEN*20 EIN
    DLGNE OF Th OXIDATION
    
18 WATPE PBE\&ENT?

ILOOM 1
rect $11=1$.t
CALCULATE RLLEASE DURING GORE-CONCRETE INTRRACTION.
IF (BIN (3;8).ED. 'C') GOTO 20
NON-(COOLAHLE MBD; CEI OCCURE,
D0 $10 \quad 15 \mathrm{~F}=2$. NTI

comtinit
BETIRN

DK 30 ItIPwe, NSF
FCCI (15F)=0,
CONTINUE
RETUR
END

LOU1CA. 1SPR(6)
CHALACTER*EO IIN
CHARACTEK CHEF
SETE UF "HE "18PR" MUTRIX
18PR(1) ~ TRIE, SPKAYE BEFORL VLSBELL BREACH,
18FR(2) ~ TRUE SPKAYS AFTER VESSEL BRLACK BUT BEYORE CCI
ISIR (3) ~ TKUL : SPNAYS DURING CCI
ISPR(6) * TRUE SPLAYS AFTEK CCI.
CHSP FEIN(2:2)
DO 20 18P01, 6
ISPR(1SP)= FALSE
CONTINUE
IF (CHBF, LE, 'D')15PR(1)*, TRUE
IF (CHSP, GE, 'E' AND CHEP LE, 'D') ISPR (2) * TRUE

IF (CHEP EQ, 'D' OR, CHST EQ, 'F' OR, CHSP EQ, 'Q')ISPK(4) *, TRUE
RETIKR
ENO
SUBROUTINE FAR(BIN, IPAR)
CHARACTER*20 BIN
LOUICAL IFAN(2)
SET UF YAN INDIGES
IFAN(1) - FALSE.

IFAN(2) F FALAE,

RETUAN
END
SURROUTINE ICECBIN, IFAN,DFICV1, DF1CCI, DFICV, DFICC, DFIODH,
8 FBYPV, YBYPC, LVL)
YZND DF-S FOR ICE CONDENSER. DFICV REPLIES TO ROS RELEAEE.
DFICC APPLIES TO CCI RELEASE.
DIMENSION DFICVI $(10,5)$, DFICCI $(10,5)$
CHARACTER*20 BIN
RERL. LV.
LOCICAI. IFAN (2)
DATA FBYPVD, PBYPCD $1.1, \ldots 1$
FOR V-SEQUSNCE, IEE IS INEFFRCTIVE
IF(BIN(2/1) LE, 'B')THEN
DFTCV=1
DF1CCE 1
FBYFV=1.
FBYPC=1.

```
 DF1Cb/#-1.
 RETURN
 ### TT
 1100-1
FIND CNELE FOR MCE RELEASS
C CASE & IS THE DEFAILT
 TCNEV=3
 1F(,NOT IFAR(2))00TO 200
 IF(BIN(2:1),EQ,'C'OR,B1N(1:1),EQ,'D')THEN
 ICASV=2
 HLTt
 ICABV=1
 EMD 1F
 FIND CABE FOR COI RELEASE
c ChEL S IS DEFAULT
200 10nSC=3
 IF (.NOT.IFAN(2))00TO 200
 IF(BIN(1:1).EO.'C'OR.BIN(1:1) EQ 'D',OR.(BIN(1:1).EO.'E'
 % SND BIN(J:3) EO, 'F'J)THEN
 10nSO=2
 ELSE
 ICASC-1
 END It
200 DFICVEXINTERPLC(LVL, DFICV1, ICASV, ILO0)
 DFICCEXINTRRPLC(LVL, OFICCI,ICASC,1LOO)
 1C太EDH"क
```



```
 FIND WHETHER ICE CONDENSER IS BYPABSED DURING RCE RELEASE
 TEYPV=O
O FAKTLAL BYPAMS ONLY IF ICE CONDENSER WALL IS BREACHED
 IF(BIN(12:12),EO,'B',AND,BIN(1:1),EQ,'O')FBYYPN=FBYPYO
 IF(BIR(12:12),EQ.'C')FBYPV=1
 IF FANS OPEUATE, IOE CONDENSER IS PARTIALLY EFFECTIVE, EVEN IF
 kLL. ICE IS MELTED
 IF(1FAN(1),AND BIN(12:12) EQ, 'C',AND BTR(1:1) NE,'C')FBYPV=, %
 FIND WHETHER ICE CONDENSER IS EYPASSED DURTNO CCI RELEAAS
 FBYPC=0.
 IF(BIN(13:15) EQ 'B', AND.(BIN(1:1),EQ.'C',QR BYN(111), BQ, 'D'))
 8 PEYFC=FEYPCD
 TF(BIN(13,13),EO.'O')FEYPC=1.
 IF(IFAN(2),AND,BIN(13;13),EO,'O',AND,BIN(1:1),OT,'D')FEYPC=,8
 RETURN
 ERD
 SUBROUTIRE CLATEI2(FCOR,FVES,FCOI,FLATE, XLATE,
 6 DIAO,IPRINT, BIN,FPART, ST, STL, D12, DL,ATE, XISO, XOSO)
 LOOICAL DIAG
 CHARACTER*20 BIN
 CHAKACTER CIIH
 CHI=BTN(1:1)
C CONTRIBUTION OF MISCELLANEOUS LATE SOURCES OF IODINE,
C INCLUDINO (BUT NOT LIMITED TO) ORGANIC IODIDES.
c RELRCS = FRACTION RELEASED FRON THE KCS AND CCI.
c cont12 - fraction rmmaining in contalmment,
C REL:I = FRACTION RELEASED TO TRE ENVIRONMENT, TROM CONTAMMENT,
C REVOLATILIZATION ARD I FROM SO'S IS NOT INCLUDED
C
DSO*FCOR*XISG*XOSG
RELIEST+STL-DLATE-DSO
FWCS-FVES*(1 - XISC)
RELRCS*FCOR*FRCS+(1 - FCOR)*FPART*FCOI+DI2
CONT12-RELRCS-RELI
C If 50I OR MORE HAS AlRELDY DEEN RELEASED, REDUCE ADDED
C AMOUNT
```

```
 ADD12"CONT12NXI,ATE:
```



```
 IF(CHH, ED, (O') ADDI2*ADD12* hos
 *TL~|%L+A0bT:
 IF(b1AO)WH,ITE(1HKINT, 2000)XLATE, RELRCS, KRL:, CONT12 ADDT:
 FORMAT (/SX,'XLATE © '.FE.G
 t
 8
 5X, 'ELL, TO CONT, * ,,1PE10,1, 'REL, FROM CONT, *
 IPE10.1,' MEM. IN GONT, = ', 2PE10.1/5X,
```



```
 RETURN
 END
 SUEROUT1NE VEEREL(BIN,FVES,TVHR,FVHP,
 FVIF,FVLF,FVV,FVSG,NSP,L,VL)
 0IMENS1ON FVES(0),FVHE(10,0), FVGP(10,0),FVIF(10,0),FVLP(10,8)
 FVY(10,0),FVSO(10,0)
 REA2 [Y:M
 CHARACTEK CHIR
 CHAKACTER*20 B2N
 CHH=B:N(1:1)
 12.00"1
 RELEASE OF RADIONUCLIDES FROM TIE VESEEL.
 V-gEOUFHCE HAS SPLCIAL. THLATMENT
 IF(CHIN,LE. 'B'`00TO 100
 IF(EIN(6:6).LE 'E')0070 200
 TOK=1CHAR(BIN(6.4))-64
 DO 20 18P-1,NSP
 0070 (11,12,13,16), 200
 FVES(18P)=XINTERPLS(LVL, FVHR, 18P, 1LO0)
 GOTO }1
 FVES (ISF)=XINTERPLE(LVL,FVHP,1BP,1LO00)
 Goro10
 FVES(18P)=XINTERFLS(LVL,FV1P,ISP,1LOO)
 OOTO10
 FV&S(18P)=K1NTERFL:5(tVL,FVLF,15F,1LO0)
 CONTINUE
 IF NO VESSEL DREACH, REDUCE REIFASE (EXCEPT NO) BY 2.0
 IP(B1N(5.5) EQ.'F')THEN
 DO 17 1BF=2.NSP
 FVES(18P)=FVE&(1SP)/2
 COMTTNU:
 END IF
 RETUNN
 DO 40 18P-1. NS1
 FVES(1SP)=XINTERPL.S(LVL.,FVV,18F,1LOO)
 CONTINUE
 RETIRN
 DO $0 18P-1,N8P
 IF(BIN(6,6).EQ,'A')THEN
 FVES(18F)*XINTERPLS (LVL, FVSG,18P,1LO0)
 mter
 FVFS(18P)=XINTERPLS(LVL,FVV,18P,1LO0)
 END IF
 RETINR
 END
 SUBROUTINE FCONVC(DIN,1SPR,FCONVI, FCONV,FFONCI
 FCONC, LVL4, LVL,6, NSP)
 DIMEWEION PCONY1 (10, 6)
 DIMENSION FCCNCI (10,0,6),FCONC(8)
 RERL LVLA,LML.6
 CHARACTER*20 BIN
 LOGICAL. 1SPE(4)
 CHARACTER CHH1, CHHIO
```

```
CH%1=BIN(1:1)
 CHH10-B2N(10:20)
```

        1LOOO 1
    RELEASE OF MATERIAL FROM CONTAIRMENT.
    FCONV: RELEASE OF MATERIAL. FRON RCS
    PCONC: RELLEASE OF MATER1AL FKOM CCI
    CASE 1 - EARLY SMALL LEAK, DRY CONTAINMENT
    CABE 2 = EARLY SMALL LEAK, WEI CONTAINPENT
    CASE 3 = EARLY RUPTURE OR LARGE LEAK, UPPER COMP.
    CASE 4 = EARLY RUPTURE OR LARGE LEAK, LOWER COMP,
    CASE 5 = LATE RUPTUKE OR LARGE LEAK
    CASE 6 ~ V-SEQUENCE
    IF (CHH1. LE, 'B') OOTO 100
    IF (CHH1. EQ. 'C')cOTO 110
    IF (CHE1. EQ ' \({ }^{1} \mathrm{D}^{\prime}\) ) \(1 \mathrm{~J} \mathrm{~J}=1\)
    IF (C:H1, EQ, 'E')1J1~2
    1F (CHH1 . EQ, 'F') \(1 J 1=3\)
    IF (CHH1, EO, ' (') 11J1=4
    1.J2-1CHAR (CHH 10 )-64
    IF(IJ1, EQ, 4, OR,1J2,EQ, 4)00TO 120
    \(100=(1 J 1-1) * 3+1 J 2\)
    WOTO ( \(10,20,30,40,40,60,80,80,80), 100\)
    CATASTROPHIC RUPTURE AT VESSEL BREACH; USE LARGE FCONY \& FCONC
    FM=FCOHVI \((5,3)\)
    FI=XINTKRPLC(LVL4, FCONVI, 3, 1LOG)
    C USE $95-$ TH PERCENTILE OF CASE 3 AS MEDIAN
EX=FCONVI $(7,3)$
IF (FI, EQ 1, OR, PM, EQ , 1, OR FX EQ, 1, )THEN
FCONV=1
ELSE
$Y I=F I /(1,-F I)$
$Y M=F M /(1,-F M)$
$\mathrm{YS}=\mathrm{FX} /(1,-\mathrm{FX})$
PHI =YS/ YM
FCONV=PHI*Y1/(1.+PHI*Y1)
END IF
DO 11 1SF=2.NSP
FN=FCONCI (5, ISF, 3)
FI=XINTERPLSC(LVL, 6, FCONCI, ISP, 3, ILOO)
FX=PCONCI (7,18P,3)
IF (FI, EQ, 1. OR, FM EQ 1. OR , FX, EQ.1.) THEN
FCONC(ISP)=1.
ELSE
$Y I=F I /(1,-F 1)$
$\mathrm{YM}=F \mathrm{FM} /(1,-\mathrm{FM})$
$Y S=F X(i 1,-F X)$
PEI=YE/ MM
FCONC (ISP)*PHI*YI/ (1, +PHI*YI)
END IF
CONTINUE
FCONC(1) $=1$.
RETURN
L.ARGE BREAK AT VESSEL BREACH
1CASV=3
ICASC=3
LARGE BREAK IN LOWER CCAMPARTMENT
IF (BIN $(12: 12)$, EQ, 'B', AND, BIN $(1: 1), E O, C '^{\prime}$ AND
\& BIN(10:10).LE.'B')THEN
ICASV=4
1CASC=4
END IF
GOTO 150
SMALL LEAK AT VESSEL BREACH

```
30 1CASV=1
 IF(18EK(1))ICASV=2
 ICK\t=1
 IF(1SPA(1),OR,18PR(2),ON,1ERF(3))1CNSC=2
 GOTO 150
C CATASTROPHIC RUPTIRE OR RUPTURE LATL
40 IF(15FR(2).OR, ISPK(3))THEN
 FACTV=XINTERPLC(LNL,6,FCONVI, 5,1100)/FCONVI (5,5)
 FCONV= 01*FACTV
 ICABC=5
 FOR DELAYED CC1, A LATE CE IS THE SAME AS EARLY CF
 IF(B1N(3:3),EQ.'F')ICASC=3
 D0 41 15p=2,NSP
 FCONC(ISF)=XINTERPL,SC(LVL,6,FSONCI,ISP,ICASC,1LOO)
 CONTINUE
 FCONC(1)=1.
 RETURN
 ELSE
 ICASV=5
 1CASC=5
 IF(BIN (3,3), EO,'Y')ICASC=3
 GOTO }15
 END IF
C LATE LEAK
60 IF(1SPR(2),OR,ISPR(3))GOTO 6S
C NO SPKAYS AFTER VB
 FACTV*XIMTERPLC(LVL,4,FCONV1, 1,1LO0)/FCONV1 (5,1)
 PCONV=5 E-3+FACTV
 FCONC(1)=1
 DO 61 1SP=2.NS
C IF CCI IS LONG DELAYED, "LATE" LEAK IS SAME AS EARLY
C USE EARLY FO束 TE AND RU
 IF(BIN(3;3),EQ,'F',OR, ISP,EQ,4,OR,ISP, EQ,6)THEN
 FCONC(ISP)=XINTERPLSC(LVL.6, FCONOI, ISF, 1,ILOO)
 ELSE
 FACTC=XINTERPLSSC(LVL.6, FCONC1,1SP,1,1LOO)/FCONO1 (5,1SP,1)
 FCONC(ISP)*1.E-2*FACTC
 END IF
 CONTINUE
 RETURN
 SPRAYS OPERATE AFTER VB: REMOVE RCS RELEASE
 FACTV=XINTERPLC(LVL4,FCONVI, 2,1LOG)/FCONVI (5,2)
 FCONV=,001*FACTV
 DO 67 1SP=2,NSP
 IF(BIN(3;3),EQ,'F',OR,ISP,EQ,4,OR,1SP,EQ,6)THEN
 FCONC(1SP)=XINTERPLSC(LVL,6,FCONC1,1SP,2,1LOO)
 ELSE
 FACTC=XINTERPLSC(LVL.6,FCONCY,1SP, 2,1LOG)/FCONC1(5,1SP, 2)
 IF (1SPR (3)) THEN
 PCONC(ISP)=,005*FACTC
 EL.SE
 FCONC(ISP)*1.E-2*FACTC
 IF(BIN(3;3),EQ, 'F',OR,ISP,EQ,4,OR,1SP,EQ,6)
 FCONC(ISP)=XINTERPLSC(LVL,6,FCONCI,18P,2,1LOO)
 END IF
 FND IF
 CONTINUE
 FCONC(1)=1
 RETURN
C VERY LATE (24 HRS) RUPTURE OR LEAK
80 FCONV=1.E-6
 DO 65 ISP=2,NSP
 FACTC=XINTERPLSC(LVL6,FCONC1,ISP,3,1LOG)/FCONCI (5,1SP,3)
 PCONC(ISP)=1. E-4*FACTC
 CONTINUE
```

```
 FCONC(1)e1
 kETUKN
G V AEOUENOE (CASH. b)
100 ICASve=
 ICASC=8
 W0T0 150
C CONTATNMENT FAILURE BEFOLE VEaSEL HBKACH ON ISOLATION FAILURE
130 IF(CHE10.LE.'B')THES
C CATASTROPHIC ROPTIRL OR RIIYTUAE BEFORE VESEEL, BREACH
 FH=FCONVI (5,3)
 FI-XINTERPLC(LNL6, FCONV1, 3,11000)
C ORDINARY RUPTURE USES 75-TH FEROENTILLE AS MEDIAR
 FX=FCONVI (6,8)
Q CATASTROPHIC RUPTURE USES (E-7H FERCENT1LI
 1F(CHH10.EO. 'A')FX=FCONVI (8, %)
```



```
 FCONV=1
 ELSE
 Y1=F1/(1--Y1)
 YM=FM/(1, -FM)
 YD*FX/(1-FX)
 PEI-Y5/MM
 FCONV=P⿰月1*Y] (1) +FHI*YI)
 END IF
 DO 111 18P=2.NBE
 IF(c):%10. BQ, 'A')\HEN
 F#-FCONC1 (5,15%,8)
 FiwXINTERPL.sc(LVL6, FCONCI,18F,0,1200)
 FX=FCONC1 (E, 1SF, 3)
 IF(F1,EQ.1.,OR,FM.EO.1.,OR.FX,EO.1.)THEN
 FCONC(ISP)*1.
 fLSE
 YI=FI/(2.-FI)
 YN*FM/(2, -FM)
 YS"FK/(2,-FX)
 FHTwyS/YM
 PCONC(ISP)=旦I+Y1/(12.+PH1*YT)
 END If
 ELS8
 YCONC(1SP)=XINTERPLSC(LVL.6,FCONCI,38P,3,1LOO)
 END IF
 CONTINUS
 PCONC(1)*1
 NETURN
C LEAK OR BMALL 18OLATION FAILURE BEFORE VESSEL BRLACH
C USE AVERAOE OF CASES I ON 2 AND %
 ELSE
 11FC*1
 !F(ISPR(1))11FG=2
 F1*X1NTEKPLC(LVL,6,FGONVI, 1IFG, 11,00)
 F2=X1NTERFLC (LVLh,FCONVI, 3,1LO0)
 FCONV= (F1+F2)/2.
 D0 114 1Sm2,NSP
 FCONC(IS)*XINTERPLSC(LVL,6,FCONCI,18,11FC,12.00)
 CONTINUE
 PCONC(1)=1.
 END IF
 RETURN
C NO FALLUNL
120 FCONV=1. E-6
 FCONC(1)=.005
 10 121 18P=2.NSP
 FCONC(ISP)=1.E-6
121 CONTINUI
 RETURE
```

```
C CALCULATE FCONY AND FCONC FRON GIVEN CASE
1SO FCONV=XINTERPLC(LVL,4,FCONV1,ICASY,1L.OO)
 00 151 15F=%,NS%
 FCONC(ISP)=XINTERPLSC(LVL6,FCONCI,1SP,1CASC,ILOG)
 CONTINUE
 FCONC(1)m1.
 RETURN
 END
 SUBROUTINE SPRDF(BIN,1SPR,DFSPR1,DFSPR2,DFSPV,DFSPRC,DFSPC,
 $ LVL)
 DIMENSION DFSPR1(10),DFSPR2(10),DFSPRC(10)
 LOGICAL. ISPR(6)
 REAL LVL.
 CHARACTER*20 BIN
 CHARACTER CHH1,CHH1O
 CHH1=BIN(1;1)
 CHH10-BIN(10:10)
 1L.00m1
 DF FOR SPRAYS
 DFSFV IS THE DF FOR VESSEL RELEASE, DFSPC IS
 THE DF FOR CCI RELEASE. NO CREDIT FOR GPRAYS (EARLY OR LATE)
 FOR V-SEQUENCE OR LARGE CF BEFORE MELT.
 DEFAULT IS NO SPRAYS.
 DFSPV=1.
 DFSPC=1.
 IF(CHH1, LE, 'B',OR, (CHH1, EQ, 'C', AND, CHH10,LE,'B'))RETURN
 EARLY FALLURE
 IF(CHE1.GT ' D')00TO 100
 IF(ISPF:(3))DFSPC=XINTERPL(LVL,DFSPRC,ILOO)
 IF(BIN(4;4),LE,'B',AND,CHH10,LE,'B')THEN
 IF(ISPR(1))DFSPV=XINTERPL,(LVL,DFSPR1,ILOG)
 ELSE
 IF(1SPR(1))DFSPV=XINTERPL(LVL,DFSPR2,ILOE)
 END IF
 SPRAY DE SBOULD NOT BE GREATEK THAN 10,000.
 DFSPC=AMIN1 (DFSPC, 1, E4)
 DFSPV=AMIN1 (DFSPV,1.E6)
 RETURN
 IF(CHH1.0T, 'E')GOTO 110
 IF(ISPR(1),OR,ISPR(2),OR,ISPR(3))DFSPV**
 IF (ISPR (1),OR,ISPR(2),OR,ISPR(3),OR,ISPR(4))
 DFSPV=10,*XINTERPL.(LVL,DFSPR2,ILOG)
 IF(ISPR(3),OR,ISPR(4))DFSPC=10,*XINTERPL(LVL, DFSPRC,1100)
 SPRAY DF SHOULD NUT BE GREATER THAN 10,000.
 DFSPC=AMIN1 (DFSPC,1,E4)
 DFSPV=AMIN1(DFSPV,1,E&)
 RETURN
 END
 SUBROUTINE DHEAT(BIN,FDCHL,,LDCH, NSP,DST,FCOR,DIAG,IPRINT,FPME,ISPR)
C
C MODEL DEVELOPED BY D, A. POWKRS
C DCH RELEASE OF NUCLIDE "I": (ADDITION TO ST "I")
C DST(I)=(1,-FCOR(I))*FPRE*FDCH(I)
C FPME=FRACTION OF CORE PARTICIPATING IN PRESSURIZED MELT EJECTION
C FPPE ASSUMED NOT TO PARTICIPATE IN CCI
C FDCH(I)=FRACTION OF EJECTED MELT RELEASED TO CONTAINMENT
 DIMENSION FDCHL(10,9,2),DST(9),FCOR(9), FDCH(9)
 LOGICAL DIAG,1SPR(4)
 REAL LDCH
```

```
 CHNRACTEK*2O BIN
 CONTRIBUTION DUE TS AEROSOLIZATION IS ONLY CALCULATED FOR
 CONTAINMENY FAILURE AT VESSEL BREACH
 NOT CALCULATED FOR LON PRESSURE SEQUENCES
 DO I 1SP=1,NSP
 08T(1SE)=0
 CONTINUE
 IF(FPPE,BQ,0.OR,BTH(A/4),OT,'C')RETURN
 CAEE 1: HIGH PRESSIRE
 CASE 2) INTERMEDIATE PRESSURE
 ICW1
 IF(BIN(5,6) OT,'B')1C=2
 CONTAINMENT FAILURE LATE: DO NOT CALCULATE DCE RELEASE
 EARLY LEAK AND SFRAYS OPERATE: DO NOT CALCULATE DCE RELEASE
 IF((BIN(2.1).BO.'D',CO.BIN(1:1).EO.'C')
 5 AND, (BIN(20:10),LE, 'B',OR,DTN(10:10).
 EQ. 'C'.AND. NOT.ISPR(2))) GOTO 5
 IF(DIAO)WKITE(IPRINT, 650)
 FORMAT(SX, 'DCE RELLEASE ROT CALCULATED')
 DST(1)*(2,-FCOR(1))*FPME
 RETURN
 1LOO*1
 DO 10 18P=1,N5P
 FUCH(ISP)=XINTERPL.SC(LDCH,FDCHL,,1SP,IC,ILOO)
 DST(1SP)* (1, -FCOR(1SP))*FFME*FDCH(1SP)
 CONTINUE
 IF (DIAG)WRITE,IPNINT,1000)(FDCE(ISP),18P*1,NSP)
 FORMAT (5X,'FDCH = , B(1PEE, 1))
 RETURN
 END
 SUBROUTINE WEIGHT (NSP,ST,WE,NL.)
 DIMENSION ST (0),WFE (B),WFL (0)
 DATA (WFE(1),1=1,8)/,06,1,.,12,.78,.8,2,13,6,31,6,,.55/
 DATA (WFL(I),I=1,8)/,0011,.1,1,,104,.7,1,10,2,62,5,4,.21
 WE=0.
 WL=0
 DO 10 18P=1.NSP
 WE=WE+ST(ISP)*WFE (YSP)
 WL.wWL+ST (1SP)*WFL (1SP)
 CONTINUE
 RETURN
 END
 REAL FUNCTION XINTERPL(1LVEL, FARAH, 11.O3)
 DIMENSION PARAM(10),CDF($),PARANOX(10)
 REAL. LEVEL.
 DATA CDF 10,,.01,.05,.25,.5,.75,.85,.09,1.1
 IF(LHEVEL, LT, O,)THEN
 XINTERPL=PARAM(10)
 RETURN
 ELSE IF(LEVEL, GE. 1.)THEN
 XINTERPL=PARAM(B)
 RETURN
 ELSE IF(LEVEL, EQ,O.)THEN
 XINTERPL=PARAM(1)
 RETURN
 ELSE
 IF(1LOO.EQ.0)TREN
 NO 2 L=1.0
 PARAMX(L)=FARAM(L)
 CONTINUE
 EL.SE
 DO & L=1,D
 PARAMX(L)=LOG(PARAM(L))
 CONTINUE
 END IF
```

```
 00 6 L=2,9
 IF(CDF(L), LE LEVEL)00T0 E
 FR=(LEVKL-CDF(L-1))/(CDF(L)-CDF (L-1))
 coto ह
 CONTINUE
 L=9
 FR=1
 XINTERPL-FARNDX(L-1)+FR*(PARAMK(L)-PANNDX(L-1))
 IF(ILOO.0%,0)XINTERPL=EXP(XINTIKPL)
 RETURN
END 1F
EKD
RRAL FINCTION XINTERPLS(LEVEL, PARAM, 18F,ILOO)
DIMENSION PARAM(10,8), FAKAMXX(10),CDF (8)
REAL LEVEL
BATA CDF 10, 01, 05, 25, 5, 75, 85, 00,1./
IF(LEVEL LT:0,)THEW
 XINTERPLS=FARAM(10,I8P)
 RETUMN
 ELSE IF(LIVEL, OE 1.)THEN
 XINTERPLS*PARAM(0,1SP)
 RETURA
ELSE IF(LEVEL. RQ.D.)THEN
 XINTERPLS*FARNM(1,1SP)
 RETURN
ELSE
 IF(1LDO,EQ,0)THEN
 DO 2 L=1,0
 PARNNX(L)=PARAM(L,ISP)
 CONTINUE
 ELSE
 DO & L=1,9
 PARAMX(L)=LOO(PARAM(L, LSP))
 CONYINUE
 END IF
 D0 6 L=2,B
 IF(CDF(L), LE. LEVEL)GOTO 6
 FR*(LEVEL-CDF(L-1))/(CDF(L)+CDF(L-1))
 OOTO 5
 CONTINUE
 L=g
 FR=1
 XINTERPLS=PARANX(L-1)+FR*(PARANXX(L)-PARNMX(L-1)
 IF(ILOO.GT.0)XINTERPLS*EXP(XINTEKPLS)
 RETURN
 NDD 1%
 END
 REAL. FUNCTION XINTERPLSC(LEVEL, PAKAM,ISP,ICASE,ILOG)
 DIMENSION PARAM(10,9,5),FARAMX(9),CDF(9)
 REAL LEVEL
 DATA CDF /0,..01,.05,.25,.5,.75,.05,.80,1./
 IF L.EVEL LTT O.)THEN
 XINTERPLSC=PARNM(10, 1SP,1CASE)
 RETURN
 ELSE IF(LEVEL,OE. 1,)THEN
 XINTERPLSC=PARAM(B,ISP,ICASE)
 RETURN
 ELSE IF (LEVEL. EO.O.) THEN
 XINTERPLSC=PARAM(1,ISP,ICASE)
 RETURN
E1.&E
 IF(ILOO.EQ,0)THEN
 DO 2 L=1,8
 PARNNK(L)=TARAM(L, 18P,ICASE)
 CONTINUE
```

```
 ELSE
 DO & L. 1, B
 PARNMX(L)=LOO(PARNM(L, 1SP, 1CASE))
 CONTINUE
 END IF
 DO 6 L=2,8
 1F(CDF(L) LE, LEVEL)OOTO ह
 FR=(LENEL-CDF (L-1))/(CDF (L)-CDF (L-1))
 COTO 6
 CONTINUE
 L=9
 FK=1.
 XINTERPLSC=PN.NNX(L-1)+FR*(FARANX(L)-PARANXX(L.1))
 IF (1LOO, (T , 0)XINTERPLSC=EXF (XINTERPLSC)
 RETURN
END IF
END
REAL FUNCTION XINTERPLC(LEEVEL, PARAM, ICASE, 1L.00)
DIMENSION PARAM(10,4), PARNMX(0),CDF(0)
REAL LEVEL
DATA CDF 10,..01,.05,.25,.5,.75,.85,.08,1./
IF(LEVEL,LT,O,)THEN
 XINTERPLC*PARMM(10,1CASE)
 RETURN
ELSE IF(L.EVEL, GE, 1.)THEN
 XINTERPLC*PARAM(8,ICASE)
 RETURN
ELSE IF (LEVEL EQ,O.) THEN
 XINTERPLC=PARNM(1,1CASE)
 RETTRN
ELSE
 IF(ILOO. EQ,0)THEN
 DO 2 L=1,9
 PARAMDX (L)=PARAM(L,ICASE)
 CONTINUE
 ELSE
 DO & L=1,0
 PARANX(L)=L.OO(PARAM(L, 1CASE))
 CONTINUE
 END IF
 DO % L=2,9
 IF(CDF(L),L.E LEVEL)GOTO 6
 FR=(LEVEL-CDF (L-1))/(CDF (L)-CDF (L-1))
 GOTO &
 CONTINUE
 L={
 FR=1.
 XINTERPLC=PARNMX(L-1)+FR* (PARAMDX (L)-PARANOX(L-1))
 IF(ILOG,OT,0)XINTERPLC=EXP(XINTERPLC)
 RETUNN
END IF
END
```


## B. 2 SEQSOR DATA FILE

This section contains the data file read by SEQSOR when it begins execution. Most blocks of data contain separate distributions for each radionucilde class. In these blocks, the nine columns give the distributions for the nine radionuclide classes:

Column Radionculide Class

1	Noble Gas
2	Iocline
3	Cesium
4	Tellurium
5	Barium
6	Strontium
7	Ruthenium
8	Lanthanum
9	Cerium

In the blocks of data containing separate distributions for each radionucilde class, each line contains the values for a given percentile of the distribution. These values are:

Line	1	2	3	4	5	6	7	8	9
Percentile	0	1	5	25	50	75	95	99	100

The tenth line contains a nominal value used for running SEQSOR in a nonsampling mode for checkout. For the data blocks that do not contain separate distributions for each radionuclide class, each entry is the percentile value in the order given above and the tenth entry is a nominal value. The comment lines starting with $\$ s$ have been added for listing in this appendix to explain each block of data.

## Listing of SEQSOR Data File

(5) FCOR distributions for low $2 t$ pxidation in-vessel


$1.6 \mathrm{E}-018 . \mathrm{kE}-026.7 \mathrm{E}-02 \quad 1.3 \mathrm{E}-021.5 \mathrm{E}-04 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-081.0 \mathrm{E}-002.2 \mathrm{E}-04$

$1.0 \mathrm{E}+00 \quad \mathbf{0} .2 \mathrm{E}=018.3 \mathrm{E}=01 \quad 4.6 \mathrm{E}-01 \quad 1.3 \mathrm{E}=02 \quad 1.2 \mathrm{E}-02 \quad 8.5 \mathrm{E}-04 \quad 2.5 \mathrm{E}=03 \quad 2.7 \mathrm{E}-02$$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 2.7 \mathrm{E}-01 \quad 1.2 \mathrm{E}-01 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$1.0 \mathrm{E}+509.0 \mathrm{E}-01 \mathrm{E} .0 \mathrm{E}-02 \quad$ 2. $7 \mathrm{EE}-01 \quad 1.3 \mathrm{E}-01 \quad 1.0 \mathrm{E}-06 \quad 1.0 \mathrm{E}-07 \quad 1.0 \mathrm{E}-07 \quad 1.3 \mathrm{E}-01$

## 6 foon distributions for high is exicetion in"vessel


 6.2E-01 2. $8 \mathrm{E}-01 \quad 1.7 \mathrm{E}-021.6 \mathrm{E}-02 \quad 2.5 \mathrm{E}-04 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-091.2 \mathrm{E}-05$ 0. 0E-01 $5.6 \mathrm{E}-01 \quad 4,2 \mathrm{E}-01 \quad 0.7 \mathrm{E}-02 \quad 2.1 \mathrm{E}-03 \quad 5.0 \mathrm{E}-05 \quad 2.0 \mathrm{E}-05 \quad 2.0 \mathrm{E}-05 \quad 4.2 \mathrm{E}-03$ 0. 2E-01 7. 5E-01 B.2E-01 3. $3 \mathrm{E}=01$ 6.4E-03 4. 6E-03 1.0E-06 1.5E-04.8.6E-03


 $\begin{array}{llllllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 2.0 \mathrm{E}-01 & 1.2 \mathrm{E}-01 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array}$
$1.0 \mathrm{E}+00$ 9.0E-01 $0.0 \mathrm{E}-01 \quad 6.4 \mathrm{E}-01 \quad 1.3 \mathrm{E}-01 \quad 1.0 \mathrm{E}-06 \quad 1.0 \mathrm{E}-07 \quad 1.0 \mathrm{E}-07 \quad 1.3 \mathrm{E}-01$ FCOR*
8 FVES distributions for VB with the RCS at system setpeint pressure


1. 0E +00 1.0E-05 $1.0 \mathrm{E}-05$ 1.0E-05 $1.0 \mathrm{E}-051.0 \mathrm{E}-051.0 \mathrm{E}-051.0 \mathrm{E}-051.0 \mathrm{E}-05$
1.0E $+00 \quad 1.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-05$

$1.0 \mathrm{E}+00$ 8. $6 \mathrm{E}-02 \mathrm{4} .2 \mathrm{E}=02 \quad 2.8 \mathrm{E}-02 \quad 2.8 \mathrm{E}-02 \quad 2.8 \mathrm{E}=02 \quad 2.8 \mathrm{E}-02 \quad 2.8 \mathrm{E}-02 \quad 2.8 \mathrm{E}-02$ $1.6 \mathrm{E}+003.5 \mathrm{E}-01 \mathrm{~J} .5 \mathrm{E}-011.8 \mathrm{E}-01 \quad 1.8 \mathrm{E}-011.8 \mathrm{E}-011.8 \mathrm{E}-011.8 \mathrm{E}-01 \quad 1.8 \mathrm{E}-01$
$1.0 \mathrm{E}+007.7 \mathrm{E}-017.7 \mathrm{E}-01 \quad 7.6 \mathrm{E}-017.6 \mathrm{E}-01 \quad 7.6 \mathrm{E}-01 \quad 7,62-01 \quad 7.6 \mathrm{E}-01 \quad 7,6 \mathrm{E}-01$

$\begin{array}{lllllllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array}$
$1.0 \mathrm{E}+00 \mathrm{2} .4 \mathrm{E}-01 \quad 2.0 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01 \quad 1.1 \mathrm{E}-01 \quad 1.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-011.1 \mathrm{E}-01 \mathrm{FVHH}$.
8 FVES distributions for VB with the RCS at high pressure
$\begin{array}{llllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}-00 & 1.0 \mathrm{E}-09 & 1.0 \mathrm{E}-09 & 1.0 \mathrm{E}-08 & 1.0 \mathrm{E}-0 \mathrm{E} & 1.0 \mathrm{E}-00 & 1.0 \mathrm{E}-00 \\ 1.0 \mathrm{E} & \text { 1.00 }\end{array}$
$1.0 \mathrm{E}+00 \quad 3.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-05$
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-05$
$1.0 \mathrm{E}+00 \quad$ E. $3 \mathrm{E}-03 \quad 5.1 \mathrm{E}-03 \quad 1.8 \mathrm{E}-03 \quad 1.0 \mathrm{E}-03 \quad$ I. $8 \mathrm{EE}-03 \quad 1.0 \mathrm{E}-03 \quad 1.8 \mathrm{E}-031.8 \mathrm{E}-03$
$\begin{array}{llllllllll}1.0 E & 00 & 8.8 E-02 & 4.2 \mathrm{E}-02 & 2.8 \mathrm{E}-02 & 2.8 \mathrm{E}-02 & 2.8 \mathrm{E}-02 & \mathrm{Z}, 8 \mathrm{E}-02 & 2.8 \mathrm{E}-02 & 2.8 \mathrm{E}-02\end{array}$

$1.0 \mathrm{E}+007.7 \mathrm{E}-01 \quad 7.7 \mathrm{E}-01 \quad 7,6 \mathrm{E}-01 \quad 7.6 \mathrm{E}-01$
$1.0 \mathrm{E}+00$ 日. $6 \mathrm{E}-01$ e. $6 \mathrm{E}-01$ 8. $6 \mathrm{E}-01 \mathrm{E} .6 \mathrm{E}-01$ 日. $6 \mathrm{E}-01 \quad 0.6 \mathrm{E}-01 \quad 9.6 \mathrm{E}-01 \quad 8.6 \mathrm{E}-01$
2. $0 \mathrm{EE}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+001.0 \mathrm{E}+00$
3. $0 \mathrm{E}+00$ 2. $\mathrm{EE}-012 . \mathrm{BE}-01 \quad 0.0 \mathrm{E}-02 \quad 2.7 \mathrm{E}-01 \mathrm{FVHP}=$
$\$$ FVEs distributions for VB with the RCS at intermediate pressure



$1.0 \mathrm{E}+00 \quad 2.0 \mathrm{E}-01 \quad 1.3 \mathrm{E}-01 \quad 1.2 \mathrm{E}-01 \quad 1.3 \mathrm{E}-01$
4. $0 \mathrm{E}+004.1 \mathrm{E}-01 \quad 2.0 \mathrm{E}-01 \quad 2.5 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01$
5. 0E +00 E. 15-01 5. . 0E-01 $4.3 \mathrm{E}-01 \quad 3.7 \mathrm{E}-013.7 \mathrm{E}-01 \quad 3.7 \mathrm{E}-01 \quad 3.7 \mathrm{E}-01 \quad 3.7 \mathrm{E}-01$
$1.0 \mathrm{E}+00$ 6. $8 \mathrm{E}-018.9 \mathrm{E}-01 \quad 8.5 \mathrm{E}-018.7 \mathrm{E}-018.7 \mathrm{E}-01 \quad 8.7 \mathrm{E}-01 \quad 8.7 \mathrm{E}-018.7 \mathrm{E}-01$

$\begin{array}{llllllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 2.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array}$
$1.0 \mathrm{E}+005.0 \mathrm{E}-01 \quad 5.0 \mathrm{E}-01 \quad 2.0 \mathrm{E}-02 \mathrm{3}, 4 \mathrm{E}-01.3 .4 \mathrm{E}-01 \quad 3.4 \mathrm{E}-01 \quad 3.4 \mathrm{E}-01 \quad 3.4 \mathrm{E}-01$ FVIP*
8 FVEs distributions for VB with the RCS at low pressure


$1.0 \mathrm{E}+001.2 \mathrm{E}-017.2 \mathrm{E}-02$ 4. $0 \mathrm{EE}-02+.0 \mathrm{E}-02$ 4.0E-02 4.0E-02 4. OE-02 4.0E-02
$1.0 \mathrm{E}+00 \quad 3.2 \mathrm{E}-01 \quad 2.0 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01$
$1.0 \mathrm{E}+005.2 \mathrm{E}-01 \quad 6.0 \mathrm{E}-01 \quad 3.3 \mathrm{E}-01 \quad 3.3 \mathrm{E}-01 \quad 3.3 \mathrm{E}-01 \quad 5.3 \mathrm{E}-01.3 .3 \mathrm{E}-01 \quad 3.3 \mathrm{E}=01$


1． $0 \mathrm{E}+00$ 1． $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$\begin{array}{llllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array}$
1． $0 \mathrm{E}+06$ E． $7 \mathrm{E}-01$ E． $7 \mathrm{E}-01$ ह． $3 \mathrm{E}-01 \quad 7.7 \mathrm{E}-01 \quad 7.7 \mathrm{E}-017.7 \mathrm{E}-01 \quad 7.7 \mathrm{E}-01 \quad 7.7 \mathrm{E}-01$ FVLPA
5 PVES distelbutions for Event V


$1.0 \mathrm{E}+00$ 1． $6 \mathrm{E}-01$ 1． $5 \mathrm{E}-01 \quad 6.6 \mathrm{E}-021.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-01$
$\begin{array}{lllllllllll}1.0 E+00 & 6.1 E-01 & 6.0 E-01 & 1.1 E-01 & 1.7 E-01\end{array}$
1． $0 \mathrm{E}+006.2 \mathrm{E}-01 \quad 6,0 \mathrm{E}-01 \quad 2,5 \mathrm{E}-01 \quad 3,5 \mathrm{E}-01 \quad 3,5 \mathrm{E}=01 \quad 3,5 \mathrm{E}-01 \quad 3,5 \mathrm{E}=01 \quad 3,5 \mathrm{E}-01$
$1.0 \mathrm{E}+00$ ？能－01 7． $8 \mathrm{E}-015.5 \mathrm{E}-01 \quad 6.7 \mathrm{E}-016.7 \mathrm{E}-016.7 \mathrm{E}-01 \quad 6.7 \mathrm{E}-64 \quad 6.7 \mathrm{E}-01$


$\begin{array}{lllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array}$
$\begin{array}{lllllllll}1.0 \mathrm{E}+00 & 2.0 \mathrm{E}-01 & 2.0 \mathrm{E}-01 & 1.0 \mathrm{E}-01 \text { FVY }\end{array}$
5 FVES distributions for gotke
1． $0 \mathrm{E}+00 \quad 9.0 \mathrm{E}-03$ 8． $9 \mathrm{E}-03 \quad 7.1 \mathrm{E}-02 \quad 1.0 \mathrm{E}-02 \quad 7.5 \mathrm{~F}-93 \quad 1.0 \mathrm{E}-02 \quad 1.0 \mathrm{E}-02 \quad 1.0 \mathrm{E}-01$
1． $0 \mathrm{E}+00$ 1． $1 \mathrm{E}-02 \mathrm{2} .2 \mathrm{E}-62 \quad 7.3 \mathrm{E}-02 \quad 2.2 \mathrm{E}-02 \quad 7.8 \mathrm{E}-03 \quad 1.2 \mathrm{E}-02 \quad 1.1 \mathrm{E}-021.1 \mathrm{E}-02$
1． $0 \mathrm{E}+00 \quad 2.4 \mathrm{E}-02 \quad 2.4 \mathrm{~K}-02 \quad 8.0 \mathrm{E}-02 \quad 1.3 \mathrm{E}-02 \quad 8.4 \mathrm{E}-03 \quad 1.3 \mathrm{E}-02 \quad 1.3 \mathrm{E}-02 \quad 1.3 \mathrm{E}-02$

$1.0 \mathrm{E}+001.7 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 3.2 \mathrm{E}-015.8 \mathrm{E}+02 \quad 4.4 \mathrm{E}-02 \quad 5.8 \mathrm{E}-02 \quad 5.8 \mathrm{E}-02 \mathrm{~S}, 8 \mathrm{E}=02$

$1.0 \mathrm{E}+00 \quad 8.7 \mathrm{E}-01 \quad$ E．2E－01 $\quad 8.5 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01 \quad 6.7 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01$

$\begin{array}{lllllllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array}$
$1.0 \mathrm{E}+001.7 \mathrm{E}-01 \quad 1.7 \mathrm{E}-02 \quad 3.2 \mathrm{E}-01 \quad 5.8 \mathrm{E}-02 \quad 4.6 \mathrm{E}-02 \quad 5.8 \mathrm{E}-02 \quad 5.8 \mathrm{E}-02 \quad 3.6 \mathrm{E}-02$ FVBO＊
E YISO distributions for SGTRs with the secondery SRVs reclosing
$1.5 \mathrm{E}-016.6 \mathrm{E}-026.4 \mathrm{E}-02 \quad 2.6 \mathrm{E}-01 \quad 1.4 \mathrm{E}=01 \quad 1.5 \mathrm{E}-01 \quad 1.5 \mathrm{E}=01 \quad 1.5 \mathrm{E}-01 \quad 1.4 \mathrm{E}=01$
$1.7 \mathrm{E}-01 \quad 7.3 \mathrm{E}-02 \mathrm{0} .0 \mathrm{EE}-02$ 2． $6 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01 \quad 2.5 \mathrm{E}-01$
$2.5 \mathrm{E}-01$ 1． $2 \mathrm{E}-01 \quad 1.0 \mathrm{E}-012.8 \mathrm{E}-01 \quad 1.6 \mathrm{E}-011.7 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 1.6 \mathrm{E}-01$
4． $4 \mathrm{E}=01 \quad 2.0 \mathrm{E}-01 \quad 2.0 \mathrm{E}=01 \quad 3 . \mathrm{BE}-01 \quad 2.2 \mathrm{E}=01 \quad 2.2 \mathrm{E}-01 \quad 2.2 \mathrm{E}=01 \quad 2.2 \mathrm{E}-01 \quad 2.2 \mathrm{E}-01$
$5.8 \mathrm{E}-012.0 \mathrm{E}-012.8 \mathrm{E}-015.6 \mathrm{E}-013.3 \mathrm{E}-013.4 \mathrm{E}-01 \quad 3.4 \mathrm{E}-01 \quad 3.4 \mathrm{E}-01 \quad 3.3 \mathrm{E}-01$
7．2E－01 4．2E－01 3．日E－01 8．5E－01 5．3E－01 5．4E－01 5．4E－01 5．6E－01 5．3E－01

B．BE－01 8．2E－01 8．2E－01 $1.0 \mathrm{E}+008.7 \mathrm{E}-01 \quad 8.8 \mathrm{E}-01 \quad 8.8 \mathrm{E}-01 \quad 8.8 \mathrm{E}-01 \quad 8.8 \mathrm{E}-01$
$1.05+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$5.9 \mathrm{E}-012.8 \mathrm{E}-012 . \mathrm{BE}-01 \quad 5.6 \mathrm{E}-01 \quad 3.3 \mathrm{E}-01 \quad 3.6 \mathrm{E}-01 \quad 3,4 \mathrm{E}-01 \quad 3,6 \mathrm{E}-01 \quad 3.3 \mathrm{E}-01$
5 FISO distributions for sorks with the secondary SRVs etuck open
$1.08+000.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.60000 \quad 0.00000 \quad 0.00000 \quad 0.00000$
$1.0 \mathrm{E}+00$ 4． $9 \mathrm{E}=07$ 4． $2 \mathrm{E}-07 \quad 5.2 \mathrm{E}-075.2 \mathrm{E}-07 \quad 5.2 \mathrm{E}=07 \quad 5.2 \mathrm{E}-07 \quad 5.2 \mathrm{E}=07 \quad 5.2 \mathrm{E}=07$

$1.0 \mathrm{E}+00 \quad 7.3 \mathrm{E}+02 \quad 6.2 \mathrm{E}-02 \quad 4.0 \mathrm{E}-02 \quad 3.0 \mathrm{E}-02 \quad 3,0 \mathrm{E}-02 \quad 3.0 \mathrm{E}-02 \quad 3.0 \mathrm{E}-02 \quad 3.0 \mathrm{E}-02$
$1.0 \mathrm{E}+00 \quad 2.7 \mathrm{E}-012.6 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01$
$2.0 \mathrm{E}+005.6 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 4.3 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 5,5 \mathrm{E}-01$

$1.0 \mathrm{E}+00$ ह． $8 \mathrm{E}-01 \quad 9.5 \mathrm{E}-01 \quad 0.4 \mathrm{E}-01 \quad 0.1 \mathrm{E}-01 \quad$ 日．1E－01 $8.1 \mathrm{E}-01 \quad 8.1 \mathrm{E}-01 \quad 0.1 \mathrm{E}-01$
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
1． $0 \mathrm{E}+00 \quad 2.7 \mathrm{E}-01 \quad 2.6 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.6 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01$ E180＊
8 FOSO distributions for SOTRs with the secondary SRV reelosing
$1.0 \mathrm{E}-01 \quad 1.2 \mathrm{E}-01 \quad 1.2 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.2 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01$
$2.0 \mathrm{E}-01 \quad 1.3 \mathrm{E}-01 \quad 1.8 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01$
$\begin{array}{llllllllll}2.98-01 & 2.0 \mathrm{E}-01 & 2.0 \mathrm{E}-01 & 2.6 \mathrm{E}-01 & 2.6 \mathrm{E}-01 & 2.5 \mathrm{E}-01 & 2.5 \mathrm{E}-01 & 2.6 \mathrm{E}-01 & 2.6 \mathrm{E}=01\end{array}$
$5.0 \mathrm{E}-01 \quad 3,7 \mathrm{E}-013,0 \mathrm{E}-01 \quad 3,4 \mathrm{E}-01 \quad 3,5 \mathrm{E}-01 \quad 3,4 \mathrm{E}-01 \quad 3,5 \mathrm{E}-01 \quad 3,5 \mathrm{E}-01 \quad 3,5 \mathrm{E}-01$
6． $3 \mathrm{E}-015.3 \mathrm{E}-015.4 \mathrm{E}-01 \quad 5.0 \mathrm{E}-01 \quad 5.2 \mathrm{E}-015.3 \mathrm{E}-01 \quad 5.3 \mathrm{E}-01 \quad 5.3 \mathrm{E}-01 \quad 5.3 \mathrm{E}-01$

$1.0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 8.3 \mathrm{E}-01 \quad 1.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$\begin{array}{llllllllllllll}1.0 \mathrm{E}\end{array}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 8.6 \mathrm{E}=01 \quad 1.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
1． $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$

2 Fuso distributions fos sotke with the seopndary sigve stw- open
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$

$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$\begin{array}{lllllllll}1.0 \mathrm{E}\end{array}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$\begin{array}{llllllllll}1.0 \mathrm{E}\end{array} 000 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
6. $0 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$ 2. $0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$\begin{array}{llllllllll}1.0 \mathrm{E} & +00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathbf{E}+00 & 1.0 \mathbf{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathbf{E}+00\end{array}$
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.6 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$
$\begin{array}{llllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00\end{array} \quad 1.0 \mathrm{E}+00$

B Decont aiminetion factor distribution fut pool sorubbing for Event
$\mathrm{S} .1 \mathrm{E}+03 \quad 4.5 \mathrm{E}+03 \quad 4.1 \mathrm{E}+03 \quad 1.3 \mathrm{E}+02 \quad 6.2 \mathrm{E}+00 \quad 3.0 \mathrm{E}+00 \quad 1.8 \mathrm{E}+00 \quad 1.7 \mathrm{E}+00 \quad 1.6 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \mathrm{VDF}$ *
\$ FCOFV distribution foz early leak - dry containment

$\$$ FCONV distribution for early leak - wet containment

$\$$ FConV distribution for early rupture in upper part of containment

8 FCONV distribution for eerly rupture in lower pert of conteinment
 $\$$ FCONV diberlbution for late rupture
1.0E-05 1.0E-04 1.0E-03 3.0E-03 3.55-02 $1.5 \mathrm{E}-01$ 5. $\mathrm{BE}-01$ 6.7E-01 7.6E-01 1.0E-01

5 FCONV distribution for Event V

5 FCONC distributions for early leak - dry containment

1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}-03 \quad 1.0 \mathrm{E}-032.0 \mathrm{E}-03 \quad 2.0 \mathrm{E}-03$
$1.0 \mathrm{E}+002.0 \mathrm{E}-032.0 \mathrm{E}-03 \quad 6.0 \mathrm{E}-03 \quad 6.0 \mathrm{E}-036.0 \mathrm{E}-03$ 0.0E-03 6.0E-03 6.0E-03
$2.0 \mathrm{E}+00$ ह. $0 \mathrm{E}-038.0 \mathrm{E}-031.7 \mathrm{E}-01 \quad 1.7 \mathrm{E}=01$

$1.0 \mathrm{E}+00$ 2. $0 \mathrm{E}-012.0 \mathrm{E}-012.1 \mathrm{E}-012.1-012.1 \mathrm{E}-01 \quad 2.1 \mathrm{E}-01 \quad 2.1 \mathrm{E}=012.1 \mathrm{E}-01$




2. $0 \mathrm{E}+00$ 1. $5 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01 \quad$ 1. $5 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01$

8 FCONC distributions for early leak - wet intalnment
$1.0 \mathrm{E}+001.0 \mathrm{E}-031.0 \mathrm{E}-03$ 4. OE-03 4. OE-03 人. OE-03 4. OE-03 4. OE-03 4.OE-03

$1.0 \mathrm{E}+00 \quad 9.0 \mathrm{E}-03 \quad 8.0 \mathrm{E}-03 \quad 2.4 \mathrm{E}-02 \quad 2.4 \mathrm{E}-02$
$1.0 \mathrm{E}+00$ 1. $1 \mathrm{E}-01 \quad 1.1 \mathrm{E}-01 \quad 1.2 \mathrm{E}-01$
$1.0 \mathrm{E}+00 \quad 2.3 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 2.4 \mathrm{E}-01 \quad 2.6 \mathrm{E}=01$


1. $0 \mathrm{E}+007.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}=017.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01 \quad 7.3 \mathrm{~L}-017.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}-01$


$1.0 \mathrm{E}+00 \quad 1.5 \mathrm{E}-01 \quad 1.5 \mathrm{E}-01$
$\$$ FCONC distributions for early rupture in upper part of containment
2. OE $+001.0 \mathrm{E}-021.0 \mathrm{E}=021.0 \mathrm{E}-02 \quad 1.0 \mathrm{E}-02 \quad 1.0 \mathrm{E}-02 \quad 1.0 \mathrm{E}-021.0 \mathrm{E}-021.01-02$

$1.0 \mathrm{E}+001.9 \mathrm{E}=01 \quad 1.9 \mathrm{E}-01 \quad 1.6 \mathrm{E}=01 \quad 1.6 \mathrm{E}-01 \quad 1.6 \mathrm{E}=01 \quad 1.6 \mathrm{E}=01 \quad 1.6 \mathrm{E}-01 \quad 1.6 \mathrm{E}-01$
$1.0 \mathrm{E}+00$ 6. $5 \mathrm{E}-01 \quad 4.5 \mathrm{E}-01 \quad 4.1 \mathrm{E}-01 \quad 6.1 \mathrm{E}-02$

$1.0 \mathrm{E}+007.5 \mathrm{E}-017.5 \mathrm{E}-017.3 \mathrm{E}-01 \quad 7.3 \mathrm{E}-017,3 \mathrm{E}-017.3 \mathrm{E}-017.3 \mathrm{E}-017.3 \mathrm{E}-01$



$1.0 \mathrm{E}-01$ 4. $3 \mathrm{E}=01 \quad 4.3 \mathrm{E}=01 \quad 4.3 \mathrm{E}-01 \quad 4.3 \mathrm{E}-01 \quad 4.3 \mathrm{E}-01 \quad 4.3 \mathrm{E}-01 \quad 4.3 \mathrm{E}-\mathrm{A}^{2} \quad 4.3^{*} \quad 01$
3. FCONC distilibutions for eatly rupture in lower part of conteinment


 $1.0 \mathrm{E}+005.2 \mathrm{E}-015.2 \mathrm{E}-01$ 6.7E-01 $4.72-01 \quad 4.7 \mathrm{E}-01 \quad 4.7 \mathrm{E}-01 \quad 4.7 \mathrm{E}-01 \quad 4.7 \mathrm{E}=01$ 1. $0 \mathrm{E}+007.3 \mathrm{E}-017.3 \mathrm{E}-017.0 \mathrm{E}-01 \quad 7.0 \mathrm{E}-01$





$\$$ FCONC distributions for late rupture
$\begin{array}{lllllllll}1.0 \mathrm{E}+00 & 2.0 \mathrm{E}-03 & 1.0 \mathrm{E}-03 & 1.0 \mathrm{E}-03 & 1.0 \mathrm{E}-63 & 1.0 \mathrm{E}-03 & 1.0 \mathrm{E}-03 & 1.0 \mathrm{E}-03 & 1.0 \mathrm{E}-03\end{array}$ 1. OE $+002.0 \mathrm{E}-031.0 \mathrm{E}-031.0 \mathrm{E}-031.0 \mathrm{E}-031.0 \mathrm{E}-031.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-03 \quad 1.0 \mathrm{E}-03$ $1.0 \mathrm{E}+003.0 \mathrm{E}=031.0 \mathrm{E}=03 \quad 3.0 \mathrm{E}-03 \quad 3.0 \mathrm{E}=033.0 \mathrm{E}-03 \quad 3.0 \mathrm{E}-03 \quad 3.0 \mathrm{E}-03 \quad 3.0 \mathrm{E}-03$ $1.0 \mathrm{E}+00 \quad 1.4 \mathrm{E}-02 \quad 1.4 \mathrm{E}-02 \quad 3.6 \mathrm{E}-02 \quad 2.0 \mathrm{E}-02 \quad 3.6 \mathrm{E}-02 \quad 2.0 \mathrm{E}-02 \quad 2.0 \mathrm{E}-02 \quad 2.0 \mathrm{E}-02$
 $1.0 \mathrm{E}+00$ 1. $\mathrm{BE}-01 \quad 1.0 \mathrm{E}-01 \quad 3.2 \mathrm{E}-012.2 \mathrm{E}-01 \quad 3.2 \mathrm{E}-01 \quad 2.1 \mathrm{E}-01 \quad 2.1 \mathrm{E}-01 \quad 2.1 \mathrm{E}-01$ $1.0 \mathrm{E}+00 \quad 6.2 \mathrm{E}=01 \quad 6.2 \mathrm{E}-01 \quad 6.4 \mathrm{E}-016.2 \mathrm{E}-01 \quad 6.4 \mathrm{E}-016.2 \mathrm{E}-01 \quad 6.2 \mathrm{E}-01 \quad 6.2 \mathrm{E}-01$ $1.0 \mathrm{E}+00 \quad 7.2 \mathrm{E}-017.2 \mathrm{E}-01 \quad 7,4 \mathrm{E}-017.2 \mathrm{E}-017,4 \mathrm{E}-01 \quad 7.2 \mathrm{E}-01 \quad 7.2 \mathrm{E}-01 \quad 7.2 \mathrm{E}-01$
 $\begin{array}{lllllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}-01 & 1.0 \mathrm{E}-01 & 3.7 \mathrm{E}-01 & 1.6 \mathrm{E}-01 & 3.7 \mathrm{E}-01 & 1.6 \mathrm{E}-01 & 1.6 \mathrm{E}-01 & 1.6 \mathrm{E}-01\end{array}$
\$ FCONC distributions for Event V
$1.0 \mathrm{E}+005.3 \mathrm{E}-03 \quad 5.3 \mathrm{E}-03$ $1 . \mathrm{EE}+00 \quad 2.4 \mathrm{E}-02 \quad 2.4 \mathrm{E}-02$ 1. $0 \mathrm{E}+001.1 \mathrm{E}-01 \quad 1.3 \mathrm{E}=01 \quad 9.3 \mathrm{E}-02 \quad 0.3 \mathrm{E}=02 \quad$ 日. $3 \mathrm{E}-02 \quad 9.3 \mathrm{E}-02 \quad 0.3 \mathrm{E}-02 \quad 8.3 \mathrm{E}-02$ $1.0 \mathrm{E}+00 \quad 3.1 \mathrm{E}-01 \quad 3.1 \mathrm{E}-01 \quad 2.7 \mathrm{E}-01$ $1.0 \mathrm{E}+005.0 \mathrm{E}-01 \quad 5.0 \mathrm{E}-01 \quad 4.7 \mathrm{E}-01$ 4. $7 \mathrm{E}-01$ 1.0E $+006.6 \mathrm{E}-01 \quad 6,6 \mathrm{E}-0: 6.5 \mathrm{E}-01 \quad 6.5 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 6.5 \mathrm{E}-01 \quad 5.5 \mathrm{E}-01 \quad 6.5 \mathrm{E}-01$

 $1.0 \mathrm{E}+00$ 日. $2 \mathrm{E}-01 \quad 8.2 \mathrm{E}-01 \quad 8.2 \mathrm{E}-018.2 \mathrm{E}-01 \quad 8.2 \mathrm{E}-01 \quad 9.2 \mathrm{E}-01 \quad 8.2 \mathrm{E}-01 \quad \mathrm{~B} .2 \mathrm{E}-01$ $1.0 \mathrm{E}+00 \quad 4.3 \mathrm{E}-01 \quad 4.3 \mathrm{E}-01$ FCONC*
\$ FCCl distributions for low ir oxidetion in-vessel and dry containment
 $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+06 \quad 1.0 \mathrm{E}+002.4 \mathrm{E}-02 \quad 2.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-001.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-08 \quad 0.0 \mathrm{E}-05$ $1.0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}=013.2 \mathrm{E}-04 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-00 \quad 2.0 \mathrm{E}-05 \quad 4.3 \mathrm{E}-04$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+001.2 \mathrm{E}+00$ 3. $6 \mathrm{E}-01 \quad 1.9 \mathrm{E}-03 \quad 1.0 \mathrm{E}-06 \quad 2.4 \mathrm{E}-04 \quad 2.0 \mathrm{E}-04 \quad 2.7 \mathrm{E}-03$ $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 5.7 \mathrm{E}-01 \quad 5.0 \mathrm{E}-02 \quad 2.3 \mathrm{E}-05 \quad$ B. $6 \mathrm{E}-04 \quad 1.2 \mathrm{E}-03 \quad 4.5 \mathrm{E}-02$ $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+006.7 \mathrm{E}-01 \quad 2.3 \mathrm{E}-01 \quad 3.3 \mathrm{E}-04 \quad 2.2 \mathrm{E}-02 \quad 2.7 \mathrm{E}-02 \quad 1.9 \mathrm{E}-01$ $1 ., \mathrm{E}+00 \quad 1.0 \mathrm{E}+60 \quad 1.0 \mathrm{E}+00 \quad 8.5 \mathrm{E}-01 \quad 6,4 \mathrm{E}-011.7 \mathrm{E}-02 \quad 9.6 \mathrm{E}-02 \quad 8.8 \mathrm{E}-02 \quad 5.2 \mathrm{E}-01$ $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$ E. $\mathrm{BE}-01 \quad 8.6 \mathrm{E}-01 \quad 8.3 \mathrm{E}-021.8 \mathrm{E}-02 \quad 1.8 \mathrm{E}-01 \quad 9.0 \mathrm{E}-01$ $\begin{array}{llllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 8.9 \mathrm{E}-01 & 1.0 \mathrm{E}+00 & 1.2 \mathrm{E}-01 & 2.6 \mathrm{E}-01 & 2.3 \mathrm{E}-01 & 1.0 \mathrm{E}+00\end{array}$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 4.5 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 3 . \mathrm{BE}-06 \quad$ B. $7 \mathrm{E}-03 \quad$ f. $5 \mathrm{E}-03$ 1.0E-01
$\$$ FCCl distributions for high Zr oxidation in-vessel and dry containment 1. $0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 7.2 \mathrm{E}-03 \quad 1.0 \mathrm{E}=001.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-09$
 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 5.9 \mathrm{E}-02 \quad 2.7 \mathrm{E}-04 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-00 \quad 1.0 \mathrm{E}-05 \quad 3.4 \mathrm{E}-04$ $\begin{array}{lllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 2.3 \mathrm{E}-01 & 1.6 \mathrm{E}-03 & 1.0 \mathrm{E}-00 & 2.2 \mathrm{E}-04 & 2.3 \mathrm{E}-04 & 1.9 \mathrm{E}-03\end{array}$ $1.0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 4.9 \mathrm{E}-01 \quad 5.7 \mathrm{E}-02 \quad 2.3 \mathrm{E}-05 \quad 7.0 \mathrm{E}-04 \quad \mathrm{E}, 5 \mathrm{E}-04 \quad 3.1 \mathrm{E}-02$ $1.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+006.3 \mathrm{E}-01 \quad 2.1 \mathrm{E}-01 \quad 3.3 \mathrm{E}-04 \quad 8.8 \mathrm{E}-031.1 \mathrm{E}-031.7 \mathrm{E}-01$ $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+001.0 \mathrm{E}+00 \mathrm{~B} .0 \mathrm{E}-01 \quad 4.8 \mathrm{E}-01 \quad 1.7 \mathrm{E}-02 \quad 8.6 \mathrm{E}-02 \quad 9.3 \mathrm{E}-02$ 4. $4 \mathrm{E}-01$ $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+001.0 \mathrm{E}+00$ 8.7E-01 $\quad 8.7 \mathrm{E}-01 \quad 8.3 \mathrm{E}-02 \quad 1.8 \mathrm{E}-01 \quad 1.8 \mathrm{E}-01 \quad 8,5 \mathrm{E}-01$ $\begin{array}{llllllllllll}1.0 E+ & 1.0 E+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.2 \mathrm{E}-01 & 2.4 \mathrm{E}-01 & 2.5 \mathrm{E}-01 & 1.0 \mathrm{E}+00\end{array}$ $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 4.5 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 3.8 \mathrm{E}-06 \quad 8.7 \mathrm{E}-03 \quad 6.5 \mathrm{E}-03 \quad 1.0 \mathrm{E}-01$
\$ FCel distributions for low $\mathrm{Z}_{\mathrm{r}}$ oxidetion in-vessel and wet containtient 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 2.5 \mathrm{E}-03 \quad 1.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}=0 \mathrm{O} \quad 1.0 \mathrm{E}-08 \quad 1.0 \mathrm{E}-09$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 7.2 \mathrm{E}-03 \quad 2.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-09 \quad 2.0 \mathrm{E}-05$
 $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.3 \mathrm{E}-01 \quad 8.4 \mathrm{E}-04 \quad 1.0 \mathrm{E}-08 \quad 8.0 \mathrm{E}-05 \quad 1.1 \mathrm{E}-04 \quad 9.7 \mathrm{E}-04$
4. $0 \mathrm{EE}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 2.4 \mathrm{E}-012.0 \mathrm{E}-02 \quad 4.0 \mathrm{E}-06 \quad 3.0 \mathrm{E}-06 \quad 4.7 \mathrm{E}-04 \quad 2.0 \mathrm{E}-02$
$\begin{array}{lllllllll}1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 3.6 \mathrm{E}-01 & 2.0 \mathrm{E}-01 & 6.6 \mathrm{E}-05 & 5.0 \mathrm{E}-03 & \mathrm{E} .1 \mathrm{E}-03 & 2.6 \mathrm{E}-01\end{array}$
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \mathrm{E} .2 \mathrm{E}-01 \quad 6.3 \mathrm{E}-01 \quad 1.0 \mathrm{E}-02 \quad 7.4 \mathrm{E}-02 \quad 8.3 \mathrm{E}-02 \quad 3.4 \mathrm{E}-01$

 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad$ h. $5 \mathrm{E}-01 \quad 1.7 \mathrm{E}-01 \quad 3.5 \mathrm{E}-06 \quad 6.7 \mathrm{E}-03 \quad$ E. $5 \mathrm{E}-03 \quad 1.0 \mathrm{E}-02$

8 FCCI distributions for high ir oxidation in-veseel and wet conteiment
$1.0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+001.7 \mathrm{E}-031.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-0 \mathrm{E} \quad 1.0 \mathrm{E}-09 \quad 1.0 \mathrm{E}-001.0 \mathrm{E}-08$ 1. $0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 5.2 \mathrm{E}-03 \quad 1.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}-081.0 \mathrm{E}-001.0 \mathrm{E}-00 \quad 2.0 \mathrm{E}-05$
 $2.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.2 \mathrm{E}-01 \quad 5.1 \mathrm{E}-04 \quad 1.0 \mathrm{E}-09 \quad 9.0 \mathrm{E}-05 \quad 1.0 \mathrm{E}=04 \quad 7.5 \mathrm{E}-04$ 1.0E $+00 \quad 2.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 2.3 \mathrm{E}-01 \quad 1.0 \mathrm{E}-02 \quad 4.0 \mathrm{E}-06 \quad 3.1 \mathrm{E}-04 \quad 4.3 \mathrm{E}-06 \quad 1.1 \mathrm{E}-02$ $1.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 3.4 \mathrm{E}-01 \quad 1 . \mathrm{BE}-01 \quad 6.6 \mathrm{E}-05 \quad 4.2 \mathrm{E}-03 \quad 6.6 \mathrm{E}-03 \quad 1.4 \mathrm{E}-01$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$ E. $6 \mathrm{E}-01 \quad 3.0 \mathrm{E}-01 \quad 1.0 \mathrm{E}-02 \quad 7.3 \mathrm{E}-02 \quad 7.0 \mathrm{E}-02 \quad 2.5 \mathrm{E}-01$ 1. $0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+00 \quad 8.6 \mathrm{E}-01 \quad 7.0 \mathrm{E}-01 \quad 5.0 \mathrm{E}-02 \quad 8.8 \mathrm{E}-02 \quad 1.0 \mathrm{E}-01 \quad$ 8. $1 \mathrm{E}-01$
 $1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad$ K. $5 \mathrm{EE}-01 \quad 1.7 \mathrm{E}-01 \quad 3.8 \mathrm{E}-06 \quad 8.7 \mathrm{E}-03 \quad 6.5 \mathrm{E}-05 \quad 1.0 \mathrm{E}-01$ FCOI*
§ Spray DF distribution for RCS release, CF at VB, RCS at high pressure 2. $8 \mathrm{E}+00 \quad 2.6 \mathrm{E}+00 \quad 2.2 \mathrm{E}+00$ 2.0E+00 $1.8 \mathrm{E}+00 \quad 1.7 \mathrm{E}+00$ 1. $6 \mathrm{E}+00 \quad 1.4 \mathrm{E}+00 \cdot 1.0 \mathrm{E}+00 \quad 2.6 \mathrm{E}+00$ DFSPR1*

5 Spray DF distribution for RCS release, all cases not included above

5 Sprey DF distribution for CCI release
$3.2 \mathrm{E}+03 \quad 2.9 \mathrm{E}+03 \quad 2.0 \mathrm{E}+03 \quad 2,8 \mathrm{E}+02 \quad 2,8 \mathrm{E}+01 \quad 1,4 \mathrm{E}+01 \quad 7,7 \mathrm{E}+00 \quad 6,8 \mathrm{E}+00 \quad 6,7 \mathrm{E}+00 \quad 3,0 \mathrm{E}+01 \mathrm{DFSPRC}$
5 Distribution for the lete iodine release
$0.0 \mathrm{E}+00$ 1. OE-03 $5.0 \mathrm{E}-031.0 \mathrm{E}-02 \quad 5.0 \mathrm{E}-02 \quad$ 日. $0 \mathrm{E}-021.0 \mathrm{E}-01 \quad 1.0 \mathrm{~L}-01 \quad 2.0 \mathrm{E}-01 \quad 0.0 \mathrm{E}+00$ LATEIL*
S Distribtion for the revolgtilizalion release from the RCS, phe hole in RCS $1.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ 1.0E $+00 \quad 0.0 \mathrm{E}+00 \quad 0.2 \mathrm{~s}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+00 \quad 1.1 \mathbf{E}-02 \quad 1.0 \mathrm{E}-03 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+004.5 \mathrm{E}-02 \quad 2.3 \mathrm{E}-02 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}, 00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+001.0 \mathrm{E}-017.2 \mathrm{E}-02 \quad 2.4 \mathrm{E}-02 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+00 \quad \mathbf{4}, \mathbf{4 E}-01 \quad 1.7 \mathbf{E}-01 \quad 2.1 \mathbf{E}-01 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+008.0 \mathrm{E}-012.5 \mathrm{E}-01 \quad 4.2 \mathrm{E}-01 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 7.5 \mathrm{E}-01 \quad \mathrm{~A}, 0 \mathrm{E}-01 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+20 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$

S Distribution for the revolatilization release from the RCS, two holes in the RCE

1. $0 \mathrm{E}+000.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{z}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$
$1.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+00 \quad 3.6 \mathrm{E}-02 \quad 2.7 \mathrm{E}-02 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+100 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+001.2 \mathrm{E}-01 \quad 9.5 \mathrm{E}-02 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+06 \quad 3.0 \mathrm{E}-012.7 \mathrm{E}-017.7 \mathrm{E}-02 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+007.2 \mathrm{E}-01 \quad 7.0 \mathrm{E}-01 \quad 6.3 \mathrm{E}-01 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $1.0 \mathrm{E}+00 \quad 9.2 \mathrm{E}-01 \quad \mathrm{~B}, 1 \mathrm{E}-01 \quad 8.9 \mathrm{E}-01 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ 1. $0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00$ $0.0 \mathrm{E}+00 \quad 0.0 \mathrm{E}+00 \quad$ FL.ATE

S Distribution for the DCH release - KCS et high pressure
$1,0 \mathrm{E}+006.7 \mathrm{E}-01 \quad 6.7 \mathrm{E}-012.3 \mathrm{E}-03 \quad 5.2 \mathrm{E}-05 \quad 5.0 \mathrm{E}-05 \quad 5.2 \mathrm{E}-05 \quad 5.2 \mathrm{E}-05.5 .2 \mathrm{E}-05$
$1.0 \mathrm{E}+006,7 \mathrm{E}-016.7 \mathrm{E}-01 \quad 3,4 \mathrm{E}-03 \quad 7.0 \mathrm{E}-057.3 \mathrm{E}-05 \quad 7.0 \mathrm{E}-05 \quad 7.0 \mathrm{E}-05 \quad 7.0 \mathrm{E}-05$
$1.0 \mathrm{E}+006.6 \mathrm{E}-01 \quad 6.8 \mathrm{E}-01 \quad 1.7 \mathrm{E}-02 \quad 2.3 \mathrm{E}-06 \quad 3.3 \mathrm{E}-04 \quad 2.3 \mathrm{E}-04 \quad 2.3 \mathrm{E}-04 \quad 2.3 \mathrm{E}-04$
$1.0 \mathrm{E}+00 \quad 7.5 \mathrm{E}-01 \quad 7.5 \mathrm{E}-01 \quad 6.8 \mathrm{E}-02 \quad 1.3 \mathrm{E}-03 \quad 7.7 \mathrm{E}-031.3 \mathrm{E}-03 \quad 1.3 \mathrm{E}-031.3 \mathrm{E}-03$
$1.0 \mathrm{E}+00 \quad 9.2 \mathrm{E}-018,2 \mathrm{E}-01 \quad 2.0 \mathrm{E}-016.0 \mathrm{E}-03 \quad 2.2 \mathrm{E}-026.0 \mathrm{E}-03 \quad 6.0 \mathrm{E}-03 \quad 8.0 \mathrm{E}-03$
$\begin{array}{llllllll}1.0 \mathrm{E}+00 & 8.7 \mathrm{E}-01 & 8.7 \mathrm{E}-01 & 2.8 \mathrm{E}-01 & 2.5 \mathrm{E}-02 & 8.2 \mathrm{E}-02 & 1.8 \mathrm{E}-02 & 1.8 \mathrm{E}-02\end{array} \quad 4.3 \mathrm{E}-02$
$1.0 \mathrm{E}+001.0 \mathrm{E}+001.0 \mathrm{E}+003.8 \mathrm{E}-012.3 \mathrm{E}-012.1 \mathrm{E}-01 \quad 6.3 \mathrm{E}-02 \quad 6.3 \mathrm{E}-02 \quad 2.0 \mathrm{E}-01$
$\begin{array}{lllllllll}1.0 \mathrm{E} & -00 & 1.0 \mathrm{E}+00 & 1.0 \mathrm{E}+00 & 4.0 \mathrm{E}-01 & 3.9 \mathrm{E}-01 & 3.6 \mathrm{E}-01 & 1.3 \mathrm{E}-01 & 1.6 \mathrm{E}-01\end{array} \mathbf{3} .9 \mathrm{E}-01$
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 4.0 \mathrm{E}-01 \quad 4.4 \mathrm{E}-01 \quad 4.2 \mathrm{E}-01 \quad 1.6 \mathrm{E}-01 \quad 2.0 \mathrm{E}-01 \quad 4.2 \mathrm{E}-01$
$t$ Dibtribution for the DCH relake ~ Wes ef intermedite preseare

$1.0 \mathrm{~L}+00$ 6.75-01 6.72-01 2. $4 \mathrm{E}-03$ 7.0E-05 7. 2E-05 7.0E-05 7.0E-05 7.0E-05




$1.0 \mathrm{H}+00 \quad 1.0 \mathrm{~L}+00 \quad 1.0 \mathrm{~L}+002.5 \mathrm{E}-012.2 \mathrm{E}-01 \quad 2.0 \mathrm{E}-01 \quad 5.0 \mathrm{E}-025.0 \mathrm{E}-02 \quad 2.8 \mathrm{E}-01$



4 DF fistitibution for pool corubhing of CCI relaese $=$ pertielly full eavity


2. $0 \mathrm{E}+00 \quad 3,3 \mathrm{E}+08 \mathrm{3}, 3 \mathrm{E}+03 \mathrm{~B}, 3 \mathrm{E}+083.3 \mathrm{E}+032.3 \mathrm{E}+05 \quad 3,3 \mathrm{E}+03 \quad 3,3 \mathrm{E}+08 \quad 3,3 \mathrm{E}+03$
$1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+02 \quad 1.0 \mathrm{E}+02 \quad 6.2 \mathrm{E}+02 \quad 1,0 \mathrm{E}+02 \quad 4.2 \mathrm{E}+01 \quad 1.0 \mathrm{E}+02 \quad 1.0 \mathrm{E}+02 \quad 1.0 \mathrm{E}+02$
$2.0 \mathrm{~L}+00 \quad 5.0 \mathrm{E}+00 \quad 5.0 \mathrm{OL}+00 \quad 2.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \quad 5.0 \mathrm{O}+00$


1. $0 \mathrm{E}+50 \quad 2,6 \mathrm{E}+00 \quad 1,6 \mathrm{E}+00 \quad 3.0 \mathrm{E}+00 \quad 2,4 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 2,4 \mathrm{E}+00 \quad 1.4 \mathrm{E}+00 \quad 1,6 \mathrm{E}+00$

$\begin{array}{llllllll}1.3 \mathrm{E}\end{array}+00 \quad 2.3 \mathrm{E}+66 \quad 1.3 \mathrm{E}+60 \quad 2.0 \mathrm{E}+00 \quad 2.3 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 1.3 \mathrm{E}+00 \quad 1.3 \mathrm{E}+00 \quad 1.3 \mathrm{E}+00$
2. $5 \mathrm{~L}+005.0 \mathrm{E}+00 \mathrm{~S} .0 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \quad 2.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00 \quad 5.0 \mathrm{E}+00$

$2.0 \mathrm{E}+00 \quad 2.2 \mathrm{E}+06 \quad 2.1 \mathrm{E}+06 \quad 1.2 \mathrm{E}+04 \quad 2.2 \mathrm{E}+06 \quad 2.2 \mathrm{E}+04 \quad 2.2 \mathrm{E}+04 \quad 2.2 \mathrm{E}+06 \quad 2.1 \mathrm{E}+04$ $1.0 \mathrm{E}+00 \quad 2.8 \mathrm{E}+04 \quad 1,6 \mathrm{E}+06 \quad 6,4 \mathrm{~L}+03 \quad 1,4 \mathrm{~L}+06 \quad 8,6 \mathrm{E}+03 \quad 1,6 \mathrm{E}+06 \quad 1,8 \mathrm{E}+04 \quad 1.8 \mathrm{E}+04$ $1.0 \mathrm{E}+002.2 \mathrm{E}+06 \quad 1.7 \mathrm{E}+06 \mathrm{E} .6 \mathrm{E}+03 \quad 2.7 \mathrm{E}+06 \mathrm{E} .6 \mathrm{E}+03 \quad 1.7 \mathrm{E}+0 \mathrm{E} \quad 1.7 \mathrm{E}+04 \quad 1.7 \mathrm{E}+04$ $1.0 \mathrm{E}+00 \quad 5.2 \mathrm{E}+02 \mathrm{~S} .2 \mathrm{E}+02 \quad 2.7 \mathrm{E}+52 \mathrm{E} .2 \mathrm{E}+02 \quad 2.7 \mathrm{E}+02 \quad 5.2 \mathrm{E}+02 \quad 5.2 \mathrm{E}+02 \quad 5.2 \mathrm{E}+02$
 $1.0 \mathrm{E}+00 \quad 1.2 \mathrm{E}+01 \quad 1.2 \mathrm{E}+01 \quad 6.5 \mathrm{E}+00 \quad 1.2 \mathrm{E}+02 \quad 6.3 \mathrm{E}+00 \quad 1.2 \mathrm{E}+01 \quad 1.2 \mathrm{E}+01 \quad 1.2 \mathrm{E}+01$ $1.0 \mathrm{E}+00 \quad 7.2 \mathrm{E}+00 \quad 7,2 \mathrm{E}+00 \quad 3.6 \mathrm{E}+00 \quad 7.2 \mathrm{E}+00 \quad \mathrm{~A}, \mathbf{6 E}+00 \quad 7,2 \mathrm{E}+00 \quad 7,2 \mathrm{E}+00 \quad 7,2 \mathrm{E}=00$
 1. $0 \mathrm{E}+00 \quad 6,4 \mathrm{I}+00 \quad$ E, $, \mathrm{E}+00 \quad \$, 4 \mathrm{E}+60 \quad 6,6 \mathrm{I}+00 \quad 3,4 \mathrm{E}+00 \quad 6,4 \mathrm{E}+00 \quad 6,4 \mathrm{E}+00 \quad 6,4 \mathrm{E}+00$ $1.0 \mathrm{E}+00$ 2. $5 \mathrm{E}+01 \quad 2.5 \mathrm{E}+01 \quad 1.3 \mathrm{E}+01 \quad 2.5 \mathrm{E}+02 \quad 1.3 \mathrm{E}+01 \quad 2.5 \mathrm{E}+01 \quad 2.5 \mathrm{E}+01 \quad 2.5 \mathrm{E}+01$ VPSL.

S Praction of core in HPME for high, moderate, and low ranges of frection ejected A86. 265 . 185 FPFE*
A. Iee condenser DF distribution for MCs release, fans operating, ho priot CF $8.0 \mathrm{~L}+01 \quad 2.8 \mathrm{E}+01 \quad 1.0 \mathrm{E}+01 \quad 6.0 \mathrm{E}+00 \quad 2.6 \mathrm{E}+00 \quad 1.6 \mathrm{E}+00 \quad 1.2 \mathrm{E}+00 \quad 1.2 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 6.0 \mathrm{E}+00$

5 Tce bondenser DF dietribution for RCS release, fans operating, prior of $1 . D \mathrm{E}+01$ E. $7 \mathrm{E}+00$ ह. $2 \mathrm{E}+00<.0 \mathrm{E}+00$ 1. $\mathrm{BE}+00 \quad 1.2 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00$ 1.0E+00 $3.0 \mathrm{E}+00$
\& Ioe ondenser DF distribution for hos release, fans not opersting $4,3 \mathrm{E}+01<, 2 \mathrm{E}+01 \quad 3,5 \mathrm{E}+01 \quad 2,4 \mathrm{E}+01 \quad 2,0 \mathrm{E}+00 \quad 2,3 \mathrm{E}+00 \quad 1,3 \mathrm{E}+00 \quad 2,2 \mathrm{E}+00 \quad 1,0 \mathrm{E}+00 \quad 7,0 \mathrm{E}+00$



S Zee conderser DF distribution for CCI release, fons operating, no prior CF $3.0 \mathrm{E}+012.5 \mathrm{E}+01 \quad 1.8 \mathrm{E}+01 \quad 6.0 \mathrm{E}+002.8 \mathrm{E}+00 \quad 1.6 \mathrm{E}+00 \quad 1.2 \mathrm{E}+00 \quad 1.1 \mathrm{E}+00 \quad 1.0 \mathrm{E}+00 \quad 7.0 \mathrm{E}+00$

8 Ioe tatitunset DF ditteibution for CCI release, fans operating, prior CF

8. Ise confenser to dittifbution for CCI release, farit not opersting


## B. 3 SOURCE TERM RESULTS

This section contains examples of additional source term results for internal initiators. Figure B. 3.1 presents the complementary cumulative distribution functions (GCDFs) for release fractions for the iodine, cesium, strontium, and lanthanum radionuclide classes. The CCDF for noble gases is not particularly interesting since almost all the noble gases that escape from the fuel are eventually released to the environment; if the containment does not fail, the xenon and krypton lission products are released from the containment over many days due to design-level leakage. The CCDFs for the other four radionuclide classes are not shown because they are similar to the CCDFs that are displayed. Figure B, 3-1 shows the relationship of exceedance frequency to release fraction for each of the 200 observations in the sample for Sequcyah.

Figure L.3-2 111ustrates another way to present the results of the source teris analysis. This figure shows the range of release fractions for accidents in which there is early failure of the containment (Summary accident progression bins (APBs) 1 through 4). Figure B. 3-3 provides the same type of information for accidents in which there is late failure of the containment (Summary APB 5). These plots were constructed by considering all the source terms computed for each radionuclide class without regard for their frequency. To obtain the mean value for iodine for early containment fallure, for example, all the lodine release fractions for source terms resulting from early containment failure are simply averaged. That is, all the iodine tocal release fractions are treated equally even though one may be more likely than another by several orders of magnitude. Thus it is not possible to give a probabilistic interpretation to the means or the quantiles shown in Figures B. 3-2 and B.3-3.


Figure B. 3.1. Exceedance Frequencies for Release Fractions (iodine, cesium, strontium, lanthanum)


Figure B.3.1. (Continued)


Figure B.3-2. Total Release Fractions for Early Containment Failure

Release Fraction


Figure B.3-3. Total Release Fractions for Late Containment Failure

## B. 4 INFORMATION USED IN SOURCE TERM PARTITIONING

This section contains one figure and two tables that present information used in source term partitioning for Sequoyah. Specifically, Figure B. 4.1 and Table B.4-2 present the results of site-specific MACCS calculations for Sequoyah used in the definition of early and chronlc health effect weights, respectively. The generation of these results is discussed in the methodology volume of this report (Volume 1) and in NUREG/CR-5253, B, 4-1 Table B.4-2 1ists the PARTITION input file for the Sequoyah analysis. It contains dose factors, reactor inventory, sumaries of the results in Figure B,4-1 and Table B.4.1, and other information needed to define the early and chronic health effect weights.

The curve shown in Figure B. 4-1 relates released activity ( Bq ) for I. 131 to a corresponding mean number of early fatalities predicted by a full MACCS calculation. This caloulation assumed an instantaneous ground-level release, no plume rise, and no evacuation or other mitigating actions. The assumptions and data used in the calculation are the same as those described in Sprung et al. (1989).


Figure B.4.1. Mean Early Fatalities vs. Released Activity for Sequoyah

Selected MACCS Mean Results for Single Isotope Releases for Sequoyah Table \$,4.1 presents the results of a full MACCS calculation for each isotope. Each ealculation nssumes the indicated inventory of the isotope under consideration is released. Additional computational assumptions are the same as those indicated in confunction with Figure B.4-1.

Table B, 4-1
Selected MACCS Mean Results for Single Isotope Releases for Sequoyah

$\begin{aligned} & \text { Relesse }{ }^{1} \\ & \text { Class } \end{aligned}$	Etument ${ }^{2}$	Isotope	Helf-1ife   (Days)	Inventory (bq)	$\begin{gathered} \text { Early }{ }^{3} \\ \text { Fetelities } \end{gathered}$	$\begin{aligned} & \text { Ear } 2 y^{4} \\ & \text { Injuries } \end{aligned}$	E.L.C.F. ${ }^{5}$	C.L.C.F. ${ }^{6}$
1	182				$0.00 \mathrm{E}+00$	8. $61 \mathrm{E}-03$	1.14E+00	0.00t +00
					$0,00 \mathbf{+}+00$	6.61E-03	9. $56 \mathrm{E}-01$	0. $0.00 \mathrm{E}+00$
		KK-85	3, 8198+03	$2.4758+15$	0.008+00	$0.00 \mathrm{E}+00$	6.08E-05	$0.00 \mathrm{E}+00$
		KR-65M	1.867E-01	1.1598+17	$0.008+00$	$0.00 \mathrm{E}+00$	2. $38 \mathrm{E}-02$	$0.00 \mathrm{E}+60$
		1K-87	$5.278 \mathrm{E}-65$	2.116E+17	0.00E+00	$0.00 \mathrm{E}+00$	8. $538-02$	0.00世 +00
		KR-68	1.167E-01	2.864E+17	$0.00 \mathrm{E}+00$	8.618-63	8.37E-01	0.00E +00
	XE				$0.00 \mathrm{E}+00$	0.00E+00	1.848-01	$0.008+00$
		XE-133	5.201E+00	6. $7822 \mathrm{E}+17$	0.00E +00	0.00E +00	1.28E-01	0.00E +00
		X 8 - 135	3.621E-01	$1.273 \mathrm{E}+17$	$0.00 \mathrm{E}+00$	0, 00E +00	5.59E-02	$0.00 \mathrm{E}+00$
2	1				8.35E-01	5. $58 \mathrm{E}+00$	4. $50 \mathrm{E}+01$	1.68E+02
					9.35E-01	5. $588 \mathrm{E}+00$	4. $688 \mathrm{E}+01$	1. $68 \mathrm{E}+02$
					3.21E-03	1. $138 \mathrm{E}-01$	$2.37 \mathrm{E}+01$	1. $685+02$
		1-132	0. $5218-02$	4. $7258+17$	1.19E-01	9.65E-01	2.07E +00	$0.00 \mathrm{E}+00$
		1-133	8,667E-01	6.77, $\mathrm{E}+17$	1. $828 \mathrm{E}=01$	1. $13 \mathrm{E}+00$	1.2EE+01	4.01E-64
			$3.6532=02$	7. $560 \mathrm{E}+17$	5, 42E-02	$7.20 \mathrm{E}-01$	1. CPE +00	$0.00 \mathrm{E}+00$
		1-135	2,764E-01	6.382E +17	$5.77 \mathrm{E}-01$	2.67E+00	7.47E+00	2. $21 \mathrm{E}-15$
3	RE				6. $438 \mathrm{E}-06$	2.418-02	2. $36 \mathrm{E}+01$	5. $75 \mathrm{E}+03$
					$0.00 \mathrm{E}+00$	0.00E+00	5.70E-03	5.51E-03
		$\mathrm{RH}=86$	1.8658+01	1.688E +14	$0.00 \mathrm{E}+00$	0.008+00	$5.70 \mathrm{E}-03$	5.51E-03
	cs				6. 43E-04	2.41E-22	2. 36E +01	8. $75 \mathrm{E}+03$
			$7.524 \mathrm{E}+02$	4. $324 E+16$	$6,43 \mathrm{E}-06$	2.35E-02	1.57E+01	$5.65 \mathrm{E}+03$
		$\begin{aligned} & C 8-136 \\ & C S-137 \end{aligned}$	1, 300E +01	1. $316 \mathrm{E}+16$	$0.00 \mathrm{E}+00$	6.37E-04	3, 43E +00	4. $798 \mathrm{t}+00$
		CS=137	$1.0998+04$	$2.417 \mathrm{E}+16$	$0.00 \mathrm{E}+00$	0.002 +00	4.47E +00	4.10E+03
4	SB				1. $058 \mathrm{E}+00$	3, 81E+00	7.81E+01	1.13E+01
					1.42E-05	1.98E-02	3.39E +30	1. $54 \mathrm{E}-01$
		$5 B-127$	3,600E+00	2.7878 +16	$0.00 \mathrm{E}+00$	6. $66 \mathrm{E}-05$	2. $72 \mathrm{E}+00$	1. $54 \mathrm{E}-01$
		8B-120	1.808E-01	8. $872 \mathrm{E}+16$	1.42E-05	1. $87 \mathrm{E}-02$	6.67E-01	2.01E-24
	IE				1.06E+00	3.89E+00	7,47E+01	1.11E+01
		TE-127	3.896E-01	2, $692 \mathrm{E}+16$	0.00E+00	$0.00 \mathrm{E}+00$	3.11E-02	$1.78 \mathrm{E}-14$
		TE-127M	1. $090 \mathrm{E}+02$	3, $564 \mathrm{E}+15$	$0.00 \mathrm{E}+00$	0.00E+00	2.978-01	$2.43 \mathrm{E}-01$
		\% $\mathrm{E}-120$	4. $8615=02$	6. $267 \mathrm{E}+16$	$0.00 \mathrm{E}+00$	0. $000 \mathrm{E}+00$	8. 27E-03	$0.008+00$
		TE-129M	3.340E +01	2. $443 \mathrm{E}+16$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$3.27 \mathrm{E}+00$	1.21E+00
		TE-131M	1.250E+00	4. $680 \mathrm{E}+16$	1.28E-05	1.48E-02	3, 58E +00	4.41E+00
		7E-132	$3.250 \mathrm{E}+00$	4. $8: 88+17$	1.06E+00	$3.88 \mathrm{E}+00$	6.75E+01	5.28E +00
\$	SR				3. 14E-01	1. $57 \mathrm{E}+00$	2.97E+01	6. $68 \mathrm{EE}+03$
					$3.14 \mathrm{E}-01$	1. $57 \mathrm{E}+00$	2.972+01	4. $695+03$
		SR-89	$5.200 \mathrm{E}+01$	$3,590 \mathrm{E}+17$	1.10E-01	1.4.E-02	1.21E+01	1.06E+03
		SR-90	1.0268+04	1.938E+16	$0.00 \mathrm{E}+00$	0.00E+00	9.0.0E +00	3. $63 \mathrm{E}+03$
		SR-91	3.8508 -01	4. $516 \mathrm{E}+17$	1. $51 \mathrm{E}-01$	1.02E+00	5.88E+00	2. $60 \mathrm{E}-01$
		SR-82	$1.129 \mathrm{E}-01$	4. $8038+17$	$5.32 \mathrm{E}-02$	5,39E-01	2. $51 \mathrm{E}+00$	2. $12 \mathrm{E}-20$

B. 4-2

Table B. 4-1 (continued)


Table B.4-1 (continued)


Table B. 4. 2
PARTICION Input File for Sequoyah Aralysis (Containing Dose Factozs, Reactor Inventory, Site-Specific MACCS Results, and Other Information Needed to Define the Early and Chronic Health Effect Weights)

IEQUOYAA: (1) B RATE, (2) CLD SF, (3) INH SF, (4) GRD SF, (5) DEP VEL. MACCS DOSE CONVERSION FIIE: MO ) SER 32,1 NOV-68, $10: 20: 02$ (RED MARRON ONLY)
GLOUDSHINE GROUND GROUND GROUND INHALED INHALED INGESTION CLOUDSHINE GROUND $3 R O U N D$ GROUND INHALED INHALED INGESTION SHINE BIEK RHINE 7DAY SHINE RATE ACUTE CHRONIC

60
CO- 58
CO- 60
KR-85
$\mathrm{KR}=85 \mathrm{M}$
$\mathrm{KR}-87$
$\mathrm{KR}-68$
$R B-86$
SR-89
SR-90
SR-91
SR-92
$\mathrm{Y}-90$
$Y-81$
$Y-82$
$Y=-93$
$2 R-95$
$2 R-97$
$5 \mathrm{~F}-95$
MO-99
TC-89M
$\mathrm{RU}=103$

+ U-105
$\mathrm{RU}-106$
RH-105
$2.564 \mathrm{E}-141.456 \mathrm{E}-11 \quad 1.790 \mathrm{E}-10 \quad 5.200 \mathrm{E}-1 \mathrm{~K} \quad 8.334 \mathrm{E}-111.547 \mathrm{E}-10 \quad 1.317 \mathrm{E}-10$
$8 \mathrm{~B}-129 \quad 5.771 \mathrm{E}-141.811 \mathrm{E}-11 \quad 2.5 \mathrm{OE}+11 \quad 1.078 \mathrm{E}-15 \quad 1.608 \mathrm{E}-11 \quad 1.654 \mathrm{E}-11 \quad 3.661 \mathrm{E}-11$
$\mathrm{TE}-127 \quad 1.836 \mathrm{E}-16 \quad 8.405 \mathrm{E}-14 \quad 1.87 \mathrm{PE}-13 \quad 3.869 \mathrm{E}-18.3 .342 \mathrm{E}-12 \quad 3.986 \mathrm{E}-12.6 .413 \mathrm{E}-12$
TE-127M $\quad 2.632 \mathrm{E}-17 \quad 5.643 \mathrm{E}-14 \quad 2.668 \mathrm{E}-12 \quad 1.034 \mathrm{E}-16 \quad 2.769 \mathrm{E}-10 \quad 5.309 \mathrm{E}-09 \quad 5.373 \mathrm{E}-09$
TE-12 $\quad 2.042 \mathrm{E}-15 \quad 2.501 \mathrm{E}-13 \quad 2.522 \mathrm{E}-134.186 \mathrm{E}-17 \quad 6.131 \mathrm{E}-136.131 \mathrm{E}-13 \quad 7.610 \mathrm{E}-13$
TE-129M $1.259 \mathrm{E}-151.344 \mathrm{E}-122.940 \mathrm{E}-112.524 \mathrm{~K}-174.854 \mathrm{E}-10 \quad 3.038 \mathrm{E}-09 \quad 3.432 \mathrm{E}-08$
TE-131M $\quad 6.026 \mathrm{E}-14 \quad 3.011 \mathrm{E}-11 \quad 1.918 \mathrm{E}-10 \quad 1.145 \mathrm{E}-15 \quad 9.441 \mathrm{E}-11 \quad 1.386 \mathrm{E}-10 \quad 2.393 \mathrm{E}-10$
$\mathrm{TE}-132 \quad 7.642 \mathrm{E}-15 \quad 3.531 \mathrm{E}-116.006 \mathrm{E}-10 \quad 1.681 \mathrm{E}-16 \quad 2.500 \mathrm{E}-10 \quad 3.951 \mathrm{E}-10 \quad 4.064 \mathrm{E}-10$
$\mathrm{I}-131 \quad 1.449 \mathrm{E}-148.678 \mathrm{E}-121.383 \mathrm{E}-10 \quad 3.057 \mathrm{E}-16 \quad 3.518 \mathrm{E}-116.260 \mathrm{E}-11 \quad 9.444 \mathrm{E}-11$
$\begin{array}{lllllllll}\mathrm{I}-132 & 9.132 \mathrm{E}-14 & 1.910 \mathrm{E}-11 & \text { a. } 0.99 \mathrm{E}-11 & 1.757 \mathrm{E}-15 & 1.401 \mathrm{E}-11 & 1.401 \mathrm{E}-11 & 2.450 \mathrm{E}-11\end{array}$
$\begin{array}{llllllllll}\mathrm{I}-133 & 2.350 \mathrm{E}-14 & 1.196 \mathrm{E}-11 & \mathrm{~S} .196 \mathrm{E}-11 & 4.725 \mathrm{E}-16 & 2.454 \mathrm{E}-11 & 2.717 \mathrm{E}-11 & 4.313 \mathrm{E}-11\end{array}$
$\mathrm{I}-134 \quad 1.059 \mathrm{E}-13 \quad 9.006 \mathrm{E}-12 \quad 8.025 \mathrm{E}-121.982 \mathrm{E}-15 \quad 6.067 \mathrm{E}-126.067 \mathrm{E}-12 \quad 1.000 \mathrm{E}-11$
$\begin{array}{lllllllllll}\mathrm{I}-135 & 6.658 \mathrm{E}-14 & 2.377 \mathrm{E}-11 & 4.382 \mathrm{E}-11 & 1.165 \mathrm{E}-15 & 2.194 \mathrm{E}-11 & 2.231 \mathrm{E}-11 & 3.638 \mathrm{E}-11\end{array}$
$\mathrm{XE}-133 \quad 7.293 \mathrm{E}-16 \quad 0.000 \mathrm{E}+00 \quad 0.060 \mathrm{E}+00 \quad 0.000 \mathrm{E}+001.55 \mathrm{BE}-131.636 \mathrm{E}-13 \quad 0.000 \mathrm{E}+00$
$\mathrm{XE}-135 \quad 9.228 \mathrm{E}-15 \quad 0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}=70 \quad 0.000 \mathrm{E}+00 \quad 2.532 \mathrm{E}-13 \quad 2.554 \mathrm{E}-13 \quad 0.000 \mathrm{E}+00$
CS-134 6.152E-14 $3.488 \mathrm{E}-11.7 .303 \mathrm{E} 10 \quad 1.211 \mathrm{E}-15 \quad 8.057 \mathrm{E}-10 \quad 1.178 \mathrm{E}-08 \quad 1.868 \mathrm{E}-08$
$\mathrm{CS}-136 \quad 8.593 \mathrm{E}-14 \quad 4.653 \mathrm{E}-11 \mathrm{~B} .245 \mathrm{E}-10 \quad 1.6 \geq 0 \mathrm{E}-15 \quad 7.018 \mathrm{E}-10 \quad 1.855 \mathrm{E}-09 \quad 2.952 \mathrm{E}-08$
$\mathrm{CS}-137 \quad 2.217 \mathrm{E}-141.260 \mathrm{E}-11.2 .666 \mathrm{E}-10 \quad$ 6.4.10E-16 $5.625 \mathrm{E}-10 \quad 8.295 \mathrm{E}-09 \quad 1.316 \mathrm{E}-08$
$\mathrm{BA}-139 \quad 1.227 \mathrm{E}-15 \quad 1.842 \mathrm{E}-131.875 \mathrm{E}-13 \quad 2.607 \mathrm{E}-17 \quad 4.351 \mathrm{E}-12 \quad 4.351 \mathrm{E}-12 \quad 8.610 \mathrm{E}-13$
$\mathrm{BA}-140 \quad 7.071 \mathrm{E}-15 \quad 7.296 \mathrm{E}-15.6 .525 \mathrm{E}-10 \quad 1.471 \mathrm{E}-164.730 \mathrm{E}-10 \quad 1.22 .1 \mathrm{E}-09 \quad 4.219 \mathrm{E}-10$
$\begin{array}{lllllll}\mathrm{LA}-140 & 9.481 \mathrm{E}-14 & 4.419 \mathrm{E}-11 & 3.242 \mathrm{E}-10 & 1.643 \mathrm{E}-15 & 1.440 \mathrm{E}-10 & 2.124 \mathrm{E}-10 \\ 2 . & 2.816 \mathrm{E}-10\end{array}$
LA-141 $1.712 \mathrm{E}-154.545 \mathrm{E}-13 \quad 7.461 \mathrm{E}-13 \quad 2.917 \mathrm{E}-17 \quad 5.104 \mathrm{E}-12 \quad 6.845 \mathrm{E}-12 \quad 1.073 \mathrm{E}-12$
$\mathrm{LA}-142 \quad 1.221 \mathrm{E}-131.521 \mathrm{E}-11 \quad 1.569 \mathrm{E}-11 \quad 1.898 \mathrm{E}-15$ E. $799 \mathrm{E}-12$ 6.799E-12 $1.930 \mathrm{E}-11$
CE-14 $2.419 \mathrm{E}-15 \quad 1.556 \mathrm{E}-12.3 .047 \mathrm{E}-11 \quad 5.422 \mathrm{E}-17 \quad 2.434 \mathrm{E}-118.891 \mathrm{E}-11 \quad 3.396 \mathrm{E}-11$
$\mathrm{CE}-143 \quad 9.545 \mathrm{E}-15 \quad 5.330 \mathrm{E}-12 \quad 3.345 \mathrm{E}-11 \quad 2.010 \mathrm{E}-16 \quad 2.039 \mathrm{E}-112.853 \mathrm{E}-115.074 \mathrm{E}-11$
$\mathrm{CE}-144 \quad 1.882 \mathrm{E}-15 \quad 8.613 \mathrm{E}-132.070 \mathrm{E}-11 \quad 3.457 \mathrm{E}-174.025 \mathrm{E}-112.786 \mathrm{E}-09$ 8.660E-11
PE- $143 \quad 3.552 \mathrm{E}-221.983 \mathrm{E}-19 \quad 3.531 \mathrm{E}-18.6 .944 \mathrm{E}-24.4 .864 \mathrm{E}-12 \quad 1.497 \mathrm{E}-11 \quad 1 \quad 039 \mathrm{E}-12$
$\mathrm{ND}-147 \quad 4.471 \mathrm{E}-15 \quad 2.729 \mathrm{E}-12 \quad 4.682 \mathrm{E}-118.576 \mathrm{E}-17 \quad 3.426 \mathrm{E}-118.218 \mathrm{E}-11 \quad 5.042 \mathrm{E}-11$
$N \mathrm{P}-239 \quad-5.454 \mathrm{E}-15 \quad 3.314 \mathrm{E}-12 \quad 3.095 \mathrm{E}-121.208 \mathrm{E}-15 \quad 7.943 \mathrm{E}-11 \quad 2.075 \mathrm{E}-10 \quad 4.660 \mathrm{E}-11$

Table B. $4 \cdot 2$ (continued)


Table B. $4 \cdot 2$ (cotitinue.

1-132	9.521E-02	4.725E+17	7 1.192-01	9.45E-01	2.07E+00	$0.99 \mathrm{E}+00$
I-133	$8.667 \mathrm{E}-01$	$6.7798+17$	7 1.628-01	1.13E+00	1.26E+01	4.02E-04
1-134	$3.653 \mathrm{E}-02$	7.4408+17	$7 \quad 5.42 \mathrm{E}-02$	7.20E-01	1.09E+00	$0.00 \mathrm{E}+00$
I-135	$2.764 \mathrm{E}-01$	6.392E+17	$7 \quad 5.77 \mathrm{E}-01$	$2.678+00$	$7.47 \mathrm{E}+00$	2. $2.1 \mathrm{E}-15$
XE-133	$5.281 \mathrm{E}+00$	6. $782 \mathrm{E}+17$	$7 \quad 0.008+00$	0. $000 \mathrm{E}+00$	1.28E-01	$0.00 \mathrm{E}+00$
XE-135	3.8212-01	1.2738 +17	7 0.00E+00	$0.00 \mathrm{E}+00$	3.58E-02	0. $000 \mathrm{E}+00$
Cs -134	7. $524 \mathrm{E}+02$	4.324E+16	6 6,43E-04	2. $358 \mathrm{E}-02$	1. $57 \mathrm{E}+01$	$5.65 \mathrm{E}+03$
cs-136	1. $300 \mathrm{E}+01$	1.316E+15	$5 \quad 0.00 \mathrm{E}+00$	$6.37 \mathrm{E}-04$	3.4.3E+00	4. $70 \mathrm{E}+00$
C5-137	$1.099 E+04$	2.427E+16	$6 \quad 0.008+00$	$0.00 \mathrm{E}+00$	4.47E +00	h. $10 \mathrm{E}+03$
BA-139	$5.7718 \cdot 02$	6. $282 \mathrm{E}+17$	$70.008+00$	$5.60 \mathrm{E}-03$	1.02E-01	0.00E+00
BA -140	$1.27 \mathrm{BE}+01$	6. $216 \mathrm{E}+17$	7 3.42E-01	6. $22.2 \mathrm{E}-01$	9.318+01	2. $75 \mathrm{E}+02$
LA-140	1, 676E+00	6. $352 \mathrm{E}+17$	$7 \quad 2.688+00$	-. $00 \mathrm{E}+00$	6.76E+01	$1.75 \mathrm{E}-01$
LA-141	1.641E-01	5. $826 \mathrm{E}+17$	7 1.29E-02	1.16E-02	8.27E-01	1.96E-01
LA-162	6.62.5E-02	5.616E 6.17	$7 \quad 1.17 \mathrm{E}-01$	8. 17 E -01	1.85E+00	-0.90E +00
CE-141	3. $253 \mathrm{E}+01$	5. $651 \mathrm{E}+17$	$7 \quad 1.398-01$	3,63E-02	$3.78 \mathrm{E}+01$	3.74E+01
CEE-143	1.375E+00	5,484E+17	7 1.682-01	3.51E-01	2. 13E+01	2. 12E-01
CE-144	2. $844 \mathrm{E}+02$	2 3,405E +17	$7 \quad 9.25 E+00$	3.29E-01	7. $00 \mathrm{E}+02$	5. $52 \mathrm{E}+02$
FR-143	1.338E+01	$15.385 E+17$	) $2.55 E-01$	$1.96 \mathrm{E}-02$	3. $60 \mathrm{E}+01$	1. $61 \mathrm{E}+00$
ND-147	1. $0988 \mathrm{E}+01$	2. $212 \mathrm{E}+17$	$7 \quad 1.66 \mathrm{E}-02$	1.14E-02	1. $62 \mathrm{E}+01$	4.81E +00
NP-238	2.350E+00	6. $464 \mathrm{E}+18$	$8 \quad 7.55 \mathrm{E}+00$	$1.07 \mathrm{E}+01$	2. $028 \mathrm{E}+02$	$3.04 \mathrm{E}+00$
$\mathrm{PU}=238$	$3.251 \mathrm{E}+04$	- $3.664 \mathrm{E}+14$	$4 \quad 2.31 \mathrm{E}-02$	$0.00 \mathrm{E}+00$	3. $46 \mathrm{E}+02$	$3.63 \mathrm{E}+02$
PU-230	8. $812 \mathrm{E}+06$	B. $263 \mathrm{E}+13$	$3 \quad 0.00 E+00$	$0.00 \mathrm{E}+00$	$6.63 \mathrm{E}+01$	8. $558 \mathrm{E}+01$
$\mathrm{PU}-240$	2. $469 \mathrm{E}+06$	6 1.042E+14	4 0.00E+00	$0.00 \mathrm{E}+00$	8. $63 \mathrm{E}+01$	1.00E+02
PU-241	$5.333 E+03$	1.755E+16	$6 \quad 0.00 \mathrm{E}+00$	$0.90 \mathrm{E}+00$	1.86E+02	2.31E+02
AM-241	1. $581 \mathrm{E}+05$	5 1.159E +13	$3 \quad 0.00 \mathrm{E}+00$	0.00E+00	4. O8E +00	6. $48 \mathrm{E}+00$
$\mathrm{CM}-242$	1. $630 \mathrm{E}+02$	$24.436 \mathrm{E}+15$	$5 \quad 1.42 \mathrm{E}+00$	0. $000 \mathrm{E}+00$	1.97E+02	1. $06 \mathrm{E}+02$
CM-244	6. $611 \mathrm{E}+03$	$3.596 \mathrm{E}+14$	$4 \quad 0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$6.70 \mathrm{E}+01$	$7.87 \mathrm{E}+01$
1.003	POWER	LEVEL FOR SE	EQUOYAH (PWR	INVENTORY)		
NUCNAM	ITNOUP	HAFLIF   (S)	ACTIVITY   (BQ)			
co-58	$6 \quad 6$	6, 1608 +06	3.223E+16			
CO-60	$6 \quad 1$	1. $660 \mathrm{E}+08 \quad 2$	2. $463 \mathrm{E}+16$			
KR-85	13	$3.386 \mathrm{E}+08 \quad 2$	2.475E+16			
KR-BSM	11	1. $613 \mathrm{E}+041$	1.159E+18			
KR-67	14	4. $360 \mathrm{E}+03 \quad 2$	2.118E +18			
KR-88	11	1.008E+04 2	2.864E +18			
RB-86	31	1.611E+06 1.	1.888E+15			
SR-89	5 4	4.493E+06 3,	3,590E+16			
SR-90	5 8	$8.865 \mathrm{E}+081$	1. $8388 \mathrm{E}+17$			
SR-91	5 3	$3.413 \mathrm{E}+04$	4. $616 \mathrm{E}+18$			
SR-82	5 9 9	$9.756 \mathrm{E}+03 \quad 4$	$4.803 E+18$			
Y-90	$7 \quad 2$	2.307E $+05 \quad 2$	$2.0798+17$			
$\mathrm{Y}-91$	$7 \quad 5$	5.080E +06	4.374E+18			
Y-82	7 l 1	$1.274 \mathrm{E}+04$	4. $823 \mathrm{E}+16$			
Y-93	73	$3.6368+04 \quad 5$	5. $454 . \mathrm{E}+18$			
2R-95	75	$5.6598+06 \quad 5$	5. $526 \mathrm{E}+18$			
2R-87	76	$6.048 \mathrm{E}+04$ 5	5. $759 \mathrm{E}+18$			
NB-95	73	3.033E+06 5	5.224E+18			
M $0-89$	6	2.377E+05 6	6.098E +18			
TC-89M	6	2.167E +04 S	$5.263 E+18$			
$\mathrm{RU}-103$	6	3. $421 \mathrm{E}+06 \quad 4$	4. $542 \mathrm{E}+16$			
RU-105	6	1.598E+04 2	2. $954 \mathrm{E}+18$			
$\mathrm{RU}-106$	6	3,188E +071	1.032E+18			
RH-105	6	1.278E +05	$2.046 E+18$			
Sb-127	4	3.283E +05	2. $787 \mathrm{E}+17$			
SB-129	4	1. $562 \mathrm{E}+04$	8. $872 \mathrm{E}+17$			
TE-127	4	3.366E +042	2. $6928+17$			
TE-127M	4	\$, 4.18E+06 3,	3. $564 \mathrm{E}+16$			
TE-128	4	4. 200E+03 1	1. $002 \mathrm{E}+18$			
TE-129M	4	2.886E +06	$9.267 \mathrm{E}+17$			
TE-131M	4	1.080E +05	$4.680 \mathrm{E}+17$			
TE-132	4	2.808E+05	$4.658 \mathrm{E}+18$			
I-131	2	$6.947 \mathrm{E}-05$	$3.206 \mathrm{E}+18$			

Table B.4-2 (continued)

1-132	2	8. $2268+03$	4. $725 \mathrm{E}+16$
I-139	2	$7.488 \mathrm{E}+04$	6.7788+18
1-134	2	3.156E+03	7,440E+18
1-135	2	2.371E+04	6. $362 \mathrm{E}+18$
XE - 133	1	4. $571 \mathrm{E}+05$	E. $782 \mathrm{E}+18$
XE-135	1	$3.301 \mathrm{E}+04$	1. $273 \mathrm{E}+18$
C8-134	3	6. $501 \mathrm{E}+07$	4.324E+17
C8-136	3	1. $123 \mathrm{E}+06$	1.3168+17
C8-137	3	$9.485 \mathrm{E}+08$	2.417E +17
EA-139	8	4. $085 \mathrm{E}+03$	6. $282 \mathrm{E}+18$
EA-140	9	1.105E+06	E. 216F +18
LA-140	7	1. $446 \mathrm{EE}+05$	6. $352 \mathrm{E}+18$
1.A-141	7	1.418E+04	5. $8268+18$
LA-142	$?$	$5.724 E+03$	$5.616 \mathrm{E}+18$
CE-141	B	2.811E+06	$5.652 \mathrm{~L}+18$
CE-143	8	1.188E+05	5. $4945+16$
CE-144	8	2.4.57E +07	8, 405E+18
PR-143	7	1.173E+06	$5.385 E+18$
$N D-147$	7	8,495E+05	2. $412 \mathrm{E}+18$
NP-239	8	2.030E +05	6. $464 \mathrm{E}+18$
$\mathrm{PU}-238$	8	$2800 \mathrm{E}+09$	3. $664 E+15$
$\mathrm{PU}-239$	8	$7.700 \mathrm{E}+11$	6. $2635+14$
$\mathrm{PU}-240$	8	2. $133 \mathrm{E}+11$	1.042E+15
$\mathrm{PU}-241$	8	4. $608 \mathrm{E}+08$	1.755E+17
$\mathrm{AM}-241$	7	1. $366 \mathrm{E}+10$	1. $158 \mathrm{E}+14$
CM-2.2	7	1.408E +07	4. $4368+16$
OM-244	7	5.712E+08	2, $596 E+15$

References
B.4-1 R.L. Iman, J.C. Helton, J.D. Johnson, "A User's Guide Lor PARTITION: A Program Defining the Source Term/Consequence Analysis Interface in the NUREG-1150 Probabilistic Risk Assessments," NUREG/CR-5253, SAND88-2940, Sandia National Laboratories, Albuquerque, NM, 1989.

SUPPORTING INFORMATION FOR THE CONSEQUENCE ANALYSIS

## TABLE

C. 1 Detailed Listing of Mean Consequence Results
for Internal Initiators ................................................. C. 3

## APPENDIX C

## SUPPORTING INFORMATION FOR THE CONSEQUENCE ANALYSIS

Table $C .1$ provides a more detailed representation of the mean consequence analysis results for internal initiators at Sequoyah than is given in Table 4.3-1. Table C. 1 shows mean results for the population within 10 mi of the plant under the assumptions that everyone evacuates, everyone continues normal activity, and everyone takes shelter. Further, divisions of results between within 10 mi and beyond 10 mi and between early exposure (within 7 days) and chronic exposure (beyond 7 days) are also shown. In addition, the mean result for the effects of early exposure (obtained by combining the results for normal activity beyond 10 mi with the results for evacuation, normal activity, and sheltering within 10 mi ) is listed. This result is labeled TOTAL EARLY in Table C.1. As indicated in the table, $99.5 \%$ of the population is assumed to evacuate. $0.5 \%$ is assumed to continue normal activity, and 0 is assumed to shelter. The mean effects from early exposure are also combined with the mean effects from chronic exposure to produce a mean that includes effects from both early and chronic exposure (labeled TOTAL). The source terms used for the MACCS calculations that produced the results in Table C.1 are given in Table 3.4. 4. A more detailed description of the information in each column of Table C. 1 follows.

The column labeled EVACUATE, $0-10 \mathrm{MI}$ contains the mean effacts incurred by the population within 10 mi of the reactor due to radiation exposure within 7 days of the accident under the assumption that everyone within 10 mi evacuates 2.3 h after the warning time. For the two population dose consequence measures, the results are only for the part of the population initially within 10 mi . (The results for the population initially beyond 10 mi are in the column headed NORMAL ACTIVITY. $>10 \mathrm{MI}$.) The value 0.995 in the row labeled WEIGHT at the top of the column indicates that $99.5 \%$ of the population within 10 mi evacuates; the results in this column are multiplied by 0.995 in the generation of the mean results in the columns headed TOTAL EARLY and TOTAL.

The column labeled NORMAL ACTIVITY, $0-10 \mathrm{MI}$ contains the mean effects incurred by the population within 10 mi of the reactor due to radiation exposure within 7 days of the accident under the assumption that everyone within 10 mi continues their normal activities after the accident. For the two population dose consequence measures, the results are only for the part of the population initially within 10 mi . (The results for the population initially beyond 20 mi are in the column labeled NORMAL ACTIVITY, $>10 \mathrm{MI}$, ) The value 0.005 in the row labeled WEICHT at the top of the column indicates that $0.5 \%$ of the population within 10 mi continues normal activities; the results in this column are multiplied by 0.005 in the generation of the mean results in the columns headed TOTAL EARLY and TOTAL.

The column labeled SHELTRR, $0-10$ MI contains the mean effects incurred by the population within 10 mi of the reactor due to radiation exposure within 7 days of the accident under the assumption that everyone within 10 mi takes helter 45 min after the warning time. For the two population dose consequence measures, the results are only for the part of the population
initially within 10 mi . (The results for the population initially beyond 10 mi are in the column headed NORMAL ACTIVITY, $>10 \mathrm{MI}$.) The value 0.000 In the row labeled WEIGHT at the top of the column indicates that none of the population within 10 mi takes shelter; the resuits in this column are ignored in computing the mean results.

The column labeled NORMAL ACTIVITY, $>10 \mathrm{MI}$, contains the mean effects incurred by the population further than 10 mi from the reactor due to radiation exposure within ? days of the accident under the assumption that everyone beyond 10 mi continues their normal activities. For the two population dose consequence measures, the results are only for the part of the population initially beyond 10 mi . The value 1,000 in the row labeled WEIGHT at the top of the column indicates that everyone beyond 10 mi continues normal activities; the results in this column are multiplied by 1,000 in the generation of the mean results in the columns labeled TOTAL EARLY and TOTAL.

The column labeled TOTAL. EARLY contains the total mean effects inourred by the entire population due to radiation exposure within 7 days of the accident. The values in this column are weighted sums of the values in the Ifrst four columns as explained above.

The column labeled CHRONIC contains the total mean effects incurred by the entlre population due to radiation exposure more than 7 days after the accident.

The column labeled TOTAL contains the total mean effects incurred by the entire population due to both early (within 7 days) and chronic (after 7 days) radiation exposure. The values in this column are weighted sums of the values in columns $1,2,3,4$, and 6 . The weights used are contained in the first row, labeled WEIGHT. As column 5 contains the weighted sum of columns 1 through 4, the TOTAL values may equivalently be obtained by summing columns 5 and 6 .

Table C. 1
Detailed Listing of Mean Consequence Results for Internal Inltiators


Table C. 1 (continued)
EP RISK, 1 MI
CANCER FATALITIES
POP DOSE, $0-50 \mathrm{MI}$
POP DOSE, $0-1000 \mathrm{MI}$
ECONCMIC COSTS ( $\$$ )
POP EF RISK, $0-1 \mathrm{MI}$
POP CF RISK, $0-10 \mathrm{MI}$

SOURCE TERM SEQ-03-1, MEAN FREQUENCY $=2.28 E-07 / Y R$

SOURCE TERM SEQ-03-2, MEAN FREQUENCY $=3.2$ 2E-07 IYR

CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL. EARLY	CHRONIC	TOTAL
	0-10 MI	0-10 MI	0-10 MI	$>10 \mathrm{MI}$			
WEIGHT	0.095	0.005	0.000	1.000		1.000	
Early fatalities	8.798-05	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	8.74E-05	-..-	9.74E-05
PRODROM VOMITINC	1.18E-01	6.34E-03	1.63E-03	$0.00 \mathrm{E}+00$	1.17E-01	--**	1.17E-01
EF RISK, 1 MI	8.438-08	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-...-	8. 38E-08	....-	8.38E-08
CANCER FATALITIES	1.838 +00	1.52E +00	4.30E-01	8. $23 \mathrm{E}+00$	$1.018+01$	2. $62 \mathrm{E}+02$	2.72E +02
POP DOSE, $0-50 \mathrm{MI}$	1.04E+02	1.06E +02	2. $58 \mathrm{E}+61$	3. $57 \mathrm{E}+02$	4. $61 \mathrm{E}+02$	3.28E+03	$3.75 \mathrm{E}+03$
POP DOSE, $0-1000 \mathrm{MT}$	1.04E +02	1.06E +02	$2.588+01$	5. $92 \mathrm{E}+02$	6.96E+02	1.51E-04	1.58E+04
ECONOMIC COSTS ( $\$$ )	-	- + -	--	.....	-...-	2. $57 \mathrm{E}+08$	2. $57 \mathrm{E}+08$
POP EF RISK, 0-1 MI	$2.478-07$	$0.00 \mathrm{E}+00$	0.00E+00	-...	$2.45 \mathrm{E}-07$	-....	2.45E-07
POP CF RISK, $0-10 \mathrm{MI}$	$4.718-05$	$3.90 \mathrm{E}-05$	1.10E-05	-.--	4.70E-05	$1.00 \mathrm{E}-04$	1.47E-04

SOURCE TERM SEQ-03-3, MEAS FREQUSNCY $=0.00 \mathrm{E}+00 / \mathrm{YR}$

SOURCE TERM SEQ-04-1, MEAN FREQUENCY $=2.90 \mathrm{E}-10 /$ YR
CONSEQUENCE

WEIGHT
PRODROM VOMITING EF RTSX, 1 MI
CANGER FATALTTIES
POF DOSE, $0-50 \mathrm{MI}$ POP DOSE, $0-1000 \mathrm{MI}$ ECONOMIC COSTS (\$)
POP EF RISK, $0-1 \mathrm{MI}$
POP CF RISX, $0-10 \mathrm{MI}$

CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARLY	CRRONIC	TOTAL
	0.10 MI	0-16 MI	$0-10 \mathrm{MI}$	>10 MI			
WEIGAT	0.995	0.005	0.000	1.000		1.000	
EARL.Y fatalities	$0.00 \mathrm{E}+00$	3, 85E-02	3,80E-04	$0.00 \mathrm{E}+00$	1.92E-04	....-	1.92E-04
PRODROH VOMITINO	$0.00 \mathrm{E}+00$	4. 54E-01	5.63E-02	$0.00 \mathrm{E}+00$	2.27E-03	-*--	2.27E-03
EF RISK, 1 MI	$0.00 \mathrm{E}+00$	8. 20E-06	$0.00 \mathrm{E}+00$		4.108-08	--.--	4.10E-08
CANCER FATALITIES	3.89E-03	3. $168 .+00$	1. $82 \mathrm{E}+00$	2.24E +01	2. $24 \mathrm{E}+01$	1.44E +02	1. $66 \mathrm{E}+02$
POP DOSE, $0-50 \mathrm{MI}$	4.148-01	2. $73 \mathrm{E}+02$	1.79E+02	1.13E+03	1.13 $\mathrm{L}+03$	$1.838+03$	2.96E +03
POP DOSE, $0-1000 \mathrm{MI}$	4.14E-0:	2.73E+02	1.79E+02	1.86E +03	1.86E+03	8. $000 \mathrm{E}+03$	1.09E +04
ECONOMIC COSTS (\$)				-...		1.76E+08	1.76E + C8
POP EF RISK, 0-1 MI	$0.00 \mathrm{E}+00$	8.68E-05	9.57E-07	--**	4.84E-07	.-...	4.84E-07
POP CF RISK, $0-10 \mathrm{MI}$	9,98E-08	$8.12 \mathrm{E}-05$	4,67E-05	-..-	5.05E-07	3.74E-0.5	$3.79 \mathrm{E}-05$



$8.06 \mathrm{E}-04$	$4.14 \mathrm{E}-04$	$2.12 \mathrm{E}-04$
$8.03 \mathrm{E}+00$	$3.33 \mathrm{E}+00$	$2.57 \mathrm{E}+00$
$2.51 \mathrm{E}+02$	$1.42 \mathrm{E}+02$	$1.05 \mathrm{E}+02$
$2.51 \mathrm{E}+02$	$1.42 \mathrm{E}+02$	$1.05 \mathrm{E}+02$
$. \cdots+\cdots$	$. \cdots+$	$\cdots \cdots$
$1.37 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	$6.35 \mathrm{E}-04$
$2.06 \mathrm{E}-04$	$6.54 \mathrm{E}-05$	$6.59 \mathrm{E}-05$


$\cdots \cdots$	$8.04 \mathrm{E}-04$	$\cdots \cdots$	$8,04 \mathrm{E}-04$
$7.84 \mathrm{E}+00$	$1.58 \mathrm{E}+01$	$1.96 \mathrm{E}+01$	$3.55 \mathrm{E}+01$
$3.22 \mathrm{E}+02$	$5.72 \mathrm{E}+02$	$4.83 \mathrm{E}+02$	$1.06 \mathrm{E}+03$
$4.34 \mathrm{E}+02$	$6.84 \mathrm{E}+02$	$1.26 \mathrm{E}+03$	$1.84 \mathrm{E}+03$
$\cdots \cdots$	$\cdots+0$	$1.03 \mathrm{E}+07$	$1.03 \mathrm{E}+07$
$\cdots \cdots$	$1.37 \mathrm{E}-03$	$\cdots \cdots$	$1.37 \mathrm{E}-03$

Table C. 1 (continued)


Table C. 1 (continued)

SOURCE TERM	MEAN FREQUENCY $=0.00 i+00 / Y \mathrm{R}$						
SOURCE TERM CONSEQUENCE	MEAN FREQUENCY $=3,55 E-07 /$ /YR						
	evacuate	NOPMAL ACtIVITY	SHELITRR	NORMAL ACTIVITY	TOTAL EARL.Y	CHRONIC	TOTAL
	0.10 MI	C .10 MI	0.10 MI	$\rightarrow 10 \mathrm{MI}$			
WEIGHT	0.985	0.005	0,000	1.000		1.000	
EARLY FATALITIES	$0.00 \mathrm{E}+00$	3.668-02	2.74E-04	0.00E+00	1.83E-04	--	1.83E-04
PRODROM VOMITING	$0.008+00$	4.738-01	5,37E-02	$0.008+00$	2. $37 \mathrm{E}-03$	+**	2.37E-03
EF RISK, 1 MI	$0.008+00$	6. 608 -06	$0.00 \mathrm{E}+00$		3. $30 \mathrm{E}-08$	-...-	3.30E-08
CANCER FATALITIES	$5.758-03$	3, $68 \mathrm{E}+00$	$2.06 \Sigma+00$	2,84E+01	2.848+01	3. $88 \mathrm{E}+02$	4. $27 \mathrm{E}+02$
POP DOSE, $0-50 \mathrm{MI}$	$5.80 \mathrm{E}-01$	2. $868 \mathrm{E}+02$	1.83E+02	1.28E+03	1. $298 \mathrm{E}+03$	3. $22 \mathrm{E}+03$	4. $51 \mathrm{E}+03$
POP DOSE, $0-1000 \mathrm{MI}$	5.608 -01	2, $86 \mathrm{E}+02$	$1.83 \mathrm{E}+02$	2.17E+03	2.17E+03	2. $30 \mathrm{E}+04$	2. $52 \mathrm{E}+04$
ECONOMLC COSTS (\$)	-7.	-	,	-	...*	$7.16 \mathrm{E}+00$	7.16E+08
POP EF RISK, $0-1 \mathrm{MI}$	$0.008+00$	Q.21E-05	6.818-07	-...	4.608-07	-...	4, 60E-07
PC. CF RISK, $0-10 \mathrm{MI}$	1.47E-07	8,44E-05	5.28E-05	-....	6.19E-07	5.73E-05	5.79E-05


SOUKCE TERM CONSEQUENCE	MEAN FREQUENCY = 5.52E-07 /YR						
	evacuate	NORMAL activity	SHEL.TER	NORMAL activity	TOTAL EARLY	CHRONIC	TOTAL
	0-10 MI	$0 \sim 10 \mathrm{MI}$	0.10 MI	$>10 \mathrm{MI}$			
WEIGHT	0.935	0.005	0.000	1.000		1.000	
EARLY FATALITİS	1.54E-03	1.548-03	1.22E-04	0.00E+00	1.54E-03	.....	1.548-03
PRODROM VOMIT:NG	2.84E-01	1.088-01	3.51E-02	$0.00 \mathrm{E}+00$	2.83E-01	-*.	2.93E-01
EF RISK, 1 M1	1.80E-07	0,00E+00	$0.00 \mathrm{E}+00$		1.79E-07		1.798-07
CANCER FATALITIES	3.84E+00	2.55E+00	1.02E+00	1.43E+01	1.82E+01	5.79E+02	5.87E+02
POP DOSE, $0-50 \mathrm{MI}$	2.47E+02	1.67E+0.2	6.81E+01	6. $068+02$	8. $52 \mathrm{E}+02$	5.25E+03	6.11E+03
POP DOSE, $0-1000 \mathrm{MI}$	2.47E+02	1.67E 702	6, 21E+01	9.87E+02	1. $23 \mathrm{E}+03$	$3.28 \mathrm{E}+04$	$3.40 \mathrm{E}+04$
ECONOMIC COSTS ( 5 )						8. $72 \mathrm{E}+08$	8.72E+08
POP EF RISK, 0-1 MI	3.87E-06	3.898-06	3.08E-07		3,87E-06		3,87E-06
POP CF RISK, $0-10 \mathrm{MI}$	8.86E-05	6. $53 \mathrm{E}-05$	2.62E-05	-...	$9.84 \mathrm{E}-05$	1.38E-04	2.37E-0

SOURCE TERM SEQ-06-3, MEAN FREQUENCY $=0.00 E+00 / Y R$

SOURCE TERM SEQ-07-1, MEAN FREQUENCY $=0.00 \mathrm{E}+00 / \mathrm{YK}$

SOJRCE TERM SEQ-07-2, MEAN FREQUENCY $=0,00 E+00 / Y R$

SOURCS TERM CONSEQUENCE	MEAN FREQUENCY $=9.70 \mathrm{E}-08 / \mathrm{YR}$						
	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL. ACTIVITY	EARL, Y		
	0-10 MI	$0-10 \mathrm{NI}$	0-10 MI	$>10 \mathrm{MI}$			
WEIGET	0.99,	0.005	0.000	1.000	-...	1.000	
EARLI PATALITIES	1.93E+00	4.97E +00	2. $57 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.95 E+00$	...--	1.95E+00
PRODROM VOMITING	1.948+01	1.84E+01	1. $12 \mathrm{E}+01$	1.05E-01	1.95E+01	-	1.95E+01
EF RISK, 1 MI	$1.738-03$	$4.84 \mathrm{E}-03$	2.39E-03	----	$1.75 \mathrm{E}-03$	-	1.75E-03
CAMCER FATALITIES	1.92E+01	3. $22 . \mathrm{E}+01$	2. $36 \mathrm{E}+01$	1. $32 \mathrm{E}+02$	1. $51 \mathrm{E}+02$	1. $54 \mathrm{E}+03$	1.69E+03
POP DOSE, 0-50 MI	9,13E+02	1. $59 \mathrm{E}+03$	1.17E +03	5.11E+03	6.02E+03	8. $888 \mathrm{E}+03$	1. $498 \mathrm{E}+04$
POP DOSE, $0-1000 \mathrm{MI}$	$9.13 \mathrm{E}+02$	1. $59 \mathrm{E}+03$	1.17E+03	8.70E +03	$9.61 \mathrm{E}+03$	$8.97 \mathrm{~F}+04$	$9.93 \mathrm{E}+04$
ECONOMIC COSTS (\$)		-...-		-...-	-...-	$7.04 \mathrm{E}+09$	$7.04 \mathrm{E}+09$
POP EF RISK, 0-1 MI	3.02E-0.3	1.06E-02	5.81E-03	....-	$3.06 \mathrm{E}-03$	----*	3.06E-03
POP CF RISK, $0-10 \mathrm{MI}$	4.93E-04	8. $25 \mathrm{E}-04$	B. 068 -04	****	4.95E-04	2.09E-04	$7.04 \mathrm{E}-04$

Table G. 1 (continued)


Table C. 1 (continued)

SOURCE TERM CONSEQUENCE	MEAN FREQUENCY $=7.38 \mathrm{E}-07 / \mathrm{YR}$						
	evacuate	NOPMAL	SHELTER	NORMSL	TOTAL.	Chrowic	TOTAL
	0-10 MI	0-10 MI	0-10 MI	$\rightarrow 10 \mathrm{MI}$			
WEIGHT	0.895	0.005	0.000	1.000	-	1.000	
early fatalities	8. OBE-02	1.85E-01	3.88E-02	0,00E+00	8. $13 \mathrm{E}-02$	㖪	8. $13 \mathrm{E}-02$
Prodran vomlting	1.51E+00	1.40E+00	5.31E-01	0.00E+00	1.51E+00	-***	1.51E+00
EF RISK, 1 NL	7.91E-05	B. $52 \mathrm{E}-05$	5.128-08	, …-	7.828-05	+-."	7. $62 \mathrm{E}-05$
Cancer fatalities	4. $23 \mathrm{E}+01$	1.39L+01	8. $288 \mathrm{E}+00$	7,48E+01	1.17E+02	1.14E+03	1. $26 \mathrm{E}+03$
POP DOSE, $0-50 \mathrm{MI}$	1. $37 \mathrm{E}+03$	5.57E+02	3.57E+02	2.448+03	3. $81 \mathrm{E}+03$	6. $74 \mathrm{E}+03$	1.05E+04
POP DOSE, $0-1000 \mathrm{MI}$	$1.37 \mathrm{E}+03$	5, 57E+02	3.57E+02	4.59E+03	$5.96 \mathrm{E}+03$	$6.63 E+04$	7. $23 \mathrm{E}+04$
ECONOMIC COSTS (8)	-...*	-.- .0	-....	- - - -	-....*	4. $00 \mathrm{E}+09$	4. $00 \mathrm{E}+09$
POP EF RISK, 0-1 MI	1.23E-04	4. 60E-04	8.76E-05	....	1.258-04	, ....-	1.25E-04
POP CF RISK, 0-10 MI	$1.088-03$	3. $57 \mathrm{E}-04$	2.388-04		1.08F-03	1.67E-04	1.25E-03

SOURCE TERM SEQ-09-3, MEAN FREQUENCY $=0.00 \mathrm{E}+00 / \mathrm{YR}$

SOURCE TERM CONSEQUENCE	MEAN EREQUENCY $=5.04 \mathrm{E}-08 /$					CHRONIC	TOTAL
	evacuate	NORMAL. activity	BHELTER	NORMAL ACTIVITY	TOTAL EARLY		
	0.10 MI	0.10 MI	0-10 MI	$>10 \mathrm{kz}$			
WEIORT	0.985	0.005	0.000	1.000		1.000	
early fatalities	$0.008+00$	1.218-01	4.788-03	$0.00 \mathrm{E}+00$	6.03E-04		6.03E-04
PRCDROM VOMITINO	$0.008+00$	1.158+00	2.308-01	$0.008+00$	5.77E-03		5.77E-03
EF RISK, 1 MI	$0.00 E+00$	2.168-05	0,00E+00	-....	1.088-07		1.08E-07
CANCER FATALITIES	1.658-01	5.878+00	3. $205 \mathrm{E}+00$	3.82E+01	3,64E+01	1.08E+03	1.12E+03
POP DOSE, 0.50 MI	1.46E+01	4.018+02	2.39E+02	1. 688 + 03	1.708+03	6. $26 \mathrm{E}+03$	7.96E+03
POP DOSE, $0-1000$ MI	1.46E+01	4.01E+02	2.39E+02	2.64E+03	2. $66 \mathrm{E}+03$	6.13E+04	6. $398+04$
ECONOMIC COSTS (\$)		---.		.....	-...	2. $18 \mathrm{E}+09$	2.18E+08
POP EF RISK, O-1 MI	$0.00 \varepsilon+00$	3.04E-04	1.20E-05	-...-	1.52E-06	-..--	1.528-06
POP CF RISK, 0.10 MI	4. 23E-06	1.53E-04	8.21E-05		4.98E-06	1.678-04	1.72E-04
SOURCE TERM SEO-10-2, MEAN FREQUENCY $=2.25 \mathrm{E}-08 / \mathrm{TR}$							
CONSEQUENCE	evacuate	NORMUL ACTIVITY	SHELTER	NORMAL activity	total EARLY	CHRONIC	TOTAL
	0-10 M:	0-10 MI	0-10 MI	$>10 \mathrm{MI}$			
WEIGET	0.985	0.005	0.000	1.000		1.000	--
early fatalities	$0.008+00$	3.45E-04	$0.005+00$	0.008 +00	1.73E-06	.-.-	1.73E-06
PRODPOM VOMITINO	$2.64 \mathrm{E}-02$	6.118-02	1.54E-02	$0.00 E+00$	2.66E-02		2.66E-02
E5 RISK, 1 MI	$0.00 \mathrm{E}+00$	$0.008+00$	0.00E+00	.....	0,008400		$0.00 \mathrm{E}+00$
CANCER FATALITIES	2.78E+00	4. $24.8+00$	9.95E-01	$2.838+01$	3.11E+01	1.10E+03	1. $22 \mathrm{E}+03$
POP DOSE, $0-50 \mathrm{MI}$	1.82E+02	$3,00 \mathrm{E}+02$	6. $908+01$	1.33E+03	1.52E+03	9.34E+03	1.098+04
POP DOSE, $0-1000 \mathrm{MI}$	1.92E+02	3,00E+02	6.98E+01	2.06E+03	$2.258+03$	6.75E+04	6. $988 \mathrm{E}+04$
ECONOMIC COSTS (9)		.....	---*	-...-	-...	2. $378+09$	2.37E +09
POP EF RISK, 0-1 MI	$0.00 \mathrm{E}+00$	8. 708-07	$0.008+00$	-.--	4.35E-09	...	4.35E-08
POP CF RISK, $0-10 \mathrm{MI}$	7.168-05	1.098-04	2.55E-05	-...-	7.18E-05	2,41E-04	3,13E-04

SOURCE TERM SEQ-10-3, MEAN FREQUENCY $=0.00 \mathrm{E}+00 / \mathrm{YR}$

SOURCE TERM CONSEQUENCE	MEAN FREQUENCY $=1.10 \mathrm{E}-08 / \mathrm{YR}$						
	EVACUATE	NORMAL ACTIVITY	St, wTER	NORMAL. ACTIVITY	total. EARLY	CERONIC	TOTAL
	0-10 MI	$0-10 \mathrm{MI}$	0-10 MI	$>10 \mathrm{MI}$			
WEIGHT	0.995	0.005	0.000	1.000		1.000	
EARLY FATALITIES	$0.00 \mathrm{E}+00$	1.98E+01	8, 80E +00	$0.00 \mathrm{E}+00$	9.80E-02		9.90E-02
ERODROM VOMITING	3.12E-04	$5.07 \mathrm{E}+01$	2.03E+01	1.17E +00	1.42E+00		1. $42 \mathrm{E}+0 \mathrm{C}$
EF RISK, 1 MI	$0.00 \mathrm{E}+00$	$2.05 \mathrm{E}-02$	1.10E-02	-...-	$1.02 \mathrm{E}-04$	****	1.02E-04
CANCER FATALITIES	2.14E+01	$1.418+02$	1.11E+02	$5.70 \mathrm{E}+02$	$5.92 \mathrm{E}+02$	2. $47 \mathrm{E}+03$	$3.07 \mathrm{E}+03$.
POP DOSE, 0-50 MI	6. $73 \mathrm{E}+02$	$5.04 \mathrm{E}+03$	$3.728+03$	1.29E+04	1.36E+04	1. $29 \mathrm{E}+\mathrm{C} 4$	2. $65 \mathrm{E}+04$

Table C. 1 (continued)

POP DOSE, $0-1000 \mathrm{MI}$	6. $73 \mathrm{E}+02$	$5.062+03$	3.728+03	$2.87 E+04$	2. $948+04$	1. $51 \mathrm{E}+05$	1.80E+05
ECONCMIC COSTS (\$)						2. $60 \mathrm{E}+10$	2. $60 \mathrm{E}+10$
POP EF RISK, 0-1 MI	0.00E+00	2. 14E-02	1.43E-02	--*.	1.07E-04		1.07E-04
POP CF RISK, $0-10 \mathrm{MI}$	5. 50E-04	3.62E-03	2.86E-03	-r.*.	$5.65 \mathrm{E}-04$	8.65E-0.	6. $52 \mathrm{E}=04$
SOURCE TERM SEC	MEAN FREQUENCY $=2$. 日2E-07 /YR						
CONSEQUENCE	Evacuate	NORMAL. ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARLY	CHRONIC	TOTAL
	0-10 MI	$0-10 \mathrm{MI}$	0-10 MI	$>10 \mathrm{MI}$			
WEIGET	0. 985	0.005	0.000	1.000		1.000	
EARLY FATALITIES	2. $60 \mathrm{E}+00$	3.24E+00	1. $29 \mathrm{E}+00$	0,00E+30	2. $60 \mathrm{E}+00$		2.60E+00
PROOROM VOMITING	1.26E+01	1.65E+01	6,38E+00	9.85E-01	1.36E+01		1.36E+01
EF RISK, 1 MI	2. $55 \mathrm{E}-05$	3.15E-03	9.75E-04		2.55E-03		2.55E-03
CANCER FATALITIES	$9.21 \mathrm{E}+01$	$3.47 \mathrm{E}+01$	2.37E+01	$3.07 \mathrm{E}+02$	3, 99E +02	$3.00 \varepsilon+03$	$3.40 \mathrm{E}+03$
POP DOSE, $0-50 \mathrm{MI}$	$3.65 \mathrm{E}+03$	1.478+03	1.03E+03	B. $50 \mathrm{E}+03$	1.21E+04	1.27E+04	2.48E +04
POP DOSE, $0-1000 \mathrm{MI}$	$3.65 \mathrm{E}+03$	1.47E+03	1.038+03	1.80E+04	$2.27 E+04$	1.80E +05	$2.028+05$
ECONCMIC COSTS (\$)				....*	--**	2. $258 \mathrm{E}+10$	2. $25 \mathrm{E}+10$
POP EF RISX, 0-1 MI	2. 208-03	6.25E-03	2.968-03		2.22E-03		2.22E-03
POP CF RISK, $0-10 \mathrm{MI}$	2. $36 \mathrm{E}-03$	8. $80 \mathrm{E}-04$	6.098-04		2.36E-03	$1.178-04$	$2.47 \mathrm{E}-03$
SOURCE TERM	MEAN FREQUENCY $=2.09 E-07 / \mathrm{YR}$						
CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL   EARL.Y	Cfronic	TOTAL
	0-10 MI	0-10 MI	0-10 MI	$>10 \mathrm{MI}$			
WEIOHT	0.985	0.005	0.000	2.000		1.000	
EARLY FATALITIES	2. $818+01$	1.94E+01	1.17E+01	$0.00 \mathrm{E}+00$	2.81E+01	1.000	2.81E+01
PRODRCM VOMITING	6. $31 \mathrm{E}+01$	5. $44 \mathrm{E}+01$	$3.23 \mathrm{E}+02$	1. $44 \mathrm{E}+00$	6. $45 \mathrm{EE}+01$		$6.45 E+01$
EF RISK, 1 MI	1.35E-02	2.03E-02	1.40E-02	1.48ET0	1.36E-02		1.36E-02
CANCER FATALITIES	2. $85 \mathrm{E}+02$	1.62E+02	1.31E+02	6. $228 \mathrm{E}+02$	9, 06E +02	$1.818+03$	2.72E+03
POP DOSE, $0-50 \mathrm{MI}$	8. $04 \mathrm{E} \mathrm{E}+03$	5. $48 \mathrm{E}+03$	4.23E 2303	1.44E+04	2.35E+04	$1.02 \mathrm{E}+04$	$3.36 E+04$
POF DOSE, 0 0-1000 MI	$8.04 \mathrm{E}+03$	5.488+03	4.23E+03	$2.978+04$	$3.87 \mathrm{E}+04$	1.13E+05	1.52E+05
ECONOHIC COSTS (\$)	-02		--.-	...-	.....	$2.08 \mathrm{E}+10$	2. $08.5 \mathrm{E}+10$
POP EF RISK, $0-1 \mathrm{MI}$	1. $57 \mathrm{E}-02$	2. $26 \mathrm{EE}-02$	1. $71 \mathrm{E}-02$		1.57E-02	2,	1.57E-02
POP CF RISK, $0-10 \mathrm{MI}$	$7.32 \mathrm{E}-03$	4.16E-03	$3.37 \mathrm{E}-03$		$7.30 \mathrm{E}-03$	7.24E-05	7.37E-03
	MEAN FREQUENCY $=3.03 \mathrm{E}-07 / \mathrm{YR}$						
CONSEQUENCE	Evacuate	NORMAL ACTIVITY	SEEITER	NORMAL ACTIVITY	TOTAL EARLY	CHRONIC	TOTAL
	$0-10 \mathrm{MI}$	0-10 MI	0.10 MI	210 MI			
WEIOET	0.995	0.005	0.000	1.000		1.000	
EARLY FATALITIES	$0.00 \mathrm{E}+00$	6. $13 \mathrm{E}+00$	1. $80 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	3.06E-02	,	3.06E-02
PRODROM VOMITIEG	$0.00 \mathrm{E}+00$	1.88E +01	6.91E+00	$0.00 \mathrm{E}+00$	8. $42 \mathrm{E}-02$	....-	8.42E-02
EF RISK, 1 MI	$0.00 \mathrm{E}+00$	8. $77 \mathrm{E}-03$	1. $92 \mathrm{E}-03$	-	4.38E-05	....-	4.30E-05
CANCER FATALITIES	$2.95 \mathrm{E}+00$	$3.53 \mathrm{E}+01$	2. $51 \mathrm{E}+01$	1.55E +02	1.58E+02	2.30E +03	2. $458 \mathrm{t}+03$
	1. $98 \mathrm{E}+02$	1.88E+03	1. $33 \mathrm{E}+03$	5.49E+03	$5.69 \mathrm{E}+03$	1. $13 \mathrm{E}+04$	1.70E+04
POP DOSE, $0-1000 \mathrm{MI}$ ECONOMIC COSTS (S)	1.98E+02	1.88E +03	1.33E+03	1.03E+04	1.05E+04	1. $34 \mathrm{E}+05$	1.44E+05
POP EF RISK, $0-1 \mathrm{MI}$	0.008+00	1.12E-02	4. $34 \mathrm{E}-03$		.61E-05	1.03E+10	1. $038+10$ $5.618-0.5$
POP CF RISK, $0-10 \mathrm{MI}$	$7.57 \mathrm{E}-05$	$9.05 \mathrm{E}-04$	6. $43 \mathrm{E}-04$	-***	$7.98 \mathrm{E}-05$	1.17E-04	1.87E-04
SOURCE TERM SEQ-12-2, MEAN FREQUENCY $=1.07 \mathrm{E}-06 / \mathrm{KR}$							
CONSEQUENCE	EVACUATE	NORMAL. ACTIVITY	SHELTER	NORMAL. ACTIVITY	TOTAL EARLY	CHRONIC	TOTAL
	$0-10 \mathrm{MI}$	0.10 MI	0-10 MI	>10 MI			
WEIGHT	0.895:	0.005	0.000	1.000		1.000	
EARLY FATALITIES	9.47E-01	1.38E+00	4.76E-01	0.00E+00	9.49E-01	.	9.49E-01
PRODROM VOMITING	$6.12 \mathrm{E}+00$	$7.14 \mathrm{E}+00$	$2.77 \mathrm{E}+00$	1.368-01	6. $26 \mathrm{E}+00$	-*..	6. $26 \mathrm{E}+00$
EF RISK, 1 MI	5.69E-04	1.098-03	$3.07 \mathrm{E}-04$		$6.718-0.4$	- ....	$6.71 \mathrm{E}-04$
CANCER FATALITIES	6. $488 \mathrm{E}+01$	2. $48 \mathrm{E}+01$	1. $56 \mathrm{E}+01$	1. $59 \mathrm{E}+02$	2. $24 \mathrm{E}+02$	$2.43 \mathrm{E}+03$	2. $65 \mathrm{E}+03$
POP DOSE, $0-50 \mathrm{MI}$	2. $51 \mathrm{E}+03$	1.09E+03	6. $77 \mathrm{E}+02$	5.01E+03	$7.52 \mathrm{E}+03$	1. $05 \mathrm{E}+04$	1. $80 \mathrm{E}+04$

Table C. 1 (continued)

POF DOSE, $0-1000 \mathrm{MI}$	2.51E+03	1.09E+63	6.77E+02	$8.83 E+03$	1. $248+04$	1. $42 \mathrm{E}+05$	1. $55 \mathrm{E}+05$
ECONOMIC COE S (\$)	- 2 -**	-...-	+.-*	*.***	- - -*	1. $20 \mathrm{E}+10$	1. $20 \mathrm{E}+10$
POP EF RISK, 0- MI	8.35E-04	3.07E-03	1.16E-03	--*	8. $46 \mathrm{EE}-04$	...*-	9, 46E-04
POP CF R/SK, $0-20 \mathrm{MI}$	1.66E-03	E.38E-04	$3.88 \mathrm{E}-04$		1.685-03	1. $578 \mathrm{E}-04$	1. B2E-03


SOURCE TERM   CONSEQUENCE	MEAK FREQUENCY = 1.16E-11 /YR						
	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAI. ACTIVITY	TOTAL. EARLY	CHRONIC	TOTAL
	0-10 MI	0-10 MI	0-10 MI	$>10 \mathrm{MI}$			
WEIGHT	0.985	0.005	0.000	1.000		1.000	
EARLY FATALITIES	2. $49 \mathrm{E}+00$	4. $28 \mathrm{E}+00$	2. $14 \mathrm{E}+00$	0.00E+00	2. $50 \mathrm{E}+00$	....-	2. $50 \mathrm{E}+00$
FRODROM VOMITTMG	2.34E+01	1.70E+01	1.02E+01	1.76E-01	2. $35 \mathrm{E}+01$	...-	2.35E+01
EF RISK, 1 Ml	2.008-03	$5.34 \mathrm{E}-03$	2. 33E-03		2.07E-03		2.07E-03
CANCER FATALITIES	2.65E+01	1. $558 \mathrm{E}+01$	1.09E+01	7.27E+01	8. $82 \mathrm{E}+01$	1.72E+03	$1.82 \mathrm{E}+03$
POP DOSE, $0-50 \mathrm{MI}$	1. $32 \mathrm{E}+03$	8, 83E+02	6. $24 E+02$	2. 98E +03	4.30E+03	6. 62 E + 03	1.09E+04
POP DOSE, $0=1000 \mathrm{MI}$	1. $32 \mathrm{E}+03$	3. $83 \mathrm{E}+02$	6. $24 \mathrm{E}+02$	4.93E+03	6. $25 \mathrm{E}+03$	9. $64 \mathrm{E}+04$	1.05E+0.5
ECONOMIC COSTS ( $\$$ )	....-	----	-...-	- - - -		4. $70 \mathrm{E}+09$	$4.70 \mathrm{E}+08$
POP EF RISK, 0-1 MI	3, 52E-0?	B. 05E-03	4. $52 \mathrm{E}-03$	-**-	$3.55 \mathrm{E}-03$	-...*	3. 55E-03
POP CF RISK, 0-10 MI	6.818-04	3.99E-04	2.79E-04	-	6.798-04	$7.33 \mathrm{E}-05$	7. $52 \mathrm{E}-0.4$


SOURCE TERM CORSEQUENCE	MEAN FREQUENCY $=1.028-07 / \mathrm{YR}$						
	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARLY	CHRONIC	TOTAL
	0-10 MI	$0-10 \mathrm{MI}$	0-10 MI	$>10 \mathrm{MI}$			
WETGET	0.985	0.005	0.000	1.000	****	1.000	
- LY FA'Alities	$0.00 \mathrm{E}+00$	2. $25 \mathrm{E}+00$	6.40E-01	$0.00 \mathrm{E}+00$	1.138-02		1.13E-02
FRODRCM VOMITING	0. OOE +00	8. $01 \mathrm{E}+00$	2. $78 \mathrm{E}+00$	0.00E+00	4.01E-02		4.01E-02
EF RISK, I MI	$0.00 \mathrm{E}+00$	2. $56 \mathrm{E}-03$	4.92E-04		1.28E-05		1.28E-05
CANCER FATALITIES	$3.00 \mathrm{E}+00$	2. $53 \mathrm{E}+01$	1. $79 \mathrm{E}+01$	1.06E+02	1.09E+02	1.46E+03	1.57E+03
POP DOSE, 0-50 NI	$1.77 \mathrm{E}+02$	1. $15 \mathrm{E}+03$	B. O8E +02	3, 73E+03	3. $8282+03$	$8.30 \mathrm{E}+03$	1.22E+04
POP DOSE, $0-1000 \mathrm{MI}$	$1.77 \mathrm{E}+02$	1.15E+03	8. $08 \mathrm{EE}+02$	6.82E+03	7.00E+03	8. $52 z+04$	9. 22E+04
ECONOMIC COSTS (\$)	-*.*				-***	$7.80 \mathrm{E}+09$	$7.80 \mathrm{E}+09$
POP EF RISK, 0-1 MI	$0.00 \mathrm{E}+00$	4.93E-03	1.58E-03		2. $47 \mathrm{E}-05$	-...-	2.47E-05
POP CF RISK, 0-10 MI	$7.718-05$	6. $49 \mathrm{E}-04$	4.59E-04		8.00E-05	1.19E-04	1.98E-04
SOURCE TERM SEQ-13-2, CONSEQUENCE	MEAN FREQUENCY $=7,49 \mathrm{E}-5 / \mathrm{Ma}$						
	Evacuate	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARL.Y	CHRONIC	TOTAL
	0-10 MI	0-13 MI	0.10 MI	310 MI			
WEIGHT	0.995	0.005	0.000	1.000		1.000	
EARLY FATALITIES	4. $64 \mathrm{E}+02$	1.98E-01	4.37E-02	0.00E +00	4.72E-02	-...-	4.72E-02
PRODROM VOMITING	1. $568 \mathrm{E}+00$	1. $46 \mathrm{E}+00$	5.58\%-01	0. $00 \mathrm{E}+00$	1. $56 \mathrm{E}+00$	--..	1. $56 \mathrm{E}+00$
EF RISK, 1 MI	4.32E-05	1.29E-0.4	1.00E-05	-...-	$4.37 \mathrm{E}-05$	-	$4.37 \mathrm{E}-05$
CANCER FATAL.ITIES	$1.57 \mathrm{E}+01$	$7.19 \mathrm{E}+00$	4. O2E +00	5.11E+01	6.67E +01	2. $13 E+03$	2.20E+03
POP DOSE, $0-50 \mathrm{MI}$	1.03E+03	4.86E+02	$2.81 \Sigma+02$	2.13E +03	$3.16 \mathrm{E}+03$	1.03E+04	$1.34 \mathrm{E}+04$
POP DOSE, $0-1000 \mathrm{MI}$	1.038+03	$4.86 \mathrm{E}+02$	$2.81 \Sigma+02$	$3.71 \mathrm{E}+03$	$4.74 \mathrm{E}+03$	1.21E+05	1.26E +05
ECONCMIC COSTS (\$)	-*.*	-....	--.--	-...-	--.--	4.88E+09	$4.88 \mathrm{E}+09$
POP EF RISK, 0-1 MI	4.77E-05	4.88E-04	1.10E-04		4.998-05	-...-	4. 99E-05
POP CF RISK, $0-10 \mathrm{MI}$	4.03E-04	1.858-04	1.03E-04	**	4.02E-04	2. $28 \mathrm{E}-04$	6. 29E-04

SOURCE TERM SEQ-13-3, MEAN FREQUENCY $=0.00 \mathrm{E}+00 / \mathrm{YR}$

SOURCE TERM CONSEQUENCE	MEAN FREQUENCY = 5.23E-09 /YR			HORMAL ACTIVITY	TOTAL. EARL.Y	CHRONIC	TOTAL
	Evacuate	NORMAL ACTIVITY	SHELTER				
	$0-10 \mathrm{MI}$	0.10 Mt	0-10 ה	$>10 \mathrm{MI}$			
WEIGTT	0.895	0.005	0.000	1.000	-*--	1.000	
EARL.Y FATALITIES	1. $17 \mathrm{E}+00$	1.57E+02	9.04E +01	1.10E+01	1.29E+01	-..--	1. $29 \mathrm{E}+0$
PRODROM VOMITING	1.16E+00	2. $54 \mathrm{E}+02$	1.16E+02	8. $098 \mathrm{E}+01$	8.33E401	---	33 E

Table C. 1 (continued)

EF RISK, 1 MI
CANCER FATALITIES POP DOSE, $0-50 \mathrm{MI}$ POP DOSE, $0-1000 \mathrm{MI}$ ECONOMIC COSTS (B)
POP EF RISK, 0.1 MI
POP IF RISK, $0-10 \mathrm{MI}$

$1.43 \mathrm{E}-03$	$5.30 \mathrm{E}-02$	$4.68 \mathrm{E}-02$
$3.14 \mathrm{E}+02$	$7.74 \mathrm{E}+02$	6. $02 \mathrm{E}+02$

$3.14 \mathrm{E}+02 \quad 7.74 \mathrm{E}+02 \quad 6.82 \mathrm{E}+02 \quad 5.01 \mathrm{E}+03-5.32 \mathrm{E}+03-3.48 \mathrm{E}+03-8.88 \mathrm{E}-03$
 $\begin{array}{lll}18 \mathrm{E} & +05 & 3.72 \mathrm{E}+04\end{array} \quad 2.87 \mathrm{E}+04$

$\cdots$	$\cdots$.	$\cdots$
$1.19 \mathrm{E}-03$	$4.38 \mathrm{E}-02$	$4.38 \mathrm{E}-02$

8.05E-03 $\quad 1.99 \mathrm{E}-02 \quad 1.77 \mathrm{E}-02$
....
$8.64 \mathrm{E}+04 \quad 8$
$.72 E+05$
"...
*-..
+..."

CONSEQUENCE	EVACUATE	NORMUL. ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARLY	CrikONIC	TOTAL
	0-10 MI	0-10 MI	0-10 MI	$\geqslant 10 \mathrm{MI}$			
WEIGHT	0.995	0.005	0.000	1.000		1.000	
EARLY FATALITIES	4.99E+01	$3.19 \mathrm{E}+01$	1.04E+01	$3.35 \mathrm{E}+00$	$5.31 \mathrm{E}+01$	-.-.	$5.31 \mathrm{E}+01$
PRODROM VOMITING	1.02E+02	1.14E+02	5.03E+01	7. $28 \mathrm{E}+01$	$1.74 \mathrm{E}+02$	-***	$1.74 \mathrm{E}+02$
EF RISK, 1 MI	1.30E-02	1.62E-02	1.17E-02	-*-*	1.30E-02	-...*	1.30E-02
CANCER FATALITIES	4. $12 \mathrm{E}+02$	1.39E+02	1.14E+02	1. $19 \mathrm{E}+03$	1. $60 \mathrm{E}+03$	4.79E+03	$6,40 \mathrm{E}+03$
POP DOSE, 0-50 MI	1. $65 \mathrm{E}+04$	$5.34 \mathrm{E}+03$	4.01E+03	2. $42 \mathrm{E}+04$	4.07E+04	$1.47 \mathrm{E}+04$	5.54E+04
POP DOSE, $0-1000 \mathrm{MI}$	1. $65 \mathrm{E}+04$	5.34E+03	4.01E+03	6. $13 \mathrm{E}+04$	7.77E+04	2.93E+0.5	3.71E+05
ECONOMIC CCSTS (\$)	- ...*	-**	-**	- 2 -**	- -**	5. $24 \mathrm{E}+10$	5. $2.4 \mathrm{E}+10$
POP EF RISK, $0-1 \mathrm{NJ}$	1.26E-02	1.39E-02	1.098-02	-***	1.26E-02	---*	1.26E-02
POP CF RISK, $0-10 \mathrm{MI}$	1.06E-02	3, 56E-03	2.91E-03	**	1.05E-02	8,50E-05	1.06E-02


SOURCE TERM CONSEQUENCE	MEAN FREQUENCY $=7.98 \mathrm{E}-08 / \mathrm{TR}$						TOTAL
	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARLY	CHRONIC	
	0-10 MI	0-10 MI	0.10 MI	$>10 \mathrm{MI}$			
WEIGHT	0.995	0.005	0.000	1.000		1.000	
EaRLY fatalities	1. $40 \mathrm{E}+02$	$7.838+01$	$4.73 \mathrm{E}+01$	4.34E-01	1.40E+02		1. $40 \mathrm{E}+02$
ERODROM VOMITING	1.798+02	$1.84 \mathrm{E}+02$	1.08E +02	$3.358+01$	2. $12 \mathrm{E}+02$		2. $12 \mathrm{E}+02$
EF RISK, 1 MI	3.39E-02	4. 47E-02	3.58E-02		3.40E-02		$3.40 \mathrm{E}-02$
CANCER FATALITIES	5.78E+02	4.06E+02	$3.49 \mathrm{E}+02$	2.12E+03	$2.70 \mathrm{E}+03$	$3.208+03$	$5.90 \mathrm{E}+03$
POP DOSE, $0-50 \mathrm{MI}$	2.81E+04	1. $56 \mathrm{E}+04$	1.21E+04	4.03E +04	6, 83E +04	$1.378+04$	8. $20 \mathrm{E}+04$
POF DOSE, $0-1000$ MT	2. $81 \mathrm{E}+04$	1. $56 \mathrm{E}+04$	1.21E+04	8. $63 \mathrm{E}+04$	1.14E+05	2.01E+05	$3.16 \mathrm{E}+05$
ECONOMIC COSTS (S)	-...	--*.			-...	$4.21 E+10$	4.21E+10
POP EF RIJK, $0-1 \mathrm{MI}$	2. 91E-02	4. $288 \mathrm{E}-02$	3.50E-C2		2.92E-02		2.92E-02
POP CF RISK, $0-10 \mathrm{MI}$	1. $48 \mathrm{E}-02$	1.04E-02	8. $94 \mathrm{E}-03$		1.48E-02	4.88E-05	1. $4 \mathrm{gE}-02$
SOURCE TERM SEQ-15-1, MEAN FREQUENCY $=5.87 \mathrm{E}-07 /$ YR							
CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARLY	CHRDNIC	TOTAL.
	0-10 MI	0-10 MI	0-10 MI	>10 MI			
WEIGHT	0.995	0.005	0.000	1.000		1.000	
EARLY FATAL :TIES	$0.00 \mathrm{E}+00$	$2.19 \mathrm{E}+01$	8. $64 \mathrm{E}+00$	$0.008+00$	1.09E-01		1.098-01
PRODROM VOMITTEG	1.87E-03	$6.01 \mathrm{E}+01$	2. $41 E+61$	1. $76 \mathrm{E}+00$	$2.06 \mathrm{E}+00$		2.06E+00
EF RISK, \& MI	$0.00 \mathrm{E}+00$	2. $15 \mathrm{E}-02$	$1.18 \mathrm{E}-02$	-...-	1.078-04	,	1.07E-04
CANCER FATAL.ITIES	1.40E+01	8.128+01	6. $17 \mathrm{E}+01$	3. $588 \mathrm{E}+02$	3,72E+02	$3.068+03$	$3.43 \mathrm{E}+03$
POP DOSE, 0.50 MI	6.91E+02	$4.08 \mathrm{E}+03$	2.93E+03	1.03E +04	1.10E+04	1.16E+04	$2.26 E+04$
POP DOSE, $0-1000 \mathrm{MI}$	$6.91 \mathrm{E}+02$	$4.085+03$	2.83E+03	2.17E+04	$2.248+04$	$1.818+05$	$2.03 \mathrm{E}+05$
ECONOMIC COSTS (S)			----			2.11E+10	$2.118+10$
POP EF RISK, $0-1 \mathrm{MI}$	$0.00 \mathrm{E}+00$	2. $258 \mathrm{E}-02$	1. $40 \mathrm{E}-02$		1.13E-04		1.13E-04
POP OF RISK, $0-10 \mathrm{MI}$	$3.598-04$	$2.08 \mathrm{E}-03$	1.58E-03		$3.67 \mathrm{E}-04$	1. O6E-04	$4.73 \mathrm{E}-04$
SOURCE TERM SEQ-15-2, MEAN FREQUENCY $=3.68 \mathrm{E}-07 \mathrm{IYR}$							
CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL EARL.Y	CHRONIC	TOTAL.
	0-10 MI	0-10 MI	0-10 MI	210 MI			
WEIGAT	0.995	0.005	0.000	1.000		1.000	
EARLY FATALITIES	1.03E+01	$7.19 \mathrm{E}+00$	2.75E+00	4. $24 \mathrm{E}-02$	1.03E+01		$1.03 \mathrm{E}+01$
PRODROM YOMITINC	3. $568+01$	$3.75 \mathrm{E}+01$	1.44E+01	$9.66 \mathrm{E}+00$	4. 53E+01	-	4. $53 \mathrm{E}+01$

Table 0.1 (continued

EF RISK, 1 MI	2. $26 \mathrm{E}-03$	e. $61 \mathrm{E}-03$	2.76E-03	--**	2.28E-03	**-*	2.29E-03
CANCER FATALITIES	1.31E+02	4. $588 \mathrm{E}+01$	$3.17 \mathrm{E}+01$	4. $025+02$	5.32E+02	A. $16 \mathrm{E}+03$	$4.70 \mathrm{E}+03$
POP DOSE, 0.50 MI	$6.59 E+03$	2. $24 \mathrm{E}+03$	1.60E+03	1.15E+04	1. $818+04$	1. $26 \mathrm{E}+04$	$3.07 \mathrm{E}+04$
POP DOSE, $0-1000 \mathrm{MI}$	6. $598 \mathrm{E}+03$	2. $24 \mathrm{E}+03$	1. $60 \mathrm{E}+03$	2. $54 \mathrm{E}+04$	$3.20 \mathrm{E}+04$	2. $47 \mathrm{E}+0.5$	2.79E+05
ECONOMIC COSTS (S)	+..-	....*	-....			2. $80 \mathrm{E}+10$	2. $80 \mathrm{E}+10$
POP EF RISK, $0-1 \mathrm{MI}$	4.15E-03	$9.04 \mathrm{E}-03$	5.44E-03		4.18E-03		4.18E-03
POP CF RISK, 0.10 MI	$3.36 \mathrm{E}-03$	1.17E-03	8.13E-04	***	3. $25 \mathrm{E}-03$	$1.43 \mathrm{E}-04$	3.498-03
SOURCE TERM SEQ-15-3, MEAN FRYQUENCY $=5.42 \mathrm{E}-08 / \mathrm{YR}$							
CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NOPMAL ACTIVITY	TOTAL. EARLY	ChRONIC	TOTAL
	0.10 .11	$0-10 \mathrm{MI}$	0-10 MI	>10 MI			
WEIGHT	0.895	0.005	0.000	1.000		1.000	
EARLY FATALITIES	1.60E+01	2.72E+21	1.47E+01	$0.00 \mathrm{E}+00$	1.61E+01		1.61E+01
PROOROM VOMITING	$7.63 \mathrm{E}+01$	6.12E+01	4. $70 \mathrm{E}+01$	$3.49 \mathrm{E}+00$	7.98E+01	-**-	7.88E+01
EF RISK, 1 MI	$1.14 \mathrm{E}-02$	2.67E-02	1.798-02	.....	1.14E-02	8+	1.14E-02
CANCER FATALTIES	$7.53 \mathrm{E}+01$	6. $26 \mathrm{E}+01$	$4.66 \mathrm{E}+01$	2. $98 E+02$	$3.73 \mathrm{E}+02$	$3.13 \mathrm{E}+03$	3, 50E +03
POP DOSE, $0-50 \mathrm{MI}$	4. 47E +03	3. $40 \mathrm{E}+03$	2. $51 \mathrm{E}+03$	1.015+04	$1.46 E+04$	1.08E+04	2. $53 \mathrm{E}+04$
POP DOSE, 0.1000 MI	4.47E+03	3.40E +03	2. $51 \mathrm{E}+03$	1. $94 \mathrm{E}+04$	$2.388+04$	1.85E+05	$2.09 E+05$
ECONOMIC CCSTS (S)	-...	- ....		-...-	-...-	1.89E+10	1.89E+10
POP EF RISK, $0-1 \mathrm{MI}$	1.378-02	2.87E-02	$\therefore .08 \mathrm{E}-02$		$1.38 \mathrm{E}-02$		1.38E-02
POP CF RISK, 0-10 MI	1.938-03	1.61E-03	1.208-03	-..-	$1.93 \mathrm{E}-03$	7.08E-05	2.00E-03
SOURCE TERM SEQ-16-1, MEAN FREQUENCY $=2.24 E-05 /$ YR							
CONSEQUENCE	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL.   EARLY	CHRONIC	TOTAL
	$0-10 \mathrm{MI}$	0-10 MI	0-10 MI	>10 MI			
WEIGHT	0.995	0.005	0.000	1.020		1.000	
EARLY FATALITIES	$0.00 \mathrm{E}+00$	$0.008+00$	$0.00 \mathrm{E}+00$	0.00E+00	$0.00 \mathrm{E}+00$	....-	$0.00 \mathrm{E}+00$
PRODROM VOMITING	$0.00 \mathrm{E}+00$	0, 00E +00	$0.00 \mathrm{E}+00$	$0.00 E+00$	$0.00 \mathrm{E}+00$	-***	0.00E+00
EF RISK, 1 MI	$0.00 \mathrm{E}+00$	0. $000 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-0.	0.00E +00	-----	0.00F+00
CANCER FATALITIES	6.58E-09	1. $52 \mathrm{E}-03$	1.38E-04	6.86E-03	6. $87 \mathrm{E}-03$	1.55E-02	2. $24 \mathrm{EE}-02$
POP DOSE, 0-50 MI	5.29E-07	1. $20 \mathrm{E}-01$	1.23E-02	$2.14 \mathrm{E}-01$	2. $15 \mathrm{E}-01$	1.17E+00	1.39E+00
POP DOSE, $0-1000 \mathrm{MI}$	5.298-07	1.208-01	1.23E-02	4.87E-01	4.87E-01	1. $855 \mathrm{E}+00$	2. $34 \mathrm{E}+00$
ECONOMIC COSTS (S)	--	- + . 000	+...		-...*	4.36E +05	4. $36 \mathrm{E}+05$
POP EF RISK, $0-1$ MI	$0.008+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$		$0.00 \mathrm{E}+00$		$0.00 \mathrm{E}+00$
POP CF RISK, $0-10 \mathrm{MT}$	1.69E-13	$3.89 \mathrm{E}-08$	3.55E-09		1. $858 \mathrm{E}-10$	7.108-09	7.30E-08
SOURCE TERM SEQ-16-2, MEAN YREQUENCY $=1.53 E-12 /$ YR							
CONSEQUENCE:	EVACUATE	NORMAL ACTIVITY	SHELTER	NORMAL ACTIVITY	TOTAL. EARLY	CHRONIC	TOTAL
	$0-10$ MI	0-10 MI	0-10 MI	$>10 \mathrm{MI}$			
WEIGET	0.995	0.005	0.000	1.000		1.000	
EARL.Y FATALITIES	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+\cdots 0$	$0.00 \mathrm{E}+00$	....-	c. $00 \mathrm{E}+00$
PRODROM VOMITING	$0.00 \mathrm{E}+00$	$1.04 \mathrm{E}-03$	4. $23 \mathrm{E}=04$	$0.00 \mathrm{E}+00$	5. $20 \mathrm{E}-06$	-+-*	5.20E-06
EF RISK, 1 MI	0.00E +00	$0.00 \mathrm{E}+20$	0.00E+00	- ....	0.00E+00	----*	0.00E+00
CANCER FATALITIES	1. $18 \mathrm{E}-01$	1.30E-01	1.12E-01	4.82E-01	6.00E-01	$1.84 \mathrm{E}-03$	6.02E-01
POP DOSE, $0+50 \mathrm{MI}$	$5.74 \mathrm{E}+00$	$6.18 \mathrm{E}+00$	$5.35 E+00$	1.39E+01	1.97E +01	$7.10 \mathrm{E}-02$	1. $97 \mathrm{E}+01$
POP DOSE, $0-1000 \mathrm{MI}$	$5.74 \mathrm{E}+00$	$6.18 \mathrm{E}+00$	$5.35 \mathrm{E}+00$	2. $63 \mathrm{E}+01$	$3.20 \mathrm{E}+01$	1.11E-01	3. $21 \mathrm{E}+01$
ECONOMIC COSTS (S)	-.	+....	-*-	.....	- + -**	$5.56 \mathrm{E}+05$	5. $56 \mathrm{E}+05$
POP EF RISK, 0-1 MI	$0.00 \mathrm{E}+00$	0.00E+00	0. $008 \mathrm{E}+00$	----	$0.00 \mathrm{E}+00$	- $\cdot$...	$0.00 \mathrm{E}+00$
POP CF RISK, 0-10 MI	$3.03 \mathrm{E}-06$	$3.35 \mathrm{E}-06$	2.88E-06	--**	$3.03 \mathrm{E}-06$	2. $64 \mathrm{E}-68$	$3.03 \mathrm{E}-06$

Table C. 1 (continued)


POP EF RISK,	$0-1 \mathrm{MI}$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$\cdots$	$0.00 \mathrm{E}+00$	$\cdots$	$\cdots$	$0.00 \mathrm{E}+00$
POF CF RISK,	$0-10 \mathrm{MI}$	$2.15 \mathrm{E}-05$	$2.62 \mathrm{E}-05$	$1.22 \mathrm{E}-05$	$\cdots$	$2.15 \mathrm{E}-05$	$1.20 \mathrm{E}-04$	$1.4 \mathrm{EE}-04$	

APPENDIX D
RISK RESULTS

# D. 1 Exceedance Frequencies for Risk; Sequoyah: All <br> Internal Initiators <br> D. 19 

## TABLE

D. 1 PRAKIS Results for Sequoyah Internal Initiators ................... D. 2

## Appendix D

## RISK RESULTS

This appendix presents detailed risk results for sequoyah for internal initiators. Figuros D. 1 through D. 6 contain the complementary cumulative distribution functions (CDDFs) for early fatalities, latent with cancer fatalities, population dose within 50 mi , population dose within the entire region, individual risk of early fatality within 1 mi of the site boundary, and individual risk of latent cancer fatality within 10 mi of the plant. Each plot displays 200 CCDFs; each individual curve results from one observation in the Latin hypercube sampling (LHS) sample for Sequoyah. These families of curves are the most basic risk results generated in this probabilistic risk assessment.

Tables D. 1 and D. 2 present the PRAMIS output for internal initiators in slightly edited form. The PRAMIS output uses plant damage state (PDS) as an abbreviation for PDS group. The 7 PDS groups for internal initiators at Sequoyah are:

PDS Group 1	Slow SBO
PDS Group 2	Fast SBO
PDS Group 3	Loss of Coolant Accidents
PDS Group 4	Event V
PDS Group 5	Transients
PDS Group 6	ATWS
PDS Group 7	SGTR

PRAMIS uses CSQ as an abbreviation for consequence measure. The nine consequence measures for which results are reported are:

```
1 Early Fatalities
2 Early Injuries
3 Individual Early Fatality Risk at 1 mi
4 Latent Cancer Fatalities
5 \text { Population Dose - 10 mi (Sv)}
6 \text { Population Dose . Entire Region (Sv)}
7 \text { Economic Cost (\$)}
8 Individual Early Fatality Risk within 1 mi
9 \text { Individual Latent Cancer Fatality Risk within } 1 0 \mathrm { mi }
```

PRAMIS uses PAR as an abbreviation for the partitioned source term groups. The source term groups are defined in Section 3.4. PRAMIS uses AFB as an abbreviation for accident progression bin; the APB attributes and characteristics are defined in Section 2.4 . The two methods of calculating fractional contribution to risk are discussed in section 5.1.3. The lists of the fractional contributions of individual APBs have been truncated to show only the top 60 contributors.

Table D. 1<br>PRAMIS Results for Sequoyah Internal Initiators



MEER - FRACTIONAL CONTRIBITIONS OF PDS TO CSQ, NORMALIZED ON A SAMPLE BASIS

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDS | 1 | 2 | 3 | 6 | 5 | 6 | 7 | 8 | 8 |
| 1 | 0.06655 | 0.07273 | 0.06804 | 0.08378 | 0.07953 | 0.08339 | 0.08012 | 0.07047 | 0.08159 |
| 2 | 0.18174 | 0.20016 | 0.18216 | 0.25385 | 0.24331 | 0.25426 | 0.24331 | 0.18981 | 0.238 .8 |
| 3 | 0.13031 | 0.14634 | 0.12310 | 0.20889 | 0.28092 | 0.22055 | 0.25036 | 0.12843 | 0.25685 |
| 4 | 0.40545 | 0.32846 | 0.38918 | 0.10045 | 0.10413 | 0.09675 | 0.14036 | 0.37683 | 0.16175 |
| 5 | 0.01313 | 0.01426 | 0.01395 | 0.01387 | 0.01344 | 0.01367 | 0.01293 | 0.01376 | 0.01684 |
| 6 | 0.06811 | 0.07860 | 0.07330 | 0.05747 | 0.05286 | 0.05642 | 0.06141 | 0.07205 | 0.07482 |
| 7 | 0.13471 | 0.15843 | 0.14827 | 0.281486 | 0.22582 | 0.27507 | 0.31152 | 0.14866 | 0.16876 |

FCMR - FIACTIONAL CONTRIBUTIONS OF PDS TO CSQ, NORMALTZED ON A GLOBAL BASIS

	1	2	3	4	5	6	7	8	8
PDS									
1	0.06840	0.11228	0.06568	0.12450	0.11098	0.12504	0.12356	C.08542	0.11757
2	0.16013	0. 23863	0.16201	0.28627	0.26542	t. 2.8681	0.27232	0.17668	0.28250
3	0.01720	0.04044	0.02544	0.14238	0.18613	0.14553	0.08807	0.03162	0.14866
4	0.67853	0,48205	0.66286	0. 10330	0.14822	0.08830	0.14284	0.61835	0.28186
5	0.00145	0.00248	0.00209	0,00452	0.00470	0.00455	0.00395	0.00213	0.00474
6	0.01810	0.02910	0.02178	0.03830	0.03682	0.03826	0.03562	0.02221	0.04134
7	0.05306	0.09401	0.06012	0.30074	0.24685	0.30148	0.33365	0.06358	0.11

Table D. 1 (continued)

MFCR - FRACTIONAL CONTRIBUTIONS OF PAR TO CSQ, NORMAL ZED ON A SAMPLE BABIS

1	2	3	4	5	CSQ	E	?

PAR
28
293032
$49 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00106 \quad 0.00397 \quad 0.001730 .001020 .00000 \quad 0.00068$
0.00004 0.00002 0. 00000 0.00000 0.00002

$52 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.130560 .245950 .50780 .03740 \quad 0.00000 \quad 0.18746$
$53 \quad 0.00000 \quad 0.001320 .000000 .02002 \quad 0.028420 .01818 \quad 0.005870 .00000 \quad 0.02376$
$54 \quad 0.000000,00 \quad 00 \quad 0.00000 \quad 0.00000 \quad 0.000000 .00000 \quad 0.00000 \quad 0.00000 \quad 0.00000$
$55 \quad 0.000000 .0<.1000 .000000 .000000 .000000 .000000 .00000 \quad 0.00000 \quad 0.00000$

Table D. 1 (continued)

FOMR - YRACTIOKAL CONTRIBUTIONS OF PAR TO CSQ. NORMALIIZED ON A GLOBAL BASIS
$\left.\begin{array}{cccccccc} \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right]$

PAR
$\begin{array}{llllllllllll}55 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000\end{array}$

Table D. 1 (continued)


MFCR - YRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ 2, NORMALIZED ON A SAMPLE BASIS CSQ 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
0.15570	0.092 .8	0.56552	0.00578	0. 12775	0.18157	0.76887	0.50718	0.03528	0.17386	0. 53790	0.88238	Q.71570	0.26140
0.17378	0.00000	0.01823	0.07153	©. 62614	0.04545	0.00000	0.49280	0.04404	0.21464	0.46209	0.05667	0.05047	0. 52834
0.13267	0.00889	0.22068	0.12841	0.02314	0.75687	0.01035		0.01380	0.22259		0.05094	0.23383	0.11670
C. 26.856	C. 26.564	C. 2556	0. 78426	6.03064		0.22058		0.90688	Q. 38888				0.09256
0.00381	0.00316	0.00000		0.00195									
0.02846	C.03110	0.05985		0.18218									
0.19614	0.02143												
	0,62700												

MFCR - FRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ 3, NORMALIZED ON A SAMPLE BASIS
csQ 3
APB ATTRIBUTES
 $\begin{array}{lllllllllllllllll}0.21868 & 0.08211 & 0.61065 & 0.00539 & 0.11413 & 0.19003 & 0.79131 & 0.51381 & 0.02929 & 0.18100 & 0.56204 & 0.89052 & 0.74182 & 0.27434\end{array}$ $\begin{array}{llllllllllllll}0.17050 & 0.00000 & 0.01571 & 0.05978 & 0.65413 & 0.04048 & 0.00000 & 0.48618 & 0.03864 & 0.18391 & 0.43798 & 0.05462 & 0.04878 & 0.52848\end{array}$ $\begin{array}{llllllllllll}0.11487 & 0.00881 & 0.20157 & 0.11127 & 0.01785 & 0.76949 & 0.00711 & 0.01360 & 0.22734 & 0.05485 & 0.20939 & 0.10616\end{array}$ $\begin{array}{llllllll}0.27260 & 0.18411 & 0.11730 & 0.82355 & 0.04153 & 0.20157 & 0.31847 & 0.41774\end{array}$ $\begin{array}{llll}0.00721 & 0.00306 & 0.00000 & 0.00324\end{array}$
$\begin{array}{llll}0.02588 & 0.02274 & 0.05477 & 0.16813\end{array}$
$0.19016 \quad 0.02188$
0.67720

MPCR - FRACTIONAL. CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ 4, A VRMALIZED ON A SAMPLE BASIS
CSQ 4
APB ATTRIBUTES


MFCR - FRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ 5, NORMALIZED ON A SAMPLE BASIS
CSQ 5
APB ATTRIBUTES

						APB	(10)						
1	2	3	4	5	6	7	8	9	10	11	12	13	14
0.04213	0.10200	0.45698	0.00863	0. 23039	0.10460	0.78480	0.51059	0.05034	0.29729	c. 57114	0.89816	0.78100	0. 24087
0.06200	0.00000	0.07141	0.14332	0.58356	0.16644	0.00000	0.48941	0.07118	0.20007	0.42885	0.06350	0.06032	0. 50097
0.09482	0,02426	0. 18161	0.23253	0.04273	0.72896	0.02358		0.04400	0.26205		0.03833	0,15867	0.15511
0.25238	0.17803	0.25675	0.61551	0.01367		0.18161		0.83447	0.24058				0.10304
0.09715	0.06430	0.00000		0.00284									
0.27172	0.05129	0.0332 E		0.12672									
0.17975	0.01648											$\sim$	
	0.56364												

MFCA - FKACTIONAL SONTKIEUTIONS OF APB ATTNTBUTLS TO CSQ 6, NORUALI2FD ON A SAMPLE BAEIS CSQ 6


MPCR - FRACTIONAL CONTKTEUTIONS OF APE ATTRIBUTES TO CSQ B, NORMALIZED ON A EAMPLE BASIS
CsQ 6
APB ATTRIEUTES

1	2	3	4	5	6	7	8	$\theta$	10	11	12	13	14
0.08545	0.11636	0,43857	0.00897	0.18876	0.16707	0.76723	0.48708	0.04256	0. 26605	0. 51817	0.86904	0.75110	(0.23482
0.07630	0.00000	004456	0.11068	0.57125	0.07465	0.00000	0.50284	0.05786	0.21281	0.48183	0.06618	0.06178	0.51740
0.12260	0.02067	0.23682	0.19850	0.03365	0.75847	0.01583		0.02773	0.23770		0.04477	0.18711	0.14308
0.28339	0.22023	0.24366	0,66284	0.02261		0.23682		0.87184	0.28364				0.10419
0. 04868	0.03577	0. 06000		¢ 00515									
0.18388	0.05084	0.03627		2. 17885									
0.18880	0. 02027												

MFCK - FRACTIONAL CONTR1BUTIORS OF APB ATTRIBUTES TO CSO, NOWHLIZED ON A SAMPLE BASIS ABE RTTRTBUTE


MFCR - FE CTIONAL CONTRIBUTIONB OF APE ATTRIBUTES TO CEQ, NORHKLIEED ON A SAMPLE BASIS APB ATTKIBUTE \&
CSO

1	2	3	5	5	6	7	8	8

$\hbar \quad 0.078450 .092360 .08211 \quad 0.103430 .10200 \quad 0.10290 \quad 0.02257 \quad 0.08542 \quad 0.11634$ B $\quad 0.00000 \quad 0.00000$
 D $\quad 0.173750 .204840 .186110 .173340 .176030 .172740 .165300 .26420 \quad 0.22023$ E $\quad 0.00270 \quad 0.003160 .003060 .05479 \quad 0.06430 \quad 0.05660 \quad 0.034850 .003860 .03577$ ₹ $0.02098 \quad 0.031200 .022740 .04821 \quad 0.051280 .04708 \quad 0.03732 \quad 0.024350 .05086$ $6 \quad 0.02122 \quad 0.0214380 .02188 \quad 0.013640 .016480 .01662 \quad 0.02112 \quad 0.02157 \quad 0.02027$ H $\quad 0.60456 \quad 0.63700 \quad 0.57720 \quad 0.58329 \quad 0.563640 .561340 .634140 .67135 \quad 0.53607$

MTCR - FRACTIONAL CONTRIBUTIONS OF AEB ATTKIBUTES TO CSO, NOMMLTIZRD ON A SAMPLE BASIS APB ATTRIEHTE 3


MPCR - FKACTIONAL. CONTRIBUTIONS OF APE ATTRIBUTES TO CSQ, NORMALIZED ON A SAMPLE BASIS ABB ATTRIBUYE A


MPCR - FRACTIONAL CONTRIBUTIONS OF APE ATTRIBUTEW TO CSO, NORMALIZED ON A SAMPLE BASIS APB ATTRIBUTE 3

| 1 | 2 | 3 | 4 | 5 | 6 | $?$ | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.101744 | 0.12775 | 0.11413 | 0.23227 | 0.23038 | 0.23355 | 0.21505 | 0.11742 | 0.18974 |
| 0.67831 | 0.62614 | 0.65413 | 0.55831 | 0.58356 | 0.56133 | 0.56607 | 0.64976 | 0.57125 |
| 0.01816 | 0.02324 | 0.01785 | 0.04216 | 0.04273 | 0.04230 | 0.03218 | 0.01880 | 0.03345 |
| 0.05461 | 0.03864 | 0.04153 | 0.01753 | 0.01367 | 0.01703 | 0.02484 | 0.03866 | 0.02241 |
| 0.00187 | 0.06185 | 0.00324 | 0.00356 | 0.00294 | 0.00350 | 0.00375 | 0.00204 | 0.00318 |
| 0.15421 | 0.18218 | 0.16813 | 0.14616 | 0.12672 | 0.14220 | 0.15299 | 0.17151 | 0.17995 |

MFCR - FRACTIONAL CONTRIBLTIONS OF APB ATTRIBUTES TO CSQ, NORMALIZED ON A SAMPLE BASIS APE ATTRIBUTE ह

					CSO				
	1	2	3	4	5	6	7	8	8
A	a. 17931	0.18>57	9. 12003	0.12669	0.10460	9.12283	4.23273	0. 18695	0.16707
B	$0.0{ }^{-111}$	0.04545	0.04048	0.20967	0.16646	0,20514	0.22726	0.04108	0.07445
C	0.78956	0.756.97	0. 76848	0. 66368	0.72836	0.67132	0. 82500	Q. 77183	0.75847

YFCR - PRACTIONAL CONTRIBUTIONS OF APB ATTKIBUTES TO CBQ, NORMALIVED ON A SAMPLE BASIE AFB ATTRIBUTE ?

	1	2	3	4	5	6	7	E	9
A.	(0.0668t	0.76887	4.78131	057681	0.78480	0.78131	$0.7610 t$	0.76587	0.74723
B	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0. 00000	00060
$\frac{5}{c}$	0.00748	0.01035	0.00711	0.02686	0.02358	0.02662	0,02602	0. 00900	0.01583
D	0.18562	0.22068	0.20157	0.19626	0.18261	0. 18206	0. 182007	0. 20502	0.23562

WHCR - FRAOTIONAL CONTKIBUTIONS OF AFB ATTRTDUTES TO CBQ, NORMALIZRD ON A SMMPLE BASIS APB ATTRIBUTE B


MYCR - FRACTIORAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSO, NORMALIZED ON A SAMPLE BASIS APB ATTRIBUTE

CSO
$\begin{array}{cccc}5 & 8 & 7 & 8 \\ 0 & 0 & 0\end{array}$
 $\begin{array}{llllllllll}\mathrm{A} & 0.02758 & 0.03528 & 0.02828 & 0.05250 & 0.0304 \\ \mathrm{~B} & 0.03300 & 0.06404 & 0.03864 & 0.07687 & 0.07118 & 6.07637 & 0.07375 & 0.04002 & 0.05786\end{array}$ $\mathrm{C} \quad 0.010620 .01360 \quad 0.01360 \quad 0.050280 .04680 \quad 0.050650 .026220 .016050 .02799$ $\begin{array}{lllllllllllllll}\mathrm{D} & 0.82879 & 0.80588 & 0.81847 & 0.81763 & 0.83647 & 0.81894 & 0.82201 & 0.01471 & 0.87184\end{array}$

MPCR - FRACTIONAL CONTRIBUTIONS OF APB KTTRIBUTES TO CSQ, NORMALIZRD ON A SAMPLE BASIS ABE ATTRIBUTE 10

Col

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 6 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0.15882 | 0.17388 | $0.2610 n$ | 0.27847 | 0.28720 | 0.28325 | 0.23975 | 0.16786 | 0.26605 |
| B | 0.20274 | 0.21464 | 0.19391 | 0.10724 | 0.20007 | 0.10816 | 0.12837 | 0.19860 | 0.21281 |
| C | 0.22667 | 0.22258 | 0.25734 | 0.24827 | 0.26205 | 0.24841 | 0.24085 | 0.22518 | 0.23770 |
| D | 0.41077 | 0.38888 | 0.41774 | 0.27501 | 0.24058 | 0.26822 | 0.32103 | 0.40826 | 0.28344 |

MYCR - FRACTIONAL CONTRIBUTIOKS OF APB ATTRIBUTES TO CSQ, NORMALIZED ON A SAMPLE BARTS APE ATTRIBUTE 11


Nu FRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ, NOPMALIZED ON A SAMPLE BASIS APB ATTRIBUTE 12


MYCR - FKACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ, HORMALIZED ON A SAMPLE BASIS APB ATTRIBUTE 13

	1	2	3	4	5	6	7	6	9	
	1	0.73362	5.71370	0.74182	0.74676	0.78100	0.75154	0.72150	0.73970	0.75110
B	0.04607	0.05047	0.04878	0.06110	0.06032	0.06133	0.05808	0.05014	0.06178	
C	0.22031	0.23383	0.20938	0.19213	0.15867	0.18712	0.21832	0.21016	0.18711	

MFCR - FRACTIONAL GONTRIBUTIONS OF AFB ATTRIBUTES TO CSQ, NORMALIZED ON A SAMPLE BASIS ABB ATTRIBUTE 16

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.27631 | 0.26140 | 0.27434 | 0.24322 | 0.24087 | 0.24173 | 0.25170 | 0.27082 | 0.23482 |
| 0.53158 | 0.52934 | 0.52848 | 0.48911 | 0.50087 | 0.48974 | 0.48614 | 0.52720 | 0.51780 |
| 0.10769 | 0.11670 | 0.10016 | 0.15785 | 0.15511 | 0.15861 | 0.14880 | 0.11121 | 0.14308 |
| 0.08621 | 0.09256 | 0.08102 | 0.10982 | 0.10304 | 0.10982 | 0.11136 | 0.08067 | 0.10418 |

FGMR - PRACTIONAL SONTRIBUTIONE OF APE ATTRIBUTES TO CBO 1, NORNALIKED ON F OLOBAL BAEIS Cso 1


FOR - FLACTIORAL CONTRIBUTIONS OF APB ATTRIBUTEE TO CBO 2, HOKMALIERD ON A GLOBAL BASIS cso 2
APE ATTRIBUTES

1	2	3	4	5	6	$?$	E	0	10	21	22	18	16
0.26577	0.04717	0.61138	0.00372	0. 18685	0, 10202	0,60576	0.52576	0.03276	Q.24351	0.66220	0.67017	0.82664	0.26560
0.23626	0.00006	0.01756	0.11655	0.76056	0.02224	0.00000	0.46426	0.12016	6.13003	0.30775	0.63060	0.03676	0.60843
(0) 04857	0.00484	0.00268	0,08866	0.00522	0.87573	0.00153		0.00072	0.26724		0.08022	0.13060	0.17756
0.87666	0.0885	0.06557	0.77771	0.01101		0,09268		0.64786	0.3504.1				0.14761
D. 60027	0.00152	0.06000		0.60025									
0.01622	0,02386	0.01281		0.05610									
0.07635	0. 02.553												

FCOR - PRACTIONAL CONTRIBUTIONS OF APE ATTRIBUTES TO CSQ 3, NORMLIERD ON A OLOBAL BAEIS
CS5

1	2	3	4	5	6	7	6	0	10	11	12	13	14
033772	$0.0328 ?$	- 86556	0.00223	0.11700	0.07366	0.62756	0.52378	0.01812	0.15153	9,70384	0.01542	0. 67184	(1.)22366
D. 32514	0.00000	0. 01550	$0.07 \$ 74$	0.81676	0.00863	0.00000	0. 47620	0.07701	0.58388	0.20655	0, 03060	0.02827	0.46654
0.03356	0.00341	0.07126	0.05720	0.00318	0. 81688	0.00106		0.00046	0.51775		0.05600	0.08060	0.11111
0.23262	0.06054	0.03680	0.86433	0.01212		0.07186		0.00860	0. 64663				0.08645
0.00032	0.00156	0.00000		0.00016									
0.04803	0.01630	0.00867		0.05076									
0.08072	0.01878												
	0.85593												

FCMR - FRACTIONAL CONTRIEUTIONS OF APB ATTRIBUTES TO OSO 4. NORMALIZED ON A GLDBAL BASIS
C8Q 4
APb ATTRSBUTL

1	2	1	4	5	6	7	8	1	10	12	12	13	14
0.06183	0. 21808	0.60426	0.0002.	0.37077	0.10071	0.60671	0. 56655	0.06802	0.01303	0.6822	0, 89287	0.78248	0.23650
D. 0.6132	D. 00000	0. 0.8232	0.25382	0.48580	0.23640	0.00000	0.43163	0.22040	0.17362	0.31778	D. D6823	0.06562	0.41417
D. 00743	0.01065	0.18200	0.20:17	0.02705	0.66287	0.01128		0.02220	0.26162		0.03688	D. 14380	0.18300
0.66100	0.22773	0. 11408	0. 53561	0.00041		0.16200		$6.2=568$	0.25103				0. 15624
0.03650	0. 05020	0.00000		0.00104									
0.10768	0.06670	0. 01736		0.10482									
0.16083	0.02063												

FOMR - FRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TU CSQ 5, NORMALIZRD ON A OLOBAL BASIS
CSQ 8
APD ATTKIDUTES

1	2	3	4	5	6	7	0	9	10	11	12	13	14
0.06500	0.11755	0. 57 182	0.0068	0.32888	0.08611	0.80885	0. 56278	0.07641	Q. 29442	4. 6 E116	(1). 90120	6.80601	Q. 24822
0.08413	0.00080	0.07665	0.23064	0. 56204	0.18208	0.00000	0.63721	0.18646	0.17863	0.30685	0.06274	0.05887	0.43821
0. 08027	0.01391	0.17988	0. 18875	0.02072	0.72180	0.01178		0.02088	0.27018		0.03605	Q. 13512	0. 17756
0.41150	0.13854	0.16708	0,56077	0.00806		0.17838		0.71821	0.26746				0.13601
0.04882	D. 03861	0.00000		0.00115									
0.13858	0.064 53	0.01615		0.09705									
0.15058	0.02506											2	
	0.00370												

Table D. 1 (continued)


YGM - FLACTIONAL CONTNIBITIONS OF APE ATTKLBUTES TO CSO, NOPMALI2ED ON A GLOBAL BASIS APB ATTKLBUTE 1

					$\operatorname{cs} \theta$				
	1	2	3	4	5	6	7	B	9
	12.63656	0. 24377	0.35792	0.66193	0.06509	0.03675	9.06155	a. 27364	(1.13872
B	0. 24503	0. 23828	0.32514	0.06189	0.08413	0.05055	0.08181	0.36401	0.25224
0	0.02485	D. 06657	0.03356	0.00763	0.08827	0.09643	0.08267	0,06188	0.08585
	0.23862	0. 37646	0.23262	0.46100	0.61150	0, 0.5650	0.45670	0.27015	0,46270
	0.00013	0.00027	0.00032	0.03950	0.04902	0.04086	0.01838	0.00063	0,01095
	0.00627	b. 01632	0.00983	0.10793	0.13657	0.11371	0.084 .08	0.02001	0.05505
©	0.06755	D. 07813	0.06072	D. 18083.	0.16053	Q. 18114	0.20451	0.05818	0. 10684

FCMK - FRACTIONAL CONTKIBUTIONS OF AFB ATTRIBUTES TO CBO, NORMALIZED ON A GLOBAL BASIS AFB ATTRIBUTE 2

					Cs				
	1	2	3	4	5	6	7	B	$\theta$
A	0.02238	Q.0471)	0.03287	0.1190t	0,11755	Q 111822	0.08886	0.03847	Q. 11976
E	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
c	0.00307	0,00484	2.0034	0.02045	0.01381	0.01086	0.00725	0.00372	0.00813
	0.06502	0.00858	0.06854	0.12773	0.13864	0.12876	0.11457	0.07504	0.13479
E	0.00020	0.00152	0.00156	0.03010	0.03661	0,03002	0.01506	0.001a8	0.01025
	0.01086	0.023日	0.01630	0.06670	0.06653	0.08654	0.05518	0.02281	0.06365
	0.01526	D. 02553.	0.01876	0.02063	0.02506	0,02882	0.03232	0.02148	0.02926
	0.66516	0.20832	0. 65533	0.	0.60870	0.6148?	0.68772	0.83572	

FCYR - FRACTIONAL CONTRIEUYIONE OF APE ATTRIBUTES TO CBQ, NORMALIZED OR A OLOBAL BASIS APB ATTRIBUTE 3

		2	3	4	C5Q				
A	0.89626	Q.81139	0.86561	0.60426	0,57982	0.60119	0.66707	0.85150	0.63214
E	0.00682	0,01756	0.01550	0.08282	0.07685	D. 08238	0.08208	0.01642	0.04295
C	0.05136	0.08268	0.07138	0.18200	0.17836	0.16046	0.14899	0.07738	0.18554
b	0.03851	0.06557	0.03880	0.11400	0.14789	0.11821	0.08690	0.04634	0. 12182
E	0.00000	0.00000	0.00000	0,000090	0.00000	0.00000	0.00000	0,00000	
	0.0072		D. 0066?						

FCMR - FKACTIONAL COUTTRIBUTIONS OF APE ATTRIBITES 10 CSO , NORMALIZED ON A GLOBAL. BASIS APB ATTRIBUTE 4


EOMR - PRACTIONAL. CONTRTBUTIONS OF APB ATTRIBUTES TO CSO. NORNLIZED ON A GLOBAL. BASIS APE ATTRIBUTE 5

## CSQ

A $\quad 0.10321 \quad 0.18465 \quad 0.11700 \quad 0.370770 .32998 \quad 0.372760 .36870 \quad 0.14260 \quad 0.26835$
$\therefore \quad 0.86870 \quad 0.74056 \quad 0.81676 \quad 0.49690 \quad 0.54204 \quad 0.495550 .51456 \quad 0.78112 \quad 0.59920$
C 5.00368 0.00522 0.00518 $0.017050 .020720 .017150 .010580 .00288 \quad 0.01168$
$D \quad 0.010460 .01101 \quad 0.012120 .00841 \quad 0.00906 \quad 0.00934 \quad 0.00981 \quad 0.01188 \quad 0.01228$
$\begin{array}{llllllllllll}\mathrm{F} & 0.00018 & 0.00025 & 0.00018 & 0.00104 & 0.00115 & 0.00103 & 0.00071 & 0.00019 & 0.00086\end{array}$
$\mathrm{F} \quad 0.032820 .05610 \quad 0.05076 \quad 0.10462 \quad 0.09705 \quad 0.10407 \quad 0.09551 \quad 0.05152 \quad 0.10761$
FGMR - FRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ, NORMALIZED ON A GLOBAL. BASIS AFB ATTRIBUTE 6


Table D. 1 (continued)

FCMR
FRACTIONAL CONTRIBUTIONS OF APE ATTRIBUTES TO CSQ, NORMALIZED ON A GLOBAL BASIS AEB ATTRIEUTE ?

1	2	3	4	5	6	7	8

$\begin{array}{lllllllllll}\mathrm{A} & 0.84790 & 0.80578 & 0.82754 & 0.80671 & 0.80683 & 0.80832 & 0.84224 & 0.82154 & 0.80885\end{array}$ $0.00000 \quad 0.00000 \quad 0.00000 \quad 0.000000 .00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000$ $\begin{array}{lllllllllll}0.05070 & 0.00153 & 0.00108 & 0.01128 & 0.01178 & 0.01121 & 0.00775 & 0.00105 & 0.00550\end{array}$ $0.05138 \quad 0.09269 \quad 0.07136 \quad 0.18200 \quad 0.17936 \quad 0.18045 \quad 0.14898 \quad 0.07738 \quad 0.16554$

Fram - FRACTIONAL CONTRIEUTIONS OF AFB ATTRIBUTES TO C8Q, NORMALIZED ON A OLOBAL BASIS APB ATTKIBUTE 8

CSO


FOMP - FRACTIONAL CONTRILITIONS OF AFB ATTRIBUTES TO CSQ, NORMALIRED ON A GLGBAL BASIS APB ATTRIBUTE E

$\begin{array}{llllllllllll}0.01572 & 0.03174 & 0.01811 & 0.08902 & 0.07641 & 0.08830 & 0.09813 & 0.02392 & 0.04841\end{array}$ $\begin{array}{lllllllllll}0.06723 & 0.12018 & 0.07701 & 0.22040 & 0.18648 & 0.22040 & 0.22046 & 0.09354 & 0.17036\end{array}$ $\begin{array}{lllllllllllll}0.00017 & 0.00072 & 0.00046 & 0.02210 & 0.02088 & 0.02210 & 0.01425 & 0.00056 & 0.00626\end{array}$ $\begin{array}{lllllllllll}0.01686 & 0.84734 & 0.80340 & 0.86848 & 0.71821 & 0.86820 & 0.68712 & 0.88187 & 0.77384\end{array}$

FGAR - FAACIIONAL CONTRIBUTIONS OF APE ATTKIBUTES TO CSQ, NORMALIZED ON A GLOBAL BREIS APB ATTRIBUTE 10

CSQ
 $\begin{array}{llllllllllll}0.16376 & 6.24331 & 0.15163 & 0.31393 & 0.29442 & 0.31511 & 0.29403 & 0.17083 & 0.29083\end{array}$ $\begin{array}{lllllllllll}0.08316 & 0.13003 & 0.08398 & 0.17342 & 0.17893 & 0.17546 & 0.15688 & 0.10401 & 0.16969\end{array}$ $\begin{array}{llllllllllll}0.30877 & 0.26724 & 0.31775 & 0.26162 & 0.27819 & 0.26098 & 0.26145 & 0.30654 & 0.26491\end{array}$ $\begin{array}{llllllllllll}0.44433 & 0.35841 & 0.44643 & 0.25103 & 0.24746 & 0.24843 & 0.28764 & 0.41861 & 0.27457\end{array}$

FGMR - FRAUTIONAL. CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ, NORMALIZED ON A GLOBAL BASIS APB KTTRIBUTE 11

CSQ

1	2	3	4	5	6	7	8

$\begin{array}{lllllllllllllll}\AA & 0.78469 & 0.69220 & 0.79396 & 0.68224 & 0.68114 & 0.67861 & 0.68969 & 0.77685 & 0.66798\end{array}$ B $\quad 0.21529 \quad 0.30778 \quad 0.206050 .317750 .30885 \quad 0.32038 \quad 0.31030 \quad 0.22314 \quad 0.33200$

FCMR - FRACTIONAL CONTRIBUTIONS OF APB ATTRIBUTES TO CSQ, NORMALIZED ON A GLOFAL. BASIS APB ATTRIBUKE 12

CSQ

4	1	2	3	4	5	5	7	8	8
	0	8981	0	87017	0	81342	0	88287	0

$\mathrm{B} \quad 0.02 \mathrm{~L} 500.03960 \quad 0.03049$ ?,06823 0.06274 0.06821 0.06264 0.09480 0.06053 $\begin{array}{llllllllllll}0.07518 & 0.00022 & 0.05608 & 0.03888 & 0.03605 & 0.03871 & 0.04752 & 0.05158 & 0.05520\end{array}$

PGMR - FRACTIONA, CONTR1BUTIONS OF APB ATTRTBUTES TO CSQ, NORMALIZED ON A GLOBAL BASIS AFE ATTRIBUTE 13

CSO

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.87205 | 0.82464 | 0.87184 | 0.79248 | 0.80601 | 0.78336 | 0.78622 | 0.87194 | 0.79771 |
| 0.02436 | 0.03676 | 0.02827 | 0.06362 | 0.05867 | 0.06364 | 0.05795 | 0.03280 | 0.05845 |

$\begin{array}{llllllllllll}0.10355 & 0.13860 & 0.09980 & 0.14390 & 0.13512 & 0.14299 & 0.14580 & 0.08546 & 0.14583\end{array}$
FOMR - FRACTIONAL CONTKLBUTIONS OF APB ATTRIBUTES TO CSQ, NORMALIZED ON A GLOBAL BASIS APB ATTRIBUTE 14
 $\begin{array}{lllllllllll}0.32386 & 0.26540 & 0.32388 & 0.23859 & 0.24822 & 0.23715 & 0.24567 & 0.30886 & 0.24007\end{array}$ $\begin{array}{lllllllllll}0.45927 & 0.40843 & 0.48655 & 0.41417 & 0.43821 & 0.41405 & 0.40750 & 0.45171 & 0.42102\end{array}$ $\begin{array}{lllllllllll}0.12058 & 0.17756 & 0.11111 & 0.19320 & 0.17756 & 0.19363 & 0.18554 & 0.12676 & 0.18713\end{array}$ $\begin{array}{lllllllllll}0.08628 & 0.14761 & 0.08845 & 0.15424 & 0.13601 & 0.15516 & 0.16129 & 0.11266 & 0.15177\end{array}$

Table D. 1 (continued)

MPCR - FPACTIONAL CONTRIDUTIORS OF APE TO CSQ. NONMALIZED ON A SAMPLE BMSIS

	1		CSO	*		d	3	
		0.05056						
AHADBCAADDAAM	0.03011	0.08865	GDCDFADBDDEARB	1,08554	0.07712	GDCDFADADDBAAB	0.04081	0.08227
GLCDFADADDBAAB	C.03767	0.12732	BLADECCAADDAAAE	1.03214	0.10826	GDCDFADBDDBARB	0.05361	0.11527
AHADBCABDDAAAB	0.03630	0.16362	AHADBCAADDAAS	0.02835	0.13861	AHADBCAADDAARA	03240	0.14768
AHADBCAADICAAAB	0.03404	0.19765	BHADBCARDDAAAR	0. 2500	0.16381	BHADBCAADDAAAB	0.03108	0.17676
GDCDFADEDDDBAB	C. 03018	0.22783	BEADBCABDDANAB	0.02401	0.18762	AHADBCABDDAAAB	0.03010	0.20885
AHADBCABDDARA	0.02823	0.25606	Alladichad mana	0.02283	0.21045	AHADBCAADCAAS	0.02805	0.23680
AHADBCAADCAAAA	0.02647	0.28253	BHADBCAADCAMAB	0.02186	0.28231	BEADHCARDDANAA	0.02427	0. 26108
BHADBCAADDAAAS	0.02526	0.30777	AHADBCABDDAAAB	0.02176	0.25405	SHADBCABDDAAAB	0.02378	0.28485
ALADBCKBDCAAAB	0.02455	0.33228	AlladBCANDCAAAB	0.01977	0.27382	AHADECABDDAAA	0.02340	0.30826
BHADICABDDAAEB	0.01877	0.33206	BEADBCABDDAAA	0.01868	0.29250	AHADBCANDCAMA	0.02281	0.33008
BHADBCAADDAAAA	0.01862	0.37169	BHADEBCAADCAAAA	0.01701	0.30951	BRADBCAADCAAAB	0.02115	0.35123
AHADBCABDCAAAA	0.01806	0.38075	ARADBCABDDANA	0.01690	0.32642	AFADBCABDCAAAB	0.02030	0.37153
BHADBCAADCAAAB	0.01723	0.40788	BHADBCABDCAMAB	0.01625	0.34266	BHADBCABDDANA	0.01850	0. 39004
BHADBCABDDAARK	0.01538	0.42336	AHADBCAADCAKAA	0.01538	0.35806	BHADBCARDCANA	0.01647	0,40650
BHADSCAADCAAAA	0.01341	0.63677	AHADBCABDCANAB	0.01466	0.37270	B	0.01610	0. 42261
BHADHCABDCAKAE	0.01338	0.65016	DFADBCABDABAAC	0.01402	0.38672	ARADBCABDCAAAA	0.01578	0,63838
DHADBCABDABAAC	0.01272	0.46288	GDCDFADADDBAA	0.01368	0.40042	GDCDF ADADDEAMA	0.01336	0,45175
GDCDF ADADDBAAA	0.01232	0.47521	BFADBCABDCAAMA	0.01264	0.41305	BRADBCABDCAAAA	0.01253	0.46428
DHPDBCAADBEACE	0.01100	0.48621	GDCDF ADBDDEAN.	0.01162	9.42467	DHADBCABDABAAC	0.01081	0,47518
BFIADBCABDCAMA	0.01042	0.48663	GACDFCDBDABAAB	0.01161	0.43628	GDCDFADBDDEAAA	0.01078	0, 48596
ODCUFADEDDBAAA	0.00883	0.50647	Allabicabicana	0.01138	0,44767	DHADBCAADABAAC	6.00856	0.4.9555
DFIADBCAADAEAAC	0.00878	0.51625	DHADSEAADATAAC	0.01000	0.45767	CACDFCDBDABAAB	O.00845	0,50500
CACDPFCDEDABAAB	0.00848	0,52471	DHFDBCAADBSACE	0.00881	0. 66748	DHFDBCAADEBACB	0.00783	0,51283
DFADDCAADBEACC	0.00787	0.53269	DHADBCABDABAAD	0.00751	0,47488	DHADDCAADBHACC	0.00738	0. 52021
DHADBCABDABAAD	0.00678	0.53847	DHDDBCAADEBACB	0.00786	0.48225	DHADECABDABAAD	0.00701	0. 52722
CADDBCABDABAAB	0.00661	0. 54608	DHADDCAADBEACC	0.00624	0.48849	DHDDECAADEBACB	0.00686	0. 53618
DHDDBCAADEBACE	0.00610	0.55216	CADDECABDABAAB	0.00570	0, 49617	CADDBCABDABARE	0.00562	0.53981
CDCDFCDBDEBCCB	0.00505	0.55723	CDCDFCDBDBBCCE	0.00562	0.49881	CDCDFCDBDEBCCE	0.00468	0. 54468
CHDDBCARDABAAB	0.00501	0.56223	OACDFADADDEAAE	0.00458	0, 50460	DHDDECABDEBACB	0.00457	0.54906
DHADDCAADBEACD	0.00430	0. 56662	CHDDACABDABAAB	0.00415	0.50855	GACDF ADADDBAAB	0.00446	0. 55352
GDDCAAABDDEAAB	0.00431	0.57083	DEADGCAIIDAAAAC	0.00412	0. 51267	GDDCAKABDDBAAB	0.00428	0.55780
DHFDDCAADEBACE	0.00625	0. 57517	DEDDBCABDBBACE	0.00405	0.51672	CHDDBCABDABAAB	0.00415	0. 56185
GDDCEAABDDAAAE	0.00417	0.57934	GDDCBAABDDBAAB	0.00396	0. 32058	DHADBCAADABAD	0.00411	0.56606
GACDFADADDFAKB	0.00412	0. 58345	DHADHCABDABCCC	0.00385	0.52454	DHADBCABDABCCC	0,003e5	0.57001
DHDDBCABDEBACE	0.00408	0.58753	GACDF ADBDDEAAB	0.00382	0,52836	DAADBCABDAAAAC	0.00388	0.57390
DHADBCABDABCCC	0.00401	0.58156	CACDFCDBDABAAA	0.00370	0. 53206	DHADDCAADEBACD	0.00388	0.57778
DHADBCABDAAAAC	$0.00388$	$0,58$	GHADBEAADDAAB	0.00365	0.53572	GDDCBAABDDBAAB	0.00354	0.58133
CAFDDICABDAEAAB	0.00353	0. 588897	ODCDFADADDEEBS	0.00364	0.33835	GDCDF ADADDEBBE	0.00354	0.58487
DFFPDBCABDBBACB	0.00352	0.60249	DHADECADDABAAD	0.06361	0. 54206	GACDFADBDDBAAB	0.00354	0. 58841
GDCDFADADDEBRE	0.00327	0.60576	GDDCAAABDDEAB	0.00352	0,54648	GHAEJBAADDARAB	0.00345	D, 59186
GACDFADBDDEAAR	0.00322	0.60898	DHADDICAADEBACD	0.00332	0. 54.881	CHADBCABDEBEBC	0.00334	0, 58520
DHADECAADABAAD	0,00313	0.61211	CHADBCABDBEBBC	0.00314	0.55285	DFFDBCABDBAACB	0.00323	0,59843
CHADBCABOBBBRC	0.00312	0.61524	GDCDFADBDDEEES	0.00309	0. 55504	CACDFCDEDABCCB	C. 00320	0. 60163
DHADECAADAAAAC	0.00289	0.61823	CAFDBCABDAFAAE	0.00302	0.55906	DHADBCABDAAAAD	0.00310	0.60473
DRFDDCABDBBACE	0.00286	0.62118	DHFDDCAADEBACE	0,00299	0. 56205	DHADBCAADAMAAD	0.00305	0.60778
ODCEFADEDDAAAS	0.00296	0.62415	DHADACAADAAAAC	0.00297	0.56502	CACDFCDBDABAAA	0.00300	0.61078
OHADBEAADDAAAB	0.00274	0.62t88	DHADECABDAAKD	0.00288	0.56791	GDDCAANADDEAAE	6.00287	0.61375
DHACACAAAAAAC	0.00273	0.62962	GHADBEANDDANA	0.00264	0.37075	DEIADDCABDBBACC	0.00287	0,61671
CACDFCDBDABAAA	0.00270	0.63232	DHFDBCABDBBACB	0.00284	0.57350	GDCDFADEDDBEBE	0.00288	0.61959
CFADBCABDEBEBC	0.00268	0.63489	DHACACAAAAAAAC	0.00275	0. 57634	CFADBCABDBEBEC	0.00286	0.62245
CFADBCABDBBCCC	0.00266	0. 63785	ODCBFADBDDNAB	0.00272	0.37006	DHFDDCAADEEACE	0,00271	0.62516
DHADDCABDBEACC	0.00263	0.64028	CFADBCABDBBEBC	0.00288	0.88175	GHADBEAADDAAAA	0.00268	0.62784
DHADBCABDAAAAD	0.00263	0.64291	FHADBBAADCAAAB	0.00261	0.58436	DFADECAADAAAAC	0.00256	0,63050
ODCDFADEDDEBEBE	0.00262	0.64553	DHADACAADABCCC	0.00261	0. 58687	DCACACAABCAACD	0.00263	0.63313
CHADPCABDBECCC	0.00259	0.64812	CACDFCDEDABCCE	0.00260	0.58957	GDCBFADBDDAAAB	0,00257	0.63570
DHDDECAADEBCCE	0.00259	0.65071	DHFDDCABDEBACB	0.00255	0. 59213	DHADBCABDABCCD	0.00249	0.63818
DFFDDECADDEACA	0.00258	0. 65322	DHDDBCAADEAACB	0.00249	0.50461	CAFDBCABDAFAAB	0.00262	0.64061
DHADBCAADABCCC	0.00253	0.65583	GDDCAMAADPEAAB	0.00247	0. 59708	FHADBBAADCAAAB	0.00234	0.64285
DHADBCABDABCCD	0.00250	0.65833	CFADBCABDBECCC	0.00245	0.59954	DHACACALAKNAC	0.00233	0.64528
DGACACAABCAACD	0.00248	0.66082	CHADECABDBECCC	0.00242	0, 50195	DACCACDAAAAAAB	0.00226	0.64755
ODDCAAAADDBAAB	(b) 00243	0.66325	DLADBCABDABCCD	0.00238	0,60435	DTYDDCARDBBACB	0.00226	0.64980



GOCDFADBDDERS E． 02515 6． 62515
ODCDYADADDEABE O．D24B2 0．D6FES GHDBEANDtANAB O．02308 0．DE256 CACDFCDBDABAAE O．02205 0．07568 DHADBCASDALAAC 0.012020 .05850 FHADBBADCAMAB 0．01072 0.00810 SHADBCMDDRAAS D．0．027 0．10066 （IHADESARDDANA O．01018 0．11085 BHADBCABDDAAAE 0．00826 0． 12665 FHKDEBANDCAKA O 0083 0.13726 GDCDFADEDDEAA 0．00822 0．16550 OLCDFADADDEMA O．60802 0．25361䚴ADBCAMDDAAA 0.007900 .16166 DHADBCAADABAAC $0.00766 \quad 0.16826$ BHADBCABDDAAAA 0.007160 .27645 DHADBCADDABAAD 0.007140 .26350 BHADICAADCNABB 0.00688 0．18057 GHADELADDDAKE $0.06650 \quad 0.16767$ AHADHCABDDAAAS 0．00667 0． 20416 AHADECADDDAAE $0.00650 \quad 0.21063$ EEADHCANDABAAG 0.00648 0． 21712 PRADBCABDCAKA！O．D0628 0． 22335 BHADBChADCANAK 0.005660 .22683 GHADBBABDDANAA $0.06536 \quad 0.23621$ CDCDFCDBDBBCCB $\quad 0.00520 \quad 0.23042$ FHADEBABDCNAB 0.00518 O 24650 AHADBCABDDAKA 0.005180 .24876 ALADBCAADDAKAA 0.005050 .25464 ELADBCABDALAAC $0.00482 \quad 0.25875$ BHADHCABDCAKAA 0.004 BE 0.26466 FHDDBCAADALKAB $0.00 k 550.26018$ AFADBCABDCANAB $0.00648 \quad 0.27367$ AHADBCAADCAAAB 0.006400 .27807 SHACABABBDANAB 0．00418 0． 20226 FHDDBCAADBRAAB $0.00417 \quad 0.26642$ CACDFCDBDABAAA 0.006160 .28056 DRADBCKADALINAD 0.00607 0．28666 FHADBFiabDCAAMA 0.004050 .28871 DHADACABDAAMC 0.00397 0． 30268 OHAliALAACDAAAB $0.00396 \quad 0.30663$ EL．ADBCABDABAAD 0．00391 0． 31054 AHADBCABDCAAAK 0.003680 .31403 FHDDBCABDABARB $0.00347 \quad 0.31280$ AHALICAADCAAAA 0.00342 0． 32082 EEADBCAADABAAD D 003420.32634 GHBCHBAADDAAAB 0.003610 .32775 IELADHCAADABCCC $0.00336 \quad 0.33112$ GHACABABBDAAAA 0．00325 0．33637 ＂HDOHCABDBBAAB $0.00324 \quad 0.33761$ DHDDLECADDBACB $0.00324 \quad 0.34086$ DHADEAKADAAAAE 0.00315 D． 34601 OHABABAACDAAAA 0．00308 0．34700 DHADACABDANAAD $0,00303 \quad 0.35012$ DHDDHCABDBEACE $0.00285 \quad 0.35301$ CACDFCDEDAKCCE O 002586.35588 OHBEBHAADDANAB $0.00287 \quad 0.35827$ FHACABABECAAAB $0.00285 \quad 0.36162$ CHADECABDBBBBC $0.00284 \quad 0.36445$ CADDLC̈ABDAFAAB O． $00280 \quad 0.36725$ GACDF ADBDDFABB $0.00277 \quad 0.37002$ EHADBCANDABAC 0.002710 .37273 GACDFADADDBAB $0.00270 \quad 0.37543$
（obetikblibiliah 0．02566 0.02066 GDCDF RDADDLAAD 0.02007 0．04052
 CACDFCDBDABARS 0.020710 .06237 DFLADBCABDABARC 0.010660 .07301 HHADLCNDDLAKE 0．01052 0．05354 BLADHCABDDANAK 0.004680 .04300
 GHADBEAADDANA 0．006E7 0．11060 FHDDECMDBEAK 0.508410 .11061 BHADHCARDDAAA 0.006160 .12700 FHDDBCARDABAL 0.00600 0． 13400 BHADBCRBDDAKえh 0．00736 0．16256 E：ADBCARDABAC O． 007250.16975 HHADECAADCAMAE 0．00717 0．15600 FHDDHCADDALAAB 0．0072s 0．16603 DHADBCAADABAC 0.007050 .17106 AlLDDHCABDRAKAE 0.00606 0． 17806 FKDDBCABDEBAR 0．00605 0．15656 AHADBCAADDAAAS O．00665 O． 16163 FHADHBAADCAKhK D．00677 0． 1 BE 6 C ODCDF ADBDDBNA 0.00677 0．205B7 ЭDCDFADADDEKAK 0．0066 0．21200 BHADBCABDCKKAE BEADBCABDABAC DHADSCABDABAAD BHADBCARDCAKAK Af：ADBCABDDAAAA ABADBCAADDAAAK －SHADBCABDCんAAA GHADBLABDDAKA！ GLADRCABDCAAKB AHADICAKACAKAE CDCDFCD BDBECCE EEADBCABDABKAD DELADBCABDARAAC GHADEBABDDARKA ELADBCANDBAND FRADEBABDCAAKB AHADHCABDCAAA AHADHCAADEAKNA DHADBCAKDALKAD CACDFCD HDABANA GHACADABBDAKB YDDDHCABDCEAAB FDDDBCAADCBAAB FDDCACAADCAAAB GHABABAACDARAS DFADBEAADANAAB DHKDBCABDAAAAD FHADBEABDCAAAA FHDDHCAKDEEAKA FHDDBCAADAAKAD FDDCBCAADCAAAB FHDDRCAADABAAA OHACALABBDARAA FFFDBCAADBBAAB GHBCEBAADDAAAB EEBCBCAADMANC FHFDRCAADABAAB PHDDECABDAAAND EEADBCAADABCCC

## CSO 6

（buctinhbibinat $0.02435 \quad 0.02435$ GDCDFADADDHAS 0.02856 D．D4780 GADELANDERAKS 0．01267 0．0607？ DIALSICADDABAC 0.012680 .07357 EACDFCDEDADAD 0.012560 .08618 EHADBEADDEAKA 0.010600 .02661 GHADHAKDJNANA 0．01002 0． 10065 BEADHCAKDDKAK $0.01000 \quad 0.1166 \mathrm{~A}$ BHADACABDDんAKB 0．00606 0．12571 FHADHEんADChKAK 0．00620 0． 23386 GDCDFADHDDBAA 0．00805 0．16163 BKADHChADDAKA 0.00776 0．16071 GDCDFADADDBANA O． 00777 0．1576B DRKDICMANEAC 0,00765 5， 16513 DHADHGADDABAD 0.00706 D． 27221 BHADBCADDDAKA 0．00706 0．17827
 VEADBCAADALARC 0.066750 .16282

5 \＃BABDDAKAE 0．00668 0． 20052 ALK．BEASDDAKA 0.006360 .20585 BFADBCABLKCAKA 0．6DE17 O 21202 ALADHCADDDARAB 0.006050 .21807 BHADNCFADCKARA 0.00520 0． 22336 EEADBCABDRBAC 0.00523 D．22658 OHADBBABDDARA 0，00521 0．23380 FHDDECAKDK1AAS 0．00517 0．23857 CDCDFCDEDEBCCE $\quad 0.00514 \quad 0.26412$ FHADEBABLCARAE 0.005060 .24015 FHDDBCAKDEBKAD $0.00404 \quad 0.25408$ ALLADHCABDLLAKA $0.00493 \quad 0.25902$ BHADHCABDCAKAA 0．00480 0．26362 AHADHCRADDARAK $0.00470 \quad 0.26652$ AlLADHCABDCAKAB $0.00626 \quad 0.27278$ ALADBCAADCAAAE $0.00410 \quad 0.27666$ DHADBCARDABAAD 0.00400 0．28006 OHACATAEHDAKAD 0．00400 0．28506 FHDLHCABDABAA O．004D O． 28812 GACDFCDBDADAKA $0.00404 \$ 0.20316$ DFADBCABDAAAAC 0．003E7 0.20713 EEADECABDABAAD 0．00305 0．30108 FHADEDABDCANA $0.00383 \quad 0.30501$ OHABABMACDAAAE 0，0036B 0．308BO FHDDSCABDHBAB $0.00384 \quad 0.81273$ EFADBCAADABAAD $0.00352 \quad 0.31623$ AHADBCABDCAAAA $0.00332 \quad 0.3185 \%$ OHBCBBAKDLAAAB $0.00330 \quad 0.32266$ AIIADBCAADK：AAAA $0.00310 \quad 0.32606$ EEADBCADDABCCC $0.00328 \quad 0.32824$ OILACALABDDAAAA 0.003180 .33261 DHADBEAADANAKB 0.00316 0．33557 DHDDECAADBEACE $0.00304 \quad 0.33667$ OHKTANKACDKAKA O． 00305 6． 36166 DHADBCABDAAAAD 0．00303 0．34457 CACDFCDBDABCES $0.00263 \quad 0.36740$ CFADBCABSEBEBC $0.00280 \quad 0.35030$ FHKCABKJHCKALI 0．00276 0．35506 DHDDHCABDERACB $0,00276 \quad 0,35585$ OHESBBARDDAAB O．00276 0，35662 CADDECABDABAE $0.00272 \quad 0.36132$ GACDFADEDDBAK 0.002660 .36401 OACDFADADDEAAB $0.00262 \quad 0.36663$ FHABABhaCctakAB 0．00260 O． 36923

MFCK～FMACTIONA．CONTRLDUTIONS OF APB TO CSQ，NORNALIZED ON A SAMPLE BRSI
 GDCDF ADADDHARE 0．02859 0．05805 GHADILBKADRAKE 0.01368 0．07193 UHADLCALDABAAC 0.015660 .08561 BHADBCAKDDNAAB 0．01277 0.69837 FHADEBAKCANAE $0.01164 \quad 0.11001$ GACDPCDDDALAAE 0．01162 0．12163 BHADBCABDDAKAE 0.011210 .12286 AllADBCAADDAAAB 0.01120 E． 14395 SHADBBAADDNAK 0．01061 0．15475 AHADSCADDDAKAE 0．01060 0．16535 BRADBCAADDAKAA 0．006E3 0．1752 ODCDFADEDDRAKA $0.005^{2} 0 \quad 0.18408$ ODCDFADADDDARA $0.008430 .104 k 1$ FHADBEAADCAAAA 0．00905 0．20346 BHADBCABDDANA DEADHCAADABAAC BHADHCNADCHARE AHADECARDDAhんA AHADBCABDDんAAK DHADHCRBDABAND BHADBCABDCANAB NHADBCAADCANA！ GHADERAEDDAKAB AHADHCABDCAKAB BHADBCKADOANK EHADBCABDCAAAA AHADHCAKDCANRA OFADFFKシDDAKAA AHADBCABDCKAKA FHADEBABDCAAAB CDCDFCDEDEBCCB DHDDECAADBEACE DHADBCAADABAAD DHFDBCAADBRACE GHACABAEBDAAAB FHADBRABDCRAKA ELADBCAADABKAC DHADBCABDNAAAC GHBCBBAADDAAAB CADDBCABDABAAB CACDFCDSDABAAA DFDDBCABDBBACB GHEBEBAADDARAB GHABABAACDAAAB DHADBDANDAAAAB OHACABABBDAAAA CHADBCADDEBBBC EHADECAADABAAC EEADBCABDABARC GACDFADFDDBAAB GACDFADADDEAAB EFADBCABDAZAAD DHADBCABDAAAAD GHBCBBAADDAAAA GHACABAACDANAB CACDFCDEDABCOS FFIACABABFCAAAB CFADBCABDBBBBC GHBEHBAADDANAA OHABABAACDAMAA DHADBBAADAAAAA

C． 008720.21211 （0．00870 0．22088 3．00864 0．22052 1． 008640.23615 1． $00624 \quad 0.24638$ $0.00783 \quad 0.25432$ 0．00762 0．26184 $0.00754 \quad 0.26868$ $0.00722 \quad 0.27670$ 0． $00712 \quad 0.26382$ $0.00673 \quad 0.28055$ 0.005830 .20648 1．00567 0．30235 1． $00563 \quad 0.30780$ 10．00554 0． 31352 D． $00561 \quad 0.37893$ $0.00526 \quad 0.32416$ $0.00483 \quad 0.32901$ $0.00437 \quad 0.33330$ $0,004360,33775$ $0.00426 \quad 0.34207$ 0． $00422 \quad 0.34623$ $0.00407 \quad 0.35030$ 1． 004050.35435 0.003860 .35828 $0.00382 \quad 0.36221$ $5.00372 \quad 0.36503$ （ ）． $00362 \quad 0.36055$ 1．00362 0.37317 0.003560 .37672 $0.00351 \quad 0.38022$ 0．00331 0．38354 i， 003300.38684 D． $00326 \quad 0.3 p 012$ 1．00328 0．39340 b．00322 0．8日662 1． 003170.38978 0．00316 0．40295 1．00311 0．40606 $0.00307 \quad 0.40913$ 1． 002880.41211 D． $00285 \quad 0.41506$ 1． 002930.61788 D． $00283 \quad 0.42082$ $0.00282 \quad 0.42364$ 0.002760 .42641 0.002710 .42811

## CBQ 6

GDCDFADADDBAAB 0．C4013 0．04013 AHADBCAADDAAAB 0．03530 0．07552 BHADBCNADDANAB $0.03468 \quad 0.11021$ GDCDFADEDDBAAB $0.03246 \quad 0.14267$ AHADBCAADDAAA 0.027530 .17020 BHADBCAADDARAA 0.026980 .15218 AHAJBCABDDAAAB 0.026370 .22356 BHADECABDDAAAB 0．026：5 0．24870 AHADBCAATCAKAB $0.02384 \quad 0.27354$ SHADBCAADCAAAB 0.023590 .28713 AHADBCABDDAAM $0.02050 \quad 0.31763$ BHADBCABDDANA 0.020350 .33767 AHADBCAADCANA 0.016540 .35651 BHADBCAADCANK 0.018350 .37488 AHADBCABDCANAB 0.017760 .38265 HHADBCABDCAAAB $0.02770 \quad 0 \quad 41036$ AHADBCABDCAAA 0.013620 .42616 BHADBCABDCARAA 0．0137B 0．4376S ODCDFADADDBAAA 0．01320 0．45115 DFADHCABDAEAAC $0.02238 \quad 0.66353$ GDCDFADBDDSNA CACDFCDBDABAAB DHADBCAADABAAC DHFDBCAADBBACE DHADHCABDABAA！ DHADDCAADBBACC DHDDECAADEBACB CADDBCABDABAAB CDCDFCDBDBEBCCB DHDDBCABDBBACE GACDF ADADDBAAB DFADBCAALABAAD DHADBCABDAAMC ODDCAAABDDSAAB CHDDBCABDARAAB ODDCEAABDDEAAB ODCDFADADDBBBB GACDFADBDDEAAB DHADDCAADREACD GHADBEAADDAAAB CACDFGDRDAEAAA DHADBCABDABCCC CHADBCABDBBBBC CACDFCDBDABCCE DHADBCABDAANAD DHFDBCABDFBACB DBADBCAADAAAAC DHFDDCAADBBACE CFADBCABDBBEBC GDCDFADEDDBERB GDDCAAAADDEAAE DHADBCAADAAAAD GDCEF ADBDDANAB GHADBEAADDAAAA DHACACAMAMAAC FHADBBAADCAAAB CAFDBCABDABAAB DOACACAABCAACD DHADDEABDBEACC DHFDDCABDEBACE DACCACDAMAMAAB DHADBCAADEBACD $0.00213 \quad 0.63936$
－USQ b GDCDFADADDBAAB $\quad 0.03467 \quad 0.03467$ GDCDFADBDDENAB 0.031850 .06652 AHADBCAADDANAB $0.01681 \quad 0.08132$ CACDFCDBDABAAB $0.01466 \quad 0.09580$ AHADBCABDDAAAB $0,01528 \quad 0.10927$ BHRDBCAADDAAAB $0.01300 \quad 0.1222$ ？ DFADECABDABAAC $0.01230 \quad 0.13456$ BHADBCABDDAAAB $0.01152 \quad 0.14606$ AHADBCAADDANA $0.01152 \quad 0.15760$ ODCDFADADDEARA $0,011430,16903$ GDCDFADPDDEAAA 0.010530 .17956 KRADBCABDDANAA 0.010330 .16980 BHADEGCANDDAAAK 0．01011 0．20000 AHADE $=6$ LDCAAAB $0.00997 \quad 0.20997$ BRADBCABDDAAAA 0，00896 0．21882 AHADBCABDCAAAB 0，00893 0，22785 BHADBCAADCAAAB $0.00884 \quad 0.23668$ DEADBCAADABAAC $0.00851 \quad 0.24520$ BHADBCABDCAAAB 0．00784 0． 25304 AHADBCAADCANAA 0．00775 0．26079 DHADBCABDABAAD $0.00764 \quad 0.26823$ AHADBCABDCAAAA $0.00694 \quad 0.27517$ BHADBCAADCAKAA $0.00688 \quad 0.28205$ GFADBEAADDAAAB $0.00666 \quad 0.26871$ FHDDBCAADABAAB $0.00635 \quad 0.28506$ BHADBCABDCAAAA 0.00610 0． 30116 FHDDECAADEBAAB $0.00601 \quad 0.30716$ CDCDFCDBDEBCCE $0,005310.31247$ GHADEBKADEAAAA 0．00518 0.31765 FHDDBCABDABAAB $0,00515 \quad 0.32280$ CACDFCDBDABAAA 0，00471 0．32751 FEIADBBAADCAAAB $0.00468 \quad 0.33218$ FHDDBCABDBBAAB $\quad 0,00464 \quad 0.33682$ DHDDBCAADEBACB $0.00412 \quad 0.34094$ DHADBCABDANAAC $0.00386 \quad 0.36+92$ EEADBCAADABAAC $0,00384<.35,886$ GACDFADADDBAAB $0.00385 \quad 0.35271$ DHADBCAADABAAD $0,00385 \quad 0.35655$ EEADECABDABAAC $0.00366 \quad 0.36022$ FHADBEAADCAAAA 0．00364 0，36385 GACDFADBDDEAAB 0.003520 .36737 CADDBCABDABAAB 0.003470 .37084 DFDDBCABDEBACB $\quad 0.00336 \quad 0.37622$ GDCDFADADDEBRE $0.00304 \quad 0.37726$ DHADBCABDAAAAD $0.00302 \quad 0.38028$ DHADBCABDABCCC $0,00300 \quad 0.3832 \mathrm{~B}$ CRADBCABDBBBBC 0.002830 .38622 GDDCBAABDDEAAB $\quad 0,00288 \quad 0.38908$ GDCDF ADBDDEBSB $\quad 0.00284 \quad 0.38193$ GDDCAAABDDBAAB 0.002820 .39475 PDDCBCAADCAAAB $0.00260 \quad 0.39735$ CACDFCDBDABCCB $\quad 0.00257 \quad 0.39992$ FDDCACAADCAAAB $0,002520.40243$ DACCACDAAAAAAB $0.00252 \quad 0.40485$ FDDDBCAADCEAAB $0.00252 \quad 0.40746$ CFADBCABDEEBBC 0.00251 D．4099？ DHACACAAMAMAC $0.00240 \quad 0.41237$ CHADBCABDBBEBD $0.00238 \quad 0.41476$ FHDDBCAADAANAB $0.00230 \quad 0.41706$ GDCCFADBDDAAAB $0,00226 \quad 0.41831$ DRADBCAAOAANAC $0,00224 \quad 0,42155$ FDDDBCABDCBAAB $0.00223 \quad 0.42378$

FCMR - FKACTIONAL CONTRIEUTIONS OF APB TO CNQ. NORMALIZED ON A GTOEAL BASIS

AHADBCABDDAAAB $0.07526 \quad 0.07516$ AHADBCAADDAAAB 0,06706 0, 14222 AHADACABDDAAA $0.05852 \quad$ D. 20074 ALIADECAADDAAA $0.05214 \quad 0.25288$ AHADBCABDCAAB $0.05095 \quad 0.30383$ BHADBCAADDAAAB 0.045160 .35000 ARADECAADCAAAB $0.04515 \quad 0.28518$ AHADHCABDCAAAA $0,039670,43465$ BHADBCADDDANAA 0.0555060 .47074 ABADBCAADCAMAA $0.03520 \quad 0.50603$ DHADHCAADABCCC $0.03316 \quad 0.53823$ BHADBCABDDAAAB $0.03234 \quad 0.57157$ BHADBCANDCAAAB $0.03112 \quad 0.60268$ BHADBCABDDANA $0,025150.52784$ BHADICAADCAAAA $0.02431 \quad 0.65214$ BBADBCABDCAAAB $0.02327 \quad 0.67541$ DHABACNABBAAAD $0.02987 \quad 0,69538$ BHADBCABDCANA 0.018110 .71349 DHADACABDABAAC $0.01433 \quad 0.72782$ DEADBCAADABCCD 0.014190 .74201 DHADBCASDABARC $0.01249 \quad 0.75450$ DHABACAABBAAAC 0.012350 .76685 DHADBCABDABCCC $0,010500.77736$ GDCDFADADDBAAB $0.00947 \quad 0.78683$ DCABACAABEANAD 0.008030 .76586 DHADBCABDABAAD $0,06793 \quad 0,80378$ DHADHCABDABCCD 0.007020 .81080 DDDCARABDCBAAB $0.00681 \quad 0.81761$ DHADBCABDAANAC $0.00661 \quad 0.82422$ DHACACAANANAAC 0.005410 .82863 ПDDCBAABDDBAB $0.00476 \quad 0.83438$ DEADOECAADABKAD $0.00466 \quad 0.83804$ GDCDFADBDDEAAS $\quad 0.00452 \quad 0.84357$ DHADBCABDAMAD $0.00463 \quad 0.64800$ DHACACAMAAMAD $0.00413 \quad 0.85213$ GDCDFADADDBAAA $0.00312 \quad 0.85524$ ODCCBADDDDBAAB $0,00257 \quad 0.85781$ DFABACAABCANAC $0.00240 \quad 0.86022$ DDDCAAABDCBAAA 0.002270 .86248 DHARACAABCAMD $0,002120.86461$ CACDFCDBDALAAB $0.00184 \quad 0.86644$ BHADDCABDBEACE 0.001750 .85818 ODDCAAASDDEAAB $0,00162 \quad 0.86981$ DTADACABDABBRC $0.00161 \quad 0.871 \times 2$ DGABACAABCAAAD 0.001560 .87298 GDDCBAABDDBAAA $0.00155 \quad 0.87453$ FDDCBAABDCBAAB $0.00154 \quad 0.87607$ GDCDFFADBDDEAAA 0.001480 .87757 AHADBCABDANAAB 0.001490 .87806 CDCDFCDBDBBCCE 0.001470 .88053 DACCACDAAAAAB $0.00144 \quad 0.88197$ BHADDCABDBEACA 0.001350 .88332 DDCCAADBDCEAAB $\quad 0.00130 \quad 0.86462$ ODCCAADEBDEAAB $\quad 0.00128 \quad 0.58580$ DHEBACAABEAAAD $0.00121 \quad 0.88712$ DHADECABDABACC $0.00120 \quad 0.88832$ DHADBCAADAAAAC $0.00120 \quad 0.88952$ DHADBCAADABBEC $0.00118 \quad 0.69071$ CHADBCABDBABBC $0.00118 \quad 0.89189$ DHADHCADDAKACC 0.001370 .89306 DHADECAADABACC 0.001110 .88417 DACCACDAAAAAAA 0.00105 0.89525

AHADBCABDDAAAB $0.04251 \quad 0.04251$ BHADBCAADDANAB 0.060740 .08325 DFIADSCADABCCC 0.037390 .12064 AHADFCAADDAAB $0.03727 \quad 0.15751$ BRADBCABDDAAAB $0.03584 \quad 0.18376$ AHADBCABDDAAAA $0.03310 \quad 0.22685$ BFADBCAADDAAAA $0.03168 \quad 0.25854$ DHABACAABBAAAD AHADBCAADDAAAA AHADBCABDCAABB BFADBCABDDAAAA BHADECAADCAAAB BHADECABDCAAAB AHADBCAADCANAB AHADBCABDCANA DHADBCABDABAAC BHADBCAADCAAAA BHADBCABDCAAAA ARADBCAADCARAA DHADBCARDABAAC DEABACAABBAKAC DFADBCAADABCCD DGABACAABBARAD GDCDFADADOBAAB DHADECABDABAND DHADBCABDABCCC DEADBCABDARAAC DDDCA:ABDCEAAB ODCDF FDEDDBAAB DFIACACARAAAAAC DHADBCABDABCCD DEADBCAADABAAD DFIADBCABDAAAAD GDDCBAABDDBAAB DHIACACARANAAD DFABACAABCAARC ODCDFADADDBAAA CACDFCDEDABAAK DHABACAABCAAAD DDTXCANAHDCBAAA GDCCBADEDDBAAB DACCACDAAAMA GDCDF ADEDDEAAA DCAEACAABCAAAD GDDCAAABDDBAAB CDCDFCDBDBBCCB CHADBCABDBABBC DACCACDAAANAA DHADBCABDABRBC CFADBCABDEABBC DFABACAABBAAAC DHBBACAABBAKAD DRADBCAADAAACC GDDCBAABDDBAAA DRADBCAADAAAAC FDDCBAABDCBAAB DHADBCAADABACC DDCCAADBDCBAAB GDCCAADBEDBAAB DGADBCAADCAACD DHADBCAADABBBC DFAEACAABCAAAD
0.02983 0.28837 $0.02888 \quad 0.21735$ 0.02879 0. 36613 $0.02787 \quad 0.37401$ 0.02776 0. 60176 $0.02527 \quad 0.42703$ $0.02518 \quad 0.45221$ 1.02241 0.47462 $0.02176 \quad 0.49636$ $0.02166 \quad 0.51804$ $0.01866 \quad 0.53770$ $0.01965 \quad 0.55735$ 0. 018070.57642 0.01865 0.59488 0.015980 .61086 0. $01348 \quad 0.62435$ 0.01332 0.63767 0. $01217 \quad 0.64984$ D. $01200 \quad 0.66184$ t. 010480.67232 0.010170 .68249 0. 008810.68130 0.00810 0.69840 $0.00798 \quad 0.70738$ $0.00785 \quad 0.21525$ $0.00723 \quad 0.72248$ $0.00632 \quad 0.72880$ $0.00618 \quad 0.73498$ 0.005450 .74043 0.00430 0.74482 $0.00433 \quad 0.74914$ 0.003810 .75296 D.00339 0.75635 0. $00339 \quad 0.75976$ 0.00327 0.76301 $0.00282 \quad 0.76593$ $0.00281 \quad 0.76873$ 0. $60278 \quad 0.77151$ 0.00268 $\quad 0.77420$ 0.00258 0.77678 $\begin{array}{ll}0.00246 & 0.77924\end{array}$ 0.00246 0.78168 $0.00221 \quad 0.78388$ 0.00220 0.78609 0.00218 0.78827 D. $00210 \quad 0.78036$ 0.00207 0.72243 1. 002060.78449 t. $00205 \quad 0.78655$ 0. 001890.78854 - 0.001840 .80048 C. $00188 \quad 0.80236$ C. $00188 \quad 0.80423$ 6. $00186 \quad 0.80610$ $0.00182 \quad 0.80782$

AHADBCABDDAAAB 0.059050 .05984 BHADECNADDAAE $0.05 \quad 4.21531$ AHADBCASDDAAB 0.01673 O 16605 EHADBCAEDDAAAB O.04E55 0.21458 AHADBCABDDANA $0.04658 \quad 0.26127$ BHADBCAADDANA 0.043130 .30430 AHADBCABDCAAAB $0,04050 \quad 0.344 * 0$ AHADBCAADDAAKA 0.038440 .38426 BHADBCABDDAAAA $0.03775 \quad 0,42189$ BHADBCAADCANAB 0.037530 .45852 BFADBCABDCAAAB $0.03472 \quad 0,68423$ AFADBCKADCAAAB 0.03424 0.5284? AHADBCABDCANAA 0.051530 .56060 BFADBCAADCAAAA 0.029310 .58930 BHADBCABDCAARA $0.02701 \quad 0.62632$ AHADECAADCNAA 0.026730 .64304 DFADBCAADABCCC 0.023150 .66618 DHABACAABEAAAD 0.012530 .67872 DHADBCAADABAAC 0.011350 .69006 GDCDFADADDBAAB $\quad 0.01082 \quad 0.70088$ GDCDFADEDDFAAB $\quad 0.00990 \quad 0.71078$ DHADBCAADABCCD $0.00990 \quad 0.72068$ DHADECABDAFAAC $0.00884 \quad 0,73052$ DHABACAABBAAAC $0,007750.73827$ DFADBCABDABCCC $0.00758 \quad 0.74585$ DEADBCABDABAAD 0.6 $524 \quad 0.75208$ DHAE ABCAAAD $0.00593 \quad 0.75801$ DCABM ABBAAAD $0,005660.76367$ DHADECABDAAAAC $0.00523 \quad 0.768 B 0$ DHADBCABDABCCD $0.00504 \quad 0.77384$ DHADBCAADABAAD $0.00506 \quad 0.77898$ DFABACAABCAMAC $0,00484 \quad 0,78382$ DGARACAABCAAAD $0.00436 \quad 0.78 E 18$ DDLCAAABDCBAAB $0.00427 \quad 0.76245$ DHADBCABDAAAAD 0.004040 .70648 GDCDFADADDBAAA $0.00357 \quad 0.80006$ ODDCAAABDDEAAB $0.00355 \quad 0.50361$ CACDFCDBDABAAB $\quad 0.00353 \quad 0.80714$ DFACACAAAARAAC $0.00364 \quad 0.81058$ DHBBACAABBAAKD $0.00338 \quad 0.81387$ GDCDF ADEDDEANA $0.00328 \quad 0.81725$
DHADBCAADAAACC $0.00326 \quad 0.82051$ GDDCEAABDDRAAB $\quad 0.00313 \quad 0.82364$ DHADBCAADABACC $0.00307 \quad 0.82670$ DACCACDNANANAB $0.00291 \quad 0.62961$ DHACACMAAASAD $0.00261 \quad 0.83222$ DHADBCAADAAAAD 0.002430 .83466 BKADDCABDBBACE $0.00240 \quad 0.83706$ DACCACDKARAARA 0.002180 .63826 CEADBCABDBABBC $0.00215 \quad 0.84240$ DEBBACAABBAMAC $0.00214 \quad 0.84354$ DFADDBCAADAAACD $0.00209 \quad 0.84563$ DHABACAABCAAAC $0.00208 \quad 0.84771$ DHADBCAADAAAAC $0.00201 \quad 0.84872$ DFIBACAABEAAAC $0.00185 \quad 0.85167$ DHADBCADDABACD $\quad 0.00188 \quad 0.85355$ FHADDCABDESACA 0.001850 .85541 CFADBCABDBABBC $\quad 0.001850 .85725$ CDCDFCDBDEBCCB $\quad 0.001710 .85896$ ODCCEADBDESAAB $0.00170 \quad 0.86066$ DOADBCAADCAACD 0.001670 .86232 DFABACAABCAAAD $0.00162 \quad 0.86386$

Table D. 1 (continued)

FCMK - FRACTIONAL CONTRIBUTIONS OF APF TO CSO, NGNMLIZED ON A OLOBAL BASIS
 DHABACAABBANAD 0.017310 .03621 GDCDFADHDDDAE $0.01655 \quad 0.05238$ DHADECABDABAAC $0.01468 \quad 0.06756$ OHADEBANDDAAB $0.01632 \quad 0.08188$ GDCDFADADDEAAB $0.01350 \quad 0.08538$ DILADBEADAMAB $0,01320 \quad 0.2085$ B DFABACAABCAAAC $0.01280 \quad 0.12148$ GHACABABBDARAB $0.01222 \quad 0.13371$ GHABABAMADAASB 0.01117 0.14487 GHADBBAMDDARAA $0.01116 \quad 0.25602$ CACDFCDBDABKAB $0.01106 \quad 0.16707$ DILABACAABFAAAC 0.010700 .17776 DFIADEBADAAAAA 0.010160 .16797 FHADBBAADCAAAB 0.010030 .19800 BHADBCABDDMAB 0.010030 .20802 BHADBCAADDAAAB 0.008760 .21776 OFACABABBDAAAA $0.00850 \quad 0.22727$ DFADBCABDKANAC 0.008250 .23651 DHADBCAADABAAD $0,008180.24570$ OHABABMADAAAK $0.00868 \quad 0.25458$ DHADBCABDABAAD 0.008670 .26306 FHACABABBCMAAB 0.008150 .27121 DACBACDEBAAAAB 0.007910 .27012 DGABACAABBAAAD $0.00783 \quad 0.28684$ FHKDBEANDCAAKA $0.00780 \quad 5.26475$ BHADBCABDDARAA $0.00780 \quad 0.30256$ DACCACDARAKAKE 0.007750 .31029 DHADBCAADABCCC $0.00768 \quad 0.31798$ BHADECAADDAAAA $0.00758 \quad 0.32556$ FLABBEAAACAAAB 0.007450 .33300 AHADBCABDDAAAB 0.007380 .34038 DHADBCABDAMAAD $0.00738 \quad 0.34777$ BHADBCABDCAAAB $0.007010 .35 \div 7 \mathrm{n}$ BHADHCAADCAAAB 0.006640 .3614 : FHACABABBCAAAA $0,00634 \quad 0.36776$ AHADBCADDDAAAB $0.00633 \quad 0.37608$ DACBACDBEAAAAA 0.006130 .38022 DDDCAAABDCBAAB $0.00590 \quad 0,38612$ DACCACDAAAAAAA 0.00581 0.39193 FHABABAAACAMA $0,005780.38772$ AHADBCABDDAAAA $0.00576 \quad 0.60348$ CHADACABDBABBC $0.00574 \quad 0.40821$ GDCDFADSDDEAAA 0.005530 .41675 BRADBCABDCAMA $0,005450,42020$ DHABACAABCAAAD 0.005330 .42553 DFABACAMBBMAC $0.00520 \quad 0.43072$ BHADBCAADCAAAA $0.00518 \quad 0.43580$ AHADBCABDCAAAB $0.00500 \quad 0.440$ PO CFADBCABDEABBC $0.00482 \quad 0.44583$ AHADBCANDDAAAA $0.00402 \quad 0.45075$ DHACACAAAAAAAC $0.00481 \quad 0.45555$ GDCDFADADDBAAA $0.06446 \quad 0.46001$ DCADPBCAADCMCD $0.00444 \quad 0.46465$ EEADBCAADABAAC $0,00431 \quad 0,46876$ DF ABACMABCAAAD $0.00431 \quad 0.47307$ AHADBCAADCAAAB $0.00428 \quad 0.47735$ CDCDFCDEDEBCCB $0.00421 \quad 0.48158$ GDOCAAABDOBAAB $0.00988 \quad 0.48553$ DHDDBCANDAAAAB 0.00383 0.48946 DGABACAABCAAAD $0.00392 \quad 0.48338$ AHADBCABDCAMA ${ }^{-1} 0.00389 \quad 0,48728$

CS2 5
 GOCDFADBDDEAAB $0.01409 \quad 0,02943$ BHADHCAADDAAAB $0.01380 \quad 0.04323$ BHADBCABDDANAB $0.01326 \quad 0.05649$ DHABACAABBAAAD 0.013260 .06873 GDCDFADADDBAAB $\quad 0.01225 \quad 0.08188$ GHADBBAMDDAAS $0.01173 \cdot 0.06371$ AHADBCABDDAMAB $0.01146 \quad 0.10517$ DHADHCABDABAMC 0.011350 .11651 BHADBCAADDANA 0.010730 .12724 BHADBCABDDAMA $0.01031 \quad 0.13756$ DFABACAABCAAAC $0.610240 .1677 \theta$ DHADBBANDAAAAB $0.01017 \quad 0.15796$ AHADFCAADDAAAB $0.0 C 0550.16780$ ORACABABBDANAB 0.009530 .17733 BHADBCAADCAAAB $0.008410 .1867 k$ BFADBCABSCAAAB 0.009320 .16605 CACDFCDADABAAB $0.00830 \quad 0.20535$ OHADBBADDDAAA 0.003130 .21446 AHADBCABDDAAA $0.00692 \quad 0.22340$ GHABABANADAAB $0.00862 \quad 0.23202$ FHADBBARDCAAAB $\quad 2.00832 \quad 0.24034$ DHABACAABEAAAC $0.00818 \quad 0.24853$ DFADDBEALIANAAK $0.00785 \quad 0.25638$ DHADBCAADABCCC $0.00778 \quad 0.26415$ AHADBCABDCAMAB 0.007750 .27190 DACBACDBBAANAB $0.00770 \quad 0.27861$ AHADBCAADDAAAA $0.007 \in 6 \quad 0.28726$ GHACABABBDAAAA 0.00741 0.29467 DHADBCAADABAAD $0.00740 \quad 0.30207$ BHADECAADCAAAA $0.00734 \quad 0.30941$ - VADBCABDCARAA 0.007250 .31666 D8 IDBCABDAAAAC $0.00718 \quad 0.32385$ F AADBCABDABAAD $0,00683 \quad 0.33068$ GHAB BAFADAAAA $0,006710.33738$ AHADBCAADCAAAB $0.00656 \quad 0.34405$ FHADBBAADCAAKA $0.00648 \quad 0.35053$ FHACABABBCAAKB $0.00636 \quad 0.3568$ B DACCACDANAAKB $0.00615 \quad 0.36304$ AHADBCADDCAKAA 0.00603 0.36507 DOABACAABBAAD $0.0058 B \quad 0.37506$ DACBACDEEAANAA $0.00567 \quad 0.36103$ DuADBCABDAANAD 0.005780 .38681 FHABMBANACMAAB O.D0575 0.39256 ARADBCAADCAMA $0.00520 \quad 0.39776$ FHACABABBCAAAA $0.00484 \quad 0,40270$ EEADBCAADABAAC $0.00490 \quad 0.40760$ GDCDFADEDDEAA 0.00468 0.41226 DACCACDAMAMAA $0.00461 \quad 0.4168 B$ CHADRCABDEABESC $0.00457 \quad 0.42146$ DHABACAABCAAAD $0.00456 \quad 0.42602$ DDDCAAABDCEAAB 0.00451 0.63054 FHABABAMACAMA $0.00447 \quad 0.43501$ DFABACAABBAAAC 0.00412 0.43913 GDCDFADADDEAAA 0.004050 .44318 CFADHCABDBABBC $0.00393 \quad 0.44710$ DHDDECAADAANAB 0.003750 .45085 DHACACAAARAAAC $0.00368 \quad 0.45454$ EEADBCAADAAAAC $0.00353 \quad 0.45807$ DOADBCAADCAACD $0.06352 \quad 0.66159$ CDCDFCDBDBBCCB $0.00344 \quad 0.46503$ DFABACAABCAAAD $0.00342 \quad 0.46845$

DHADICNADAEKAC O. $01654 \quad 0.01886$ DHABACMABBAKD $0.01754 \quad 0.03638$ GDCDFADEDDBAAB $0.01564 \quad 0.05301$ DHADBCABDABAAC $0.01482 \quad 0.06763$ GHADHBLADDAKAB $0.01635 \quad 0.06216$ GDCDFADADDBAAB $0.01344 \quad 0.09562$ DHEDEBAADANAS $0.01331 \quad 0.10894$ DFABACAABCAAAC $0.0^{12} 277 \quad 0.12171$ GSACKBABBDABAB $0.01230 \quad 0.13401$ GHABABRASDAAB $0.01126 \quad 0.14527$ GHADEDADDAAAA $0.51116 \quad 0.15643$ CACDFCDBDABAAB $\quad 0.01092 \quad 0.16733$ DHABACNABBNAC 0.010850 .17820 DEADBEADAARAK $0.01028 \quad 0.18646$ FHADBBAADCAAAB $0.01004 \quad 0.18852$ BHADBCABDDAAAB $0.00878 \quad 0.20630$ CHRCABAESDAARA 0.00057 0.21787
BHADBCAADDAAB $0.00840 \quad 0.22720$ DHADBCABDAAAAC $0.00927 \quad 0.23655$ DHADBCAADABAAD $0.70818 \quad 0.26573$ DHATHCABDATAKD $0.00876 \quad 0.25448$ GHABABAAADAAAA $0.00675 \quad 0.26324$ FHACABASBCAAAB 0.00821 0.27165 DGABACAABEAAAD $0.00783 \quad 0.27938$ FHADPEAACARAK $0.00781 \quad 0.28716$ DACBACDBBANAAB 0.007730 .28482 DACCACDAAAAKAB $0.00767 \quad 0.30256$ BHADBCABDDAAA 0.007610 .31020 DHADBCAADABCCC 0.007550 .31780
FHABABAKACAAAB $0.00751 \quad 0.32530$
DFIADECABDAAKAD 0.007380 .33266
BHKDBCAADDAAA 0.007310 .34000
AHADLCABDDAAAB $\quad 0.00684 \quad 0.36583$
BHADBCABDCAAAB O 0068k 0.35367
BHADBCAADCAAAB $0,00641 \quad 0.36008$
PHACAliABBCAAAA $0.00638 \quad 0.36646$
DACBACNBBAAAAA $0.00600 \quad 0.37245$
DDDCAAABDCBAAB $0.00598 \quad 0.37843$
AHADBCAADDANAB $0.00584 \quad 0.38428$
FHABABAACAAAA 0.00583 O. 39011
LACCACDAAAAAAA $0.00576 \quad 0.30587$
CHADBCABDBABBC $0 . \operatorname{cos6B} \quad 0,40155$
ODCDFADSDDEAAA $\quad 0.00552 \quad 0.40707$
DHABACAABCAAAD $0.00562 \quad 0.41248$
AHADBCABDDAAAA $0.00532 \quad 0.41781$
SHADBCABDCANA $0.00532 \quad 0.42313$
DFABACAABBMAC $0.00514 \quad 0.42828$
BHADBCAADCAAAA $0.00500 \quad 0.43327$
CFADBCABDBABBC $\quad 0.00486 \quad 0.43815$
DHACACAKAAARAC $0.00487 \quad 0.44302$
AHADBCABDCAAAB $0,00462 \quad 0.46764$
AFADBCAADDARAA $0.00454 \quad 0.45218$
GDCDFADADDEAAA $0.00444 \quad 0,45663$
DGADECAADCAACD $0,00440 \quad 0.46102$
EEADBCMADABAAC $0.00438 \quad 0.46541$
DFABACAABCAAAD $0.00427 \quad 0.46968$
CDCDFCDBDEBCCB $0,00418 \quad 0.47386$
DGABACAABCAAAD $0.00399 \quad 0.47785$
GDDCAAABDDBAAB $0.00398 \quad 0.48183$
AHADBCANDCAAAS $0.00396 \quad 0.68578$
DHDOBCAADANAKB $0.00391 \quad 0.48970$
DACBACDABAAAAB $0.00378 \quad 0.48368$

Table D. 1 (cont inved)

FOMR - FRACTIONAL CONTKIBUTIONS OF APB TO CSQ. NORMALIZED ON A GLOBAL BASLE
CBSO



SEQUOYAH BASeCase

Figure D.1. Exceedance Frequencies for Risk; Sequoyah: All Internal Initiators



SEQUOYAH BaseCase

Figure D.1. (continued)



SEQUOYAH BaseCose

Figure D.1. (continued)

## APPENDIX E

SAMPLING INFORMATION
INTRODUCTION ..... E. 1
E. 1 LHS INPUT FILE SEQ.INP LISTING ..... E.1-1
E. 2 USER DISTRIBUTION SUBROUTINE USRDSTSEO.FOR LISTING ..... E. 2-1
E. 3 EXTENDER CODE EXTLHS.FOR LISTING ..... E. 3-1
E. 4 POWER RECOVERY CURVE CALCULATIONAL CODE MODEL.FOR LISTING ..... E. 4-1
E. 5 POWER RECOVERY DATA POST-PROCESSOR CFROB.SAS LISTING ..... E. 5-1
E. 6 POWER RECOVERY PROBABILITY DATA CPROB.DAT LISTING ..... E. 6-1
E. 7 EXTENDER CODE DATA EXTDIS,DAT LISTING ..... E. 7-1
FICURE
E. 1 File Structure Used to Generate Final LHS Sample for Sequoyah ..... E. 1

## APPENDIX E

## SAMPLTNG INFORMATICN

## INTRODUCTION

The Sequoyah analysis uses Latin Hypercube Sampling (LHS)E.1 as implemented by the LHS program ${ }^{8} 2$ in the propagation of uncertainties. The variables sampled in the atialysis for Sequoyah are listed in Tables $2.2 \cdot 5,2.3 \cdot 2$, and 3.2 .1 of this report. Several input files and programs are used to generate the final LHS sample for Sequoyah. The relationship between these files and programs is depicted in Figure E.1. These files were used to generate a sample of size 200 for Sequoyah.


Figure E.1. File Structure Used to Generate Final LHS Sample for Sequoyah

The input to the LHS program, SEQ.INP, is listed in Subsection E.1. This file contains the input distributions from the accident frequency analysis, the uncorrelated distributions used in the accident progression analysis and the random numbers used in the source term analysis (see Section 3.2.3). As indicated at the end of the LHS input in Subsection E.1, this file also contains 35 pairs of variables that were required to have a rank correlation of 0.999. E.3 There are many other groups of distributions that have a rank correlation of 1 that are handled in the "extender code." For each of these groups of correlated distributions only a single variable is included in the input file listed in Subsection E. 1.

Some of the sampled variables have user defined distributions, These distributions are implemented by the subroutire USRDST issted in Subsection t. 2. These user-deftned distributions are defined in several ways. The input to LAH for such distributions contains an integer flag which characterizes how the distribution is described as well as the numeric data needed for this description. The nature of these flags is described in combents at the begtnning of USRDST.

The LHS input in Subsection E. 1 generates an LHS of size 200 from 108 variables. However, this is not the sample that is actually used as input to the integrated analysis for Sequoyah. Ruther, certain varlables are converted into a format that is easier to use in the integrated analysis or were expanded in additional variables with the "extender" code ExTLHS, which is showe in Subsection E.3. Five types of conversions occur and are listed below.

1. Variables used as indicator variables for events that elther always occur or never occur are converted into "0.1" (zero-one) variables. Such varlables are identifice by an integer flag of 2 in the ths input shown in Subsection E.1. The sub-routine USRDST shown in Subsection E. 2 recognizes such variables by the integer flag just indisated and outputs a section of FORTRAN code which identifies these variables and the number of "0.1" cases to be generated in the extender code EXTLHS. This FORTRAN code is then inserted inte the extender code EXTLHS; the Inserted code for Sequoyah can be seen in EXTLHS in Subsection E. 3 immediately after the comment ine "C READ IN THE NECESSARY NO OF BRANCHES FOR THE $0-1$ VARIABLES," A single " $0-1^{\prime \prime}$ variable is generated for each case associated with an indicator variable in the original sample. These variables are inserted into the extended sample starting at the location of the original indicator variable; an appropriate shift is made when several indicator variables appear in sequence.
2. The frequency of Alpha mode failure is modified to incorporate a reduced frequency of occurrence for conditions involving high pressure in the reactor coolant system (RCS). The Alpha mode frequency sampled in the original LHS is assumed to be for events occurrine when the RCS is at low pressure. Alpha mode fallures are believed to be less likely when the RCS is at high tressure. This is implemented by introducing a second variabie into the sample which is one-tenth the original Alpha mode frequency. This new frequency for Alpha mode fallure is used when the RCS is at high pressure.
3. The probability of offsite power recovery is generated irom and indicator variable included in the original sample. This variable is identified by the subroutine USRDST by the integer flag 3. This variable is then used in EXTLHS to select 200 sequences of power recovery probabilities from a set of 500 sequences of power recovery probabilities. These recovery probabilities are defined by a model for offaite power recovery developed by 1 man and - Hora. E. 4 The actual calculation of power recovery curves is performed by the program MODEL presented in Subsection E.4. In turn, the output of MODEL is post-processed by an SAS program to
generate sonditional probabilities of power recovery for specified time intervals given that power has not been recovered in a previous time interval; this program is given in Subsection E.S. The result of the operation of the programs in Subsection E. 4 and E. 5 is the 500 sequences (1.e.. rovs) of power resovery probabilities given in Subsection E. 6 . Each row in Appendix E. 6 consists of 12 conditional probabilities for power recovery defined as follows:

Col. 1

1	1 and 2.5 h	1 h
2	1 and 4.5 h	1 h
3	4 and 6 h	4 h
4	4 and 10.5 h	4 h
5	7 and 12.5 h	7 h
6	2.5 and 9 h	2.5 h
7	4.5 and 9 h	4.5 h
8	6 and 9 h	6 h
9	10.5 and 17 h	10.5 h
10	12.5 and 17 h	12.5 h
11	9 and 24 h	9 h
12	17 and 24 h	17 h

For each observation in the original sample, one row is selected from the table in Subsection E, 6 with the indicator variable in the original sample (this is the last variable in the LHS input given in Subsection E.1). Then, the value for the indicator variable is dropped from the original sample and the sequence of 12 power recovery probabilities from Subsection E. 6 is inserted in its place.
4. EXTLHS also generates variables for all of the correlated variables that were not handled in LHS. These variables are contained in the efle EXTDis. DAT which is listed in Subsection E. 7 . As mentioned previously, a single variable was included in LHS for each group of correlated variables that are handled in ExtLus. From this single variable a group of correlated variables is obtained. For example, the amount of hydrogen that is generated in-vessel is correlated for the 7 different cases in Question 38 in the APET, as well as being correlated with the occurrence of temperature-induced hot leg failure and temperature induced steam generator tube rupture (SGTR). In the LHS input, SEQ, INP, a 5 Ingle variable appears for these distributions. For each observetion, the single variable from the original sample is used to obtain values for each of the other variables from the distributions in Subsection E.7. In the extended LHS, the orfginal single varlable is dropped and the new correlated variablee are added.
5. In addition, EXTLHS also generates and appends to the end of the extended LHS eight "0-1" variables for reactor coolant pump (RCP) seal loss of coolant aceldents (LOCA) for use in the accident frequency analysis. These variables and their mean probabilities are listed below:

RCP - LOCA - 240 CPM		EF	SEAL LOCA at 90 min		5.0E
RCP-LOCA-620AVG		to 1000	gpm RCP seal LOCA at	150 min	1.25E-1
RCP-LOCA - 433 GPM		gpin RCI	seal Loca at 90 min		$5.0 \mathrm{E}-3$
RCP- LOCA-717AVG		to 100	gpm RCP seal LOCA at	210 min	. 0 E .
RCP - LOCA-1000GPM	1440	gpm RCP	$P$ seal LOCA at 90 min		$5.25 \mathrm{E}-2$
RCP-LOCA-1920GPM	183	gpe RC	saal LOCA at 90 min		5.0E-3
NORMAL		fallur			2.7 E

The original LAS that contained 108 variables was extended to include 225 variables that were used in the integrated analysis.

References
E.1. M.D. McKay, W.J. Conover, and R.J. Beckman, "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code," Tectnometrics. 21, 239.45, 1979.
E.2. R.L. Iman and M.J. Shortencarier, "A FORTRAN 77 Program and User's Guide for the Generation of Latin Hypercube and Random Samples for Use With Computer Models," NUREG/CR-3624, SAND83-2365, Sandia National Laboratories, March 1984.
E.3. R.L. Iman and W.J. Conover, "A Distribution-Free Approach to Inducing Rank Correlation Among Input Variabies." Commun. Stat. Simul. Comiput. 11 (1982), 311.334
E.4. R.L. Iman and S.C. Hora, "Modeling Tires to Recovery and Initiating Event Frequency for Loss of Off-Site Power Incidents at Nuclear Power Plants," NUREG/CR-5032, SAND87-2428, Sandia National Laboratories, 1988

## SUBSECTION E. 1

```
TITLE EEQUOYAH 2/21/60
KANLOM SERED -652668715
NOBS 200
LOMMORMAL ACT-YA
0.46235-04 0.203日E-0)
LOSNORMAL hOV-17
0.1016E-05 0.6852E-02
LOONORMAL DON-FR-1H:
0.0日35E-05 0.5675E-03
LOONORMAL DOK-FK-1NAG
0.5061E-04 0.34005+00
LOONOPMAL. DON-FS
 0.3048E-02 0.36508+00
LOONORH/L. DO:-M/
 0.2980E-06 0.17025+00
USEK DIETRIBUTION ACP-DGN-RC-U2
5 3
 0.5600E-01 0.2610F+00
 STR:AM-BINDINO
 0.2082E-08 0.70208-0S
 MDP-FR-5HF
 0.8541E-08 0.51085-02
 MDP-FS
 0.14008-04 0.8513E-01
 MDP-TM
 0.6035E-05 0.5675E-01
 MOV-CC
 0.14908-04 0.8513E-01
 LOBNORMA
 MPS-MOV-FT
 0.1400E-04
 0.8513E-01
 0.1400E-04
 0.0513E-01
 PPS-SOV-FT
 0.3120E-04
 0.12805+00
LOBNORMAL.
 0.1000E+02
 0.10
LOKNORMAL.
1.OONOPMAL
1.OCNORMAL.
LOONORMAL
LOKNORMAL.
 MOV-00
LOONORMA.
 USER DISTRIBUTION TDP-FR-6HR
5 3
```

$0.5000 \mathrm{E}-02$
D. $3000 \mathrm{E}-01$
$0.3000 \mathrm{E}+00$

```
USER DISTRIBUTION TDP-EB
53
```

0.3000E-02
0. $3000 \mathrm{E}-61$ TDF-TM

```
0. \(3000 \mathrm{E}+00\)
LOONORMAL
0.4967E-04
0. \(2838 \mathrm{E}+00\)
USER DIE TRIBUTION XHE-DPRZT?
53
\(0.2900 \mathrm{E}-02\)
\(0.2000 \mathrm{E}-01\)
1. \(2000 \mathrm{E}+00\)
LOONORMAL HFS-XHE-FC
\(0,5617 \mathrm{E}=01\)
LOGNORMAL.
0.10108-04
\(0.58178-01\)
0.00878
5
\(0.1426 \mathrm{E}-04 \mathrm{~m}\)
\(0.80872-01\)
LOGNORMAL HPR-XHE-FO-E1MNI
0. \(1247 \mathrm{E}-04 \quad 0.7123 \mathrm{E}-01\) MSS-XHI-FO
\(0.1689 \mathrm{E}=04 \quad 0.9648 \mathrm{E}-01\)
LOGMORMAL
0. \(16808=04\)
IBUTION \(\mathrm{HFI}-\mathrm{XHE}-F O\)
USER DISTRIBUTION HFI-XHE-FC
53
```

$0.2200 \mathrm{E}-02$
0. 22008-01
0. $22005+00$

```
USER DISTRIBUTION MSS-XHE-FO-ADV
53
\(0.1000 \mathrm{E}-01\)
0. 1000E+00
\(0.1000 \mathrm{E}+01\)
USEF, DIBTRTBUTION AFW-XHE-OPNVALVE
53
\(0.6400 \mathrm{E}-02 \quad 0.6400 \mathrm{E}-01\)
\(0.64005+00\)
LOGNORMAL IE-T7
\(0.4867 \mathrm{E}-04\)
\(0.2836 \mathrm{E}+00\)
USER DISTRIBUTION RA3
53
0.1120t-01
\(0.2120 \mathrm{E}+00\)
\(0.1000 \mathrm{E}+02\)
```

```
 DOWNORWLL IE-5s
 0.1321E-02 0.8181E-01
 LCONORMAL
 kil6
 0.60565-06 0.3873E+00
 1CONOFM/L.
 t
 0.175t%-03 5.26505+00
 LOCNORMAL
 #N11
 0.65545-04 0.3973E+00
 USER DISTRIBUTION R
 5 5
LOCUORMAL.
 0,3400E-01
 0.34008+00
 0.1000E+01
 IE-TDCI
 0.2484E-04
 0.14102+00
LOGNORMAL.
 0.5050E-06
 0.3150E-02
LOONORHAL I
 0.1808E-05
 0.7643E-03
L.OOHORMAL
 1E=78
 0.1568E+01
 0.2120E+02
LOGNORMAL
 18-%2
 0.1105E+01
 0.1615E+02
LOGNORMAL
 IE-T
 D. 1314E+01
 0.1776E+02
 1E-T2
 0.1787E+00
 0.2620E*01
LOGNORMAL.
 0.2384E+00
 0.3861E-02
L.OONORMAL.
 BETA-2DO
 0.2155E+00
LOCNORHML BETA-BAOY
LOGNORMAL }\begin{array}{c}{1&8-YTF-LF-AOV}\\{0.4B6/E-06 % 0.2838E-02}
USER DISTRIBUTION INTERFACING SYSTEM FOR LOCA
l 21
1.83E-13 0.00
1.26E-11 0.05
4.52E-11 0.10
1.74E=10 0.15
4.77E-10 0.20
1.10E-08 0.25
2.10E-08 0.30
4.13E-09 0.35
6.84E-08 0.60
1.10E-08 0.45
1.63E-28 0.50
2.43E-08 0.55
3.72E-08 0.60
5.235-08 0.65
8.20%-08 0.70
1.24E-07 0.75
1.94\Sigma-07 0.80
3.308-07 0.85
6.78E-07 0.90
1.72E-06 0.05
1.50E-05 1.00
USER DISTKIBUIION LOSS OF OFFSITE POWER
6 1000
LOGNORMAL: Q12CI LEAK OR ISOLATION FAILURE
2.48E-5 0.142
UNIFORM Q15CI EVENT V - GREAK LOC. UNDER WATER
6 1.0
UNIFORM Q17C2 PORVS STICK OFEN
0.0 1.0
USER DISTRIBUT:ON QIBC2 RCP SENL FAILURE
& 2
1.71
2.20
```

```
#SER DISTRIBUTION OIBCZ RCP SEAL, FAILURY
2. 2
+.65
USEK DISTKIBUTIOR Q1BCG RCF SEAL. FATLURE.
& 2
3.60
2.40
USEh DISYRTBUTION Q2SC2 YNASEL. PRES, DEFORE VB
2. 2
 .2
 .8
USER DIETRIBUTION Q2SC3 VESSEL PRES, BEFORE VB
2 3
 . }23
 .334
3. .333
UNIFORM Q26C2 CORE DAMAOE ARREST-NO VB
1. Q26C3 CORE DAMAGE ARREST-NO VB
UN'rORM Q26C6 CORE DNMAGE ARREST-NO VE
S6 1. O26C7 CORE DNMAOE ARREST-NO VB
.34 1
UGER DI8TRIEUTION QSIC2 H2 IGNITION ON RECOVERED BBO'8
| 20
 0.000E +00 0.0
 3.100E-02 1.055 z-01
 4.600E-02 1.546E-01
 6.300E-02 1.074E-01
 8.000E-02 2.870E-01
 1.000\tilde{E}-01 4.050\tilde{E}-01
 2.500E-01 5.454E=01
 2.000E-01 6.946E-01
 2.500E-01 7.930E-01
 3.000E-01 B.733E-01
 4.000E-31 9.156E-01
 5.000E-01 8.501E-01
 5.270E=01 9.564E-01
 5.5008-01 0.616E-01
 6.6005-01 8.930E-01
 7.000E=01 8.847E-01
 7.500E-01 - 8.957E-01
 8.630E-01 0.862E-01
 6.500E-01 &.972E=01
 9.000E-01 1.000E+00
USER DISTRIBUTION Q32CI LC TO UC VIA FLOOR DRATN
2 2
1. 25
 .75
USER DISTRIBUTION Q20,21,38 T-I INDUCED FAIL/IN-V N12
e }1
USER DISTRIBUTION Q4OCIPD FRAC, HI2 RELEASED FRON RCS
1?
0.25 0.0
0.30 0.01
0.55 0.25
0.70 0.50
0.75 0.75
0.80 0.99
0.85 1.00
USEK DISTRIBUTION Q4OC2PE FRAC B2 RELEEASED FROM RCS
I?
0.35 0.0
0.60 0.01
```

```
0.60 0.25
0.70 0.50
0.75 0.75
0.80 0.09
0.85 1.00
USEK DIETR.AUTION Q40C3P9 FRAC, H2 RELEASED FRON NCS
17
0.55 0.0
0.60 0.01
0.65 0.25
0.70 0.50
0.75 0.75
0.80 0.99
0.65 1.00
USER D1STRLBUTION Q4004PE FRAC. H2 RELLEASED FROM RCS
17
0.65 1 0.0
0.70 0.01
0.75 0.25
0.85 0.50
0.85 2.75
1.00 0.08
1.00 1.00
USER DIETAIBUTION OGIC2 HYDROGEN IKIXTIRE IN UPPER COKPP
2 3
,446
45
. }10
USER DISTKLBUTION Q68,50,51 H2 IONITTON FOR SRO
8 -
OSER DISTRIBUTION CS3CI-CS DENONATION TRANSITION
8 3
USFR DISTRIBUTION QSSCIPI IMPULSE FFOM DET
1.18
0.000E+00 0.000E+60
1.960E+00 4.573E-03
2.000E+00 8.000E-03
3.000E+00 9.033E-02
4.000E+00 1.751E-01
5.000E+00 2.500E-01
6.000E+00 2.693E-01
8.0008+00 3.716E-01
1.100E+01 5.666E-01
1.200E+01 6, 027E-01
1.300E+01 7.8P9E-01
1.400E+01 8.538E-01
1.450E+01 8.774E=01
1.500E+01 9,010E-01
1.540E+01 0.067E-01
2.400E+01 0.574E-01
8.600E+01 0.857E-01
4.800E+01 8.830E-01
5.9408+01 1.000E+00
USER DIBTRIBUTION QSTCLPI FAILURE FOR PRESS
 120
273.70 0.000
308.17 0.016
342.64 0.038
377.12 0.060
411.56 0.083
446.07 0.124
480.54 0.197
515.01 0.395
548.480.527
5A3,96 0,706
618.43 0.780
```

```
652.91 0. 133
687.38 0.676
721.86 0. 日22
756.33 0.948
790,81 0,075
625.2.8 0.887
859.75 0.994
894.23 0.997
928.70 1.00
UN1FOPM
 Q57C1P2 FAILURE MODE
0.0 1.0
"HER DISTRIBUTION QSTCIP3,C1P4 IMPULSIVE FALLURE CRITERION
B 2
JSER DISTRIBUTION QE3C2 LEVEL. OF CAVITY FLOOD A; VB
2. 2
1
USER DLSTRIBUTION Q64C1 ALPHA MODE EVENT
4.6000
USER DISTKIBUTION Q05C2 TYPV OF VB
2 5
1.79
 .08
 .13
USER DISTRIBUTION QE5O3 TYPE OF VB-(Q62C4-CEI PNIR TO 3)
 3
 .27
 . }1
USER DISTRIBUTION Q66C1 ERAC, OP CORE. IN HPME
15
 13.08
.27 . 5
4
USER DISTRIBUTION Q88C2-C8, FRAC,OF CORE AT VB DIVERTED SEAL TABLE
8)}
USER DISTRIBUTION Q71C4 EX-VESSEL. STEAM EXPLOSION AT VE
7 2
 001 ,01 ,
USER DISTRIBUTION Q72C1 SIZE OF HOLE IN VESSEL
2 2
 1.,1
USER DIBTRIBUTION Q73C3-C7 PRESSURE RTSE AT VB -NO HPME
8 10
I/SER DISTRIBUTION Q74,Q75 PRESSURE RISE AT VB-HPME
 43
USER DISTR'BUTICN 278C2 CF IMPINGEMENT ON WALL.
2 2
.01
89
USER n
2.2
1.31
. . }6
USER DISTRIBUTION Q78C4 CF IMPINGEMENT ON WALL.
2 2
.5$
.47
USER DISTRIBUTION QTBCS Pr IMPINO NENT ON WALL.
2 2
1.60
```

```
OSRR DISTRIBUTION Q7gCIFI FRAC. M&TAL OXTDIZED AT VB
1 3
A.b-6
0.05 0.5
UNIFORM QTGCZPI TRAC, METAL OXTDIZRD AT VB
0.5 1.0
```




```
13
0.7 0.0
0.75 0.5
0.% 1%
UNIFORM QQ4CAPIBI 1.ATE BASELIRE PRESSURE
206.8 275.8
LTIFORM
241.3 310.3
UNTFORM QB4CAPLB1 LATE BASELINE PRESSURE
172.4 241.3
UHIFORM Q108CA VERY LATE PRESSURE:
137.0 241.3
UNIFORM QIOBC5 VERY LATE PRESSURE
137,8}30344.
USER DISTRIBUTION Q1LICA VERY LATE CCI
2 2
1.75
2. 25
UNIFORM IN-VESSEL. RELEASE FROM FUEL. (FCOK)
0.0 1.0
UNIFORM RELIEASE FROM VESSEL. (PVES)
0.0 1.0
UNIFORM V-SEQ, DF WITH SUBMERGED RELEASE (VDF)
UNIFORM RELEASE OF RCS SPECIES FROM CONT. (FCONV)
0.0 1.0
UNIFORM REL:EASES FRON MELT IN CCI (FCCI)
0.0}1.
UNIFORM RELEASE OF COI SPECIES FROH CONT. (FCONC)
0.0 1.0
UNIPOPM SPRAY DF'S (SPRDF)
0,0 1.0
UNIFORM
G.0 1.0
UNIFORM L.ATE REVOLATILIZATION (FLATE)
0.0 1.0
UNTFORM RELEASE DUE TO DIRECT HEATING (FDCE)
0.0 1.0
UNTFORN DECONT. FACTOR FOR ICE CONDENSER(ICDF)
0.0 1 0
UNIFORM
0.0 1.0
UNITORM
0.0 1.0
USER DISTRIBUTION LOSP Q2203-7,Q90C3-7,Q105C3,4
3 0
CORREL.ATTON MATRTX
35
2 % 3 .099
12 15 .999
12 14.909
13 14.999
20}221.99
20 22,.990
21 22 .999
49 50 .999
49 51 . }99
50 51 . }98
```

	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty}$	\%	u	$\omega$	$N$	$\mathrm{nx}$	$0$	$\stackrel{\infty}{\infty}$	$\pm$	er	8	os	为	$\infty$	$-$								
$\infty$	8	8	)	$\infty$	\%			=	$\infty$	\%		9												
				$8$	$\begin{aligned} & 8 \\ & 80 \\ & 80 \end{aligned}$		©		$8$	$\pm$	$8$	$0$	$8$			$8$				$8$				

SUBSECTION E. 2

SUAROUTINE USRDST (J)

```
YOR S&QUOYAB LHS
THE BUBROUTINE HAS BEEN WRITTEN TO READ A FLAO, IFL, TO INDICATE
WHICH OF TEE 5 SECTIONS OF THE SUBROUTINE IS TO BE IMPLEMENTED.
THE FIRST LINE OF INPUT IS 'IFL,NP' WIERE NP IS THE NUMPER OF PAIRS
TO 作 READ IN YOR IFL=1 AND IF , NP IS 500 FOR IFL=3, FOR IFL= %
AND 5, NF IS A DUMMY VARIAHLEE BUT MUST BE PRESENT
FOR IFL*I
 OENEKATE A DISCRETE DISTRIBUTION FUNCTION WITH INFUT OF X VALUES
 AND CUMOLATIVE PROBABILITIES.
FOR IFL=2
 GENERATE A DISCRETL DISTRIBUTIOF FUNCTION OF INTEGERS AS SPECIFIED
 IN THE INPUT, THESE INTEGERS ARE REPRESENTATIONS OF A 0-1
 SAMPLINO SCHEME AHD WILL BE DECODED OUTSIDE OF LHS, THE
 VARIABLE NUMBER I AND THE NUMBER OF BRANCHES NP IS WRITTEN TO
 UNIT 30. TH1S INFONMATION IS EDITED INTO SEOEXT, FOR. THE VARIABLE
 NUMBER FOR ALPRA MODE (IPL=4) IS ADDED AT EDIT TIME WITH NP=2.
 FOR IFL=3
 GENERATE A DISCRETE DISTRIBUTION FUNCTION FOR LOSP
 AN ADDITIONAL INPUT FILE IS REQUIRED ASSIGNED TO UNIT }2
 THE FILE NAME IS 'DISCRETE,DAT'
FOR IFL=4
 GFNERATE A DISTRIBUTION FUNCTION FOR ALPHA MODE VB, ONLY
 ONE VARIABLE IS SAMPLED HERE. THE OTHER ONE IS CCMPUTED IN
 THE SUBROUTTNE THAT EXTRNDS THE LHS MATRTX FOR ZO CASES,
 AN ADDITIONAL. INPUY FILE IS REQUTRED ASSIONED TO UNIT 28
 THE FILE, NAME IS 'COMPOSIT.DAT'
FOR IF1.*5
 GENERATE A MAXIMUM ENTROPY DISTRIBUTION FUNCTION FOR THE
 VARIABLE WITH IFL BET TO 5. AN ADDITIONAL LINE OF INPUT IS
 REQUTRED GIVINC THE LOWFR END OF THE RANGE, A, THE MEAN, RMU
 AND THE UPPER END OF THE RANGE, B ,**NOTE*** FOR THIS
 CASE A LINK TO IMSLIES/LTB IS REQUIRED.
FOR IFL=66
 GENERATE A DISTDIBUTION FUNCTION FOR INITTATINO EVENT DATA
 ARI ADDITIONAL INPUT FILE IS REOUIRED ASSIGNED TO UNIT 28,
 THE FILE NAME IS 'IE,DAT
FOR IFLm7
 GENERATE A MAXIMLM ENTROPY DISTRIBUTION FUNCTION FOR THE
 VARIABLE AND INDICATE THAT A VARIABLE WILL. BE ADDED.
 AN ADDITIONAL LINE OF INPUT IS REQUIRED GIVING THE LOWER
 END OF THE RANGE, A, THE MEAN, RMU, AND THE UPPER END OF
 THE RANGE, B ***NOTE*** FOR THIS CASE A LINK TO
 IMSLIBS/LIB 1S REQUIRED,
FOR IFL=8
 ONLY R IS STORED FOR THE SAMPLE SO THAT IT CAN BE COMPUTED
 IN THE EXTENDER. A FILE ASSIGNED TO UNIT }9
 IS WRITTEN FOR INPUT TO EXTLHS.FOR
C THE FOLLOWING SIX LINES OF CODE ARE REQUIRED BY USRDST
PARAMETER (NMAX \(=1000\))
PARAMETER (NVAR \(=205\))
-ARAMETER (LENT \(=125\))
```

```
 CORTON/PAKAM/11TLE(1ENT),ISELD,N,NV,1KE,ICM,NKEP,IDA1A,1H1ST
 1. ICORR,IDIET(NVAR),IRP
 COMTON/GAMP/X(NSAX*NVAR)
6
C TIE FOLLOWING STATRMENTS ARE NEEDED FOR ***IPL*1***
E \VAL AND OP MUST BE DIMENSIONED TO THE MAXIMMM NUMBER FATRS
C TO BE READ
C
 FAKAMETER(NCP=50)
 DIMENSION XVAL(NCP),CP(NOP)
C
THE FOLIOWINO STATEMENTS ARE NEEDED FOR ***NIFL*2 AND IFL=3****
C
C NP IS THE NUMBER OF PAIRS OF IVAL AND FREQ
C IVAL(K) IS THE KTE UNIQUE VALUE OF THE RANDOM- VARIABLE.
C FREQ(K) IS THE PROBABTLITY ASSOCIATED WITH THE KTH VALUE.U
C
 PARAMETEP (MAXNP=500)
 DIMENSION IVAL (MAXNP), FREQ(MAXNP),CDF (MAXNP+1)
C
C THE FOLLOWING BTATEMEN2S ARE NEEDED POR ****IFL*&****
C
C DVAL(K) IS THE DISTRIBUTION FOR THE ALPHA MODE VB CASE,
C
 PARAMETER(MAXD1S*5500)
 DIMENSION DVAL(MAXD18)
c
C THI FOLLOWITGG THRES LINES OF CODE ARE NEEDED FOR ****IFLw5*****
C XX, F AND WORK N'E USED BY TBE MAXIMUM ENTROPY DISTRIBUTION,
C A, RMU AND B ARE THE LOWER, MEAN AND UPFER POINTS FOR THE
C MAXIMUM ENTROPY DISTRIBUTION.
C FCN IS A SUBROUTINE NEEDED TO GENERATE THE MAXIMUM ENTROPY
C DISTRIBUTION.
c
 DIMENSION XX(1),F(1), WK(100)
 COMPON /FXIMSL/ A, RMU, B
 EXTERNAL. FCN
C
C THE FOLLOWING STATEMENTS ARE NEEDED FOR ***IF **6***
C RIEVAL(K) IS THE DISTRIBUTION FOR THE INITIATINO EVENT VA&IABLEE.
 PARAMETER(NPIE=1000)
 DIMENSION RIEVAL(NPIE)
C
C THE FOLLOWING FUNCTION DEFINITION IS REQUTRED BY USRDST,
 LOC}(I,J)=(J-1)*N+
C
C
C READ IFL AND NP (NP IS A DUMNY PARAMETER FOR IFL=4,5 AND 6)
C
 READ(7, *)IFL,NP
 IF(IFL, EQ,2,OR.IFL, EQ.3)GO TO 88
 IF(IFL, EQ,4)GO TO 200
 IF(IFL, EQ,5)G0 T0 300
 IF(IFL, EQ.6)G0 TO 405
 IF(IFL, EO,7)THEN
 WRITE (30,90)J,NP
 WRITE (30,196)J
196 FORMAT (7X,'JME =1,I3)
 G0 ?.1 300
 ENDII
 IF(IIL.EQ.8)THEN
 WRITE (30, 197)J, NP
187 FORMAT(7X,'ID8(',13,') = ',12)
```

```
 (0) T0 6
 ENDIF
C FOB IFL=1
C RLAD IN THE NP VALUES FOR THE CONTINUOUS FROBABILITY CURVE
 DO 1 K=1 NP
 1 READ(7,*)XVAL(K),CP(K)
3ET THE STARTING POINT (STRTPT) EQUAL. TO ZERO AND THE FROBABILITY
IHCRBMENT (PROBINC) EQUAL TO 1/N FOR A LHS WHERE N IS THE SAMPLE SIZE
STRTPT=0.0
PROBINC=1.0/FLOAT(N)
C IF A RANDOM SAMPLE HAS BEEN SPECIFIED IN THE PARNMETER LIST THEN THE
C ARGUMENT IRS BAS BEEN SET EQLAL. TO I IN THE MAIN PROGRAM, HENCE THE
C FROBABILITY INCREMENT IS SET EQUAL TO I SO THAT ALL OBSERVATIONS ARE
C SELECTED BY USTMO THE INTERVAL (0,1)
IF(IRB.EQ.1)PROBINC=1.0
c THIS LOOP WTLL OBTAIN THE N SMMPLE VALUES
DO 4 I=1,N
C K IS A RANDOMLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
C BY USINO THE RANDOM NIMPER GENERATOR RAN
C
 R=STRTPT+PROBINC*RAN(ISEED)
C FOR IFL=6********NEED ONLY R
 IF (IFL. EQ, 8)THEN
 X(LOC(I,J)) = R
 GO TO 25
 ENDIF
C
C THIS LOOP WILLL SELECT THE SPECIFIC VALUE OF THE RANDOM VARTABLE
C CORRESPONDING TO R BY LINEAR INTERPOIATION. THE VALUE IS STORED BY
C USE OF THE LOC FUNCTION
c
THIS LOOP WILL OBTAIN THE N SAMPLES
C
DO 3 K=1,NP-1
IF(R,GT,CP(K),AND,R,LT,CP(K+1)) X(LOC(I,J))=
 ((R-CP(K))/(CP(K+1)+CP(K)))*
 (XVAL(K+1)-XVAL(K))+XVAL(K)
3
CONTINUE
```



```
RESEF THE STARTING POINT TO THE BEGINNING OF THE NEXT SUBINTERVAI
C UNLESS A RANDOM SAMPLE HAS BEEN SPECIPIED
C
IF(IRS .NE 1)STRTPT=STRTPT+PROBINC
 4 CONTINUE
 RETURN
 IFL=2
 IF(IFL,EQ.2)THEN
C THIS SECTION OF TBE SUBROUTINE CONSTRUCTS THE SAMPLE
VARIABLES BASEO FOR THE ZERO-ONE CASES, IFL=2,
AND THE VARIABLES FOR LOSP, IFL.*3
 DO 100,K=1,NP
 READ(7, *)IVAL.(K) FRFO(K)
```

```
100 CONTINUF
 WKITE(30,90) J,NP
99 FORMAT(7X,'ID (',13,') = ',12)
 SL.5E
C
 1FL~3
C
 REWIND 27
 READ (27,*)NK
 DO 110 K = 1.NP
 READ (27, *)IVAL.(K), FREQ(K)
 CONTINUE
 ENDIF
C
CDNSTRUCI THE CUMULETTVE DISTRIBUTION FUNCTION
 CDF(1)=0.0
 DO 120 K=1,NP
 CDF}(\textrm{K}+1)=\operatorname{CDF}(\textrm{K})+FREQ(K
C
C SET THE STARTINO POINT (STRTPT) EQUAL TO ZERO AND THE PROBABILITY
 INCREMENT (PROBINC) EQUAL. TO 1/N FOR A L&S WHERE N IS THE
 SAMPLE SIZE.
 STRTPT=0.0
 PROB1NC=1.0/FLOAT(N)
C
C IF A RANDOM SAMPLE HAS BEEN SPECIFIED IN THE PARAMETER LIST THEN
 THE ARGUMENT IRS HAS BEZN SET EQUAL. TO I IN THE MAIN PROGRAM,
 H* SCE THE PRCBABILITY INCREMENT IS SET EQUAL TO I SO THAT ALL.
 OBSERVATIONS ARE SELECTED BY USING THE INTERVAL (0,1),
STRTPT = 0.0
PROBINC * 1.0 / FLOAT(N)
IF (TRS ,EQ, 1) PROBINC = = 1.0
 THIS LOOP WILL OBTAIN THE N SAMPLE.
 DO 150 I*1,N
C
C R IS A RANDOMLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
BY USING THE RANDOM NUMBER GENERATOR RAN.
125 R = STRTPT + PROBINC * RAN(ISEED)
```



```
C THIS LOOP WILL. SELECT THE SPECIFIC VALUE OF THE RANDOM VARIABLE
C CORRESPONDING TO R THROUGH THE INVERSE CUMULATIVE FUNCTION. THESE
C VALUES ARE STORED BY USE OF THE LOC FUNCTION.
C
 DO 130 K=1,NP
 IF(R.GE.CDF(K),AND,R,LT.CDF (K+1))X(LOC(I,J))=IVAL(K)
 CONTINUE
 IF(IFL.EQ.2)C0 TO 140
C
C IYL=3; THE "DO 135" LOOR CHECKS TO MAKE SURE THAT THE INTEGERS
C BEING SAMPLED FOR THE LOSP VARIABLES ARE SAMPLED WITHOUT REPLACEMENT
C
 DO 135 L=1,1
 IF(X(LOC(I,J)) EQ.X(L.OC(L,J)), AND I.NE.L)GO TO 125
135 CONTINUE
C
C RESET THE STARTING POINT TO THE BEGINNING OF THE NEXT SUBINTERVAL.
C.UNLESS A RANDOM SAMPLE HAS BEEN SPECIFIED
C
140 IF(IRS.NE.1)STRTPT=STRTPT+PROBINC
150 CONTINUE
```

```
 RETURN
 C
 FOK 1FL = 6
 200 REWIND 2B
 RN:AD(28,*)(DVAL(I),I*1,MAXDIS)
 NAM-2
 WRTTE (30,90)J,NAM
 WRITE (30, 109)J
 FORMAT (7X, 1JAM = ',15)
 C SET THE STARTINO POINT (BTRTPT) EQUSAL TO ZERO AND THE PROBAB1:TTY
 C INCRRMENT (PROEINC) EQUAL, TO 1/N FOR A LHS WHERE N IS THE SNMPLE SIZE
 STRTPT=0.0
 PROBINC=1. O/FLOAT (N)
C
C IF A RANDOM SAMPLE HAS BEEN SPECIFIED IN THE PARANETER LIST THEN THE
C ARGUMENT IRB HAS BEFN SET EQUAL TO I IN THE MAIN PROGRAM, HENGE THE
C PROBABILITY INCRRMENT IS EET EQUAL. TO I SO THAT ALL. OBSERVATIONS ARE
C SELECTED BY USINO THE INTERVAL. (0,1)
C
 IF(IRS,EQ,1)PROBINC=1.0
C
C THIS LOOP WILLL OBTAIN THE N SAMPLE VALUES
 DO 204 I=1,N
c
C R IS A RANDOHLY SELECTED POIMT IN THE CURRENT SUBINTERVAL. OBTAINED
C BY USING THE RANDON NUMBER GENERATOR RAN
C
 R=ETRTPT+PRDBINC*RAN(ISEED)
C
C SEL ECT THE SPECTFIC VALUE OF THE RANDOH VARTABLE CORRESPONDINO TO R
C THE VALUE IS STORKD BY USE DF THE LOC FUNCTION
C
C
 K=R**IAXDIS+1
 X(L,OC(I,J))=DVAL.(K)
c
C REEET THE STARTING POINT TO THE BEOINNINQ OF THE NEXT SUBINTERVAL.
C UNLESS A RANDOH SAMPLE HAS BEEN SPECIFIED
O
 IF(IRS.NE. 1)STRTPT=STRTPT+PRODINC
 204 CONTINUE
 RETURN
C
C FOH IFLw5
C
C THIS SECTION OF THE SUBROUTINE CONSTRUCTS THE SAMPLE
C VARIABLES BASED ON THE MAXIMUM ENTROPY DISTRIBUTION.
C
300 NSIO - 4
 NN = 1
 ITMAX = 20
 READ (7,*) A, RMU, B
C THE NEXI LINE IS A DLAONOSTIC TO HELP DETERMINK
C IF THE COMBINED EVENTS ARE CORRECTLY POSITIONED
C IN THE LHS INPUT FILE
 PRINT *, A RMU, B
 XX(1) = -1.0 / RMU
 CALL ZSCNT (FCN,NSIG,NN, ITMAX, PAR, XX, FNORM,WK, IER)
 BETA = XX(1)
 RBETA = 1.0 / BETA
 EA = EXP(BETA * A)
 EB = EXP(BETA * B)
 TEKM = EB * EA
```

```
BET THE BTARTING POINT (STRTPT) EQUAL TO ZENO AND THE PROBABILITY
 INCREMENT (PROBINC) EQUAL TO I/N FOR A LHS WIIERE N IS THE
 SAMTLE SILE
IF A RANDOM SNMPLE HAS BIEN SFECIFIED IN THE PARAMEZER LIST THEN
 THE AROUMENT IRS HAS BEEN SET EQUAL TO I IN THE MAIN FROGRAM,
 HERCE THE PROBABILITY INCREMENT IS SET EqUAL. TO I SO THAT ALL.
 OESERVATIONS ARE SELECTED BY UBING THE INTERVAL (0,1)
 STRTPT = 0.0
 FROEINC - 1.0 / FLOAT(N)
 IF (IRS &Q 1) PROBINC - \ 1.0
C THIS LOOP WILL. OBTAIN THE N SAMPLE VAL,UES
K IS A RANDOMLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
 BY USYNG THE RANDOM NUMBER GENERATOR RAN
OENERATE THE MAXIMOM ENTROPY DEVIATES
RESET THE STARTING POINT TO THE BEGINNING OF THE NEXT SUBINTERYAL.
 UNLESS A RANDOM SAMPLEE HAS BEEN SPECIFIFD
 DO 530 I = 1,N
 R = STRTPT + FROBINC * RAN(ISEED)
 X(LOC(I,J)) = RBETA * LOO(TERM * R + EA)
 IF (IRS NE, 1) STRTPT = STRTPT + PROBINC
 CONTINUE
 RETURN
 1FL=6 FRONT END IE
GOS CONTINUE
READ IN THE SAMPLE VALUES FOR THE INITIAIING EYENT
 OPEN (UNIT = 29, FILE = 'IE,DAT', STATUS = 'OLD')
 READ (29,*) (RIEVAL(K), K = 1,NPIE)
SET THE ETARTINO POINT (STRTPT) EQUAL, TO ZERO AND THE PROBABILITY
 INCREMENT (PROBINC) EQUAL TO 1/N FOR A LHS WHERE N IS THE
 SAMPLE STZE.
IF A RANDOH SAMPLE HAS BEEN SPECIFIED IN THE PARAMETER IIST THEN
 THE ARGUMENT IRS RIAS BEEN SET EQUAL TO I IN THE MAIN FROGRAM,
 HENCE THE PROBABILITY INCREMENT IS SET EQUAL. TO I SO THAT ALI
 OBSERVATTONS ARE SELECTED BY USING THE INTERVAL. (0,1).
 STRTPT = 0.0
 FROBINC = 1.0 / FLOAT(N)
 IF (TRS EQ, 1) PROBINC = 1.0
THIS LOOP WTLL. OBTAIN THE N SAMPLE VALUES
R IS A RANDOMLY SELECTED POINT IN THE CURRENT SLSTNTERVAL. OBTAINED
 BY USING THE RANDOM NUMBER OENERATOR RAN
C THE INNER LOOP WILL SELECT THE SPECIFIC SAMPLE VALUE CORRESNONDING
 TO R THROUGH THE INVERSE EMPIRICAL DISTRIBUTION FUNCTION
 THESE VALUES ARE STORED IN THE VECTOR X THROUGE THE USE
 OP THE LOC FUNCTION
RESET THE STARTING POINT TO THE BEGINNING OF THE NEXI SUBINTERVAL
 UNLESS A RANDOM SAMPLE HAS BEEN SPECIFIED
 DO 51 I = 1.N
 R = STRTPT + PROBINC * RAB(ISEED)
 X(L.OC(I,J)) = RIEVAL(R*NP+1)
 IF (IRS NE, 1) STRTPT = STRTPT + PROBINC
 5 1 ~ C O N T I N U E ~
 RETURN
 END
 SUBROUTINE FCN(XX,F,NN,PAR)
 DIMENSION XX(NN), F(NN), PAR(1)
```

CORSON /FXIMEL/ A. RMU, B
BETA $=X \times(1)$
EA * EXP(BETA * A)
EB = EXP (BETA * B)
TERM $=(B \times E B-A * E A) /(E B-E A)$
$F(1)=$ TERM - $(1.0 /$ BETA $)-$ RMU
RETURN
ERD

SUBSECTION E. 3

RTOGKAM EXTAEQE
 PARAMETER (NLHS $=200$, $\mathrm{NVAR}=108, \mathrm{MALD}=200$, $\mathrm{NTIME}=12$, , $\mathrm{HLOSP}=500$, NVONE $=7$ ) DIMENSION X (NLHS, NYAR +MADD), ID (NVAR), CPROB (NLOSP, NIIME)

4	
4	CPROBSAM(NLHS, NTIME), IDVAR(NVONE), CUMPROB (NYONE)
	PROBINT(NVONE, NVONE), XONE(NLHS*NYONE), IDB (NVAR),

OPEN(6,FILE='CPROB.DAT',STATUS='OLD')
OPEA (7,FILE='EXTLHS, DAT',STATUS='NEW')
OPEN (B,FILE='ONES, DAT', STATUS='OLD')
OPEN (20,FTLE*'DISTR,DAT', STATUS='OLD')
CC
INITIALIZE THE ID ARRAY
CC
DO $10 \quad I=1$, NVAR
ID (I) $=0$
ID6 (I) $=0$
10 CONTINUE

READ IN THE THE NECESSARY NO OF ERANCPES YOR THE 0-1 VARTABLES
ID $(49)=2$
ID $(50)=2$
ID $(51)=2$
ID $(52)=2$
ID $(53)=3$
ID $(59)=2$

```
 108(60) - 10
 IL (E5) * 3
 108(65) = 8
 IDE (67) = 3
 IDE (71) = 2
 10 (72) = 2
 10(73)=2
 JAM = 73
 ID (74)= 3
 ID (75) = 3
 IDE(77)=7
 ID (7B)=2
 MME = 78
 1D (70) = 2
 IDE (80)=10
 1DE(81) = 43
 1D (82) = 2
 ID (83) = 2
 ID (84) = 2
 ID (85)=2
 ID (94)=8
CC
C CONVERT THE INTEOER REPRESENTATIONS FROM LHS (1,2,3,\ldots..)
C INTO ZEROS OR ONES BASED ON THE PERCENTAOE INTERVALS;
C THIS IS DONE OVER ALL. SAMPLES,
CC
 DO 20 K=1.NLHS
 NTVAR = NVAR
 READ (5,*)(11,12,(X(K,1),I=1,NVAR))
 RIWIND 20
 LOC=0
 DO 30 J=1,NVAR
 LOC=1.OC+1
 IF(ID(J),EQ,0)@O TO 25
 IF(ID($),EQ, 2) THEN
 DO 40 I=1,NTVAR-LOC
 X(K,NTVAR+ID (J)-I) = X(K,NTVAR+ID(J)-1-1)
 CONTINLE
 M"VAR = NTVAR + 1
C CHECK FOR AL.PHA MODE VE VARIABLE - ID (JAM) WILL. BE 2
 IF (J.EQ.JAM)THEN
 X(K,LCC+1)*.1*X(K,LOC)
 LOCmL.OC+1
 GO TO 30
 ENDIF
C CHECK FOR MAX, ENT, VARIABLE - ID(JME) WILL, BE 2
 IF (J,EQ JME)THEN
 X(K,LOC+1)=,86/(1,-X(K,L,OC))
 LOC=LOC+1
 00 TO 30
 ENDTF
CC
C ERROR MESSAGE
CC
 IF(NTVAR.OT, NVARTMADD) STOP ' NTVAR EXCEEDS DIMENSIONS
 IF(X(K,LOC),EQ,1)THEN
 X(X,LOC)=1
 X(K,LOC+1)=0
 EL,SE IF (X (K,LOC) EQ . 2)THEN
 X(K,LOC) = 0
 X(K,LOC+1)=1
 ENDIF
 LOC= LOC + 1
 ELSE IF(ID (J), EQ 3)THEN
 DO 50 I=1,NTYAR-LOC
 X(K,NTVAR+ID(J)-1) = X(K,NTVAR+1D(J)-1-2)
```

CONTINUE
NTVAR - NTVNR +2
IF (X (K, LOC) , EQ 1 1, THEN
$X(X, L O C)=1$
$X(K, 1 . K C+1)=0$
$X(K, L O C+2)=0$
ELSR. IF $(X(K, L \propto C)$, EQ. 2)THEN
$X(K, L O C)=0$
$X(K, L O C+1)=1$
$X(K, L O C+2)=0$
KLSE IF (X (K, LOC), EO, 3)THEN
$X(K, L O C)=0$
$X(K, L O C+1)=0$
$X(K, L O C+2)=1$
ENDIF
$L O C=1 O C+2$
ELSE IF (ID (J) EQ, 4) THEB
DO $60 I=1$, NTVAR-LOC
$X(K$, NTVAR $+1 D(J)-1)=X(K$, NTVAR $+1 D(3 ;-T-3)$
CONTINUE
NTVAR $=$ NTVAR + 3
IF (X (K, LOC) , EQ, 1) THEN

```

```

$X(K, L O C+1)=0$
$Y(K, L, O C+2)=0$
$X(K, L O C+3)=0$
ELSE IF (X (K, LOC ) , EQ, 2)THEN
$X(K, L O C)=0$
$X(K, L O C+1)=1$
$X(K, L O C+2)=0$
$X(K, L, O C+3)=0$
EL.SE IF (X (K, LOC), EQ, 3)THEN
$X(K, L O C)=0$
$X(K, L . O C+1) * 0$
$X(K, L O C+2)=1$
$X(K, L O C+3)=0$
E.L.SE IF $(X(K, L O C), E Q, 4)$ THEN
$X(K, L O C)=0$
$X(K, L O C+1)=6$
$X(K, L O C+2)=0$
$X(K, L \varnothing C+3)=1$
ENDIF
$L O C=L O C+3$
ENDIF
GO TO 30
IF (ID8 (J), EQ. 0 ) 60 TO 30
$N O D=108(J)$
$R=X(K, L O C)$
DO $65 \mathrm{I}=1$, NTVAR - LOC
$X(K$, NTVAR $+N O D-I)=X(K, N T V A R-I+1)$
CONTINUE
NTVAR = NTVAR + NOD-1
DO 6 ND $=1$, NOD
READ $\left.<0,1(A)^{\prime}\right)$ HEAD
FORMAT ( $A$
READ $(20, *, E N D=999)$ IFL, NP
DO $5 \mathrm{KK}=1$, NP
READ (20, *) XVAL(KK), OP(KK)
CONTINUE
DO 3 KK $=1, \mathrm{NP}-1$
IF (R.LT, CP (KK)) GO TO 3
R GE CP(KX)
IF (CP(KX) , NE CP $(K X+1))$ GO TO
$R$ OE CP $(K X) A K D C P(K K)=C P(K X+1)$
IF ((KX+2). GT , NP) THEN
$X(K, L . O C+N D-1)=X Y A L$ (NF)

```
```

                (5) T0 6
            ENDIF
            IP(R LIT,CP(KX+2))THEN
    C R OE CP(KK) AND R LT CE(KK+2)
X(K,LOC+ND-1)=XVAL,(KK)
CO TO 6
END1F
IF(R:OE,CP(MK.),AND,R.LT.CP(KK+1)) THEN
IF (XVAL.(KX) EQ, XVAL(KKK+1)) THEN
DISCRETE PROHABILITY
X(K,10C+ND-1)=XVAL (KK)
ELSE
c
C IITERPOLATION
1
X(K,1OC+ND-1)=((R-CP(KX))/(CPP(KK+1)-CP(KK) ) )*=
(XVAL}(KK+1)-XVAL(KK))+XVAL.(KK
ENDIF
GO TO 6
ENDIF
CONTINUE
WR1TE(99,*)'FELL THRU',J,K,K,X(K,LOC+ND-1)
CONTINUE
LOC= LOC + NOD-1
CONIINUE
CONTINUE
READ IN THE MATRIX OF CONDITIONAL PROBABILITIES FOK LOSP
DO 70 I=1,NLOSY
READ (6,*) (CPROB(I, J),J=1,NTIME)
CONT:NUE
CC
C SAMPLE THE CONDITIONAL. PROBABILITIES FOR LOSF
CC
DO }80\textrm{I}=1\mathrm{ ,NLHS
DO }90\mathrm{ J=1,NTIME
CPROBSAM(I,J) = CPROB(X(I,NTVAR ),J)
CONTINUE
CONTINUE
CC
C IS IS THE NUMBER OF VARTABLES AFTER THE 0-1 VARTABLES
C HAVE BEEN EXTENDED AND AFTER THE LOSP VARIABLES HAVE BEEN
SAMPLED.
CC
CC
C II2 IS THE NUMBER OF EXTENDED LHS VARIABLES MINUS THE LOSP VARIABLES
CC
112 = 12 = NT1MT
CC
C ERROR MESSAOE
cc
C
C READ IN THE VALUES FOR THE DISCRETE PROBABILITY FUNCTION
C FRONT END VAR
DO 100 K=1,NYONE
READ(8,101)IDVAR(K),CUMPROB (K)
101 FORMAT (I2,40X, E13,5)
100 CONTINUE
C
C FIND THE CUMULATIVE PROBABILITIES

```
```

            DO 110 K = 2,NYONE
            CUMPRDB(K) = CUMPRDB (K) + CUMPROB(K-1)
    110 CONTINU:
    SET UP THE DESIRED FROBABILITY INTERVALS
        DO 120 K = 1, NVONE
            IF(K, EQ, 1)THEA
                FFOBINT (1,1) = 0
                FROBINT (1,2)*CIFMRNCD (1)
            ELsE
                PRODINT(K,1)MCUMPROB(K-1)
                PROBINT(K, 2)=CUMPROB(K)
            ENDIF
    120 CONTINUE
            STRTPT=0.0
            PROBINC=1.0/Y LOAT(NLHS)
    C SET ALL ELEMENTS IN YHE MATRIX TO ZERO INITIALLY
DO 130 Im1,NLHS
DO 130 L*1,NYONE
XONE ( (L-1)*NLHS +1 ) = 0
c
KTEMP = 1
DO 140 I=1,NL.HS
R=STRTPT+PROBINC*RAN(ISEED)
DO 150 K=KTEMP, NYONE
IF (R.OE. PROBINT(K,1), AND R,LTT, PROBINT(K, 2)) THEN
XONI((IDVAR(K)-1)*NLHS+1)=1
KTEMP = K
ENDIF
150 CONTINUE
STRTPT*STRTPT+PROBINC
CONTINUE
C
I2 IS THE TOTAL NUMBER OF VARIABLES IN THE EXTENDED MATRTX
CC
12= 12 + NVONE
CC
ERROR MESSAOE
CC
500 11 = 0
DO 160 I=1,NL.\&S
I1 = I1 + 1
IF(12.0T,NVAR+MADD) STOP , 12 EXCEEDS DIMENSIONS
WRITE(7,*)11,12,(X(1,J),J=1,I12),(CPROBSAM(I,J),J=1,NTIME),
1) (XONE((L-1)*NLHS +1),L=1,NVONE)
160 CONTINUE
STOP 'NORMAL. TERMINATION
998 TYPE*,IFL,NP
TYPE *,' EOF
END

```

SUBSECTION E. 4
```

FHOORAM TO IMPLEMENT THE MIXTUKE MOLEL FOR THE TIME TO RECOVERY OF LOSP
AS DEVELORED IN NUREG/CR-5032, SANDB7-2428, JANUARY 1958:
"MOOELING TIME TO RECOVERY AND IRITIATING EVENT FREQUENCY FOR LOSS OF
OFF-SITK POWER INCIDENTS AT NUCLEAR FOWIER PLANTS"
BY RONALD L. IMAN NAD STEPHEN C. HORA
THE MIXTURE MODEL MODRL AS GIVEN IN EQUATION (23) OF THAT REPORT IS
OF THE FORM:
G(x)=P1*G1(x) + P2*G2(x) + P3*G3(x)
WHERE THE O(x)'S KEPRESENT THE FITTED OAMFA OISTRIBUTIUNS
AND THE P's ARE WEIGHTS THAT ARE TREATED WITG A DIRICHLET DISTRIBUTION
C
C TO RUN USE LINK RECOVERY,NMOSLIB,TMSLIBS/LIB
PROGRAM MOLIEL
PARAMETER(NREP=500,NPLANT=70,K=3,NX=136,NTIME=11)
HOTE:WHEN NTIME CHANGES, THE NUNPER IN FORMATS 8000 AND 8001 CHANGES.
DIMENSION RESULTS(NREP,NX),X(NX),OUTPUT (K,NX), FMNX(K),IDT (NTIME)
1, ISHITCH(NPLANT),P(K),S(K),CUMPROB (K), PD(K),B(K),ICOMP(K),
2REQTIM(NTIME)
CHARACTER*1 CANS
CHARACTER*3 IP
CHARACTER*21 IPLANT (NFLANT)
CHARACTER*3 NAME (NPLANT)
CKARACTER*80 CFILE
EXTERNAL, GAMIC,GAMMAMA,QUANT,SIFT
COMMON A(3),N(3),NN
COMMON ISEED, AA
DATA REQTIM/1, 2.5,4, 4,5,6,0,7,,9,10,5,12,5,17,,24,/
C NX TIME STEPS ARE USED TO GENERATE A GRAPE OF THE RECOVERY CURVE.
THE TIME STEPS CORRESPOND TO TIMES OF .05, .10,..., (.05), ..., 2.50,
2.75,···..(.25) ···.. 24.00. NX =136.
THE VECTOR IDT IS COMPUTED TO INDEX THE TIMES FOR WHICH THE UNCERTAINTY
DISTRIBUTION WILL. BE SAVED IN A FILE.
ChLL ERXSET(:SO,1)
READ IN THE PLANT DATA FILE
OPEN(UNIT=10,FILE='REC',STATUS='OL.D')
I=1
9 READ(10,100, END=5)IPLANT (I),NAME(I),ISWITCH(I)
100 FORMAT (2A,14)
I=I + I
GO TO }
5 NP = 1 - 1
CLOSE (10)
c
C
C
SELECC THE PLANT WHOSE INITIATING EVEHT FREQUENCY IS DESIRED
DO 10 I = 1,21
WRITE(*,101)NAME(:),IPLANT (I),NAME (I +22),IPLANT (I +22),
1NAME (I+43), IPLANT (I+43)
1 0 CONTINUE
WRITE(*, 101)NAME (22),1PLANT (22)
101 FORMAT( IX,A,'- ', A18, 2X,A,'', A19,2X,A,'' ',A19)
PRINT * 'INPUT THE ABBREVIATION FOR THE PLANT OF INTEREST
READ '(A)',IP
DO 11 I = 1,NP

```
```

            IF(IF, EQ NANE(I))TVIEN
                    \DmI畀ITCF(I)
                    1.AST = 1
                        (%) T0 12
            ENDIF
    11 CONTINUE
    12 CONTENUE
        NPC = 63
    C
C
C
C 1 OANT OENTERED CCMIONENT
C 2 = GR\&? COMPONENT
C 3 - WEATHL: COMPONENT
C
\& FRINT * '18 THE PLANT GENTGRED COMPONENT TO BE WSED IN THE'
PRINT 105,1PLANT (L.4OT)
105 FORMAT ( }1\textrm{X},\mp@subsup{'}{}{\prime}\mathrm{ COMPOEITE MODEL, FOR ' }A,\mp@subsup{,}{}{\prime\prime}\mp@subsup{7}{}{\prime}\mathrm{ )
PRINT *, 'Y OR N'
READ '(A)', CANS
ICOMP(t)=1
IF(CANS EQ,'N')ICOMP(1)=0
PKINT *,'1S THE GRID COMPONENT TO BE USED IN THE'
FRINT 105,IPLANT (LAST)
PRINT *,'Y OR N
READ '(A)',CANS
ICOMP (2)*1
IF(CANS, EQ. 'N')ICOMP(2)=0
PRINT *,'IS THE WEATHER COMPONENT TO BE USED IN THE'
PRTNT 105,IPLANT(LASST)
PEINI *,'Y OR N
READ '(A)',CANS
ICTMP(3)*1
If Fave RQ.'N')ICOMP(3)=0
1. OMP (1) + ICOMP (2) + ICOMP (3)
IP(1EDN.EQ, DITHEN
FRINT *,'NO COMPONENTS WERE SELECTED'
GO TO I
ENDIF
0
C INPUT SECTION FOR THE CAbrar DT"ZRIBUTIONS, G(x)'s
C CALCULATE THE PRODUCT, P, OR THE XS FROM THE GEOMETRIC MEAN
C CALCULATE THE SUM, S, OF THE XS FROM THE ARITHMETIC MEAN
C
IF(ICONP(1),EQ,0)G0 TO 2
C
C INPUT THE FLAG FOR SWITCHYARD CONFIGLRATION AS DEFINED IN NUREO-1032
1 = 11
2=12
3 * 13
4 = ALL PLANT CENTERED DATA USED
PRINT *,'THE SWITCHYARD CONFIGURATION PER NUREG-1032 FOR'
PRINT 106,IPL.ANT(LAST),ID
106 FORMAT (IX,A, IS , 11)
PRINT *,'DO YOU WISH TO CHANOE THIS VALJE? Y OR N.
READ '(A)', CANS
IF (CANS EQ. 'N')CO TO 13
FRINT *,'INPUT NUMBER FOR SWITCHYARD CCNFIGURATION PER NUREO-1032'
PRINT *, 'ENTER I FOR 11 SWITCEYYRD'
PRINT *, 'ENTER 2 FOK 12 SWITCHYARD'
PRINT * 'ENTER 3 FOR I3 SWITCHYARD'
PRINT *,'ENTER 4 IF CONFIUURATION IS UNKHOWM'
READ *,ID
13 IF(ID,EQ.1)THEN
P(1)=.0855**14

```
```

            f(1)=,20536*24
            N(1)=14
        ELSE IF(ID &O.2)THEN
            P(1)=,17413**13
            B(1)=,30231*13
            N(1)=13
        ELSE IF (ID, EO 3)THES
            P(1)*,45722*+16
            S(1)=1.252.3*16
            N(1)*16
        ELSE
            P(1)=,2日78**&3
            S(1)*.65144*43
            N(1) =63
        ENDIF
    2 CONTINUE
    IF (ICOMP(2),EQ 0)GO TO S
    C
C
P(2)=, 65420**13
B(2)=1.23638*13
N(2)=13
3 CONTINUE
IF(ICOHE(3) EQ.0)OO TOS
SET THE PARAMETERS FOR WEATHER
P(3)*4,108544**?
S(3)=4,501420*7
N(3)=?
CONTINUE
C
INPUT SECTION FOR THE DIRICHLET DISTRIBUTIONS, P's
C
C INPUT THE WEATHER HAZARD RATIO FOR THE SPECIEIC PLANT
RATIO *
IF (1GOMP (3) EQ, 1, AND ISUM,OT, 1)THEN
PRINT * 'THE OENERIC WEATHER RATIO FOR'
PRINT 107, IPL.ANT (LAST)
07 FORMAT(1X,A,'IS 1')
PRINT *,'DO YOU WISH TO CHANGE THIS VALUE? Y OR N
READ '(A)',CANS
IF(CANS, EQ. 'N')GO TO 14
PRINT *,'INPUT THE PLANT SPECIFIC WEATHER GAZARD RATIO
READ *, RATIO
14 CONTINUE.
ENDIF
R1*1COMP(1)*NPC
R2=1COMP(2)*N(2)
R3=ICOMP (3)*N(3)
C
C OENERATE THE TIME IN STEPS OF .05 FROM .OS TO 2.5 FOR THE RECOVERY CURVE
DO 15 I=1,50
X(1)=,05*!
15 CONTINUE
GENERATE THE TIME IN STEPS OF . 25 FRON 2.75 TO 24.0 FOR THE RECOVERY CURVE
DC 16 I=51,136
X(1)=0.25*I*10.0
16 CONTINUE
C DETERMINE THE INDICES FOR THE TIMES REQUESTED

```
```

        DO 20 I*I,NTIME
    DO 19 J*1,136
    IF(RHOTIM(I) EQ:X(J))THEN
    1DT(1)*J
    O0 10 20
    ENDIF
    CONTINUE
    FRINT * * KEOUNSTED TIME NOT IN LIST' REQTIM
    STOP 20
    CONTINUE
    PRINT THE TIMES REQUESTED
FRINT 8000,(X(IDT(I)),I=1,NTIME)
FORMAT ( }2X, 'TIE COLUMRS WRITTEN TO THE FILE ARE FOK THE TIMES:',l
12X,11(Y'6.2))
1SEED=32.7251
SETUP
DO 50 I=1,K
IF (ICOMP (I) EO,0)GO TO 50
FIND THE MAXIMUM VALUE OF THE VARIABLE THAI MAXIMIZES THE MARGIKAS.
DENSITY OF ALPHA (EQUATION 18 OF THE LOSP REPORT)
CALL. RMAX(XMAX,S(I),P(I),N(I))
FIND THE MAXIMMM VALUE OF THE MAROINAL, DENSITY OF AL.PHA
FMAX(I)=F(XMAX,N(I),P(I),S(I))
50 CONTINUE
DO 6 I = 1,K
6 PD(I) * 1
PRINT *
PRINT * 'PLEASE WAIT WHILE THE MONTE CARLO IS BEING PERFORMED
PRINT *
IPC = 0
D0 500 J=1, MREP
3 0 0 ~ D O ~ 7 0 ~ I = 1 , K
IF(ICOMP(I) FQ.Q)GO TO 70
NN=N(1)
C
OFTAIN A VALUE OF BETA FROM THE CONDIIIONAL DENSITY GIVEN BY
EQUATION }17\mathrm{ OF THE LOSP REPORT
CALL GAMPARAM(A(I),B(I),S(I),P(I),FMAX(I))
10 CONTINUE
C
ARG4 $=.001$
IARGI=1
F(ISUM.EQ.1)GO TO
IF (ISUM, EQ. 3)THEN
CALI. DIRICHLET (R1,R2,R3, PD (1), PD (2))
$P D(3)=1,-P D(1)-P D(2)$
ELSE IF (ICOMP (1) + ICOMP (2) , EQ. 2) THEN
CALL DIRICHLET2(R1,R2,PD(1))
$\mathrm{PD}(2)=1 .-\mathrm{PL}(1)$
ELSE IF (ICOMP (1) +1COMP (3), EQ, 2)THEN
CALL DIRICHLET2(R1,R3,PD(1))
$\mathrm{PD}(3)=1,-\mathrm{PD}(1)$
8LSE IF (ICOMP (2) + ICOMP (3), EQ. 2) THEP
CAL1. DIRICHLET2(R2,R3, PD (2))

```
```

        PD(3)*1.~PD(2)
        ENDIF
    7 COHTYNTH
    TOT = 0.
    PD(3) = PD(3)*RATIO
    DO & I = 1,K
    TOT = TOT + PD (I) = ICOMP(I)
    8 \text { CONTINUE}
        DO 4.10 I=1,NX
        DO 450 IC 1 1,K
        IF(1COMP(IC), EQ,0)O0 TO 450
    Y=X(1)*B(IC)
    IF(Y.GT. 200.) CO TO 300
    CALL. GAMIC (Y, A(IC), ARG4, IARO1,CUMPROB (IC),N2)
    4 5 0 \text { CONTINUE}
        RESULTR(J,I) * 1. = 1COMP(1)*PD(1)/TO5*CUMPROB(1)
    1 - ICOMP (2)*PD (2)/TOT*CIMPROB (2) = ICOMP(3)*PD (3)/TOT*CUMEROB (3)
    410 CONTINUE
IF(MOD(J, NREP/100) , 22 0)THEN
IPC=1PC+1
PRINT 109,1PC
FORMAT('+THE CALCULATION IS ',13,'z COMPLETE')
ENDIF
500 CONTINUE
WRITE OUT THE YILE CONTAINING THE UNCERTAINTY DISTRIBUTION AT
EACH OF THE NTIME SPECIFIED TIME POINTS
THIS FILE WILL BE AN NREP x NTIME MATRIX WITR EACH COLUMN CONTAINING THE UNCERTAINTY DISTRIBUTION AT A GIVEN TIME POINT. TRESE DISTRIBUTIONS ARE USED BY THE LAS PROGRAM IN THE UNCERTAINTY AKALYSIS. THE VALUES IN EACH COLLMN HAVE BEEN SORTED FRCM SMALLEEST TO LARGEST
OPZR (UNIT = 11, FILE = IP/I', DAT', STATUS = 'NEW')
DO $800 \mathrm{I}=1$, NX
CALL SIPT(NREP, RESUETS (1,1))
800 CONEINUE
DO $8000 I=1$, NREP
WRITE ( 11,8001 ) (RESULTS (I,IDT (J)) , J=1, NTTME)
8001 FORMAT(11E12.5)
9000 CONTINUE
CLOSE (UNTT = 11)
C WRITE OUT FILE FOR MAPPER WITH 802 UNCERTAINTY BOUNDS
AND FILE WITH THE COMPLETE UNCERTAINTY DISTRIBUTION
FOR THOSE TIME POINTS IDENTIFIED IN IDT
PRINT *, 'DO YOU WANT TO CREATE A MAPPER FILE FOR PLOTTING? Y OR N'
READ ' (A)', CANS
IF (CANS EQ 'N')GO TO 802
DO $801 \mathrm{I}=1$, NX
CALL QUANT (.05, NREP, RESULTS ( 1,1 ), OUTPUT ( 1,1 ) )
CALL QUANT (. 50 , MREP, RESULTS ( 1,1 1), OUTPUT( 2,1 ))
CALL QUANT (. 95, NREP, RESULTS(2, 1), OUTPUT ( 2,1 ) )
B01 CONTINUE
CALL. MAPPEK (OUTPUT, X, IPLANT (LAST), IP)
802 CONTINUE
STOP
END
$C$
$C$
SUBROUTINE TO SELECT A RAJDOM VARIABLE FROM A GAMMA DISTRIBUTION USING THE ACCEPTANCE-REJECTION METHOD
SUBROUTINE GAMPARAM(AA, B, S, P, FMAX)
CORTION A(3), N(3), NN
COTTON ISEED, AAA

```
```

            EXTERHAL. GAMIC, GANMNMA, QUANT, SIFT
    300 T=RAR(ISEED)
    PB-RAN(IBE&D)
    AA=T/(1, -T)
    AAA"AA
    C
c
C
C
c
IF (F1/FMAX,LT.RAN(ISEED)) GOTO }30
ARG1*2,*PE*AA*NE
ARG2*0.1*NN*MA
ARG3**,0001*NN*AA
ARG4=1.
IF(AA.OT. 20.) GOTO 300
C
e
CALL. FINVER(GAMMAMA, PB,ARG1,ARG2,ARG3,ARG3,ARG4)
B=ARG1/S
390 CONTINUE
RETURN
END
C
c
c
REAL FUNCTION F(T,N,P,S)
DIUENSION P(1),S(1),N(1)
A=T/(1,-T)
NN=N(1)
SSmS(1)
PP=P(1)
FL=(A-1.)*LOO(PP)+GAML.N (NN*A)-NN*GAML.N(A)
X -NN*A*LOO(SS)-2*LOO(1,-T)-LOO(A)
F=EXP(FL)
FTESTwF
RETURN
END
C
C
C
REAL FUNCTION FNEG(T,P,S,N,N2,N3)
DIMENSION P(1),S(1),N(1)
FNEG=-F(%,N,P,S)
FTEST=FNEG
RETURN
END
C
C
C
FINDS THE VALUE OF THE VARTABLE THAT MAXIMIZES THE DENSITY F
SUBROUTTHE RMAX(XMIN,S,P,N)
DIMENSION P(1),S(1),N(1)
EXTERNAL, FNEG
E=.01
A=E
B=1, -E
TOL=,001
CHLL 2XGSP(FNEG,P,S,N,IE4, IP5,A,B,TOL, XMIN,IER)
EYZST=XMMLN
RETURN

```
```

    END
    C
c
SUBROUTIME ONTMAFIA(X,FOFX)
COMMON A(3),N(3) NA
COHON ISEKD, AA
IF (X,LT,0,0) THEN
FOFX=0
RETURK
ENDIF
TOL*1.E-5
NUNIT=1
XX=X
AAA=AA*NN
IF (X,OT, 5, *MAA) THEN
FOFOX=1.0
RETURN
ENDIF
CALL. GAMIC(X,AAA, TOL, NUNIT, FOFX,NZ)
FOFXX=FOFX
RETURN
END
C
SUBROUTINE DIRICHLET(R1,R2,R3,P1,P2)
COMON A(3),N(3).NN
COHON ISEED,AA

```

```

        RN=R1+R2+R3
        P1MAX=(R1-1.)/(RN-1.)
        R2MAX=(R2-1.)/(RN-1.)
        FMAX=CONL+ (R1-1.)*LOO(P1MAX)+(R2- . ) *L.OO(P2MAX)+(R3-1,)*
        X 1.OG(1, - P1MAX-P2MAX)
    OO CONTINUE
        Pl=RAN(ISEED)
        P2=RAN(ISEED)
        P3=RAN (ISEED)
        IF(P1+P2. OT 1. ) GOTO 100
        F=CONL+(R1-1.)*LOO(P1)+(R2-1,)*1OG(P2)+(R2-1.)*LOG(1-P1-P2)
        IF (P3,LT, EXP(F-FMAX)) RETURN
        COTO }10
        END
    c
C
SUBROUTINE DIRICHLET2(R1,R2,P1)
COMNON A(3),N(3),NN
COMMON ISEED, AA
CONL=GAML.N(R1+R2)-GAMLN(R1)-GAMLN(R2)
RN=R1+R2
P1MAX=(R1-1.)}/(\mathrm{ RN -1.)
FMAX=CONL+(R1 1. )*LOG(P1MAX)+(R2-1,)*LOO(1,-P1MAX)
100 CONTINUE
P1~RAN(ISEED)
P2=RAN(ISEED)
F=CONL+(R1-1.)*LOG(P1)+(R2-1.)*LOG(1-P1)
IF (P2,LT, EXP(F-FMAX)) RETURN
GO TO }10
END
c
C
SUBROUTINE QUANT(QNT,N,X, XQNT)
DIMENSION X(N)
IF (MOD(FLOAT (N)*QNT, 1.0) , EQ, 0.0) THEN
ICNT =N N QNT

```
```

                JQNT = IONT + 1
            EL&E
                1ONT = N * QNT + 1
                JQNT = IONT
            ENDIF
            XONT = 0 5 * (X(IQRT ) * X (JONT ) )
            RETURN
            END
            SUBROUTINE SIFT (N,XV)
            DIMENSION XV(N)
            M-N
    10 Ma+M/2
            IF (M) 30,20,30
    20 RETUKN
    30 K=N-M
    j=1
    40 1*J
    50 L=I +M
            IF (XV(%)-XV(L)) 70,70,60
    6 0 ~ A = X V ( I )
    XV(I)=XV(L)
            XV(L)=A
            I*I-M
            IF (I) 70,70,50
    70 J=3+1
    IF (J-K) 40,40,10
    END
    C
C
SUBROUTINE TO WRTTE QUT MAPPER FILE FOR PLOTTING
SUBROUTINE MAPPER (XQ,X,IPL,ANT, IP)
PARAMETER (K=3,N=106)
DIMENSION XQ(K,N),X(N)
CHARACTER* (*) IPLANT,IP
OPEN (UNIT*2, FILE= IP//',MAP', STATUS='NEW')
C
C
WRITE OUT THE TITLE IN THE PLOT FILE FOR MAPPER
WRITE (2,10k)
WEITY (2,105)IPL.ANT
c
C WRTTE OUT LOWER 5% POTNTS
C
ONE=1.0
2.RO=0.6
WRITE (2,106)
WRITE (2,101) ZERO,ONE
DO 40 I = 1.N-1
WRITE (2,102) X(I), XQ(1,I)
4 0 ~ C O N T I N U E ~
WRITE (2,103) X(N), XQ(1,N)
c
C WRITE OUT 50% POINTS
WRTTE (2,107)
WRITE (2,101) ZERC,ONE
DO 50 I = 1,N-1
HRITE (2,102) X(I), XQ(2,I)
5 0 CONTINUE
WRITE (2,103) X(N), XT(2,N)
C
C WRITE COT UPPER 5Z POI
WRITE (2,108)
WRITE (2,101) ZERO,ONE
DC 60 { = 1,N-1

```

WR1TE \((2,102) \times(1), X Q(3,1)\)
60 COHTINUE
WRITE \((2,103) \mathrm{X}(\mathrm{H}), \mathrm{XQ}(3, \mathrm{~N})\)
CLOSE (2)
101 FORMAT ('SLINE (', 514.7, ',', E14.7, 5, 1')
102 FORMAT (E14.7., 1, E14.7)
103 FORMKT (E14, 7, ',',E15,7,',2', 1,'RETURE')
104 PORMAT ('*TITLE*', /'LABEL \((1,6,5,0,5,11,2,0\))
105 FORMAT ('ET, 35>RECOVZRY CUTVE FOR ', A, 1,'RETURA')
15 FORMA' (' LOWEER
07 FORMAT ("MMDIAN*')
108 FORMAT (*UPFEER*')
RETURN
ERD
```

* L. S% FOM SEQLOYAH:
* THIS PNOKINAM OENERATES THE CONDITIONAL PROLAE1LITY

```

```

* QUANTILES MAY \&s PICNED OFF।
* THE PFOBABLLITY IS (A = B)/a WIERL B = P(T>B) = 1*F(B)|
* AHD A = F(T>A) + 1-F(A);
*;
DATA A:
INF1LE NECSEO;

```

```

    F1 * (11HRR 72_5HR) / T2HR;
    DROF T1HK 62_5HK
    FWCO SORT:
EY P1;
DAl% E
ALE RECSEQ:

```

```

    F2 = (T1HR - 74_SRR) / T1胙;
    ```

```

FIOC sont;
HY P2:
bata C!
INFILE RECSEO:
IAPUT TAHR T2_5HR T4HR T4_5HR T6HR T7HR TBHR T10_5HR T12_5HR T17HR T24HR貫
P3 - (TAHR - 76HR) / T4HR;

```

```

PROC SORT;
BY P3;
DATA D.
INFILF RECSEQ:
INPIF TIHK T2_5HR T4HK T4_ 5HR T6HR T7rR T9HR T10_5HR T12_5HR 217HR T24HR/
* * 'T4HR * T10_5HR) ( 14HR;
UNOP T1HR T2_5HR T4HR T4_SHR T6HR T7HR TOHR T10_5HR T12_SHR T17HR T24HR;
F x sont;
BY P4:
DATA E:
INFILY. RECSEQ:
INPUT T1HR T2_5HR T4HR T4_SHR T6HR T7HR TGHR T10_5HR T12_SHR T17HR T24HR;
35 = (T7HR - T12_5*KR) / T7HR;
DROF TaHR T2_5HR T4HR T4_5HR T6HR T7HR TOHR T10_5HR T12_5HR T17HR T26HR;
Proc sanz;
BY IS;
DATA F:
INFILE RECSEO:
INFUT TIHR T2_SHR T4HR T4_5HR T6HR T7HR TOHR T10_5HR T12_5HR T17KR T24ER;
PG = (T2_5HK = T0HK)/T2_5HR;
DKOP T1HR T2_SHR TGHR T4_5HR T6HR T7HR TPIR T10_5HR T12_5HR T17HR T24HR;
PRoc SORT;
BY P6;
DATA O:
INFILE RECSEQ:
INPUT T1HR T2_5HR TAHR T4_SHR TGHR T7HR T9HR T10_5HR T:2_5HR T17HR T24HR;
P7 = (T4_SHR - TOHR) / T4_5HR;
DROP T1HR T2_5HR T4HR T4_5HR TEHR T7HR T0RR T10_5HR T12_5HR T17HR T24HR;
EROC SORI;
BY P7;
DATA B:
INFILE RECSF \&:
INPUT O:DR T2_5HR T4HR T4_SHR T6HR TYHR T8HKN T10_5HR T12_5HR T17HR T24HR;
P8 - (T6HR - T9HR) / T6HR;

```

```

PROC SORT;
BY P6;
DATA I;
INFILE RECSEQ:

```

```

    P9 = (T10_5MR = T17MR) / T10_5HR;
    ```

```

FROC SON%,
BY Fe;
DN% ?:
INFILE REOSEQ:
INPUT T1HR T2,5HR 76HR T6_SHR TGHR T7HR TBHR 110_5HR 112_5HR T17HR T24HR;
F10= (712_5HR T17HR)/T12_5HR;

```

```

FROC SORT
BY P10:
DA(A K)
INFILE RECSEQ
INPUT T1HR T2_SHR TGHR TG_SHR T6HR T7HR T0HK T10_5HR T12_SHR T17HR T24HR,
111 * (%0HR = T2(HIR) / TBHE;

```

```

FROC sORT
BY P1I:
DATA L/
INFILE MECSEQ,

```

```

    P12 = (%17HR * T24HR) / T17登;
    DROF T1HK T2_5HK T&HR TG_5HR T6HR T7HR TGHR T10_5HK T12_5HR T17HR T24HR;
    PNOC SORT:
BY P12.
DATA MEROE\:
MERGE A E C D E F/
DATA MEROE:2;
MERGE G H I J K L
DATA MEROE3;
MERGE MEROE1 MEROE2;
FROC PRINT DRTA = MEROES NOOES;

```

SUBSECTION E. 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0.620630 & 14.87 & 0. 300822 & C. 202531 & 0. 416051 & & & & & & \\
\hline 0.262105 & 6. 697656 & 0.254873 & 0.379167 & 0.251669 & 3 & & & & & & \\
\hline 0. 2658871 & 0.468266 & 0.156802 & 0.646662 & 0.206113 & O. & 0. 3678 & & & & & \\
\hline 0. 267646 & 6.5 & 0.169184 & 0.451276 & 0.207681 & 0.6 & 0. & & & 0.237088 & & \\
\hline 0. 286775 & 0. 512 & 0.171093 & 0.651732 & 0. 30488 & 0. & 0.38745 & & & 0. 237088 & O. 525589 & \[
\begin{aligned}
& 0.201110 \\
& 0.205904
\end{aligned}
\] \\
\hline 0.352726 & 0,54636 & 0. 175381 & 0.452764 & 0.314616 & 0.625654 & 0. & O. & 0.353232 & 0.245526 & 0. 535026 & \[
\begin{aligned}
& 0.205904 \\
& 0.21323 \mathrm{~A}
\end{aligned}
\] \\
\hline 0.357061 & 0. 59275 & 0.180720 & 0.655005 & 0.316 & 0.6 & 0.416 & ¢. 260 vi 22 & 0.357697 & 0.256425 & 0.555304 & 0.213236 \\
\hline 0.359105 & 0. 58357 & 0.19476 & 0. 6.66513 & 0.3251 & 0.6 & 0. & 0.288572 & 0. & 0.256102 & & 0.243856
0.209908 \\
\hline 0, 360245 & 0. 60543 & 0. 1556 & 6.672 & 0.5 & 0.6 & 0. & 0.290863 & 0.350632 & 0.250866 & 0.588326 & 0.209908 \\
\hline 0.360 & 0 & 0.2 & 0.47 k & 0.3267 & 0. & 0. & 0.2016 & 0. & 0.264278 & 0.603736 & 0.317156
0.317182 \\
\hline 0.36
0.36 & 0. & 0.20176 & 0.475636 & 0.8 & 0. & 0. & 0. 283 & 0.371675 & 0.267264 & 1 & 0.332858 \\
\hline 0 & 0. & 0.2 & 0.46909 & 0.3 & 0.6 & 0.647 & 0.2956 & 0. & 0.267260 & 1 & 0.332858 \\
\hline 61318 & 0.618700 & 0. 2063 & 0.402802 & 0. 335568 & 0.6 & 0. & 0.3026 & 0.379 & 0.267968 & 0,650862 & \\
\hline 61664 & 0.6 & 0.2132 & 0. 688053 & 0.360522 & 0.6595 & 0.4 & 0.302508 & 0. 3832 & 0.274567 & 0,633448 & 1 \\
\hline & 0.62566 & 0.216130 & 0.305433 & 0.36700 & 672 & 0.4 & 0.302610 & 0.387041 & 0.278716 & 0.640877 & 0.370279 \\
\hline O. & 0.6 & & & & 0.660428 & 0.460458 & 0.30270 & 0.8 & 0.283164 & 0.643084 & 1 \\
\hline 0.365275 & 0.6 & 0.2 & 0. 510408 & & & 0.468136 & 0.3038 & 0.3 & O. 268353 & 64 & 0.372247 \\
\hline 0.3638 & 0.627 & 0.2 & 0 & & & 0, 464930 & 0.304136 & 0. & 0. & 82 & 0.372537 \\
\hline 0.363583 & 0.62 B & 0.2 & 0.5120 & 0 & & & 0.305354 & 0. & 0. & 40 & 0. 375299 \\
\hline 0. 363861 & 0.6285 & 0.22 & 0.5122 .82 & 0.3610 & 0.678853 & & 0.306350 & 0.6104 & 0.329045 & 0.668937 & . 360212 \\
\hline 0.364536 & 0.628722 & 0.2 & 0. 513 A8 & 0.8 & 0.6 & & & 0.4375 & 0.350254 & 0.674523 & 0634 \\
\hline 0.365016 & 0.62086 & 0.2 & 0.5 & 0.365732 & 0.6811 & & & & 0.33156 & 0, 696124 & 3 \\
\hline 0.366668 & 0. 62892 & 0.2236 & 0. 5165 & 0.36618 & 0.6811 & 0. & & & 0.332166 & 0.699621 & 0. 383501 \\
\hline 0.366062 & 0.63032 & 0. 2243 & 0.5161 & 0.369605 & 0.681648 & 0.476673 & & & 0.333278 & 0. & 0.387248 \\
\hline 0.366139 & 0.6303 & 0.2245 & 0.5250 & 0.373216 & 0.683015 & 0. & & & & 0. 703763 & 0. \\
\hline 0.366216 & 0.6 & 0.22 & 0. 523480 & 0.376 & 0.6 & 0.4834 & & & & 0.704066 & 0.403477 \\
\hline 0. 366250 & 0.6315 & 0.2 & 0. 525222 & 0.3772 & 0.6956 & 0. & & & & & 0 \\
\hline 0.3 & 0.63174 & 0.2263 & 0. 5256 & 0. 3 & 0. 703 & 0. & & & & & 0. 608972 \\
\hline 0. 367223 & 0.632115 & 0.228 & 0.541468 & 0.384893 & 0.70350 & 0. & & & & & 0.419076 \\
\hline 0.367358 & 0.63270 & 0.2202t & 0. 5436 & 0.385134 & 0.705385 & 0.48 & 0.354370 & 0. 460 & & & 0. 425558 \\
\hline . 367515 & 0. 632 & 0.22972 & 0.5500 & 0.388883 & 0.707748 & 0.487788 & 0.358017 & 0. & 0.343098 & 0.712114
0.712696 & 0. 425558 \\
\hline 0.367551 & 0.63287 & 0.22097 & 0.553176 & 0.4032 & 0.706880 & 0. 505715 & 0.360367 & 0. & 0.363316
0.345688 & 0.712694
0.714405 & 0.426211 \\
\hline 0. 367928 & 0.633 & 0.2 & 0. 554661 & 0.4 & 0.70 & 0,506028 & 0.36:586 & 0. & 0.345688
0.34 .078 & 0.714405
0.716882 & 0.426044 \\
\hline 0. 35 & 0.6 & 0.2 & 0. 556106 & 0. 4 & 0.7 & 0,5078 & 0.3623 & 0.467256 & 0.348833 & 0.716882
0.721751 & 0.428183
0.429041 \\
\hline 0.36
0.36 & 0. & 0.2 & 0,56214? & 0.4 & 0.7 & 0. 5092 & 0. & 0.467284 & 0.348833 & 0.721751
0.731118 & \[
\begin{aligned}
& 0.429041 \\
& 0.434322
\end{aligned}
\] \\
\hline 0.36
0.36 & 0.6 & 0. & 0. 56427 & 0.4 & 0.710 & 0.5 & 0.367273 & 0.468275 & 0.348935 & 0.731118
0.760638 & \[
\begin{aligned}
& 0.434322 \\
& 0.434637
\end{aligned}
\] \\
\hline 0 & 0 & 0.23716 & 0. 5649 & 0. 439985 & 0.712 & 0.51508 & 0, & 0690 & 0.361065 & 0.740730 & 0.434637
0.440503 \\
\hline 0.3 & 0.6 & 0.237 & 560 & 0. 440858 & 0.712 & 0. 516866 & 0.368284 & 0.470728 & 62070 & O.7a & 0.440503
0.640612 \\
\hline 0.3688E1 & 0.6 & & & 0.64600 & 0.7168 & 0. 518696 & 0.369611 & 0.472 & 0.363281 & 0.765428 & 0.641064 \\
\hline 0.369142 & 0.63 & 0.2 & & & 0.715581 & 519831 & 0.370262 & 0.473605 & 0.363425 & 0.745859 & 0. 648900 \\
\hline 0.360168 & 0.6350 & 0.2390 & 0.5 & 0 & & & 0.370464 & 736 & 0.365856 & 47078 & 0.451475 \\
\hline 0. 360631 & 0.6350 & 0.2400 & 0.5622 & 0. & & & 0.379431 & 75 & 0.365910 & 767822 & 0.451581 \\
\hline 0.368633 & 0.63512 & 0.24006 & 0. 5841 & 0.448 & & & & 67 & . 368176 & 48652 & 0.452690 \\
\hline 0. 368735 & 0.63513 & 0.2 & 0.584 & 0. 45005 & & & & 91 & 37177 & . 74850 & 0.456105 \\
\hline 0.368782 & 0.635 & 0.2 & 0. 5 & 0.45124 & & & & 0.48202 & 76172 & 0.769646 & 6752 \\
\hline O. 369817 & 0.635 & 0.24136 & 0.5 & 0.65262 & & & & 0.406208 & 38770 & 0.7526 & 0.464557 \\
\hline 0.37007) & Q. 6357 & 0.26176 & 0,5647 & 0.453 & & & & & 0.389750 & 0.7528 & 565 \\
\hline 0.370183 & 0.63577 & 0.2616 & 0.5858 & 0.4532 & 0.7 & & & & 0. 389617 & 025 & 3307 \\
\hline 0.370466 & 0.635864 & 0.26231 & 0, 3865 & 0.4537 & 0.728 & & & & 56 & 6093 & 0. 476528 \\
\hline 0.370528 & 0.63585 & 0.24312 & & 0.45374 & 0.728 & & & & 73 & 79527 & 75354 \\
\hline 0.370541 & 0.636076 & 0. 26.322 & 0.56803 & 0.456658 & 0.7288 & & & O. 533887 & 787 & 81891 & 0.475557 \\
\hline 0.370607 & 0.636116 & 0.244 & & 0.4574 & 0.7290 & & & & 0. 408906 & 783844 & 96250 \\
\hline 0.370708 & 0.636130 & 0.24483 & 0.5 & & 0.7294 & & & & 0.412 & 501 & 0.488230 \\
\hline 0.376782 & 0.636183 & 0. 2660 & 0.589087 & 0.4 & 0.729 & & & & 0.418 & 0. 788847 & 0.499874 \\
\hline 0.370671 & 0.636 & 0.2460 & 0.5813 & 0.4804 & 0.729 & & & & 0 & 0. & 0. 500788 \\
\hline 0.370896 & 0.6 & 0.247161 & 0.5 & 0.45085 & 0.7304 & & & & 0.419765 & 0. & 0.503152 \\
\hline 0.371016 & 0.636392 & 0.247565 & 0.584820 & 0.460894 & 0.7313 & & & & - 418987 & 0.802 & 0.508451 \\
\hline 0.371010 & 0.636399 & 0.247742 & 0.588218 & 0.454065 & 0.738 & & & & - & . 80252.8 & 0.508673 \\
\hline 0. 371046 & 0. 636503 & 0.248318 & 0. 589826 & 0.464901 & 0.741010 & & & 20 & 0. 422703 & 0. 80278 & 0.513281 \\
\hline 0.371451 & 0.636600 & 0.248723 & & 0. 4677 & 0.741054 & & & 0, 544284 & 0. 423364 & 0.803203 & 0.513805 \\
\hline 0.371538 & 0.636775 & 0.248773 & 0.6 & -. \({ }^{\text {a }}\) & 0.741034 & & & 0. 544653 & 0, 425613 & 0.803772 & 0.514939 \\
\hline 0.371661 & 0.636996 & 0. 250610 & 0.608225 & 0.4743 & & & & 0.545365 & 0,427707 & 0. 806408 & 0.515696 \\
\hline 0.371688 & 0.6 & 0.250732 & 0.610235 & 0.476816 & 0.745640 & & & & 0.428001 & 0.807594 & 0.515830 \\
\hline & & & & 0.476816 & -7,75640 & 0.335923 & 0.404801 & 0.54753 & 42804 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0.637205 & 0.251866 & & & & & & & & & \\
\hline & 0.637507 & & & & & & & & & 0.809288 & \\
\hline & & & & & & & & & 2886 & 0.811436 & 0. 518620 \\
\hline & & & & & & & & & - 42885 & 0.81260 & \\
\hline & & & & & & & 0.6 & 0. & 0.4 & 0.8121 & \\
\hline & & & & & & 0. 56 & . 40 & 0. 55318 & 0.4308 & & \\
\hline 0.37 & 0.6377 & & 0.6115 & & 67 & 0.5603 & . 608 & 0. 55 & & & \\
\hline 0.31262 & 637 & S6 & 0.61102 & 0.68300 & 0.76676 & 560 & 0.6105 & 0.5579 & & & \\
\hline , 37 & 6380 & 256 & 0.61105 & O. & 0.76742 & 0.5607 & 0. 4107 & & & & \\
\hline . 372 & 0.6382 & 0.255 & , & C & & 0.5608 & & & & & \\
\hline . 372 & 0.6367 & 0.255 & & & & & & & & & \\
\hline 0.372 & 0.638 & 0.256 & & & & & & & & & 0. 526525 \\
\hline 0. 8 & 0. 63 & & & & & & 0. 6118 & & 0. & 0.818583 & - 52 \\
\hline - & & & & & & & 0.4122 & 0.5681 & 0.4382 & 0.8207 & \\
\hline 0.373 & & & & & & 621 & 122 & 0. & 0.4 & - 6211 & \\
\hline & & & 0.61610 & 0.48563 & 0.75023 & 0.56253 & 0.41262 & 0. 5695 & 0.44266 & 0.821268 & \\
\hline . 876032 & & & 0.61665 & 0.6856 & 0.75037 & 0.56258 & . 12.128 & 0. 5707 & 0. 4427 & & \\
\hline -.376103 & 0.6428 & S88 & 0.61 & & 0.75055 & 0.56321 & & & & & \\
\hline . 37617 & 0.6434 & 59 & ¢ & & 0.75185 & 0.5635 & & & & & \\
\hline . 37617 & 0.6647 & 0.2582 & - & & & & & & & & \\
\hline . 37627 & 0.6468 & 0. 2502 & & & & & & & & & 7 \\
\hline 0.37460 & 0.6466 & 0.250 & & & & & & 0,5736 & 0.64630 & 0.826088 & 0.532638 \\
\hline 0. 3746 & 0.6454 & 0. & 0 & & & 0.5677 & & 0.57364 & 0.4482 & O. 8261 & 0.532860 \\
\hline 0.8747 & 0.6 & 0. & & 0 & & 0.57026 & 0.41682 & - 5736 & 0.4519 & 0.8270 & \\
\hline 0.37672 & - & & & & 0.75838 & . 5706 & 181 & 5764 & 0. 452 & 0.827100 & \\
\hline & & & & & . 758 & . 5721 & 0.1286 & 0.57451 & 0.4533 & & \\
\hline & & & & 0.4898 & 505 & . 5738 & 0.4102 & 0.5747 & 0. 4538 & & \\
\hline & & & , & O. & 7507 & . 5740 & 4185 & & & & -. 538 \\
\hline & & , & - 02725 & 0.4905 & . & 0.57462 & 23, & 1010 & - 45513 & . 828574 & \\
\hline 0.375900 & 0.64764 & 26 & 0.6275 & 0.49208 & 63 & 0.5 & & . 5752 & 0. 4556 & & \\
\hline 0.375012 & - 64755 & - & - & 0.4822 & -. \({ }^{\text {Pe }} 3\) & 0. 5760 & & & & & \\
\hline \[
0.3
\] & 0.64755 & 0 & - & & & 0. 57616 & & & & 0.829854 & . 541243 \\
\hline \[
\begin{aligned}
& 0.3 \\
& 0.3
\end{aligned}
\] & & & & & & & & & 0.4 & 0. 8301 & 0.541347 \\
\hline 0.3 & 0.6 & 0. & & & & & & & & & \\
\hline 0.3 & 0. & & & & & & & & & & \\
\hline 0.3 & & & & 0. 4855 & 6. 7660 & 577 & 0.43032 & - 577 & -. 458 & & \\
\hline & & & 0.6343 & 0.4860 & 0.7661 & 578 & -. 4315 & & 0.458 & & \\
\hline & & - & 0.6402 k & 0. 40615 & 0.7678 & 0. 58083 & 161 & 0.578 & 0 & & \\
\hline \[
38
\] & & & & & & 0. 5810 & & & 0. & & \\
\hline \[
\begin{aligned}
& 0,380681 \\
& 0.380857
\end{aligned}
\] & 0.6
0.6 & & & & & & & C. 5800 & 0. & 0.839888 & 0.564846 \\
\hline 0.381164 & 0.6485 & 0. & 0.6445 & & & & & & & & \\
\hline 0.36151 & 0.6 & 0. & & & O. & & & - 580 & & & \\
\hline 156 & 6 & & & -. 307 & 0.7751 & . 58618 & 0. 41506 & 0.5805 & 0. & & \\
\hline 0.38188 & & & 0.6487 & 0.5081 & 0.9754 & . 5978 & 0. 4110 & 0. 581 & & & \\
\hline & & 0. & 0.65088 & 175 & 0.776 & 0.5983 & & & & & \\
\hline & 0.640027 & 0.27840 & 0.65125 & 5186 & 76 & 0.5985 & & & & & \\
\hline \[
\begin{aligned}
& 0.381071 \\
& 0.382343
\end{aligned}
\] & 0.65017 & 0.27868 & 0.6519 & 0.521
0.522 & & & 0.4445 & . 56. & 0.6618 & 0.850868 & \\
\hline \[
0.3
\] & 0.6503
0.6507 & & & & & & 0.6448 & 0.588590 & 0. 6621 & 50 & \\
\hline 0.38251 & 0.850 & & & & & & & 0.5015 & & & 0. 58078 \\
\hline 0.382654 & Q.65086 & 0.2816 & & & & & & & & & 0. 581157 \\
\hline 203 & 6516 & 0. & 0.85745 & . 5238 & -.7832 & - & & & & & \\
\hline 0. 362803 & 0.6 & - 28289 & 0.65786 & 0. 5245 & 0.7834 & 6097 & & & & . 65 & \[
01
\] \\
\hline 0. 383036 & 0.65310 & 0.28325 & 65036 & . 5253 & 0.7834 & . 8097 & & & & 0.85243 & . \\
\hline 0.383345
0.363647 & 0.65323
0.65350 & 8367 & 583 & . 5258 & 0.7835 & 100 & 45382 & 59663 & -. 685 & 0.85428 & \\
\hline 0.38350 & & & & 0. 531 & & 100 & 542 & . 58848 & 0.4694 & 556 & \\
\hline . 383573 & 0.6536 & 0.28390 & & & & & & 砣 & 0.47068 & & \\
\hline 383620 & 0.65428 & & 0.6692 & & & & & 0.60231 & & & \\
\hline ¢685 & 0.65432 & & & & & & & & 0.4712 & 74 & - 583825 \\
\hline 0. 383856 & 0.65454 & & & & & 2825 & & & & & 0. 585002 \\
\hline -. 384146 & 0.655 & 0.28676 & 0.66990 & 0.5379 & . 78638 & 退 & & & & & \\
\hline 6180 & .6554:18 & 0. 285025 & 6890 & 0. 5383 & & & & 1016 & 0.481329 & & \\
\hline 386361 & 0.65620 & 0. 28521 & 0.67163 & 0.5383 & 0.78780 & 0.616915 & 61 & . 6103 & -40132 & 0.858614 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 384566 & 0. 656261 & 0.285260 & 0.671071 & 0.536534 & 0.766188 & 0.6169 Pa & 0.661670 & 0. & 0.686570 & 12 & \[
0.587060
\] \\
\hline 8 & 0.657726 & 0.285366 & 0.872013 & 0.536717 & 0.758071 & 0.617261 & 0. 6.61830 & 0. 612610 & 0.484753 & 0.860501 & 0.587716 \\
\hline 0.384579 & 0,657735 & 0. 2855282 & 0.672184 & 0.536336 & 0.780181 & 0.617285 & 0.462030 & 0.614686 & 0.485213 & 0.661626 & 0.580637 \\
\hline 0.364663 & 0 & & 0.67 & 0,565681 & 0.769636 & 0.817601 & 0.682210 & 0.615175 & 0.686764 & 0.861632 & 0.5015e0 \\
\hline 0. 384788 & 0.657836 & 2 & 0.6 & 0.541020 & 0. & 0.617488 & 0.462616 & D.631082 & 0.699123 & 0.863936 & 0.582995 \\
\hline St & 0.656010 & 0.286 & 0.67 & 0. 561 & 0.7 & 0.818667 & 0.462470 & 0.631122 & 0.502338 & 0.870280 & 0.503201 \\
\hline 0. 386 tE & O.656 & 0.28 & 0.6756 & 0.562 & 0.750820 & 0.6156 & 0.682 & 0.63168 & 0,502563 & 0.870477 & 0.585156 \\
\hline 103 & 0.656 & 0.28 & 0.6757 & 0.5426 & 0.78113 & 0.6166 & 0.4 & 0.6328 & C. 50416 & 0.872253 & 0. 5858282 \\
\hline 0.3650es & 0.659361 & 0.286665 & 0.675762 & 0.56287 & 0.781170 & 0.616913 & 0.46378 & 0.632 & 0.50 & 0. & 0. \\
\hline 0.365276 & 0.658842 & 0.266681 & 0.675680 & 0.563240 & 0.781578 & 0.610100 & 0.664306 & 0.6320 & 0.5060 & 0. & 0.602196 \\
\hline 0.385300 & 0.660320 & 0.256810 & 0.675072 & 0.543403 & 0.701786 & 0.610116 & 0. 664308 & 0.633328 & 0.506426 & 0.875678 & 0.604381 \\
\hline 0.385378 & 0.661867 & 0.286982 & 0.676051 & 0.546345 & 0.761818 & 0.618273 & 0,464407 & 0.633596 & 0.507545 & 0.677331 & 0,609906 \\
\hline 0. 385385 & 0.662094 & 7038 & 0.67618 & 0. 553587 & 0.782012 & 0.618513 & 0.464453 & 0.634510 & 0.507672 & 0.880712 & 0.618350 \\
\hline 0.385448 & 0 & & 0. & 0.55373 & 0.722055 & 0.610731 & 0.464782 & 0.634746 & 0.508286 & 0.881876 & 0.618333 \\
\hline 0.385564 & 0 & & & 5543 & & 0.6180 & 0.464796 & 0.635228 & 0.508366 & 0.882181 & 0.619675 \\
\hline -0.363502 & 0.663856 & & & . 55 & & & & 0.635539 & 0.510154 & 0.882501 & 0.618526 \\
\hline 0.365780 & 0.665005 & 0.268126 & 0.67 & 0.55 & & 0.62 & & 0.63 & 0.510330 & 0.685000 & 0,620006 \\
\hline 0.385832 & 0.665160 & 0.288457 & 0.67668 & 0.555023 & 0.782317 & 0.6206 & 0. 6 & & & & \\
\hline 0.385843 & 0.665188 & 0.268550 & 0.67670 & 0,555176 & 0.782870 & 0.62062 & 0.466200 & 0.63740 & 0.510522 & 0.885412 & 0.620910 \\
\hline 0.385826 & 0,665277 & 0.268611 & 0.676730 & 0.555531 & 0.702668 & 0,620800 & 0.466364 & 0.63872 & 0.51112 & 0.86s61 & 0.622165 \\
\hline 0.385926 & 0.665328 & 0.288705 & 0.676620 & 0.555862 & 0.782670 & 0.620628 & 0.467334 & 0.638261 & 0.511476 & 0.885617 & 0.622450 \\
\hline 0.365833 & 0.665353 & 0.28876 & 0.676816 & 0.555867 & 0.782480 & 0. 621067 & 0.467487 & 0.638648 & 0.511686 & 0,885656 & 0.623081 \\
\hline 0,386002 & 0.6 & 0.2 & & , 555p & 0.7826 & 0.62127 & 0.657682 & 0.638482 & 0.511983 & 0,885733 & 0.624663 \\
\hline 0.386113 & 0.6 & 0. & & & 0.7 & d2178 & 0.668187 & 0.64168 & 0.513006 & 0.885775 & 0.624662 \\
\hline 0,386 & 0.66 & & & & & & & & & 0.885871 & 0.626838 \\
\hline 0.386 & - 6658 & 0.290 & 0.677 & 0.556 & & & & & & & \\
\hline 0.38635 & 0.6658 & 0.2807 & 0.671 & 0.5562 & 0.7835 & 0.623 & 0. & 0.642 & 0.513851 & 0.885 & 0.625025 \\
\hline 0.386410 & 0.66585 & 0.290800 & 0.6782 & 0.55675 & 0.78428 & 0.6267 & 0.4733 & 0.6639 & 0.513820 & 0.5860 & 0.625268 \\
\hline 0.386466 & 0,66668 & 0.290964 & 0.679073 & 0.556831 & 0.70578 & 0.62730 & 0.4746 & 0.64625 & 0.516755 & 0,88600 & 0.625470 \\
\hline 0.386586 & 0.666858 & 0.281176 & 0.661632 & 0.557167 & 0.787365 & 0.620684 & 0.678113 & 0.644848 & 2.515840 & 0,886283 & 0.625633 \\
\hline 0.386632 & 0.66703? & 0.201233 & 0.682553 & 0.557653 & 0.706311 & 0,63054 & 0.681112 & 0.644821 & 0,516273 & 0.886623 & 0.625635 \\
\hline 0.386 & 0.66713 & 0.2816 & 0.58261 & 0.557 k 7 & 0.79650 & 0.630n6e & 0.681530 & 0.645074 & 0.517727 & 0.686846 & 0.625804 \\
\hline 0.386876 & 0.6 & 0.2 & 0.6 & - & 0.78 & 0.630 & 0.481801 & 0.645607 & 0.518270 & 0.887237 & 0.625886 \\
\hline 0.386878 & 0.6 & 0. & & -. \({ }^{\text {a }}\) & 0. & 0.631026 & & & 0.518822 & . 887534 & \\
\hline 0.387060 & 0.6 & & & & & & & & & & \\
\hline 0.387 & 0.66 & 0. 2 & 0.6 & 0. & 0 & 0.631850 & & & & & \\
\hline 0.387180 & 0.6678 & 0.282360 & 0.6855 & 0.55828 & 0.8012 & 25 & 0 & 0.6671 & 0.5 & 0.888080 & 0.626376 \\
\hline 0.307382 & 0.66784 & 0.20263 & 0.68586 & 0.55857 & 0.8015 & 0.E3201 & 0.6836 & 0.6471 & 0.519481 & 0.868108 & 0.626647 \\
\hline 0.367404 & 0,667894 & 0.2826 ? & 0.68630 & 0.558584 & 0,80160 & 0,633128 & 0.483725 & 0.647308 & 0.518761 & 0.888263 & 0.627170 \\
\hline 0.367467 & 0,668159 & 0.282816 & 0.601828 & 0. 558210 & 0.80162 & 0.633434 & 0.483E77 & 0.648047 & 0.520822 & 0.888503 & 0.627286 \\
\hline 0.387507 & 0.66822 & 0.282858 & 0.682407 & D. 560117 & 0,80286 & 0.636108 & 0.483671 & 0.648154 & 0.521272 & 0.888765 & \\
\hline 0 & 0.6682 & 0.28316 & 0.604630 & 0.560130 & 0. 80361 & 0. 697516 & & 0,648789 & 0. 521438 & & \\
\hline 0.387602 & 0.6 & & & 0.5 & . & & & & & & \\
\hline 0.387606 & 0.66 & & & & & & & & & & \\
\hline 0.387608 & 0.66916 & 0.2 & & & 0.80503 & O & & 0.649832 & 0,522023 & 0.888289 & 0.628107 \\
\hline 0.367847 & 0.668196 & 0.297178 & 0.685463 & 0,56090 & 0,80510 & 0,640317 & 0.486360 & 0.650251 & 0.522367 & 0.888375 & 0,628691 \\
\hline 0.387823 & 0.668331 & 0.297731 & 0.685482 & 0,560961 & 0.805221 & 0.640413 & 0.486554 & 0.653107 & 0.522672 & 0.889657 & 0.628815 \\
\hline 0.387875 & 0.668350 & 0.288308 & 0.685528 & 0.561385 & 0.806610 & 0.641880 & 0.486976 & 0.653625 & 0.525085 & 0.890215 & 0.628946 \\
\hline 0.388072 & 0.660403 & 0.298900 & 0.685712 & 0.561670 & 0.807750 & 0.642020 & 0.467044 & 0.654302 & 0.525848 & 0.880473 & \\
\hline . 388086 & 0.6694 & - 200510 & & 0.5627 & 0.80777 & & & 0.654506 & & & \\
\hline 0.38838 & 0.6683 & & & 0.56 & & & & & & & \\
\hline 0.388640 & 0. & & & & & & & & & & \\
\hline 0.388493 & 0,670571 & 0.301377 & 0.687603 & 0.566285 & 0.808385 & 0.643816 & 0.488664 & 0.660182 & 0.528214 & 0.893088 & 0.629362 \\
\hline 0.388556 & 0.570692 & 0.302163 & 0.687605 & 0.567102 & 0.808271 & 0.644012 & 0.488828 & 0.660411 & 0. 528551 & 0.893252 & 0.629377 \\
\hline 0.388509 & 0.67:036 & 0.302381 & 0.687816 & 0.568102 & 0.809801 & 0.644048 & 0.689897 & 0.660458 & 0.520885 & 0.893370 & 0.629784 \\
\hline 0.388638 & 0.671179 & 0.302936 & 0.687895 & 0.568774 & 0.810355 & 0.644687 & 0.480048 & 0.660603 & 0.530013 & 0.893484 & 0.629968 \\
\hline 0.388737 & 0.671200 & 0.303165 & 0.688828 & 0.570100 & 0.811275 & 0.64654 & 0.480305 & 0.660042 & 0.530508 & 0.893523 & 0.630015 \\
\hline 388801 & 0.67131 & 0.30347 & 68 & 0. 5702 & 812 & . 6 & & , & . 53 & & \\
\hline 0.38888 & 0.6715 & & & 0.57 & 0.81 & & & 0.66 & & & \\
\hline 0.369112 & 0.671698 & 0.30518 & 0.7026 & 0.57176 & 0.81133 & 0.64682 & 0.690688 & 0.66324 & 0.530906 & 0.884222 & 0.631328 \\
\hline 0.389141 & 0.671822 & 0.306186 & 0.702668 & 0.571856 & 0.811747 & 0.646874 & 0.490991 & 0.663430 & 0.530851 & 0.884440 & 0.632106 \\
\hline 0.389161 & 0.871843 & 0.306710 & 0.703156 & 0.573273 & 0.811800 & 0.667287 & 0.601284 & 0.564062 & 0.530058 & 0.894582 & 0.632251 \\
\hline 0.389222 & 0.672133 & 0.306856 & 0.703605 & 0.576501 & 0.813917 & 0.650550 & 0.481485 & 0.664213 & 0.531287 & 0.884630 & 0.633251 \\
\hline 0.389232 & 0.67218 & 0.306866 & 0.705466 & 0,578240 & 0.813344 & 0.650650 & 0.681802 & 0.654547 & 0.531660 & 0.824685 & 0.633588 \\
\hline 0.38830 & 0.67240 & 0.30728 & . 705717 & . 57896 & 0.81337 & 0.651308 & 0.682073 & 0,664500 & 0.581822 & 0.895014 & \\
\hline 0.389307 & 0.6 .2242 & 0.307453 & 0.706418 & 0.581356 & 0.813426 & 0.651504 & 0.402084 & 0.664867 & 0.532721 & 0.885634 & 0.636886 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & \\
\hline & 0.673835 & -. 307905 & & & & & & & & & \\
\hline & 18 & & & & & - 6532007 & & & & & \\
\hline & & O.308 & & & 81499 & 0.65212 & 2625 & - & 53635 & & \\
\hline & & & & & & & & - 065587 & 59465 & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 0.381684 & & & & & & & & & & & \\
\hline 381910 & - & 308 & 0.710 & 0.59512 & & & & & & & \\
\hline & - 679001 & 0.30986 & . 71028 & 5952 & . 81700 & 0.6531 & ,488212 & 0.67862 & -.54565 & -.804121 & \\
\hline & B80s & 3000 & . 71108 & 59533 & . 81762 & 0.65323 & . \(48+22\) & 0.68108 & 0.548533 & 0.9053 & \\
\hline & & & & & & 0.65360 & . 4.9830 & 0.68211 & 0.549875 & 0.9081 & \\
\hline & & & & & & & & & 0.55676 & & \\
\hline & & & & & & & & & & & \\
\hline & , & & & & & & & & & & \\
\hline 393466 & 0.682 & 0.3101 & 0.712 & & & & & & & & \\
\hline 83634 & 0.6822 & 0.3101 & 0.7142 & 0.5 & & 0. & & & & & \\
\hline 393728 & 0.6822 & . 3103 & . 71 & 0.5987 & . 82210 & 0.65 & , & 0.6 & . 5 & & \\
\hline 389786 & 0.6823 & 3105 & . 715 & . 6000 & 23 & 0.65 & , 5046 & 0.6807 & 0. 5610 & 0.813 & \\
\hline & 0.6 & 2108 & . 11 & . 0003 & 25 & 0.6603 & 5066 & 0.691 & 0.5622 & 0.813 & 0. \\
\hline & & & & & & 0. 6605 & 505121 & 0.6913 & 0. 5637 & 0.814 & \\
\hline & & & & & & & & & 0.564 & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline . 38742 & 0.6 & 0.3116 & 0.7201 & 0,6057 & . 8230 & 0.6616 & . 506098 & 0.6829 & . 565 & 0.6 & \\
\hline 39 & 0.6 & 0.311 & 72 & 0.6058 & 0.82333 & 0. & , 5061 & 0.693 & D. 5655 & 0.9181 & 0. \\
\hline 0.39826 e & 0.6850 & 0.312 & 72 & 0.60614 & 0.82376 & 0. & 085 & 0.6852 & . 5863 & 0.8184 & \\
\hline 0.398385 & 0.68526 & 0 & 0 & 0.606 & & 0 & 0.506738 & 0. 69621 & - 5689 & \(0 \cdot\) & \\
\hline - 308 & 0.685327 & 0.312 & & & & & & & & & \\
\hline & & - & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 0.39960 & & & & & & & & & & & \\
\hline 0.38978 & & & & & & & & & & 0 & \\
\hline 400 & 0.6 & & & 0.61034 & & & 0.5081 & 0.7109 & 58 & 56 & \\
\hline 0.40026 & 0.6 & - & 0.7223 & 0.61046 & . & , & 0.509767 & - 115 & . 588 & 0.825769 & \\
\hline 0.40055 & 0.6902 & 0. 312 & T22 & & & . & 0. 5080 & . 71298 & 0.58092 & & \\
\hline +0073 & & 0.313003 & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 0.4023 & & & & & & & & & & 0. & \\
\hline 402 & & & & & & & & & & & \\
\hline 0. 60254 & 0.6909 & & & & & & 151 & 0.7181 & 0.593680 & - 0288 & \\
\hline 402673 & 0.69111 & 0.3134 & & & & & 0. 5151 & & 0.583 & & \\
\hline 0.402\% 36 & 0.69128 & 0.31353 & & & & & & & & & \\
\hline & & & & & & & & 0.720653 & & & \\
\hline & & & & & & & & & & & \\
\hline 0.40292 & & & & & & & & & & & \\
\hline 0.4028 & & & & & & & 0. 519905 & - 225 & 0.5858 & 0.8312 & \\
\hline 0.40312 & 0.6 & 0.314210 & & & & & 0. 5206 & . 7226 & 0.596469 & 0.83131 & \\
\hline n. 403232 & 0.8917 & 0.3142 & . 7290 & & 0.8305 & . 6718 & 0.52082 & . 72288 & 0.5870 & & \\
\hline . 403286 & 0.68178 & 0.31331 & . 72820 & & - & - \(\mathrm{B}^{\text {b }}\) & - 5210 & . 7231 & 0.5870 & & \\
\hline 0.403427 & 0.6917 & & , & & & & & & & & \\
\hline 40366 & 0.6918 & & & & & & & & & & \\
\hline 0.403705 & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 0.403 & 0.691 & - 3 & , & & & , 6 & & 0.7251 & 0.5985 & 0.9335 & \\
\hline 0. 404198 & 0.681 & 0.31695 & . 73142 & , & 0.8312 & 0.67351 & 0. 52243 & 0.726321 & 0.58974 & 0.833710 & 0.705 \\
\hline , 4 & 0.69211 & . 31516 & 7315 & . 6263 & . 8313 & . 6737 & . 5228 & . 7256 & 0.5987 & 0.8337 & \\
\hline 0.404658 & 0.6821 & . 31534 & . 731 & . 62 & 1156 & . 8 & . 5237 & 7267 & & & \\
\hline , & 0.68 & . 3154 & & & & & & & & & \\
\hline 0.404885 & 0. 682 & 315 & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0.692490 & 0 & 0,731685 & 0. 626496 & 0.632677 & 0.676714 & 0.526285 & 0.72786 .4 & 0.600677 & 0.934010 & - \\
\hline 0. 405019 & 0.692606 & 0. 315530 & 0.732417 & 0.628781 & 0.832日35 & 0.679503 & 0. 527162 & 0.728065 & 0.600925 & 0.834023 & \\
\hline 0.605196 & 0.692654 & 0.315534 & & 0.629038 & 0.834071 & 0.678208 & 0.531315 & 6.726366 & & & \\
\hline 0.405216 & 0.682666 & 0.315752 & 0.732482 & 0,630173 & 0.83 & 0.67852 & & & & & \\
\hline 0.405343 & 1. 682696 & 0.315822 & 0.736909 & 0.631065 & 0. & 0.678526 & 0 & 0.728661 & & & 0.707006 \\
\hline 0.403533 & 0. 692787 & 0.315931 & 0.735810 & 0.631 & 0. & 0. & 0 & 0.728809 & 0,601368 & 0.934391 & \\
\hline 0.406663 & 0.692808 & 0.316165 & 0.736 & 0.6 & 0. & 0.6 & 0.533302 & & & & \\
\hline & & & & 0.6 & & 0.5 & 0.533641 & 0.728925 & 0.601581 & 0 & 0.709436 \\
\hline & 0. & 0. & 0.741 & 0.6 & 0. & 0.570616 & 0.534257 & 0.729170 & 95 & 0 & \\
\hline 0.407289 & 0. & 0. & 0.7 & 0.637 & 0.6 & 0.679938 & 0.534684 & 0.723683 & 0. & 0. & \\
\hline 0 & 0.6 & 0. & 0.7 & 0.6 & 0.8 & 0,680198 & 0. 535062 & O. & 0.602262 & 0.936612 & \\
\hline 0.407508 & 0.6835 & 0.3 & 0.7 & 0.6 & 0 & 0.680374 & 0. 53574 & . & O & 0.036637 & 0.711538 \\
\hline 0.407691 & 0.693394 & 0. & 0 & 0.6 & 0 & 0.65046 & 0. 5 & 0 & 0 & 0.836894 & 0.711661 \\
\hline 0.607787 & 0.693468 & 0. & 0. & 0.64283 & 0.83460 & 0.6807 & 0.536288 & 0.731044 & 0.602558 & 0.836463 & 0.714598 \\
\hline 0.408358 & 0.683819 & 0.316584 & 0.7 & & 0.8 & 0.68 & 0. 536378 & 0.733683 & 0. 5028610 & 0.939411 & \\
\hline 0 & 0.6 & & 0.2 & 0.6 & 0.8 & & 0.535418 & & 0.602858 & 0.939685 & \\
\hline 0. & & 0.3 & & 0.6 & 0.6 & 0.661058 & 0.539365 & 0.734287 & 0. & 0 & 0.720326 \\
\hline 0.4 & 0.6 & 0.5 & 0.7 & 0.6 & 0.6 & 0.68160 & 0.538955 & 0.734337 & 0.603506 & 0.840408 & 0.721057 \\
\hline 0.408754 & 0.6977 & 0.3 & 0.7 & 0.644 & 0.8 & 0. & 0.54126 & 0.73464 & 0.603963 & 0. & 0.724028 \\
\hline 0.409098 & 0.697967 & 0.316812 & 0.764 & 0.6451 & 0.839 & 0.68686 & 0.545648 & 0.734535 & 0.604053 & 0.840655 & 0.724072 \\
\hline 0.409108 & 0.697992 & 0.316820 & 0.765096 & 0.66 & 0.6 & 0. & . & 0.735082 & 0.604587 & 0.840727 & 0.725063 \\
\hline 0.409248 & 0.698368 & 0.316946 & 0.7 & 0. & & & & & & & \\
\hline 0. & 0.8 & 0.3 & 0.2 & 0.6 & 0. & 0.6 & & & 0. & 0.040816 & 0. 725568 \\
\hline 0.40 & 0.6 & & 0.7 & 0.6 & 0.8 & 0.6 & 0. & 0.735 & 0.605884 & 0.840837 & 0.728441 \\
\hline 0.408403 & 0.6 & 0.3 & 0.7 & 0.6 & 0. & 0. & 0 & 0. & 0.606316 & 0 & 0 \\
\hline 0.608511 & 0.698 & 0.3 & 0. & 0.0 & & 0 & O & & 0.607346 & 0.941832 & \\
\hline 0.409624 & 0.669268 & 0. & 0. & 0.6 & 0. & 0. & & & & & \\
\hline 0.408787 & 0.6 & 0.3 & & 0.6 & 0. & & & & & & \\
\hline 0.410100 & 0.6 & 0. & 0. & 0. & & & & & & & \\
\hline 0.4 & 0.6987 & 0.3 & 0.7 & 0.650 & & 0.6 & & & & & \\
\hline 0.410858 & 0.700102 & & & 0.6 & & & 0. & 0.738714 & 0.608735 & 0. & 0.730297 \\
\hline 0.412601 & 0.701 & 0.11 & & 0.6 & & 0,690 & & 0. & 0 & 0 & 0.730413 \\
\hline 0, 613273 & 0.701280 & 0. & 0. & 0.651 & 0. & 0.690 & 0 & 0. & 0. & 0.842711 & 0.730456 \\
\hline 0.413318 & 0.701398 & 0. & 0. & 0. & 0. & 0.690 & 0. & 0. & 0. & 0.943085 & \\
\hline 0. 413630 & 0.701780 & 0.3176 & 0.7 & 0.651 & 0. & 0.680 & 0. & & 0. & & 0.730603 \\
\hline 0.414031 & 0.7022 & 0. & & & & 0.6 & & & & & \\
\hline 0.414285 & 0. 702 & & & 0.6 & 0. & 0.6914 & & & 0. & & \\
\hline 0.414347 & 0.702409 & & 0.749 & 0.653 & & 0.6816 & 0. 5502 & 0.738932 & 0.611749 & & 0.730683 \\
\hline 0.414727 & 0.702639 & 0.317927 & 0.749 & 0.6531 & 0.843723 & 0. 681736 & 0.550424 & 0.740116 & 0.612156 & 0.943818 & 0.730752 \\
\hline 0.616777 & 0.703473 & 0.317855 & & 0.6532 & & 0.682258 & & 0.741202 & 0.612372 & 0.843684 & 0.730023 \\
\hline 0.616870 & 0.704146 & 0.3170 & 0.750 & 0.653 & 0.84411 & 0.6822 & 0. 550 & 0.74131 & 0.612842 & 0.846275 & 0.731143 \\
\hline 0.414884 & 0.706813 & 0.318152 & 0.750 & 0.6536 & 0.844386 & 0.682 & 0.550 & & 0. & O. & 0.731301 \\
\hline 0.416908 & 0.706862 & 0.3 & 0.750 & 0.6542 & & 0.682 & & 0.745 & 0. & & \\
\hline 0.615011 & 0.707201 & & & 0.6 & & 0.683 & & & 0. & & \\
\hline 0,415172 & 0.707505 & 0. 318386 & 0.750 & 0.6552 & 0.8 & 0.6930 & 0. 5500 & 0.7488 & 0.622 & 0. 0460 & 0.732035 \\
\hline 0.415720 & 0.707723 & 0.318764 & 0.750574 & 0.655314 & 0.844712 & 0.683196 & 0.550969 & 0.753003 & 0.625277 & 0.946338 & 0.732653 \\
\hline 0.415724 & 0.708134 & 0. 318980 & 0.750669 & 0.6558888 & 0.844858 & 0.683231 & 0.550996 & 0.753539 & 0.626263 & 0. \(0+6744\) & 0.733114 \\
\hline 0.415806 & 0.708155 & 0.318 & 0.7 & 0.6 & 0.8 & 0.693 & 0.551032 & 0.754301 & 0.627161 & 0.946915 & 0.733217 \\
\hline 0.415827 & 0.708673 & 0.3 & 0.7 & 0.6 & 0.8 & 0. & 0. \(\$ 511\) & 0.7 & 0.6324 & 0. & 0.733308 \\
\hline 0.415948 & 0.7 & 0.3 & 0.7507 & 0.656 & 0.8 & 0.6 & 0.55126 & 0.7625 & 0. & 0.947848 & 0.733631 \\
\hline 0.416023 & 0.709078 & 0.3 & 0.751088 & 0.65? & 0.8 & 0.6 & 0. & 0. & 0. & 5 & 0.733698 \\
\hline 0.416146 & 0.7092 & 0.3 & 0.7 & 0.6 & 0.8 & 0.6 & 0. & 0.764832 & 0. & 0. & 0.734180 \\
\hline 0.416222 & 0.710780 & 0.320323 & 0.751 & 0.6 & 0.6 & 0.6 & 0. & 0.765 & 0. & , 0488 & 0.735522 \\
\hline 0.416384 & 0.710935 & 0. 322030 & 0.751450 & 0.658 & 0.8 & 0.695 & 0.551732 & 0.76564 & 0. & 0.948868 & 0.738408 \\
\hline 0.41642 & 0.711116 & 0.8 & 0.75 & 0.6 & 0.6 & 0.695 & 0. & 0.766734 & 0.643709 & 0.850450 & 0.740512 \\
\hline 0.416438 & 0.711645 & 0.3 & 0. \({ }^{\text {P }} 3\) & 0.658 & 0.850 & 0.696290 & 0. 551917 & 0.766800 & 0.643806 & 0.050476 & 0.740721 \\
\hline 0.416478 & 0.711700 & 0. 322679 & 0.752067 & 0.658521 & 0.8506 & 0.696642 & 0. 552070 & 0.767252 & 0.644015 & 0.950605 & 0.760973 \\
\hline 0.416488 & 0.712043 & 0.322376 & 0.752580 & 0.658629 & 0.852 & 0.698512 & 0. 5520 & 0.767358 & 0.644128 & 0.850913 & 0.741762 \\
\hline 0.416517 & 0.712277 & 0.3232 & 0.752803 & 0.658 & 0.8522 & 0.68938 & 0.5523 & 0.7694 & 0.646378 & 0.951141 & 0.742682 \\
\hline 0.4 .16590 & 0.712414 & 0.324968 & 0.752919 & 0.659323 & 0.852412 & 0.68958 & 0.55247 & 0.77026 & 0.646788 & 0.951922 & 0.743436 \\
\hline 0.416600 & 0.712676 & 0. 325517 & 0.752819 & 0.66101 & 0.85256 & 0.699675 & 0.552872 & 0.77036 & 0.648070 & 0.951934 & 0.743696 \\
\hline 0.416728 & 0.712686 & 0.325912 & 0.7536 & 0.661088 & 0.852 & 0.69872 & 0. 53306 & 0.771863 & 0.648582 & 0.951944 & 0.743867 \\
\hline 0.416781 & 0.713561 & 0.325815 & 0.753705 & 0.661446 & 0.852689 & 0.700417 & 0.553166 & 0.772438 & 0.648604 & 0.853244 & 0.744557 \\
\hline 0.616901 & 0.714387 & 0.326015 & 0.754241 & 0.661454 & 0.853276 & 0.702068 & 0.553368 & 0.772743 & 0.648983 & 0.853306 & 0.744652 \\
\hline 0.417105 & 0.714538 & 0.326594 & 0.755551 & 0.662387 & 0.853296 & 0.702186 & 0.553488 & 0.773028 & 0.649742 & 0.853378 & 0.745158 \\
\hline 0.417329 & 0.214576 & 0.326949 & 0.756464 & 0.662756 & 0.85378 & 0.70348 & 0.553484 & 0.773621 & 0.652056 & 0.853404 & 0.745823 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 36 & 0.726778 & 0. 327211 & 0.756665 & 0.663127 & 0.656477 & 0.703655 & 0.554166 & 0.776268 & 522 & 0.053552 & 0.765836 \\
\hline D. 417613 & 0.715182 & 0.327407 & 0.750371 & 0. 665275 & 2. 856602 & 0.703786 & O. 556502 & 6. 776642 & 88 & 56366 & \\
\hline 0.617675 & 0.715280 & 5. 320324 & 0.760601 & 0.665688 & 6. 855200 & 6.763706 & 0. 5.54661 & 0.77666\% & D. 652627 & 0.056656 & 0.768568 \\
\hline 0. 417600 & -.715478 & 0. 389128 & 0.765705 & 0.666035 & 0. 555886 & 0.703618 & 4. 556688 & 0.775271 & 0. 652715 & 0. 856666 & 0.750561 \\
\hline 0.617806 & 0.716785 & 0.329627 & -. 768166 & 0. 566612 & 0.655878 & 0.703827 & 0. 556011 & 0.775570 & 0.652868 & 0.056675 & 0.751128 \\
\hline 0.617668 & 0.717012 & 0.334621 & 5.766366 & 0, 56E126 & 0. 655865 & 0.703560 & 0. 555013 & C. 775676 & 0.654275 & 0. 056250 & 0.754650 \\
\hline 0.617650 & 0.717385 & 0.356860 & 0.766636 & 0.671084 & 0. 856636 & 0.706142 & 0.535387 & 0. & 0.656772 & \% & 3560t \\
\hline 0.618361 & 0.717605 & 0.335336 & 0.7686日9 & 0.677612 & 0.656276 & 0.706267 & 1 & 0.777562 & 0. 656676 & 0.056523 & 14 \\
\hline 0.618453 & 0.717126 & 0. 335903 & 0.768815 & 0.679622 & 0. 656339 & 0.706433 & - 0.555830 & 0. & 0.65 & 0.057151 & 0.756366 \\
\hline 6. 416456 & 0.718256 & 0.336896 & 0.768206 & 0.660376 & 0.657005 & 0.706 & 0 & 0 & 0.655567 & & \\
\hline 0.618737 & 0.718268 & 0.337168 & 0.768226 & 0.681026 & 0.858148 & 0.7 & 0 & 0.778678 & & & \\
\hline 0. 610051 & 0.716516 & 0. 336436 & 0.769648 & 0.681048 & 0. & 0. & 0 & & & & \\
\hline 0.418127 & 0.718206 & 0.338161 & 0.760645 & 0.6 & 0. & & & & & & \\
\hline 0.420432 & 0.718217 & 0.358185 & 0.769910 & 0.561306 & 0. & 0.706003 & & & & & \\
\hline 0. 618451 & 0.710336 & 0.361666 & 0.770208 & 0.681507 & 0.658616 & 0.706638 & D, 555976 & 0.778081 & 0.657687 & 0.658200 & 0.762643 \\
\hline 0. 620214 & 0.718898 & 0.341693 & 0.770855 & 0.682563 & 0. 858626 & 0, 707516 & 0. \(55 \%\) & 0.760162 & 0. & 0 & 0.762012 \\
\hline 0.420328 & 0.718923 & 0.362398 & 0.771300 & 0.66277? & 0.860037 & 0.7 & 0 & 0.760284 & 0.658351 & 0.050224 & 0.762016 \\
\hline 0.420330 & 0.71065k & 0. 342671 & 0.771686 & 0. 882883 & -. 660 & 0. & 0 & 0. & \(0.6565 p 6\) & O. 050260 & \\
\hline 0.420356 & 0.720065 & 0.365860 & 0.772017 & 0. 683 & 0. & 0.710164 & 0.557848 & 0.760863 & & & \\
\hline 0.620402 & 0.72022. & 0.866502 & 0.772036 & 0.6652 & 0. & 0.711633 & 0. 558026 & & & & \\
\hline 0.620409 & 0.720466 & 0.368477 & 0.772385 & 0.68336t & 0.661853 & 0.713066 & 0. 558144 & 0.7 & 0 & 0 & 0 \\
\hline 0.421523 & 0.720618 & 0.350766 & 0.773665 & 0.683688 & 0.661076 & 0.715E62 & 0.5 & 0 & 0 & 0 & 8 \\
\hline 0.422285 & 0.720686 & 0.351280 & 0.773740 & 0.663700 & 0.861606 & 0.716516 & \(t\) & 0.786 & 0 & 0.058887 & 0.765868 \\
\hline -. 424360 & 0.720836 & 0.351871 & 0.773796 & 0.6esesp & 0. 86180 & 0. & 0 & 0 & 0.662808 & 0. 060002 & \\
\hline 0.624864 & 0.720082 & 0. 525822 & 0.775111 & 0.686160 & 0.662124 & 0. & D. 56085 & 0.767033 & 0.662401 & 0, 060826 & \\
\hline 0.425683 & 0.720804 & 0.352862 & 0.776728 & 0.686843 & 0, 662538 & 0.717643 & 0 & 0.767282 & 0.662572 & & \\
\hline 0.425897 & 0.721081 & 0.353030 & 0.76036 & 0.668681 & 0.862026 & 0.717128 & D. 562728 & 0.76768 & 0.6632 & 0. & 0.768086 \\
\hline 0.426086 & 0.721152 & 0.354716 & 0.781146 & 0.688673 & 0.563826 & 0.720270 & 0. 562768 & 0 & 0. 68 & & 0.769057 \\
\hline 0. 426386 & 0.721297 & 0.356186 & 0.761542 & 0.660050 & 0.664128 & 0.720801 & . & 0.786? & 0.6662 & 0.862418 & 0.770521 \\
\hline 0. 426668 & 0.721432 & 0.357627 & 0.783460 & 0.600843 & 0.864240 & 0. 721156 & 0. 564 & 0. & 0.660153 & 0.062753 & 7 \\
\hline 0. 428680 & 0.721566 & 0.358286 & 0.786355 & 0.691568 & 0. 1666362 & 0.72450 & 0. 566 & 0. & 0. & & \\
\hline 0.428735 & 0.721888 & 0.358630 & 0.784535 & 0.681711 & 0. 866660 & 0.726645 & D. 566 & 0.782303 & 0.670226 & 0.063687 & \\
\hline 0.428763 & 0.722862 & 0.361566 & 0.784566 & 0.602647 & 0.666497 & 0.725510 & 0. 564858 & 0.705005 & 0.670312 & 0. 068886 & 0.712622 \\
\hline 0.428773 & 0.723007 & 0.362004 & 0.765386 & 0.682584 & D. 866666 & 0.726028 & 0.566653 & 0.765456 & 0.670888 & 0.863828 & 0.775610 \\
\hline 0.429046 & 0.723051 & 0.362385 & 0.786470 & 0.682613 & D. 869086 & 0.730866 & 0. 574514 & 0.796562 & 0.674887 & 0. & 0.777716 \\
\hline 0.429375 & 0.723528 & 0.362876 & 0.786780 & 0.683104 & 0.868522 & 0.731667 & 0. 576277 & 0.796750 & 0.675234 & D. Be40 & 0.778051 \\
\hline 0.430016 & 0.723573 & 0.363088 & 0.788626 & 0.693132 & 0.869850 & 0.731788 & 0.577768 & 0.787880 & 0.6757 & 0. & 0.776577 \\
\hline 0.630308 & 0.723575 & 0.363202 & 0.78831 .6 & 0.683800 & 0.870864 & 0.733081 & 0.581657 & 0.79726 & 0.6766 & 0. & \\
\hline 0. 430858 & 0.723769 & 0.363436 & 0.768420 & 0.606508 & 0.67146 & 0.735145 & 0. 582094 & 0.787616 & 0. & 0. & 0.776112 \\
\hline 0.631711 & 0.725115 & 0.364123 & 0.768666 & 0. 584876 & 0.871587 & 0. 733289 & 0.563021 & 0.787415 & 0.678028 & 0.0648 & 0.778170 \\
\hline 0.431835 & 0.725701 & 0.36480 b & 0.780328 & 0. 695010 & 0.871605 & 0.736566 & - 563180 & 0.707603 & 0.676671 & 0.965606 & 0.778627 \\
\hline 0. 6328.96 & 0.725670 & 0.365351 & 0.780626 & 0.605005 & 0.671933 & 0.735636 & 0.583688 & 0.707701 & 0.678683 & 0.065636 & 0.780782 \\
\hline O.432708 & 0.726012 & 0.365556 & 2, 780605 & 0.695378 & 0.872046 & 0.735456 & 0.564147 & 0.708206 & 0.678090 & 0. 065661 & 0.782202 \\
\hline 0.434890 & 0.726373 & 0. 365641 & 0.700811 & 0.698601 & 0.872173 & 0.735860 & 0.584507 & 0.788006 & 0.6722 & 0. 065674 & 0.782521 \\
\hline 0.436316 & 0.728681 & 0.366473 & 0.791413 & 0.688905 & 0.67217 & 0.735866 & D. 584816 & 0.7086 & 0.6786 & 0.066710 & 0.764906 \\
\hline 0. 436806 & 0.728805 & 0.366681 & 0.782466 & 0.689080 & 0.572522 & 0.735886 & 0. 505060 & 0.800017 & 0.680158 & 0.066775 & 0.787818 \\
\hline 0.438433 & 0.730001 & 0.365726 & 0.782130 & 0.699141 & 0.672 .54 A & 0.736S08 & 0.565215 & 0.800263 & 0.680786 & 0.066 & 0.781761 \\
\hline 0.438987 & 0.731178 & 0.366962 & 0.782332 & 0.698120 & 0. 873585 & 0.736649 & 0. 502661 & 0.800404 & 0.661250 & 0.867117 & 0.781872 \\
\hline 0.439466 & 0.731180 & 0.366865 & 0.702556 & 0.690318 & 0.875880 & 0.740507 & 0. 500983 & 0.600530 & 0.681666 & 0.867525 & 0.782370 \\
\hline 0.460259 & 0.732114 & 0.367281 & 0.795672 & 0.689376 & 0.676042 & 0.761053 & 0.601216 & 0.601143 & 0.661080 & 0.867711 & 0.782707 \\
\hline 0.440343 & 0.732 .208 & 0. 367702 & 0.786468 & 0.699834 & D. 876382 & 0.761103 & 0.601276 & 0.602115 & 0.682265 & 0.867768 & 0.796270 \\
\hline 0.641310 & 0.732332 & 0.367812 & 0.786672 & 0.700485 & 0.876000 & 0.761228 & 0.601085 & 0.802127 & 0. 682654 & 0.8683 & 0.786051 \\
\hline 0.441564 & 0.732531 & 0.367815 & 0.787064 & 0.702350 & 0.877661 & 0.765172 & 0.602010 & 0.802128 & 0.682675 & 0.056803 & 0.708155 \\
\hline 0.661796 & 0.732580 & 0.368020 & 0.787119 & 0.762705 & 0.578201 & 0.745614 & 0.602209 & 0. 802236 & 0.682826 & 0.068624 & 0.602888 \\
\hline 0.341822 & 0.732641 & 0.368031 & 0.707547 & 0.703120 & 0.870323 & 0.746707 & 0.60227 & 0. 8028 & 0.582981 & 0.968680 & 0.803126 \\
\hline 0.441945 & 0.732826 & 0.368089 & 0.788511 & 0.70338 & 0.88025 & 0.746 & 0.602362 & 0. 802.882 & 0.68361 & 0. 868686 & 0.803403 \\
\hline 0.441070 & 0.733048 & 0.368251 & 0.803664 & 0.703 & 0.680 & 0.768 & 0.602 & 0. 80 & 0. & 0.070162 & 0.803467 \\
\hline 0.462083 & 0.733340 & 0.368341 & 0.803669 & 0.703585 & 0.880555 & 0.766872 & 0.603278 & 0.803278 & 0.683676 & 0.970271 & 0.803587 \\
\hline 0.442447 & 0.733352 & 0.368878 & 0.804238 & 0.704123 & O. 860650 & 0.768278 & 0.503287 & 0.603435 & 0.654261 & 0.07068 & 0.603784 \\
\hline 0.462485 & 0.733450 & 0.369347 & 0.804607 & 0.704262 & 0.880681 & 0.750587 & 0.504027 & 0.803486 & 0.666351 & 0.97085 & 0.803820 \\
\hline 0.443044 & 0.733807 & 0.368954 & 0.804433 & 0.704648 & 0.880810 & 0.753505 & 0.806148 & 0.80361 & 0. 685362 & 0.87086 & 0.804383 \\
\hline 0.443274 & 0.734176 & 0.370026 & 0.804866 & 0. 706086 & 0.881085 & 0.753354 & 0.60451 & 0.603835 & 0.68659 & 0.97103 & 0.804573 \\
\hline 0.643372 & 0.734645 & 0.370074 & 0.806981 & 0.706477 & 0.88116 & 0.75374 & 0.60458 & 0.60665 & 0.68663 & 0.97117 & 0.605280 \\
\hline 0.443442 & 0.734450 & 0.372734 & 0.805207 & 0. 7066 & 0.88137 & 0.75387 & 0.604 & 0.61081 & 0.68178 & 0.9712 & 0.805644 \\
\hline 0.443887 & 0.734537 & 0.372741 & 0.807610 & 0.707686 & 0.682115 & 0.753886 & 0.605087 & 0.813290 & 0.692403 & 0.971330 & 0.805746 \\
\hline 0.444176 & 0, 234653 & 0.372898 & 0.809897 & 0.708575 & 0.882472 & 0. 75566 & 0.608630 & 0.81340 & 0.682 E & D. \(\% 71\) & 0.805782 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 0.3/3163 & 64 & & 0.682s31 & 0.757011 & 84 & 103 & 0 & 0.871654 & \\
\hline 0.666882 & 0.736965 & 0.373613 & 0. 811918 & 0.718040 & 0.884838 & 0.758363 & 0.612938 & 0. 614566 & 0.693485 & 0. & \\
\hline 0.445285 & 0.736666 & 0.373818 & 0.813756 & 0.713103 & 0.885026 & 0.761086 & 0.61297\% & 0.814703 & & & \\
\hline 0.445463 & 0,738006 & 0.373888 & 0.815124 & 0.716413 & 0.8 & 0.761764 & 0. & & & - & \\
\hline 0.665751 & 0.786430 & 0.376636 & 0.815765 & 0.7 & 0.8 & 0.7 & 0 & & & & 0.810510 \\
\hline 0. 665045 & 0.736458 & 0.3 & 0.8 & & & & & & 0.69751 & 0.6718 & 0. \\
\hline \% & & 0.3 & 0.816 & 0.716833 & 0.886848 & 0.764076 & 0. 622172 & 0.816156 & 0.697722 & 0. & \\
\hline 0.4664 SS & & 0.3) & 0.0 & 0.714857 & 0.88967 & 0.76724 & D. 62680 & 646 & , & & \\
\hline 0.665335 & 0.7 & 0.375 & 0.8 & 0.7 & 0.8 & 0.7 & 0.6 & 0. & 0.698935 & & 0.813050 \\
\hline 0.64658e & 0.730547 & 0.37615 & 0.81585 & 0.715128 & - 18038 & 0.768 & 0.6 & 0.817128 & 0.698981 & 0. 972060 & 0.614649 \\
\hline 0.466635 & 0.740437 & 0.376235 & 0.817 & & 0.8 & 0.7 & 0. & 0. & 0. & 0.072270 & 0.814754 \\
\hline 0.64685? & 0.761353 & 0.3 & 0.1 & & 0. & 0. & 0 & 0 & & & \\
\hline 0. 465081 & 0.761398 & 0.3 & 0.81/9 & 0.7 & 0.6 & & 0. & & & & \\
\hline 0.467006 & & 0.3 & 0.6185 & & 0. 8 & 0.773117 & 0.635453 & 0.817924 & 0.703832 & 0. & 9 \\
\hline & & 0.8 & 0.8 & 0.7 & 0.8 & 0.773366 & 0.6 & 0. & 0.708835 & 0.873628 & \\
\hline 0 & 0.7 & 0.8 & 0.852 & 0.7 & 0.8 & 0.7 & 0.6 & 0.818711 & 0 & 0. & 0.817213 \\
\hline 0.467664 & 0.962862 & 0.377 & 0.8228 & 0.7 & 0.6 & 0. & . & 0.818946 & 0.710568 & 0.974051 & 5 \\
\hline 0.467654 & 0.763105 & 0.3 & 0.8 & & & 0. & 0.638718 & 0.818872 & 0.711262 & 0.075284 & 0. 620105 \\
\hline 0.647496 & 0.743662 & 0.3766 & 0.82 & 0.7 & 0. & 0. & 0.638761 & 0.819078 & \(0 .{ }^{4} 11848\) & 0.876664 & 0.822477 \\
\hline 0.467525 & 0.765995 & 0,376 & 0.8 & 0.7 & 0. & 0. & 0.6 & . & & 0.876854 & + \\
\hline 0.447764 & 0.7 & 0.3791 & 0.8 & 0.7 & & 0.774 & 0.640276 & 0.820194 & 0.713856 & 0.976882 & 0.823424 \\
\hline O, & 0.7k & 0.3786 & 0.825 & 0.72 & 0.8 & 0.775 & 0.540417 & 0.820726 & 0. & 0.977086 & 0.823081 \\
\hline 0.647820 & 0.76 & 0.3795 & 0.826 & 0.723 & 0.887 & 0. & 0.640632 & 0. & 0.7 & 0.677112 & 0. 623898 \\
\hline 0.447836 & 0.746 & 0.370 & 0.828 & 0.7258 & 0.8986 & 0.7764 & 0.6 & 0. & & & 18 \\
\hline 0.447842 & 0.7488 & 0.3 & 0.8 & & 0. & & & & & & \\
\hline 0.667878 & 0.72 & 0.3 & 0.8 & & & & & & 0.718765 & & \\
\hline 0.648048 & 0.7 & 0.8 & 0.6 & & 0.9003 & 0.7802 & & 0.8 & & & \\
\hline 0.448051 & 0.7508 & 0.382 & 0.8 & & & & 0.6 & 0.831520 & 0. & 0.0773 & 0.627016 \\
\hline 0.448174 & 0.75125 & 0. 362 & 0.8 & 0.7 & 0.901 & 0.7 & 0.643 & 0.621903 & 0.7187 & 0.8773 & 0.827418 \\
\hline 0.458216 & 0.7516 & 0.382 & 0.8330 & 0.764 & 0.801 & 0.781 & 0. & 0. 8320 & 0. 7201 & 0. & 0.627582 \\
\hline 0.668746 & 0.7517 & 0. 382 & 0.8 & 0.766564 & 0.8016 & & & & & & \\
\hline 0.649547 & 0.7518 & 0. 3836 & 0. & 0.754 & 0. 902 & 0.781 & & 0.832 & 0.7206 & & \\
\hline 0. & 0.7516 & 0.3642 & 0. & & 0. 902 & 0.7816 & 0. & 0.833 & 0.720858 & 0.8 & 0.828832 \\
\hline 0.4 & 0.751 & 0.3 & D. & & & & & & & 0.978 & 0. 828036 \\
\hline 0.448969 & 0.7522 & 0.3852 & 0.8 & & 0.902 & 0.7820 & 0.6 & 0.836987 & 0.724047 & 0.878508 & 0. 829263 \\
\hline 0. 450057 & 0.7526 & 0.3656 & 0.8 & 0.7 & 0.9028 & 0.782018 & 0.6445 & 0.8381 & 0.725632 & 0.9785 & 0.828384 \\
\hline 0.650100 & 0.7528 & 0.3856 & 0.836 & 0.759866 & 0.0031 & 0.78250 & 0.664767 & 0.83862 & 0.72571 & 0.9785 & 0. 828382 \\
\hline 0.450135 & 0.752854 & 0.3860 & 0.837008 & 0.7667 & 0.9035 & 0.78252 & 0.644819 & 0. 53858 & 0.726826 & 0.9785 & 0.829534 \\
\hline 0.450307 & 0.756157 & O. 3861 & 0.83785 & 0.78163 & 0.9038 & 0.7828 & 0.6451h & 0.8410 & 0.7287 & 0.9802 & \\
\hline 0.450404 & 0.7592 .84 & 0.38643 & 0,83615 & 0.7817 & & 0.783 & 0.645215 & 0.842 & & 0.980 & 0.829928 \\
\hline 0.450608 & 0.756460 & 0.3870 & 0.838 & 0.76202 & 0.904 & 0.783 & 0. & 0.846 & 0.730052 & . & 0.829988 \\
\hline 0.650760 & 0.7565 & \(0 . \mathrm{C}\) & 0.8 & 0.7 & 0.0 & 0.783 & 0.645 & 0.846333 & 0.730143 & 0.9810 & 0,830783 \\
\hline 0.450786 & 0.757185 & 0.388 & 0.8 & 0. 762 & 0.804 & 0.783783 & ก.645861 & 0.851883 & 0.735179 & 0. 8813 & 0.831016 \\
\hline 0.451173 & 0.759420 & 0.389 & 0.838 & 0.7624 & 0.804 & 0.783 & 0.645863 & 0.85202 & 0.736525 & 0.8813 & 0.631088 \\
\hline 0.451210 & 0.758631 & 0. 3901 & 0.838 & 0.762727 & 0.00508 & 0.7841 & 0.64612 & 0.85247 & 0.738168 & O.0013 & 0.831685 \\
\hline 0.451293 & 0.759681 & 0. 39063 & 0.83878 & 0.783384 & 0. 90533 & 0.78416 & 0.64631 & 0.85258 & 0.738381 & 0.8814 & 0.032145 \\
\hline 0.451314 & 0.758800 & 0.39065 & 0.839123 & 0.765006 & 0.90546 & 0.78478 & 0.646580 & 0.85318 & 0.738233 & 0.98155 & \\
\hline 0.451642 & 0.760160 & 0.39146 & 0.83830 & 0.765113 & 0.0059 & 0.78480 & 0.6466 & 0.853 & 0.738334 & 0.9815 & 0. \\
\hline 0.453736 & 0.760184 & 0. 38207 & 0. 8383 & 0.766357 & 0.9072 & 0.7881 & 0.64671 & 0.855 & -.730518 & 0.981 & \\
\hline 0.454867 & 0.760278 & 0.392 & 0.838 & 0.766 & 0.807 & 0.789 & 0.646 & 0.856 & 0.738518 & 0. & 0.833640 \\
\hline 0.455288 & 0.760519 & 0.393 & 0.8 & 0.767 & 0.907 & 0.788 & 0.6471 & 0.856748 & 0.740434 & 0.982 & 0.833706 \\
\hline 0.455818 & 0.760715 & 0.303 & 0.8410 & 0.7716 & 0.907 & 0. 789 & 0.647730 & 0.857228 & 0.741291 & 0.9822 & 0.834177 \\
\hline 0.457245 & 0.760728 & 0.401 & 0.8432 & 0.773531 & 0.907 & 0.791896 & 0.647838 & 0.8581 & 0.741654 & 0.882402 & 0.634321 \\
\hline 0.457526 & 0.761652 & 0. 405 & 0.8445 & 0.776 & 0.908 & 0.78280 & 0.648253 & 0.658159 & 0.74526 & 0.98248 & 0.834726 \\
\hline 0.460627 & 0.761520 & C. 406 & 0.847 & 0.7772 & 0.908 & 0.7830 & 0.6480 & 0.8586 & 0.745 & 0. 8828 & 0.834834 \\
\hline 0.465353 & 0.761708 & 0.406 & 0.8472 & 0.777281 & 0.908569 & 0.796009 & 0.64895? & 0.65906 & 0.745936 & O.082865 & 0.835554 \\
\hline : 455458 & 0.761828 & 0.4064 & 0.86836 & 0.777888 & 0.808 & 0.79638 & 0.654308 & O.850 & 0.76 & -. & \\
\hline 0.468586 & 0.761998 & 0.406 & 0. 8536 & 0.778 & 0.908 & 0.787 & 0.655526 & 0.8615 & -...2085 & 0. 883 & \\
\hline 0.468821 & 0.7620 & 0.6 & 0.855 & 0.778 & 0.908 & 0.798 & 0.655 & 0.861 & 0.748854 & 0.9 & 0.637040 \\
\hline 0.470173 & 0.763381 & 0.607 & 0.856 & 0.779297 & 0. 9090 & 0.798 & 0.657270 & 0.861823 & 0.749154 & 0.88414 & 0.837067 \\
\hline 0.470681 & 0.763420 & 0.4093 & 0.856335 & 0.780958 & 0.810076 & 0.801422 & 0.658067 & 0.86245 & 0.76934 & 0.98417 & 0.837220 \\
\hline 0.470972 & 0.764101 & 0.40992 & 0.8577 & 0.78686 & 0.910976 & 0.8022.16 & 0.661409 & 0.86430 & 0.75154 & 0.984220 & 0.837282 \\
\hline 0.471534 & 0.764736 & 0.410036 & 0.858076 & 0.788156 & 0.811126 & 0.80255? & 0.66300 & 0.86458 & 0.75202 & 0. & 0. 837823 \\
\hline 0.471585 & 0.765505 & 0.610988 & U. 858302 & 0.788172 & 0.81117 & 0.803817 & 0.66316 & 0. & 0.752513 & 0. & 0. 838760 \\
\hline 0.471627 & 0.766787 & 0.413095 & 0.8590 & 0.788 & 0.812 & 0.806 & 0.6 & 0. & 0. & 0 & 0.842083 \\
\hline 0.471826 & 0.266814 & 0.413512 & 0.85997 & 0.788 & 0. & 0, 804763 & 0.674183 & 0 & 0 & \(\pm 0.986285\) & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0.7 & & & & & & & & & & \\
\hline 0.672051 & 0.767091 & 0.614016 & 0,86023. & 0.789566 & 0.916863 & 0.806163 & 0.676484 & 0.875047 & 0.771520 & 0. 887038 & \\
\hline 0.472056 & 0.767537 & 0.416284 & 0.861017 & 0. 790017 & 0.917086 & 0.808073 & 0.677648 & 0.876534 & 0.773823 & 6 & \\
\hline 0.472165 & 0.767823 & 0.61518 & 0,86119 & 0.790203 & 0.91 & 0. & 0. & 0 & 0.76834 & D. 988030 & 6 \\
\hline 0.472690 & 0.773136 & 0.415664 & 0.862142 & 0.790711 & 0.91 & \(0.80 p 6\) & 0.67816 & 0. & 0.7896 & 0.886078 & 0 \\
\hline 0.472622 & 0.773318 & 0. 616102 & 0.862174 & 0.790855 & 0.9190 & 0.81085 & 0.676232 & 0.865646 & 0,7902 & 0.868093 & 0.853413 \\
\hline 0.473302 & 0.7 & 0.426E & 0.862 & 0.79161 & 0.819 & 0.811 & 0. & 0. & 0. & - 088187 & \\
\hline & & 0. & 0.862 & 0.78 & 0. 8201 & 0.8116 & 0.67886 & 0. 690572 & 0.795458 & 0 & 0.853676 \\
\hline 0.676418 & 0.77573 & 0.6169 & 0.862 & 0.783 & 0.92150 & 0.811820 & 0.679351 & 0,890677 & 0.784473 & 0.990246 & 0.854543 \\
\hline 0.674648 & 0.77568 & 0.6172 & 0.862 & 0.79362 & 0.92156 & 0.81290 & 0.679359 & 0.890751 & 0.795062 & . 990276 & 0.856171 \\
\hline 0.476598 & 0.7767 & 0.4176 & 0.8632 & 0.79366 & 0. 821592 & 0.81342 & 0.68063 & 0.883113 & 0.796148 & . 890478 & 0.856419 \\
\hline 0.476908 & 0.77656 & 0.4187 & 0.863 & 0.7960 & 0.821 & 81 & 0. 680 & 839 & 0.798673 & 0.980868 & 0.856481 \\
\hline 0.476787 & 0.783083 & 0.4193 & 0.863 & 0.79 & 0.0219 & 8143 & 0.6 & 0.865778 & \(0.70^{*} .31\) & 0.990911 & 0.856711 \\
\hline 0.676806 & 0.785214 & 0.4208 & 0. & 0.7 & 0.82 & & , & 0.88 cos 9 & 5 & 0.980914 & 6 \\
\hline 0.677653 & 0.780357 & 0.4216 & 0.8 & 0.7 & 0.8 & 0. 8153 & 0.6 & & & & \\
\hline 0.6 & 0.7827 & 0.42326 & 0. 5645 & 0.78 & 0.0 & 0.8156 & 0.602 & & & & \\
\hline 0.477886 & 0.782 & 0.624 & 0.864 & 0.7 & 0.8 & 0.815886 & 0.683186 & & \(\cdots 6074\) & 0.991465 & 58485 \\
\hline 0.478864 & 0.7833 & 0.425 & 0. 864 & 0.801 & 0. 0335 & 0.826 & 0.706581 & 0.1 265 & . 60 & 0. & 64778 \\
\hline 0.478196 & 0.783920 & C. 4266 & 0.875 & 0.6 & 0.8 & 0. 633 & 0.707 & . 9035 & 0.809526 & 0.951808 & 0.868223 \\
\hline 0.479250 & 0.7861 & 0. 62.67 & 0.8 & 0.8 & 0.935 & 0.8371 & 0.713 & 0. & & & \\
\hline 0.478842 & 0.784181 & 0.431030 & 0.8853 & 0.8283 & 0. 8387 & 0.8 & 0.718 & & 0 & 0.091766 & \\
\hline 0.460827 & 0.79511 & 0.6415 & 0.8836 & 0. B & 0.9401 & 0.844 & 0.7182 & 0.906026 & 0.015624 & -.enieks & \\
\hline 0.481060 & 0.78520 & 0.645 & 0.8858 & 0.833 & 0,9401 & 0.864 & 0.725136 & 0,807320 & 0.815664 & 0.891857 & 0.876065 \\
\hline 0.481383 & 0.7885 & 0.4 & 0.8962 & 0.8 & 0.0402 & 0.647450 & 0.725877 & 0.909556 & 0.617181 & 0.801938 & 0. 877667 \\
\hline 0.481484 & 0.8036 & 0.448 & 0.696 & 0.e368 & 0.0402 & 0.048 & 0.769260 & 0.910278 & 0.618364 & 0.981 & 77964 \\
\hline 0,482363 & 0.805800 & 0.4498 & 0.8970 & 0.8421 & 0.9431 & 0.853 & 0.732367 & 0.91231 & 0. 620298 & 0. & 0.880140 \\
\hline 0.482871 & 0.807102 & 0.45 & 0.8971 & 0.642 & 0.8 & 0.85376 & 0.733830 & 0.01284 & 0.821218 & 0.982 & 0.880 \\
\hline 0.483648 & 0.815224 & 0.4598 & 0.687720 & 0.845614 & 0.847075 & 0.85445 & 0.734585 & 0.81520 & 0.8216 & 0.9823 & \\
\hline 0.484.864 & 0.816061 & 0.4630 & 0.898021 & 0,84742 & 0.94743 & 0.857010 & 0.734812 & 0.0156 & 0.82350 & 0.9825 & 0.881 \\
\hline 0.490525 & 0.816803 & 0.4657 & 0.900 & 0.8546 & & 0.858 & 0.730364 & 0. 015 & 0.628078 & 0.802 & 0.6617.6 \\
\hline 0. 512297 & 0.821687 & 0.4681 & 0.907 & 0.858 & 0.8 & 0.860 & 0.743051 & 0. 016350 & 0.830738 & 0.092982 & 0.683090 \\
\hline 0.523725 & 0.827625 & 0.468015 & 0.8092 & 0.8 & 0.8 & 0.8628 & 0.765818 & 0.82510 & 0.834284 & 0.8930 & 0.86 \\
\hline 0. 5242885 & 0.828237 & 0,468105 & 0.810 & 0.8678 & 0. & 0.865 & 0.75081 & 0.82870 & 0.83770 & 0. 0831 & 0.88 \\
\hline 0. 526061 & 0.832811 & 0.480007 & 0.82176 & 0.86830 & 0.9542 & 6.88096 & 0.771123 & 0.93148 & 0. 64846 & 0.8934 & 0.88 \\
\hline \(0.532 \mathrm{C49}\) & 0.841289 & 0.4826 & 0.8364 & 0.871113 & 0.85667 & 0.68722 & 0.788284 & 0.93618 & 0.85704 & 0.9934 & 0. 885 \\
\hline 0. 556020 & 0.845533 & 0. 51456 & 0.836 & 0.872 & 0. 8657 & 0.897 & 0.79782 & 0.8441 & 0.86818 & 0.89350 & 0.8863 \\
\hline 0,560377 & 0.648137 & 0.5330 & 0.8387 & 0.6 & 0. & 0.8 & 0.808 & 0.8459 & 0.87286 & 0.9836 & 0.886 \\
\hline 0.566649 & 0.853703 & 0.556159 & 0.964682 & 0.859612 & 0.875111 & 0.916081 & 0.810925 & 0.945964 & 0.878353 & 0.993856 & 0.887893 \\
\hline . 564878 & 0.879384 & 0.58854 & 0.84768 & 0.80255 & 0.850129 & 0.92325 & 0.813465 & 0.947463 & 0.883026 & 0.096226 & 0.888 \\
\hline
\end{tabular}

SUBSECTION E. 7
```

USEk DIETRIBUTION Q20C1 T-I SCTK
120
0 . 0 ~ 0 . 0
1.E+5 1.6E+1
0.E-5 2.430E-1
1.48-4 5.637E+1
6.4E-4 7.254E-1
1.4.15-3 7.3E-1
7.03E-3.7.43E-1
B.50E-3 7.5E-1
1.50日E-2 7,77E-1
1.7158-2 7.67E-1
1.987E-2 ?.07E-1
2.203E-2 8.067E-1
2.356E-2 6.10E-1
2.50日E-2 8.167E-1
3.365E-2 6,433E-1
3. (482E-2 5,533E-1
6,703E-2 8.667E-1
5.028E+2 6.733E-1
1.111E-1 0.833E-1
1.20BE-1 1.0
UGER DIEFRIBUTION Q2:C1 T-I HOT LRO FATLURE
1 24
0.0000 0.0000
0.0000 0.1600
0.0439 0.1600
0.2821 0.1800
0.4811 0.2000
0.5808 0.2200
0.6488 0.2400
0.7146 0.2600
0.7830 0.2800
0.8316 0.3000
0.8675 0.3200
0.5947 0.3400
0.0165 0.3600
0.0.368 0.3800
0.0625 0.4000
0.8783 0.4200
0.0820 0.6400
0.8853 0.4600
0.9868 0.4800
0.8224 0.5001
0.0866 0.5201
0.0888 0.5401
1.0000 0.9501
1.0000 1.0000
USER DISTRIBUTION Q2IC2 T-I HOT LEO FAILURE
1 S
0. 0.
.0001.02
.20 . .95
50 . 98
1.0 1.0
USER D1STRIDUTION Q3BC1 HYDROGEN RELEASED IN-VMSSEL
1%
0.00 0.000
30.41 0.010
\$0.68 0.050
141.80 0.250
187.65 0.500
253.40 0.750
486.53 0.850
833.50 0.990

```
```

658.84 1.000
U\#EEN DISTRIDITION
I T
0.00 0.000
40.54 0.010
201.38 0.050
172.31 0.250
228.06 0.500
314.22 0. 750
471.52 0.550
633.50 0.990
658.84 1.000
USER DIETRIBUTION G3BC3 HYDFOKEN RKLEASED IN-VESSELL
1 0
0.00 5.000
85.4% 0.010
70.05 0.050
116.56 0.250
152.04 0,500
2w2.65 0.750
206.65 0.050
360.56 0.000
605. 64 2.000
USER DIETRIBUTION Q3BC4 BYDROOEN RELEASED IN-VESSEL.
10
0.00 0.000
60.54 0.010
46.16 %.050
13c.86 0.250
182. -5 0.500
238.2. 0.750
324.35 5.050
385.30 0 800
430.78 1.000
USER DISTRIBUTION QSBCS HYDROGEN RELEASED IN-VESSEL
10
25.34 0.000
60.82 0,010
81.22 0.050
136.84 0.250
202.72 0.500
324.35 0.750
481.60 0.050
577,75 0.880
608.16 1.000
USER DISTRIBUTION QSEC6 HYDROOEN RELEASKD IN-VESSEL,
1.9
25.34 0.000
60.82 0.010
101.36 0.050
172.31 0.250
243.26 0.500
329.42 0.750
681.60 0.850
\$77.75 0.900
608.16 1.000
USER DISTRIBUTION Q3BC7 HYDROGER RELEASED IN-VESSEL
1 9
25.34 0.0000
55.75 0.010
76.02 0.050
121.63 0.250
167.24 0.500
318.28 0.750
481 60 0.950
\$77.75 0.990

```
```

608.16 1.000
USER DISTKIBUTION Q4BC3 IGNITION FREQ IN ICE CONDENEER
1.35
0.000E+00 0.000E+00
1.000E-02 1.060E-02
3.000E-02 2.240E-02
5.000E-02 2.E02E-02
7.500E-02 6.127E-02
5,400E-02 6, B12E-02
1.000E-01 1.108E-01
1.220E-01 1.375E-01
1.130E-02 2.415E-01
1.300E-01 2.762E-01
1.410E-01 2.803E-01
1.5e0E-01 6.335E-01
1.6308-01 4.650E-01
1.770E-01 5.4.90E-01
1.2408-01 6.001E-01
1.060E-01 6.160E-01
2.000E-01 6.200E-01
2.080E-01 6.575E-01
2.120E+01 6.713E-01
2.210E-01 6.847E-01
2.350\textrm{E}-01 7.287E-01
2.500E-01 7.388E-01
2.540E-01 7.602E-01
2.500E-01 7.658E-01
3,000E-01 \&,687E-01
4.000E-01 E.693E-01
5.000E-02 %.707E-01
5.500E-01 8.713E-01
6.000E-01 0.720E-01
7.000E-01 8.740E-01
8.500E-01 8.807E-01
9.000E-01 1.000E+60
1.000E+00 1.000E+00
USER DISTRIBUTIOH Q4GCG IGNITION FREQ.IN ICE CONDENSER
1. 32
0.000\textrm{E}+00 0.000\textrm{E}+00
8.000E-03 5.847E-03
1.300E-02 2.255E-02
3.500E-02 8.477E-02
3.800E-02 1.157E-01
5.000E+02 1.762E-01
3.200E=02 1.850E-01
7.100E-02 2.777E-01
7.500E-02 2.8028-01
8.200E-02 3.484E-01
8.400E-02 3.528E-01
1.000E-01 3.672E-01
1.070E-01 3.854E-01
1.130E-01 4.000E-01
1.2108-01 4.270E-01
1.220E-01 4.338E-01
1.390E-01 \&.769E-01
1.580E-01 5.719E-01
1.960E-01 6.785E-01
2.000E-01 6.8808-01
2.210E-01 7.742E-01
2.330E-01 8.158E-01
2.540E-01 8.724E-01
2.590E-01 B.861E-01
3.000E-01 B.707E-01
4.000E-01 8.723E-01
5.000\textrm{E}-01 9.763\textrm{E}-01
5.500E-01 9.757E-01

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 6. \(05.0 \mathrm{E}-01\) & 8. \(773 \mathrm{E}-01\) & & & & \\
\hline 8.000E-01 & 6.877E-01 & & & & \\
\hline 8. \(0008-01\) & 1.000E +00 & & & & \\
\hline 1. 0000 +00 & 1.000E+00 & & & & \\
\hline USER DISTRIE & ITION Q4aE5 & Tanction & F preo. 2 L & 1 CE & CORDENSER \\
\hline 188 & & & & & \\
\hline 0.0 & 0.0 & & & & \\
\hline 0. \(00008+60\) & 3.3338-03 & & & & \\
\hline 1.0008-03 & 1.732E-02 & & & & \\
\hline \(7.0008-08\) & 1.712E-01 & & & & \\
\hline 1.500E-02 & 2. 50EE-01 & & & & \\
\hline 2. 0005 -02 & 3. 180E-01 & & & & \\
\hline \(3.100 \mathrm{E}-02\) & 9,360E-01 & & & & \\
\hline 3,600k-02 & 3.535z-01 & & & & \\
\hline \(3.900 \mathrm{E}-02\) & 3. 568E-01 & & & & \\
\hline \(5.000 \mathrm{E}-02\) & \(3.670 \mathrm{E}-01\) & & & & \\
\hline 7. 500E-02 & 8.852E-01 & & & & \\
\hline 9.4008-02 & 4. \(176 \mathrm{E}-01\) & & & & \\
\hline 1.000E-01 & 4.276E-01 & & & & \\
\hline 1.130E-01 & 4. 5698 -01 & & & & \\
\hline 1.390E-01 & 5.366E-01 & & & & \\
\hline 1.5608-01 & 6. \(435 \mathrm{E}-01\) & & & & \\
\hline 1. 9608-01 & 7,734E-01 & & & & \\
\hline 2.000E-01 & 7.863E-01 & & & & \\
\hline 2. 210E-01 & 8, 520E-01 & & & & \\
\hline 2.330E-01 & 8. \(622 \mathrm{E}-01\) & & & & \\
\hline 2. 540E-01 & 9.102E-01 & & & & \\
\hline 2. 5900-01 & 0.201E-01 & & & & \\
\hline \(3.000 \mathrm{E}-01\) & 8,763E-01 & & & & \\
\hline \(4.000 \mathrm{E}-01\) & 8.780E-01 & & & & \\
\hline \(5.000 \mathrm{E}-01\) & 8.823E-01 & & & & \\
\hline 6, 000E-01 & 0.8775-01 & & & & \\
\hline ?.000E-01 & 0.957E-01 & & & & \\
\hline 7. 5008-61 & 1.000E+00 & & & & \\
\hline 1.0008+00 & 1.000E+00 & & & & \\
\hline USER DIETRIBU & UTION QSOCE & IGNITION & freq. IN & UPPE & PLENUM \\
\hline 130 & & & & & \\
\hline 0.000E +00 & \(0.0005+00\) & & & & \\
\hline 2. 500E-02 & 1. 8068 -02 & & & & \\
\hline 5.000E-02 & 3.927E-02 & & & & \\
\hline 9.700E-02 & 4.656E-02 & & & & \\
\hline 1.0008-01 & 4.8488-02 & & & & \\
\hline 1.2208-01 & 6. 204 E - 02 & & & & \\
\hline 1.6708-01 & 6. \(2688 \mathrm{EE}-02\) & & & & \\
\hline 1. 5008-01 & 8. \(725 \mathrm{E}-02\) & & & & \\
\hline 1. \(310 \mathrm{~L}-01\) & 1.412E-01 & & & & \\
\hline 2. \(0008-01\) & 1.680E-01 & & & & \\
\hline 2.100E-01 & 2.351E-01 & & & & \\
\hline 2. 270E-01 & 2. 533E-01 & & & & \\
\hline 2. 500E-01 & 3.166E-01 & & & & \\
\hline 2. \(610 \mathrm{E}-01\) & \(3.4688-01\) & & & & \\
\hline 2.970E-01 & 4.240E-01 & & & & \\
\hline \(3.000 \mathrm{E}-01\) & 4.2018-01 & & & & \\
\hline \(3.240 \mathrm{E}-01\) & 4.637E-01 & & & & \\
\hline 3,3008-01 & 4.7088-01 & & & & \\
\hline 3.6108-01 & 5.448E-01 & & & & \\
\hline \(3.7508-01\) & \(5.7578-01\) & & & & \\
\hline \(3.8008-01\) & 5, 684E-01 & & & & \\
\hline 4. \(0000 \mathrm{E}=01\) & 6. \(358 \mathrm{EE}-01\) & & & & \\
\hline 4. 130E-01 & 6.682E-01 & & & & \\
\hline 4. \(460 \mathrm{E}-01\) & 7.281E-01 & & & & \\
\hline 4. 680E-01 & 7.514E-01 & & & & \\
\hline \(5.000 \mathrm{E}-01\) & \(7.682 \mathrm{E}-01\) & & & & \\
\hline 5.2708-01 & 7.805E-01 & & & & \\
\hline 5. 5005-01 & 8.077E-01 & & & & \\
\hline 6. 0005-01 & 1.000E+00 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & IONITION & PKEQ & IN & UFPER & RLEESM \\
\hline \multicolumn{7}{|l|}{128} \\
\hline 6.000E +00 & \multicolumn{6}{|l|}{0,000E+00} \\
\hline 2.5001-02 & \multicolumn{6}{|l|}{\(2.2108-02\)} \\
\hline \(5.000 \mathrm{E}-02\) & \multicolumn{6}{|l|}{6.5368-02} \\
\hline 5.200E-62 & \multicolumn{6}{|l|}{4. \(590 \mathrm{E}-02\)} \\
\hline 6. 300E-62 & \multicolumn{6}{|l|}{6. \(1518-02\)} \\
\hline 9.700E-62 & \multicolumn{6}{|l|}{1.121E-01} \\
\hline 1.0002-01 & \multicolumn{6}{|l|}{1.1808-61} \\
\hline 1.150E-01 & \multicolumn{6}{|l|}{1.682E-01} \\
\hline 1.2205-01 & \multicolumn{6}{|l|}{\(1.6768-61\)} \\
\hline 1.4701-01 & \multicolumn{6}{|l|}{2.614E-02} \\
\hline 1.5508-01 & \multicolumn{6}{|l|}{2.716E-01} \\
\hline 1.810E-01 & \multicolumn{6}{|l|}{3. \(650 \mathrm{EE}=01\)} \\
\hline 1. \(560 \mathrm{E}-01\) & \multicolumn{6}{|l|}{4. 38 EE -61} \\
\hline 2.0008-6) & \multicolumn{6}{|l|}{4.460E-01} \\
\hline 2.1008=01 & \multicolumn{6}{|l|}{5.1818-01} \\
\hline \(2.3508 \cdot 61\) & \multicolumn{6}{|l|}{\(5.7558-01\)} \\
\hline 2.610E-01 & \multicolumn{6}{|l|}{6.471t-61} \\
\hline \(2.670 \mathrm{E}-01\) & \multicolumn{6}{|l|}{6.602E-01} \\
\hline \(2.870 \mathrm{E}-01\) & \multicolumn{6}{|l|}{7. \(9628 \mathrm{E}-01\)} \\
\hline \(2.9701=01\) & \multicolumn{6}{|l|}{7.2592-01} \\
\hline 3, 000E-01 & \multicolumn{6}{|l|}{7.285E-01} \\
\hline \(3.240 \mathrm{E}=01\) & \multicolumn{6}{|l|}{7.5178-01} \\
\hline 3, 6108-01 & \multicolumn{6}{|l|}{7.7605-01} \\
\hline 3,600E-01 & \multicolumn{6}{|l|}{7.880E-01} \\
\hline 6.0008-01 & \multicolumn{6}{|l|}{7.950E=01} \\
\hline 5,000E-01 & \multicolumn{6}{|l|}{6. 550E-01} \\
\hline \(5.500 \mathrm{E}=01\) & \multicolumn{6}{|l|}{9. \(150 \mathrm{E}-01\)} \\
\hline 6.000E-01 & \multicolumn{6}{|l|}{1.000E+00} \\
\hline 1.000E +00 & \multicolumn{6}{|l|}{1. \(000 \mathrm{E}+00\)} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline \(0,000 \mathrm{E}+00\) & \multicolumn{6}{|l|}{3.3a3E-03} \\
\hline 2,000E=03 & \multicolumn{6}{|l|}{1. \(860 \mathrm{E}-02\)} \\
\hline 8. \(000 \mathrm{E}-03\) & \multicolumn{6}{|l|}{0. \(107 \mathrm{E}-02\)} \\
\hline 1. \(700 \mathrm{E}-02\) & \multicolumn{6}{|l|}{1.0312-01} \\
\hline 2. \(500 \mathrm{E}-02\) & \multicolumn{6}{|l|}{2. \(12.5 \mathrm{E}-01\)} \\
\hline 4. \(800 \mathrm{E}-02\) & \multicolumn{6}{|l|}{2.8758-01} \\
\hline 5. \(000 \mathrm{E}=0.2\) & \multicolumn{6}{|l|}{3.0208-01} \\
\hline 7,700E-02 & \multicolumn{6}{|l|}{3.597E-01} \\
\hline 8.400E-02 & \multicolumn{6}{|l|}{3.7018-01} \\
\hline B. \(900 \mathrm{E}-02\) & \multicolumn{6}{|l|}{3. \(863 \mathrm{E}-01\)} \\
\hline 9.000E-02 & \multicolumn{6}{|l|}{3.950E-01} \\
\hline 9. \(700 \mathrm{E}-02\) & \multicolumn{6}{|l|}{4.0078-01} \\
\hline 1.000E-01 & \multicolumn{6}{|l|}{4.0338 \(=01\)} \\
\hline 1.2208-01 & \multicolumn{6}{|l|}{\(4.2358 \mathrm{~F}=01\)} \\
\hline 1.470E-01 & \multicolumn{6}{|l|}{4.4088-01} \\
\hline 1.8108-01 & \multicolumn{6}{|l|}{\$,1308-01} \\
\hline 2.0005-01 & \multicolumn{6}{|l|}{\(5.620 \mathrm{~g}-01\)} \\
\hline 2.190E-01 & \multicolumn{6}{|l|}{6.131E-01} \\
\hline 2.610E=01 & \multicolumn{6}{|l|}{7,1738-01} \\
\hline 2.0708-01 & \multicolumn{6}{|l|}{\(7.852 \mathrm{E}-01\)} \\
\hline 3, 000E-01 & \multicolumn{6}{|l|}{7.885E 1} \\
\hline 3.240E-01 & \multicolumn{6}{|l|}{8.202. 1} \\
\hline \(3.610 \mathrm{E}=01\) & \multicolumn{6}{|l|}{E.53sE-01} \\
\hline 3.8COE-01 & \multicolumn{6}{|l|}{8.763E-01} \\
\hline 4.060E-01 & \multicolumn{6}{|l|}{B. \(003 \mathrm{E}-01\)} \\
\hline 5. \(000 \mathrm{E}-01\) & \multicolumn{6}{|l|}{1.000E +00} \\
\hline 1.000E \(+00 \quad 1.000 \mathrm{E}+00\) & \multicolumn{6}{|l|}{1.000E+00} \\
\hline USER DISTRTE & ITION QSIC6 & IGNITION & FREQ & - & DOME & \\
\hline 122 & & & & & & \\
\hline \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & & & & & \\
\hline 1.000E-02 & 8. \(500 \mathrm{E}-03\) & & & & & \\
\hline 2. \(000 \mathrm{E}-02\) & 1.800E-0.2 & & & & & \\
\hline
\end{tabular}

USER DIETRIBUTION Q5ICT IONITION FREQ. * DOKE
 122
 \(0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00\)
 \(1.000 \mathrm{E}-02 \quad 2.700 \mathrm{E}-02\)
 400E-02
 4. 000E-02 - \(\quad\). 200E-02
 \(4.600 \mathrm{E}=02 \quad 1.268 \mathrm{E}=01\)
 6. O00E-02 - 805 E -01
 6. 300E-02 \(2.053 \mathrm{E}-01\)
 . \(000 \mathrm{E}=02 \quad 2.534 \mathrm{E}-02\)
 2.1008-02 \(2.618 \mathrm{E}=01\)
 -6.6302=01
 8.000E-02 4.018E-01
 3.3655-01
 \(1.040 \mathrm{E}-01 \quad 7.500 \mathrm{E}=01\)
 \(1.520 \mathrm{E}-01\) 8.750E-01
 1.760E-01 \(\quad\). \(.500 \mathrm{E}-01\)
 1.830E-01 \(9.750 \mathrm{E}=01\)
 \(2.220 \mathrm{E}-01 \mathrm{O} 1\).000 +00
1. \(000 \mathrm{E}+00 \quad\) 1. \(000 \mathrm{E}+00\)
 IGNITION EREQ. - DOME
 0. \(000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00\)
 \(1.000 \mathrm{E}=02 \quad 3.400 \mathrm{E}-02\)
 2.000E-02 \(\quad 7.250 \mathrm{E}-02\)
 \(3.400 \mathrm{E}-02 \quad 1.421 \mathrm{E}+01\)
 4. \(000 \mathrm{E}-02 \quad 1.615 \mathrm{E}-01\)
 \(4.600 \mathrm{E}-02 \quad 2.146 \mathrm{E}-01\)
 3.000E-02 \(\quad 2.397 \mathrm{E}=01\)
 6. DOOE-02 \(\quad 3.085 E-01\)
 6.300E-02 3.354E-01
 7.000E-02 \(\quad 4.084 \mathrm{E}=01\)
 2.100E-02 4.231E-01
 8. \(0000 \mathrm{E}-02\)
 9.000E-02 6.870F-01
 .000E-01 7.321E-01
 \(1520 \mathrm{E}-01\) - 8.750E-01
 \(1.760 \mathrm{E}-01 \quad 8.500 \mathrm{E}-01\)
 2.220E-01 \(\quad 8.850 \mathrm{E}-01\)
 2. \(500 \mathrm{E}-01 \quad 1.000 \mathrm{E}+00\)


```

27.26 b.635E=1
20.6t \&.012t=3
26.62 \$.8678-1
g7.58 6.250E=1
30.36 - 7.0002-7
56.46 7.056E-1
36.54 6.21位-2
60.68 (..624E-7
43.37 8. 6208-7
66.88 0.5505-1
66.26 C.E35E-1
85.16 0.635E-子
E2.06 0.067E-1
63.78 1.0
USER DIETRIEUTION QLOC2 TRAC OF CORE AT VB DIVERTED SEAL, TAHLL
\ }
0.0002 6.00
0.0130 0.05
4.005t 0.25
0.2110 0.50
0.2030 0.75
0.3457 0.05
6.6716 1.66
USER DIETRIBUTION QEGCJ FFAC, OF CORE AT VE DIVERTED SEAL TABLE
1=7
0.0000 0.00
0.0850 0.05
0.2862 0.25
0.2736 0.50
0.4102 0.75
0.7257 0.05
0.05%7 1.00
USER DIHTRIBUTION Q6日C IFAC OF CORE AT VE DIVERTLD SEAL TABLE 17

0.0611	0.00
0.0835	0.05
0.2766	0.25
0.2585	0.50
0.6057	0.75
0.2684	0.85
0.6008	1.00

USER DISTRIHUTION Q6BCS IRAC OF CORE AT VE DIVERTED SEAL TABLE 17

0.0012	0.00
0.0659	0.05
0.1508	0.25
0.2520	0.50
0.3886	0.75
0.7182	0.05
$0.850 ?$	1.00

USFR DISTRTHUTION Q68CE FKAC OF CORE AT VB DIVERTED SEAL TABLE 17
$0.0015 \quad 0.00$
$0.1580 \quad 0.05$
$0.2523 \quad 0.25$
$0.3550 \quad 0.50$
$0.5316 \quad 0.75$
$0.8600 \quad 0.85$
$0.8730 \quad 1.00$

```

``` 17
\begin{tabular}{ll}
0.0013 & 0.00 \\
0.2665 & 0.05 \\
0.2564 & 0.25 \\
0.3511 & 0.50
\end{tabular}
```

```
        0.5538 0.75
        0.8500 0.05
        0.0780 1.00
USER DIFTRIBUTION Q6BCE FRGC.OF CONE AT VE DIVRKTED BFRL TABLE
7
\begin{tabular}{ll}
0.0016 & 0.00 \\
0.2650 & 0.05 \\
0.2685 & 0.25 \\
0.3541 & 0.50 \\
0.5327 & 0.75 \\
0.8657 & 0.85 \\
0.8780 & 1.00
\end{tabular}
USER DI昨IBUMION
    2 0
        3.00 0.00
        i5.00 0.01
        60.00 0.05
    150.00 0.25
    280.00 0.50
    330.00 0.75
    270.00 0.05
    400.00 0.06
    407.50 1.00
USER DISTRIBUTION
    1. 
        3.80}0.0
        15.00 0.01
        60.00 0.05
    205.00 0.25
    330.00 0.50
    405.00 0.75
    470.00 0.05
    525.00 0.00
    530.80 1.00
USER DISTRIBUTION Q73CAPIBI PRESSURE RISE AT VB - NO HINE
    10
        80.05 0.00
        80.00 0.01
        80.00 0.05
        80.00 $.25
        105.06 0.50
        355.80 0.75
    1240.00 0.05
    1325.00 0.80
    1346.30 1.00
USER DISTRIBUT10N
            1 0
        88.00 D,005
        86.00 0.010
        80.00 0.050
        88.00 0.250
    125.50 0.500
    301.38 0.750
1364.00 0.850
1457.50 0.890
1480.03 1.000
USER DISTRIAUTION
    1%
        12.00 0.00
        16.70 0.01
        35.70 0.05
        $0.60 0.25
        74.20 0.50
        236.30 0.75
        806.70
        806.70
            Q7303P2B1 PRESSURE RISE AT VE * NO HPNE
Q73CSP1B1 PRESSURE R1SE AT VB - NO HFPE
        Q73C4P2D1 PRESSURE RISE AT VB - NO HPME
```

```
    007.70 1.60
TSEFR DISTR1BUTION
    1. %
        10,70}0.0
        16.70 0.01
        40.00 0.05
        60.46 0.25
        75.20 0.50
        312.60 0.75
    1202.50 0.05
    1225.00 0.00
    1355.60 1.00
USEK DISTRIBUTION
    1 %
        8.10 0.00
        18.70 0.01
        61.00 0.05
        60.00 0.25
        70.10 0.50
        186.70 0.75
        303.70 0.85
        353.10 0.98
        365.50 1.00
USER DISTREIBUTION
        10
        8.81 0,000
        20.57 0.010
        67.10 0.050
        75.000.250
        87.01 0,500
    216.37 0.750
    336.07 0.050
    388.41 0.940
    402.05 1.000
USER DISTRIBUTION
    1-
        4.80}00.0
        6.30 0.01
        12.50 0.05
        30.00 0.25
        64.80 0.50
        74.30 0.75
        83.30 0.85
        122.50 0.89
        128.60 1.00
USER DISTRIBUTION
    1%
            6.10 0.00
            6.30 0.01
            15.00 0.05
            50.00 0.25
            62.50 0.50
            75.00 0.75
    112.00 0.85
    162.50 0.80
    150.10 1.00
USER DISTRIBUTION
    10
        45.90 0.00
        51.60 0.01
        75.60 0.05
        171.70 0.25
        284.50 0.50
        545.20 0.75
        765.00 0.95
        928.60 0.99
```

Q73CSP2B1 PRESSUKE RISE AT VB - NO RPME

Q73CEP1B1 FRESSURE RISE AT VB *NO HIME

Q73C6P2B1 PRESSURE RISE AT VB - NO HRTE

Q73C7P1B1 PRESSURE RISE AT VB = NO HPTEE

Q73C7P2B1 PRESSURE RISE AT VB * NO HPN.

Q74C2P1B1 FRESSURE RISE AT VB - GPME


```
    905.60 1.00
USER DISTRIBUUTION
    1 0
        81.10 0.00
        08.20 0.01
    166.50 0.05
    365.40 0.25
    562.10 0.50
    710.00 0.75
    1085.50 0.95
    1206.10 0.00
    1236.30 1.00
USER DISTRIBUTION
    1-
        45.80 0.00
        50.30 0.01
        67.80 <.05
    135.70 0.25
    227.40 0.50
    465.90 0.75
    696.60 0.95
    847.70 0.80
    884.90 1.C0
USER DIETRTBUTION
    1 日
        32.30 0.00
        54.30 0.01
        142.40 0.05
        313.90 0.25
        $02.10 0.50
        669.40 0.75
    1084.30 0.05
    1208.10 0.99
    1235.50 1.00
USER DILTRIBUTION
    1%
        85.50 0.00
        106.40 0.01
        150.00 0.05
        208.50 0.25
        412.60 0.50
        $32.20 0.75
        728.70 0.85
    854.40 0.98
    1010.80 1.0n
USER DISTRIBUTION
    1%
        88,70 0.00
        87.60 0.01
        133.30 0.05
    235.50 0.25
    318.00 0.50
    380.30 0.75
    5?5.00 0.95
    683.80 0.90
    723.50 1.00
USER DISTRIBUTION
    1 B
        46.70 0.00
        52.00 0.01
        72.90 0.05
        132.80 0.25
        101.40 0.50
        232.30 0.75
        309.20 0.85
    403.20 0.89
        Q74C5P2EI PRESSURE RISE AT VB - HRME
    Q74CBPIB1 PRESSURE RISE AT VB - HP*位
    Q74C8P2B1 PRESSURE RISE AT VE - HPME
    Q74C11P1B1 PRESSURE RISE AT VB - HPME
    Q74C12P1B1 PRESSURE RISE AT VB - HPME
```



```
    548.90 1.05
USER DISTRIBUTION OTSCSF1B1 PRESSURE RISE AT VE - HPTE
    1 B
        37.80 0.00
        46.80}0.0
        83.30 0.05
    241.70 0.25
    384.40 0.50
    498.60 0.75
    657.40 0.85
    816.30 0.98
    871.20 1.00
USER DISTRIBUTION
    1-
        25.10 0.00
        31.30 0.01
        56.30 0.05
        104.20 0.25
    296.00 0.30
    375.00 0.75
    518.20 0.95
    621.40 0.99
    647.20 1.00
USER DISTRIBUTION
    I B
        14.00 0.00
        18.80 0.01
        34.40 0.05
    112.10 0.25
    178.40 0.50
    225.10 0.75
    305.80 0.95
    372.00 0.08
    386.50 1.00
USER DISTRIBUTIOR
    1%
        30.00 0.00
        37.30}0.0
        67.50 0.05
    177.70 0.25
    101.30 0.50
    404.50 0.75
    610.60 0.85
    746.40 0.99
    780.30 1.00
USER DISTRTBUTION
    1.
        20.00 0.00
        25.00 0.01
        45.00 0.05
    138.20 0.25
    226.20 0.50
    289.20 0.75
    462.20 0.85
    $12.70 0.99
    525.30 1.00
USER DISTRIBUTION Q7SCIOPIB1 FKLSSURE RISE AT VB - HPME
    18
        12.40 0.00
        15.70 0.01
        28.80 0.05
        84.60 0.25
        145.50 0.50
        166.80}0.7
        277.80 0.95
        317.60 0.89
```

Q7SC7P1B1 PRESSURE RISE \&T VB - HPPE

Q75CER1B1 PRESSURE R1SE AT VB - BRPE

Q7SE日P1B1 PRESSURE RISE AT VB - REME

DISTRIBUTION:

Frank Abbey
U. K, Atomic Energy Authority Wigshaw Lane, Culoheth
Warrington, Cheshire, WA3 $4 N E$ ENGLAND

Kiyoharu Abe
Department of Reactor Safety Research
Nuc ear Safety Research Center ToKai Research Establishment JAERI
Tokai-mura, Naga-gun
Ibaraki-ken,
JAPAN
Ulvi Adalioglu
Nuclear Engineering fivision Cekmece Nuclear Research and

Training Centre
P. K. 1, Havaalani

Istanbul
TURKEY
Bharat Agrawal
USNRC-RES/AEB
MS: NL/N-344
Kiyoto Aizawa
Safety Research Group
Reactor Research and Development Project
PNC
9.13m 1-Chome Akasaka

Minatu-Ku
Tokyo
JAPAN
Oguz Akalin
Ontario Hydro
700 University Avenue
Toronto, Ontario
CANADA M5G 1X6
David Aldrich
Science Applications International Corporation
1710 Goodridge Drive
McLean, VA 22102

Agustin Alonso
University Politeonica De Madrid
J Gutierrez Abascal, 2
28006 Madrid
SPAIN

Christopher Amos
Science Applications International Corporation
2109 Air Park Road SE
Albuquerque, NM 87106
Richard C. Anoba
Project Engr., Corp. Nuclear Safety Carolina Power and Light Co.
P. O. Box 1551

Raleigh, NC 27602
George Apostolakis
UCLA
Boelter Hell, Room 5532
Los Angeles, CA 90024
James W. Ashkar
Boston Edison Company
800 Boylston Street.
Boston, MA 02199
Donald H, Ashton
Bechtel Power Corporation
P.0. Box 2166

Houston, TX 77252-2166
J. de Assuncao

Cabinete de Proteccao e Seguranca Nuclear
Secretario de Estado de Energia
Ministerio da Industria
av. da Republica, $45-6^{\circ}$
1000 Lisbon
PORTUGAL
Mark Averett
Florida Power Corporation
P.O. Box 14042

St. Petersburg, FL 33733
Raymond O. Bagley
Northeast Utilities
P. O. Box 270

Hartford, CT 06141.0270 =

```
Juan Bagues
Consejo de Seguridad Nucleare
Sarangela de la Cruz 3
2 8 0 2 0 ~ M a d r i d ~
GPAIN
George F. Balley
Washington Public Power Supply
    System
P. O. Box }96
Richland, WA }9935
H. Balriot
Belgonucleaire S A
Rue de Champ de Mars 25
B-1050 Brussels
BELGIUM
Louis Baker
Reactor Analysis and Safety
    Division
Building 207
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
H-P. Balfaiz
TUV-Norddeutschland
Grosse Bahnstrasse 31,
2000 Hamburg 54
FEDERAL. REPUBLIC OF GERMANY
Patrick Baranowsky
USNRC-NRR/OEAB
MS: 11E.22
H. Bargmann
Dept. de Mecanique
Inst. de Machines Hydrauliques
    et de Mecaniques des Fluides
Ecole Polytechnique de Lausanne
CH-1003 Lausanne
M.E. (ECUBLENS)
CH. }1015\mathrm{ Lausanne
SWITZERLAND
Robert A. Bar!
Brookhaven National Laboratory
Building }13
Upton, NY }1197
Richard. Barrett
USNRC-NRR/PRAB
MS: 10A-2
```

Kenneth S. Baskin
S. California Edison Company
P.O. Box 800

Rosemead, CA 91770
J. Basselier

Belgonucleaire S A
Rue du Champ de Mars 25, B-1050
Brussels
BELGIUM
Werner Bast 1
Gesellschaft Fur Reaktorsicherheit
Forsciungsgelande
D- 8046 Garching
FEDERAL REPUBLIC OF GERMANY
Anton Bayer
BGA/ISH/ZDB
Postfach 1108
D-8042 Neuherberg
FEDERAL REPUBLIC OF GERMANY
Ronald Bayer
Virginia Electric Power Co.
P. O. Box 26666

Richmond, VA 23261
Eric S. Beckjord
Director
USNRC-RES
MS: NL/S-007
Bruce B. Beckley
Public Service Company
P.O. Box 330

Manchester, NH 03105
William Beckner
USNRC-RES/SAIB
MS: NL/S-324
Robert M. Bernero
Director
USNRC-NMSS
MS: 6A-4
Ronald Berryman [2]
Virginia Electric Power Co.
P. O. Box 26666

Richmond, VA 23261

```
nobert C. Bertucio
NUS Corporation
1 3 0 1 \text { S. Central Ave, Suite 202}
kent, WA 98v32
John H. Bickel
EG&G Idaho, Inc.
P.O. Box }162
Idaho Falls, ID 83415
Peter Bieniarz
Risk Management Association
2 3 0 9 ~ D i e t z ~ F a r m ~ R o a d , ~ N W ~
Albuquerque, NM 87107
Adolf Birkhofer
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. }8046\mathrm{ Garching
FEDERAL REPUBLIC OF GERMANY
James Blackburn
Illinois Dept. of Nuclear Safety
1035 Outer Park Drive
Springfield, IL 62704
Dennis C, Bley
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA }9266
Roger M, Blond
Science Applications Int, Corp.
20030 Century Blvd., Suite 201
Germantown, MD 20874
Simon Board
Central Electricity Generating
    Board
Technology and Planning Research
    Division
Berkeley Nuclear Laboracory
Berkeley Gloucestershire, GL139PB
UNITED KINGDOM
Mario V. Bonace
Northeast Utilities Service Company
P.O. Box 270
Hartford, CT 06101
```

Gary J. Boyd
Safety and Reliability Optimization Services
9724 Kingston Pike, Suite 102
Knoxville, TN 37922
Robert J, Breen
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303
Charles Brinkman
Combustion Engineering
7910 Woodmont Avenue
Bethesda, MD 20814
K, J, Brinkmann
Netherlands Energy Res. Edtn.
P.O. Box 1

17552G Petten NH
NETHERLANDS
Allan R. Brown
Manager, Nuclear Systems and Safety Department
Ontario Hydro
700 University Ave.
Toronto, Ontario M5G1X6
CANADA

Robert G. Brown
TENERA L. P.
1340 Saratoga-Sunnyvale Rd.
Suite 206
San Jose, CA 95129
Sharon Brown
EI Services
1851 So. Central Place, Suite 201
Kent, WA 98031
Ben Buchbinder
NASA, Code QS
600 Maryland Ave. SW
Washington, DC 20546
R. H. Buchholz

Nutech
6835 Via Del Oro
San Jose, CA 95119

```
Robert J. Budnitz
Future Resources Associates
74 Alameda
Berkeley, CA }9470
Gary R. Burdick
USNRC-RES/DSR
MS: NL/S-007
Arthur J. Buslik
USNRC-RES/PRAB
MS: NL/S-372
M. Bustraan
Netherlands Energy Res, Fdtn.
P.0. Box 1
17552G Petten NH
NETHERLANDS
Nigel E. Buttery
Central Electricity Generating
    Board
Booths Hall
Chelford Road, Knutsford
Cheshire, WA16BQG
UNITED KINGDOM
Jose I. Calvo Molins
Probabilistic Safety Analysis
    Group
Consejo de Seguridad Nuclear
Sor Angela de la Cruz 3, P1, 6
28020 Madrid
SPAIN
J. F. Campbel1
Nuclear Installations Inspectorate
St. Peters House
Balliol Road, Bootle
Merseyside, L20 31,2
UNITED KINGDOM
Kenneth & Canady
Duke Power Company
422 S. Church Street
Charlotte, NC }2821
Lennart Carlsson
IAEA A-1400
Wagramerstrasse 5
P.O. Box }10
Vienna, 22
AUSTRIA
```

Annick Carnino
Electricite de France
32 Rue de Monceau 8EME
Paris, F5008
FRANCE
G. Caropreso

Dept. for Envir. Protect. \& H1th.
ENEA Cre Casaccia
Via Anguillarese, 301
00100 Roma
ITALX

James C, Carter, III
TENERA L. P.
Advantage Place
308 North Peters Road
Suite 280
Knoxville, TN 37922
Eric Cazzoli
Brookhaven National Laboratory
Building 130
Upton, NY 11973
John G. Cesare
SERI
Director Nuclear Licensing
5360 I- 55 North
Jackson, MS 39211
S. Chakraborty

Radiation Protection Section
Div, De La Securite Des Inst. Nuc.
5303 Wurenlingen
SWITZERLAND
Sen-I Chang
Institute of Nuclear Energy Research
P.O. Box 3

Lungtan, 325
TAIWAN
J. R. Chapman

Yankee Atomic Electric Company
1671 Worcester Road
Framingham, MA 31701
Robert F . Christie
Tennessee Valley Authority 400 W. Summit Hill Avenue, W1OD190
Knoxville, TN 37902
T. Cianciolo

BWR Assistant Director ENEA DISP TX612167 ENEUR
Rome
ITALY
Thomas Cochran
Natural Resources Defense Council
1350 New York Ave. NW, Suite 300
Washington, D C. 20005
Frank Coffman
USNRC-RES/HFB
MS: NL/N-316
Larry Conradi
NUS Corporation
16835 W. Bernardo Drive
Suite 202
San Diego, CA 92127
Peter Cooper
U.K. Atomic Energy Authority Wigshaw Lane, Culcheth
Warrington, Cheshire, WA3 4 NE UNITED KINGDOM
C. Allin Cornell

110 Coquito Way
Portola Valley, CA 94025
Michael Corradini
University of Wisconsin
1500 Johnson Drive
Madison, WI 53706
E. R. Corran

Nuclear Technology Division
ANSTO Research Establishment
Lucas Heights Research Laboratories
Private Mail Bag 7
Menai, NSW 2234
AUSTRALIA
James Costello
USNRC-RES/SSEB
MS: NL/S-217A
George R. Crane
1570 E. Hobble Creek Dr. Springville, UT 84663

Mat Grawford
SERI
5360 I- 55 North
Jackson, MS 39211
Michael C. Cullingford
Nuclear Safety Division
IAEA
Wagramerstrasse, 5
P.0. Box 100

A- 1400 Vienna
AUSTRIA
Garth Cummings
Lawrence Livermore Laboratory
L-91, Box 808
Livermore, CA 94526
Mark A. Cunningham
USNRC-RES/PRAB
MS: NL/S-372
James J. Curry
7135 Salem Park Circle
Mechanicsburg, PA 17055
Peter Cybulskis
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201
Peter R. Davis
PRD Consulting
1935 Sabin Drive
Idaho Falls, ID 83401
Jose E. DeCarlos
Consejo de Seguridad Nuclear
Sor Angela de la Cruz 3, P1, 8
28016 Madrid
SPAIN
M. Marc Decreton

Department Technologie
CEN/SCK
Boeretang 200
B- 2400 Mol
BELGIUM

Richard S. Denning
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201

```
Vernon Denny
Science Applications Int, Corp.
5150 El Camino Real, Suite 3
Los Altos, CA 94303
J. Devooget
Faculte des Sciences Appliques
Universite Libre de Bruxelles
av, Franklin Roosevelt
B.1050 Bruxelles
BELGIUM
R. A. Diederich
Supervising Engineer
Envirommental Branch
Philadelphia Electric Co.
2301 Market St.
Philadelphia, PA }1910
Raymond DiSalvo
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201
Mary T. Drouin
Science Applications International
    Corporation
2109 Air Park Road S.E.
Albuquerque, NM }8710
Andrzej Drozd
Stone and Webster
    Engineering Corp.
243 Summer Street
Boston, MA 02107
N, W. Edwards
NUTECH
145 Martinville Lane
San Jose, CA 95119
Ward Edwards
Social Sciences Research Institute
University of Southern California
Los Angeles, CA 90089.1111
Joachim Ehrhardt
Kernforschungszentrum Kar1sruhe/INR
postfach 3640
F. }7500\mathrm{ Karlsruhe 1
FEDERAL REPUBLIC OF GERMANY
```

Aḋ31 A. El-Bassioni
USNRC-NRR/PRAB
MS: 10A-2
J. Mark Elliott

International Energy Associates, Ltd., Suite 600
600 New Hampshire Ave., NW
Washington, DC 20037
Farouk Eltawila
USNRC-RES/AEB
MS: NL/N-344
Mike Epstein
Fauske and Associates
P. O. Box 1625

16 W 070 West 83 rd Street
Burr Ridge, IL 60521
Malcolm L. Ernst
USNRC-RGN II
F. R. Farmer

The Long Wood, Lyons Lane
Appleton, Warrington
WA4 5ND
UNITED KINGDOM
P. Fehrenback

Atomic Energy of Canada, Ltd.
Chalk River Nuclear Laboratories
Chalk River Ontario, R0J1Po
CANADA
P. Ficara

ENEA Cre Casaccia
Department for Thermal Reactors
Via Anguillarese, 301
00100 ROMA
ITALY
A. Fiege

Kernforschungszentrum
Postfach 3640
D-7500 Kar1sruhe
FEDERAL REPUBLIC OF GERMANY
John Flack
USNRC-RES/SAIB
MS: NLS-324

```
George F. Flanagan
Oak Ridge National Laboratory
P.O, Box Y
Oak Ridge, TN 37831
Karl N, Fleming
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA }9266
Terry Foppe
Rocky Flats Plant
P. 0. Eox 464, Building T886A
Golden, CO 80402-0464
Joseph R. Fragola
Science Applications International
    Corporation
274 Madison Avenue
New York, NY }1001
Wiktor Frid
Swedish Nuclear Power Inspectorate
Division of Reactor Technology
P. O. Box }2710
S.102 52 Stockho1m
SWEDEN
James Fulford
NUS Corporation
910 Clopper Road
Gaithersburg, MD 20878
Urho Fulkkinen
Techtical Research Centre of
Finland
Electrical Engineering Laboratory
Otakaari 7 B
SF-02150 Espoo 15
FINLAND
J. B. Fussell
JBF Associates, Inc.
1 6 3 0 \text { Downtown West Boulevard}
Knoxville, TN }3791
John Garrick
Mickard, Lowe & Garrick, Inc,
2260 University Drive
Newport Beach, CA }9266
```

John Gaunt
British Embassy
3100 Massachusetts Avenue, NW
Washington, DC 20008

Jim Gieseke

Battelle Columbus Division
505 King Avenue
Columbus, OH 43201
Frank P. Gillespie
USNRC-NRR/PMAS
MS: 22G-18
Ted Ginsburg
Department of Nuclear Energy
Building 820
Brookhaven National Laboratory
Upton, NY 11973

James C. Glynn
USNRC-RES/PRAB
MS: NL/S-372
P. Govaerts

Departement de la Surete Nucleaire
Association Vincotte
avenue du Roi 157
B. 1060 Bruxelles

BELGIUM

George Greene
Building 820M
Brookhaven National Laboratory
Upton, NY 11973
Carrie Grimshaw
Brookhaven National Laboratory
Building 130
Upton, NY 11973
H. J. Van Grol

Energy Technology Division
Energieonderzoek Centrum Nederland
Westerduinweg 3
Postbus 1
NL- 1755 Petten 2G
NETHERLANDS

Sergio Guarro
Lawrence Livermore Laboratories
P. 0. Box 808 :...

Livermore, CA 94550

```
Sigfried Hagen
Kernforschungzentrum Karlsruhe
P. O. Box }364
D-7500 Karlsruhe 1
FEDERAL REPUBLIC OF GERMANY
L. Hammar
Statens Karnkraftinspektion
P.O. Box 27106
S.10252 Stockholm
SWEDEN
Stephen Hanauer
Technical Analysis Corp.
6 7 2 3 \text { Whittier Avenue}
Suite 202
McLean, VA 22101
Brad Hardin
USNRC-RES/TRAB
MS: NL/S-169
R. J. Hardwich, Jr.
Virginia Electric Power Co.
P.O. Box 26666
Richriond, Va }2326
Michael R, Haynes
UKAEA Harwell Laboratory
Oxfordshire
Didcot, Oxon., OX11 ORA
ENGLAND
Michael J. Hazzan
Stone & Webster
3 Executive Campus
Cherry Hill, NJ 08034
A. Hedgran
Royal Institute of Technology
Nuclear Safety Department
Bunellvagen }6
10044 Stockholm
SWEDEN
Sharif Heger
UNM Chemical and Nuclear
    Engineering Department
Farris Engineering
Room }20
Albuquerque, NM }8713
```

Jon C. Helton
Dept. of Mathematics
Arizona State University
Tempe, AZ 85287
Robert E. Henry
Fauske and Associates, Inc.
16W070 West 83rd Street
Burr Ridge, IL 60521
P. M. Herttrich

Federal Ministry for the Environment, Preservation of Nature and Reactor Safety
Husarenstrasse 30
Postfach 120629
D-5300 Bonn 1
FEDERAL REPUBLIC OF GERMANY
F. Heuser

Ciesellachaft Fur Reaktorsicherheit
Forschurgsgelande
D. 8046 Garching

FEDERAL REPUBLIC OF GURMANY
E. F. Hicken

Giesellschaft Fur Reaktorsicherheit
Forschungsge lande
D. 8046 Garching

FEDERAL REPUBLIC OF GERMANY
D. J. HLgson

Radiological Support Group
Nuclear Safety Bureau
Australian Nuclear Science and
Technology Organisation
P.O. Box 153

Rosebery, NSW 2018
AUSTRALIA
Daniel Hirsch
University of California
A. Stevenson Program on

Nuclear Policy
Santa Cruz, CA 95064
H. Hirschmann

Hauptabteilung Sicherheit und Umwelt
Swiss Federal Institute for Reactor Research (EIR)
CH- 5303 Wurenlingen
SWITZERLAND

```
Mike Hitchler
Westinghouse Electric Corp.
Savanna River Site
Aiken, SC 29808
Richard Hobbins
EG&G Idaho, Inc.
P. O. Box 1625
Idaho Falls, ID }8341
Steven Hodge
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN }3783
Lars Hoegberg
Office of Regulation and Research
Swedish Nuclear Power Inspectorate
P, O, Box 27106
S-102 52 Stockholm
SWEDEN
Lars Hoeghort
IAEA A-1400
Wagranerstraase 5
P.0. Box }10
Vienna, }2
AUSTRIA
Edward Hofer
Giesellschaft Fur Reaktorsicherheit
Forschurgsgelande
D-8046 Garching
FEDERAL REPUBLIC OF GERMANY
Peter Hoffmann
Kernforschingszentrum Karlsruhe
Institute for Material
    Und Festkorperforsching I
Postfach 3640
D.7500 Kar1sruhe 1
FEDERAL REPUBLIC OF GERMANY
N. I. Holloway
UKAEA Safety and Reliability
    Directorate
Wigshaw Lane, Culcheth
Warrington, Cheshire, WA34NE
UNITED KINGDOM
```

Stephen C, Hora
University of Hawaii at Hilo
Division of Business Administration and Economics
College of Arts and Sciences
Hilo, HI 96720-4091
J. Peter Hoseman

Swiss Federal Institute for Reactor Research
$\mathrm{CH}-5303$, Wureniingen
SWITZERLAND
Thomas C. Houghton KMC, Inc.
1747 Pennsylvania Avenue, NW
Washington, DC 20006
Dean Kouston
USNRC-ACRS
MS: P. 315
Der Yu Hsia
Taiwan Atomic Energy Council
67, Lane 144 , Keelung Rd.
Sec. 4
Taipei
TAIWAN
Alejandro Huerta-Bahena
National Commission on Nuclear Safety and Safeguards (CNSNS)
Insurgentes Sur N, 1776
Col. Florida
C. P. 04230 Mexico, D.F.

MEXICO
Kenneth Hughey [2]
SERI
5360 I- 55 North
Jackson, MS 39211
Wot-Guk Hwang
Kzunghee University
Yongiti-Kun
Kyung i - Do 170-23
KOREA

```
Michio Ichikawa
Japan Atomic Energy Research
    Institute
Dept. of Fuel Safety Research
Tokai-Mura, Naka-Cun
Ibaraki-Ken, 319-1
JAPAN
Sanford Israel
USNRC-AEOD/ROAB
MS: MNBB-9715
Krishna R. Iyengar
Louisiana Power and Light
200 A Huey P. Long Avenue
Gretna, LA }7005
Jerry E, Jackson
USNRC-RES
MS: NL/S-302
R. E. Jaquith
Combustion Engineering, Inc.
1000 Prospect H1ll Road
M/C 9490-2405
Windsor, CT }0609
S. E. Jensen
Exxon Nuclear Company
2101 Horn Rapids Road
Richland, WA 99352
KJell Johannson
Studsvik Energiteknik AB
s-611 82, Nykoping
SWEDEN
Richard John
SSM, Room }10
927 W. 35th Place
USC, University Park
Los Angeles, CA 90089.0021
D. H. Johnson
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA }9266
W. Reed Johnson
Department of Nuclear Engineering
University of Virgin:a
Reactor Facllity
Charlottesville, VA }2290
```

Jeffery Julius
NUS Corporation
1301 S. Central Ave, Suite 202
Kent, WA 98032
H. R. Jun

Korea Adv. Energy Research Inst.
P.O. Box 7, Daeduk Danju

Chungnam 300-31
KOREA
Peter Kafka
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. 8046 Garching

FEDERAL REPUBLIC OF GERMANY
Geoffrey D, Kaiser
Science Application Int. Corp.
1710 Goodrldge Drive
McLean, VA 22102
William Kastenberg
UCLA
Boelter Hall, Room 5532
Los Angeles, CA 90024
Walter Kato
Brookhaven National Laboratory
Associated Universities, Inc.
Upton, NY 11973
M. S. Kazimi

MIT, 24-219
Cambridge, MA 02139
Ralph L. Keeney
101 Lombard Street
Sulte 704W
San Francisco, CA 94111
Hanry Kendall
Executive Director
Union of Concerned Scientists
Cambridge, MA
Frank King
Ontario Hydro
700 University Avenue
B1dg. H11 G5
Toronto
CANADA M5G1X6

Oliver D. Kingsley, Jr
Tennessee Valley Authority
1101 Market Street
GN-38, Lookout Place
Chatt, nooga, TN 37402
Scephen R. Kinnersly Winfrith Atomic Energy

Establishment
Reactor Systems Analysis Division
Winfrith, Dorchester
Dorset DT2 8DH
ENGLAND
Ryohel Kiyose
University of Tokyo
Dept of Nuclear Engineering
7-3.1 Hongo Bunkyo
Tokyo 113
JAPAN
George Klopp
Commonwealth Edison Company
P.O. Box 767, Room 35W

Chicago, IL 60690
Klaus Koberlein
Geselischaft Fu: Reaktorsicherheit
Forschungsgelands
D. 8046 Garching,

FEDERAL REPUBLIC OF GERMANY
E. Kohn

Atomic Energy Canada Led.
Candu Operations
Mississauga
Ontario, L5K 1B2
CANADA
Alan M. Kolaczkowski
Science Applications International Corporation
2109 Air Park Road, S.E.
Albuquerque, NM 87106
S. Kondo

Department of Nuclear Engineering
Facility of Engineering
University of Tokyo
3-1, Hongo 7, Bunkyo-ku
Tokyo
JAPAN

Herbert J. C. Kouts
Brookhaven National Laboratory
Building 179 C
Upton, NY 11973
Thomas Kress
Oak Ridge National Laboratory
P.O. Box Y

Oak Ridge, TN 37831
W. Kroger

Institut fur Nukleare
Sicherheitsforschung
Kernforschungsanlage Julich GmbH
Postfach 1913
D- 5170 Julich 1
FEDERAL REPUBLIC OF GERMANY
Greg Krueger (3)
Philadelphia Electric Co.
2301 Market St.
Philadelphia, PA 19101
Bernhard Kuczera
Kernforschungzentrum Karlsruhe LWR Safety Project Group (PRS)
P. O. Box 3640

D-7亏OU Karlsruhe 1
FEDERAL REPUBLIC OF GERMANY
Jeffrey L, LaChance
Science Applications International Corporation
2109 Air Park Road S.E.
Albuquerque, $N M 87106$
H. Larsen

Riso National Laboratory
Postbox 49
DK-4000 Roskilde
DENMARK
Wang L. Lau
Tennessee Valley Authority
400 West Summit Hill Avenue
Knoxville, TN 37902
Timothy J, Leahy
EI Services
1851 South Central Place, Suite 201
Kent, WA 98031

John C, Lee

University of Michigan
North Campus
Dept, of Nuclear Engineering
Ann Arbor, MI 48109
Tim Lee
USNRC-RES/RPSB
MS: NL/N-353
Mark T. Leonard
Science Applications International Corporation
2109 Air Park Road, SE
Albuquerque, NM 87106
Leo LeSage
Director, Applied Physios Div.
Argonne National Laboratory
Building 208, 9700 South Cass Ave.
Argonne, IL 60439
Milton Levenson
Bechtel Western Power Company
50 Beale St
San Francisco, CA 94119
Librarian
NUMARC/USCEA
1776 I Street NW, Suite 400
Washington, DC 80006
Eng Lin
Taiwan Power Company
242, Roosevelt Rd., Sec. 3
Taipei
TAIWAN
N. J. Liparulo

Westinghouse Electric Corp
P. O. Box 355

Pittsburgh, PA 15230
Y. H. (Ben) Liu

Department of Mechanical Engineering
University of Minnesota
Minneapolis, MN 55455

Bo Liwnang
IAEA A-1400
Swedish Nuclear Power Inspectorate
P.O. Box 27106
S. 10252 Stockholm

SWEDEN
J. P. Longworth

Central Electric Generating Board Berkeley Cloucester
GL13 9PB
UNITED KINGDOM
Walter Lowenstein
Electric Power Research Institute 3412 Hillview Avenue
P. O. Box 10412

Palo Alto, CA 94303
William J, Luckas
Brookhaven National Laboratory
Building 130
Upton, NY 11973
Hans Ludewig
Brookhaven National Laboratory
Building 130
Upton, NY 11973
Robert J, Lutz, Jr.
Westinghouse Electric Corporation
Monroeville Energy Center
EC-E-371, P. O, Box 355
Pittsburgh, PA 15230-0355
Phillif E. MacDonald
EG\&G Idaho, Inc., Inc.
P. O. Box 1625

Idaho Falls, ID 83415
Jim Mackenzie
World Resources Institute
1735 New York Ave. NW
Washington, DC 20006
Richard D, Fowler
Idaho Nat. Engineering Laboratory P.O. Box 1625

Idaho Falls, ID 83415
A. P. Malinauskas

Oak Ridge National Laboratory
P.O. Box Y

Oak Ridge, TN 37831

```
Giuseppe Mancini
Commission European Comm
OEC-JRC Eraton
Ispra Varese
ITALY
Lasse Mattila
Technical Research Centre of
    `inland
Lonnrotinkatu 37, P. O. Box 169
SF-00181 Helsinki 18
FINLAND
koger J. Mattson
SCIENTECH Inc.
11821 Parklawn Dr.
Rockville, MD 2085?
Donald McPherson
USNRC-NRR/DONRR
MS: 12G-18
Jim Metcalf
Stone and Webster Engineering
    Corporation
245 Summer St.
Boston, MA 02107
Mary Meyer
A-1, MS F600
Los Alamos National Laboratory
Los Alamos, NM }8754
Ralph Meyer
USNRC-RES/AEB
MS: NL/N-344
Charles Miller
8 Hastings Rd.
Momsey, NY }1095
Joseph Miller
Gulf States Utilities
P. O. Box 220
St. Francisville, LA }7077
William Mims
Tennessee Valley Authority
400 West Summit Hill Drive
W10D199C-K
Knoxville, TN 37902
```

```
David Okrent
UCLA
Boelter Hall, Room }553
Los Angeles, CA 90024
Robert L. Olson
Tennessee Valley Authority
400 West Summit Hill Rd.
Knoxville, TN }3790
Simon Ostrach
Case Western Reserve University
418 Glenman Bldg.
Cleveland, OH }4410
D. Paddleford
Westinghouse Electric Corporation
Savanna River Site
Aiken, SC 29808
Robert L. Palla, Jr.
USNRC-NRR/PRAB
MS: 10A-2
Chang K, Park
Brookhaven National Laboratory
Building }13
Upton, NY 11973
Michael C. Parker
Illinols Department of Nuclear
    Safety
1035 Outer Park Dr.
Springfield, IL 62704
Gareth Parry
NUS Corporation
910 Clopper Road
Gaithersburg, MD 20878
J. Pelce
Departement de Surete Nucleaire
IPSN
Centre d'Estudes Nucleaires du CEA
B.P. no. 6, Cedex
F-92260 Fontenay -aux-Roses
FRANCE
G. Petrangeli
ENEA Nuclear Energy ALT Disp
Via V. Brancati, 48
00144 Rome
ITALY
```

Marty Plys
Fauske and Associates
16 W 070 West 83 rd St .
Burr Ridge, IL 60521

Mike Podowski
Department of Nuclear Engineering and Engineering Physios
RPI
Troy, NY 12180-3590
Robert D, Pollard
Union of Concerned Scientists
1616 P Street, NW, Suite 310
Washington, DC 20036
R. Potter

UK Atomic Energy Authority
Winfrith, Dorchester
Dorset, DT2 8DH
UNITED KINGDOM
William T. Pratt
Brookhaven Natioral Laboratory
Building 130
Upton, NY 11973
M. Preat

Chef du Service Surete Nucleaire et
Assurance Qualite
TRACTEBEL
Bd. du Regent 8
B-100 Bruxells
BELGIUM
David Pyatt
USDOE
MS: EH-332
Washington, DC 20545
William Raisin
NUMAEC
1726 M St. NW
Suite 904
Washington, DC 20036
Joe Rashid
ANATECH Research Corp.
3344 N. Torrey Pines Ct.
Suite 1320
La Jolla, CA 90237

```
Dale M. Rasmuson
USNRC-RES/PRAB
MS: NL/S -372
Ingvard Rasmussen
Riso National Laboratory
Postbox 49
DK-4000, Roskilde
DENMARK
Norman C. Rasmussen
Massachusetts Institute of
    Technology
7 7 \text { Massachusetts Avenue}
Cambridge, MA 02139
John W. Reed
Tack R. Benjamin & Associates, Inc.
444 Castro St., Suite 501
Mountain View, CA }9404
David B, Rhodes
Atomic Energy of Canada, Ltd.
Chalk River Nuclear Laboratories
Chalk River, Ontario K0J1PO
CANADA
Dennis Richardon
Westinghouse Electric Corporation
P.0. Box 355
Pittsburgh, PA }1523
Doug Richeard
Virginia Electric Power Co,
P.O.Box 26666
Richmond, VA 23261
Robert Ritzman
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94304
Rivhard Robinson
USNRC-RES/PRAB
MS: NL/S-372
Jack E, Rosenthal
USNRC-AEOD/ROAB
MS: MNBB-9715
Denwood F. Ross
USNRC-RES
MS: NL/S-007
```

Frank Rowsome
9532 Fern Hollow Way
Gaithersburg, MD 20879

Wayne Russell

SERI
5360 I- 55 North
Jackson, MS 3 . 211
Jorma V, Sandberg
Finnish Ctr, Rad, Nucl, and Safety
Department of Nuclear Safety
P.O. Box 268

SF-00101 Helsinki
FINLAND
G. Saponaro

ENEA Nuclear Engineering Alt.
Zia V Brancati 4 B
00144 ROME.
ITAIY
M. Sarran

United Engineers
P. O. Box 8223

30 S 17 th Street
Philadelphia, PA 19101
J. Schroeder

EG\&G Idaho, Inc.
P. O. Box 1625

Idaho Falls, ID 83415
Marty Sattison
EG\&G Idaho, Inc.
P. O. Box 1625

Idaho Falls, ID 83415
George D. Sauter
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303
Jorge Schulz
Bechtel Western Power Corporation 50 Beale Street
San Francisco, CA 94119
B. R. Sehgal

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303

```
Subir Sen
Bechtel Power Corp.
15740 Shady Grove Road
Location 1A-7
Gaithersburg, MD 20877
S. Serra
Ente Nazionale per l'Energia
    Electtrica (ENEL)
via G, B. Martini }
Rome
ITALY
Bonnie J, Shapiro
Science Applications International
    Corporation
360 Bay Street
Suite 200
Augusta, GA 30901
H. Shapiro
Licensing and Risk Branch
Atomic Energy of Canada Ltd.
Sheridan Park Research Community
Mississauga, Ontario L5K 1B2
CANADA
Dave Sharp
Westinghouse Savannah River Co.
Bullding 773-41A, P, O, Box }61
Aiken, SC 29802
John Sherman
Tennessee Environmental Council
1719 West End Avenue, Suite 227
Nashville, TN }3720
Brian Sheron
USNRC-RES/DSR
MS: NL/N-007
Rick Sherry
JAYCOR
P. O. BoX 85154
San Diego, CA }9213
Steven C, Sholly
MHB Technical Associates
1723 Hainilton Avenue, Suite K
San Jose, CA }9512
Louis M. Shotkin
USNRC-RES/RPSB
MS: NL./N-353
```

M. Siebertz

Chef de 1a Section Surete' des
Reacteurs
CEN/SCK
Boeretang, 200
B. 2400 Mol

BELGIUM

Melvin Silberberg
USNRC-RES/DE/WNB
MS: NL/S-260

Gary Smith
SERI
5360 I- 55 North
Jackson, MS 39211
Gary L. Smith
Westinghouse Electric Corporation
Hanford Site
Box 1970
Richland, WA 99352

Lanny N, Smith
Science Applications International
Corporation
2109 Air Park Road SE
Albuquerque, NM 87106
K. Soda

Japan Atomic Energy Res. Inst.
Tokai-Mura Naka-Gun
Ibaraki-Ken 319-1.1
JAPAN

David Sommers
Virginie Electric Power Company
P. O. Box 26666

Richmond, VA 23261
Herschel Spector
New York Power Authority
123 Main Street
White Plains, NY 10601
Themis P, Speis
USNRC-RES
MS: NL/S.007
Klaus B. Stadie
OECD-NEA, 38 B1d. Suchet
75016 i'aris
FRANCE

John Stetkar
Pickard, Lowe \& Carrick, Inc 2216 University Drive
Newport Beach, CA 92660
Wayne L. Stiede
Commonwealth Edison Company
P.O. Box 767

Chicago, IL 60690
William Stratton
Stratton \& Associates
2 Acoma Lane
Los Alamos, NM 87544
Soo- Yong Suk
Korea Advanced Energy Research Institute
P. 0. Box 7

Daeduk Danji, Chungnam 300-31 KOREA.

W, P, Sullivan
GE Nuclear Energy
175 Curtner Ave., M/C 789
San Jose, CA 95125
Tony Taig
U.K. Atomic Energy Authority Wigshaw Lane, Culcheth Warrington, Cheshire, WA3 4 NE UNITED KINGDOM

John Taylor
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303
Harry Teague
U.K. Atomic Energy Authority

Wigshaw Lane, Culcheth
Warrington, Cheshire, WA3 4NE
UNITED KINGDOM
Technical Library
Electric Power Research Institute
P.O. Box 10412

Palo Alto, CA 94304
Mark I. Temme
General Electric, Inc
P. O. Box 3508

Sunnyvale, CA 94088
T. G. Theofanous

University of California, S.B.
Department of Chemical and Nuclear
Engineering
Santa Barbara, CA 93106
David Teolis
Westinghouse-Bettis Atomic Power
Laboratory
P. O. Box 79, ZAP 34 N

West Mifflin, PA 15122.0079
Ashok C. Thadani
USNRC-NRR/SAD
MS: 7 E .4
Garry Thomas
L-499 (B1dg. 490)
Lawrence Livermore National
Laboratory
7000 East Ave.
P.0. Box 808

Livermore, CA 94550
Gordon Thompson
Institute for Research and
Security Studies
27 Ellworth Avenue
Cambridge, MA 02139
Grant Thompson
League of Women Voters
1730 M. Street, NW
Washington, DC 20036
Arthur Tingle
Brookhaven National Laboratory
Building 130
Upton, NY 11973
Rich Toland
United Engineers and Construction
$30 \mathrm{~S} .17 \mathrm{th} \mathrm{St}$. . MS 4V7
Philadelphia, PA 19101
Brian J. R. Tolley
DG/XII/D/1
Commission of the European Communities
Rue de la Loi, 200
B-1049 Brussels
BELGIUM

David R. Torgerson
Atomic Energy of Canada Led.
Whiteshell Nuclear
Research Establishment
Pinawa, Manitobe, ROE 110 CANADA

Alfred F . Torri
Pickard, Lowe \& Garrick, Inc.
191 Calle Magdalena, Suite 290
Encinitas, CA 92024
K1au Trambauer
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. 8046 Garching

FERERAL REPUBLIC OF GERMANY
Nicholas Tsoulfanidis
Nuclear Engineering Dept.
University of Missouri-Rolla
Rolla, MO 65401.0249
Chao-Chin Tung
c/o H.B. Bengelsdori
ERC Environmental Services Co.
P. O. Box 10130

Fairfax, VA 22030
Brian D. Turland
UKAEA Culham Laboratory
Abingdon, Oxon 0X14 3DB
ENGLAND
Takeo Uga
Japan Institute of Nuclear Safety Nuclear Power Engineering Test Center
3-6-2, Toranomon
Minato-ku, Tokyo 108
JAPAN
Stephen D. Unwin
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201
A. Valeri

DISP
ENEA
Via Vitaliano Brancati, 48
I. 00144 . Rome

ITALY

Harold VanderMolen
USNRC-RES/PRAB
MS: NL/S-372
G. Bruce Varnado

ERC International
1717 Louisiana Blvd, NF, Suite 202
Albuquerque, NM 87110
Jussi K, Vaurio
Imatran Voima Oy
Loviisa NPS
SF-07900 Loviisa
FINLAND
William E. Vesely
Science Applinations International Corporation
2929 Kenny Road, Suite 245
Columbus, OH 43221
J. I. Villadoniga Tallon

Div, of Analysis and Assessment
Consefo de Seguridad Nuclear
c/ Sor Angela de la Cruz, 3
28020 Madrid
SPAIN
Willem F. Vinck
Kapellestract 25
1980
Tervuren
BELGIUM
R. Vizolainen

Office of Systems Integration
Finnish Centre for Radiation and Nuclear Safety
Department of Nuclear Safety
P.O. Box 268

Kumpulantie 7
SF-00520 Helsinki
FINTAND
Raymond Viskanta
School of Mechanical Engineering
Purdue University
West Lafayette, IN 47907
S. Visweswaran

General Electric Company
175 Curtner Avenue
San Jose, CA 95125

```
Truong Vo
Pacific Northwest Laboratory
Battelle Blvd.
Richland, WA 99352
Richard Vogel
Electric Power Research Institute
P. O, Box }1041
Palo Alto, CA 94303
G. Volta
Engineering Division
CEC Joint Research Centre
CP No, 1
I.21020 Ispra (Varese)
ITALY
Ian B. Wall
Electric Power Research Instltute
3412 Hillview Avenue
Palo Alto, CA 94303
Adolf Walser
Sargent and Lundy Engineers
55 E. Monroe Street.
Chicago, IL 60603
Edward Warinan
Stone & Webster Engineering Corp.
P.O. Box 2325
Boston, MA 02107
Normen Weber
Sargent & Lundy Co.
55 E. Monroe Street
Chicago, IL 60603
Lois Webster
American Nuclear Society
555 N. Kensington Avenue
La Grange Park, IL 60525
Wolfgang Werner
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D-8046 Garching
FEDERAL REPUBLIC OF GERMANY
Don Wesley
IMPELL
1651 East 4th Street
Suite 210
Santa Ana, CA }9270
```

Detlof von Winterfeldt
Institute of Safety and systems
Management
University of Southern California
Los Angeles, CA 90089-0021
Pat Worthington
USNRC-RES/AEB
MS: NL/N-344
John Wreathall
Science Applications International
Corporation
2929 Kenny Road, Suite 245
Columbus, OH 43221
D. J. Wren

Atomic Energy of Canada Ltd.
Whiteshell Nuclear Research
Establishment
Pinawa, Manitoba, ROE 1 lo
CANADA

Roger Wyrick
Inst. for Nuclear Power Operations 1100 Circle 75 Parkway, Suite 1500
Atlanta, GA 30339
Kun-Joong Yoo
Korea Advanced Energy Research Institute
P. O. Box 7

Daeduk Danji, Chungnam 300-31
KOREA
Faith Young
Energy People, Inc.
Dixou Springs, TN 37057
Jonathan Young
R. Lynecte and Associates

15042 Northeast 40 th St.
Suite 206
Redmond, WA 98052
C. Zaffiro

Division of Safecy Studies
Direotorate for Nuclear Safety and Health Protection
Ente Nazionale Energie Alternative
Via Vitaliano Brancati, 48
I-00144 Rome
ITALY

```
Mike Zentner
Westinghouse Hanford Co.
P. O. Box 1970
Richland, WA 99352
X. Zikidis
Greek Atomic Energy Commission
Agis Paraskevi, Attiki
Achens
GREECE
Bernhard Zuczera
Kerntorschungszentrum
fostfach 3640
D-7500 Karlsruhe
FEDERAL REPUBLIC OF GERMANY
1521 J, R.Weatherby
3141 S. A. Landenberger (5)
3151 G. L.. Esch
5214 D. B. Clauss
6344 E. D. Gorham
6 4 1 1 ~ D , ~ D , ~ C a r l s o n ~
6411 R. J, Breeding
6 4 1 1 ~ D . ~ M . ~ K u n s m a n ~
6 4 0 0 ~ D . ~ J . ~ M c C l u s k e y ~
6 4 1 0 ~ D . ~ A . ~ D a h l g r e n ~
6 4 1 2 ~ A . ~ L . ~ C a m p ~
6 4 1 2 ~ S . ~ L . ~ D a n i e l ~
6412 T. M. Hake
6412 L. A. Miller
64.12 D. B. Mitchel1
6 4 1 2 ~ A . ~ C . ~ P a y n e , ~ J r . ~
6412 T, T, Sype
6 4 1 2 ~ T . ~ A . ~ W h e e l e r ~
6 4 1 2 ~ D , ~ W . ~ W h i t e h e a d ~
6 4 1 3 ~ T . ~ D , ~ B r o w n ~
6 4 1 3 ~ F . ~ T . ~ H a r p e r ~ [ 2 ] ~
6 4 1 5 ~ R . ~ M . ~ C r a n w e l 1 ~
6415 W. R. Cramond [3]
6415 R. L. Iman
6418 S. L. Thompson
6 4 1 8 ~ K . ~ J . ~ M a l o n e y ~
6419 M. P. Bohn
6 4 1 9 ~ J . ~ A . ~ L a m b r i g h t ~
6 4 2 2 ~ D . ~ A . ~ P o w e r s ~
6424 K. D. Bergeron
6 4 2 4 ~ J . ~ J . ~ G r e g o r y ~
6 4 2 4 ~ D . ~ C . ~ W i l l i a m s
6 4 5 3 ~ 3 . ~ S . ~ P h i l b i n ~
```

```NRC , ORN 335 *289 NECM 1108 2201.3202 BIBLIOGRAPHIC DATA SHEET \\ isee insinuctions on the ceverse)```	REFORI NUMEL: ALatignes br HRC had Vol Sute Aev and Aosendoum Numbers. if an   NUREG/CR-4551
27 TITE AND SUET17tE	Vo1.5,Rev. 1, Part. 2
Evaluation of severe Accident Risks: Sequoyah, Unit 1	DATE REPORT PUBLIS-20
Appendices	December 1990
	4. FIN OR GRANT INJMBER A1332
SAUTHORIS   3.3. Gregory, W.B. Murfin,* S.J. Higgins,   R.J. Breeding, J.C. Helton,** A.W. Shiver   * Technadyne, Albuquerque, NM   ** Arizona State University, Tempe, AZ	6. TYPE OF REPORT
	Technical
	2.PERIOD COVERED Inciuvire Denter
asme and mailing addresk	
Sandia National Laboratories Albuquerque, NM 87185	
and maving sadres	
Division of Systems Research Office of Nuclear Regulatory Research	
U.S. Nuclear Regulatory Commission Wasnington, DC 20555	$\cdots$
PLEMENTARYNOTES	
11. A8STRACT 1200 werde or hem	
In support of the U.S. Nuclear Regulatory Commission's assessment of the risk from severe accidents at commercial nuclear power plants in the U.S. reported in NUREG-1150, the Severe Accident Risk Reduction Program has completed a revised caloulation of the risk to the general public from severe accidents at the Sequoyah Power Station, Unit 1. This power plant, located in southeastern Tennessee, is operated by the Tennessee Valley Authority.   The emphasis in this risk was not on determining a "so-called" point estimate of risk. Rather it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risks from initiating events internal to the power station were assessed.	
12. KEY WORDS/DESCR PTORS /6"4 mords or Dhraves that will assist rewerchert in tocsting tor ceporn.   Probabilistic Risk Assessment, Reactor Safety, Severe Accidents, Sequoyah, Containment Analysis, lce Condenser Containment, Accident Progression Analysis, Source Term Analysis, Consequence Analysis, Uncertainty Analysis	13 aval.asthrystatmen Unlimited
	15. NUMEER Of FAOES
	16.8 PRICE


[^0]:    'Technadyne, Albuquerque, NM
    ${ }^{2}$ Arizona State University, Tempe, AZ.

[^1]:    Question 4. Status of ECCS?
    4 Branches, Type 2,4 Cases

[^2]:    Parameter 5: IC.Stm
    25.0

[^3]:    Case 17：昆险 at intertnediate pressure， high cors fraction，small hole in vessel，and dry cavity，Loads Issue 48 ， Case 3a，3b

[^4]:    Cose 2: No prompt CCI and elther late sprays, or lete heat removal from the debris.

