Evaluation of Severe Accident Risks: Sequoyah, Unit 1

Main Report

Prepared by
J. J. Gregory, W. B. Murfin, S. J. Higgins,
R. J. Breeding, J. C. Helton, A. W. Shiver

Sandia National Laboratories
Operated by
Sandia Corporation

Prepared for
U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE
 Availability of fieference Materials Cited in NRC Publications

Most documents cited in NRC publications will be avallable from one of the following sources:

1. The NHC Publle Document Room, 21:0 L Street, NW, Lower Level, Washington, OC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
3. The National Technical Information Service, Springfieid, VA 22161

Although the listing that follor's represents the majority of documents clted in NRC publications, it is not intended to be exhauslive.

Referenced docurnents avallable for inspection and copying for a fee from the NRC Public Document Room include NAC correspondence and internal NRC memoranda; NAC Office of inspection and Enforcement bulletins, circulars, information notices, Inspeotion and investigation notices; Licensee Event Fieports; venoor reports and correspondence: Commisslon papers; and applicant and licensee cocuments and correspondence.

The following documents in the NUREG series are avallable for purchase from the GPO Sales Program: formal NAC staff and contractor reports, NRC-sponsored conference proceedingr, and NAC booklets and brochures. Also avallable are Regulatory Guides. NRE regulations in the Code of Federal Ragulations, and Nuclear Regulatory Commission Issuances.

Documerts avallable from the Nationel Tecnnical Information Service bolude NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commisston, forerunner agenc" to the Nuclear Fiegulator, Commission.

Documents avallable from public and special technical libraries include all open Witerature items, such as books, journal and periodical articies, and transactions. Federal Reglster notices, federal and state legisiaLion, and congressional reports can usually be obtained from these llbraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are avallable for purchase from the organlzation sponsoring the oublication clted.

Single coples of NRC dratt reports are ayallable free, to the extant of supply, upon writen request to the Office of information Resources Management, Distribution Section. U.S. Nuclear Regulatory Commission. Washington. DC 20555

Coples of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Eethesda, Maryland, and are avallable there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, If they are American National Standards, from the American National Standards Insitute, 1430 Broadway. New York, NY 10018.

DISCLAIMER NOTICE

This repor was prepared as an account of work sponsored by an agency of the United States Govemment. Neither the United States Govemment nor any ayency thereot, or any of their employees, makes any warranty, expresed or implied, or assumes any legal liability of responsibility for any third party's ise, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not intringe privately owned rights

Evaluation of Severe Accident Risks: Sequoyah, Unit 1

Main Report

Manuscript Completed: December 1990
Date Published: December 1990

Prepared by
J. J. Gregory, W. B. Murfin', S. J. Higgins,
R. J. Breeding, J, C. Helton², A. W. Shiver

Sandia National Laboratories
Albuquerque, NM 87185

Prepared for
Division of Systems Research
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555
NRC FIN A1228

[^0]In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at comercial nuclear power plants in the U.S. reported in NUREG-1150, the Severe Accident Risk Reduction Frogram (SARRP) has completed a revised calculation of the risk to the general public from the operation of the Sequoyah Power Station, Unit 1. This power plant, located in southeastern Tennessee, is operated by the Tennessee Valley Authority (TVA).

The emphasis in this risk analysis was not on determining a "so-called" point estimate of risk. Rather, it was to detemine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution.

The offsitf risk from internal initiating events was found to be quite low with respect to the safety goals. The containment appears quite likely to successfully withstand the loads that might be placed upon it if the core melts and the reactor vessel fails. A good portion of the risk, in this analysis, comes from initiating events which bypass the containment, such as interfacing system pipe breaks and steam generator tube ruptures. These events are estimated to have a relatively low frequency of occurrence, but their consequences are relatively large. Other events that contribute to offsite risk involve early containment failures, that is, failures that occur during degradation of the core or failures that occur near the time of vessel breach. Early containment failures are largely attributable to station blackout accidents. Considerable uncertainty is associated with the risk estimates produced in this analysis. The offsite risk from external initiating events was not included in the scope of this analysis.
SUMMAKY S. 1

1. INTRODUCTION 1.1
1.1 Background and Objectives of NUREG-1150 1.1
1.2 Overview of Sequoyah Power Station, Unit 1 1.3
1.3 Changes Since the Draft Report 1.5
1.4 Structure of the Analysis 1.8
1.5 Organization of This Report 1.17
1.6 References 1.18
2. ANALYSIS OF THE ACCIDENT PROGRESSION 2.1
2.1 Sequoyah Features Important to the Accident Progression 2.1
2.1.1 The Sequoyah Containment Structure 2.2
2.1.2 The Ice Condenser 2.2
2.1.3 The Containment Spray System 2.2
2.1.4 The ARFS 2.3
2.1.5 The Hydrogen Ignition System 2.3
2.1.6 The Compartmental Structure of the Containment 2.3
2.1.7 Sump and Cavity Arrangement 2.3
2.2 Interface with the Core-Damage Frequency Analysis 2.4
2.2.1 Definition of Plant Damage States
2.4
2.4
2.2.2 PDS Frequencies 2.6
2.2.3 High-Level Grouping of PDSs 2.12
2.2.4 Variables Sampled in the Accident Frequency Analysis 2.12
2.3 Description of the APET 2.21
2.3.1 Overview of the APET 2.21
2.3.2 Overview of the APET Quantification 2.23
2.3.3 Variables Sampled for the Accident Progression Analysis 2.31
2.4 Description of the Accident Progression Bins 2.53
2.4.1 Description of the Bin Characteristics 2.53
2.4.2 Rebinning 2. 61
2.4.3 Summary Bins for Presentation 2.66
2.5 Results of the Accident Progression Analysis 2.64
2.5.1 Results for Internal Initiators 2.70
2.5.1.1 Results for PDS Group 1 . Slow SBO 2.70
2.5.1.2 Results for PDS Group 2 . Fast SBO 2.72
2.5.1.3 Results for PDS Group 3 - LOCAs 2.75
2.5.1.4 Results for PDS Group 4 . Event V. 2.77
2.5.1.5 Results for PDS Group 5. Transients 2.77
2.5.1.6 Results for PDS Group 6 . ATWS 2.80
2.5.1.7 Results for PDS Group 7 . SGTP.s 2.83
2.5.1.8 Core Damage Arrest and Avoidance of VB 2.85
2.5.1.9 Early Containment Failure 2.86
2.5.1.10 Summary 2. 88
2.5.2 Sensitivity Analysis for Internal Initiators 2.92
2.6 Insights from the Accident Progression Analysis 2.103
2.7 References 2.106
3. RADIOLOGICAI. SOURCE TERM ANALYSIS 3.1
3.1 Sequoyah Features Important to the Source Term Analysis 3.1
3.2 Description of the SEQSOR Code 3.3
3.2.1 Overview of the Parametric Model 3.3
3.2.2 Description of SEQSOR. 3.4
3.2.3 Variables Sampled in the Source Term Analysis. 3.12
3.3 Results of the Source Term Analysis 3.16
3.3.1 Results for Internal Initiators 3.16
3.3.1.1 Results for PDS Group 1: Slow SBO 3.16
3.3.1.2 Results for PDS Group 2: Fast SBO 3.21
3.3.1.3 Results for PDS Group 3: LOCAs 3. 2.4
3.3.1.4 Results for PDS Group 4: Event V 3.27
3.3.1.5 Results for PDS Group 5: Transients 3.30
3,3,1,6 Results for PDS Group 6: ATWS 3.33
3.3.1.7 Results for PDS Group 7: SGTRs 3.36
3.3.1.8 Results for Generalized Accident Progression Bins 3.39
3.3.1.9 Summary 3.40
3.4 Partitioning of the Source Terms for the Consequence Analysis 3.52
3.4.1 Results for Internal Initiators 3.52
3.5 Insights from the Source Term Analysis 3.64
3.6 References 3.65
4. CONSEQUENCE ANALYSIS 4.1
4.1 Description of the Consequence Analysis 4.1
4.2 MACCS Input for Sequoyah 4.2
4.3 Results of the MACCS Consequence Calculations 4. 5
4.3.1 Results for Internal Initiators. 4.5
4.4 References 4.4
5 RISK RESULTS FOR SEQUOYAY 5.1
5.1 Results for Intesnal 'nitiators 5.1
5.1.1 Risk Results 5.1
5.1.2 Centributors to :1sk 5.10
5.1.3 Contributors to Un Verra^{r+1} inty 5.18
5.2 References 5.2
5. INSIGHTS AND CONCLUSIONS 6.1
FIGURES
Back-End Documentation for NUREG-1150 xi11
S. 1 Overview of integreted Plant Analysis in NUREG-1150 S. 5
S. 2 Mean Probability of APBs for the Summary PDSS S. 9
S. 3 Probability of Core Damage firest. S. 10
S. 4 Probability of Early Conteinuent Failure S. 10
S. 5 Exceedance Frequencies for Release Fractions \$. 16
S. 6 Consequences Conditional on Source Terms
S. 19
S. 19
S. 7 Exceedance Frequencies for Risk
S. 21
S. 21
S. 8 Distributions of Annual Risk
S. 26
S. 26
S. 9 Fractional PDS Contributions to Annual Risk
S. 26
S. 26
S. 10 Fractional APB Contributions to Annual Risk S. 27
1.1 Section of the Sequoyoh Containment 1.4
1.2 Overview of Integrated Plant Analysis in NUREG-1150 1.9
1-3 Example Risk CCDF 1.15
X. $2-1$ Probability of Core Damage Arrest 2.87
2.5-2 Probability of Early Containment: Failure 2.89
2.5.3 Mean Probability of Sumnary $A P B$ for Summary PDSs 90
2.5-4 Core Damage Frequency Distributions fra the PDS Groups 2.91
2.5 - Distribution of Frequencies for Summary APBs 2.93
3.2.1 Blood Flow Diagram for SEQSOR 3.7
3.3-1 Exceedance Frequencies for Release ixactions for Sequoyah Internal Initiato:s (PDS Group Slow SBO) 3.19
3.3.2 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (PDS Group 2: Fast SBO) 3,23
3.3-3 Exceedence Frequencies for Release Fractions for Sequoyah Internal Initiators (PDS Group 3 Loss -of-Coolant Aocidents 3.26
3.3.4 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (PDS Group 4: Event V) 329
3.3-5 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (PDS Group 5: Transients) 3.32
3.3-6 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (PDS Group 6: ATWS) 3.35
3.3.7 Exceedance Frequencies for Release Fractions 'or Sequoyah Internal Initiators (PDS Group 7: SGTRs) 3.38
3.3-8 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (CF During CD) 3.4]
3.3.9 Exceedance Frequenctes for Release Fractions for Sequoyah Internal Initiators (Alpha Mode) 3.42
3.3.10 Exceedance Frequencies for Release Fractions for Sequoyah Internel Initiators (CF at VB with the RCS at High Pressure) 3.43
3.3-11 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (CF at VB with tia RCS at Low Pressure) 3.44
3.3-12 Exceedance Frequencles for Release Fractions for Sequoyah Internal Initiators (Late CF) 3.45
3.3-13 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (Event V, Dry) 3.46
3.3-14 Exceedance Frequencies fo: Release Fractions for Sequoyah Internal Initiators (Event V, Wet) 3.47
3.3-15 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators, "(") SGTRs (Secondary SRVs Reclosing) 3.48
3.3-16 Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators, "H" SGTRs (Secondary SRVs Stuck Open) 3.49
3.3-17 Exceedance Frequencies for Release Fractions for Sequoyah Inte*nal Initiacors (All Internal Initiators) 3.50
3.4-1 Distribution of Nonzero Early and Chronic Health Effect Weights for Internal Initiators 3.54
4.3.1 Consequences Conditional on Source Terms 4.8
5.1-1 Exceedance Frequencies for Risk (Sequoyah, All Internal Initiators) 5.2
5.1.2 Distributions of Annual Risk (Sequoyah, All Internal Initiators) 5.7
5.1.3 Fractional PDS Contributioss to Annual Risk, Sequoyah (Internal Initiators) 5.13
5.1-4 Fractional APB Contributions to Annual Risk, Sequoyah (Internal Indtiators) 5.15
TABLES
6. NUREG-1150 Analysis Documentetion $x 1 v$
S. 1 Design Features Relevant to Severe Accicents S. 3
S. 2 Sequoyah Core Damage Frequencies
S. 7
S. 7
S. 3 Two Methods of Culculating Contributions to Mean Risk S. 25
2.2.1 PWR Plant Damage State Characteristics 2.17
2.2-2 Plant Damage States for Sequoyah 2.18
2.2.3 PDS Frequencies Comparison, Sequoyah 2.10
2.2-4 Relationship Between PDS Groups and Sumnary Groups 2. 13
2.2-5 Variables Sampled in the Accident Frequency Analysis for Internal Initiators 2.15
2.3-1 Questions in the Sequoyah APET 2.25
2.3.2 Variables Sampled in the Accident Progression Analysis for Internal Initiators 2.33
2.5.1 Results of Accicient Progression Analysis for Sequoyah Internal Initiators Group 1: Slow SBO 2.71
2.5-2 Results of Accident Progression Analysis for Sequoyah Internal Initiators Group 2: Fast \$BO 2.74
2.5.3 Results of Accident Progression
Analysis foi "equoyah Internal Initiators Group 3: LOCAs 2.76
2.5.4 Results of Accident Progression
Analysis for Sequoyah Internal Initiators Group 4: Event V 2.78
2.5-5 Results of Accident Progression Analysis for Sequoyah Internal Initiators Group 5: Transients 2.79
2.5.6 Results of Accident Progression
Analysis for Sequoyah Internal Initiators Group 6: ATWS 2.82
2.5-7 Results of Accident Progression Analysis for Sequoyah Internal Initiators Group 7: SOTRs 2.84
2.5.8 Comparison of APET Results With and Without T-1 Hot Leg Breaks and SGTRs PDS Group 1: S1ow SBO 2.99
2.5.9 Comparison of APET Results With and Without T- T Hot Leg Breaks and SGTRs PDS Group 2: Fast SBO 2.99
2.5-10 Comparison of APET Results With and Without T-I Hot Leg Breaks and SGTRs PDS Group 5: Transients 2.101
2.5-11 Comparison of APET Results With and Without T.I Hot Leg Breaks and SGTRs PDS Group 6: ATWS 2.102
3.2.1 Isotopes in Each Radionuclide Release Class 3.3
3.2-2 Variables Sampled in the Source Term Analysis 3.13
3.3-1 Mean Source Terms for Sequoyah Internal Initiators (PDS Group 1: Slow SBO) 3. 20
3.3-2 Mean Sourc Terms for Sequoyah Internal Initiators (PDS Group 2: Fast SBO) 3.22
3.3.3 Mean Source Terms for Sequoyah Internal Initiators (PDS Group 3: Loss-of-Coolant Accidents) 3.25
3.3.4 Mean Source Terms for Sequoyah Internal Initiators (PDS Group 4: Event V) 3.28
3.3.5 Mean Source Terms for Sequoyah Internal Initiators (PDS Group 5: Transients) 3.31
3.3.6 Mean Source Terms for Sequoyah Internal Initiators (PDS Group 6: Anticipated Transient Without Scram) 3.34
3.3.7 Mean Source Terms for Sequoyah Internal Initiators (PDS Group 7: SGriRs) 3.37
3.4-1 Summary of Early and Chronic Health Effect Weights for Internal Initiators 3.54
3.4-2 Distribution of Source Terms with Nonzero Early Fatality and Chronic Fatality Weights for Internal Initiators 3.57
3.4.3 Distrihution of Source Terms with Zero Early Fatality Weight and Nonzero Chronic Fatality Weights for Internal Initiators 3.59
3.4.4 Mean Source Terms Resulting from Partitioning for Internal Initiators . Sequoyah 3. 60
4.1-1 Definition of Consequence Analysis Results 4.3
4.2-1 Site Specific Input Data for Sequoyah MACCS Calculations 4.4
4.2-2 Shielding Factors for Sequoyah MACCS Calculations 4. 4
4.3-1 Mean Consequence Results for Internal Initiators (Population Doses in Sv). 4.6
5.1-1 Distributions for Annual Risk at Sequoyah Due to Internal Initiators 5.9
5.1-2 Fractional PDS Contributions to Annual Risk at Sequoyah Due to Internal Initiators 5.12
5.1.3 Fractional APB Contributions (8) to Annual Risk at Sequoyah Due to Internal Initiators 5.14
5.1-4 Summary of Reg ession Analysee for Annual Risk at Sequoyah for Internal Initiators 5.21
5.1.5 Sumary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 1: Slow SBO 5.22
5.1.6 Sumary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 2: Fast SBO 5.23
5.1-7 Summary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 3: LOCAs 5.24
5.1.8 Summary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 4: Event V 5,25
5.1.9 Sumary of Regression Analyses for Annual Risk at Sequayah for PDS Group 5: Transients 5.26
5,1-10 Sumary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 6: ATWS 5.27
5.1.11 Summary of Regression Analyses for Anuual Risk at Sequoyah for PDS Group 7: SGTRs 5.28

FOREWORD

This is one of numerous documents that support the preparation of the final NUREG- 1150 document by the NRC Office of Nuclear Regulatory Research. Figure 1111 ustrates the documentation of the accident progression, source term, consequence, and risk analyses. The direct supporting documents for the first draft of NUREG. 1150 and for the revised draft of NUREG. 1100 are given in Table 1. They were produced by the three interfacing prog.ams that performed the work * the Accident Sequence Evaluation Progrc" (ASEP) at Sandia National Laboratories, the (SARRP), and the PRA Phenomenology and Risk Uncertainty Evaluation Prograi? (PRUEP). The Zion volumes wer a written by Brookhaven National Laboratory and Idaho National Engineering Laboratory.

The Accident Frequency Analysis, and its constituent analyses, such as the Systems Analysis and the Initiating Event Analysis, are reported in NUREG/CR-4550, Originally, NUREG/CR-4550 was published without the desig. nation "Draft for Comment." Thus, the current revision of NUT EG/CR-4550 is designated Revision 1. The label Revision 1 is used consistently on all volumes, including Volume 2 which was not part of the original documentation. NUREG/CR-4551 was originally published as a "Draft for Comment." While the ourrent version could have been issued without a revision indication, all volumes of NUREG/CR-4551 have been designated Revision 1 fcr consistency with NUREG/CR-4550.

The material contained in NUREG/CR-4700 in the original documentation is now contained in NUREG/CR-4551; NUREG/CR-4700 is not being revised. The contents of the volumes in both NUREG/CR-4550 and NUREG/CR-4551 have been altered. In both documents now, Volume 1 describes the methods used in the analyses, Volume 2 presents the elicitation of expert fudgment, Volume 3 concerns the analyses for Surry, Volume 4 concerns the analyses for Peach Bottom, and so on. The Sequoyah analysis is contained in Volume 5 of NUREG/CR-4551. Note that the Sequoyah plant was also treated in Volume 2 of the original Draft for Comment version of NUREG/CR-4551 and NUREG/CR 4700.

In addition to NUREG/CR-4550 and NUREG/CR-4551, there are several other reports published in association with NUREG- 1150 that explain the methods used, document the computer codes that implement these methods, G_{i} present the results of calculations performed to obtain information specifically for this project. These reports include:

NUREG/CR-5032, SAND87-2428, "Modeling Time to Recovery and Initiating Event Frequency for Loss of Off-site Power Incidents at Nuclear Power Plants," R. L. Iman and S. C. Hore, Sandia National Laboratories, Albuquerque, NM, January 1988.

NUREG/CR-4840, SAND88.3102, "Procedures for External Core Damage Frequency Analysis for NUREG-1150," M. P. Bohn and J. A. Lambright, Sandia National Laboratories, Albuquerque, NM, December 1988.

NUREG/CR-5174, SAND88-1607, J, M. Griesmeyor and L. N. Smith, "A Reference Manual for the Event Progression and Analysis Code (EVNTRE), " Sandia National Laboratories, Albuquerque, NM, September 1989.

NUREG/CR-5380, SAND88-2988, S. J, Higgins, "A User's Manual for the Post Processing Program PSTEVNT," Sandia National Laboratories, Albuquerque, NM, November 1989.

NUREG/CR-4624, BMI-2139, R. S. Denning et al., "Radionuclide Release Gaiculations for Seleoted Severe Accident Scenarios," Volumes I.V. Battelle's Columbus Division, Columbus, OH, 1986.

NUREG/CR-5062, BMI-2160, M. T. Leonard et al., "Supplemental Radionuclide Release Calculations for Selected Sever. Accident Scenarios," Battelle Columbus Division, Columbus, OH, 1988.

NUREG/CR-5331, SAND89.0072, S. E. Dingman et al., "MELCOR Analyses for Accident Progression Issues," Sandia National Laboratories, Albuquerque, NM, November 1990.

NUREG/CR-5253, SAND88 2940, R. L. Iman, J, C. Helton, and J. D. Johnson, "PARTITION: A Program for Defining shs Source Term/Consequence Analysis Interfaces in the NUREG-1150 Probabilistic Risk Assessments User's Guide," Sendia National Laboratories, Albuquerque, NM, May 1990.
SUPPORT DOCUMENTS TO NUREG-1150

EVALUATION OF SEVERE ACCIDENT RISKS NUREG/CR-4551

Table 1. NUREG-1150 Analysis Documentation
$\underset{\text { Original Documentation }}{\text { NUREG/CR-4550 }}$
Analysis of Core Damage Frequency From Internal Events

Vol. 1 Methodology
2 Summary (Not Fublished)
3 Surry Unit 1
4 Peach Bottom Unit 2
5 Sequoyah Unit 1
6 Grand Gulf Unit 1
7 Zion Unit 1

NUREG/CR-4551

Evaluation of Severe Aceident Risks and the Potential for Risk Reduction

Vo1. 1 Surry Unit 1

2 Sequoyah Unit 1
3 Peach Bottom Unit 2
4 Grand Gulf Unit 1

NUREG/CR-4700
Containment Fvent Analysis for Potential Severe Accidents

Vol. 1 Surry Unit 1
2 Sequoyah Unit 1
3 Peach Bottom Unit 2
4 Grand Gulf Unit 1

Revised Documentation

NUREG/CR-4551, Rev. 1, Eval. of Severe Accident Risks
Vol. 1 Part 1, Methodology; Part 2, Appendices
2 Part 1 In-Vessel Tssues
Part 2 Gontainment Loads and MCCI Issues
Part 3 Structural Issues
Part 4 Source Term Issues
Part 5 Supporting Calculations
Part 6 Other Issues
Part 7 MaCCS Input
3 Part 1 Surry Analysis and Results Part 2 Surry Appendices

4 Part 1 Peach Bottom Analysis and Results Part 2 Peach Zottom Appendices

5 Part 1 Sequoyah Analysis and Results Part 2 Sequoyah Appendices
6 Part 1 Gra Gulf Analysis and Results Part 2 Granci Gulf Appendices
7 Part 1 Zion Analysis and Results Part 2 Appendices

ADV	atmospheric dump valves
AT\%	auxiliary feedwater
AFWS	auxiliary feedwater system
AOV	air-operated valve
APB	accident progression bin
APET	accident progression event tree
ARF	air return fan
\% KFS	air return fan system
ASEP	accident sequence evaluation
ATWS	anticipated transient without scram
BMT	basemat meltthrough
BNL	Brookhaven National Laboratory
BWR	boiling water reactor
CCF	common cause fallure
CCI	core-concrete interaction
CCDF	complementary cumulative distribution function
CCP	centrifugal charging purnp
CCW	component cooling water
CDF	cumulative distribution function
CF	containment failure
CH	chronic health effect weight
CFW	chronic fatality weight
CHR	containment heat removal
CSS	containment spray system
CST	condensate storage tank
DCH	direct comirinment heating
DF	decontamination factor
DG	diesel generator
EACPS	emergency ac power system
ECOS	emergency core cooling system
EF	early fatality
EFW	early fatality weight
EH	early health effect weight
EOP	emergency operating procedures
EPRI	Electric Power Research Institute
ESW	emergency service water
EVSE	ex-vessel steam explosion
FSAR	final safety analysis report
HIS	hydrogen igniviv; system
HPI	4igh pressure injection
HPIS	high pressure injection system
HPRS	high pressure recirculation system
HPME	high pressure melt ejection
HRA	human reliability ana*ysis

```
IC Ice condenser
ICS ice condenser system
ICIR in-core instrumentation room
INEL Idaho National Engineering Laboratory
IVSE in-vessel steam explosion
LC lower compartment (of containment)
LCF latent cancer fatalities
LHS Latin Hypercube Sampling
LOCA loss-of-coolent accident
LOSP loss of offsite power
L.P lower plenum (of ice condenser)
LPI low pressure injection
LPIS low pressure infection system
LPRS low pressure recirculat in system
LWR light water reactor
MCDF mean core damage flequency
MDP motor-driven pump
MFWS main feedwater system
MOV motor-operated valve
MSIV main steam isolation valve
MSL main steam line
NRC Nuclear Regulatory Commission
PDS plant damage state
PORV power-operated relief valve
PRA probabilistic risk analysis
PWR pressurized water reactor
PZR pressurizer
RCP reactor coolant pump
RCS reactor coolant system
RHR residual heat removal
RPS reactor protection system
RWST refueling water storage tank
SBO station blackout
SERG steam explosion review group
SG steam generator
SGTR steam generator tube rupture
SIS safety injection system
SLC standby liquid control
SNL Sandia National Laboratories
SOV solenold-operated valve
SRV safety relief valve
STCP source term code package
STD steam-turbine-driven
STSG source term subgroup
```

TAF top of active fuel
TDP turbine-driven pump
T.I temperature-induced

TMCD total mean core damage

UC upper compartment (of containment)
UP upper plenum (of ice condenser)
UTAK uncovering of TAF
VB vessel breach

We wish to thank the many people who worked in various capacities to support this analysis: E. Gorham-Bergeron (SNL), who was the program manager and provided many helpful suggestions in methods and techniques; F. T. Harper (SNL), who provided the day-to-day leadership of the project and worked wherever help was needed; the consequence analysis team of J, L. Sprung (SNL.), J. D. Johnson (Applied Physics, formerly of SAIC), and D. I. Chanin (Technadyne) who performed the MACCS analysis; R. L. Iman (SNL) for his work in designing the overall computational strategy and the codes to be used in implementing that strategy and J. D. Johnson for constructing some of those codes; D. C. Williams for insights and suggestions he provided by extensive review of APET, source term, and consequence results; S. E. Dingman (SNL) for the many computer calculetions that she performed in support of this enalysis; and R. A. Garber (SNL) for her technical editing of the report.

We also wish to thank the other plant analysts, T, D. Brown (SNL) and A. C. Payne (SNL), for their many helpful suggestions and the work that all the plant analysts performed together to make sure that er ryone succeeded in this effort.

We wish to thank the Quality Control team (K, D, Bergeron (SNL), G, J, Boyd (SAROS), D, R, Bradley (SNL), R, S, Denning (RMI), S, E, Dingman (SNL), J. E. Kelly (SNL), D. M, Kunsman (SNL), J, Lehner (BNL), S, R, Lewis (SAROS), and D. W. Pyatt (NRC) for reviswing the various parts of the analysis and their constructive suggestions for improving its overall quality. In particular, we would like to thank them for their review of re Sequoyah APET and its user functions.

We wish to thank the Level I Sequcyah analysts R, C. Bertucio (EI) and T. W. Wheoler (SNL) for their efforts to make the interface between the Level I internal events analysis and Level II analyses work efficiently,

Finally, we wish to thank the NRC for their funding and support of this project. In particular, we wish to thank M. A. Cunningham, J, A. Murphy, and P, K. Niyogi for their program and management support.

S. 1 Introduction

The United States Nuclear Regulatory Commission (NRC) has recently completed a major study to provide a current characterization of severe accident risks from light water reactors (LWRs). This characterization is derived from integrated risk analyses of five plants. The summary of this study, NUREG-1150, ${ }^{1}$ has been issued as a second draft for comment.

The risk assessments on which NUREf. 1150 is based van generally be characterized as consisting of four analysis steps, an integratio step, and an uncertainty analysis step:

1. Accident frequency analysis: the determination of the likelifood and nature of accidents that result in the onset of core damage.
2. Accident progression analysis: an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.
3. Lurree term analysis: an estimation of the radionuclide trancport within the reactor coolant system (RCS) and the containment, and the magnitude of the subsequent releases to the environment
4. Consequence analysis: the calculation of the offsite consequences, primarily in terms of health effects in the general population.
5. Risk integration: the assembly of the outputs of the previous tasks into an overall expression of risk.
6. Uncertainty analysis: the propagation of the uncertainties in the inftiating nvents, failure events, accident progression branching ratios and parameters, and source term parameters through the first three analyses above, and the determination of which of these uncertainties contributes the most to the uncertainty in risk.

This volume presents whe detafle of the last five of the six steps listed above for the Sequoyah Nuciear Station, Unit 1. The first step is described in NUREG/CR-4550. 2

S. 2 Overview of Sequoyah Nuclear Station, Unit 1

The Sequoyah Power Station, Unit 1 is operated by the Tennessee Valley Authority (TVA) and is located on the west shore of the Chickamauga Lake in southeastern Tennessee, about 10 miles northeast of Chattanooga, Tennessee. There are two units located on the site; Unit 2 is essentially identical to Unit 1

The nuclear reactor of Sequoyah Unit 1 is a 1148 MWe (3411 MWt) pressurized water reactor (PVR) designed and built by Westinghouse. The reactor cool. ant system (RCS) has four U-tube steam generators (oce) and frur reactor
coolant pumps (RCPs). The contafnment and the balance of the plant were designed and built by the utility, TVA. Unit 1 began commercial operation in 1981.

Table 5.1 sumarizes the design features of the plant relevant to severe accidents. Of particular interest is the ice condenser designed to be a passive pressure-suppression system. The containment is a free-standing steel structure, with a fairly low design pressure (11 psig). The ability to crosstie the 6.9 kV emergency buses at Unit 1 and Unit 2 helps to reduce the frequency of station blackout (SBO) at Unit 1. The process for switch. int the emergency ofre mooilng system from infection mode to recirculation mode is only partially automated and requires that a series of operator actions be accomplished in a relatively short time. Operator error in this process, as well as common-cause failures account for a relatively high frequency for loss-of-coolant (LOCA) accidents at Sequoyah.

S. 3 Description of the Integrated Risk Analysis

Risk is determined by combining the results of four constituent analyses: accident frequency, accident progression, source term, and consequence analyses. Uncertainty in risk is determined by assigning distributions to important variables, generating a sample from these variables, and propagating each observation of the sample through the entire analysis. The sample for Sequoyah consisted of 200 observations involving variables from the first three constituent analyses. The risk analysis synthesizes the results of the four constituent analyses to produce measures of offsite risk and tie uncertainty in that risk. This proce $3 s$ is depicted in Figure \$.1. The boxes in this figure show the computer codes used. The interfaces between constituent analyses are shown between the boxes. A mathematical summary of the process, using a matrix representation, is given in Section 1.4 of this volume.

The accident frecuancy analysis uses event tree and fault tree techniques to investigate the manner in which various inftiating events can lead to core damage and the frequency of various types of accidents. Experimental data, past observational data, and modeling results are combined to produce frequency estimates for the minimal cu: sets that lead to core damage. A minimal cut set is a unique combination of initiating event and individual hardware or operator failures. The minimal cut sets are grouped into plant damage states (PDSs), where all minimal cut sets in a PDS provide a similar set of initial conditions for the subsequent accident progression analysis. Thus, the PDSs form the interface between the accident frequency analysis and the accident progression analysis. The outcome of the accident frequency analysis is a frequency for each PDS or gro": of PDSs for each observation in the sample.

The accident progression analysis uses arge, complex event trees to determine the possible ways in which an accident might evolve from each PDS. The definition of each plant damage state provides enough information to define the initial conditions for the acoident progression event tree (APET) analysis. Past observations, experimental data, mechanistio code calculations, and expert judgment were used in the development of the model for accident progression that is embodied in the C.PET and in the selection
of the branch probab: ${ }^{\prime \prime}$ (ea and parameter values used in the APET, Due to the large number of $\quad \cdots$ ons in the Sequoyah APET and the fact that many of these questions . wore than two outcomes, there are far too many paths through the APET to permit their individual consideration in subsequent source term and consequence analysis. Therefore, the paths through the trees are grouped into accident progression bins (APBs), where each bin is a group of paths through the event tree that define a similar set of conditions for source term analysis. The properties of sach accident progresion bin define the initial conditions for the estimation of a source term. The result of the accident progression analysis is a probability for each APB, conditional on the occurrence of a PDS, for each observation in the sample.

Table S. 1
Design Features Relevant to Severe Accidents Sequoyah Unit 1

```
Emergency Core
    Cooling (ECCS)
```

Safety Injection System (SIS)
Two motor-driven pumps (MDPs)
Suction from refueling water storage tank (RWST)
or low pressure recirculation system (LPRS)
Provides high head injection
Charging System
Two centrifugal charging pumps (CCPs)
Suction from RWST or L.PRS
Provides feed and bleed cooling, RCP seal flow,
and high head infection
Low Pressure Injection System (LPIS)
Two MDPs
Suction from RWST or containment sump
Provides suction to the SIS and charging system
Accumulators
Four accumulators contairing borated water
Pressurized to 650 psig
Emergency Core Heat Auxiliary Feedwater Syster (AFWS)
Removal
Two MDPs and one turbine-drlven pump (TDP)

Feed and Bleed
Utilizes Charging system and PORVs

Reactivity Control Reactor Protection System (automatic scram)
Manual scram

A source term is calculated for each APB k^{\prime} th a non zero conditional probability for each observation in tho sample by SEQSOR, a fast-runing parametric computer code. SEQSoR is not a detalled mechanfstic model; it is not designed to model the fission product transport, physics, and chemistry from first principles. Instead, SEQSOR integrates the results of many detalled codes and the conclusions of many experts. Most of the parmeters used in calculating fission product release fractions in sEQSoR are sampled from distributions provided by an expert panel. Because of the large number of $A P B s$, use of a fast-executing code like SEQSOR is necessary.

The number of APBs for which source terms are calculated is so large that it is not computationally practical to perform a consequence calculation for every source ters. As a result, the source terms had to be combined fnto source term groups. Each source term group is a collection of source terms that result in similar consequences. The process of determining which APBs go to which source term group is called partitioning. This process considers the potential of each source term group to cause eatly fatalities and latent cancer fatalities. The result of the source term calculation and subsequent partitioning is that each APB for each observation is assigned to a source term group.

A consequence analysis is performed for each source term group, generating both mean consequences and distributions of consequences. Since each APB is assigned to a source term group, the consequences are known for each APB of each observation in the sample. The frequency of each PDS for each observation is known from the accident frequency analysis, and the conditional probability of each APB is determined for each PDS group for each ohservation in the accident progression analysis. Thus, for sesh APB of each observation in the sample, both frequency and consequet ; wie determined. The risk analysis assembles and analyzes all tirse separate estimetes of offsite risk.

\$.4 Rerults of the Accident Frequency Analysis.

The accident frequency analysis for Sequoyah is documented elsewhere. ${ }^{2}$ This section only sumarizes the results of the accident frequency analyses since they form the starting point for the analyses that are covered in this volume. Table $\$.2$ lists four summary measures of the core damage frequency distributions for Sequoyah for the seven internally inftiated PDSs. The four summary measures are the mean, and the 5th, 50th (median) and 95 th percentiles.

The 26 internally inftiated PDSs which had mean frequencies above $1.0 \mathrm{E} \cdot 7 / \mathrm{R}$. yr are placed into the seven PDS groups listed in Table S. 2 . These 26 PDSs account for over 998 of the total mean core damage frequency (MCDF) of $5.6 \mathrm{E}-5 / \mathrm{R} \cdot \mathrm{y}$. In both SBO groups, offsite power is lost and the diesel geverators fail to start and run. In the slow SBO group, the steam-turbine-driven (STD) auxiliary feedwater system (AFWS) operates until the batteries ate depleted; in the fast SBO group the STD AFWS falls. In both SBO groups, core degradtion may be arrested before the vessel falls if offsite power is recovered in time. The LOCA PDS group consists of accidents initiated by breaks of all four sizes ($\mathrm{A}, \mathrm{S}_{1}, \mathrm{~S}_{2}$, and S_{3}). In some of the PDSs in this group, the low pressure injection system (LPIS) is
operating at the onset of core damage, so the arrest of core degradation before the vessel lower head falls is possible for these PUSs.

Table $\$.2$
Sequoyah Core Damage Frequencies
Internal Initiators

IDS	Core Damage Erequency ($1 / \mathrm{R}-\mathrm{yr}$)			1. Mean TCD	
	58	Median	Mean	958	Erequency
1 Slow SBO	1.4E-07	1.6E-06	4.6E.06	1.6E.05	9
2 Fast SBO	5.5E. 07	3.8E-06	9,3E-06	3.5E-05	17
3 LOCAs	6.6E-06	2.0E-05	3.5E-05	1.1E.04	63
4 Event V	1.5E-11	2.0E-08	6.5E-07	3.4E-06	1
5 Transient	2.2E-07	1.2E-06	2.3E-06	8.2E.06	4
6 ATWS	4.2E.08	5.0E-07	2.1E.06	8.5E-06	3
7 SGTR	2.2E-08	3.8E-07	1.7E-06	9.4E.06	3
Total	1.5E.05	$3.9 \mathrm{E}-05$	$5.6 \mathrm{E} \cdot 05$	1.6E-04	

Event V is initiated by the failure of two check valves that isolate LPIS piping from the RCS. The check valve failures expose the low pressure piping to full primary system pressure, and it ruptures. The break is outside containment, so the break fails both the RCS and the injection system and bypasses the contaiument. The transient group consists of two PDSs that have fallure of both the AFWS and Feed and Bleed cooling function. Co"e damage arrest is possible for one of the prys if the RCS pressure cati be reduced since both LPIS and high pressure injection system (HPIS) are operable. The ATWS group contains three PDSs in which the nuclear raaction is not brought under control at the start of the accident. The two PDSs that comprise the steam genarator tube rupture (SGTR) group include one PDS in which the safety relief valves (SRVs) in the secondary system stick open ("H" SGTR), and one PDS in which these SRVs reclose after opening ("G" SGTR).

S. 5 Accident Progression Analysis

S.5.1 Description of the Accident Progression Analysis

The accident progression analysis is performed by means of a large and detailed event tree, the APET. This event tree forms a high level madel of
the accident progression, including the response of the containment to the loads placed upon it. The APET is not meant to be a substitute for detalled, fiechanistic computer simulation codes. Rather, it is a framework for integrating the results of these codes together with experimental results and expert judgment. The detailed, mechanistic codes require too much computer time to be run for all the possible accident progression paths. Furthermore, no aingle avallable code treats all the important phenomens in a complete and thorough manner that is acceptable to all those knowledgeable in the field. Therefore, the results from these codes, as interpreted by experts, are summarized in an event tree. The resulting APET can be evaluated quickly by computer, so that the full diversity of possible accident progressions can be considerad and the uncertainty in the many phenomena involved can be included.

The APET treats the progression of the accident from the onset of core damage through the core-concrete interaction (COI). It accounts for various events that may lead to the release of fission products due to the secident. The Sequoyah APET consists of 111 questions, most of which have more than two branches. Five time periods are considered in the tree. The recovery of offsite power is considered both before vessel fallure as well as after vessel fallure. The possibility of arresting the core degradation process before failure of the vessel is explicitly considered. Cors damage arrest may occur following the recovery of offsite power or when dipressu. rization of the ROS allows infection by an operating system (HPIS or LPIS) that previously could not function. Containment failure is considered during the time of core degradation (due to hydrogen combustion or detona. tion), at vessel breach (VB) (due to vessel blowdown, hydrogen combustion, direct containment heating, and steam explosions), after vessel fallure (due to hydrogen combustion), and after several days (due to basemat melt. through or eventusi overpressure if containment cooling is not restored), Five mechanisms, four of them inadvertent, for depressurizing the vessel before failure are included in the APET,

The APET is so large and complex that it cannot be presented graphically and must be evaluated by computer, A computer code, EVNTRE, has been written for this purpose. In addition to evaluating the APET. EVNTRE sorts the myriad possible paths through the tree into a manageable number of outcomes, denoted APBs.

S.5.2 Results of the Accident Pregression Analysis

Results of the accident progression analysis for internal initiators at Sequoyah are summarized in Figures S.2, S.3, and S.4. Figure S.2 shows the mean distribution among the summary APBs for the summary PDS groups. Technically, this figure displays the mean probability of a summary APB conditional on the occurrence of a PDS group since only mean values are shown, Figure S.2 gives no indication of the range of values encountered. The distributions of the expected conditional probability for core damage arrest for a given PDS group are shown in Figure S.3. Similarly, the distributions of the expected conditional probability for early containment fallure for a given PDS group are displayed in Figure S.4. Early containment failure means one that ocours any time before VB, at VB, or within a few minutes after VB,

Figure S. 2 indicates the mean probability of the possible ourcomes of the accident progression analysis. The width of each box in the figure indicates how likely each accident progression outcr e is for each type of accident. Except for the Bypass initiators, e...ar no failure of the vessel (safe stable state) or no failure of the containment are by far the most likely outcomes for internal initiators.

Figure S.2. Mean Probability of APBs for the Summary PDSs

If core damage is not arrested and the accident proceeds to failure of the vessel, Figure $\$.2$ shows that no failure of the containment is the most likely outcome for all types of accidents. If containment failure ocours, early failure (at or before VB) is predicted have a mean probability of about 0.06 and late fallure is more likely than early failure, with a mean probability of about 0.20 . Late failure may be due, to ayinogen ignition some hours after VB, basemat meltthrough (BMT), or eventual overpress're after several days if containment heat removal (OHR) is not restored. of these three late failure modes, eventual overpressure is the most likely

SEQUOYAH

Fig're S.4. Probability of Early Containment Failure
for internal initiators, because roughly 638 of the total mean core damage frequency is attribuied to the LOCA PDS group, in which there is a high probability that the long-term heat removal by the containnent spray system fails. The results of this analysis indicate that there is a high likelihood that the reactor cavity will contain water at VB. The presence of a large amount of water inhibits the dispersal of debris from the cavity, thus lowering the threat from direct containment heating at VB. The presence of water aiso contributes to the probability that core debris released from the vessel will be cooled. If $C O 1$ does initlate, the release will be scrubbed by the overlaying pool of water. On the other hand, water In the cavity can increase the possibility of ex-vessel stean explosions which can indirectly threaten the integrity of the containment. Containment fallure by ex-vessel steam explosion was inventigated in this study and was found to be a minor threat, An ex-vessel steam explosion can also contribute to the radionuclide release at VB,

Core Damage Arrest. It is possible to arrest the core damage process, avoid VB, and achieve a safe, st, ie state (as a. TMI.2) if coolant infection is restored before the core degradation process has gone too far. Recovery of infection is due to one of two events. In the loss of offsite power (LOSP) accidents, reccvery of njection follows the restoration of offsite power. In other types of accidents, an infection system is operating when core degradation commences, but no infection is taking place because the RCS pressure is too high. If a break in the RCS pressure boundary allows the RCS pressure to decrease to the point where the operating system can infect, there is some chance of arresting the core degradation process. The probabilit: of arresting core degradation depends on the tine the infection starts relative to the state of the core. The RCS fallure that allows injection to commence may be an initiating break or a temperature-induced fallure that occurs after the onset of core damage such as a break in the hot leg or surge line, the fallure of an RCP seal, or the sticking-open of a power-operated relief valve (PORV).

For the internally inftiated PDS groups, core damage arrest is possible for all groups except the interfacing systems LOCA, Event V. Offsite power may be recovered for the two SBO groups. Some PDSs in the transients, LOCAs, ATWS, and SGTR groups have LPIS, O LPIS and HPIS operating. The initiating break in the interfacing LOCA fails the LPTS by diverting the flow out the break. Flgure 5.3 contains no plot for the bypass accidents. Core damage arrest is not possible for Event V and some of the SGTRs. Furthermore, the fission products escape to the environment whether or not he vessel and containment fail. Thus, vessel fallure is not of particular 2terest for the bypass accidents. Figure $\$.3$ indicates that core damage a. rest before VB is especially likely for the Transients PDS group. The do inant PDS in this group has both LPIS and HPIS operating at the onset of cole damage. The probability of core damage arrest for this group reflects the probability that one of the five means of depressurizing the $R C S$ redu es the RCS to a sufficiently low pressure to allow injection.

Core a mage arrest does not necescarily mean that there will be no radionuc ide releases during the accident. For accidents in which the containme it is not bypassed, both hydrogen and radionuclides art released to the con ainment during the core damage process. If a large amount of
hydrogen is generated during core damage and is subsequently ignited, it is possible that the resulting load will fail the containment.

If the containment fails, a pathway is established for the radionuclides to enter the outside environment. In contrast to the bypass sccidents, this radionuclide release is generally small, however, because in the majority of the cases in which $V B$ is averted these releases are scrubbed as they pass through the ice condenser.

RCS Depressurization. The reduction of the RCS pressure in the period between the onset of core damage and VR has two consequences that are important in determining offsite risk. First, pressure reduction may allow the LPIS to function and thus avoid vessel failure in accidents where the LPIS is operable but not injecting due to high RCS pressure. Second, lower RCS pressures at VB reduce the loads placed on the containment structure at that time and reduce the probability of contaimment failure at VB.

Four of the five means of depressurizing the RCS considered in the Sequoyah accident progression analysis are temperature induced (T.I) and inadvertent. The five mechanisins are:

1. T-I hot leg or surge line fallure;
2. PORVs or SRVs stuck open;
3. T-I RCP seal fallure;
4. T-I SGTR: and
5. Deliberate opening of the PORVs by the operators.

T-I fallures of the RCP seals and PORVs sticking open are also considered in the accident frequency analysis. Of these five mechanisms, only the first three are effective for most accidents. Distributions for the probability of hot leg fallure, SGTR, and RCP seal fallure were provided by expert panels. Acting together, the effective means of RCS depressuriz. ation in this analysis ensured that only about 108 or less of the accidents that were at the PORV setpoint pressure (about 2500 psi) at the onset of core damage remained at that pressure untll the time of lower head fallure.

Early Containment Failure. For those accidents in which the containment is not bypassed, the offsite risk depends strongly on the probability that the containment will fail early, i.e., anytime before VB, at VB, or within a few minutes after VB. There are four possibilities for early containment failure:

1. Pre-existing containment leak;
2. Isolation failure;
3. Containment failure before $V B$ due to hydrogen combustion or detonation; and
4. Containment failure at VB due to the events at VB.

The probability of a pre-existing leak or isolation failure at Sequoyah is 1ow, aboit 0.005: The design piessure of the Sequoyah containment is 11 psig and the assessed mean fallure pressure is 65 psig . Because of its somewhat low fallure pressure, the Sequoyah containment is susceptible not only to loads from hydrogen deflagrations and detonations but can also be
threatened by slow pressurization events that are associated with the accumulation of steam and noncondensibles.

The production of hydrogen during the core damage process and later during VB, should it occur, is a key factor that affects the probability of containment fnilure, If the hydrogen ignition and air return fan systems are not operating, which is the case in an SBO, the hydrogen will accumulate in the ice condenser and upper plenum of the ice condenser. The lack of steam in these locations allows mixtures to form that have a high hydrogen concentration. Subsequent ignition of this hydrogen by either random sources, by the recovery of ac power, or by mechanisms occurring at VB can result in loads that can threaten the containment.

Hydrogen combustion events are the dominant events that cause early containment failure in the LOSP summary group. The containment is predicted to fail with a mean probability of 0.13 for this group wher VB occurs, and with a mean probability of 0.04 when VB does not occur. The LOSP summary group is the only group in whish early containment failure occurs without VB with significant probability. For the LOSP group, failures at VB are dominated by HPME/hydrogen events (system pressure greater than 200 psia) with an almost equal contribution from hydrogen burns alone (RCS pressure less than 200 psia). For the ATWS summary group, early containment failure with VB occurs with a mean probability of 0.05 , with about equal contribution from hydrogen burns augmented with ex-vessel steam explosion (low system pressure at VB) and HPME/hydrogen events. For the transient sumary group, early containment failure is predicted to occur very infrequently, the mean failure probability is about 0.02 . For the LOCAs summary group, the containment is predicted to fail early with a mean probability of 0.05 , and the failures are dominated by containment fallure at VB involving HPME/hydrogen events.

Figure S .4 shows the probability distribution for early containment failure at Sequoyah. The probability distributions displayed in this figure are conditional on core damage. For the bins included in these distributions, VB occurs. For accidents other than Bypass, Figure $\$.4$ shows that the mean probability of early containment failure is about 0.06 and the median is about one order of magnitude lower. If early containment fallure without $V B$ is included, the mean is abouc 0.07 . The low fallure probability is due to the effectiveness of the RCS depressurization mechanisms, as well as to mitigation of HPME events by deep flooding of the cavity (dispersal of debris from the cavity is inhibited).

S. 6 Source Term Analysis

S.6.1 Description of the Source Term Analysis

The source term for a given bin consists of release fractions for the nine radionuclide classes for the early release and for the late release, and additional information about the timing of releases, the energy associated with the releases, and the height of the releases. It consists of infor. mation required for calculating consequences in the succeeding analysis. A source term is calculated for each $A P B$ for each observation in the sample. The nine radjonuclide classec are: inert gases, iodine, cesium, tellurium, strontium, ruthenium, lanthanum, cerium, and barium.

The source term analysis is performed by a relatively small computer code: SEQSOR. The purpose of this code is not to calculate the behavior of the fission products from their chemical and physical properties and the flow and temperature conditions in the reactor and the containment. Instead, SEQSOR provides a means of incorporating into the analysis the results of the more detailed codes that do consider these quantities. This approach is needed because the detalled codes require too many computer resources to compute source terms for the numerous accident progression bins and the 200 observations that result from the sampling approach used in NUREG-1150.

SEQSOR is a fast-running, parametric computer code used to calculate the source terms for each APB for each observation for Sequoyah. As there are typically a few hundred bins for each observation, and 200 observations in the sample, the need for a source term calculation method that requires few computer resources for one evaluation is obvions. SEQSOR provides framework for synthesizing the results of experiments and mechanistic codes, as interpreted by experts in the field. The reason for "filtering" the detailed code results through the experts is thet no code avallable treats all the phenomena in a manner generally acceptable to those knowledgeable in the field. Thus, the experts extend the code results in areas where the codes are deficient and to fudge the applicability of the model predic. tions. They also factor in the latest experimental results and modify the code results in areas where the codes are known or suspected of oversimpli. fying. Since the majority of the parameters used to compute the source term are derived from discributions determined by an expert panel, the dependence of SEQSOR on various detailed codes reflects the preferences of the experts on the panel.

It is not possible to perform a separate consequence calculation for each of the approximately 110,000 source terms computed for the Sequoyah integrated risk analysis. Therefore, the interface between the source term analysis and the consequence analysis is formed by grouping the source terms into a much smaller number of source term groups. These groups are defined so that the source terms within them have similar properties, and a single consequence calculation is performed for the mean source term for each group. This grouping of the source terms is performed wich the PARTITION program, and the process is referred to as "partitioning."

The partitioning process involves the following steps: definition of an early health effect weight (EH) for each source term, definition of a chronic health effect weight (CH) for each source term, subdivision (partitioning) of the source terms on the basis of EH and CH , a further subdivision on the basis of the time the evacuation starts relative to the start of the release, and calculation of frequency-weighted mean source terms.

The result of the partitioning process is that the source term for each APB is assigned to a source term group. In the risk computations, each APB is represented by the mean source term for the group to which it is assigned, and the consequences oalculated for that mean source term.

S.6.2 Results of the Source Term Analysis

When all the internally-initiated accidents at Sequoyah are considered together, the plots shown in Figure S.5 are obtained. These plots show four statistical measures of the 200 curves (one for each observation in the sample) that give the frequencies with which release fractions are exceeded. Figure S.5 summarizes the complementary cumulative distribution functions (CCDFs) for all of the radionuclide groups except for the noble gasas. The mean frequency of exceedint a relea-g traction of 0.10 for iodine is $4 \times 10^{-6} / \mathrm{yr}$; for cesium, it is $3 \times 10^{-6} / \mathrm{yr}$; for tellurium, it is 2 $x 10^{-6} / \mathrm{yr}$; and for strontium and barium, it is $3 \times 10^{-1} / \mathrm{yr}$. The mean frequency of exceeding a release fraction of 0.01 for the lanthanum radio. nuclide class is $3 \times 10^{-7} / \mathrm{yr}$

8.7

Consequence Analysis

S.7.1 Descriptic of the Consequence Analysis

Offsite consequences are calculated with MACCS for each of the source term groups defined in the partitioning process. Maws treoks the dispr iun of the radioactive material in the atmosphere from the plant and compuces its deposition on the ground. MACCS then calculates the effects of this radioactivity on the population and the environment. Doses ard the ensuing health sifects from 60 radionuclides are computed for the following pathways. immersion or cloudshine, inhalation from the plume, broundshinc, deposition on the skin, inhalation of resuspenaed ground contamination, ingestion of contaminated water and ingestion of contan. nated food.

MACCS treats atmospheric dispersion by the use of multiple, straight-line Gaussian plumes. Each plume can hav- a different direction, duration, and initial radionuclide concentration. Cross-wind dispersion is treated by a multi-step function. Dry and wet deposition are treated as independent processes. The weather variability is treated by means of a stratified sampling process.

For early exposure, the following pathways are considered: imnersion or \therefore oulsinine, inhalation from the plume, groundshine, deposition on the skin, Air. inhalation of resuspended ground contamination. For the long-term exposure, MACCS considers following four pathways: groundshine, inhalation of resu-pended ground contamination, ingestion of contaminated water and ingestion of contaminated foud. The direct exposure pathways, groundshine, and inhalation of resuspended ground contamination, producn doses in the population living in the area surrounding the plant. The indirect exposure pathways, ingestion of contaminated water and food produce doses in those who ingest food or water emanating from the area around the accicient site The contamination of water bodies is estimated for the washoff of landdeposited material as well as direct deposition. The food pathway model includes direct deposition onto the crop species and uptake from the soil.

Both short-term and long-term mitigative measures are modeled in MACCS. Short-term actions include evacuation, sheltering, and emergency relocetion. from the vicinity of the plant (i.9., relocation may not be restricted to the emergency planing zone). Long-term actions in lude relocation and restrictione on land we and crops. Relocation and land decontamination,

Figure S.5. Exceedance Freuqencies for Release Fractions for Sequoyah: All Internal Initiators

Figure S.5. (continued)
interdiction, and condemncion are based on profected long-term doses from groundshite and the inhalation of resuspended radioactivity. The disposal of agricultural products and the removal of farmland from crop production are based on contamination criteria.

The health effects models link the dose received by an organ to morbidity or mortality. The models used in MACCS calculate both short-term and long. term effects to a number of organs.

Although the variables thought to be the largest contributors to the urcertainty in risk are sampled from distributions in the accident frequeicy, accident progression, and source term analyses, there is t. analogous treatment of uncertainties in the consequence analysis. Variability in the weather is full accounted for, but the uncertainty in other parameters such as the dry weposition velocity or the evacuation rate is not consldered.

The MACCS consequence model calculates a large number of different onsequence measures. Results for the following six consequence meas, are given in this report: early fatalities, total latent cancer fatalities, population dose within 50 miles, population dose for the entire region, early fatality risk within 1 mile, and latent cencer fatality risk within 10 miles. For NUREG-1150, 99.5 of the population evacuates and 0.58 of the population continues normal activity. For internal inftiators at Sequoyah, the evacuation delay time between warning and the beginning of evacuation is 2.3 h .

5.7.2 Results of the Consequence Analysis

The results presented in this section are conditional on the occurrence of a source term group. That is, given that a release takes place, with release fractions and other characteristios as defined by one of the source term groups, then the tables and figures in this section give the consequences expacted. This section contains no indication at all about the frequency witn which these consequences may be expected. Implicit in the results given in this section are that 0.58 of the population does not evacuate and that there is a $2.3-\mathrm{h}$ delay between the warning to evacuate and the actual start of the evacuation.

CCDFs display the results of the cc..eequence calculation in a compact and complete form. The CCI is in Figure $\$.6$ for early fatalities and latent cancer fatalities display the relationship between consequence size and consequence frequency due to variability in the weather for each source term group which has a non-zero frequency. Conditional on the occurrence of a release, each of these CCDFs gives the probability that individual consequence values will be exceeded due to the uncertainty in the weather conditions that will exist at the time of an accident. Figure S .6 shows that there is considerable variability in the consequences that is solely due to the weather. There is, of course, considerable variability among 'he consequences that is due to the size and timing of the release as well.

S.8.1 Determination of Risk

Risk is determined by bringing together the results of the four constituent analyses: the accident frequency analysis, the accident progression analysis, the source term analysis, and the consequence analysis. This process is described in general terms in Section $S .2$ of this summary, and in mathematical terms in Section 1.4 of this volume. Specifically, the accident frequency analysis produces a frequency for each PDS g:oup for each observation, and the accident progression analysis results in a probsbility for eash $A P B$, concitional on the occurrence of the PDS group. The absolute irequency for each Jin for each observation is obtained by summing the product of the PDS group frequency for that observation and the conditional probability for the APB for that observation over all the PDS groups.

For each APB for each observation, a source erm is calculated; this source term is then assigned to a source term group in the partitioning process. The consequences are then computed for each source term group. The overall result of the source term calculation, the partitioning, and the consequence calculation is that a set of consequence values is identified with each $A P B$ for each observation. As the absolute frequency of each $A P B$ is known from the accident frequency and accident progression results, both frequency and consequences are known for each APB. The risk analysis assembles and analyzes all these separate estimates of offsite risk.

S.8.2 Results of the Risk Analysis

Messures of Risk. Figure 5.7 shows the basic results of the integrated risk analysis for internal initiators at Sequoyah. This figure shows four statistical measures of the families of complementary CCDFs for early fatalities, latent cancer fatalicles, individual risk of early fatality within one mile of the site boundary, and individual risk of latent cancer fatality within ten miles of the plant. The CCDFs display the relationship between the frequency of the consequence and the magnitude of the conse. quence. As there ef. 2 C C observations in the sample for Sequoyah, the actual risk results at the most basic level are 200 CCDFs for each consequence measure. Figare 5.7 displays the 5 th percentile, median, mean, and 95 th percentile for these 200 curves, and shows the relationship between the magnitude of the consequence and the frequency at which the conseg ence is exceeded, as well as the variation in that relationship.

The 5 th and 95 th percentile curves provive an indication of the spread between observations, which is often large. This spread is due to uncertainty in the sampled variables, and not to differences in the weather at the time of the accident. As the magnitude of the consequence neasure increases, the mean curve typically approaches or exceeds the 95 th percentile curve. This results when the mean is dominated by a few observations, which often happens for large values of the consequences. Only a few observations have nonzero exceedance frequencies for these Zarge consequences. Taken as a whole, the results in Fiqure 5.7 indicate that large consequences are relatively unlikely to oocur.

Figure S.7. Exceedance Frequencies for Risk.
Sequoyah: Internp? witiatnrs

Figure S.7. (continued)

Figure S.7. (continued)

Although the CCDFs convey the most information about the offsite risk, summary measures are also useful. Such a summary value, denoting annual risk, may be determined for each observation in the sample by sumining the product of the frequencies and consequences for all the points used to construct the CCDF. This has the effect of averaging over the different weathor states $2=$: all as over the different types of accidents that can oocur. Since the complete analysis consisted of a sample of 200 observ. ations, there are 200 values of annual risk for each consequence measure. These 200 values may be ranked and plotted as histograms, which is done in Figure S.8. The same four statistical measures used above are shown on these plots as well. Note that considerable information has been lost in going from the CCDFs in Figure 5.7 to the histograms of annual values in Figure S.8; the relationship between the size of the consequence and its frequency has been sacrificed to obtain a sincle value for risk for each observation.

The plots in Figure $S, 8$ show the variation in the annual risk for internal initiators for four consequence measures. Whers the mean is close to the 95 th percentile, a relatively small number of observations dominate the mean value. This is more likely to occur for the early Eatality consequence measures than for the latent cancer fatality or population dose consequence measures due to the threshold effect for early fatalities.

The safety goals are written in terms of mean individual fatality risks, The plots in Figure 5.8 for individual early fatality risk and individual latent cancer fatality rlsk show that essentially the entire risk distribution for Sequoyah fall below the safety goals, and the means are well below the safety goals.

A single measure of risk for the entire sample may be obtained by taking the mean value of the distribution for annual risk. This measure of risk is commonly called mean risk, although it is actually the average of the annual risk, or the mean value of the mean risk. Mean risk values for internal initiators for four consequencs measures are given in Figure $5,8$.

S.8.3 Important Contributors to Risk

There are two ways to caloulate the contribution to mean risk. The fractional contribution to mean risk (F TMR) is found by dividing the average risk for the subset of interest for the sample by the average total risk for the sample. The mean fractional onntribution to risk (MFCR) is found by determining the ratio of the risk for the subset of interest to the total risk for each observation, and then averaging over the sample.

Results of computing the contributions to the mean risk for internal initiators by the two methods are presented in Table S.3. Percentages are shown for early fatalities and latent cancer fatalities for the ceven PDS groups.

Pie charts for contributions of the PDS groups to mean risk for internal initiators for these two risk measures for both methods are shown in Figure S.9. Flgure S. 10 displays chullar pie charcs for contributions of the summary APBs to mean risk. Not surprisingly, the two methods of caloulating contribution to risk yield different values. Both methods of computing the
contributions to risk are conceptually valid, so the conclusion is clear: contributors to mean risk can only be interpreted in a very broad sense. That is, it is valid to say that Event V is a major contributor to mean early fatality risk at Sequoyah; it is not valid to state that Event V group contributes 68 of the early fatality risk at Sequoyah.

Table S. 3
Two Methods of Calculating Contribution to Mean Risk

Contributors (\%) to Mean Farly Fatelity Risk for Internal Initiators		
PDS Group	ECMR	MFCR
1 Fast SBO	6.9	6.7
2 Slow SBO	16.)	18.2
3 LOCAs	1. ${ }^{\text {\% }}$	13.0
4 Event V	68.0	40.5
5 Transients	0.1	1.3
6 ATWS	1.9	6.8
7 SGTRs	5.3	13.5
Contributors (8) to Mean Latent Cancer Fatality Risk for Internal Inftiators		
PDS Group	FCMR	MFCR
1 Fast SBO	12.5	8.4
2 Slow SBO	28.6	25.4
3 Locas	14.2	20.9
4 Event V	10.3	10.0
5 Transients	0.5	1.4
6 ATWS	3.8	5.7
7 SGTRs	30.1	28.1

Probability

Probability

Probability

Figure S.8. Distributions of Annual Risk: Sequoyah. All Interral Initiators.
Early Fotality
.6E-5/Reactor-year

Latent Cancer Fatalities
1.4E-2/Reactor-year

PDS Group
I: SLOW S80
2: Fast SBO
3: LOCAs
4: Event V
5: Tronsients
6: ATWS
7: SGTRs

Figure S.9. Fractional PDS Contributions to Annual Risk; Sequoyah: Internal Initiators (MFCR - Mean Fractional Contribution to Risk; FCMR - Fractional Coneribution to Mean Risk)

Latent Cancer Fatalities
1.4E-2/Reactor-year

Summary ficcident Progression
1: VB,CF during
core degradation
2: VB, Al pha mode
3: VB, Cf at VB,
\&: VB, press. >200
\&: VB,CF at VB,
RCS press . < 200
5: VB, Late CF
6: VB, very Late
CF or BMT
7: Bypass
8: VB, No CF, no bypass
9: No VB, CF during
care degradation
10 : No VB, no CF, no bypass

Figure S.10. Fract ${ }^{\text {s }}$ nal $A P B$ Contributions to Annual Risk; Sequoyah: Internal Initiators (MFCR - Mean Fractional Contribution to Risk; FCMR - Fractional Contribution to Mean Risk)

Although che exact values are different for each method, the basic conclusions that can be drawn from these results are the same. For early fatalities, which depend on a large early release, the mean risk is dominated by Event V and to a lesser degree, station blackouts. Event V not caly pro. ceeds quickly to $V B$, but it creates a bypass of the containment as well. The blackout accidents are the most likely non-bvpass accidents to progress to VB and involve early containment failures. Accidents in which the containment fails late are much less significant.

Latent cancer fatalities and pophiation dose depend primarily on the total amount of radioactivity released. Thus, unlike early fatality risk, the timing of containment failure is not particularly important for this risk teasure. However, if the containment fails late, Linere is more residence time in containment for the radionuclides to deposit by mitigative systems (sprays, ice condenser) and natural mechanisms before containment failure, than there is when early containment fallure occurs. The mean latent cancer fatality risk ar ? mean population dose are dominated by station blackouts, SGTRs, and LOGAs. For station blawuts and LOCAs, the early failures of contaiment dominate the contrib $\quad 8,8$, with less contribut on from the later failures. The SGTR accidents contribute more toward 1 ant cancer fatalities than they do toward early fatalities because the dor nant SGTR sequences with the higher releases are vory lergthy accidenis. Thus, evacuation occurs before the release has begun.

S.8.4 Important Contributors to the Uncerisinty in Risk

The important contributors to the uncertainty in risk are determined by performing regression-based sensitivity analyses for the mean values for risk, The regression analyses for internally initiated events for early fatalities and individual risk of early fataiity within 1 mile only account for about 50 of the observed variability. The independent variables that account for this variability are those that determine the frequency and the magnitude of an early release. The regressiun analysis for the other four consequence measures is somewhat less successful, as it is able to account for only 30% of the variability. The independent variables that account for this variability are predominantly those variables that determine the frequencies of the accident.

Because the regression results for all internal events do not account for much of the variability, the same type of stepwise regression analysis was performed for each PDS group for the consequences of early fatalities and latent cancer fatalities. The most robust results are exhibited for bypass accider , PDS Groups 4 and 7, and to a lesser degree, for the anticipated transie.t without scram (ATWS) accidents, PDS Group 6. For PDS Group 4, Event V, more than 95 \% of the varlabillty is explained for each consequence: at least 908 is accounter for by the initiating event frequency of check valve failure in one of the LPIS trains, the remainder involves the probability that the releases are scrubbed by fire sprays and the decontamination factor associated with the sprays. For PDS Group 7, SCTRs, about 808 is explained: the variables involved include the release fraction from the vessel to the environment, the initiating event frequency for SGTRs, and the fraction of the fission products rel ased itom the core to the
vessel. The bypass accidents lend thamselves best to anslysis with a linear regression model, because the consequences are directlv related to a product of several variables.

For the ATWS PDS group much of the risk is associated with the PDS that involves an SGTR. For this group, 65 of the variability is explained for early fatalities, and 86 for latent cancers. The variables involved include the same as mentioned for SGTR, as well as the probability of fallure to effect manual scram due to operator error and the probability of fallure of automatic inse :ion of control rods.

For the SBO, LOCA, and Transient PDS Groups, less than 608 of the variability is expiained for both ear?y fatalities and latent cancer fatalities. The models involved with these PDS Groups are more complex and nonlinear than for the bypass accidents, and different variables come into play for different degrees of consequences. Some of the variables that are involved with expiaining the variability in the early and latent cancer fatallty risks for these PDS Groups include: the containment fallure pressure, the pressure rise in containment at VB, the fraction of core involved in HPME, and the decontamination factor of the ice condenser.

S. 9 Insights and Conclusions

Core Damage Arrest: The inclusion of the possibility of arresting the core degradation process before vessel failure is an important feature of this cnalysis. For internal initiators, there is a good chance that non-bypass accidents will be arrested before vessel fallure. This may be due to the recovery of offsite power or the reduction of RCS pressure to the point where an operable system ca.i inject. The arrest of core damage before VB plays an imartant part in reducing the risk due to the most freguesi types of internal acoidente: LACAE and Sgos.

Depressurization of the RCS. Depressurization of the RCS before the vessel fails is important in redacing the loads placed upon the containment at VB and in arresting core Zamage beforc VB. For accidents in which the RCS is at the PORV setpoint pressure during core degradation, the effective mechanisms for pressure : wotion are T-I failure of the hot leg or surge line, T-I failure of the RCP seals, and the sticking open of the PORVs. All of these mechanisms are inadivertent and beyond the control of the operators. The apparent beneficial effects of reducing the pressure in the ROS when lower head failure is imminent indicate that further investigation of depressurization may be warranted. The dependency of the probability of containment failure on RCS pressure boundary fallures that occur at unpre. dictable locations and at unpredictable times is somewhat unsettling. Studies of the effects of increasing PORV capacity, providing the means to open the PORVs in blackout situations, and changing the procedures to remove restrictive conditions on deliberate RCS pressure reduction might decrease the probability of early containment failure at PWRs. Depressuri. zation may involve the loss of considerable inventory from the RCS. Any studies undertaken should consider possible drawbacks as well as benefits.

Containment Failure. If a core damage accident proceeds to the point where the lower head of the eactor vessel fails, the contalnment is not 1 ikely to fail at this time. This is partially due to the dapressurization of the

RCS before vessel fallure, partially due to deop-flooding of the reactor cavity which inhibits dispersal of core debris from the cavity in high pressure accidents, and partially due to the strength of the sequoyah containment relative to the loads expected. Hydrogen burns before VB for the SBO accidents and hydrogen burn/DCH events are the factors that lead to early containment failures when they do occur. Early containment failures contribute significantly to the risks that depend on 2. large early release (early fatalities), and are major contributors to the risks that are functions of the total release (latent cancer fatalities and population dose). For SBOs, late failures occur from hydrogen burns upon powor recovery during $C C I$. Very late fallures that are many hours after VB depend upon the availability of CHR. If CHR is recovered within a day or so, BMT is the most probable failure mode. If CHR is not recovered, an overpressure failure within a day or two after the start of the accident is the likely tiode.

Bypass Accidents. Bypass accidents are major contributors to the risks that depend on a large early release as well as those which are functions of the total release. Event V is the accident most likely to result in a large, early release for internal initiators. SGTRs are also important contributors to large releases, but most of the large releases due to SGTRs occur many hours after the start of the accident, and thus they contribu. significantly to the risks that depend on the total release. The most important SGTK. are those in which the SRVs on the secondary system stick open. Although the bypass accidents are not the most fruguent types of internal accidents, the somewhat low pribability of containment failure, especially early containment failure, for the non-bypass accidents results in the large contributions of the bypass accidents to risk.

Eission Rroduct Releases. There is considerable uncertainty in the release fractions for all types of accidents. There are several features of the Sequoyah plant that tend to mitigate the release. First, the in-vessel releases are generally directed to the ice condenser where they experienco some decontamination. If the sprays are operating, the radionuclides will also contribute to the decontamilation of the releases. The reactor cavity pool also offers a mechanism for reducing the release of radionuclides from CCI. The largest releases tend to occur whon the cont inment is bypassed, or when early failure of containment involvang catastro his rupture ocours. Catastrophic rupture is assumed to cause bypass of tha ice condenser and failure of the containment sprays.

Uncertainty in Risk. Considerable uncertainty is ass ciated with the risk estimates roduced in this analysis. The largest contributors to the uncertainty in early fatalities and latent cancer fatalities for the bypass sequences are the variablifty in the frequencies of the inftiating events and the uncertainty in some of the parameters that delermine the magnitude of the fission product release to the environment For non-bypass accidents, the variability in frequencies of the initiatiog events and the uncertainty in the accident progzession parameters and probabilities contribute to the uncertainty in latent cancers. The contribution to the ancertainty in eerly fatalities for non-bypass accidents arises from variabil: $2 ;$ in $: 11$ the constituent analyses that were incorporated into the urcertainty analysis: initiating events, accident progression, and fission

Comparison, with the safety Goals. For both the individual risk of early fatality within one mile of the site boundary and the individual risk of latent cancer fatality within 10 miles, the mean ann ial risk and the 95 th percentile for annual risk fall more then an order of magnitude below the safety goals. Indeed, even the maximum of the 200 values that make up the annual risk distributions fall well below the safety goals.

References

1. USNRC, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants", NUREG-1150, June, 1989.
2. R, C. Bertucio and S. R. Brown, "Analysis of Core Damage Frequency from Internal Events: Sequoyah, Unit 1," Sandia National Laboratories, NUREG/CR-4550, Vol.5, SAND86-2084, 1989.

The United States Nuclear Regulatory Commission (NRC) has recently completed a major study to provide a current characterization of severe accident risks from light water reactors (LWRs). The characterization was derived from the analysis of flve plants. The report of that work, NUREG- 11501 has recently been issued as a second draft for comment. NUREG-1150 is based on extensive investigations by NRC contractors. Several series of reports document these analyses as discussed in the Foreword.

These risk assessments can generally be characterized as consisting of four analysis steps, an integration step, and an uncertainty analysis step.

1. Accident frequency analysis: the determination of the likelihood and nature of accidents that result in the onset of core damage.
2. Accident progression analysis: an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the coistainment.
3. Source term analysis: an estimation of the radionuclide transport within the reactor coolant system (RCS) and the containment, and the magnitude of the subsequent releases to the environment.
4. Consequence analysis: the calculation of the offsite consequences, primarily in terms of health effects in the general population.
5. Risk integration: the combination of the outputs of the previous tasks into an overall expression of risk.
6. Uncertainty analysis: the propagation of uncertainties through the first three analyses above, and the determination of which of these uncertainties contribute the most to the uncertainty in risk.

This volume is one of seven that comprise NUREG/CR-4551. NUREG/CR-4551 presents the details of the last five of the six analyses listed above. The subject matter starts with the onset of core damage and concludes with an integrated estimate of oversll risk and uncertainty in risk. This volume, Volume 5, describes the inputs used in these analyses and the results obtainé for Sequoyah Power Station, Unit 1. The methods used in these analyses are described in detall in Volume 1 of this report and are only briefly dlscussed here.

1.1 Background and Objectives of NUPES-1150

Assessment of risk from the operation of nuclear power plants, involves determination of the likelihood of various accident sequences and their potential offsite consequences. In 1975, the NRC completed the first comprehensive study of the probabilities and consequences of core meltctown accidents-.the "Reactor Safety Study" (RSS), ${ }^{2}$ This report showed that the probabilities of such accidents were higher than previously believed, but that the consequences were significantly lower. The product of probability
and consequence. a measure of the risk of core melt acoidents-was estimates to be quite low when compared with natural events such as floods and earthquakes and with other socletal risks such as automobile and airplane accidents. Since that time, many risk assessments of specific plants have been performed. In general, each of these has progressively reflected at least some of the advances that have been made in reactor safety and in the ability to predict the frequency of several accidents, the amount of radioactive material released as a result of such accidents, and the offsite consequences of such a release.

In order to investigate the significance of more racent developments in a comprehensive fashion, it was concluded that the current efforts of research programs being sponsored by the NRC should be coalesced to produce an updsted representation of risk for operating nuclear power plants. "Severe Accident Risks: An Assessment for Five U.S. Nucleur Power Plants"1 is the result of this program. The five nuclear power plants are Surry, Peach Bottom, Sequoyah, Grand Gulf, and Zion. The analyses of the first four plants were perforped by Sandia National Laboratories (SNi). The analyis of Zion was performed by Idaho National Enginsering Laboratory (INEL) and Brookhaven National Laboratory (BNL).

The overall objectives of the NUREG-1150 program are:

1. Provide a current assessment of the severe accident risks to the publi from five nuclear power plants, which will:
a. Provide a "snapshot" of the risks reflecting plant design and operational cnaracteristics, related faliure data, and severe accident phenomenological information extant in 1988;
b. Update the estimates of the NRC's 1975 risk assessment, the "Reactor Safety Study"; ${ }^{2}$
c. Include quantitative estimates of risk uncertainty, in response to the principal criticism of the "Reactor Safety Study;" and
d. Identify plant-specific risk vulnerabilities, in the context of the NRC's individual plant examination process.
2. Summarize the perspectives gained in performing these risk analyses, with respect to:
a. Issues significant to severe accident frequencies, consequences, and risk;
b. Uncertainties for which the risk is significant and which may merit further research; and
c. Potential for risk reduction.
3. Provide a set of methods for the prioritization of potential safety issues and related research.

These objectives required special considerations in the selection and development of the analysis methods. This report describes those special considerations and the solutions implemented in the analyses supporting NUREG-1150.

1.2 Overview of Sequoyah Power Station, Unit 1

The subject of the analyses reported in this volume is the Sequoyah Power Station, Unit 1. It is opsrated by the Tennessee Valley Authority (TVA) and is located on the west shore of the Chickamauga lake in southeastern Tennessee, about 10 mlles northeast of Chattanooga, Tennessee. Two units are located on the site; Unit 2 is essentially identical to Unit 1.

The nuclear reactor of Sequoyah Unit 1 is a 1148 MWe pressurized water reactor (PWR) designed and built by Westinghouse. The reactor coolant system (RCS) has four U-tube steam generators (SCs) and four reactor coolant pumps (RCPs). The containment and the balance of the plant were designeci and built by the utility, TVA. Unit 1 began commercial operation in 1981.

There are four diesel generators (DGs) at the Sequoyah site to supply emergency ac power if offsite power from the grid is lost. Two of these DGs are dedicated to Unit 1, and two are dedicated to Unit 2. Each unit has its own set of batteries to supply general emergency do power. Each DG obtains starting power from a separate sec of batteries.

The auxiliary feedwater system (AFWS) has three pumps: two are driven by electric motors; the third is driven by a steam turbine. The AFWS takes suction from the condensate storage tank (CST). There are two charging pumps and two safety injection pumps; together, the charging system and the safety injaction system (SIS) perform the high pressure injection (HPI) functions. There are two low pressure injection (LPI) pumps. Both the high pressure infection system (HPIS) and the low pressure infection system (LPIS) can finction in a recirculation mode as well as in an injection mode. In the injection mode they take suction from the refueling water storage tank (RWST), in the recirculation mode the LPI pumps take suction from the sump, and the HPIS uses the LPIS as a fluid source.

Sequoyah diso has four cold ieg accumatators to provide lamediate, Mighilow, low-ptubsuze injection. RCS overpressure pretcetien is provided by three-code safety rellef valves (SRVs) and two power-operated rellef valves (PORVs). The compunent cooling water (CCW) system that provides cooling for the reactor coolant purn ($R C P$) senls and other ECCS equipment has five pumps for the two units. Service water is provided to both units by eight self-cooled puinps.

The Sequoyah containment is a free-standing steel cylinder with a hemispherical dome. A concrete shield building surrounds the containment and provides radiation shielding, as well as protection from the elements and external missiles. Figure 1.1 shows a section through the Sequoyah containment. The volume is 1.2 million ft^{3}, and the design pressure is 10.8 psig .

Figure 1.1. Section of the Sequoyah Containment

Pressure suppression during accident conditions is provided passi a 1 by the ice condenser system (ICS). Blowdown steam from the RCS is directed through the ice condenser (IC), thus reducing the containment pressure. Long-term emergency containment heat removal is by spray systems. The containment spray systera (CSS) has two pumps which take suction from the RWST in injection and from the sump in recir. lon.

There is no connection between the sump and the reactor cavity at a low elevation in the sequoyah containment. Water from a pipe break in containment or from ice melt will flow to the sump. The reactor cavity w111 remain dry unless the water that has accumulated on the lower containment floor is enough for overflow into the cavity. This requires injection of the RWST contents into containment and melting of about onequarter of the ice.

There is an air return fan (ARF) system at Sequoyah, in which two fans provide mixing of the containment atmosphere and ensure that gas displaced into the upper conatinment by the blowdown steam is returned rapidly to the lower containment. The hydrogen injection system (HIS) is provided to help preclude large hydrogen burns by burning relatively small quantities of hydrogen as it is produced.

More detail on the features of the plant that are important to the progression of the accident and the performance of the containment is contained in Section 2.1 of this volume.

1.3 Changes Since the Draft Report

The Sequoyah analyses for the February 1987 draft of NUREG- 1150 were presented in Volume 2 of the original "Draft for Comment versions of NUREG/CR-4551 and NUREG/CR-4700, published in April 1987. The analyses performed for NUREG-1150, Second Draft for Peer Review, June 1989, and reported in this volume, are new. Whlle they build on the previous analyses and the basic approach is the same, very little from the first analyses is used directly in thes analyses. This section presents the mafor differences between the two analyses. Essentially, the accident progression analysis and the source term analysis were redone to incorporate new information and to take advantage of expanded methods and analysis capabilities.

1. Ification. A major change since the previous analyses is the expert e icitation process used to quantify variables and parameters thought to be large contributors to the uncertainty in risk. This process was used both for the accident progression analysis and the source term analysis. The sizes of the panels were expanded, with each panel containing experts from industry and academia in addition to experts from NRC contractors. The number of issues addressed was also increased to about 30. Separate panels of experts were convened for In-Vessel Processes, Containment Loads, Containment Structural Response, Molten Core-Containment Interactions (MCCI), and Source Term Issues.

To ensure that expert opinion was obtained in a manner consistent with the state of the art in this area, specialists in the process of obtaining
expert judgments in an unblased fashion were involved in designing the elicitation process, explaining it to the experts, and training them in the methods used. The experts were given ceveral months between the meeting at which the problem was defined and the meeting at which their opinions were elicited so that they could review the literature, discuss the problem with colleagues, and perform incopeadent analyses. The results of the elicita. tion of each expert were carcfully reourded, and the reasoning of each expert and the process by which their individual conclusions were aggregated into the final distribution are thoroughly docunented.

Accident Progression Analysis. Not oniy vas a substantlal fraction of the Accident Progression Event Tree (APET) for Sequoyah rewritten for this analysis, but the capabilities of EVNTRE, the code that evaluates the APET, were considerably expanded. The major improvements to EVNTRE were the ability to utilize user functions and the ability to treat contisuous distributions. A user function is a FORTRAN subprogram which is ilnkeu with the EVNTRE code. When referenced in the APET, the user function is evaluated to perform caloulations too complex to be handled directly in the APET. In the current Sequoyah AFRT she user function is called to: compute the amount and distribution of hydrogen in containment during the various time periods; compute the concentration and the flammability of the atmosphere in the containment during the various time periods; calculate the pressure rise due to hydrogen burns and adjust the amounts of gases consumed in the burns accordingly; and determine whether the containment fails and the mode of fallure. These problems were handled in a much simpler fashion in the previous analysis.

The event tree used for the analysis for the 1987 draft of NUREG- 1150 could only treat discrete distributions. In the analysis reported here continuous distributions are used. Use of continuous distributions removes a significant constraint from the expert elicitations and eliminates any errors introduced by discrete levels in the previous analysis.

The event tree that forms the basis of this analysis was modified to address new issues and to incorporate new information. Thus, not only was the structure of the tree changed but new information was used to quantlfy the tree. A major modification was the way hydrogen combustion events were modeled aid quantified. The amount of hydrogen in the containment is tracked throughout the accident. The probability of ignition, the probability of detonation, and the loads from a combustion event are all a function of the hydrogen concentration. In the current APET, loads are assigned to both deflagrations and detonations. These loads are then compared to the structural sapacity of the containment to determine whether it fails or not and the mode of fallure.

Another major modification to the APET was consideration of offsite electric power recovery during core degradation, i.e., between uncovering of the top of active fuel (TAF) and vessel breach (VB). This led to a significant portion of the station blackout (SBO) accidents terminating not with VB, but $i n$ an arrested core damage state similar to TMI-2. Additional means of depressurizing che RCS are now in the event tres. These additional mechanisms, along with the higher probabilities fo some of them that resulted from the expert elicitations, mean that the likelihood is
small that an accident that is at full system pressure at the onset of core damage will still be at that pressure when the vessel fails. Accidents in which core damage begins with LPIS, or both LPIS and HPIS operating are treated in the current APET whereas they were omitted in the previous version. If an event ocours to reduce the RCS pressure in these situations, core damage may be arrested before the vessel fails, leading, by another path, to an arrested core damage state similar to that of TMI-2

Another change in the accident progression analysis is in the binning or grouping of the results of evaluating the APET. In the first analysis, all results were placed in one of about 20 previously defined bins. There were many pathways through the tree that did not fit well into these previously defined bins. For the current analysis, a flexible bin structure, defined by the characteristics important to the subsequent source term analysis was ued. This eliminates a major problem in the original analysis process.

Source Term Analysis. While the basic parametric approach used in the original version of SEQSOR, the code used to compute source terms, has been retained in the present version of SEQSOR, the code has beun completely rewritten with a different orientation. The previous version was designed primarily to produce results that could be compared directly with the results of the source term code package (STCP). Discrete values for the parameters that differed from those that produced results close to STCP results were then used in the sampling process, with the probabilities for each value or level determined by a small panel of experts. Thus, the first version of SEQSOR determined uncertainty in the amount of fission products released for the limited number of predefined bins from the STCP as a base.

The current version of SEQSOR is quite different. First, it is not tied to the STCP in any way. It was recognized before the new version was developed that most of the parameters would come from continuous distributions defined by an expert panel. Thus, the current version does not rely on results from the STCP or any other specific code. The experts used the results of one or more codes to derive their distributions, but SEQSOR itself inerely combines the parameters defined by the expert panel. Furthermore, SEQSOR now treats any consistent accident progression state defined by 14 characteristics that constitute an accident progression bin (APB) for Sequoyah. It is not limited to a small number of pre-defined bins as it was in the original version.

Finally, a new method to group the source terms computed by SEQSOR has been devised. A source term is calculated for each accident progression bin (APB) for each observation in the sample. As a result, there are too many source terms to perform a consequence calculation for each and the source terms have to be grouped before the consequence calculations are performed. The "clustering" method used in the previous analysis was somewhat subjective and not as reproducible as desired. The new "partitioning" scheme developed for grouping the source terms in this analysis eliminates these problems.

Consequence Analysis. The consequence analysis for the current NUREG-1150 does not differ so ma kedly from that for the previous version of NUREG-
'loú as do the accident progression analysis and the source term analysis. Version 1.4 of MACCS was used for the original analysis, while Version 1.5 is used for this analysis. The major difference between the two versions is in the data used in the lung model. Version 1.4 used the lung data contained in the original version of "Health Effects Models for Nuclear Power Plant Accidenc Consequence Analysis", ${ }^{3}$ whereas Version 1.5 of MACCS uses the lung data from Revision 1 (1989) of this report. ${ }^{4}$ Other changes were made to the structure of the code in the transition from 1.4 to 1.5 , but t_{i} effects of these changes on the consequence values calculated are small.

Another iifference in the consequence calcularish is that the NRC specified evacuatio. of 99.58 of the population in the evacuation area for this analysis, as compared with the previous anciysis in kitich 95% of the population was evacuated.

Risk Analysis. The risk analysis combines the results of the accident frequency analysis, the accident progression analysis, the source term analysis, and the consequence analysis to obtain estimates of risk to the offsite population and the uncertainty in those estimates. This combination of the results of the constituent analyses was performed essentially the same way for both che pievious and the current analyses. The only differences are in the number of variables campled \quad d the number of observations in the sample.

1.4 Structure of the Analysis

The NUREG-1150 analysis of the Sequoyah plant is a Level 3 probabilistic risk assessment composed of four constituent analyses:

1. Accident frequency analysis, which estimates the frequency of core damage for all significint initiating events;
2. Accident progression analysis, which determines the possible ways in which an accident could evolve given core damage;
3. Source term analysis, which esitmates the source terms (i.e., environmental releases) for specific acciden conditions; and
4. Consequence enalysis, which estimates the health and economic impacts of the individual source terms.

Each of these analyses is a substantial undertaking. By carefully defining the interfaces between these individual analyses, the cransfer of informaion is facilitated. At the completion of each constituent analysis, intermediate results are generated for presentation and interpretation. An overview of the assembly of these components into an integrated analysis is shown in Figure 1.2.

The NUREG-1150 plant studies are fully integrated probabilistic risk assessments in the sense that calculations leading to both risk and uncertalnty in risk are carried through all four components of the individual plant studies. The frequency of the initiating event, the conditional

Figure 1.2. Overview of Integrated Plant Analysis in NUREG-1150
probability of the paths leading to the consequence, and the value of the consequence itself can then be combined to obtain a rask measure. Measures of uncertainty in risk are obtained by repeating the calcuiation fust indicated many times with different values for impo:tant parameters. This provides a distribution of risk estimates that is a meacure of the uncertainty in risk.

It is important to recognize that a probabilistic risk assessment is a procedure for assembling and organizing information from many sources; the models actually used in the computational framework of a probabilistic risk assessment serve to organize this information, and as a result, are rarely as detailed as most of the models that are actually used in the original generation of this information. To capture the uncertainties, the first three of the four constituent analyses use all available sources of information for each analysis component, including past observational data, experimental data, mechanistic modeling and, as appropriace or necessary, expert judgment. This requires the use of relatively quick running models to assemble and manipulate the data developed for each analysis.

To facilitate both the conceptual description and the computational implementation of the NUREG- 1150 analyses, a matrix representation ${ }^{5,6}$ is used to show how the overall integrated analysis fits together and how the progres. sion of an accident can be traced from initiating event to offsite consequences.

Accicient Frequency Analysis. The accident frequency analysis uses event tree and fault tree techniques to investigate the manner in which various initiating events can lead to core damage. In initial detailed analyses, the SETS program combines experimental data, past observational data and modeling results into estimates of core damage frequency. The ultimate outcome of the initial accident frequency analysis for each plant is a group of minimal cut sets that lead to core damage. Detailed descriptions of the systems analyses for the individual plants are available elsewhere $8,9,10,11,12$ For the final integrated NUREG-1150 analysis for each plant, the group of risk-significant minimal out sets is used as the systems model. In the integrated analysis, the TEMAC program ${ }^{13,14}$ is used to evaluate the minimal cut sets. The minimal cut sets themselves are grouped into PDSs, where all minimal cut sets in a PDS provide a similar set of conditions for the subsequent accident progression analysis. Thus, the PDSS form the interface between the accident frequency analysis and the accident progression analysis.

With use of the transition matrix notation, the accident progression analysis may be represented by

$$
\begin{equation*}
f P D S=f I E P(I E-P D S), \tag{Eq.1.1}
\end{equation*}
$$

where $£$ PPDS is the vector u frequencies for the PDSs, fIE is the vector of frequencies for the initiating events, and P (IE \rightarrow PDS) is the matrix of transition probabilities from inltiating events to the PDSs. Specifically:

```
fIE = [fIE , ..., fIE nIE],
fIE = frequency (yr-1) for initiating event i,
nIE = number of initisting events,
fPDS = [fPDSS , ..., fPDD- nPDS }]
EPDSj = frequency (yr--1) for PDS j,
nPDS = number of PDSs,
```

 \(P(I E \rightarrow P D S)=\left[\begin{array}{ccc}P P D S_{11} & \ldots & P_{P D S}^{1, n P D S} \\ \vdots & & \vdots \\ P P D S_{n I E, 1} & \ldots & \text { pPDS }_{n I E, n P D S}\end{array}\right]\)
 and

```
pPDS \(1 j\) = probability that initiating event i will
        lead to PDS J .
```

The elements pPrs Ph $_{1 j}$ of (IE \rightarrow PDS) are conditional probabilities: given that initiating event i has occurred, PPDS $_{i j}$ is the probability that PDS f will also occur. The elements of $P(I E \rightarrow P D S)$ are determined by the analysis of the minimal cut sets with the TEMAC program. In turn, both the cut sets and the data used in their analysis come from earlier studies that draw on many sources of information. Thus, although the elements pPDS 1 ij of $P($ IE \rightarrow PDS $)$ are represented as though they are single numbers, in practice these elements are functions of the many sources of information that went into the accident frequency analysis.

Accident Progression Analysis. The accident progression analysis uses event tree techniques to determine the possible ways in which an accident might evolve from each PDS. Specifically, a single event tree is developed for each plant and evaluated with the EVNTRE computer program, ${ }^{15}$ The definition of each PDS provides enough information to define the initial conditions for the APET analysis. Due to the large number of questions in the Sequoyah APET and the fact that many of these questions have more than two outcomes, there are far too many paths through each tree to permit their individual consideration in subsequent source term and consequence analysis. Therefore, the paths through the trees are grouped into APBs, where each bin is a group of paths through the event tree that define a similar set of conditions for source term analysis. The properties of each $A P B$ define the initial conditions for the estimation of the source term.

Past observations, experimental data, mechanistio code calculations, and expert judgment were used in the development and parameterization of the model for accident progression that is embodied in the APET. The transition matrix representation for the accident progression analysis is

$$
f A P B=f P D S P(P D S \rightarrow A P B)
$$

where fPDS is the vector of frequencies for the PDSs defined in Eq. 1.1, $f A P B$ is the vector of frequencies for the $A P B s$, and $P(P D S \rightarrow A P B)$ is the matrix of transition probabilities from PDSs to APBs. Spectfically:

```
fAPB = {£APB , , .., £APBB nAPB }]
fAPB
    bin k,
nAPB = number of APBs,
```

and

$$
\begin{aligned}
& p A P B_{j k}= \text { probability that PDS } j w i l l \\
& \text { lead to } A P B k .
\end{aligned}
$$

The properties of fPDS are given in conjunction with Eq. 1.1. The elements $\square A P B_{j k}$ of $P(P D S \rightarrow A P B)$ are determined in the accident progression analysis by evaluating the APET with EVNTRE for each PDS group.

Source Term Analysis. The source terms are calculated for each APB with a non-zero conditional probability by a fast-running parametric computer code entitied SEQSOR, SEQSOR is not a derailed mechanistic model and is not designed to simulate the fission product transport, physics, and chemistry from first principles. Instead, SEQSOR integrates the results of many detailed codes and the conclusions of many experts. The experts, in turn, based many of their conclusions on the results of caloulations with codes such as the source term code package, 16,1. MELCOR, and MAAP. Most of the parameters utilized calculating the fission product release fractions in SEQSOR are sampled from distributions providea by an expert panel. Because of the large number of APBs, use of fast-executing code like SEQSOR is absolutely necessary.

The number of APBs for which source tarms pre calculated is so large that it was not practical to perform a consequence calculation for every source term. That is, the consequence code NACCS, 18,19,20 required so much computer time to caloulate the consequences of a source term that the source terms had to be combined into source term groups. Each source term group is a collection of source terms that result in similar consequences. The frequency of the source term group is the sum or the frequencies of all the APBs which make up the group. The process of determining which APBs go to which source term group is denoted partitioning. It involves considering the potential of each source term group to cause early fatalities and latent cancer fatalities. Partitioning is a complex process; it is dis. cussed in detail in Volume 1 of this report ant in the User's Guide for the PARTITION Program ${ }^{21}$

The transition matrix representation of the source term calculation and the grouping process is
$f S T G=f A P B \quad P(A P B \rightarrow S T G)$
(Eq. 1, 3)
where $f A P B$ is the vector of frequencies for the $A P B$ s defined in Eq. 1.2, fSTG is the vector of frequencies for the source term groups, and $P(A P B \rightarrow S T G)$ is the matrix of transition probabilities from $A P B s$ to source term groups. Specifically,

$$
\begin{aligned}
\mathrm{fSTG} & =\left[\mathrm{fSTG}_{1}, \ldots, \mathrm{fSTG}_{\mathrm{nSTG}}\right], \\
\mathrm{fSTG}_{\ell} & =\text { frequensy }\left(\mathrm{yr}^{-1}\right) \text { for source term group } \ell, \\
\mathrm{nSTG} & =\text { number of source term groups } \\
\mathrm{P}(\mathrm{APB} \rightarrow \mathrm{STG}) & =\left[\begin{array}{lc}
\mathrm{fSTG}_{11} & \ldots \mathrm{pSTG}_{1, \mathrm{nST}} \\
\vdots & \vdots \\
\mathrm{PSTG}_{\mathrm{nAPB}, 1} & \ldots \mathrm{pSTG}_{\mathrm{nAPB}, \mathrm{nSTG}}
\end{array}\right]
\end{aligned}
$$

and

The properties of $f A P B$ are given in conjunction with Eq. 1.2. Note that the source terms themselves do not appear in Eq. 1,4 . The source terms are used only to assign an APB to a source term group. The consequences for each APB are computed from the average source term for the group to which the APB has been assigned.

Consequence Analysis. The consequence analysis is performed for each source term group by the MACCS program. The results for each source term group include estimates for both mean consequences and distributions of consequences. When these consequence results are combined with the frequencies for the source term groups, overall measures of risk are obtained. The consequence analysis differs from the preceding three constituent analyses in that uncertainties are not explicitly treated in the consequence analysis. That is, important values and parameters are determined from distributions by a sampling process in the accident frequency analysis, the accident progression analysis, and the source term analysis. This is not the case for the consequences in the analyses performed for NUREG-1150.

In the transition matrix notation, the risk may be expressed by

```
rC=fSTG cSTG
```

(Eq. 1,4)
where fSTG is the vector of frequencies for the source term groups defined in Eq. 1.3, rC is the vector of risk measures, and cSTG is the matrix of mean consequence measures conditional on the occurrence of individual source term groups. Specifically,

$$
\begin{aligned}
& r C=\left\{r C_{1}, \ldots, r C_{n C}\right\}, \\
& r C_{m}=r i s k \text { (consequence/yr) for consequence } \\
& \text { measure } m \text {, } \\
& \text { nC }=\text { number of consequence measures, } \\
& \operatorname{cSTG}=\left[\begin{array}{llc}
\operatorname{cSTG}_{11} & \ldots & \operatorname{cSTG}_{1, n c} \\
\vdots & & \vdots \\
\operatorname{cSTG}_{n S T 0,1} & \ldots & \operatorname{cSTG}_{n S T G, n c}
\end{array}\right]
\end{aligned}
$$

$\operatorname{cSTG}_{\ell_{\mathrm{m}}}$ - mean value (over weather) of consequence measure m conditional on the occurrence of source term group ℓ.

The properties of fSTG are given in conjunction with Eq. 1.3. The elements $\operatorname{cSTG}_{l m}$ of $c S T G$ are determined from consequence calculations with MACCS for individual source term groups.

Computation of Risk. Equations 1.1 through 1.4 can be combined to obtain the following expression for risk:

$$
\mathrm{rC}=\mathrm{fIE} P(I E \rightarrow P D S) P(P D S \rightarrow A P B) P(A P B \rightarrow S T G) \quad c S T G
$$

(Eq. 1.5)
This equation shows how each of the constituent analyses enters into the calculation of risk, starting from the frequencies of the initiating events and ending with the calculation of consequences. Evaluation of the expression in Eq. 1.5 is performed with the PRAMIS 22 and RISQUE codes.

The description of the complete risk calculation so far has focused on the computation of mean risk (consequences/year) because doing so makes the overall structure of the NUREG-1150 PRAs more easy to comprehend. The mean risk results are derived from the frequency of the initiating events, the conditional probabilities of the many ways that each accident may evolve and the probability of occurrence for each type of weather sequence at the time of an accident. The mean risk, then, is a summary risk measure.

More information is conveyed when distributions for consequence values are displayed. The form typically used for this is the complementary cumula. tive distribution function (CCDF). CCDFs are defined by pairs of values

Figure 1.3. Example Risk CCDF
i), where c is a consequence value and the f is the frequency with which c is exceeded. Figure 1.3 is an example of a CCDF. The construction of CCDFs is described in Volume 1 of this report. Each mean risk result is the outcome from reducing a curve of the form shown in Figure 1.3 to a single value. While the mean risk results are often useful for summaries or high-level comparisons, the CODF is the more basic measure of risk because it displays the relationship between the size of the consequence and frequency exceedance. The nature of this relationship, i.e., that high consequence events are much less likely than low consequence events is lost when mean risk results alone are reported. This report uses both mean risk and CCDFs to report the risk results.

Propagation of Uncertainty through the Analysis. The integrated NUREG-1150 analyses use Monte Carlo procedures as a basis for both uncertainty and the sensitivity analysis. This approach utilizes a sequence:

$$
\begin{equation*}
X_{1}, X_{2}, \ldots, X_{n v} \tag{Eq.1.6}
\end{equation*}
$$

of potentially important variables, where nV is the number of variables selected for consideration. Most of these variables were considered by a panel of experts representing the NRC and its contractors, the academic world, and the nuclear industry. For each variable treated in this manner, two to six experts considered all the information at their disposal and provided a distribution for the variable. Formal decision analysis techniques 23 (also in Volume 2 of this report) were used to obtain and record each expert's conclusions and to aggregate the assessments of the individusl panel members into summary distribution for the variable. Thus, a sequence of distributions

$$
\begin{equation*}
D_{1}, D_{2}, \ldots, D_{n V}, \tag{Eq.1.7}
\end{equation*}
$$

is obtained, where D_{1} is the distribution assigned to variable X_{1}.
From these distributions, a stratified Monte Carlo technique, Latin Hypercube Sampling, ${ }^{24,25}$ is used to obtain the variable values that will actually be propagated through the integrated analysis. The result of generating a sample from the variables in Eq. 1.6 with the distributions in Eq. 1.7 is a sequence

$$
\begin{equation*}
S_{1}=\left[X_{11}, X_{12}, \ldots, X_{1, n v}\right], i=1,2, \ldots, \text { nLHS }, \tag{Eq.1.8}
\end{equation*}
$$

of sample elements, where $X_{1 j}$ is the value for variable X_{j} in sample element i and nilhs is the number of elements in the sample. The expression in Eq. 1.5 is then determined for each element of the sample. This creates a sequence of results of the form

$$
\begin{equation*}
r C_{1}=f I E_{1} P_{1}(I E \rightarrow P D S) P_{1}(P D S \rightarrow A P B) P_{1}(A P B \rightarrow S T G) C S T G, \tag{Eq.1.9}
\end{equation*}
$$

where the subscript i is used to denote the evaluation of the expression in Eq. 1.5 with the ith sample element in Eq. 1.8. The uncertainty and sensitivity annlyses in NUREG- 1150 are based on the calculations summarlzed in

Eq. 1.9. Since $P(I E \rightarrow P D S), P(P D S \rightarrow A P B)$ and $P(A P B \rightarrow S T G)$ are based on results obtained with TEMAC, EVNTRE and SEQSOR, determination of the expression in Eq. 1.9 requires a separate evaluation of tha cut sets, the APET, and the source term model for each element or observation in the sample. The matrix cSTG in Eq. 1.9 is not subscripted because the NUREG-1150 analyses do not include consequence inveling uncertainty other than the stochastic variability due to weather conditions.

1.5 Organization of this Report

This report is published in seven volumes as described briefly in the Foreword. Volume 1 of NUREG/CR-4551. describes the methods used in the accident progression analysis, the source term analysis, and the consequence analysis, in addition to presenting the methods used to assemble the results of these constituent analyses to determine risk and the uncertainty in risk. Volume 2 describes the results of convening expert panals to determine distributions for the variables thought to be the most impowant contributors to uncertainty in risk. Panels were formed to consider i_{1}. vessel processes, loads to the containment, containment structural res ponse, molten CCIS, and source term issues. In addition to documenting the results of these panels for about 30 important parameters, Volume 2 in cludes supporting material used by these panels and presents the results of distributions that were determined by other means.

Volumes 3 through 6 present the results of the accident progression analysis, the source term analysis, and the consequence analysis, and the combined risk results for Surry, Peach Bottom, Sequoyah, and Grand Gulf, respectively. These analyses were performed by SNL. Volume 7 has analogous results for Zion. The Zion analyses were performed by BNL.

This volume gives risk and constituent analysis results for Unit 1 of the Sequoyah Nuclear Station, operated by the TVA. Part 1 of this volume presents the analysis and the results is some detail; Part 2 consists of appendices that contain further detail. Following a summary and an introduction, Chapter 2 consists of results of the accident progression analysis for internal initiating events. Chapter 3 deals with the results of the source term analysis, and Chapter 4 gives the result of the consequence analysis. Chapter 5 summarizes the risk results, including the contributors to uncertainty in risk, for Sequoyah, and Chapter 6 contains the insights and conclusions of the complete analysis.

1.6 References

1. U.S. Nuclear Regulatory Commission, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants," NUREG-1150, June 1989.
2. U.S. Nuclear Regulatory Commission, "Reactor Safety Study . An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants," WASH-1400 (NUPEG-75/014), 1975.
3. J. S. Evans et al., "Health Effects Models for Nuclear Power Plant Accident Consequence Analysis," NUREG/CR-4214, SAND85-7185, Sandia National Laboracories, August 1986.

4 J. S. Evans et al., "Health Effects Models for Nuclear Power Plant Accident Consequence Analysis," NUREG/CR-4214, Revision 1, SAND857185, Sandia National Laboratories, and Harvard University, Cambridge, MA, (Part I published January 1990; Part II published May 1989).
5. S. Kaplan, "Matrix Theory Formalism for Event Tres Analysis: Application to Nuclear-Risk Analysis, Risk Analysis. 2, pp. 9.18, 1982.
6. D. C. Bley, S. Kaplan, and B. J. Garrick, "Assembling and Decomposing PRA Results: A Matrix Formalism," in Proceedings of the International Meeting on Thermal Nuclear Reactor Safety, NUREG/CP-0027, Vol. 1, pp. 173-182, U. S. Nuclear Regulatory Commission, Washington, D. C., 1982.
7. R. B. Worrel1, "SETS Reference Manual," NUREG/CR-4213, SAND83-2675, Sandia National Laboratories, May 1985.
8. R. C. Bertucio and J. A. Julius, "Analysis of Core Damage Frequency: Surry, Unit 1, Internal Events," NJREG/CR-4550, Vo1. 3, Revision 1, SAND86-2084, Sandia National Laboratories, April 1989.
9. R. C. Bertucio and S. R. Brown, "Analysis of Core Damage Frequency: Sequoyah, Unit 1, Internal Events Internal Events," NUREG/CR-4550, Vol. 5, Revision 1, SAND86-2084, Sandia National Laboratories, April 1990.
10. A. M. Kolaczkowski et al., "Analysis of Core n......ge Frequency: Peach Bottom, Unit 2 Internal Events," NUREG/CR-4550, Vo? 4, Revision 1 , SAND86-2084, Sandia National Laboratorles, August 1989.
11. M. T. Drouin et al., "Analysis of Core Damage Frequency, Grand Gul_, Unit 1 Internal Events," NUREG/CR-4550, Vol. 6, SAND86-2784, e_ndia National Laboratories, 1989.
12. M, B, Sattison and K. W. Hall, "Analysis of Core Damage Frequency: Zion, Unit 1 Internal Events," NUREG/CR-4550, Vo1. 7, Reviison 1, EGG-2554, Idaho National Engineering Laboratory, May 1990.
13. R. L. Iman, "A Matrix-Based Approach to Uncertainty and Sensitivity Analysis for Fault Trees," Risk Analysis, 7. pp. 21.33, 1987.
14. R. L. Iman and M. J. Shortencarier, "A User's Guide for the Top Event Matrix Analysis Code (TEMAC)," NUREG/CR-4598, SAND86-0960, Sandia National Laboratories, April 1986.
15. J. M. Griesmeyer and L. N. Smith, "A Reference Manual for the Event Progression Analysis Code (EVNTRE)," NUREG/CR-5174, SAND88.1607, Sandia National Laboratories, September 1989.
16. R. S. Denning, J. A. Gieseke, P., Cybulskis, K, W. Lee, H, Jordan, L. A. Curtis, R. F. Kelly, V. Kogan, and P, M. Schumacher, "Radionuclide Calculations for Selected Severe Accldent Scenarios," NUREG/CR-4524, BMI-2139, Vols. 1.5, Battelle's Columbus Division, 1986.
17. M. T. Leonard et e.1., "Supplemental Radionuclide Release Calculations for Selected Severe Accident Scenarios," NUREG/CR-5062, BMI-2160, Battelle's Columbus Division, 1988.
18. D. I. Chanin, J. L. Sprung, L. T. Ritchie, and H.-N Jow, "MELCOR Accident Consequence Code System (MACCS): User's Guide," NUREG/CR4691, SAND86-1562, Vol. 1, Sandia National Laboratories, February 1990.
19. H, -N. Jow, J. L. Sprung, J. A. Rollstin, L. T. Ritchie and D. I. Chanin, "MELCOR Accident Consequence Code System (MACCS): Model Description," NUREG/CR-4691, SAND86-1562, Vol. 2, Sandia National Laboratories, February 1990.
20. J. A. Rollstin, D. I. Chanin and $H-N$. Jow, "MELCOR Accident Consequence Code System (MACCS): Programmer's Reference Manual, " NUREG/CR-1562, Vol. 3, Sandia National Laboratorles, February 1990.
21. R. L. Iman, J. C. Helton, and J. D. Johnson, "PARTITION: A Program Defining the Source Term/Consequence Analysis Interface in the NUREG1150 Probabilistic Risk Assessmencs User's Guide," NUREG/CR-5253, SAND88-2940, Sandia National Laboratories, May 1990.
22. R. L. Iman, J. D. Johnson, and J. C. Helton, "PRAMIS: Probabilistic Risk Assessment Model Integration System User's Guide," NUREG/CR-5262, SAND88-3093, Sandia National Laboratories May 1990.
23. S. C. Hora and R. L. Iman, "Expert Opinion in Risk Analysis - The NUREC-1150 Methodology," Nuclear Science and Engineering, 102: pp. 323-331 (1989).
24. M. J. McKay, W. J. Conover, and R. J. Beckman, "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code," Technometrics. 21, 239-245, 1979.
25. R. L. Iman and M. J. Shortencarier, "A FORTRAN 77 Program and User's Guide for the Generation of Latin Hyperoube and Random Samples for Use with Computer Models," NUREG/CR-3624, SAND83-2365, Sandia National Laboratories, March 1984.

This chapter describes the analysis of the progression of the accident. The analysis begins at the time of the uncovering of the top of active fuel (UTAF) and continues until the release of the major portion of radioactive material is complete (a duration of about 24 h). As the last barrier to the release of the fission products to the environment, the response of the containment to the stresses placed upon it by the degradation of the core and failure of the reactor vessel is an important part of this analysis. The main toul for performing the accident progression analysis is a large and complex event tree. The methods used in the accident progression analysis are presented in Volume 1, Part 1. The accident progression analysis starts with information received from the accident frequency analysis: frequencies and definitions of the plant damage states (PDSs). The results of the accident progression analysis are passed to the source term enalysis and the risk analysis.

Section 2.1 reviews the plant features that are important to the accident progression analysis and the containment regponse. Section 2.2 sumarizes the results of the accident frequency analysis, defines the PDSs, and presents the PDS frequencies. Section 2.3 contains a brief description of the accident progression event tree (APET). A detailed description of the APET is contained in Appendix A. Section 2.4 describes the way in which the results of the evaluation of the APET are grouped together into bins. This grouping is necessary to reduce the information resulting from the APET evaluation to a manageable amount while still preserving the information required by the source term analysis. Section 2.5 presents the results of the accident progression analysis for internal initiators.

2.1 Sequoyah Featurea. Important to Accident. Progression

The entire Sequoyah plant was briefly described in Section 1.2 of this volume. This section provides more detail on the features that are important to the progression of a core degradation accident and the response of the containment to the stresses placed upon it. These features are:

- The containment structure;
- The ice condenser (IC) ;
- The containment spray system (CSS) ;
- The air return fan system (ARFS);
- The hydrogen ignition system (HIS);
- The compartmental structure of the containment; and
- The sump and cavity arrangement.

2.1.1 The Sequoyah Containment Structure

The Sequoyah containment is a free-standing steel cylinder with a domeshaped roof and a bottom liner plate encased in concreta. The thickness of the cylindrical portion of the containment is $1-3 / 8 \mathrm{in}$, at the bottom and decreases to $1 / 2 \mathrm{in}$. at the spring line, where the cylinder transitions to the hemispherical dome. The dome is $7 / 16 \mathrm{in}$. thick at the spring line and decreases to $15 / 16 \mathrm{in}$. at the apex. The bottom liner plate is $1 / 4 \mathrm{in}$. thick, sits on a base of concrete about 8 ft thick, and upon which is cast a 2 -ft-thick concrete slab, which serves as the containment floor. A concrete shield building with a wall thickness of 3 ft surrounds the steel containment providing radiation shielding, and protection of the containment from adveise atmospheric conditions and external missiles. Figure 1.1 shows a section through the sequoyah containment.

The design pressure of the Sequoyah containment is 10.8 psig . Due to conservatisms in design and construction, most estimates of the failure pressure are well above the design pressure. The mean of the aggregate distribution for the failure pressure of the Sequoyah containment provided by the Structural Response Expert Panel was 65 psig . The concrete shield building is not a significant pressure barrier since its pressure capacity is substantially less than that of the shell.

2.1.2 The Ice Condenser

The free volume of the Sequoyah containment is 1.2 million ft^{3}, which is about half the volume of a typical large dry PWR containment. To compensate for this smaller volume in accommodating steam pressures generated during accident conditions, a compartment containing borated ice is located between the upper and lower portions of the containment. The ice condenser compartment is annular, subtending an angle of 300° at the containment center, and is located between the crane wall and the steel containment shell. As steam is blown down from the primary system during an accident, it is driven up through the ice where it is condensed, thereby limiting the pressure in containment. The condensed water then drains back into the lower compartment of the containment.

2.1.3 The Containment Spray System

At Sequoyah, long-term containment heat removal (CHR) is provided by the CSS. The spray system consists of two pump trains capable of drawing suction from the refueling water storage tank (RWST) and discharging through spray headers in the dome of the containment building. Water sprayed into containment passes througn drains in the upper compartment floor to the containment sump. When the RWST reaches a low level, the pump suction is transferced by operator action to the sump. In this mode of operation, heat is removed from the containment atmosphere by a heat exchanger in each of the pump trains; the heat exchangers are in turn cooled by a service water system. It is worth noting that the fallure to remove the upper compartment drain covers following refueling operations was assessed in RSSMAP1 to be an important source of fallure for both the spray and core cooling systems in the recirculation phase, since water from
spray flow would be trapped in the upper compartment and would never reach the sump. Recent improvements in maintenance procedures have significantly reduced the likelihood that the drain covers could be left in place.

2.1.4 The ARES

The ARFS consists of two recirculation fans, each supplied with its own separate duct system and dampers. The operation of the fans ensures that gas, displaced into the upper containment by the blowdown of steam from the primary system, is returned rapidly to the lower contalnment. The fans provide mixing of the containment atmosphere, thereby reducing the hydrogen concentration in stagnant areas of containment. The fans draw gases from the dome and dead-ended regions of containment and exhaust into the lower compartment. This maintains forced circulation from the lower compartment through the ioe condenser to the dome. A signal for high containment pressure (3 psig) actuates the fans after a short delay time. The ARFS is ac-powered.

2.1.5 The Hydrogen Ignition System

Hydrogen combustion is a concern for an ice condenser containment because of the relacively small containment volume and low failure pressure. The hydrogen ignition system is provided to help preclude large hydrogen burns by burning relatively small quantities of hydrogen as it is generated. Hydrogen igniters are located in the upper plenum of the ice condenser, the dome, and the lower compartment. Unlike the spray and ARFS, which are both actuated automatically when contatnment pressure reaches 3 psig , the hydrogen igniters must be initiated by the operators. The igniters are dependent upon ac power for their operation.

2.1.6 The Compartmental Structure of the Containment

The Sequoyah containment is divided into three major compartments: the lower compartment, the ice condenser, and the upper compartment. This compartmental nature adds concern regarding high local hydrogen concentrations. Without operation of the ARFS, hydrogen can stagnate within the ice condenser at potentially detonable levels. If hydrogen were to collect in either the upper or lower compartment, the likelihood of a burn capable of leading to contalnment fallure might be increased. This is particularly true for burns occurring in the upper containment, since doors at the entrance and exit of the ice condenser are designed to open only to flow from the lower to the upper com;artment. Thus, the pressures from a hydrogen burn in the upper compartment would not be relieved by flow through the ice condenser.

2.1.7 Sump and Cavity Arrangement

The design of the reactor cavity is such that it is essentially a large room, with a keyway located some distance from the reactor vessel. For sequences in which the RWST contents are injected into containment and there is melting of more than one quarter of the 1 ce, the reactor cavity would invariably be flooded at the time of vessel failure. Only for sequences involving failure of both emergency coolant injection and containment spray injection would it be likely that the cavity would be dry
at VB. Whether the cavity is dry at VB has implications for the magnitude of the containment pressure rise at $V B$ and whether CCI ocours. If the cavity is dry, the water in the sump is unavailable to mitigate the effects of $V B$ or to cool the core after VB.

The design of the cavity and the adjacent in-core instrumentation room (ICIR) is such that a postulated containment failure mode becomes important for Sequoyah. The seal table forms part of the ceiling of the ICIR, and is located between the crane wall and the containment wall. If high pressure melt ejection (HPME) accompanies VB, it may fail the seal table and allow hot core debris to accumulate in the vicinity of the seal table. The hot debris could attack and fail the steel containment wall. A negligible failure mechanism at Sequoyah related to the cavity design is a direct impulse resulting from an ex-vessel steam explosion (EVSE) at VB. In plants which have a direct water pathway from the reactor cavity to the containment wall, it is possible that the impulse from an EVSE could be transmitted in water to the containment wall and fail it. There is no such pathway at Sequoyah.

2.2 Interface with the Core Damage Frequency Analysis

2.2.1 Definition of Plant Damage States

Information about the many different accidents that lead to core damage is passed from the core damage frequency analysis to the accident progression analysis by means of PDSs. Because most of the accident sequences identified in the core damage frequency analysis will have accident progressions similar to other sequences, these sequences have been grouped together into PDSs. All the sequences in one PDS should behave similarly In the period following the uncovering of the top of active fuel (TAF). For the PWRs, the PDS is denoted by a seven-letter indicator that defines seven characteristios that largely determine the initial and boundary conditions of the accident progression. More information about the accident sequences may be found in NUREG/CR-4550, Volume $5 .{ }^{2}$ The methods used in the accident frequency analysis are presented in NUREG/CR-4550, Volume 1,3

Table 2.2-1 lists the seven characteristics used to define ti. PDSs for PWRs. Under each characteristic are given the possible valut *or that characteristic. For example, the first characteristic canotes the condition of the reactor cooling system (RCS) pressure boundary at the time core damage begins (assumed to be approxiatately when the TAF is uncovered) Table $2.2 \cdot 1$ shows that there are eight possibilities for this characteristic: T for transient or no break; A, S_{1}, S_{2}, and S_{3} for the four sizes of break which do not bypass the containment; G and H for SGTRs, and V for the large bypass pipe fallure.

The first characteristic in the PDS is not necessarily an indication of the inltiating event. It is an indicator of the RCS integrity at the time the cor sovers. That is, if the initiating event is a transient, say loss of offsite power, but a reactor coolant pump (RCP) seal fallure oocurs before the onset of core degradation, then there is a small hole in the RCS prossure boundary at the time that core damage begins, which is the time
the accident progression analysis begins. The PDS for this accident would begin with S_{3} to reflect the fact that there is a small hole in the RCS when this analysis starts. It is the plant condition at the onset of core damage that is important for the accident progression analysis, not what the original initiator may have been.

The first character in the PDS indicates the condition of the RCS at the onset of core degradation. As a carry-over from the use of this character to indicate the original initiator, "T" is used tc indicate no treak (transient). An S_{2} break is a break equivalent to a double-ended guillotine break of a pipe, between 0.5 and 2 in . in diameter; an S_{3} break is a break of a pipe less than 0.5 in. in diameter, an A Break is a break of a pipe greater than 6 in. In diameter and an S_{1} break is a break of a pipe between 2 and 6 in . In diameter. A and S_{1} breaks are considered together in the accident progression analysis since both result in low pressure in the RCS. SGTRs are $S_{3} s i z e$. Almost all pump seal failures result in a leak area equivalent to an S_{3} break. A stuck-open PORV is equivalent to an S_{2} break. Event V is such a well known and unique type of accident that the subsequent six characteristics are usually not written out.

The second characteristic concerns the status of the ECCS, Recoverable means that the ECCS will operate if or when electric power is recovered. The value "L" for the second characteristic is used when the LPIS is available to inject when the core is uncovered but cannot because the RCS pressure is too high. "L" implies that HPIS is failed.

The letter "L" is chosen for the second characteristic, for example, for the $\mathrm{S}_{2} \mathrm{H}_{2}$ sequence. This is a small break with failure of HPI and it is placed in PDS $S_{2} L Y Y-Y Y N$. The LPI pumps are operable, so if the operators recognize the situation and depressurize to allow injection by the LPIS, there is no core damage. The only portion counted toward core damage is the small (about 2) fraction where the operator does not recognize the situation and does not depre:surize the primary system.

The use of the letter " B " for the second characteristic indicates that both the HPIS and the LPIS are operating but are unable to inject because the RCS pressure is t high. In sequence $T_{2} L_{1} P_{1}$, PDS TBYY-YNY, for example, the operators cannot open the PORVs and all auxiliary feedwater (AFW) is failed. Thus bleed and feed is not possible using the HPIS, nor can the operators depressurize the system to use the LPIS. As in S LYY-YYN, a temperature-induced failure of the RCS pressure boundary or the sticking open of the PORVs or the SRVs will allow injection when the RCS pressure falls to the appropriate level.

The third characteristic concerns the status of CHR. For Sequoyah, this characteristic refers to the active CHR systems only (sprays and associated systams), not the passive CHR through the functioning of the ice condenser. Recoverable means that the CHR systems will operate if, or when, electric power is recovered. The value " S " for the third characteristic is used when the sprays are available, but there is no heat removal from the spray heat exchangers. Even if there is no heat removal, it is important to know if the sprays are operating because they reduce the aerosol concentrations in the containment atmosphere.

The fourth characteristic concerns the status of ac powe. Recoverable means that power can be restored within the timeframe of the accident, roughly 24 h. Electic power in the plant, in general, is always considered to be recoverable in those PDSs where it is not available.

The fifth characteristic concerns the status of the water in the RWST. It is important for the accident progression to know if the water from the RWST is inside the containment. If the water is injected into containment, it is available to fill the sumps and along, with water from ice melt, can overflow into the reactor cavity. The value " N " for this characteristic is used when some failure prevents the injection of the RWST contents, such as when the water from the RWST has been injected into the RCS but has ended up outside the containment. This occurs in event V when the water is injected into the RCS but flows out through the break into the auxiliary building, and thus is not avallable inside the containment.

The sixth characteristic concerns the heat removal from the steam generators (SGs). There are six possible values for this characteristic since the auxiliary feedwater system (AFWS) may operate for some time in a blackout accident, and the secondary system may or may not be depressurized by the operators. The following abbreviations are used in describing the sixth characteristic in Table 2.2-1:

E-AFWS - Eicutric-motor-driven auxiliary feedwater system; and S-AFWS = Steam-turbine-driven auxiliary feetwater system.

The seventh characteristic concerns cooling for the RCP seals. Recoverable means that cooling will become available if or when electric power is recovered.

2.2.2 PDS Frequencies

Table 2.2-2 1ists 26 PDSs for Sequoyah for internal initiared events as placed into seven PDS groups. These 26 PDSs are those with mean frequencies of 1E-7/R-yr or higher, and they account for over 998 of the total mean core damage frequency (TMCDF), $5.7 \mathrm{E}-5 / \mathrm{R}-\mathrm{yr}$.
Note that while Table $2.2-2$ reports 26 PDSs, the accidont frequencies actually used in the integrated risk analysis were those of the seven PDS groups. That is, the accident progression analysis was performed for each of the seven PDS groups individually. The 26 PDSs were used in determine the branching for some of the initialization questions in the APET, but the APET was not evaluated for each PDS separately.

The accident frequency analysis reports the PDS frequencies based on a sample size of 1000 (see Section 5 of NUREG/CR-4550, Vo1. 5, ${ }^{2}$ Part 1). When considered as a separate entity, a great many variables could be sampled in the accident frequency analysis, and a sample size of 1000 was used. A sample this large was not feasible for the integrated risk analysis. Based on the results from the 1000 -observation sample, those variables which were not important to the uncertainty in the core damage frequency were eliminated from the sampling, and the cut sets were re. evaluated using 200 observations for the integrated risk analysis.

Table 2.2.1
PWR Plant Damage State Charecteristics

```
1. Status of RCS at Onset of Core Damage
    T * no break (transient)
    A * large break in the RCS pressure boundary
    S
    S = small break in the RCS pressure boundary
    S}\mp@subsup{S}{3}{}= very small break in the RCS pressure boundary
    G - SGTR
    H = SGTR with loss of secondary system integrity
    V = large break in an interfacing system
2. Status of ECCS
    B = operated in injection and now operating in recirculation
    I = operated in injection only
    R = not operating, but recoverable
    N = not operating, not recoverable
    L = LPIS available in both injection and reciroulation modes
3. Status of CHR
    Y = operating or operable if/when initiated
    R = not operating, but recoverable
    N * never operated, not recoverable
    S = sprays operable, but no CHR (no service water [SW] to heat
    exchangers [HXs])
4. Ac Power
    Y = available
    p = partially available
    R = not available, but recoverable
    N = not available, not recoverable
5. Contents of RWST
    Y = injected into containment
    R = not injected, but could be injected if power recovered
    N = not injected, cannot be injected in the future
6. Heat Removal from the Steam Generators (SGs)
    X m at least one AFWS operating, SGs not depressurized
    Y = at least one AFWS operating, SGs depressurized
    S = S.AFWS failed at beginning, E.AFWS recoverable
    C S S-AFWS operated until battery depletion, E-AFWS recoverable,
        SGs not depressurized
    D = S-AFWS operated until battery depletion, E-AFWS recoverable,
        SGs depressurized
    N m no AFWS operating, no AFWS recoverable
7. Cooling for RCP Seals
    Y = operating
    R = not operating, but recoverable
    N = not operating, not recoverable
```

Table 2.2.2
PDSs for Sequoyah

Group Number	Group Name	Mean CD Freq. (1) $(1 / R-y r)$	Group * TMOD Ereq.	$\begin{gathered} \text { Plant } \\ \text { Damage } \\ \text { States } \\ \hline \end{gathered}$	Mean CD Freq. (1) $(1 / R=y L)$	* TMCD Ereg.
1	Slow Blackout	5.0E-6	9	TRRR-RDR $\$_{3} R R R$-RDR $\$_{3} R R R$-RCR S_{2} RRR-RCR	$\begin{aligned} & 3.0 \mathrm{E}-7 \\ & 4.2 \mathrm{E}-6 \\ & 1.2 \mathrm{E}-7 \\ & 3.7 \mathrm{E}-7 \end{aligned}$	$\begin{aligned} & <1 \\ & < \\ & <1 \\ & <1 \end{aligned}$
2	Fast Blackout	$9.6 \mathrm{E}-6$	17	TRRR-RSR	9.6E-6	17
3	LOCAs	3, 6E.5	63	ALYY-YYY	1.3E-6	2
				ALYY-YYN	3,4E-7	<1
				AINY-YYN	4, 4E-7	<1
				AIY:-YYN	5.6E-7	1
				S_{1} INY-YYN	1.4E-6	2
				S, IYY-YYN	4.9E-6	9
				$S_{1} I Y Y$-YYN	9.0E- 7	2
				S_{2} INY-YYN	8.9E-7	2
				S_{2} LYY-YYN	4.5E-6	8
				S_{2} TYY-YYN	8.5E-7	2
				S_{3} INY-YYN	2.9E-6	5
				S_{3} LYY - YYN	1.4E-5	24
				$\mathrm{S}_{3} \mathrm{TYY} \cdot \mathrm{YYN}$	$3.0 \mathrm{E}-6$	5
4	Event V	$6.5 \mathrm{E}-7$	1	V	6.5E-7	1
5	Transients	2.5E-6	4	TBYY-YNY	2.3E-6	4
				TINY-YNY	1.1E-7	<1
6	ATWS	1.9E-6	3	TLYY-YXY	2.4E-7	<1
				GLYY-YXY	3.0E-7	<1
				$\mathrm{S}_{3} \mathrm{NYY}-\mathrm{YXN}$	$1.4 \mathrm{E}-6$	2
7	SGTRs	1.7E-6	3	GLYY - INY	4.1E-7	<1
				HINY-NXY	1.3E-6	2
	Total	5.7E-5	Internal In	lators		

(1) Based on the sample of 1000 observations used in the accident
frequency analysis frequency analysis.

As some variation from sample to sample is obrerved even when the sample size and the variables sampled remain the same, there are variations between the 1000 -observation sample used for the stand-alone accident frequency analysis and the 200 -observation sample used for the integrated risk analysis. These differences are summarized in Table 2.2-3.

For each PDS group, the first 1 ine of Table $2.2 \cdot 3$ contains the 5 th percentile, median, mean, and 95 th percentile core damage frequencies for the 1000 -observation sample used in the stand-alone accident frequency analy. sis. These values are taken from Table $5-5$ of NUREG/CR-4550, Vr ume $5,{ }^{2}$ Part 1. Samples containing 200 observations are used for the iniegrated risk analysis at Sequoyah. The 5th percentile, median, mean, and 95 th percentile core damage frequencies for first sample are shown on the second line of Table 2.2.3 for each PDS group. The differences between distributions for core damage frequency for the two samples are within the statistical variation to be expected.

PDS Group 1 consists of four slow blackout PDSs. In these accidents, offsite power is lost and the diesel generators fall to start or run. The steam-turbine-driven (STD) AFWS operates until the batteries are depleted. Without power for instruments and controls, the STD-AFWS eventually fails. Battery depletion is estimated to take about 4 h . During this time, the RCP seals may fall or the PORVs may stick open. Thus, the four PDSs in this group have the RCS in different conditions when core damage begins.

In one of the PDSs in this group, the RCS is intact at the time of core uncovering. Another two of the PDSs have S_{3}-size breaks (failures of the RCP seals), and the final PDS in this group has an S_{2}-size break (stuck. open PORV). The differences between the two " S_{3} " PDSs is whether the secondary system is depressurized before the core uncovers and while the AFW is operating.

PDS Group 2 consists solely of the fast blackout PDS, TRRR-RSR. This group is similar to PDS Group 1, except that the STD-AFW fails at the beginning. The accident proceeds to the onset of core damage before the RCP seals are likely to fall or the PORVs are likely to stick open.

PDS Group 3 consists of 13 loss of-coolent accident (LOCA) FDSs, Four of the PDSs have an A-siz break and three of the PDSs have an S_{1}-size break. For this analysis, $A \cdot i z e$ and S_{1}-size breaks are indistinguishable and are grouped together in the "A" category. There are three PDSs with an S_{2}-size break and three PDSs with an S_{3}-size break. Five of the PDSs in this group have the low pressure injection system (LPIS) operating. In PDSs ALYY-YYY and ALYY. YYN, the accumulators have falled and the LPIS is operating successfully (all trains). For an A break, the success oriteria require both accumulator injection and LPIS operation. Thus, even though the RCS pressure is low and the LPIS is irjecting water successfully, core damage has been assumed. In PDS S,LYY-YYN, the high pressure infection system (HPIS) has failed in recirculation and the LPIS is operating successfully (all trains). For an S_{1} break, the success crlteria require high pressure (HP) systems operating during the accident. In this PDS also, the RCS pressure is low and the LPIS is injecting water successfully, but core damage has been assumed since the success criteria have not been met. In PDS S_{2} LYY-MYN and S_{3} LYY-YYN, the break does not depressurize the RCS enough

Table 2.2.3 PDS Comparison Sequoyah

PDS	LHS Sample Size ${ }^{(1)}$	Core Damage Frequency ($1 / \mathrm{R}-\mathrm{yr}$)				8 Mean TCD\qquad
		58.	Median	Mean	958	
1	1000	1.0:-07	1.4E.06	5.0E-06	1.7E.05	9
Slow SBO	200	1.4E.07	1.6E.06	4. 6E-06	1.6E-05	
2	1000	4.2E. 07	3.8E.06	9,6E.06	3.6E.05	17
Fast SBO	200	5, 5E-07	3.8E-06	9.3E-06	3.5E-05	
3	1000	4.4E-06	1.8E-05	3 6E-05	1.2E-04	63
LOCAS	200	6.6E.06	2.0E-05	3.5E-05	$1.1 \mathrm{E} \cdot 04$	
4	1000	1.5E-11	2.0E-08	6.5E-07	2.1E. 06	1
Event V	200	1.5E-11	2.0E-08	6.5E-07	3.4E-06	
5	1000	2.5E-07	1.1E-06	2.5E.06	7.2E-06	4
Transient	200	2.2E-07	1.25-06	2.3E.06	8.2E.06	
6	1000	4.3E-08	5.3E-07	1.9E-06	$7.5 \mathrm{E}-06$	3
ATWS	200	4. 2 E - 08	5.0E-07	2.1E-06	8.5E.06	
7	1000	2.4E-08	4.1E-07	1.7E.06	7.1E-06	3
SGTR	200	2.2E-08	3.8E-07	1.7E.06	$9.4 \mathrm{E}-06$	
Total	1000	1.2E-05	3,6E-05	5.7E-05	1.7E-04	
	200	1. 5E-05	3.9E-05	5.6E-05	1.6E-04	

(1) The accident frequency analysis used a LHS sample size of 1000 . The accident progression analysis used a LHS sample size of 200 .
(2) Percentages based on the LHS sample size of 1000 .
to allow low pressure injection (LPI). Thus, the accident will progress to vessel failure at a pressure too high to allow LPI unless a large temperature-induced break occurs or the primary system is deliberately depressurized.

Group 4 consists solely of Event V. The V sequence results from a fallure of any one of the four pairs of series check valves used to isolate the high pressure RCS from the low pressure infection system. The resultant flow into the low pressure system is assumed to result in rupture of the low pressure piping or components. The break is outside containment in the auxiliary building, so the break both fails the RCS pressure boundary and bypasses the containment.

Group 5 consists of two PDSs that have failure of bc h AFW and Bleed and Feed. This PDS group is denoted Transients. In PDS TBYY-YNY, both LPIS and HPIS are avallable, but the PORVs cannot be opened. The operators have failed to depressurize before the unset of core damage. In PDS TINY-NNY, all ECCS and AFW have falled.

As the operators have already failed to follow procedures and depressurize the system, no credit may be given for their depressurizing the RCS after the onset of core damage for PDS TBYY-YNY. Since there is RCP seal cooling and SGTRs are not very likely, the only effective means of depressurizing the RCS are the PORVs/safety relief valves (SRVs) sticking open or the failure of the hot $l \mathrm{eg} / \mathrm{surge}$ line. (Even though the PORVs cannot be opened from the control room, they may still open as part of their safety function. If they do not open at all, then the SRVs will open at a slightly higher pressure. The probability that the SRVs stick open is assumed to be the same as for PORVs sticking open.) If the RCS pressure decreases to the high or intermediate range, the HPIS will inject. If the RCS pressure decreases to the low range, then the LPIS will inject.

Group 6 contains the three ATWS PDSs, in which fallure to soram the reactor has occurred. They differ in the status of the RCS at the time the core uncovers, the status of the ECCS, and whether cooling for the RCP seals is operating or failed. This group contains an accident which is initiated by an SGTR, GLYY-YXY, in which the secondary side SRV is not stuck-open. The LPIS is available in two of the PDSs, TLYY-YXY and GLYY-YXY, and will inject if the RCS reaches low pressure.

Group 7 consists of two PDSs that are initiated by SGTRs and which do not have scram failures. HINY NXY is an SGTR with stuck-open SRVs in the secondary system. GLYY-YNY has no stuck-open SRVs on the secondary side, but the RCS PORVs are open since the operators are attempting to keep the core cooled by feed and bleed. HINY-NXY has no possibility of the water from the RWST being injected into the containment; the HPIS pumps the water through the broken tube and out of the containment through the main steam line. In GLYY-YNY, the sprays operate while there is still water in the RWST or in the sump, so if there is enough ice melt, the cavity might be full when the TAF uncovers, or shorcly thereafter. For the GLYY-YNY PDS, LPIS is available, and will inject if the RCS reaches low pressure.

In grouping the PDSs into the seven groups shown in Table $2.2-2$, no information is lost, nor are inappropriate assumptions made to facilitate this grouping. For example, all the breaks in PDS Group 2 are not treated as very small $\left(\mathrm{S}_{3}\right)$ LOCAs simply because the majority of the group frequency is in the very small LOCA PDSs. The appropriate division between large (A), small $\left(\mathrm{S}_{2}\right)$, and very small $\left(\mathrm{S}_{3}\right)$ LOCAs is made by using fractions for the branching ratios in Question 1 in the APET. By using fractional branch ratios in Question 1 and other places in the first 11 questions, placing the 26 PDSs into the seven PDS groups causes no loss of information.

For inoorporation of the uncertainty and data distributions into each part of the analysis, values are sampled for given variables. The accident frequency analysis uses a larger sample size than was used for the accident progression, source term, and isk integration analyses. The sample size was reduced due to computer limitations in terms of central processing unit
(CPU), storage and memory. Table $2.2-3$ illustrates the differences in the PDS frequencies for the two sample sizes.

2.2.3 High-Level Grouping of PDSs

To provide simpler, more easily understood summaries for NUREG-1150, the sever plant damage groups described above were further condensed into the following five groups:

```
1. LOSs of Offsite Power (LOSP)
2. LOCAS
3. Transients
4. Bypass LOCAs
5. ATWS
```

These five groups are denoted summary PDS Groups. The mapping from the seven groups described in the previous section into the five summary groups used in the presentation of many of the results is given in Table 2.2 .4 . In combining two groups to form one summary group, frequency weighting by observation is employed. The percentages of the total mean core damage frequency given above provide only approximate weightings,

2.2.4 Variables Sampled in the Accident Frequency Analysis

In the stand-alone accident frequency analysis for internal events, a large number of variables were sampled. (A list of these variables may be found in NUREG/CR-4550, Vol. 5, 2 Part 1.) Only those variables found to be important to the uncertainty in the accident frequencies were selected for sampling in the integrated risk analysis. These variables are listed and defined in Table 2.2-5. For the regression analysis, identifiers of eight characters or less were isquired, and these are listed in the first column. The identifiers used in the fault trees are listed in the description in brackets. Generally, the eight-character identifiers have been selected to be as informative as possible to those not familiar with the conventions used in systems analysis. For example, while Event K is comunonly used to indicate the failure of the reactor protection system (RPS) to insert enough control rods to make the reactor subcritical, the identifier AU. SCRAM was chosen since it was felt that "auto scram" conveys more meaning to most readers than "K"

The second column in Table 2.2 .5 gives the range of the distribution for the variable and the third column indicates the type of distribution used and its mean value for the semple distribution used in the analysis. The entry "Experts" for the distribution indicates that the distribution came from the accident frequency analysis expert panel. The fourth and fifth columns in Table $2.2 \cdot 5$ show whether the variable is correlated with any other variable and the last column describes the variable. More complete descriptions and discussion of these variables may be found in the sequoyat. accident frequency analysis report (NUREG/CR-4550, Vol 5). 2 This report also glves the source or the derivation of che distributions for all these variables.

Table 2.2.4
Relationship between PDS Groups and Summary Groups

Summaky Grour	- TMCDF	PDS Groups	$1 . \mathrm{TMCDE}$
1. Losp	26	1. Slow Blackout	9
		2. Fast Blackout	17
2. LOCAs	63	3. LOCAs	63
3. Bypass LOCAs	4	4. V	1
		7. SGTRs	3
4. Transfents	4	5. Transients	4
5. ATWS	3	6. ATW:	3

Most of the variable distributions come from the generic accident sequence evaluation (ASEP) data base. Others were derived cifically for the Sequoyah equipment using plant data. The distribution for the frequency of the LOSP initiating event was derived by combining data from all nuclear power plant sites with the historical experienco at Sequoyah, utilizing the methods of NUREG/CR-5032.4 The distribution fore thequency of transient initiating events was derived from Sequoyah data as described in NUREC/CR3862.5 The distribution for the probability of failure to scram (AU-SCRAM, Event K) was derived from the information in NUREG-1000.6 The human error probability distributions were derived using the human reliability analysis (HRA) methodology as described in NUREG/CR-4772.?

Fallure of the RCP seals due to lack of cooling was sampled in the following manner in the accident frequency analysis: seven states were defined, and one of these states had a probability of 1.0 in each observation while the other six states had a probability of 0.0 . (When all the probability is assigned to one branch in every observation, the sampling is denoted zero-one.) The seven RCP seal states are:

State	Total Leak Rate	$\begin{array}{r} \text { Start } \\ \quad \text { Time } \\ \hline \end{array}$	Probability	Fault Tree Identifier
1	240 gpm	90 min	0.050	RCP-LOCA-2400PM
2	240-1000 gpm	150 min	0.125	RCP-LOCA-620AVG
3	433 gpm	90 min	0.005	RCP, LOCA-433GPM
4	433.1000 gpm	150 min	0.005	RCP-LOCA-717AVG
5	1000 gpm	90 min	0.525	RCP - LOCA - 1000 GPM
	1920 gpm	90 min	0,005	RCP - LOCA-1920GPM
7	Normal	N. A.	0.270	NO ROP SEAL LOCA

The probability for each state was determined by a special expert panel as described in NUREG/CR-4550, Volume 2.8 The use of this information in the sequoyah accident frequency analysis is described in more detail in NUREG/CR-4550, Volume 5.2 The last state represents success, i.e.. no failure of the RCP seals. Design leakage through the seals is about 3 $\mathrm{gpm} / \mathrm{pump}$ during normal operation, but non-fallure leakage could be as high as $21 \mathrm{gpm} /$ pump when there is no flow of cooling water to the seals. Leakage following seal fallure could be as high as $480 \mathrm{gpm} / \mathrm{pump}$ or 1920 gpm total. As there were 200 observations in the sample used to determine risk for Sequoyah, state 1 (a total leak of 240 gpm "rom the four pump seals starting at 90 minutes) had a probability of 1.0 for 10 observations and a probability of 0.0 for 190 observations. State 6 (1920 gpm starting at 90 minutes) had a probability of 1.0 for only one observation. A random number generator was used to determine which state had the unity probability for which observation.

Table 2.2-5
Variables Sampled in the Accident Frequency Analysis for Internal Initiators

Variable	Range	Distribution	Correlation	Correlation With	

Table 2.2-5 (contimued)

Variable	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \end{gathered}$	Description
MDP-FRN6	$\begin{aligned} & 8.9 E-7 \\ & 0.0051 \end{aligned}$	Lognormal Mean-1.7E-4	None		Probability of fallure of a motor-driven prap to run for 6 h (generic). [MDP-FR6H]
MDP-FSTR	$\begin{aligned} & \text { 1.5E-5 } \\ & 0.085 \end{aligned}$	Lognormal Mean-0.003	None		Probability of failure (per demand) of a motor-driven pump to start (generic). [MDP-FS]
MDP UNAV	$\begin{aligned} & 9.9 \mathrm{E}-6 \\ & 0.057 \end{aligned}$	Lognormal Mean=0.0019	None		Probability of unavailability of a motordriven pump due to test and maintenance (generic). [MDP-TM]
MOV-FOPN	$\begin{aligned} & 1.5 \mathrm{E}-5 \\ & 0.085 \end{aligned}$	Lognormal Mean-0.0029	Rank 1	$\begin{aligned} & \text { PORV-BLK } \\ & \text { MOV-FCLS } \end{aligned}$	Probability of failure (per demand) to open a motor-operated malve (generic). [MOV-CC]
PORV-BLK	$\begin{aligned} & 1.5 E-5 \\ & 0.085 \end{aligned}$	Lognormal Mean-0.0029	Rank 1	MOV-FOPN MOV-FCLS	Probability of failure (per demand) to open the PORV motor-operated block valves (generic). [PPS-MOV-ET]
MOV-FCLS	$\begin{aligned} & 1.5 \mathrm{E}-5 \\ & 0.085 \end{aligned}$	Lognormal Mean-0.0029	Rank 1	MOV-FOPN PORV-BLK	```Probability of failure (per demand) to close a motor-operated valve (generic). [MOV-00]```
PORV-FOR	$\begin{aligned} & 3.1 E-5 \\ & 0.18 \end{aligned}$	Lognormal Meani~0.0061	None		Probability of failure (per demand) of the PORVs to open (generic). [PPS-SOVFT]
TDP-FRN6	$\begin{aligned} & 0.0030 \\ & 0.30 \end{aligned}$	Max. Entropy Mean-0.030	None		Probability of failure of the AFW turbine-driven pump to run for 6 ts (generic). [AFW-TDP-FR-6H]

Table 2.2-5 (continued)

Variable	Range	Distribution	Correlation	Correlation \qquad	Description
TDR-FSTR	$\begin{aligned} & 0.0030 \\ & 0.30 \end{aligned}$	Max. Ertropy Mean-0.030	None		Probability of failure (per demand) of the AFW turbine-driven pump to start (generic). [AFW-TDP-FS]
TDP-UNAV	$\begin{aligned} & 5.0 E-5 \\ & 0.28 \end{aligned}$	Legnormal Mean-0.0096	None		Probability of unavailability of the AFW turbine-driven pump due to test and maintenance (generic). [AFW-TDP-TM]
HE-DPRSG	$\begin{aligned} & 0.0029 \\ & 0.29 \end{aligned}$	Max. Entropy Mtan-0.029	None		Probability of operator failure (per demand) to cooldown and depressurize during SGTR (human error). [RCS-XHE-DPRZ-TSG]
HE-FCV	$\begin{aligned} & 1.0 \mathrm{E}-5 \\ & 0.058 \end{aligned}$	Lognormal Mean=0.0021	Rank 1	$\begin{aligned} & \text { HE-SIM1 } \\ & \text { HE-SIM2 } \end{aligned}$	Probability of operator failure (per demand) to close an flow contrel valve (FCV) during switch to recirculation (human error). [सPR-XHE-FO-FCV]
HE-SIM1	$\begin{aligned} & 1.4 E-5 \\ & 0.081 \end{aligned}$	Lognormal Mean-0.0028	Rank 1	$\begin{aligned} & \text { HE-FCV } \\ & \text { HE-SIM2 } \end{aligned}$	Probability of operator failure (per demand) to close SI miniflow to RWST for an S_{2} sequence (human error). [HPR-XHE-FO-SIMIN]
HE-SIM2	$\begin{aligned} & 1.2 \mathrm{E}-5 \\ & 0.071 \end{aligned}$	Lognormal Mean-0.0025	Rank 1	$\begin{aligned} & \text { HE-FCV } \\ & \text { HE-SIM1 } \end{aligned}$	Probability of operator failure (per demand) to close SI miniflow to RWST for an $\mathrm{S}_{3} \mathrm{O}_{\mathrm{D}}$ sequence (human error). [HPR-XHE-FO-SIMN2]
HE-SGBL	$\begin{aligned} & 1.7 \mathrm{E}-5 \\ & 0.096 \end{aligned}$	Lognormal Mean=0.0034	None		```Pi sbability of operator failure (per demand) to close SG blowdown line valve (human error). [MSS-XHE-FO-SGBL]```

Table 2.2-5 (continued)

Variable	Range	Distribution	Correlation	Correlation \qquad	Description
HE-PDBLD	$\begin{aligned} & 0.0022 \\ & 0.22 \end{aligned}$	Max. Entropy Mean-0.022	None		```Probability of operator failure (per demand to initiate feed and bleed (human error). [HPI-XHE-FO-FDBLD]```
HE-ISADV	$\begin{aligned} & 0.010 \\ & 1.0 \end{aligned}$	Max. Entropy Mean-0.10	None		Probability of operator fallure (per demand to isolate atmospheric dump valves (human error). [MSS-XHE-FO-ADV]
HE-XTIE	$\begin{aligned} & 0.0064 \\ & 0.64 \end{aligned}$	Max. Entropy Mean=0.065	None		Probability of operator failure (per demand) to open AOV cross-tie from SG to AFW turbine driven pump (human error). [AFW-XHE-OPNVALVE]
IE-SGTR	$\begin{aligned} & 5.0 E-5 \\ & 0.28 \end{aligned}$	Lognormal Mean-0.0095	None		```Initiating event: frequency (1/yr) of SGTRs (presururized water reactor [PWR] data). [IE-TSG]```
MFW-FRST	$\begin{aligned} & 0.011 \\ & 1.0 \end{aligned}$	Max. Entropy Mean-0.11	None		```Probability of failure to restore MFW after loss of AFW during SGTR (recovery action). [RA3]```
IE-S3	$\begin{aligned} & 0.0013 \\ & 0.082 \end{aligned}$	Lognormal Mean-0.013	None		Initiating event: frequency ("/yr) of a very small (dia. <0.5 in.) break in the RCS (PWR data). [IE-S3]
SRV-DPRZ	$\begin{aligned} & 7.0 \mathrm{E}-5 \\ & 0.40 \end{aligned}$	Lognormal Mean-0.014	None		Failure to depressurize the RCS to limit flow from open SG safety relief valve (SRV) during an SGTR (recovery action). [RA14]

Table 2.2-5 (continued)

Variabie	Eange	Distribution	Correlation	\qquad	Description
UNFV-MOD	$\begin{aligned} & 1.8 E-4 \\ & 0.27 \end{aligned}$	Lognormal Mean-0.014	None		Fraction of the time that the reactor operates with an unfavorable moderator temperature coefficient (PWR data).
ADV - DPR	$\begin{aligned} & 7.0 E-5 \\ & 10.40 \end{aligned}$	Lognormal Mean-0.013	None		Failure to depressurize the RCS to limit £low from open atmospheric dump valve during an SGTR (recovery action). [RA11]
MN-SCRAM	$\begin{aligned} & 0.034 \\ & 1.0 \end{aligned}$	Max. Entropy Mean-0. 34	None		Probability of failure to effect manual scram due to operator error and hardware faults. [K]
IE-BATI	$\begin{aligned} & 2.5 E-5 \\ & 0.14 \end{aligned}$	Lognorsal Mean-0.0050	None		```Initiating event: frequency (i/yr) of loss of dc vital battery (generie). [IE- TDC]```
IE-A	$\begin{aligned} & 5.1 E-5 \\ & 0.0032 \end{aligned}$	Lognormal Mean-5.0E-4	None		Initiating event: frequency $(1 / y r)$ of a large (dia. >6 ia.) break in the RCS (PWR data). [IE-A]
AU-SCRAM	$\begin{aligned} & \text { 1. } 8 E-6 \\ & 7.6 E-4 \end{aligned}$	Lognormal Mean-5.9E-5	None		```Probability of failure of the RPS to automatieally insert sufficient control rods to terminate the reaction. [K]```
IE-TTRIP	$\begin{aligned} & 1.6 \\ & 21.2 \end{aligned}$	Lognormal Mean-6. 3	None		Initiating event: frequency ($1 / \mathrm{yr}$) of turbine trip with main feedwater (MFW) and power control system (PCS) avallable. [IE-T3]
IE-T-HIP	$\begin{aligned} & 1.2 \\ & 16.2 \end{aligned}$	Lognormal Mean-4. 8	None		Initiating event: frequency (1/yr) of high power (>25 \%) transients that require reactor seram. [IE-TZ]

Table 2.2-5 (cont insed)

Variable	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \end{gathered}$	Description
IE-T-AlI	$\begin{aligned} & 1.3 \\ & 17.8 \end{aligned}$	Lognorma 1 Mean-5. 3	None		Initiating event: frequency ($1 / \mathrm{yr}$) of all transients that require reactor seram. [IE-T]
IE-IMFWS	$\begin{aligned} & 0.18 \\ & 2.4 \end{aligned}$	Lognorinal Mean-0. 72	None		Initiating event: frequency ($1, y x$) of transients due to loss of the MFW system. [IE-T2]
BETA-2DG	$\begin{aligned} & 0.0039 \\ & 0.24 \end{aligned}$	Lognormal Mean-0.038	None		Beta factor for common cause failure of the DGs (generic). [BETA-2DG]
BETA8AOV	$\begin{aligned} & 0.0035 \\ & 0.22 \end{aligned}$	Lognormal Mean=0.034	None		Beta factor $; \sim$ common cause fallure of eight AOVs (generic). [BETA-8AOV]
MS-LIAS	$\begin{aligned} & 5.0 \mathrm{E}-7 \\ & 0.0028 \end{aligned}$	Lognormal Mean-9.5E-5	None		```Probability of loss (per demand) of instrument air system (TAS) to main steam AOVs. [IAS-PTY-LF-AOV]```
V-TRAIN	$\begin{aligned} & 1.8 E-13 \\ & 1.5 E-5 \end{aligned}$	Experts Mean-5.4E-7	None		```Initiating event: Irequency (1/yr) of check valve failure in one of the LPIS trains. [IE-V-TRAIN]```
IE-LOSP	$\begin{aligned} & 4.0 \mathrm{E}-4 \\ & 0.35 \end{aligned}$	LOSP Data Mean-0.091	None		Initiating event: frequency ($1 / \mathrm{yr}$) of of LOSP. [IE-T1]
RCP-SL-F		Experts Mean-0.27	None		Probability of RCP seal LOCA before the onset of core damage. [See text]

2.3 Description of the APET

This section describes the APET that is used to perform the accident progression analysis for sequoyah. The APET itself forms a high-level model of the accident progression. The APET is too large to be drawn out in a figure as smaller event trees usually are. Instead, the APET exists only as a computer input file. The APET is evaluated by the code EVNTRE, which is described eisewhere.

The APET is not meant to be a substitute for detailed, mezhanistic codes such as the STCP, CONTAIN, MELCOR, and MAAP. Rather, it is an integrating franework for synthesizing the results of these codes together with expert judgment on the strengths and weaknesses of the codes. The detalled, mechanistic codes require too much computer time to be run for all the possible accident progression paths. Therefore, the results from these codes are represented in the Sequoyah APET, which can be evaluated very quickly. In this way, the full diversity of possible accident progressions can be considered and the uncertainty in the many phenomena involved can be included.

The following section contains a brief overylew of the Sequoyah APET. Details, including a complete listing of the APET and a discussion of each question, can be found in Appendix A of this volume. Section 2.3.2 is a sumary of how the APET was quantified, that is, how the many numerical values for branching ratios and parameters were derived. Section 2.3.3 presents the variables that were sampled in the accident progression analysis for Sequoyah.

2.3.1 everview of the APET

The APET for Sequoyah considers the progression of the accident from the time the TAF in the core is uncovered, which is assumed to be the onset of core damage, through the core-concrete interaction (CCI). Although the CCI may progress at increasingly slower rates for days, the end of this analysis for most accident progressions has been arbitrarily set at 24 h after the accident initiator. The exception to the 24 hour end limit is in the case of the inftiation of CCI after very late overpressure failure, in which the end of the accident progression analysis is set at 40 h . The time 1 imit is chosen such that the bulk of the release of fission products is complete.

Table 2.3.1 1 ists the 111 questions in the Sequoyah APET. The APET is divided into five time periods. To facilitate understanding of the APET and referencing between questions, each branch of every question is assigned a mnemonic abbreviation. The mnemonic branch abbreviations for most branches start with a character or characters which indicate the time period of the question. The time periods and their abbreviations are:

B - Initial Questions 1 through 15 determine the conditions at the beginning of the accident.

E, E2 . Early Questions 16 through 63 concern the progression of the accident from the uncovering of the TAF, through core degradation, and until the time before VB. Questions 17 through 21 concern events or actions which may depressurize the RCS before breach. The possibility that core degradation may be arrested and VB prevented is considered in Question 26 . Questions 38 through 58 address the early threat of hydrogen to containment, and whether the containment fails before VB. Questions 59 through 61 address the effect that hydrogen events, containment fallure, or the contalnment environment have on engineered safety features. Questions 62 and 63 estabilsh conditions in containment immediately before VB.

1. I2 . Intermediate Questions 64 through 85 address the time period in which VB occurs. Questions 64 through 82 address contalnment loading and ex-vessel phenomena, including the possibility of containment failure due to events associated with vessel fallure, Questions 83 through 85 determine the effeot that events associated with VB have on engineered safety features.

L, L2 - Late

L3 - Final
Questions 86 through 109 determine the progression of the accident for the time period in which CCI occurs. Questions 86 through 103 address the accident during the initial period of CCI, up tr a nominal period of 5 h after the start of CCI. Containment fallure due to late hydrogen burns is addressed in this time regime. Questions 104 through 109 determine the progression the accident in the latter part of CUI. The status of systems in containment immediately after late hydrogen burns is considered. The possibility of containment fallure due to late overpressure or basemat molt. through (BMT) is addressed.

Questions 110 and 111 address the final stages of the accident. The impairment of sprays due to very late containment failure is considered in question 110 . Question 111 concerns core-concrete Attack aft r late overpressure of containment and subsequent late boilloff of cavity water.

The clock time for each period will vary depending upon the type of accident being modeled.

The Sequoyah APET does not contain any questions to resolve core-vulnerable sequences. A core-vulnerable PDS involves a LOCA with fallure of CHR. The continual deposition of decay heat in the containment by operation of the ECCS in the recirculation mode is predicted to lead to eventual ice melt and containment failure after an extended period of time. Containment fallure, in turn, may lead to ECCS failure. The Sequoyah PDSs with frequencies exceeding $1.0 \mathrm{E} \cdot 7 / \mathrm{yr}$ did not contain any accidents of this type.

In several places in the evaluation of the APET, a User Function is called, This is a FORTRAN function subprogram which is executed at that point in the evaluation of the APET. The user function allows computations to be carried out that are too complex to be treated directly in the event tree. The user function itself is listed in Appendix A.2. The calvulations performed by the user function are described for each question in Appendix A.1, and are briefly mentioned below. The user function is called to:

- Compute the distribution of hydrogen and other gases in containment, and determine the flammability of the atmosphere;
- Caiculate the burn completeness if ignition occurs;
- Compute the pressure r ise and consumption of hydrogen and oxygen due to hydrogen burns;
- Determine whether the containment fails and its mode of failure;
- Compute the peak containment pressure at VB when the ice condenser is bypassed;
* Compute the amount of hydrogen released to the containment at VB;
- Calculate the amounts of hydrogen, carbon monoxide, and carbon dioxide generated during CCI.

2.3.2 Qveryiew of the APET Quantiflcation

This section summarizes the ways in which the questions in the Sequoyah APET were quantified and discusses these methods briefly. A detailed discussion of each question, which includes comments on quantification, may be found in Appendix A.1.1.

Table 2.3-1 IIsts the 111 questions in the Sequoyah APET. In addition to the number and name of the question, Table 2.3.1 Indicates if the question was sampled, and the source of evaluation or quantification of the ques. tion. The item sampled may be either the branching ratios or the parameter defined at that question. For questions that are sampled, the entry 20 in the sampling column indlcates that the question was sampled zero-one, and the entry SF means the question was sampled with split fractions. An entry of DS in the sampling column indicates that the branch probabilities are obtained from a distribution; sampling of the distribution is done in both the split fraction and zero-one manner.

The difference between split fraction and zero-one sampling may be illus trated by a simple example. Consider a question that has two branches, and a uniforin distribution from 0.0 to 1.0 for the probability for the first branch. If the sampling is zero-one, in half the observations, the probability for the first branch will be 1.0 , and in the other half of the observations it will $\mathrm{L}=0 . \hat{\mathrm{S}}$. If the sampling is split fraction, the probability for the firs' branch for each observation is a random frac. tional value between 0.0 and 1.0 . The average over all the fractions in. the sample is 0.50 . The implications of 20 or $S F$ sampling are discussed in the methodalogy volume (Volume 1).

If the sampling column is blank, the branching ratios for that inestion, and the parameter values defined in that question, if any, are fixed. The branching ratios of the PDS questions change to indicate which PDS is being considered. Some of the branching ratios depend on the relative frequency of the PDSs which make up the PDS group being considered. These branching ratios change for every sample observation, but may do so for some PDS groups and not for others. If the branching ratios change from observation to observation for any one of the seven PDS groups, SF is piaced in the sampling column for the PDS questions.

Sometimes a question may have been quantified by more than one source: e.g., some of the cases in the question may have been quantified by an expert panel and some may have been quantified internally by the project staff. If this is the case, the entry in the quantification source column in Tabie 2.3-1 represtents the major contributor to the quantification. At other times a question may have some cases in which the branching ratios or parameters are sampled and some cases in which they are not. For these questions the entry under the sampling column in Table 2,3-1 will address those cases that are sampled.

The abbreviations in the quantification source column of Table 2.3-1 are given below, with the number of questions which have that type of quantification.

Type of
Quantity
:---
Questions

PDS
AcFrqAn Fanel.

Struct. 1 Distributions from the Structural Expert Panel.

Table 2.3-1
Questions in the Sequoyah APET

| Question | | |
| :--- | :--- | :--- | :--- |
| Number | Question | |

Table 2.3-1 (continued)

Table 2.3-1 (continued)

Table 2.3-1 (continued)

Question Number	n Question Sampl	Sampling	Quant. source
81 F	Fraction of hydrogen in containment consumed at VB?	P	Loads
82	Containment failure at VB and mode of fallure?	20	UFUN-Str
83 S	Status of IC immediately after VB?		Sumbary
84 A	Are ARFs or ducting impaired due to burns at VB?		Internal
85 A	Are sprays impaired due to CF or environment at VB?		Internal
86 F	Fraction of core not participating in HPME that is avallable for CCI?		Summary
87 L	Level of core not participating in HPME that is available for CCI?		Summary
88 I	Is the debris bed in a coolable configuration?		Internal
89 h	What is the nature of the prompt CCI?		Sumary
90 I	Is ac power recovered late?	SF	ROSP
91	Late sprays?		Summary
92	Late air return fans?		Sunizary
93	Is the ice melted or bypassed at the stact of prompt CCI?		Internal
94		P	Internal
95	Amount of H_{2} (plus equivalent CO) and CO_{2} generated during prompt CCI?		UFUN-Int
96	What amount of oxygen remains in containment late?		UFUN - Int
97	Amount of hydrogen in containment after CCI?		UFUN - Int
98	How much steam is in containment late?		Internal
99	What is the inert level in containment late, and is there sufficient H_{2} or O_{2} for burns?		UFUN-Int
100	Late hydrogen igniters?		AcFrqain
101	Is there a late deflagration in containment?		Internal
102	Pressure rise due to late deflagration?		UFUN - Int
103	Late containment fallure and mode of fallure?		UFUN-Str
104	Are sprays impaired due to late CF or environment?		Internal
105	Is ac power recovered very late?	SF	ROSP
106	Very late sprays?		Summary
107	Basomat meltthrough?		Internal
108	What is the very late pressure in containment?	P	Internal
109	What is the mode of very late containment failure?		UFUN-Str
110	Sprays after very late containment failure?		Internal
111	Does CCI occur after late boiloff and very late CF?	20	Internal

Notes to Table 2.3.1

Note 1. Whether fire sprays would be available to scrub the releases from the break for Event V was determined by a special panel which constdered only this problemi for the draft version of this analysis. As there was no new information available, there was no reason to change the conclusions reached by this group. See the discussion of Question 15 in Appendix A.1.1.

Note 2. There is little or no data on the fallure rate of PORVs when passing gases at temperatures considerably in excess of their design temperature. The quantification was arrived at by discussions between the accident frequency analyst and the plant analyst. See the discussion of Question 17 in Appendix A.1.1.

Note 3. In the accident frequency analysis, a special panel was conve, ed to consider the issue of the failure of RCP seals. The quantificstion of this question is not as detailed as that done in the accident frequency analysis, but relies on the information produced by this panel. See the discussion of Question 18 in Appendix A.1.1.

Note 4. The Alpha mode of vessel and containment failure was considered by the Steam Explesion Review Group a few years ago. The distribution used in this analysis is based on information contained in the report of this group. See the discussion of Question 64 in Appendix A.1.1.

Key to Indtialisms and Abbreviations in Table 2.3-1
AcFrqAn The quantiflcation was performed by the Accident Frequency Analysis project staff.

DS The branch probabilities are obtained from a distribution; sampling of the distribution is done in both the split fraction and zero-one manner.

Internal The quantification for this question was performed at Sandia iational laboretories by the project team with the assistance of other members of the 1 aboratory staff.

In-Vessel This question was quantified by sampling an aggregate distribution provided by the In-Vessel Expert Panel.

Table 2.3-1 (continued)
Key to Initialisms and Abbxeviations in Table 2.3.1 (continued)
Loads This question was quantified by sampling an aggregate distribution provided by the Containment Loads Expert Panel.
P A parameter value introduced to the event tree in this question is obtained by sampling a distribution.
PDS The quantification follows directly from the definition of the plant damage state.
ROSP This question was quantified by sampling a distribution derived from the offsite power recovery data for the plant.
SF Split fraction sampling * the branch probabilities are real numbers between zero and one.
Struct This question was quantified by sampling an aggregate distribution provided by the Structural Expert Panel.
Sumary The quantification for this question follows directly from the branches taken at preceding questions, or the values of parameters defined in preceding questions.
UFUN-Int This question is quantified by the execution of a module in the User Function subroutine, to apply models and distributions that were generated by the project staff.
UFUN-Str This question is quantified by the execution of a module in the User Function subroutine, to apply models and distributions generated by the Structural Expert Panel.
UFUN-Lds This question is quantified by the execution of a module in the User Function subroutine, to apply models and distributions generated by the Contalnment Loads Expert Panel.
20 Zero-one sampling . the branch probabilities are either 0.0 or 1.0 .

2.3.3 Vaciables Sampled for the Accident Progression Analysis

There were 135 vartables sampled for the accident progression analysis. That is, every time the APET was evaluated by EVNTRE, the original values of 135 variables were replaced with values selected for the particular observation under consideration. These values were selected by the lats program from distributions that vere defined before the APET was evaluated. Most of these distributions were determined by expert panels. Table 2.3-2 lists the vardables in the APET that were sampled for the aceldent progression analysis. Some of them are branch fractions; the others are parameter values for use in calculations or comparisons performed while the APET is being evaluated.

In Table 2.3-2, the first column gives the variable abbreviation or identifier, and the question (and case if appropriate) in which the variable is used. The identifiers are limited to eight characters for the statistical package used to perform regression sensitivity studies. Where several variables are correlated, they are treated as one variable in the regression analysis, but are different variables as far as the accident progression analysis and sampling process are concerned. Some of these variables in Table 2.3-2 have a number in the last position to distinguish the actual variable number for the accident progression analysis. The number is dropped in the sensitivity analysis. For example, RCP-SL-P2 and RCP-SL-P3 are treated as one variable, RCP-SL-P, in the sensitivity analyses.

The second column gives the range of the distrib.aion for the variable. An entry of " $0.0 / 1.0$ " in this column indicates that the variable took on fractional values between 0.0 and 1.0 . Ari entry of "Zero, One" in this column indicates that the variable was sampled zero-One, i.e., it took on only the values 0.0 and 1.0 . In each observation, one of these two values would be assigned.

The third column in Table 2.3-2 indicates the type of distribution used. The mean value of the distribution is given if appropriate. The entry "Experts" for the distribution indicates that the distribution came from an expert panel and the entry "Internal" distribution indicates that the distribution was determined internally by the project staff or others. (A listing of the input to the Lis program that contains many of the distributions in tabular form is given in Appendix E.) For zero-one variables, an indication of the probability of each state is given in this coluan.

The fourth and fifth columns in Table 2.3-2 show whether the variable is correlated with any other. "Rank 1 " indicates a rank correlation of 1.0 . $A n$ " n " is used to indicate any integer. In the entry for RCP-SL.P2, RCP. $\mathrm{SL} \cdot \mathrm{Pn}$ in the "Correlated with" column indicates that RCP.SL-P2 is c rrelated with RCP-SL-P3 and RCP-SL-P4.

Most of the varlables 11 sted in Table $2,3.2$ need no further comment. The RCS pressure at VB variables, RCSPR-VB2 and RCSPR-VB3 (Question 25), are sampled Zero-One. The distribution column gives the fraction of the time each of the pressure ranges is chosen. RCP seal failure is considered both

In the accident frequency analysis and in the accident progression analysis. The eight-character code is RCP-SL-F for RCP seal failures in the accident frequency analysis and RCP-SL. P for RCP seal fallures in the accifent progression analysis. These two variables should have been correlated with each other, but the ways in which seal fallures were treated in the two constituent analyses were so different that this was not feasable

Note that the temperature-induced (T-1) SGTR variable (Question 20), the T. 1 hot leg fallure variables (Question 21), and the amount of in-vessel hydrogen variables (Question 38) are correlated with each other as the experts concluded that the oxidation of a large amount of zirconiun before VB would result in high temperatures, which in turn, would make temperature-induced SGTRs, and hot leg or surge line fallures more likely,

The degree of mixing in the upper containment when fans and igniters are not operating (Question 41) is sampled Zero-One. The entries under "Distribution" indicate the probability of each type of mixing. Mix2 indicates that the upper plenum and upper compartment are well-mixed and a clear path exists from the lower compartment to the upper plenum through the ies condenser. Mix3 indicates that the upper plenum and the upper compartment are well-mixed and a clear path does not exist. Unmix indicates that there is no mixing and a clear path does not exist. Mixing upper deck doors are open, and a clear path exists if enough intermediate deck doors are open.

The type of vessel fallure (Question 65) is sampled Zero-One and the entries under "Distribution" indicate the probability of each type of vessel breach. HPME indicates ejection of the melt at high pressure through a hole that is small relative to the cross-section of the vessel Btmild indicates a gross fallure of the entire bottom head of the vessel, and Pour indicates a slow release of the melt driven primarily by gravity,

The containment fallure mode, as a function of fallure pressure, was determined by the Structural Expert Panel. The containment failure mode variable, CF-MODE (Question 57), is only a random variable used to determine the failure mode. The method used to select the failure mode for each observation is explained in Volume 1 , and the results of the expert panel on the failure pressure and fallure mode for Sequoyah may be found in Volume 2

The final variable in Table 2.3-2 (Questions 22, 90, and 205), POWERREC, is used to select the probsbility that offsite power will be recovered in a specified time interval given that it was not recovered in a previous time interval. Distributions were developed for 12 cases, each with different start and end times, corresponding to different classes of accidents. More detail on the methods for determining the probability of offsite power recovery can be found in Appendix A. 3 and Appendix E , Additional information concerning the variable descriptions can be obtained from the detailed discussions of the indicated questions in Appendix A of this
volume.

Table 2.3-2
Variables Sampled in the Accident Progression Analysis for Internal Initiators

Variable Question and Case	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \end{gathered}$	Description
$\begin{aligned} & \text { CNT-ISOF } \\ & \text { Q12 } \end{aligned}$	$\begin{aligned} & 2.5 E-5 \\ & 0.14 \end{aligned}$	Lognormal Mean-0.005	None		Probability that the containment will not be isolated at the start of the accident.
$\begin{aligned} & \text { V-SPRAYS } \\ & \text { 015 } \end{aligned}$	$\begin{aligned} & 0.60 \\ & 1.0 \end{aligned}$	Uniform Mean-0.80	None		Probability that the radioactive releases will be scrubbed by area fire sprays, given Event V.
$\begin{aligned} & \text { PORV-STK } \\ & \text { Q17 C1 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Uniform Mean $=0.50$	None		Probability that at least one pressurizer PORV or RCS SRV sticks open. given that the RCS is intact and the PORV's or SRVs are cycling.
$\begin{aligned} & \text { RCP-SL-P2 } \\ & \text { Q18 C2 } \end{aligned}$	Zero One	$\begin{aligned} & \text { Fail } 0.71 \\ & \text { NoFail } 0.29 \end{aligned}$	Rank 1	RCP-SL-Pn	Probability of a T-I failure of the RCP seals, given core damage, RCS at system setpoint pressure, and no cooling for the RCP seals.
$\begin{aligned} & \text { RCP-SL-P3 } \\ & \text { Q18 C3 } \end{aligned}$	Zero One	Fail 0.65 NoFail 0.35	Rank 1	RCP-SL-Pn	Probability of a T-I failure of the RCP seals, given core damage, RCS at high pressure, and no cooling fer the RGP seals.
$\begin{aligned} & \text { RCP-SL-P4 } \\ & \text { Q18 C4 } \end{aligned}$	Zero One	Fail 0.60 NoFail 0.40	Rank 1	$\mathrm{RCP}-\mathrm{SL}-\mathrm{Pn}$	Probability of a T-I failure of the RCP seals, given core damage, RCS at intermediate or low iressure, and no cooling for the RCP seals.

Table 2.3-2 (continued)

| Variable
 Question
 and Case | Range |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TI-SGTR | |

Table 2.3-2 (cont inued)

Table 2.3-2 (cont inued)
Variable
Variable
Question
and Case
H2-INV3

Q38 C3

H2-INV4
Q38 C4
0.0
430.
N
ì
0.0
600.

Q38 C5

H2-INV6
Q38 C6
0.0
600.

Experts
Mean-264.

H2-INV7	0.0	Experts Q38 C7
	600.	Mean-228.
H2-EXV1	0.25	Experts
Q40 C1	0.85	Mean-0.64

Experts Mean-244.

Mean-0.64

Mean-164

Experts Mean-192.

Correlation Correlation | With |
| :---: |

Rank 1

TI-SGTR
TI-HOTLGn
H2-INVn

Rank 1
TI-SGTR TI-HOTLGn H2-INY2

Rank 1
TI-SGTR TI-HOTLG H2-INVn

Rank 1
TI-SGTR TI-HOTLG H2-INVn

Rank 1

Rank 1

Description

The amount of hydrogen, in kg -moles, that is generated in-vessel. given that the RCS is at high pressure and the accumalators discharge before or after core melt.

The amount of hydrogen, in kg -moles, that is generated in-vessel. given that the RCS is at high pressure and the accurulators discharge during core melt.

The amount of hydrogen, in kg -moles, that is generated in-vessel, given that the RCS is at intermediate pressure and the accumulators discharge before or after core molt.

The amount of hydrogen, in kg-moles, that is generated in-vessel, given that the RCS is at intermediate pressure and the accumulators discharge during core melt.

The amount of bydrogen, in kg -moles, that is generated in-vessel, given that the RCS is at low pressure.

Fraction of in-vessel hydrogen that is released to containment, given that the blowdown to containment is typical of a transient sequence with a cyeling PORV.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	Correlation With	Description
$\begin{aligned} & \mathrm{H} 2-\mathrm{EXV} 2 \\ & \mathrm{Q} 40 \mathrm{C} 2 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.85 \end{aligned}$	Experts Mean-0.66	Rank 1	H2-EXVn	Fraction of In-vessel hydrogen that ir released to containment, given that the blowdown to containment is typical of an S_{3} break in the RCS.
$\begin{aligned} & \mathrm{H} 2-\mathrm{EXV} 3 \\ & \mathrm{Q} 40 \mathrm{C3} \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.85 \end{aligned}$	Experts Mean-0. 70	Rank 1	H2-EXVn	Fraction of in-vessel hydrogen that is released to containment, given that the blowdown to contaimment is typical of an S_{2} break in the KCS.
$\begin{aligned} & \mathrm{H} 2-\mathrm{EXV} 4 \\ & \text { Q40 C4 } \end{aligned}$	$\begin{aligned} & 0.65 \\ & 1.00 \end{aligned}$	Experts Mean=0.85	Rank 1	H2-EXVn	Fraction of in-vessel hydrogen that is released to containment, given that the blowdown to contaiment is typical of a large break in the RCS.
$\begin{aligned} & \mathrm{H} 2-\mathrm{MIX} \\ & \mathrm{Q} 41 \mathrm{C} 2 \end{aligned}$	Zero One	$\begin{array}{ll} \text { Mix2 } & 0.45 \\ \text { Mix3 } & 0.45 \\ \text { Unmix } & 0.10 \end{array}$	None		The degree of mixing of the atmosphere in the upper compartment, given that air return fans (ARFs) and H_{2} ignition system (HiIS) are not operating.
$\begin{aligned} & \text { IGN-IC3 } \\ & \text { Q49 C3 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.9 \end{aligned}$	Experts Mean-0. 20	Rank 1	$\begin{aligned} & \text { IGN-UPn } \\ & \text { IGN-UCn } \end{aligned}$	Probability of H_{2} ignition in the ice condenser, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is greater than 16%.
$\begin{aligned} & \text { IGN-IC4 } \\ & \text { Q49 C4 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.9 \end{aligned}$	Experts Mean-0.16	Rank 1	$\begin{aligned} & \text { IGN-UPn } \\ & \text { IGN-UCn } \end{aligned}$	Probability of H_{2} ignition in the ice condenser, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is between 11 and 16%.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	Correlation With	Description
$\begin{aligned} & \text { IGN-IC5 } \\ & \text { Q49 C5 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.75 \end{aligned}$	Experts Mean-0. 12	Rank 1	$\begin{aligned} & \text { IGN-UPn } \\ & \text { IGN-UGZ } \end{aligned}$	Probability of H_{2} ignition in the ice condenser, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is between 5.5 and 11 .
$\begin{aligned} & \text { IGN-UP6 } \\ & \text { Q50 C6 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.6 \end{aligned}$	Experts Mean-0.35	Rank 1	$\begin{aligned} & \text { IGN-ICn } \\ & \text { IGN-UCa } \end{aligned}$	Probability of H_{2} ignition in the upper plenum, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is greater than 168 .
$\begin{aligned} & \text { IGN-UY7 } \\ & \text { Q50 C7 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.6 \end{aligned}$	Experts Mean-0. 26	Rank 1	$\begin{aligned} & \text { IGN-ICn } \\ & \text { IGN-UCn } \end{aligned}$	Probability of H_{i} ignition in the upper plenum, givon that the ARFs and HIS are not operacing, and the H_{2} mole fraction is between 11 and 16 z .
$\begin{aligned} & \text { IGN-UP8 } \\ & \text { Q50 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.6 \end{aligned}$	Experts Hean-0. 1.8	Rank 1	$\begin{aligned} & \text { IGN-ICn } \\ & \text { IGN-UCn } \end{aligned}$	Probability of H_{2} ignition in the upper plenum, given that the ARFs and HIS are not operating, and the H_{2} mole fractiont is between 5.5 and 118.
$\begin{aligned} & \text { IGN-UC6 } \\ & \text { Q51 C6 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.25 \end{aligned}$	Experts Mean-0.097	Rank 1	$\begin{aligned} & \text { IGN-ICn } \\ & \text { IGN-UPn } \end{aligned}$	Probability of H_{2} ignition in the upper compartment, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is greater than 16%.
$\begin{aligned} & \text { IGN-UC7 } \\ & \text { QS1 C7 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.25 \end{aligned}$	Experts Mear=0.092	Rank 1	$\begin{aligned} & \text { IGN-IC? } \\ & \text { IGN-UPn } \end{aligned}$	Probability of H_{2} ignition in the upper compartment, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is between 11 and 16%.

Table 2.3-2 (continued)

Variable
Question
and Case
IGN-UC8
QS1 C8
$\mathrm{H} 2-\mathrm{DDT1}$
Q52 C1
Q53 Ci

H2-DDT2
Q52 C2
Q53 C2
H2-DDT3
Q52 C3
Q53 C3

DET-IMP	0.0
Q55 C1	59.4
Q56 C1	
CF-PRES	274.
Q57	929.
CE-MODE	0.0
Q57	1.0
CE-IMPUP	0.5
Q57	48.

Mean-12.

Correlation

 WithIGN-ICn IGN-UPn

H2-DDTn

Experts
Mean-10.4

Experts
Mean-551.
Uniform
Mean-0.5
Experts
Correlation
Rank 1

Rank 1
Mean-0.72

Experts Mean-1. 62

Experts

Mean-0. 45
Distribution Mean-0.083

Experts

Rarik 1

Rank 1
-

None

None

None

Rank 1
\qquad
Probability of H_{2} ignition in the upper compartment, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is between 5.5 and 11 z.

Probability of deflagration to detonation transition given H_{2} ignition in the ice condenser or upper plenum and H_{2} mole fraction greater than 218 .

Probability of deflagration to detonation transition given H_{2} ignition in the ice condenser or upper plemum and H_{2} mole fraction from 16 to 218 .

Probability of deflagration to detonation transition given H_{2} ignition in the ice condenser or upper plenum and H_{2} mole fraction from 14 to 16%

Impulse, in $\mathrm{kPa}-\mathrm{s}$, delivered by H_{2} detonation in the ice condenser or upper plenum, given DDT.

Containment failure pressure, in kPa .

Random number used to select the containment failure mode.

Impulsive failure criteria, in $\mathrm{kPa}-\mathrm{s}$, for the upper plenum.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	Correlation \qquad	Description
$\begin{aligned} & \text { IGN-UC8 } \\ & \text { Q51 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.25 \end{aligned}$	Experts Mean-0.083	Rank 1	$\begin{aligned} & \text { IGN-ICn } \\ & \text { IGN-UPn } \end{aligned}$	Probability of \mathbb{H}_{2} Ignition in the upper compartment, given that the ARFs and HIS are not operating, and the H_{2} mole fraction is between 5.5 and 118.
$\begin{aligned} & \mathrm{H} 2-\mathrm{DDT} 1 \\ & \text { Q52 C1 } \\ & \text { Q53 C1 } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	Experts Mean-0.72	Rank 1	H2-DDTn	Probability of deflagration to detonation transition given H_{2} ignition in the ice condenser or upper plenum and H_{2} mole fraction greater than 218.
$\begin{aligned} & \mathrm{H} 2-\mathrm{DDT} 2 \\ & \text { Q52 C2 } \\ & \text { Q53 C2 } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	Experts Mean-0.62	Rank 1	H2-DDTn	Probability of deflagration to detonation transition given H_{2} ignition in the ice condenser or upper plenum and H_{2} mole fraction from 16 to 218.
$\begin{aligned} & \text { H2-DDT3 } \\ & \text { Q52 C3 } \\ & \text { Q53 C3 } \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1.0 \end{aligned}$	Experts Mean-0. 45	Rank 1	H2-DDTn	Probability of deflagration to detonation transition given H_{2} ignition in the ice condenser or upper plenum and H_{2} mole fraction from 14 to 16%.
$\begin{aligned} & \text { DET-IMP } \\ & \text { Q55 C1 } \\ & \text { Q56 C1 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 59.4 \end{aligned}$	Experts Mean-10.4	None		Impulse, in $\mathrm{kPa}-\mathrm{s}$, delivered by H_{2} detonation in the ice condenser or upper plenum, given DDT.
CF-PRES Q57	$\begin{aligned} & 274 . \\ & 929 . \end{aligned}$	Experts Mean-551.	None		Containment failure pressure, in kPa .
$\begin{aligned} & \text { CF-MODE } \\ & \text { Q57 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Uniform Mean-0. 5	None		Random number used to select the containment failure mode.
$\begin{aligned} & \text { CF - IMPUP } \\ & \text { QS7 } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 48 . \end{aligned}$	Experts Mean-12.	Rank 1	CF-IMPIC	Irpulsive failure criteria, in kPa-s, for the upper plerum.

Table 2.3-2 (cont inued)

Variable Question and Case	Range	Distribution	Correlation	Corre? ation With	Description
$\begin{aligned} & \text { CF-IMPIC } \\ & \text { Q57 } \end{aligned}$	$\begin{aligned} & 0.7 \\ & 64 . \end{aligned}$	Experts Mean-22.	Rank 1	CF-IMPUP	Impulsive fallure criteria, in kPa-s, for the ice condenser.
$\begin{aligned} & \text { R-CAVITY } \\ & \text { Q63 C2 } \end{aligned}$	$\begin{aligned} & \text { Zero } \\ & \text { One } \end{aligned}$	$\begin{array}{lr} \text { Wet } & 0.5 \\ \text { D-Flood } & 0.5 \end{array}$	None		Probability that the reactor cavity is either wet or deeply flooded at vessel breach.
VB-ALPHA Q64 C1	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Experts Mean-. 0085	None		Probability that an alpha mode CF occurs, given that the RCS is at low pressure. (One-tenth this value is used for high pressure, Q64 C2.)
$\begin{aligned} & \text { TYPE-VB3 } \\ & \text { Q65 C3 } \end{aligned}$	Zero One	Experts HPME 0.79 Btmid 0.08 Pour 0.13	Rank 1	TYPE-VB4	Type of VB given that the RCS is at setpoint pressure.
TYPE-VB4 Q65 C4, C5	Zero One	Experts HPME 0.60 Btmid 0.27 Pour 0.13	Rank 1	TYPE-VB3	Type of VB given that the RCS is at high pressure.
$\begin{aligned} & \text { ER-HPME } \\ & \text { Q66 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.60 \end{aligned}$	Experts Mean-0. 30	None		Fraction of core which participates in HPME at VB.
$\begin{aligned} & \text { FR-ICIR2 } \\ & \text { Q68 C2 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.5 \end{aligned}$	Internal Mean=0.15	Rank 1	FR-ICIRn	Fraction of FR-HPME that is diverted to the ICIR, given core ejection from the cavity, RCS pressure 200 psia, and FRHPME >0.40.

Table 2.3-2 (continuer)

Variable Question and Case	Range	Distribution	Correlation	Correlation With	Description
$\begin{aligned} & \text { FR-ICIR3 } \\ & \text { Q68 c3 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Internal Mean=0.33	Rank 1	FR-ICIRn	Fraction of FR-HPMS that is diverted te the ICIR, given core ejection from the cavity, RCS pressure 200 to 600 psia, and FR-HPME >0.40.
$\begin{aligned} & \text { ER-ICIR4 } \\ & \text { Q68 C4 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Internal Mean-0. 32	Rank 1	FR-IGIRn	Fraction of FR-HPME that is diverted to the ICIR, given core ejection from the cavity, RCS pressure 200 to 600 vsia, and $0.20<\mathrm{FR}$-HPME <0.40.
$\begin{aligned} & \text { FR-ICIR5 } \\ & \text { Q68 C5 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Internal Mean-0. 31	Rank 1	ER-ICIRn	Fraction of FR-HPME that is diverted te the ICIR, given core ejection from the cavity, RCS pressure 200 te 600 psia, and FR-HPME $<0.2 \mathrm{C}$.
$\begin{aligned} & \text { FR-ICIR6 } \\ & \text { Q68 C6 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Internal Mean-0. 42	Rank 1	FR-ICIRn	Fraction of FR-HPME that is diverted to the ICIR, given core ejection from the cavity, RCS pr-issure greater than 1000 psid, and FR-HPME >0.40.
$\begin{aligned} & \text { ER-ICIR7 } \\ & \text { Q68 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Internal Mean-0.42	Rank 1	FR-ICIRn	Fraction of FR-HPME that is diverted to the ICIR, given core ejection from the cavity, RCS pressure greater than 1000 psia, and $0.20<$ FR-HEME <0.40.
$\begin{aligned} & \text { FR-ICIR8 } \\ & \text { Q68 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$	Internal Mean=0.42	Rank 1	FR-ICIRn	Fraction of FR-HPME that is diverted to the ICIR, given core ejection from the cavity. RCS pressure greater than 1000 psia, and FR-HPME <0.20.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	\qquad	Description
$\begin{aligned} & \text { V-HSIZE } \\ & \text { Q72 CI } \end{aligned}$	Zero One	$\begin{array}{ll} \text { Large } & 0.1 \\ \text { Small } & 0.9 \end{array}$	None		Size of the hole in the vessel after ablation, given HPME.
$\begin{aligned} & \text { DP1-VB4 } \\ & \text { Q73 C4,C7 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 360 . \end{aligned}$	Experts Mean-135.	Rank 1	DP1-VBn DPX1-VBn	Pressure rise at $V B$, in $k P a$, given that either the cavity is deeply flooded or there is no HPME, a wet cavity and significant H_{2} burned before VB. The ice condeitser (IG) is intact.
$\begin{aligned} & \text { DPX1-VB4 } \\ & \text { Q73 C4, C7 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 400 . \end{aligned}$	$\begin{aligned} & \text { Experts } \\ & \text { Mean-148. } \end{aligned}$	Rank 1	DP1-VBn DPX1-VBn	Pressure rise at $V B$, in $k P a$, given that either the cavity is deeply flooded or there is no HPME, a wet cavity and significant H_{2} burned before VB. The IC is non-functional.
$\begin{aligned} & \text { DP1 - VB5 } \\ & \text { Q73 C5 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1300 . \end{aligned}$	Experts Mean-325.	Rank 1	DP1-VBn DPX1-VBn	Pressure rise at $V B$, in kPa , given no HPME, a wet cavity, little H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DPX1-VB5 } \\ & \text { Q } 73 \mathrm{CS} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1500 . \end{aligned}$	Experts Mean-358.	Rank 1	DP1-VBn DPX1-VBn	Pressure riso at VB, in kPa , given no HPME, a wet cavity, little H_{2} burned before VB and IC non-functional.
$\begin{aligned} & \text { DP1-VB6 } \\ & \text { Q73 C6 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 940 \end{aligned}$	Experts Mean-215.	Rank 1	DP1-VBn DPXI-VBn	Pressure rise at $V B$, in $k P a$, given no HYME, a dry cavity, little H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DPX1-VB6 } \\ & \text { Q.3 C6 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1300 . \end{aligned}$	Experts Mean-292.	Rank 1	DP1-VBn DPXI-VBn	Pressure rise at $V B$, in kPa , given no HPME, a dry cavity, little H_{2} burned before VB and IC non-functional.

Table 2.3-2 (continued)

Variable Question and Case	Range	Discribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \end{gathered}$	Description
$\begin{aligned} & \text { DP1-VB8 } \\ & \text { Q73 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 130 \end{aligned}$	Experts Mean-56	Rank 1	DP1-VBn $\mathrm{DPXI}-\mathrm{VBn}$	Pressure rise at $V B$, in kPa , given no HPME, a wet cavity, significant H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DPX1-VB8 } \\ & \text { Q73 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 150 . \end{aligned}$	Experts Mean-63	Rank 1	DP1-VBn DPXI-VBn	Pressure rise at VB, in kPa , given no HPME, a wet cavity, significant H_{2} burned before VB and IC non-functional.
$\begin{aligned} & \text { DP2-VB2 } \\ & \text { Q74 C2 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 960 . \end{aligned}$	Expez s Mean-363.	Rank 1	$\begin{aligned} & D P 2-V B n \\ & \text { DPX2-VBn } \\ & \text { DP3-VBn } \\ & \text { DPX3-VBn } \end{aligned}$	Pressure rise at $V B$, in kPa , given HPME at int pressure, high IR-HPME, large hole in vessel, a wet cavity, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DPX2-VB2 } \\ & \text { Q74 C2,C11 } \\ & \text { Q74 C14 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1200 . \end{aligned}$	Experts Mean=590.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in $k P a$, given HPME at int. pres iure, high FR-HPME, large hole in vessel, little H_{2} burned before $V B$, and IC non-functional.
$\begin{aligned} & \text { DP2-VB3 } \\ & \text { Q74 C3,C6 } \\ & \text { Q74 C9 } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 650 . \end{aligned}$	Experte Mean-253.	Rank 1	DP2-VBn DPX2-V5n DP3-VBn DPX3-VBrt	Pressure rise at $V B$, in kPa , given HPME at int. pressure, medium FR-HPME, a wet cavity, little H_{2} burned before VB , and IC intact.
$\begin{aligned} & \text { DPX2-VB3 } \\ & \text { Q74 C3,C6 } \\ & \text { Q74 C9,C12 } \\ & \text { Q74 C15,C18 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 940 \end{aligned}$	Experts Mean-413.	Rank 1	DP2- VBn DPX2-VBn DP3-VBn DPX $3-\mathrm{VBn}$	Pressure rise at VB , in kPa , given HPME a : int. pressure, medium FR-HPME, little H_{2} burned before VB, and IC nonfunctional.
$\begin{aligned} & \text { DP2-VB4 } \\ & \text { Q74 C4,C7 } \\ & \text { Q74 C10 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 510 . \end{aligned}$	Experts Mean-194.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB , in kPa , given HPME at int. pressure, low FR-HPME, a wet cavity, little H_{2} burned before VB, and IC intact.

Table 2.3-2 (continued)
Variable
Question
and Case
Range
Dis ribution Correlation
Correlation
$-\quad$ With
\qquad
Experts
DPX2-VB4
Q74 C4, C7
0.0
550.
Q74 C10,C13
Q74 C16,C19
DP2-VB5
0.0
DP2-VB5
Q74 $\quad 5$
DPX2-VB5
Q74 C5,C17

Table 2.3-2 (continued)

$\begin{array}{r} \text { Variable } \\ \text { ion } \\ \text { Gase } \\ \hline \end{array}$	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \\ \hline \end{gathered}$	Description
$\begin{aligned} & \text { DP2-VB11 } \\ & \text { Q74 C11 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1000 . \end{aligned}$	$\begin{aligned} & \text { Experts } \\ & \text { Mean }=428 . \end{aligned}$	Rank 1	DP ${ }^{\prime}-\mathrm{VBn}$ DPX2-VBn DP3-VBn DPY $3-\mathrm{VBn}$	Pressure rise at VB , in kPa , given HPME at int. pressure, high FR-HPME, large hole in vessel, a dry cavity, high invessel zirconium oxidation, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { D: } 2 \cdot \text { VB12 } \\ & \text { Q74 C12 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 720 . \end{aligned}$	Experts Mean-323.	Rank 1	$\begin{aligned} & \mathrm{DP2} 2-2 \mathrm{Bn} \\ & \mathrm{DPX} 2-\mathrm{VBn} \\ & \mathrm{DP} 3-\mathrm{VBn} \\ & \text { DPX } 3-V B n \end{aligned}$	Pressure rise at VB, in kPa , given HPME at int. pressure, medium FR-HPME, large hole in vessel, a dry cavity, high invessel zirconium oxidation, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DP2-VB13 } \\ & \text { Q74 C13 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 420 . \end{aligned}$	$\begin{aligned} & \text { Experts } \\ & \text { Mean-190. } \end{aligned}$	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa, given HPME at int. pressure, low FR-HPME, large hole in vessel, a dry cavity, high invessel Zr oxidation, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DP2-VB14 } \\ & \text { Q74 C14 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 990 . \end{aligned}$	Experts Mean-419.	Rank 1	DP2-VBn DPX2-VEn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa , given HPME at int. pressure, high FR-HPME, large hole in vessel, a dry cavity, low invessel Zr oxidation little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DP2-VB15 } \\ & \text { Q74 C15 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 690 . \end{aligned}$	Experts Mean-305.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure risa at VB, in kPa , given HPME at int. pressure, medium FR-HPME, large hole in vessel, a dry cavity, low invessel Zx oxidation, little H_{2} burned before VB, and IC intact.

Table 2.3-2 (contimued)

Variable Question and Case	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { Wian } \end{gathered}$	Description
$\begin{aligned} & \text { DP2-VB16 } \\ & \text { Q74 C16 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 410 . \end{aligned}$	Experts Mean-181.	Rank 1	$\begin{aligned} & D P 2-V B n \\ & D P X 2-V B n \\ & D P 3-V B n \\ & D P X 3-V B n \end{aligned}$	Pressure rise at VB, in kPa , given HPME at int pressure, low FR-HPME, large hole in vessel, a dry cavity. Low invessel zirconium oxidation, Little H_{2} burned before $V B$, and IC intact.
$\begin{aligned} & \text { DP2-VB17 } \\ & \text { Q74-C17 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 790 . \end{aligned}$	Experts Mean-342.	Rank 1	$\begin{aligned} & D P 2-V B n \\ & D P X 2-V B n \\ & D P 3-V B n \\ & D P X 3-V B n \end{aligned}$	Pressure rise at VB, in kra, given HPMS at int. pressure, high FR-HPME, small hole in vessel, a dry cavity, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DP2-VB18 } \\ & \text { Q: }=\text { C18 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 560 . \end{aligned}$	Experts Mean=252.	Rank 1	$\mathrm{DP} 2-\mathrm{VBn}$ DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa , given HPME at int. pressire, medium FR-HPME, large hole in vesse, a dry cavity, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DP2-VB19 } \\ & \text { Q74 C19 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 340 \end{aligned}$	Experts Mean-154.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in kPa , given HPME at int. pressure, low FR-HPME, large hole in vessel, a dry cavity, little H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DP3-VB2 } \\ & \text { Q75 C2 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 840 \end{aligned}$	Experts Mean-308.	Rank 1	$\mathrm{DP} 2-\mathrm{VBn}$ DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa , given HPME at int. pressure, high FR-HPME, a wet cavity, significant H_{2} burned before VB, and IC intact.
DPX3-VB2 Q75 C2,C5 Q75 C8	$\begin{aligned} & 0.0 \\ & 1200 . \end{aligned}$	Experts Mean-498	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in $k P a$, given HPME at int. pressure, high FR-HPME, significant H_{2} burned before VB, and IC nonfunctional.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	\qquad	Description
$\begin{aligned} & \text { DP3-VB3 } \\ & \text { Q75 C3 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 620 . \end{aligned}$	Experts Mean-231.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in $k P a$, given HPME at int pressure, medium FR-HPME, a wet cavity, significant H_{2} burned before VB, and IC intact.
$\begin{aligned} & \text { DPX3-VB3 } \\ & \text { Q75 C3,C6 } \\ & \text { Q75 C9 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 940 . \end{aligned}$	Experts Mean-366.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in $k P a$, given $H P M E$ at int. pressure, medium FR-HPME, significant H_{2} burned before VB, and IC non-functional.
$\begin{aligned} & \text { D23-VB4 } \\ & \text { Q75 C4 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 490 . \end{aligned}$	Experts Mean-183.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in kPa , given HPME at int. pressure, low FR-BPME, a wet cavity, significant H_{2} burned before VB. and IC intact.
$\begin{aligned} & \text { DPX3-VB4 } \\ & \text { Q75 C4, C7 } \\ & \text { Q75 C10 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 550 . \end{aligned}$	Experts Mean-215.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX $3-\mathrm{VBn}$	Pressure rise at $V B$, in kPa , given HPME at int. pressure, low FR-HPME, significant H_{2} burned before VB, and IC nonfunctional.
$\begin{aligned} & \text { DP3-VB5 } \\ & \text { Q75 G5 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 960 . \end{aligned}$	Experts Mean=335.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa , given HPME at int. pressure, high FR-HPME, large hole in vessel, a dry cavity, significant H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DP3-VB6 } \\ & \text { Q75 C6 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 640 \end{aligned}$	Experts Mean-290.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB , in kPa, g° ven HPME at int. pressure, medium FR-HOME, large hole in vessel, a dry cavity, significant H_{2} burned before VB and IC intact.

Table 2.3-2 (coatinued)

Variable Question and Case	?ange	Distribution	Correlation	\qquad	Description
$\begin{aligned} & \text { DP3-VB7 } \\ & \text { Q75 C7 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 390 \end{aligned}$	Experts Mean-173.	Rank 1	DP2 - VBn DPX2-VBn DP3-V3n DPX3-VPn	Pressure rise at VB, in kPa, given HPME at int. pressure, low FR-HPME, large hole in vessel, a dry cavity, significant H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DP3-VB8 } \\ & \text { Q75 C8 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 780 \end{aligned}$	Experts Mean-311.	Rank 1	$\begin{aligned} & \mathrm{DP} 2-\mathrm{V} 3 \mathrm{n} \\ & \mathrm{DPX} 2-\mathrm{VBn} \\ & \mathrm{DP3}-\mathrm{VBn} \\ & \mathrm{DPX} 3-V B n \end{aligned}$	Pressure rise at VB, in kPa , given HPME at int. r ressure, high FR-HPME, small hole in vessel, a dry cavity, significant H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DP3-VB9 } \\ & \text { Q75 c9 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 520 . \end{aligned}$	Experts Mean-232.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX $3-V E n$	Pressure rise at $V B$, in kPa , given HPME at int pressure, medium FR-HPME, small hole in vessel, ¿ dry cavity, significant H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { QP3-VB10 } \\ & \text { Q75 C10 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 330 . \end{aligned}$	Experts Mean-144.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in kPa , given HPME at int. pressure, low FR-HPME, small hole in vessel, a dry cavity, significant H_{2} burned before VB and IC intact.
$\begin{aligned} & \text { DP3-VB12 } \\ & \text { Q75 C11 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1100 . \end{aligned}$	Experts Mean-372.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa , given HPME at high or setpoint pressure, high FR-HPME, a wet cavity, and IC intact.
DPX3-VB11 Q75 C11, C14 Q75 C17	$\begin{aligned} & 0.0 \\ & 1300 . \end{aligned}$	Experts mean-641.	Rank 1	$\begin{aligned} & \mathrm{DP2} 2-\mathrm{VBn} \\ & \mathrm{DPX} 2-\mathrm{VBn} \\ & \mathrm{DP} 3-\mathrm{VBr} \\ & \mathrm{DPX} 3-\mathrm{VBr} \end{aligned}$	Pressure rise at VB, in kPa , given HPME at high or setpoint pressure, high FR-HPME, and IC non-functional.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	Correlation \qquad	Description
$\begin{array}{cc} \text { DH } & 312 \\ \text { C12 } \end{array}$	$\begin{aligned} & 0.0 \\ & 740 \end{aligned}$	Experts Mean-290.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX $3-V B n$	Pressure rise at $V B$, in $k P a$, given HPME at high or setpoint pressure, meditm FR-HPME, a wet cavity, and IC intac:.
$\begin{aligned} & \text { DPX3-VB12 } \\ & \text { Q75 C12,C15 } \\ & \text { Q75 C18 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 940 . \end{aligned}$	Experts Mean-464.	Rank 1	DP2 - VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa, given 1 PME at high or setpoint pressure, mediul ER-HPME, and IC non-functional.
$\begin{aligned} & \text { DP3-VB13 } \\ & \text { O75 C13 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 550 . \end{aligned}$	Experts Mean-212.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa , given HPME at high or setpoint pressure, low E: - JPiB. a wet cavity, and IC intact.
$\begin{aligned} & \text { DPX3-VB13 } \\ & \text { Q75 C13,C16 } \\ & \text { Q75 C19 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 550 \end{aligned}$	Experts Mean-264.	Rank 1	$\begin{aligned} & \mathrm{DP} 2-\mathrm{VBn} \\ & \mathrm{DPX2}-\mathrm{VBn} \\ & \mathrm{DP} 3-\mathrm{VBn} \\ & \mathrm{DPX} 3-\mathrm{VBn} \end{aligned}$	Pressure rise st VB, in kPa , given HPME at high or setpoint pressure, low FR-HPME, and IC non-functional.
$\begin{aligned} & \text { DP3-VB14 } \\ & \text { Q73 C14 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1100 . \end{aligned}$	Experts Mean-459.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at $V B$, in $k P a$, given HPME at high or setpoint pressure, high FR-HPME, large hole in vessel, a dry cavity, and IC intact.
$\begin{aligned} & \text { DP3-VB15 } \\ & \text { Q75 C15 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 740 \end{aligned}$	Experts Mean-337.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX $3-\mathrm{VBn}$	Pressure rise at VB, in $k P a$, given HPME at high or setpoint pressure, medium FR-HPME, large hole in vessel, a dry cavity, and IC intact.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \end{gathered}$	Description
$\begin{aligned} & \text { DP3-VB16 } \\ & \text { Q75 C16 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 430 . \end{aligned}$	Experts Mean-197.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa, given HPME at high or setpoint pressure, low FR-HPME, large hole in vessel, a dry cavity, and IC intact.
$\begin{aligned} & \text { DP3-VB17 } \\ & \text { Q75 c17 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 890 \end{aligned}$	Experts Mean-364.	Rank 1	$\begin{aligned} & D P 2-V B n \\ & D P X 2-V B n \\ & D P 3-V B n \\ & D P X 3-V B n \end{aligned}$	Pressure rise at VB, in kPa , given HPME at high or setpoint pressure, high FR-HPME, small hole in vessel, a dry cavity, and IC intact.
$\begin{aligned} & \text { DP3-VB18 } \\ & \text { Q75 C18 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 590 . \end{aligned}$	Experts Mean-264.	Rank 1	$\begin{aligned} & \mathrm{DP} 2-\mathrm{VBn} \\ & \mathrm{DPX} 2-\mathrm{VBn} \\ & \mathrm{DP} 3-\mathrm{VBn} \\ & \mathrm{DPX} 3-\mathrm{VBn} \end{aligned}$	Pressure rise at $V B$, in $k P a$, given HPME at high or setpoint pressure, medium FR-HPME, small hole in vessel, a dry cavity, and IC intact.
$\begin{aligned} & \text { DP3-VB19 } \\ & \text { Q75 C19 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 360 . \end{aligned}$	Experts Mean-160.	Rank 1	DP2-VBn DPX2-VBn DP3-VBn DPX3-VBn	Pressure rise at VB, in kPa, given HPME at high or setpoint pressure, low FR-HPME mall hole in vessel, a dry cavity, and ic intact.
$\begin{aligned} & \text { CF-DCON2 } \\ & \text { Q78 C2 } \end{aligned}$	Zero One	Fail 0.01 NoFail 0.99	Rank 1	CF-DCONn	Probability of containment failure by direct contact of liner with core debris, given that less that 10 metric tons of core debris enters the ICIR.
$\begin{aligned} & \text { CF-DCON3 } \\ & \text { Q. } 8 \mathrm{C} 3 \end{aligned}$	Zero One	Fail 0.31 NoFail 0.69	Rank 1	CF-DCONn	Probability of containment failure by direct contact of liner with core debris, given that 10 to 30 metric tons of core debris enters the ICIR.

Table 2.3-2 (continued)

Variable Question and Case	Range	Distribution	Correlation	Correlation With	Description
$\begin{aligned} & \text { CF-DCON4 } \\ & \text { Q } 78 \text { C4 } \end{aligned}$	Zero One	Fail 0.53 NoFail 0.47	Rank 1	CF-DCONn	Probability of containment failure by direct contact of liner with core debris, given that 30 to 50 metric tons of core debris enters the ICIR.
$\begin{aligned} & \text { CF-DCON5 } \\ & \text { Q78 C5 } \end{aligned}$	Zero One	Fail 0.60 NoFail 0.40	Rank 1	CF-DCONn	Probability of containment failure by direct contact of liner with core debris, given that more than 50 metric tons of core debris enters the ICIR.
$\begin{aligned} & \text { Ex-MOXVB1 } \\ & 079 \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.20 \end{aligned}$	Max. Entropy Mean=0. 075	Rank 1	FR-20XVB2	Fraction of potentially oxidizable metal in ejected core is oxidized at VB, given that HPME does not occur.
$\begin{aligned} & \text { FR - MOXVB2 } \\ & \text { Q79 C2 } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	Uniform Mean=0.75	Rank 1	IP-MOXVB1	Fraction of potentially oxidizable metal in ejected core is oxidized at VB, given that HPME occurs.
$\begin{aligned} & \text { FR-H2CNS } \\ & \mathrm{O} 81 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	Max. Entropy Mean=0.775	None		Fraction of hydrogen in contaimment at VB consumed by burns.
L-PRESS4 Q94 C4	$\begin{aligned} & 207 . \\ & 276 . \end{aligned}$	Uniform Mean-241.	Rank 1	L-PRESSn	Late pressure in contaimment, in kPa , given prompt CCI with low steam generation and no CHR.
$\begin{aligned} & \text { L-PRESS5 } \\ & \text { Q94 CS } \end{aligned}$	$\begin{aligned} & 241 . \\ & 310 . \end{aligned}$	Uniform Mean-276.	Rank 1	L-PRESSn	Late pressure in contaimment, in kPa , given prompt CCI with high steam generation and no CHR.

Table 2.3-2 (cont inued)

Variable Question and Case	Range	Distribution	Correlation	$\begin{gathered} \text { Correlation } \\ \text { With } \end{gathered}$	Description
L-PRESS6 Q94 C6	$\begin{aligned} & 172 . \\ & 241 . \end{aligned}$	Uniform Mean-207.	Rank 1	L-PRESSn	Late pressure in containment, in kPa , given that prompt CCI does not occur and there is no CHR.
VL- PRESS4 Q108 C4	$\begin{aligned} & 138 . \\ & 241 . \end{aligned}$	Uniform Mean-190.	Rank 1	VL-PRESS5	Late pressure in containment, in kPa , given that prompt CCI occurs with containment heat removal; pressure due to non-condensible gases.
VL-PRESS5 Q108 C5	$\begin{aligned} & 138 . \\ & 345 . \end{aligned}$	Uniform Mean-241.	Rank 1	VL-PRESS 4	Late pressure in containment, in kPa , given that prompt CCI occurs and the steam concentration in containment is low.
$\begin{aligned} & \text { VI-CCI } \\ & \text { Q111 C2 } \end{aligned}$	Zero One	$\begin{aligned} & \text { CCI } 0.75 \\ & \text { NoCCI } 0.25 \end{aligned}$	None		Probability that core concrete attack ensues after late boiloff and very late containment failure.
POWERREC Q22 C3-C7 Q90 C3-C7 Q105 C3-C4			None		Variable used to select the probability that offsite power will be recovered in a specified time interval given that it was not recovered in a previous time interval.

2.4 Description of the Accident Progression Bins

As each path through the APET is evaluated, the result of that evaluation is stored by assigning it to an APB. This bin describes the evaluation in enough detail that a source term (release of radionuclides) can be calculated for 1:. The APBs are the means by which information is passed from the accident progression analysis to the source term analysis. A bin is defined by specifying the attribute or value for each of 14 character. istics or quantities which define certain features of the evaluation of the APET. Section 2.4 .1 describes the 14 characteristics, and the values that each characteristic can assume. A more detailed description of the binner, discussing each case in turn, is contained in Appendix A.1.3. The binner itself, which is expressed as a computer input file, is iisted in Appendix A.1.4. Section 2.4 .2 contains a discussion of rebinning, a process that takes place between evaluating the APET (in which binning takes place) and the source term analysis. Section 2.4 .3 describes a set of summary binning characteristics wifich is used in presenting the results of evaluating the APET.

2.4.1 Description of the Bin Characteristics

The binning scheme for Sequoyah uses 14 characteristics. That is, there are 14 types of information required to define a path through the APET. A bin is defined by specifying a letter for each of the 14 characteristics, where each letter for each characteristic has a meaning defined below. For a characteristic, the possible states are termed attributes. The Sequoyah binning characteristics are:

Characteristic Mnemonic

1	CF-Tine	Time of containment failure
2	Sprays	Periods in which sprays operate
3	CCI	Occurrence of core-concrete
		interactions
4	RCS-Pres	RCS pressure before VB
5	VB-Mode	Mode of VB
6	SGTR	Steam generator tube rupture
7	Amt-CCI	Amount of core available for CCI
8	Zr-Ox	Fraction of zirconium oxidized in
	HPME	vessel
9	CF-Size	Fraction of the core in HPME
10	RCS-Hole	Size or type of containment failure
11	Number of large holes in the RCS after	
	E2-IC	VB
12	Early ice condenser function	
13	ARFans	Late ice condenser function
14	Status of air return fans	

Most of this information, organized in this marner, is needed by SEQSOR to calculate the fission product source terms. Characteristic 5, mode of VB, is not used by SEQSOR, but has been retalned because it provides interesting output information about the APET outcome, or the paths taken through the APET. SEQSOR obtains the information it needs concerning HPME from Characteristic 9, fraction of the core in HPME

The remainder of this section contains a listing of each attribute for each characteristic, followed by a brief description of each characteristic, and finally an explanation of an example bin. The listing below provides the letter identifier for each attribute, as well as the mnemonic descriptor and definition for the attribuce.

Characteristic 1 - Containment Failure Time

A V-Dry Event V, releases not scrubbed by fire sprays.
B V-Wet Event V, releases scrubbed by fire sprays.
C CF-Early Containment failure during core degradation.
D CF-atVB Containment failure at VB.
E CF-Late Late containment failure (during the initial part of CCI, nominally a few hours after VB).

F CF-VLate Very late containment failure (from 12 to 24 h afcer VB).
G NoCF No containment failure.

Characteristic 2 - Sprays

A Sp-Early The sprays operate only in the eazly pariod.
B $\quad S p-E+I \quad$ The sprays operate only in the early and intermediate periods.

C $S p-E+I+L$ The sprays operate only in the early, intermediate, and late periods.

D SpAlways The sprays always operate during the periods of interest for fission product removal.

E Sp-Late The sprays operate only in the late period.
F $\quad S p-L+V L$ The sprays operate only in the late and very late periods.

G Sp-VL The sprays operate only in the very $18 z e$ period.
4 Sp-Never The sprays never operate during the accident.
I Sp-Final The sprays operate only during the final period (not of interest for fission product removal).

Characteristic 3-Core-Concrete Interactions

A Prmt-Dry CCI takes place promptly following VB. There is no overlying water to scrub the releases.

B Prmt-Shl CCI takes place promptly following VB. There is a shallow (about 5 ft) overlying water pool to scrub the releases.

C No-CCI CCI does not take place.

D Prmt-Dp CCI takes place promptly following VB. There is a deep (at least 10 ft) overlying water pool to scrub the releases.

E SDly-Dry CCI takes place after a short delay. The debris is initially coolable but limited cavity water is not replenished.

F LDly-Dry CCI takes place after a long delay. The debris is initially coolable but the large amount of cavity water is not replenished.

Characteristic 4 - RCS Pressure Before VB

A SSPr System setpoint pressure (2500 psia).
B HiPr High pressure (1000 to 2000 psia).
C ImPr Intermediate pressure (200 to 1000 psia).
D Lopr Low pressure (less than 200 psia).

Characteristic 5 - Mode of VB

A VB-HPME HPME occurs - direct containment heating (DCH) always occurs to some extent.

B VB-Pour The molten core pours out of the vessel, driven primarily by the effects of gravity.

C VB-BtmHd There is gross fallure of a large portion of the bottom head of the vessel.

D Alpha An Alpha mode fallure occurs which also results in CF.
E Rocket Upward acceleration of the vessel cocurg which also results in containment failure (Rocket mode).

F No-VB No VB occurs.

Characteristic 6 - Steam Generator Tube Rupture
A SGTR An SGTR occurs. The SRVs on the secondary system are not stuck open.

B SG-SRVO An SGTR occurs. The SRVs on the secondary system are stuck open.
c) No-SGTR An SGTR does not occur.

Characteristic 7 - Amount of Core not in HPME Available for CCI

A H1-CCI A CCI ocours and involves a large amount of the core (70 to 1008).

B Med-CCI A CCI occurs and involves an intermediate amount of the core (30 to 708).

C Lo-CCI A CCI occurs and involves a small amount of the core (0 to 30\%).

D No-CCI No CCI occurs.

Characteristic 8 - $2 r$ oxidation

A Lo-Zrox A small amount of the core zirconium was oxidized in the vessel before breach. This implies a range from 0 to 408 oxidized, with a nominal value of 258 .

B Hi-2rOx A large amount of the core zirconium was oxidized in the vessel before breach. This implies that more than 40% was oxidized, with a nominal value of 65%.

Characteristic 9 - High Pressure Melt Ejection (HPME)

A Hi-HPME A high fraction ($>40 \%$) of the core was ejected under pressure from the vessel at fallure.

B Md-HPME A moderate fraction (20.408) of the core was ejected under pressure from the vessel at failure.

C Lo-HFME A low fraction (<208) of the core was ejected under pressure from the vessel at fallure.

D No-HPME There was no HPME at vessel fallure.

Characteristic 10 - Containment Failure Size

A Cat-Rpt The containment failed by catastrophic rupture; resulting in a very large hole and gross structural failure.

B Rupture The containiment failed by the development of a large hole or rupture; nominal hole aize is $7 \mathrm{ft}^{2}$.

C Leak The containment failed by the development of a small hole or a leak; nominal hole size is $0.1 \mathrm{ft}^{2}$.

D BMT The containment failed by BMT,
E Bypass The contalument was bypassed by Event V or an SGTR.
F No-CF The containment did not fail or was not bypassed.

Characteristic 11 - Holes in the RCS

A 1-Hole There is a large hole in the RCS after VB, so there is no effective natural circulation through the RCS.

B 2-Holes There are two large holes in the RCS after VB, so there is effective natural circulation through the RCS.

Characteristic 12. Early Ice Condenser Function

A E2-InByp There is no bypass of the ice condenser during core degradation. The IC is intact and is credited with the full DF for the RCS releases.

B E2-IpByp There is partial bypass of the ice sondenser during core degradation. The effective bypass level is nominally 108 , i.e., the ice condersez is credited with an effective DF that is 90% of the DF for E2-InByp

C E2-IByp There is total bypass of the ice ondenser or the ics is completely melted from the ice condenser during $C D$. If the ice is melted and the fans are operating, the ice condenser is credited with an effective DF that is 20% of the DF for E2-InByp.

Characteristic 13 - Late Ice Condenser Function

A I2. InByp There is no bypass of the ice condenser during the initial phase of CCI. The ice condenser is intact and is credited with the full DF for the CCI releases.

B
I2-IpByp There is partial bypass of the ice condenser during the initial phase of CCI. The effective bypass level is nominally 10%, $1 . e$. , the ice condenser is credited with an effective DF that is 908 of the DF for 12 -InByp.

C I2-IByp There is total bypass of the ice condenser, or the ice is completely melted from the ice condenser during the initial phase of CCI. If the ice is melted and the fans operating, the ice condenser is credited wi.th an effective DF that is 208 of the DF for I2. InByp.

Characteristic 14 - Status of Air Return Fans

A ARF-Erly The air return fans operate only in the early period, i.e., be fore and during the RCS releases.

B ARF-E+L The air return fans operate in both the sarly and late periods, $1, e .$, during RCS and CCI releases.

C ARF-Late The air return fans operate only in the late period, i.e., during the CCI releases.

D No-ARF The air return fans do not operate for the early or late periods.

Characteristic 1 primarily concerns the time of containment failure. There are seven attributes. Four of these attributes concern the time of containment fallure, two conezin Event V and one is for no containment failure, SOTRs are considered separately in Characteristic 6 since an SGTR can occur in addition to one of the modes of containment failure. BMT and eventual overpressure failure due to the inability to restore CHR within the day following the accident are the failures that oocur in the very late period.

Characteristic 2 concerns the periods in which the sprays operate. The sprays are important for reduction of aerosol concentrations in the containment atmosphere. The division of this characteristic into the nine attributes is a straightforward sorting out of the various combinations of time periods. The final time period is of little consequence for the fission product release, but it must be included because there are cases where the sprays operate only ir this period, and, for each characteristic, the binner must have a location in which to place every outcome. As SEQSOR does not distinguish between 'sprays never operate', Attribute H, and 'sprays opsrate only in the final period,' Attribute I, these two are combined in the rebinner for SEQSOR.

Characteristic 3 concerns the CCI. There are six possibilities which cover the meaningful combinations of prompt CCI, delayed CCI, and no CCI, with the amount of water in the cavity. The amount of water in the cavity may be divided into three cases. If the cavity was dry at VB and the accumulators discharge before breach, the cavity is dry at the start of CCI. If the cavity was dry at $V B$ and the accumulators discharge at breach, the cavity will be holding about 5 ft of water. If the RWST is injected into contaltment and there is about half of the ice melted before breach, then the cavity will be holding about 22 ft of water.

Characteristic 4 concerns the pressure in the reactor vessel before VB; there are four levels. The pressures shown in parentheses above are approximate pressures just before VB. The RCS pressure during most of the core degradation period may be less than the parenthetical values except for SSPr where the reclosing of the PORVs will keep the system pressure at the setpoint value.

Characteristic 5 concerns the mode of VB; there are six possibilities, including no VB. Direct heating of the containment always occurs to some extent if there is high pressure melt rferiinn (HPME), so there is no simple way to distinguish whether direct cevtainment heating occurs.

Characteristic 6 concerns SGTR. There are only three possibilities: no SGTR, SGTR, and SGTR with the SRVs on the secondary system stuck open, SGTR is considered separately from the other containment failure modes since it can occur in addition to the other failur- des. That is, occurrence of an SGTR before VB does not preclude aont, ment failure at VB or late containment failure. The SGTR creates a bypass of the containment which may have no removal mechanisms operating in the escape path, so it is important to treat it separately.

Characteristic 7 concerns the amount of core not participating in HPME that is available to participate in the CCI. The fractions 0,30 and 0,70 divide the range into three portions. The fourth attribute is no CCI. As SEQSOR subtracts out the fraction of the core involved in HPME, when HPME occurs, the fraction of the core available for CCI is always set to the first attribute, 'Hi-CCI.'

Characteristic 8 concerns the amount of the core zirconium oxidized in vessel before VB. There are two possible values for this characteristic: low and high. The demarcation point between the two ranges is 408 .

Characteristic 9 concerns the amount of the core involved in HPME; there are four attributes. The possible range is divided into three portions by 208 and 408 . No occurrence of HPME is the fourth attribute.

Characteristic 10 concerns the size of the hole that results from containment failure or the type of containment fallure. There are six attributes. The first three attributes concorn fallure of the containment wall above ground. BMT restits in a release from the containment below ground. As SEQSOR does not address late containment failures involving BMT, they are assigned to late containment leaks in the rebinner. SEQSOR determines whether the containment was bypassed from Characteristic 1
(Event V) and Characteristic 6 (SGTR), so the bypass attribute is combined with the no containment failure attribute in the rebinaer.

Characteristic 11 concerns the number of large holes in the PCS after breach. The experts on the source term panel who provided distributions for revolatilization from the RCS surfaces after VB gave different distributions depending on whether an effective natural circulation flow would be set up within the vessel. A significant flow could be expected only if there were two large, effective holes in the RCS; for example the hole in the bottom head resulting from vessel failure and a large temperature-induced hole in the hot leg. SGTR, fallure of the RCP seals, and Event V would not count as large effective holes since effective natural circulation through the RCS would not result in these cases. S_{3}. size holes are not considered large enough to result in effective natural circulation after VB.

Characteristic 12 concerns the status of the ice condenser during the core degradation process. The ice condenser DF is important for the RCS releases. There are three attributes for this characteristic: no ice bypass, partial ice bypass, and total ice bypass. The ice may be partially bypassed due to hydrogen detonations or preferential melting and subsequent channelling. The ice condenser may be totally bypassed due to a rupture failure of containment in the lower compartment or due to breach of the boundary between the lower and upper compartments. For times of contalnment failure in which catastrophic rupture occurs, the ice condenser is assumed to be totally bypassed; however, Characteristic 12 does not reflect this method of bypass because SEQSOR already assumes ice bypass when catastrophic rupture occurs. Complete ice melt also constitutes total ice bypass.

Characteristic 13 concerns the status of the ice condenser during the initial phase of CCI. The ice condenser DF is important for the CCI releases. The attributes are identical to those for Characteristic 12: no ice bypass, partial ice bypass, and total ice bypass.

Characteristic 14 concerns the operation of the air return fans before VB and during the initial phase of CCI. This characteristic has four attributes and is used in conjunction with Characteristics 12 and 13 to establish the ice condenser DF. The Source Term Expert Panel members who evaluated the ice condenser DF, determined that the DF was sensitive to the number of passes through the ice condenser. If fans are operating, there is more than one pass through the ice beds, and if not operating, the aerosol-laden gases make only a single pass through the ice.

A typical bin might be FFADBCABDDBABC; which, using the information presented above, is:

```
F.CF-VLate Very late containment fallure
F = Sp-L+VL Sprays only in the late and very late periods
A - Prmpt-Dry
D - LoPr
B - VB-Pour
C - No-SGTR
A - Lrg-CCI
```

Very late containment fallure
Sprays only in the late and very late periods
Prompt CCI, dry cavity
Low pressure in the RCS at VB
Core material poured out of the vessel at breach
No steam generator tube rupture
A large fraction of the core was avallable for CCI

B $=\mathrm{Hi}-\mathrm{ZrOx}$
D . No. HPME
D - BMT
B - 2-Holes
A - E2-InByP
B - 12 - IpByP
C. ARF. Late

A high fraction of the $2 r$ was oxidized in-vessel
No high pressure melt ejection
Basemat melt-through
Two holes in the RCS
No early bypess of the ice condenser Partial bypass of the ioe condenser during CCI The ARFs operate during CCI

2.4.2 Rebinning

The binning scheme used for the evaluetion of the APET does not exactly match the input information required by SEQSOR. The additional information in the initial binning is kept because it provides a better record of the outcomes of the APET evaluation. Therefore, there is a step between the evaluation of the APET and the evaluation of SEQSOR known as "rebinning. " In the rebinning, a few attributes in some characteristios are combined because there are no significant differences between them for calculating the fission product releases. Characteristic 5, Mode of VB, is not used by SEQSOR, but is not eliminated in the rebinning. The information SEQSOR requires about HPME is obtained from Characteristic 9.

In the rebinning for Sequoyah, there are no changes for Characteristics 1 , $3,4,5,6,7,8,9,11,12,13$ and 14 . That is, for these 12 characteris. tics, the information produced by the APET is exactly that used by SEQSOR. For Characteristic 2, the two final attributes (H - Sp-Never, and I . SpFinal) are combined into Attribute $H, S p$-NonOp, since the operation of sprays in the final period does not affect the amount of fission products released. For Characteristic 10, the third and fourth attributes (C Lerk, and D. BMT) are combined into Attribute C (Leak) since SEQSOR considers the radionuclides released from BMT to be the same as those released from a leak in this period. Also for Characteristic 10, the fifth and sixth attributes (E - Bypass and F . No-CF) are combined into a new Attribute D (No-CF) since the containment pressure boundary is not falled by a bypass and the releases from the bypass events (V and SGTR) are treated separately in SEQSOR. For the rebinned APET pathways, the following listing describes each attribute for each characteristic:

Characteristic 1 - Containment Failure Time (Rebinned)

A V-Dry	Event V, releases not scrubbed by fire sprays.
B V-Wet	Event V, releases scrubbed by fire sprays.
C CF-Early	Containment fallure during core degradation.
D CF-atVB Containment failure at VB.	
E CF-Late	Late containment failura (during the initial part of CCI, nominally a few hours after VB).
F CF-Vlate	Very late containment failure (from 12 to 24 h after VB)

3 NoCF No containment failure.

Characteristic 2 Sprays (Rebinned)

A Sp-Early The sprays operate only in the early period.
B Sp.E+1 The sprays operate only in the early and intermediate periods.

C $\mathrm{Sp} \cdot \mathrm{E}+\mathrm{I}+\mathrm{L}$ The sprays operate only in the early, intermediate, and late periods.

D SpAlways The sprays always operate during the periods of interest for fission product removal.

E Sp-Late The sprays operate only in the late period.
F Sp.L+VL The sprays operate only in the late and very late perjods.

0 Sp-VL The sprays operate oniy in the very late period.
H Sp-NonOp "he sprays never operate during the accident or operate only during the final period, which is not of interest for fission product removal.

Characteristic 3-Core-Concrete Interactions (Rebinned)
A Prme-Dry CCI takes place promptly following VB. There is no overlying water to scrub the releases.

B Prot-Shl CCI takes place promptly following VB. There is a shallow (about 5 ft) overlying water pool to scrub the releases.

0 No-CCI CCI does not take place.
D Prmt.Dp CCI takes place promptly following VB. There is a deep (at least 10 ft) overlying water pool to scrub the releases.

E SDly-Dry CCI takes place after a short delay. The debris is initially coolable but limited cavity water is not replenished.

F L.Dly-Dry CCI takes place after a long delay. The debris is initially coolable but the large amount of cavity water is not replenished.

```
Characteristic 4 - RCS Pressure Before VB (Rebinned)
    A SSPr System setpoint pressure (2500 psia).
    B HiPr High pressure (1000 to 2000 psia).
    C ImPr Intermediate pressure (200 to 1000 psia).
    D LoPr Low pressure (less than 200 psia).
```

Characteristic 5 - Mode of VB (Rebinned)
A VB-HPME HPME oocurs - DCH always occurs to some extent.
B VB-Pour The molten core pours out of the vessel, driven
primarily by the effects of gravity.
C VB-BtmHd There is gross fallure of a large portion of the bottom
head of the vessel.
D Alpha An Alpha mode fallure occurs which also results in CF,
E Rocket Upward acceleration of the vessel occurs which also
results in containment fallure (Rocket mode).
F No-VB No VB occurs.
Characteristic 5 - Steam Generator Tube Rupture (Rebinned)
A SGTR An SGTR occurs. The SRVs on the secondary system are
not stuck open.
B SG-SRVO An SGTR occurs. The SRVs on the secondary system are
stuck open.
C No-SGTR An SGTR does not occur.
Characteristic 7 . Amount of Core not in HPME Available for CCI (Rebinned)
A HI-CCI A CCI occurs and involves a large amount of the core
(70 to 1008).
B Med-CCI A CCI occurs and involves an intermediate amount of the
core (30 to 708).
C Lo-CCI A CCI occurs and involves a small amount of the core (0
to SO 8).
D No-CCI No CCI occurs

```
Characteristic 8 - 2r Oxidation (Rebinned)
```

A Lo-Zrox A small amount of the core zirconium was oxidized in the vessel before breach. This implies a range from 0 to 408 oxidized, with a nominal value of 258 .

B Hi-Zrox A large amount of the core zirconium was oxidized in the vessel before breach. This implies that more than 40% was oxidized, with a nominal value of 65 \%.

Characteristic 9 - High Pressure Melt Ejection (HPME) (Rebinned)
A Hi-HPME A high fraction (>408) of the core was ejected under pressure from the vessel at fallure.
B Md-HPME A moderate fraction (20 to 408) of the core was ejected under pressure from the vessel at failure.

C Lo-HPME A low fraction (<208) of the core was ejected under pressure from the vessel at fallure.

D No-HPME There was no HPME at vessel fallure.

Characteristic 10 - Containment Failure Size (Rebinned)

A Cat-Rpt The containment failed by catastrophic rupture; resulting in a very large hole and gross structural failure.

B Rupture The containment failed by the development of a large hole or rupture; nominal hole size is $7 \mathrm{ft}^{2}$.

C Leak The containment failed by the development of a small hole or a leak (nominal size $0.1 \mathrm{ft}^{2}$), or BMT has ocourred.

D No-CF The containment did not fail. It may have been bypassed.

Characteristic 11 - Holes in the RCS (Rebinned)
A 1 -Hole There is a large hole in the RCS after VB, so there is no effective natural circulation through the RCS.

B 2-Holes There are two large holes in the RCS after VB, so there is effective natural circulation through the RCS.

Characteristic 12 - Early Ice Condenser Function (Rebinned)

A E2-InByp There is no bypass of the ice condenser (IC) during core degradation (CD). The ice condenser is intact and is credited with the full DF for the RCS releases.

E E2-IpByp There is partial bypass of the ice condenser during CD. The effective bypass level is nominally 108 , i.e., the ice condenser is credited with an effective DF that is 908 of the DF for E2-InByp.

C E2-IByp There is total bypass of the ice condenser or the ice is completely melted from the the ice condenser during $C D$. If the ice is melted and the fans are operating, the ice condenser is credited with an effective DF that is 208 of the DF for E2-InByp.

Characteristic 13 . Late Ice Condenser Function (Rebinned)

A I2-InByp There is no bypass of the ice condenser during the initial phase of CCI. The ice condenser is intact and is credited with the full DF for the CCI releases.

B I2-IpByp There is partial bypass of the ice condenser during the initial phase of CCI. The effective bypass level is nominally 108 , i.e., the ice condenser is credited with an effective DF that is 90% of the DF for I2. IrByp.

C I2-IByp There is total bypass of the ice condenser, or the foe is completely melted from the ice condenser during the initial phase of CCI. If the ice is melted and the fans are operating, the ice condenser is credited with an effective DF that is 20% of the DF for I2. InByp.

Characteristic 14 - Status of Air Return Fans (Rebinned)
A ARF-Erly The air return fans (ARFs) operate only in the early

period, i, e, before and during the RCS releases. \begin{tabular}{l}
B ARF-E+L The ARFs operate in both the early and late periods,

i.e. during RCS and CCI releases.

\quad

ARF-Lats The ARFs operate only in the late period, i.e. during

the CCI releases.
\end{tabular}

In the rebinning process, bin FFADBCABDDBABC used as an example above, becomes FFADBCABDCBABC since rebinning affects the tenth characteristic:

F - CF-VLate	Very late containment failure
$F \cdot \mathrm{Sp}-\mathrm{L}+\mathrm{VL}$	Sprays only in the late and very late periods
A - Prmpt-Dry	Prompt CCI, dry cavity
D - LoPr	Low pressure in the RCS at VB
B - VB. Pour	Core material poured out of the vessel at breach
C - No-SGTR	No steare generator tube rupture
A - Lrg-CCI	A large fraction of the core was available for CCI
B - $\mathrm{HL} \cdot \mathrm{ZrOx}$	A high fraction of the zirconium was oxidized in vessel
D - No-HPME	No high pressure melt ejection
C - Leak	Leak (includes BMT)
B - 2-Holes	Two holes in the RCS
A - E2-InByP	No early bypass of the ice condenser
B - I2-IpByP	Partial bypass of the ice condenser during CCI
C - ARF-Late	The ARFs operate during CCI

2.4.3 Summary Bins for Presentation

For presentation purposes in NUREG-1150,10 a set of "summary" bins has been adopted. Instead of the 14 characteristics and thousands of possible bins that describe the evaluation of the APET in detail, the summary bins place the outcomes of the evaluation of the APET into a few, very general groups. The ten summary bins for Sequoyah are:

This order is that used in displays. It has containment failure with VB first, then bypass, then $v b$ with no containment failure, then no VB with early containment failure, and finally, no VB. Containment failure is divided into seven subsets, which are listed roughly in decreasing order of the severity of the resulting release.

In assigning bins to one of these summary bins, however, the summary bins must be considered in the following order:

Bypass
VB, early containment failure, Alpha mode
No UB, very early containment failure, during $C D$ or isolation failures

No VB, no containment failure
$V B$, very early containment failure, during $C D$ or isolation failures

VB, early containment failure, RCS pressure >200 psia
VB, early containment failure, RCS pressure < 200 psia
VB, late containment fallure
VB, BMT and very late containment fallure
VB, no containment failure

That is, if bypass and early containment failure both occur, the resulting bin assignment is the Bypass bin since bypass occurs first in this list. The reason that the summary bins must have a definite assignment priority is that all possible outcomes do not fit neatly into the 10 summary bins. There are certain combinations of events that can be put in different places in the summary bins and there are other combinations of events that do not flt well in any of the summary bins. None of these combinations are very frequent ocourrences, but they must be assigned to one of the 10 summary bins. The principle determining the summary bin is that the release path that results in the highest offsite risk should determine the summary bin. Thus the summary bins reflect the logic used by SEQSOR in calculating the source terms.

As an example, consider Event V followed by an Alpha mode fallure of the vessel and containment. This results in bypass and early containment failure. Should this be assigned to the Alpha summary bin, or the Bypass summary bin? By the priority list above, it is placed in the Bypass summary bin. The reason is that almost all of the fission products released from the core before VB will have escaped to the aixiliary building through the bypass before VB. Thus this path determines most of the risk. Although SEQSOR treats the CCI release as if all of it escapes through the ruptured containment, the early release is more important for determining offsite risk.

The placement in summary bins of fou* other ambiguous combinations of events is discussed below.

Combination 1: Event V and Containment Failuce During $C D$
The fission product release from Ivent V with a very early containment failure (as caloulated by SEQSOR) is very similar to the release from Event V without a very early fallure, and quite dissimilar to the releases from accidents with a very early fallure but no bypass of the containment. Therefore, this combination is placed in the Bypass summary bin.

Combination 2: Event V and Containment Failure at VB

This combination is analogous to the situation in which Event V is followed by an Alpha mode fallure of the containment just discussed, except that the containment falls at $V B$ for other reasons. It is also placed in the Bypass summary bin.

Combination 3: SGTR and noVB

In this scenario, vessel fallure is avoided but there may be considerable core damage, and the fission products from the degradation of the core have an escape path to the environment through the secondary system. It is not possiblc in this analysis to determine how much core damage ocours before the arrest of the degradation process. For this combination of events, SEQSOR calculates a SGTR release assuming that the degradation proceeds to the point of VB. If the core degradation is arrested very late, this is probably a reasonable ussumption. Thus, the SGTR and noVB combination is placed in the Bypass summary bin. This combination is very infrequent; there are only two PDSs with an initiating SGTR that may have no VB. These are GLYY-YXY in the ATWS PDS Group, and GLYY-YNY in the SGTR PDS Group, each of which contribute less than if to the total mean core damage frequency, PDSs in which temperature-induced SGTRs occur may result in this combination of events, but temperature-induced SGTRs are very unlikely.

Combination 4: SGTR and Containment Fallure at VB

SEQSOR was designed to treat SGTRs in addition to other failures of the containment, so this combination of events poses no special problem for the source term calculation. As the SGTR largely determines the early release, and the early release is more important than the late release, this combination is placed in the Bypass summary bin. An Alpha mode failure is also a containment failure at VB, so an SGTR followed by an Alpha event is also placed in the Bypass summary bin.

Thus, in assigning combinations of events in the APET to summary bins, bypass failures (V and SGTR) take precedence no matter what else happens or does not happen. Alpha mode fallures take precedence over other fallure modes at VB, and over very early failures. No VB is above containment failure before VB and late containment failure in the priority list; these failures fre not possible without breach of the vessel, so that combination will not arise. The 10 summary bins may now be defined as follows:

Bypass Includes Event V and SGTRs no matter what happens to the containment after the start of the acoident; it also includes SOTRs which do not result in VB.

Alpha Includes all accidents that have an alpha mode failure of the vessel and the containment except those that follow Fivent V or an SGTR. It includes Alpha mode fallures that follow very early fallures due to hydrogen events or isolation fallures because the alpha mads fallure is of rupture size.

V Early CF	Includes the accident progressions in which failure of the vessel is avoided and in which containment is failed during the core degradation process and no bypass of containment ocours. The bins placed in this summary bin have very early containment fallure that involve early hydrogen burns or detonations or involve failure to isolate the containment at the start of the accident.
No VB, no CF	Includes the accident progressions that avoid vessel failures except those which fail very early or bypass the containment. The bins placed in this summary bin involve no failures of containument due to events at VB, late hydrogen burns, late overpressure or BMT.
VB	
\checkmark Early CF	Includes all accidents in which the vessel is breached and there is either an isolation failure at the start of the accident, or the containment fails before $V B$ due to a hydrogen event. Not included are accidents involving bypass events and very early containuent fallures.
CF at VB, RCS HiPr	Implies containment failure at VB with the RCS above 200 psia when the vessel fails. It does not include Alpha mode fallures, containment failures before $V B$, or bins in which containment fallure at $V B$ follows Event V or an SGTR.
CF at VB, RCS LoPr	Implies containment failure at VB with the RCS below 200 psia when the vessel fails. It does not include Alpha mode fallures, containment failures befrre $V B$, or bins in which containment fallure at $V B$ follows Event V or an SGTR.
Late CF	Includes accidents in which the containment was not failed or bypassed before the onset of CCI and in which the vessel falled. The fallure mechanism is hydrogen combustion during CCI.
\checkmark Late CF	Includes accidents in which the containment was not failed or bypassed before the latter stages of CCI. The fallure mechanisms are eventual overpressure within 24 h due to noncondensibles and/or steam, or BMT in several days.
VB No CF	Includes all the accidents not in one of the previous summary bins. The vessel's lower head is penetrated by the core, but the containment does not fail and is not bypassed.
2.5 Results	the Accident Progression Analysis
This section the APET prod APBs. Some are discusse	resents the results of evaluating the APET. As evaluating es a number of APBs, the discussion is primarily in terms of termediate results are also presented. Sensitivity analyses s well.

Section 2.5 .1 presents the results for the internal initiators. Section 2.5 .2 discusses the sensitivity analyses run for the internal initiators. Externally inftiated events (seismic and fire) were not considered for the Sequoyah analysis. The tables in this section present only a very small portion of the output obtained by evaluating the APETs. Complete listings giving average bin conditional probabilities for each PDS Group, and listings giving the bin probabllities for each PDS Group for each observation are available on computer media by request.

2.5.1 Results for Internal Inficiators

2.5.1.1 Results for PDS Group 1-Slow SBO. This PDS Group consists of accidents in which all ac power is lost in the plant, but the steam turbine-driven AFWS operates for several hours. The operation of this system keeps the core covered and cooled as long as there is no water loss from the RCS. Until the batteries deplete, do power is avallable. When the batteries deplete, control of the steam turbine-driven AFWS is lost and it fails.

This PDS Group contains our PDSs: one has the RCS intact at UTAF, two have failure of the RCP seals before UTAF, and one has stuck-open PORVs before UTAF. In two of the four PDSs, the operators depressurized the secondary system before UTAF, and in two PDSs they did not. The PDSs in this group are listed in Table 2.2-2.

Table 2.5-1 1ists the five most probable APBs for the PDS Group, the five most probable APBs that have VB, and the five most probable APBs that have VB and early containment fallure. Most probable means most probable when the whole sample of 200 observations is considered; that is, the five most probable bins are the top five when ranked by mean probability condi-tional on the occurrence of the PDS Group. In Table 2.5-1, the "Order" column gives the order of the bin when ranked by conditiona? probability. The "Prob." column lists mean APB probabilities conditional on the occurrence of the PDS Group. That is, this table shows the results averaged over the 200 observations that form the sample. If Bin A occurred with a probabi1 ity of 0.005 for each observation, its probability would be 0.005 in Table 2.5-1. If Bin B occurred with a probability of 1.00 for one observation and did not occur in the other 199 observations, its probability would also be 0.005 . The column headed "Occ." gives the number of observations out of the 200 in the sample in which this APB occurred with a non-zero probability.

The remaining eleven columns in Table 2.5-1 explain 11 of the 14 charac. teristics in the APB indicator. The sixth characteristic, SGTR, has been omitted since few of the bins and none of the 100 most probable bins for this PDS Group had T-I SGTR. The eleventh characteristic, RCS-Hole, and the last characteristic, ARFans, have been omitted since they are of less interest than the others. The abbreviations for each APB characteristic are explained in Section 2.4 above.

The first part of Table 2.5-1 shows the first five bins when they are ranked in order by probabllity. Evaluation of the APET produced 8184 bins for the Slow SBO PDS Group. To captare 958 of the probability, 1895 bins are required. The five most probable bins capture 228 of the probabilicy

Tab; - 2.5-1
Results of the Accident Progression Analysis for Sequoyah
Internal Initiators - PDS Group 1: Slow SBO

Oxdez	Bin	Prob,*	Oce.	$\begin{gathered} \text { CF } \\ \text { Iime } \end{gathered}$	Sprays	CCI	$\begin{aligned} & \mathrm{RCS} \\ & \mathrm{PI} \\ & \hline \end{aligned}$	VR- Mode	$\begin{aligned} & \text { Ast- } \\ & \text { CCI } \end{aligned}$	Zrox	HPME	CF-Size	E2-1C
1	GDCCFCDADFAAAB	0.050	38	RG-CE	Aiways	No-CCI	1 mPr	No-VB	No-6Ci	Lo	No	No-CF	noby?
2	GDCDFCDADFAAAB	0.044	36	No-CF	Always	No-CCI	LoPr	No-vB	No-CCI	Lo	No	ito-CE	nosy?
3	GDCBFCCDADFAAAB	0.044	42	No-CF	Always	No-CCI	HiPr	No-VB	No-CCI	3o	No	No-CF	nobyP
4	GDCDFCDADFBAAB	0.044	114	No-CF	Always	No-CCI	LoPr	No-VB	No-CCI	Lo	No	O-	OByP
5	GDCBFCDBDFAAAB	0.042	31	No-CF	Always	$\mathrm{Ne}-\mathrm{CCI}$	HiPr	No-VB	No-CCI	Hi	No	No-CF	By?
Five Most Probable Bins that have VB* PCs VB- Amt-													
		Prob -*	Occ	CF	Spravs	CCI	$\begin{array}{r} \text { RCS } \\ \hline \text { Pr } \end{array}$	VBMode	AntCCI	Zrox	HPME	CF-Size	E2-IC
Order	Bin	Prob.	cec.		Sprays								
18	EEADBCAADABAAC	0.006	59	Late	Late	PrmDry	LoPr	Pour	Large	Le	No	CatRu	nobyp
20	GGADBCABDFBAAD	0.006	104	No-CF	VLate	PrmDry	LoPr	Pour	Large	Hi	No	No-CF	nobyp
22	GGADBCAADFBAAD	0.005	87	No-CF	VLate	PrmDry	LoPr	Pour	Large	Le	No	No-CF	nobyP
23	GFADBCABDEBAAC	0.005	96	No-CF	L+VL	PrmDry	LoPr	Pour	Large	Hi	No	No-CF	noby?
24	EEADBCAADAAAAC	0.005	15	Late	Late	Prmbry	LoPr	Pour	Large	Lo	No	CatRup	nosy?
Five Most Probable Bins that have VB and Early CF*													
				$C Z$ Tine		CCI	$\begin{aligned} & \mathrm{RCS} \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	VB- Mode	$\begin{aligned} & \text { Ant- } \\ & \text { CCI } \end{aligned}$	Zrox	HPME	CE-size	E2-IC
Order	Bin	Prob.	Occ.	Iİe	Sprays								
32	DHADBCAADAAAAD	0.004	7	CFatVB	Never	PrmDry	LoPr	Pour	Large	Lo	No	CatRup	noBy?
S	DHADBCAADAAAAC	0.803	7	CFatvB	Never	PrmDry	LoPr	Pour	Large	Lo	No	CatRup	noBy?
-	DHADBCAADABAAD	0.002	15	CFatVB	Never	PrmDry	LoPr	Pour	Large	Lo	No	CatPup	noby?
65	DHADBCAADABAAC	0.002	15	CFatVB	L+VL	PrmDry	LoPr	Pour	Large	Lo	No	CatRup	noBy?
67	DHADBCABDABAAD	0.002	18	CFatVB	$\mathrm{L}+\mathrm{VL}$	PrmDry	LoPr	Pour	Large	Hi	No	CatRup	noBy?

[^1]and have $n C V B$ and no containment fallure. Two of the five most probable bins with VB result in late containment failure (due to hydrogen burns), and all have the RCS at low pressure (1ess thafi 200 psia) at VB.

The last part of Table $2.5 \cdot 1$ shows the five most probable APBs with VB and early containment failure. (Early containment failure means containment fallure before or at VB). The five bins with contalnment fallure at VB have the RCS at low pressure at VB, and have catastrophic rupture of the containment due to hydrogen burns at VB. As mentioned in Section 2,4.1, for times of contalnment fallure in which catastrophic rupture occurs, the foe condenser is assumed to be bypassad; however, Characteristics 12 and 13 do not reflect this method of bypass because SEQSOR already assumer ice bypass when catastrophic rupture occurs.

In this PDS Croup, the probability of recovering offsite electrical power early in the accident is about 0.69 . The probability of subsequent arrest of the core degradation process and the prevention of $V B$ is about 0.58 . More detail on the arrest of core damage may be found in Appendix A.3,3.

Of the fraction of this PDS Group which resulted in VB, most had the RCS at low pressure at VB. The fractions of this PDS Group which are in the four pressure ranges at UTAF and just before VB (if it occurs) are:

	At UTAE	Just beforeve
SSPr (2500 psia)	0.17	0.055
$\mathrm{HPPr}(600-2000 \mathrm{psia})$	0.20	0.23
$\mathrm{ImPr}(200.600 \mathrm{psia})$	0.63	0.26
$\operatorname{LoPr}(<200 \mathrm{psia})$	0.00	0.50

The relative frequencies of the "T", " S_{3} ", and " S_{2} " PDSS, in conjunction with whether the secondary system has been depressurized while the AFWS is operating, result in about 178 the PDS Group being at the PORV setpoint pressure when the core uncovers (Question 16). Just before VB, the situation is quite different (Question 25). Five mechanisms for depres. surizing the RCS are considered in the APET. Three of these are quite effective: RCP seal fallures, PORVs sticking open, and temperature-induced hot leg (or surge line) fallures. The result is that the probability of the accident continuing with tie RCS pressure boundary intact from UTAF to VB is about 0.03 . The determination of RCS pressure at VB is discussed further in Section 2, 5, 2.1.

The mean probability of containment fallure during core degradation due to hydrogen burns or detonations for this PDS Group is $0.06 ; 0.01$ of these fallures also involve VB. The mean probability of containment fallure at VB is 0.10 . Note that the 0.90 probabi. 11ty of no contalnment fallure at VB includes the times when the containment failed during core degradation and also when VB was arrested. The mean probability of late containment fallure due to hydrogen burns is 0.10 . The mean probability of very late contalnment fallure due to overpressure by steam and/or noncondensibles is 0.004 . The mean probability of BMT is 0.05 .
2.5.1.2 Results for PDS Croup 2 . Fast SBO. This PDS Group consists of accidents in which all ac power is lost in the plant and the steam
turbine-driven AFWS fails at or shortly after, the start of the accident. The Fast SBO PDS Group consists of only one PDS, TRRR-RSR. Table 2.5.2 11sts the flve most probable APBs for the Fast SBO PDS Group, the five most probable $A P B s$ that have $V B$, and the five most probable $A P B s$ that have $V B$ and early containment failure (CF),

The first part of Table $2.5 \cdot 2$ shows the first five bins when they are ranked in order by probability. "valuation of the APET produced 7883 bins for the Fast SBO PDS Group, of which 1768 are required to capture 958 of the probability. The five most probable bins capture 148 of the probabi. 11ty. Four have no contalnment fallure, and three of them have no vs as well. Two of the five most probable bins that have VB have no containment failure; one has containment fallure due to hydrogen burns at VB, and the other two have fallures due to late hydrogen burns. The last part of Table $2.5 \cdot 2$ shows the five most probable APBs with both VB and early containment failure. (Early containment fallure means containment fallure before or at VB.) Four of these have containment fallure due to hydrogen burns at VB and the other one has containment failure due to HI \%e and DCH at VB.

In this PDS Group, the probability of recovering offsite electrical power early in the accident is about 0.41 . The probability of subsequent arrest of the core degradation process and the prevention of VB is about 0.35 , More detall on the arrest of core damage may be found in Appendix A.3.3.

Of the fraction of this PDS Group that resulted in VB, most had the RCS at low pressure at VB. The fractions of this PDS Group which are in the four pressure ranges at UTAF and just before VB (if it occurs) are:

At. UTAF	Just before. VB
1.00	0.03
0.00	0.11
0.00	0.25
0.00	0.61

As the only PDS in this Group has the RCS intact af UTAF, the RCS is at the PORV setpoint pressure at that time (Question 16). Just before VB (Ques. tion 25), the probability of being at $S S P r$ is only about 0,03 . As discuss. ed with regard to PDS Group l, three of the five depressurization mecha. nisms considered in the APET are quite effective: RCP seal fallures, PORVs sticking open, and temperature-induced hot leg (or surge line) fallures. The result is that the probability of the accident continuing with the RCS pressure boundary intact from UTA ${ }^{r}$ to $V B$ is fairly small. The determina. tion of RCS pressure at $V B$ is discussed in Sections 2,5,2,1 and 2, 5, 2, 2.

The mean probability of containment fallure during core degradition due to hydrogen events is $0.05 ; 0.02$ of these fallures also involve VB. The mean probability of containment fallure at VB is 0.13 . Note that the 0.87 probability of no containment fallure at $V B$ includes the times when the containment falled during core degradation and also when VB was arrested. The mean probability of late containment failure due to hydrogen burns is 0.18. The mean probability of very late containment failure due to overpressure by steam and/or noncondensitles is 0.002 . The mean probability of BMT is 0.08 .

Table 2.5-2
Results of the Accident Progression Analysis for Sequoyah
Internal Initiators - PuS Group 2: Fast SBO

Five Most Probable Bins*

Order	Bin	Prob******	Dcc	$\begin{gathered} \text { CF } \\ \text { IIme } \end{gathered}$	Sprays	CCI	$\begin{array}{r} \text { RCS } \\ \mathrm{Pr} \\ \hline \end{array}$	VB- Mode	$\begin{aligned} & \text { Amt- } \\ & \text { CCI } \end{aligned}$	2rox	HPME	CF-Size	E2-1C
1	GDCDFCDBDFBAAB	0.050	122	No-CF	Always	No-CCI	LoPr	No-VB	No-CCI	Hi	No	No-CF	noBy?
2	GDCDFCDADFBAAB	0.034	114	No-CF	Always	No-CCI	LoPr	No-vB	No-CCI	Le	No	No-CF	noBy?
3	GFADBCABDFBAAC	0.028	96	No-CF	L+VL	PrmDry	ImPr	Pour	Large	Hi	No	No-CF	nosy?
4	GDCLFCDADFAAAB	0.016	38	No-CE	Always	No-CCI	LoPr	No-VB	No-CCI	Lo	Ne	No-CF	nosy?
5	EEADBCAADABAAC	0.015	59	Late	Late	Prmory	ImPr	Pour	Large	Le	No	CatPup	noBy?

Five Most Probable Bins that have VB*

Order	Bin	Prob.*	Dec	$\begin{gathered} \text { CF } \\ \text { Time } \end{gathered}$	Sprays	CCI	$\begin{aligned} & \text { PCS } \\ & \text { PL } \end{aligned}$	$\begin{aligned} & \text { VB- } \\ & \text { Mode } \end{aligned}$	Ant- CCI	Zrox	EPME	CF-Size	1.2-15
3	GFADBCABDFBAAC	0.028	96	No-CF	L+VL	PrmDry	ImPr	Pour	Large	Hi	Ne	No-CF	noByP
5	EEADBCAADeBAAC	0.015	59	Late	Late	Prmidry	ImPr	Pour	Large	Lo	No	CatRup	nosyP
8	EEADBCABDABELAC	3. 014	50	Late	Late	PrmDry	LoPr	Pour	Large	Hi	No	CatRup	noby?
12	GFADBCAADFBAAC	0.010	71	No-CE	$\mathrm{L}+\mathrm{VL}$	PrmDry	LoPr	Pour	Large	Lo	No	No-CE	nosyp
13	GFAD	0.010	18	No		PrmDry	Lopr	Pour	Large	Hi	No	Catkup	noby?

Five Most Probable Bins that have VB and Early CF*

Order	Iin	Prob.*	Oce	$\begin{gathered} \text { CF } \\ \text { Time } \end{gathered}$	Sprays	CCI	$\begin{array}{r} \text { RCS } \\ \text { PI } \\ \hline \end{array}$	$\begin{aligned} & \text { VB- } \\ & \text { Mode } \end{aligned}$	Ant - CCI	Z20x	HPME	CF-Size	12-16
13	DHADBCABDABAAC	0.010	18	CFatVB	Never	Prm0ry	Lopr	Four	Large	Hi	No	Catrup	nobyP
26	DHADBCAADABAAC	0.006	15	CFatVB	Never	PrmDry	LOPr	Four	Large	Lo	No	CatRup	nosy?
31	DHADBCABDABAAD	0.006	18	CEatVB	Never	PrmDry	LoPr	Pour	Large	Hi	No	CatRup	noby?
46	DHADBCAADABAAD	0.004	15	CFatVB	Never	PrmDry	LoPr	Pour	Large	Lo	No	CatRup	moBy?
53	DFABACABBCAACC	0.003	5	CFatVB	L+VL	Prmbry	Hipr	HPME	Large	HI	Med	Leak	noby?

[^2]2.5.1.3 Results for pDS Group 3. LOCAS. This PDe Group consists of accidents initiated by a break in the RCS pressure boundary. Four of the PDSs have $\mathrm{A}-\mathrm{Bize}$ breaks, and three have S_{1}-breaks (treated as A breaks in this analysis). There are three PDSE with $\$_{2}$-breaks and three PDSs with $\$_{3}$-breaks in this group. These PDSs result in core damage because of failure of one or more of the ECCS that are required to respond. Five of the 13 PDSs ifi this group have the LPIS operating but not infecting at UTAF. The PDSs in this group are listed in Table 2.2-2.

Table 2.5-3 lists the five most probable APBs for this PDS Group, the five mobt probable $A P B s$ that have $V B$, and the five most probable APBs that have VB and early contalnment fallure (CF). Evaluation of the APET produced 6728 bins for the LOCA PDS Group. To capture $95 t$ of the probability, 1101 bins are required. The five most probable bins capture 258 of the probability. The five most probable bins all have no VB and no containment fallure as well. One of the flve most probable bins that have vs has no containment fallure; the other four have very late fallure due to steam overpressure. The last part of Table 2,5-3 shows the five most probable $A P B s$ with both VB and early containment fallure. All of these bins have fallure due to HPME and DCH, and occur infrequently; all flve appear in elther one or two sample observations.

In the LOCA PDS Group, the probability of arresting the core degradation process and avolding VB is about 0.37. For three of the PDSs, the LPIS is operating at UTAF and the break (A or S_{1}) is large enough by itself to depressurize the RCS to the point where the LPIS may inject. These are core damage situations because the success criteria require the accumula. tors (A break) or HPIS (S_{1} break) to function in addition to LPIS, and these systems falled. For two other PDSs, the LPIS is operating at UTAF, but the initiating break (S_{2} or S_{3}) is not large enough to depressurize the RCS so the LPIS can inject. The RCS is partially depressurized at UTAF due to secondary side depressurization. During core degradation, repressuri. zation or further depressurization may occur. If the RCS is sufficiently depressurized, then LPIS operation is likely to prevent VB by halting core degradation.

The fractions of the LOCA PDS Group which are in the four pressure ranges at UTAF and just before VB (if it ocours) are:

At UTAE Just before VB

SSPr (2500 psia)	0.00	0.00
HiPr ($600-2000$ psia)	0.00	0.17
ImPr (200.600 psia)	0.69	0.20
LoPr (<200 psia)	0.31	0.63

As with all accidents in which ac power is initially available, the hydrogen threat is negligible due to the low probability of operator fallure to inftiate ignitors and the low probablifty that the air return fans fall. The mean probability of containment fallure during core degradation, due mainly to isolation failures, is low, only 0,004 . The mean probability of containment failure at VB is 0.05 . Note that the 0.95 probability of no containment fallure at $V B$ includes the times then the containment failed during core degradation and also when VB was arrested.

Results of the Accident Progression Analysis for Sequoyah
Internal Initiators - PDS Group 3: LOCAs

Eive Most Probable Bins*

Order	Bin	Prob.*	Oce	$\begin{aligned} & \mathrm{CF} \\ & \text { Time } \end{aligned}$	Sprays	CCI	$\begin{aligned} & \mathrm{RCS} \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	VE- Mode	Amt - CCI	2t0x	벼TME	CF-Size	E2-IC
1	GDCDFCDADFBAAB	0.091	114	No-CF	Always	No-Cet	LoPr	No-VB	No-CEI	Le	No	No-CF	neByp
2	GDCDFCDBDFBAAB	0.074	122	No-CF	Always	No-CCI	LoPr	No-VB	No-CCI	\#1	No	No-CE	nosy?
3	GDCDFCDADEBAAA	0.030	114	No-CF	Always	$\mathrm{No}-\mathrm{CCI}$	LoPr	No-VB	No-CCI	Lo	No	No-CF	noByF
4	GDCDFCDBDFAAAB	0.028	42	No-CE	Always	No-CCI	LoPr	No-VB	No-CCI	Hi	No	No-CF	nosyr
5	GDCDFCDADFAAAB	0.026	36	No-CE	Always	No-CCI	ImPr	No-vs	No-CCI	Lo	No	No-CF	noBy?
Five	t Probable Bi	that h	ve VB										
				CF			RCS	VBMode	Amt CCI				E2-1C
Order	Bin	Prob.*	Occ	Iime	Sprays	CCI				Zrox	ERME	ct-size	E2-16
7	THDDBCAADBBAAB	0.015	59	Whate	Never	Prabp	LoPr	Four	Large	Lo	No	Rupt	noby?
8	FHDDBCABDBBAAB	0.012	50	Whate	Never	Prmbp	LoPr	Four	Large	Hi	No	Rupt	nosy?
9	FHDDBCAADABAAB	0.011	41	VLate	Never	Prmbp	LoPr	Pour	Large	Le	No	CatRup	neby?
10	FHDDBCABDABAAB	0.010	38	VLate	Never	Prmpp	Lopr	Pour	Large	Hi	No	CatRup	nosy"
14	GDDDBCAADFBAAB	0. 009	111	No-CF	Always	Prmpp	LoPr	Pour	Large	Lo	No	No-CF	nobyP
Five	st Probable Bin	that h	re VB	and Ear CF			RCS	VB	Amt-				
Order	Bin	Prob.*	Occ	Time	Sprays	CCI	Pr	Mode	CCI	Zrox	HPME	CF-Size	E2-16
132	DACBACDBBAAAAB	0.001	1	CFatVB	Early	No-CCI	HiPr	HPME	No-CCI	Hi	Med	Catkup	noby?
156	DACCACDAAAAAAB	0.001	2	CFatVB	Early	No-CCI	ImPr	HPTEE	No-CCI	Lo	Hi	CatRup	nobyP
164	DACBACDBBAAAAA	0.001	1	CFatVB	Early	No-CCI	HiPr	HDME	No-CCI	Hi	Med	CatRup	noByp
165	DACBACDABAAAAB	0.001	1	CFatVB	Early	No-CCI	HiPr	HPME	No-CCI	Lo	Med	CatRup	noby?
193	DACCACDAAAAAAA	0.001	2	CFatVB	Early	No-CCI	1 mPr	HPME	No-CCI	Lo	Hi	CatRup	noby?

* A listing of all bins, and a listing by observation are available on computer media.
*- Mean probability conditional on the occurrence of the PDS.

The mean probability of late containment failure due to hydrogen burns is 0.001 . Because the sprays are falled in many LOCA sequences, and the ice is melted at late time, the mean probability of very late containment failure due to overpressure by steam and/or noncondensibles is quite high, 0.22 . The mean probability of BMT is 0.04 .
2.5.1.4 Results for PDS Group 4. Event V. This PDS Group consists of accidents in which the check valves between the RCS and the LPIS fail, and then the LPIS, subjected to pressures much higher than thosa for which it was designed, also fails. This produces a path from the RCS to the auxiliary building, bypassing the containment, and is known as Event V . It is expected, because of the location of the break in the LPIS, that there is a considerable probability $(0,80)$ that that the fire sprays in the auxiliary building would scrub the releases.

Table $2.5 \cdot 4$ lists the 10 most probable $A P B s$ for the V PDS Group. Evaluation of the APET produced 105 bins, of which 15 are required to capture 958 of the probability. The 10 most probable bins capture 848 of the probability, and for eight of them, the releases are scrubbed

There is no possibility of avoiding VB or CCI in this PDS Group. Due to the size of the containment bypass, containment failure is not of much interest; nonetheless, it will be reported here. The mean probability of containment failure during core degradation due to isolation failures is 0.004 . The mean probability of containment fallure at VB due to Alpha mode fallure or hydrogen burn is 0,02 . The mean probability of late containment fallure due to hydrogen burns 150.009 . There are no very late containment fallures due to overpressure by steam and/or noncondensibles. The mean probability of BMT is quite high, 0.39.
2.5.1.5 Results for PDS Group 5. Trarielents. This PDS Group consists of accidents in which the RCS is intact but there is no way to remove heat from the cors. The AFWS fails at the start of the accident; bleed and feed is ineffective because the HPIS fails or the PORVs cannot be opened. The Transient PDS Group consists of two PDSs, TBYY-MNY and TINYNNY Table $2.5-5$ lists the five most probable APBs for the PDS Group, the five most probable APBs that have VB, and the five most probable APBs that have VB atid early containment failure. Evaluation of the APET produced 2619 bins for the Transient PDS Group, of which 160 are required to capture 958 of the probability.

The five most probable bins capture 498 of the probability. They all have no $V B$, and no containment failure as well. All of the five most probable bins that have VB have no containment fallure. The last part of Table 2.5.5 shows the five most probable APBs with both VB and early containment failure. One of the five has containment failure due to hydrogen burn at VB, and the remaining four have containment failure due to HPME and DCH at VB; all five of the fallures are catastrophic ruptures. The five bins that have VB and early containment fallure occur in only one or two out of 200 observations.

Table 2.5-4
Results of the Accident Progression Analysis for Sequoyah
Internal Initiators - PDS Group 4: Event V

Order	Bin	Prob.**	Occ	$\begin{aligned} & \text { CF } \\ & \text { Time } \end{aligned}$	Sprays	CCI	$\begin{array}{r} \text { RCS } \\ \mathrm{PI} \\ \hline \end{array}$	VB Mode	Ant CCI	ZxOx	HPME	CF-Size	E2-IC
1	BHADBCAADEAAAB	0.148	111	V-Wet	Never	PrmDry	LoPr	Pour	Large	Lo	No	Bypass	noByP
2	BHADBCAADEAAAA	0.115	111	V-Wet	Never	Prmiry	LoPr	Pour	Large	Lo	No	Bypass	noByP
3	BHADBCABDEAAAB	0.113	88	V-wet	Never	PrmDry	LoPr	Pour	Large	Hi	No	Bypass	nebyp
4	BHADBCAADDAAAB	0.098	111	V -Wet	Never	PrmDry	LoPr	Pour	Large	Le	No	BMT	noBy?
5	BHADBCABDFAAAA	0.088	88	V -Wet	Never	PrmDry	LoPr	Pour	Large	Hi	No	Bypass	noBy?
6	BHADBCAADDAAAA	0.077	111	V-Wet	Never	PrmDry	Lopr	Pour	L.arge	Lo	Ne	BMT	neByP
7	BHADBCABDDAAAA	0.075	88	V -Wet	Never	PrmDry	LoPr	Pour	Large	Hi	No	BMI	neByp
8	BHADPCABDDAAAA	0.059	88	V-Wet	Never	PrmDry	LoPr	Pour	Large	Hi	No	BMT	nobyP
9	AHADBCAADEAAAB	0.036	111	V-Dry	Never	Pradry	LoPr	Peur	Large	Lo	No	Bypass	nobyp
10	AHADBCABDEAAAB	0.029	88	V-Dry	Never	PrmDry	LoPr	Pour	Large	Hi	No	Bypass	noby?

* A listing of all bins, and a listing by observation are available on computer media.
** Mean probability conditional on the occurrence of the PDS.

Table 2．5－5
Results of the Accident Progression Analysis for Sequoyah
Internal Initiators－PDS Group 5：Transients

Order	Bin	Prob．＊	Oce	$\begin{aligned} & \text { CF } \\ & \text { Iime } \end{aligned}$	Sprays	CCI	$\begin{aligned} & \mathrm{RCS} \\ & \mathrm{Er} \\ & \hline \end{aligned}$	VB－ Mode	Ant－ CCI	2r0x	HPME	CF－Size	E2－IC
1	GDCDFCDBDFBAAB	0.206	122	No－CF	Always	No－CCI	LoPr	Ne－VB	No－CCI	HI	No	No－CF	neBy？
2	GDCDFCDADFBAAB	0.101	114	No－CF	Always	No－CCI	Lopr	No－vB	No－CCI	Lo	No	No－CF	noby？
3	GDCDFCDBDFRCCB	0.074	122	No－CF	Alvays	No－CCI	LoPr	No－VB	No－CCI	班	No	No－CF	By？
4	GDCDFCDRDFBAAA	0.069	122	No－CF	Always	No－cci	LoPr	No－VB	No－CCI	Hi	No	No－CF	nosy？
5	GDCCFCDBDFBAAB	0.037	25	No－CF	Always	No－CCI	ImPr	No－Vs	No－CCI	Hi	Lo	No－CF	nobyP

Five Most Frobable Bins that have vB＊

Order	Bin	Prob．＊	Oce	CF	Sprays	CCI	RGS \qquad	VB－ Mode	$\begin{aligned} & \text { Amt- } \\ & \text { CCI } \\ & \hline \end{aligned}$	Zrox	HPME	CF－5ize	E2－1C
12	GDDAACAADFAAAB	0.015	79	iNo－CF	Always	PrmDp	SSPr	HPME	large	10	No	No－CF	noby？
17	GDDDBCABDFBAAB	0.010	116	No－CE	Always	PrmDp	LePr	Peur	large	旿	No	No－CF	noByp
20	GDCAACDACFAAAB	0.008	13	$\mathrm{No}-\mathrm{CF}$	Always	No－CCI	SSPr	HPME	Ne－CCI	Le	Low	No－CF	noby？
23	GDCAACDACFAAAA	0.006	13	$\mathrm{No}-\mathrm{CF}$	Always	No－GCI	SSPr	HPME	No－CCI	10	Low	No－CF	noby
25	GDCDBCDBDEBAAB	0．006	116	No－CF	Always	No－CCI	LoPr	Porse	No－CCI	柽	No	Nu－CF	noby？

Five Most Probable Bins that have VB and Early CF＊

Order	Bin	Prob．＊＊	Oce	IIme	Sprays	CCI	Pr	Mode	CCI	ZrOx	HPME	CF－Size	E2－IC
79	DACABCDADAAAAB	0.001	2	CFatVB	Early	No－CCI	SSPr	Pour	No－CCI	Lo	No	CatPup	nobyP
89	DACAACDABAAAAB	0.001	1	CFatvB	Early	No－CCI	SSPY	HPME	No－CCI	Lo	Med	CatRup	noSy？
91	DAGABCDADAAAAA	0.001	2	CFatVB	Early	$\mathrm{No}-\mathrm{CCI}$	SSPE	HPME	No－CCI	Lo	No	CatRup	noByP
95	DACAACDAAAAAAB	0.001	2	CFatVB	Early	No －CCI	SSPr	HPME	No－CCI	Lo	Hi	CatRup	noByP
104	DACAACDABAAAAA	0.001	1	CFatVB	Early	No－CCI	SSPr	HPME	No－CCI	Lo	Med	CatRup	noBy？

[^3]In this PDS Group, the probability of a temperature-induced fallure of the RCS pressure boundary is quite high, almost 0,90 . As a resilt, the probability of arresting the core degradation process and avoiding VB is also high, about 0.80 . More detall on the arrest of core damage mar be found in Appendix A.3.3.

The fractions of this PDS Group which are in the for'c pressure ranges at UTAF and just before VB (if it ocours) are:

At UTAE Lust Bufore VB
$\$ 8 \mathrm{Pr}(2500 \mathrm{psia})$
1.00
$\operatorname{HiPr}(600.2000 \mathrm{psia})$
tuPr (200.600 psia)
0.00
0.00
0.00

LoPr (<200 psia)

$$
0.11
$$

0.001
0.11
0.78

As both PDSs in this group have the RCS intact at UTAF, the RCS is at the PORV setpoint pressure at that time (Question 16). Just before VB (Question 25), the probability of being at SSPr is only about 0.11 . This probablilty is higher than PDS Group 2 (Fast SBO) because RCP seal cooling is avallable, thus rendering the fallure of the pumps seals ineffective as a means of depressurization. The PORVs still function in their safety mode, so they may stick open even when hardware failures prevent their being opened from the control room. The two effective depressurization mechanisms for this PDS Group are the PORVs sticking open and the temper. ature-induced hot leg (or surge line) fallures. Deliberate opening of the PORVs by the operators is ineffective because they cannot open the PORVs or have already falled to do so. Temperature-induced SGTRs are very unlikely according to the expert panel. The determination of RCS pressure at VB is discussed further in Sections 2,5.2.1 and 2,5.2.2.

As with all accidents in which ac power is inftially available, the hydrogen threat is reduced due to the low probability of operator failure to inftiate igniters and the low probability thet the air return fans fall. The mean probability of containment fallurf during core degradation due mainly to isolation fallures is low, only 0,005 , and in these cases, VB does not occur. The mean probability of contairment failure at VB is 0.02 . Note that the 0.98 probability of no containment fallure at VB includes the 0.77 of the group that had core damage and no VB. There are no late fallures due to hydrogen burns. The mean probability of very late containment failure due to overpressure by steam and/or noncondensibles is 0.02 . The mean probability of BMT is 0.02 .
2.5.1.6 Results for PDS Group 6 . ATWS. This PDS Group consists of accidents in which nefther control rod insertion nor boron injection bring the reaction under control shortly after the start of the accident. The core continues to generate large amounts of heat and steam until the water level drops far enough below TAF that the loss of the neutron moderating effect of the liquid water is lost for a substantial portion of the core. The ATWS PDS Group consists of three PDSs, one with the RCS intact at UTAF, one with an S_{3} break, and one with an SGTR. In all three situations, the PORVs will be open at UTAF due to the rate of steam generation in the core. The LPIS is operating but not injecting in the RCS intact and SGTR PDSs.

Table 2.5 .6 11sts the 10 most probable APBs for the PDS Gruup, and the five most probable APBs that have VB and early containment fallure or bypass. Evaluation of the APET produced 6627 bins for the ATWS PDS Group, of which 985 are required to capture 950 of the probablifty. Table $2.5 \cdot 6$ differs from the preceding tables in that the sprays characteristic has beer onitted and the SGTR characteristic inoluded. The PDSs in this group all have sprays initlally, and the sprays usually do not fall throughout the accident.

The 10 most probabie bins capture 348 of the probability; nine of them have no cot.tainment failure, and five of them have no VB as well. The APB in which containment fallure occurs, is a very late fallure due to BMT, The last part of Table $2.5 \cdot 3$ shows the five most probable APBs with VB and early containment fallure or bypass. These APBs all have SGTR and no VB. Based on the MCDFs, a fraction of 0.13 of this PDS Group has an SGTR initiator, and thus, have containment bypass at the start of the accident, The most probable bin with containment failure at VB is 61 st in order with a probability of 0.0025 ; the containment failure is due to a hydrogen burn at VB.

In this PDS Group, the mean probability of arresting the core degradation process and avolding VB is about 0.17 when there is no bypass of containment due to SOTR, and about 0.10 when there is an SGTR. The arrest of core degradation is a result of the operation of the LPIS following a temperature-induced break in the RCS. The water from the RWST injected by the LPIS contains enough boron to shut down the reaction should the core be In a configuration where continued reaction is possible. More detail on the arrest of core damage may be found in Appendix A.3.3.

The fractions of this PDS Group which are in the four pressure ranges at UTAF and just before VB (if it occurs) are:

At UTAE Just Before VB

$5 S P r$ (2500 psia)
1.00
0.003
$\operatorname{HiPr}(600-2000 \mathrm{psia})$
0.00
0.08
$\operatorname{ImPr}(200-600 \mathrm{psia})$
0.00
0.22

LoPr (< 200 psia)
0.00
0.70

The RCS is at the PORV setpoint pressure at UTAF (Question 16) because the reaction has not been shut down and the steaming rate is high. Just bifore VB (Question 25), the probability of being at SSPr is only about 0.003 . This probability is lower than in PDS Groups 1, 2, and 5 because the operators are allowed to deliberately open the PORVs in this PDS. In the human rellability analysis, it was judged that the operators would be too busy trying to bring the reaction under control before UTAF to consider opening the PORVs, and the PORVs would be kept open by the escaping steam In any event. Thus the effective depressurization mechanisms for this PDS Group are: the PORVs sticking open, temperature-induced hot leg (or surge line) fallures, and deliberate opening of the PORVs by the operators. Pump seal cooling is available in the one PDS where it would be effective (the "T" PDS where the ROS is intact), so failure of the pumps seals is ineffec. tive as a means of depressurization for the ATWS PDS Group. Temperature. induced SCTRs are very unlikely acoording to the expert panel.

Table 2.5-6
Results of the Accident Progression Analysis for Sequoyah Internal Initiators - FDS Group 6: ATWS

Ten Most Probable Bins*

Order	Bin	Prob.**	Oce	$\begin{aligned} & \text { CF } \\ & \text { Time } \end{aligned}$	Sprays	CCI	$\begin{aligned} & \mathrm{RCS} \\ & -\mathrm{Pr} \end{aligned}$	vB- Mode	$\begin{aligned} & \mathrm{Amt}- \\ & \mathrm{CCI} \end{aligned}$	ZrOx	HPME	CE-Size	E2-1C
1	GDCDFCDBDFBAAB	0.060	122	No-CF	No-CCI	LoPr	No-VB	No	No-CCI	H 4	No	No-CF	noByP
2	GDDDBCABDFBAAB	0.959	116	No-CF	PrmDp	Lopr	Pour	No	Large	Hi	No	No-CE	noby?
3	GDCDFCDADFBAAB	0.039	114	No-CF	No-CCI	LoPr	No-VB	No	No-CCI	Lo	No	No-CF	noky?
4	GDCDFADBDEBAAB	0.036	121	No-CF	No-CCI	LoPr	No-VB	SGTR	No-CCI	Ei.	No	Bypass	noby?
5	GDCDBCDBDFBAAB	0.034	116	No-CE	No-CCI	LoPr	Pour	No	No-cCI	Hi	No	No-CF	nobyP
6	GDDDBCAADFBAAB	0.031	111	No-CF	Prmpp	LoPr	Pour	No	Large	Lo	No	No-CF	noby?
7	GDCDFADADEBAAB	0.022	102	No-CE	No-CCI	LoPr	No-VB	SGTR	No-CCI	Lo	No	Bypass	nobyP
8	GDDDBCABDFBAAA	0.020	116	No-CF	Prmbp	Lopr	Pour	No	Large	HI	No	No-CF	nobyp
9	GDCDFADADEBAAB	0.020	102	No-CF	No-CCI	LoPr	No-VB	No	No-CCI	Hi	No	No-CF	nobyP
10	FDDDBCABDDBAAB	0.020	115	VLate	Prmpe	LoPr	Pour	No	Large	Hi	No	BMI	noBy?
Five M	ost Probable Bi	that		pass or CF	and E		RCS	V-	Amt				
Order	Bin	Prob.**	Oce	Time	Sprays	CCI	Pr	Mode	CCI	2rox	HPME	CE-Size	E2-IC
4	GDCDFADBDEBAAB	0.036	121	No-CF	No-CCI	1.0 Pr	No-VB	SGTR	No-CCI	Hi	No	Bypass	noBy?
7	GDCDFADADEBAA3	0.022	102	No-CF	No-CCI	LoPr	No-VB	SGTR	No-CCI	Lo	No	Bypass	noBy?
15	GDCDFADBDEBAAA	0.012	120	No-CF	No-CCI	LoPr	No-vB	SGTR	No-CCI	Hi	No	Bypass	noBy?
21	GDCDFADADEBAAA	0.007	102	No-CF	No-CCI	LoPr	No-vB	SGTR	No-CCI	Lo	No	Bypass	noBy?
40	GACDFADBDEBAAB	0.004	114	No-CF	No-CCI	LoPr	No-vB	SGTR	No-CCI	Hi	No	Bypass	noBy?

* A listing of all bins, and a listing by observation are available on computer media.
* Mean probability conditional on the occurrence of the PDS.

As with all accidents in which ac power is initially avallabie, the hydrogen threat is reduced due to the low probability of operator failure
 The mean probability of containment failure during core degradation due mainly to isolation fallures is low, only 0,004 . The mean probability of containment failure at VB is 0.05 . Note that the 0.95 probability of no containment faflure at VB includes the 0.17 of the group that had core damage and no VB. The mean probability of late fallures due to hydrogen burns is 0.001 . The mean probability of very late containment failure due to overpressure by steam and/or noncondensibles is 0.07 . The mean probability of BMT is 0.08 .
2.5.1.7 Results for PDS Group 2. SGTRs. This PDS Group consists of accidents in which the initiating event is the rupture of a steam generator tube. The reaction is shut down successfully. The SCTR PDS Oroup includes one PDS in which the RCS is depressurized using the three unaffected SGs according to procedures, and the SRV s on the main steam lines from the affected SG do not stick open. These accidents, denoted "G" SGTRs, are indicated by "SGTR" in Table 2.5.7. The most frequent PDS in the SGTR PDS Group are accidents in which the RCS is not depressurized according to procedures, and the SRVs on the main stem lines from the affected SG stick open. These accidents, denoted "H" SGTRs, are indicated by "SRVO" in Table $2.5 \cdot 7$, Like Table 2.5.6, Table 2.5.7 oults the sprays characteristic to show the SGTR characteristic. All the APBs for this PDS Group have sprays most of the time.

Evaluation of the APET produced 2632 bins for the SGTR PDS Group, of which 354 are required to capture 958 of the probability. Table $2.5 \cdot 7$ 11sts the fifteen most probable APBs for the PDS Group; they all have bypass of the containment. Eleven of the 15 most probable APBs are "H" SOTR accidents in which the secondary SRVs are stuck open. The 15 most probable bins capture 398 of the probability.

In this PDS Group, the probability of avoiding VB is about 0,19 . There is no ECCS operable in the "H" YDS; the LPIS is operating in the "G" PDS and there is an effective depressurization mechanism. This mechanism is the deliberate opening of the PORVs. RCP seal cooling is available, so there are no seal fallures. The RCS is not at the PORV setpoint pressure, so there is no possibility of the PORV, sticking open, T-I hot leg failures, or T-I SGTRs

The fractions of this PDS Group which are in the four pressure ranges at UTAF and just before VB (if it occurs) are:

At UTAF
Just before VB
SSPr (2500 psia)
HiPr (600-2000 psia)
0.00
0.00
1.00
0.23

Tupt ($200-600$ psia)
0.00
0.32
L.oPr (<200 psia)

As the two pDSo in this
As the two PDSs in this group have an S_{3}-size SGTR at UTAF, the RCS pressure is in the high range at UTAF (Question 15). The two PDSs in this group are HINY-NXY and GLYY-YNY, In HINY-NXY the operators falled to

Table 2. ${ }^{5}-7$
Results of the Accident Progression Analysis for Sequoyah
Internal Initiators - PDS Group 7: SGTRs
Fifteen Most Probable Bins*

Order	Bin	Prob.*	Occ	$\begin{aligned} & \text { CF } \\ & \text { Time } \end{aligned}$	Sprays	CCI	$\begin{aligned} & \mathrm{RCS} \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	VB- Mode	Amt - CCI	ZrOx	HPME	CF-Size	E2-IC
1	GDCDFADADEBAAB	0.069	102	No-CF	$\mathrm{No}-\mathrm{CCI}$	LoPr	No-VB	SGTR	No-CCI	Lo	No	Bypass	nobyP
2	GDCDFADBDEBAAB	0.043	121	No-CE	No-CCI	LoPr	No-VB	SGTR	No-CCI	Hi	No	Bypass	nc3y?
3	GHADBBABDEAAAB	0.035	31	No-CF	PruDry	LoPr	Pour	SRVO	large	Hi	No	Bypass	noBy?
4	GHADBBAADEAAAB	0.034	29	No-CE	Prabry	LoPr	Pour	SRVO	Large	Lo	No	Bypass	noby?
5	GHADBBABDEAAAA	0.028	31	$\mathrm{No}-\mathrm{CF}$	PrmDry	LoPr	Pour	SRVO	Large	Hi	No	Bypass	nokyP
6	GHADBBAADEAAAA	0.026	29	No-CF	PrmDry	LoEr	Pour	SRVO	Large	Lo	No	Bypass	noby?
7	FHADBRABDDAAAB	0.024	31	VLate	PrmDry	LoPr	Pour	SRVO	Large	Hi	No	BMT	noByp
8	GDCDFADADEBAAA	0.023	102	No-CF	No-CCI	LoPr	No-VB	SGTR	No-CCI	Lo	No	Bypass	noby?
9	FHADBBAADDAAAB	0.022	29	VLate	PrmDry	LoPr	Pour	SRVO	Large	Lo	No	BMT	noByP
10	FHADBBABDDAAAA	0.018	31	VLate	PrmDry	LoPr	Pour	SRVO	Large	Hi	No	BMI	noBy?
11	FHADBBAADDAAAA	0.018	29	Tlate	PrmDry	LoPr	Pour	SRVO	Large	Lo	No	BMT	nosyp
12	GDCDFADBDEBAAA	0.014	120	No-CF	No-CCI	LoPr	No-vB	SGTR	Ao-CCI	Hi	No	Bypass	noByP
13	GHBBBBBAADEAAAB	0.012	12	No-CF	PrmShl	HiPr	Pour	SRVO	Large	Lo	No	Bypass	noByP
14	GHBCBBAADEAAAB	0.011	12	No-CE	PrmShl	ImPr	Pour	SRVO	Large	Lo	No	Bypass	noByp
15	GHABABAACEAAAB	0.011	11.	No-CF	PrmDry	HiPr	HPME	SRVO	large	Lo	No	Bypass	noByP

[^4]follow procedures and open the PORVs before UTAF, so no credit is given for their opening the PORVs after UTAF. In GLYY-YNY, the PORVs are open at UTAP as the operators are or were attempting to cool the core by bleed and feed. In GLYY-YNY, the resulting pressure reduction in the RCS may allow the operating LPIS to infect water and arrest core damage before VB. As discussed in Section 2.5 .2 .1 , it was estimated that with an S_{3}-size break in the system, the low, intermediate, and high pressure ranges were equally likely at VB. The probabilities of these three pressure ranges given above vary somewhat from 0.33 due to the open PORVs just discussed.

For the SOTR PDS Group, contalnment fullure at VB is not particularly significant for risk as the bulk of the fission products escapes through the containment bypass. The mean probability of containment failure during core degradation due to isolation failures is 0,004 . The mean probability of contalnment fallure at VB is 0.16 . The mean probability of late failures due to hydrogen burns is 0,003 . The mean probabllity of very late containment fallure due to overpressure by steam and/or noncondensibles is 0.01 . The mean probability of BMT is 0.22 .
2.5.1.8 Core Damage Arrest and Avoidance of VB. It is possible to arrest the core damage process and avoid VB if ECCS injection is restored before the core degradation process has gone too far. Recovery of injec. tion is due to one of two events. In the LOSP accidents, recovery of injection follows the restoration of offsite power. In other types of accidents, the ECCS is operating at UTAF but no injection is taking place because the RCS pressure is ton high. Any break in the RCS pressure boundary that allows the RCS pressure to decrease to the point where the ECCS can inject is likely to arrest the core degradation process. The break may be an initiating break or a temperature-induced break or other failure that occurs after UTAF.

PDSs ALYY-YYY and ALYY-YYN have the LPIS operating at UTAF. These are core damage situations because the success criteria require the accumulators to operate in addition to the LPIS, and the accumulators fail. PDS S LYY-YYN also has the LPIS operating at UTAF; it is a core damage situation because the success criteria require the HPIS to operate in addition to the LPIS, and the HPIS fails in recircirculation. For both of these PDSs, the initiating break depressurizes the RCS sufficiently for the LPIS to infect. In PDSs $S_{2} L$ MY-YYN, S_{3} LYY-YYN, the LPIS is also operating but the system pressure is too high at UTAF to allow injection. During subsequent core degradation, the system pressure may sufficiently decrease such that infection will commence. In PDSs TLYY-YXY and TBYY-YNY, the RCS is intact at UTAF. For these situations, injection will commence only if one of the five depressurization means considered in this analysis operates, and if the RCS is depressurized to a low enough level. The five means of depressurizing the RCS after UTAF are:

[^5]Figure $2,5-1$ shows the probability of halting the degradation of the core before the lower head of the vessel fails and thereby achieving a safe stable state with the vessel intact. For the LOSP sumary PDS Group, the distribution in Figure 2.5-1 reflects the distribution for offeite ac power recovery in the APET early period. To avoid a gap in the times for which power recovery is considered, the start of the APET early period is the end of the period for which recovery of offsite power was considered in the accident frequency analysis. This time is nominally the onset of core damage, but for some PDSs this time precedes the current estimates of the onset of core damage (UTAF) by a significant amount. The end of the APET "early" period is the expected time of VB. The estimated core damage states at different times in this period were used to determine the probabllity of core damage arrest for each PDS involved as explained in Appendix A.1.1 (see the discussions of Questions 22 and 26) and in Appendix A. 3. 3 .

For the ATWSs, Transients, and LOCAs, the distributions for core damage arrest show the combined effects of RCS depressurization mechanisms that allow ECCS injection in those PDSs thac have ECCS operating at UTAF. The probability of core damage arrest is very high for Transients since one PDS in the group has LPIS operating and the other has both LPIS and HPIS operating. As the probability of occurrence of one or more of the depressurization mechanisms is high, so the probability of core damage arrest is high.
2.5.1.9 Early Containment Failure. For those accidents in which the containment is not bypassed, the offsite risk depends strongly on the probability that the containment will fall before or at VB. There are four possibilities:

1. Pre-existing containment leak or isolation failure,
2. Containment failure before VB due to hydrogen deflagration,
3. Containment failure before VB due to hydrogen detonation; and
4. Containment fallure at VB due to the events at VB.

The probability of a pre-existing leak at Sequoyah is low. The main threat is due to isolation fallures which are caused by air lock fallures, purge valve fallures or other simllar, undetected fallures of the contalnuent boundary.

Hydrogen combustion before $V B$ is a concern for the Sequoyah containment because of the relatively small containment volume and low failure pressure. The hydrogen ignition system, operating in confunction with the air return fan system helps preclude large hydrogen burns by burning relatively small quantities of hydrogen as it is generated. Without operation of the fans and igniters (typical for an SBO), hydrogen can stagnate in the ice condenser and upper plenum of the ice condenser at potentially detonable levels. Sufficient accumulation of hydrogen in the dome for this scenario can pose a threat to containment by hydrogen deflagration. Thus, fallures of containment during core degradation due to hydrogen events are contributors to early containment fallure.

The largest contribution to early containment fallure (for non-bypass acoidents) at Sequoynh comes from containment failures at VB. These fallures are due to hydrogen burns at VB, with possible augmentation from ex-vessel steam explosions, HPME involving DCH and/or hydrogen burns, direct contact of the molten core debris on the containment wall, or in. vessel steam explosions (Alpha mode).

Figure 2.5-2 shows the probability distribution for early containment fallure at Sequoyah (containment fallure means containment fallure before or at VB). The probabllity is conditional on core damage. All the no VB probability associated with no VB, including the small fraction which has containment failure during core degradation due to hydrogen events or isolation failures is not included in this figure. The conditional probability of early containment fallure is particularly low for the Transient PDC Group because the probability of core damage arrest is quite high. There is no histogram for the Bypass summary PDS Group. When the containment function is bypassed by Event V or an SGTR, early containment: fallure ceases to be very important in determining the release of fission products and the offsite risk. Thus, the conditional probability of early containment failure was deliberately not plotted for the Bypass Group. For accidents other than Bypass, the mean conditional probability of early containment failure is on the order of 0.06 .
2.5.1.10 Summary, Figure 2.5.3 shows the mean distribution among the summary accident progression bins for the summary PDS Groups. Only mean values are shown, so Figure $2.5-3$ gives no indlcation of the range of values encountered. The distribution for core damage arrest is shown in Flgure 2.5.1, and the distribution for early (at or before VB) fallure of the containment is shown in Figure $2,5 \cdot 2$. Figure $2,5 \cdot 3$ gives a good idea of the relative likelihood of the possible results of the accident progression analysis. Except for the Bypass initiators, either no fallure of the vessel (safe stable state) or no containment failure are by far the most likely outcomes. A late fallure is more likely than fallure at or before $V B$. The late fallure may be due to hydrogen ignition some hours after VB, long-term overpressure by steam and/or noncondensibles, or BMT, Early containment failure is fairly unlikely, as was indicated by Figure 2.5-2.

Ffgure 2.5.3 shows only the mean frequencies for the summary PDS Groups and mean conditional probabilities for the summary APBs, where the mean is taken over all 200 observations in the sample. The core damage frequency of each PDS Group is different for each observation. Figure 2.5.4 displays the range of core damage frequencles for the 200 observations for the seven PDS Groups. The frequency range from the 5 th percentile to the 95 th percentile is about two or three orders of magnitude for all of the PDS Groups except Event V. The large range for Event V reflects the large uncertalnty in the inftiating event frequency for the interfacing system LOCA.

Sequoyah
Figure 2.5-3. Mean Probability of Summary APBs for Sumary PDSs

ACCIDENT PROGRESSION BIN
$\begin{aligned} & \text { VB }>200 \text { psi. } \\ & \text { early CF (at VB) } \end{aligned}$
$\begin{aligned} & V B<200 \text { psi, } \\ & \text { early CF (at VB) } \end{aligned}$
VB, late CF
VB, BMT. very late CF
Bypass
VB, No CF
No VB, early CF (during CD)
No VB

The mean conditional probability of each summary APB may be computed for each PDS Group for each observation. When combined with the PDS Group frequency, a frequency for each suminary APB for each observation is obtained. The distribution of these values is displayed in Figure 2,5-5 The 95 th percentiles of the distributions for VB coincident with early containment fallure (the first three distributions) all fall below 1.0 E . $4 / y e a r$. The means are much greater than the medians for these distributions, indicating that the means are largely determined by a small number of observations with high probability of VB followed by early containment fallure. The bypass summary APB includes both Event V and the SCTRs. The long low frequency 'tail' of the distribution for Event V in Figure 2.5-4 is lost when the interfacing system LOCA and SGTR frequencies are summed for presentation in Figure 2.5-5.

The releases from accidents that result in VB and early containment failure are roughly comparable to releases from the most severe bypass accidents, and the releases from both of these types of accidents are much larger than non-bypass accidents in which the containment does not fail at all or fails some hours after VB. Therefore, since Figure $2.5-5$ shows that bypass accidents have a comparable frequency distribution with accidents with VB and early containment failure, it may be inferred that the risk to the offsite population from internally initiated accidents at Sequoyah is likely to be dominated by bypass accidents and accidents in which VB and early containment fallure occur.

2.5.2 Sensitivity Analysis for Internal Initiatore

This section reports the results of a sensitivity analysis that was performed for the internally initiated acoidents et Sequoyah. The sensitivity study was performed to determine the importance and the effects of the temperature-induced (T-1) hot leg (and surge line) breaks and the T-I SGTRs. These fallures occur after the core melt has begun and when the hydrogen and superheated stean leaving the core have heated the hot leg, surge line, and steam generator inlet plenum to temperatures on the order of 1000 K . Aggregate cumulative fallure probabilities for these phenomena were provided by the Expert Panel on In-Vessel Issues. Their conclusions were that these fallures would occur only if the RCS was at the PORV setpoint pressure (about 2500 psia). The hot leg fallures were judged to be relatively likely (mean fallure probability about 0.70), while the SGTRs were estimated to be quite unlikely (mean failure probability about 0.015). In the sensitivity analysis, these two T-I failures were eliminated completely. Note that the distributions used for the other three depressurization mechanisms were not altered in this sensitivity analysis. The deliberate opening of the PORVs is not a particularly effective means of depressurizing the RCS, but the sticking open of the PORVs and the fallure of the RCP seals are effective.

Of the seven internally initiated PDS groups at Sequoyah, three (LOCAs, Event V, and SGTRs) are completely unaffected by the elimination of the T-I hot leg fallures and T-1 SCTRs because the conditions for these events (RCS at PORV setpoint pressure) are not met. The other four PDS groups were evaluated in this sensitivity analysis, and the results for PDS Group 1 , Slow SBO, will be discussed in sone detail.

Figure 2.5-5. Distribution of Freuqencies for Sumary APBs.

Figure 2.5-5 (continued).

In the Sequoyah APET, the occurrence of T.I SGTRs is addressed in Question 20 , and the occurrence of T•I hot 1 eg failures is addressed in Question 21. Thus, the base case (T-I fallures as specified by the expert panel) and the sensitivity case (no T-I fallures) are identical up through Question 19.

For slow blackouts, the mean RCS condition at the uncovering of the top of active fuel (UTAF) is:

No Break		0.111
$\mathrm{~S}_{3}$ Break	0.189	
$\mathrm{~S}_{2}$ Break	0.640	

This is the condition of the RCS at the start of the accident progression analysis as determined by averaging the 200 observations in the sample. Question 16 determined the RCS pressure at UTAF. As the RCS pressure depends upon tha state of the AFWS as well as the condition of the RCS, the mean division among the pressure levels for the Slow SBO PDS Group at Question 16 does not exactly match the division among RCS states:

SSPr	0.171
HiFr	0.201
ImPr	0.628
LoPr	0.000

where:

```
SSPr = 2500 psia (PORV setpoint),
H1Pr = roughly 1000 to }1400\mathrm{ psia, but perhaps as high as 2000 psia,
ImPr = 200 to 600 psia, and
LoPr = less than 200 psia.
```

The high pressure range includes all pressures from 600 psia to over 2000 psia, but the detailed mechanistic codes suggest that, during most of the core degradation process, the RCS pressure will be in the 1000 to 1400 psia range.

Question 17 is whether the PORVs stick open. The probability that the PORVs will stick open is 0.50 if they are cycling, that is, if there is no break in the RCS and the system is at the PORV setpoint pressure (SSPr). Thus, half of the no break states become effective S_{2} states at this point. Question 18 is whether the RCP seals fail. The mean fraction of RCP seal failures is 0.615 , but most of these fallures occur for states in which there is already an S_{3} or S_{2} break, and so have no effect. As there is no electric power, the operators are prevented from opening the PORVs in Question 19.

Question 20 concerns the T-I SGTR. No SGTRs were computed in the sensitivity case vs. 0.0002 in the base case. Question 21 concerns the T.I hot leg (or surge line) failure No fallures were computed in the sensitivity case vs. 0.045 in the base case.

The pressure in the RCS fust before VB is determined at Question 25. For this question, the mean division among the pressure levels is not noticeably different for the two analyses:

Eressure Range	Sensitivity (No T. I Breaks.2	Base (T-I Breaks)
	0.023	0.005
SSPr	0.24	0.23
H 1 Pr	0.27	0.26
ImPr	0.47	0.50

These tables give results up to only two significant figures, so roundoff may cause the column sums to differ slightly from exactly 1.00 . Since the PORV stick rpen half the time for the "T" PDSs, and the RCP seals fall about 60 to 708 of the time when there is no pump seal cooling, there are two effective means of depressurizing the RCS in the sensitivity case. This PDS Group has no pump seal cooling. The stuck-open PORVs question alone has converted half the No Break PDSs in the $\$ 10 \mathrm{w}$ SBO Group to effective $\$_{2}$ breaks. The base case has T-I hot leg breaks as well, and there is a small difference. As expected, the T.I hot 1 eg fallures and SGTRs affect only the $S S P r$ and LoPr pressure ranges since hot leg fallures occur only when the RCS pressure is at the PORV setpoint value.

The fractions of the Slow SBO Group that went to each case in question 25 may also be of interest:

Break Size	Sensitivity (No T-I Breaks)	$\begin{gathered} \text { Base } \\ \text { (T. I Breaks) } \end{gathered}$
Case 1: A-size Breaks	0.000	0.045
Case 2: S_{2}-size Breaks	0.283	0.283
Case 3: S_{3}-size Breaks	0.693	0.667
Case 4: No Breaks	0.023	0.005

The effect of eliminating the T-I SGTRs is negligible, even in Question 25 , but the effect of eliminating the T.I hot leg failures is to transfer about 2. of the Slow SBO Group from LoPr to SSPr. The reason the fraction is not greater is that only 178 of the group is in the "No Break" category to begin with, and the stuck-open PORVs eliminate half of this category before the hot leg failure question is asked. The RCP seal fallures eliminate the remaining pertion of the sequences initially at system setpoint pressure.

Containment failure during core degradation is due to hydrogen combustion or detonation events, and occurs with non-negligible probability only for the blackout sequences. For times when the system is at higher pressures, there is more hydrogen retained in the RCS, and thus the probability for threatening burns or detonations is lower, Elimination of T-I hot leg or SGTR fallures might be favorable to reducing these early containment fallures. The containment failures during core degradation are determined in Question 58. For this PDS Group, there is a slight increase in the fraction of times containment failure occurs during core degradation, when the T-I fallures are eliminated. The mean branch probabilities for catastrophic rupture, rupture, leak and no containment fallure are:

Early containment failure (durling CD) and mode of fallure (Q58)

CE. Mode	Sens 1:1vity (No T-I Breaks)	$\begin{gathered} \text { Base } \\ (\mathrm{T}-1 \text { Breaks) } \end{gathered}$
Cet. Rupture	0.019	0.018
Rupture	0.025	0.028
Leak	0.008	0.009
NoCF	0.948	0.945

The type of vessel fallure is determined in Quection 65 of the Sequoyah APET. The realized branching (mean values) is:

Type of Vb (Q65)

Type of VB	Sensitivity (No T- I Breaks)		Base (T-I Breaks)
PrEj	0.134		0.125
Pour	0.253		0.265
Btmild	0.036	0.033	
NoVB or α	0.577	0.577	

The differences are not larger because the mean probability is 0.576 that offsite electric power and coolant injection is recovered before a large portion of the core is molten, and vessel failure is thus averted. It may be noted that the fraction for pressurized ejection is about the same. Alphs mode fallures account for only about 0.18 of the vessel fallures.

If eliminating the T-I SGTRs and hot leg fallures is to increase risk significantly, it must do so by increasing the fraction of containment failures at VB. This is determined in Questions 78 and 82. Question 78 indicates the probability that the containment fails by direct contact of the core debris with the contaiment wall. In Question 82, containment failure by overpressure is determined and the rupture failures by alpha mode, upward acceleration of the vessel, and EVSE are sumarized. Because the direct contact mode of fallure may occur after overpressure fallure, there is some overlap between the fallure probabilities. The actual probability of fallure at (or soon after) VB is determined in the binner. If both overpressure and direct contact failure ocour, only overpressure is reported here. The mean branch probabilities for the Slow SBO Group are:

Containment Failure at VB (Q78, Q82)

CF Mode	Sensitivity (No T- I Breaks)	$\begin{gathered} \text { Base } \\ \text { (T.I Breaks) } \end{gathered}$
Cat. Rupture	0.039	0.038
Rupture	0.023	0.023
Leak	0.010	0.010
Dir. Contact	0.021	0.018
NoCF	0.907	0.911

There are slightly more containment failures when the T-I RCS breaks are set to zero. The increase is due mainly to the direct contact failure mode. The decrease in fallures at VB for the sensitivity study are almost compensated by the increase in failures during core degradation.

The late falluses of the containment due to hydrogen burns, long-term overpressurization (OP), and BMT are addressed in Questions 103, 107, and 109:

Late Containment Failures (Q103, Q107, Q109):
Sensitivity
(No T. I Breaks)

Base
$\frac{(T-1 . \text { Breaks) }}{}$
0.096
0.004
0.041

The differences are not significant. Given the results of question 43, this is to be expected.

Tables $2.5-8$ through $2.5-11$ summarize the results of the sensitivity analysis for the four internally initiated PDS groups for which the elimination of the T-I breaks have any effect. The Slow SBO Group has already been discussed. The tables show the mean branch probabilities. The Fast SBO Group results are similar to those for the Slow SBO Group, although more pronounced for the Fast $S B O$, because there is a greater increase in the probability that the vessel fails at higher pressures when there are no T.I fallures. The difference in containment failure at VB, the most important question for offsite risk, is quite significant; for Slow SBO the probability of containment failure at VB for the sensitivity study is about 1.04 times the base case, and for Fast SBO the probability Is about 1.14 times the base case. For the Transient Group, Table 2.5-10, the mafor difference is in the probability of cor lamage arrest and no vessel failure; for the sensitivity study, the ability that no vb occurs is about half of what it was for the base cas. The hot leg failure plays a very important role in depressurizing the RCS 30 that LI IS injection results. Further, RCP seal cooling is operating in this PDS Group, so the RCP seal failure mechanism is not effective. For the Iransients, the probability of containment failure at vB for the sensitivity study is about 3.7 times the base case. While the relative increase in the probability of containment failure at VB is large, the low probability of occurrence of this PDS Group renders the impact of the increased failures to be insignificant. For the anticipated transient Without scram (ATWS) PDS Group reported in Table 2.5 .11 , the differences between the base and the sensitivity cases are not significant.

Table 2.5-8
C.mparison of APET Results With and Without

T-I Hot Leg Breaks and SGTRs
PDS Group 1: Slow SBO

Fraction With RCS Fressure in Four Ranges:

At UTAE.
0.171

SSPr
H / Pr
ImPr
LoPr
0.201
0.628

0,000
$A t$ VB
Base Case
0.005
0.231
0.263
0.502

At VB
No T-I Breaks
0.023
0.237
0.272
0.467

	Base Case	Sensitivity Case
Fractic. With CF during CD Total	0.055	0.052
Catastrophic Rupcure	0.018	0.019
Rupture	0.028	0.025
Leak	0.009	0.008
Fraction With No VB	0.576	0.576
Fraction With CF at VB Total	0.089	0.093
Catastrophic Rupture	0.038	0.023
Rupture	0.010	0.023
Leak	0.018	0.010
Direct Contact	0.335	0.021
Fraction With VB, but No CF at VB	0.096	0.095
Fraction With CF by Late Burn	0.004	0.004
		0.041

Table 2.5.9
Comparison of APET Results With and Without
T-I Sot Leg Breaks and SGTRs PDS Group 2: Fast SBO

Fraction With RCS Pressure in Four Ranges:

	At UTAF	At VB Base Case	At VB SSPr	1.000

	Base Case	Sensitivity Case
Fraction With CF during CD Total	0.047	0.043
Catastrophic Rupture	0.015	0.013
Rupture	0.026	0.024
Leak	0.006	0.006
Fraction With No VB	0.350	0.350
Fraction With CF at VB Total	0.134	0.156
Catastrophic Rupture	0.063	0.062
Rupture	$0.02+$	0.030
Leak		
Direct Contact	0.016	0.016
	0.031	0.048
Fraction With VB, but No CF at VB	0.516	0.494
Fraction With CF by Late Burn	0.176	0.156
	0.002	0.002

Table 2. 5-10
Comparison of APET Results With and Without
T-I Hot Leg Breaks and SGTRs
PDS Group 5: Transients

Fraction With RCS Pressure in Four Ranges:

	At UTAF	$\begin{gathered} \text { At VB } \\ \text { Base Case } \end{gathered}$	$\begin{aligned} \text { At VB } \\ \text { No T- I Breaks } \\ \hline \end{aligned}$
SSPr	1.000	0.112	0.500
HiPr	0.000	0.001	0.000
1 mPr	0.000	0.108	0.105
LoPr	0.000	0.779	0.395

Fraction With CF by Late Burn
Fraction With CF by Very tate OP
Fraction With CF by Very Late BMT

Base Case
0,002 0,001
0.0010
0.0007
0.0002
0.798
0.021
0.009
0.041
0.004
0.005
0.003
0.020
0.005
0.181

0,472
0.000
0.001
0.016
0.039

Sensitivity Gase
0.0004
0.0004
0.0002
0.450
0.078
0.012
0.023
0.056

Table 2.5.11
Comparison of APET Results With and Without
T- I Hot Leg Breaks and SGTRs
PDS Group 6: ATWS

Fraction With RCS Pressure in Four Ranges:

$\begin{array}{lcc} & \text { Base Case } & \text { Sensitivity Case } \\$\cline { 2 - 3 } \& \& 0.001\end{array}$] 0.001$

2.6 Insights trom the Accident Progression Analysis

For internal initiators, there is a good chance that non-bypass accidents will be arrested before vessel fallure. The arrest of core damage is due to the recovery of offsite power or the reduction of RCS pressure to the point where a system operating at the onset of core damage can inject successfully, Even if core damage proceeds to fallure of the lower head, the containment is not likely to fail.

The occurrence of containment fallure during the time of core degradation is not likely becaase for many sequences, ac power, and hence, the hydrogen ignition system and air return fans are operating. For SBOs, the probability of early containment failure is somewhat likely because hydrogen can acoumulate in the ice condenser where there is no steaminerting of the atmosphere. The probability that ignition of hydrogen ocours in areas of locally high concentration is low, however, because of lack of an ignition source in the timefiame considered. When power is recovered during core degradation for an SBO, it is more likely that an ignition source is present, although more often than not, the air return fans are effective in mixing the conte nment atmosphere before ignition occurs. This is mainly because it is assumed that mixing occurs after the bulk of the hydrogen is released. Overall, for SBOs, the mean conditional probability (the probability is conditional on occurrence of core damage for the SBO accidents) that the containment fails during core degradation is on the order of 0.05 .

The occurrence of containment failure at vessel failure is more likely than failure during core degradation, although the likelihood is still quite low. The mechanisms causing failure of the containment at VB depend on the RCS pressure at the time the vessel fails. If the RCS is at low pressure (less than 200 psia), the pressure increase in containment is due primarily to hydrogen combustion and can be augmented by ex-vessel steam explosions, if there is water in the reactor cavity. If the RCS is at high pressure (greater than 200 psia), the pressure increase is due to hydrogen combustion and HPME acting together. The expulsion of molten core debris at high pressure from the reactor vessel results in a substantial portion of the core debris being injected into the containment atmosphere in the form of fine particles. This causes rapid transfer of sensible heat to the contalnment atmosphere and the rapid generation of additional hydrogen from the oxidation of the metal in the particles by the accompanying steam. Subsequent combustion of the hydrogen generated in the direct heating event as well as of pre-existing hydrogen in containment augments the direct heating pressure increase.

For the SBOs, the conditional probability of containment failure at $V B$ is about 0.12 ; roughly half the failures occur by HPME/hydrogen events (high RCS pressure) and half by combustion of pre-existing hydrogen and hydrogen created at VB (low RCS pressure). For the ATWSs, containment fallure at VB occurs with a conditional probability of about 0.05 , with about equal contribution from HPME/hydrogen events and hydrogen burns coupled with ex. vessel steam explosions. For the Transients, containment fallure at VB is predicted to occur very infrequently, the mean conditional probability is about 0.02. For the LOCAs, the containment is predicted to fail at VB with
a conditional probability of roughly 0,05 , mostly due to HPME/hydrogen events, while hydrogen burns coupled with ex-vessel steam explosions also contribute. All of the accidents have a very low conditional probability (on the order of 0,002) of containment failure at VB due to alpha mode failure, where an in-vessel steam explosion fails both the vessel and the contalument.

The relatively low probability of containment failure at VB is due, in large part, to the denressurization of the RCS before VB. Depressurization of the RCS before the vessel falls is quite effective in reducing the loads placed upon the containment at VB. The effective mechanisms are temperature-induced fallure of the hot $l \mathrm{lg}$ or surge line, temperatureinduced fallure of the RCP seals, and the sticking open of the PORVs. All of these mechanisms are inadvertent and beyond the control of the operators. The apparent beneficial effects of depressurizing the RCS when lower head failure is imminent indicate that further investigation of depressurization may be warranted. The dependency of containment integrity on fallures that occur at unpredlctable locations and at unpredictable times is somewhat unsettling. Analysis of the effects of increasing PORV capacity, providing the means to open the PORVs in blackout situations, and changing the procedures to remove the restricting conditions on deliberate depressurization might prove rewarding in decreasing the probability of early containment failure at PWRs * ch ice condenser containments.

Another factor limiting the probability that the containment will fail at VB is that there is a high likelihood that the reactor cavity will contain large amounts of water at $V B$ (the bottom of the vessel is submerged in nominally 8 ft of water). The presence of a large amount of water inhibits the dispersal of debris from the cavity, thus lowering the threat from direct containment heating at VB. The presence of water also contributes to the probability that core debris released from the vessel will be cooled. If COI does inftiate, the release will be scrubbed by the overlaying pool of water. On the other hand, water in the cavity can increase the possibility of ex-vessel steam explosions which can also threaten the integrity of the containment. Containment fallure by exvessel steam explosion was investigated in this study and was found to be a minor threat. An ex-vessel steam explosion can also contribute to the radionuclide release at vessel breach.

Late fallures of containment due to deflagration of combustible gases (hydrogen and carbon monoxide) occur with non-negligible probability only for the SBOs in which the mean conditional probability of occurrence is 0.15 . When considering all PDSs, the mean conditional probability is a few percent. The mean conditional probability of very late failures due to BMT is low for the non-bypass accidents, the mean probabilities are less than 0.10. For SCTR initiators, the mean conditional probability that basemat melt-through occurs is 0.22 , and for Event V it is 0.39 . The high occurrence of basemat melt-through for bypass accidents is because there is virtually no cavity water in these sequences to prevent core-concrete interaction. Long-term overpressure of contalnment occurs most frequently for the LOCA accidents, with a mean conditional probability of occurrence of 0.22 . This is because long tecm containment heat removal through the contalnment sprays falled early in the accident. For the other plant damage states, the occurrence of long-term overpressure is unlikely.

Although their core damage frequency is relatively low, the bypass accidents are important for internal initiators. This is duf to the low probabllity of early containment fallure for the more frequent accidents, LOCAs and SBO. Given a core damage event, the occurrence of bypass is about as likely to defeat the containment function as a LOCA or SBD with early containment failure. For Event V, the importance of bypass is even greater, because the release occurs earlier than for an SGTR. Even though a bypass of the containment is created for the V-sequence, there is a mean probability of 0.80 that the break in the interfacing low pressure system will be located such that when the releases commence, they are scrubbed by the area fire sprays.

1. D. D. Carlson et al., "Reactor Safety Study Methodology Applications Program: Sequoyah \# 1 PWR Power Plant," NUREG/CR-1659, Vol. 1, SAND80. 1897, Sandia Natioanl Laboratories, February 1981.
2. R. C. Bertucio and S. R. Brown, "Analysis of Core Damage Frequency from Internal Events: Sequeyah, Unit 1," NUREG/CR-4550, Vol. 5, SAND86-2084, Sandla National Laboratories, April 1990.
3. D. M. Ericson, Jr., (Ed,) et al., "Analysis of Core Damage Frequency: Methodology Guidelines," NUREG/CR-4550, Vol. 1, SAND86-2084, Sandia National Laboratories, January 1990.
4. R. L. Iman and S. C. Hora, "Modeling Time to Recovery and Initiating Event Frequency for Loss-of-Offsite Power Incidents at Nuclear Power P1ants," NUREG/CR-5032, SAND87-2428, Sandia National Laboratories, December 1987.
5. D. P. Mackowiak, C. D. Gentillon, and K. L. Smith, " Development of Transient Initiating Event Frequencies for Use in Probabilistic Risk Assessments," NUREG/CR-3862, EGG-2323, EG\&G Idaho, Inc. (Idaho National Laboratory), May 1985.
6. USNRC, "General Implications of ATWS Events at the Salem Nuclear Power Plant," NUREG-1000, U.S. Nuclear Regulatory Commission, April 1983.
7. A. D. Swain, "Accident Sequence Evaluation Program Human Reliability Analysis Procedure," NUREG/CR-4772, SAND86-1996, Sandia National Laboratories, February 1987.
8. T. A. Wheeler, et al., "Analysis of Core Damage Frequency: Expert Judgment Elicitation, NUREG/CR-4550, Vol. 2, SAND86-2084, Sandia National Laboratories, April 1989.
9. J. M. Griesmeyer, and L. N, Smith, "A Reference Manual for the Event Progression Analysis Code (EVNTRE)," NUREG/CR-5174, SAND88-1607, Sandia National Laboratories, September 1989.
10. U.S. Nuclear Regulatory Commission, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants," NUREG-1150, June 1989.

3. RADIOLOGICAL SOURCE TERM ANALYSIS

The source term is the information passed to the next analysis so that the offsite consequences can be calculated for each group of accident progies. sion bins (APBs). The source term for a given bin consists of the release fractions for the nine radionuclide groups for the early release and for the late release, additional information about the timing of the releases, the energy associated with the releases, and the height of the releases.

The source terms for Sequoyah are generated by the computer model, SEQSOR, The aim of this model is net to caloulate in a mechanistic fashion the behavior of the fission products by application of first principles of chemistry, thermodynamios, and heat and mass transfer. Instead, It represents the results and interim results of the more detailed computer codes that do consider these principles. Although SEQSOR is a simple parametric model coded in FORTRAN, it will be referred to in this analysis as the SEQSOR code.

A more complete discussion of the source term analysis, and of SEQSOR in particular, may be found in NUREG/CR-5360.* The mechods on which SEQSOR is based are presented in NUREG/CR-4551, Volume 1, and the source term issues considered by the expert panels are described more fully in NUREG/CR-4551, Volume 2, Part 4.

Section 3.1 summarizes the features of the Sequoyah plant that are important to the magnitude of the radionuclide release. Section 3.2 presents a brief overview of che SEQSOR code, and Section 3.3 presents the results of the source term analysis. Section 3.4 discusses the partitioning of the thousands of source terms into groups for the consequence analysis. Section 3.5 concludes this section with a summary of the insights gained from the source term analysis.

3.1 Sequoyain Features Important to the Source Term Analysis

The reactor system of Sequoyah Unit 1 consists of a four-loop pressurized water reactor (PWR). The reactor system is situated within a free-standing steel shell containment that forms a pressure boundary with the external environment. Figure 1.1 shows a section through the Sequoyah containment. More detail on the Sequoyah plant is contained in Sections 1.2 and 2.1 and is not repeated here.

The design pressure of the Sequoyah containment is 10.8 psig , although the mean value of the failure pressure distribution provided by the structural experts is six times the design pressure. The fallure pressure, when compared with loads during the accident progression, leads to relatively low probabilities of containment fallure (CCF). This is evidenced by the results of the accident progression analysis. If the containment fails, the f iming, location, and mode of fallure are important to the magnitude and character of the source term.

[^6]Emergency containment heat removal (CHR) at Sequoyah is by the ice condenser (IC) and the containment spray system (CSS) as described in Sections 2.1 .2 and 2.1 .3 . Both the IC and the sprays are quite effective in removing fission products from the containment atmosphere. As long as the ice is not melted or bypassed, there are no accident situations at Sequoyah in which fission products will not be removed from the atmosphere as they pass through the IC. If the afr return fans (ARFs) are operating, the decontamination of the IC is even more effective, especially for the first few passes through the ice. If electric power is available and the sprays have not falled due to hardware faults, they becone a backup as weil as a long-terw means for decontamination of the containment atmosphere. Decontamination by the sprays or IC before and immediately following vessel breach (VB) is important in reducing the release if the containment fatls early.

The Sequoyah reactor cavity is located such that for sequences with injection of the contents of the refueling water storage tark (RWST) into containment as well as melting of more than one quarter of the ice, the cavity will invariably be flcoded at the time of vessel failure, as described in Section 2.1,7. If the reactor cavity is dry, core-concrete interaction (CCI) will occur upon VB, and the fission products released during CCI are unmitigated within the cavity. If the cavity is flooded, CCI is not as likely as when the cavity is dry, and furthermore, if CCI ocours, the releases are subject to scrubbing from the overlying water.

Two accident scenarios have been identified at Sequoyah that bypass the containment: Event V and steam generator tube ruptures (SGTRs). In Event V, the check valves that separate the low pressure injection system (LPIS) from the reactor coolant system (RCS) fail. The LPIS piping is not designed for full RCS pressure, and it fails outside the containment. This provides a direct pathway from the vessel to the auxiliary building. It is possible that the failure in the LPIS piping is at a location where there will be some scrubbing of the fission prodacts released from the vessel by area fire sprays. If the break is not at such a location, there may be few effective removal mechanisms hetween the core and the environment, and releases could be quite high.

The magnitude of the source tern from an SGTR accident depends on the integrity of the secondary system and the containment. If the integrity of both is maintained, the releases may be quite small. If the safety relief valves (SRVs) on the secondary system stick open, then a direct path from the vessel to the environment is created and the releases may be very high. If the SRVs on the secondary system do not stick open, then the releases depend on the time at which the containment fails (if at all) as in non-bypass accidents.

In summary, the Sequoyah containment is relatively robust, which reduces the likelihood of early containment failure. When functional, the IC and sprays are effective in decontamination of the atmosphere. While ice still remains in the condenser, the $I C$ is a passive mitigation system not requir. ing power to be effective. Operation of the ARFs enhances the decontamination effects of the IC. If a water pool covers the core debris in the cavity after breach, releases from CCI can be mitigated by scrubbing. In Event V and SGTRs in which the secondary systems SRVs are stuck open, the release path bypasses the containment.

3.2 Description of the SEQSOR Code

This section describes how the source term is computed for each APB. The source term is more than the fission product release fractions for each radionuclide class; it also contains information about the timing of the release, the height of the release, and the energy associated with the release. The next subsection presents a brief overview of the parametric model used to calculate the source terms. Section 3.2 .2 discusses the model in some detail; a complete discussion of SEQSOR may be found in Reference 1. Section 3.2 .3 presents the variables sampled in the source term portion of this analysis.

3.2.1 Overview of the Parametric Model

SEQSOR is a fast-running, parametric computer code used to calculate the source terms for each APB for each observation for Sequoyah. As there are typically a few thousand bins for each observation and 200 observations in the sample, the need for a source calculation method that requires a minimum of computer time for one evaluation is obvious. SEQSOR does not mechanistically calculate the behavior of the fission products by application of first principles of chemistry, thermodynamics, and heat and mass transfer. SEQSOR does provide a framework for integrating the results and interim results of the more detailed codes that do consider these quantities. Since many of the variables SEQSOR uses to calculate the release fractions were determined by a panel of experts, the results of the detailed codes enter SEQSOR after "filtering" by the experts.

The 60 radionuclides (also referred to as isotopes, or fission products) considered in the consequence calculation are not dealt with individually in the source term calculation. Some different elements behave similarly enough both chemically and physically in the release path that they can be considered together. The 60 isotopes are placed in nine radionuclide classes as shown in Table $3.2 \cdot 1$. It is these nine classes that are treated individually in the source term analysis.

Table 3.2-1
Isotopes in Each Radionuclide Release Class

1. Inert Gases	Kr -85, Kr-85M, Kr-87, Kr-88, Xe-133, Xe- 135
2. Iodine	I-131, I-132, I-133, I-134, I-135
3. Cesium	$\mathrm{Rb}-86, \mathrm{Cs}-134, \mathrm{Cs}-136, \mathrm{Cs}-137$
4. Tellurium	$\begin{aligned} & \mathrm{Sb}-127, \mathrm{Sb}-129, \mathrm{Te}-127, \mathrm{Te}-127 \mathrm{M}, \mathrm{Te}-129, \\ & \mathrm{Te}-129 \mathrm{M}, \mathrm{Te}-131 \mathrm{M}, \mathrm{Te}-132 \end{aligned}$
5. Strontium	Sr-89, Sr-90, Sr-91, Sr-92
6. Ruthenium	$\begin{aligned} & \mathrm{Co}-58, \mathrm{Co}-60, \mathrm{Mo}-99, \mathrm{Tc}-99 \mathrm{M}, \mathrm{Ru}-103, \mathrm{Ru}-105, \\ & \mathrm{Ru}-106, \mathrm{Rh}-105 \end{aligned}$
	3.3

Table 3.2-1 (continued)

```
Release Class
Isotopes Included
7. Lanthanum
\(\mathrm{Y}-90, \mathrm{Y}-91, \mathrm{Y}-92, \mathrm{Y}-93, \mathrm{Zr}-95, \mathrm{Zr}-97, \mathrm{Nb}-95\), La-140, La-141, La-142, Pr-143, Nd-147, Am-241, Cm-242, Cm-244
8. Cerium Ce-141, Ce-143, Ce-144, Np-239, Pu-238, Pu-239, Pu-240, Pu-241
9. Barium \(\mathrm{Ba}-139, \mathrm{Ba}-140\)
```


3.2.2 Description of SEQSOR

Since the largest consequences generally result from accidents in which the containment fails before $V B$ or about the time of VB, the nomenclature and structure of SEQSOR reflect failure at VB. An early release occurs before, $a t$, or a few tens of minutes after $V B$, and a late release occurs several hours after $V B$. In general, the early release is due to fission products that escape from the fuel while the core is still in the RCS, that is, before VB, and is often referred to as the RCS release. The late release is largely due to fission products that escape from the fuel during the CCI and is referred to as the CCI release. The late release includes not only fission products released from the core during CCI, but also material released from the fuel before VB that deposits in the RCS or the containment and is revolatilized after VB.

For situations in which the containment fails many hours after VB, the "early" release equation is still used, but the release is better termed the RCS relense. After both releases are calculated in SEQSOR, they are combined into the late release, and the early release is set to zero. For radionuclide class i, the early (or RCS) release is calculated from the following equation:

```
ST(1)=[FCOR(1)* FVES(1) * FCONV(1)/DFE(1)] + DST[FDCH(1)].(Eq . 3.1)
```

And the late or CCI release is calculated from

```
STL(1)=[(1-\operatorname{FCOR}(1)) * FPART(1) * FCCI(i) * FCONC(1)/DFL(1)]
    + DLATE[FLATE(1)] + LATEI.
```

(Eq. 3. 2)
Both equations are valid for most APBs, but are not complete; the additional terms are either small or apply only to certain types of accidents not shown in this summary for reasons of expediency. For example, some of the omitted terms concern releases from Event V and SGTR accidents. The term LATEI applies only for the iodine radionuclide class. The complete equations used are presented in NUREG/CR-5360.*

[^7]The FORTRAN listing of SEQSOR is in Appendix B. The meaning of the terms in the equations above is as follows:

ST $=$ fraction of the radionuclide in the core at start of accident released to enviromment as part of RCS release;

FCOR = fraction of the radionuclide in the core released to the vessel before VB;

FVES - fraction of the radionuclide released to the vassel that is subsequently released to the containment;

FCONV - fraction of the radionuciide in the containment from the RCS release that is released from the containment in the absence of any mitigating effects;

DFE - decontamination factor for the RCS releases (sprays, etc.);
DST - fraction of core radionuclide released to the environment due to DCH at VB;

FDCH - fraction of radionuclide in the portion of the core involved in DCH that is released to the containment at VB;

STL - fraction of the radionuclide in the core at the start of the accident released to environment as part of the CCI release;

FPART = fraction of the core participating in the CCI;
FCCI = fraction of the radionuclide in the core material at the start of CCI subsequently released to the containment;

FCONC = fraction of the radionuclido in the containment from the CCI release released from the containment in the absence of any mitigating effects;

DFL w decontamination factor for the late releases (sprays, etc.) ;
DLATE ~ fraction of core radionuclide released to the environment due to revolatilization from the RCS late in the accident;

FLATE - fraction of core radionuclide remaining in the RCS that is revolatilized late in the accident; and

LATEI = fraction of core iodine in the containment that assumes a volatile form and is released late in the accident.

Only the functional dependence of DLATE on FLATE and of DST on FDCH is indicated above, but DLATE and DST also depend on other variables such as FCOR. DST and DLATE are expressed as fractions of the initial core
inventory like ST and STL. Complete expressions for DST and DLATE and an expanded discussion of them may be found in the XSOR dcoument.*

Figure $3.2 \cdot 1$ depicts the parametric equations schematically as a flow diagram. Coming in from the left is all the radioactivity in any radionu. clide class. The black arrows represent releases to the environment, and the white arrows represent material retained in the RCS or in tne containment. The first division of the racioactive material is indicated by FCOR. The top branch (FCOR) represents the fraction released from the core before $V B$, and the lower branch ($1 \cdot \mathrm{FCOR}$) represents the amount still in the RCS at VB. The FCOR branch is then split into what leaves the RCS before or at VB (FVES) and what is retalned in the RCS past VB (1-FVES). Of the material retained in the RCS at VB, a fraction FLATE is revolatilized later, of the revolatilized fraction, a portion is removed by engineered removal mecha. nisms such as sprays (variable 1/DFL), and another portion is removed by natural mechanisms such as deposition (variable FCONRL). Part of the revolatilized fraction not removed escapes to the environment (DLATE in the equation) as indicated by the top black arrow in Figure 3.2-1. FCONRL is the containment release fraction for the late revolatilization release and is set equal to the FCONC value for tellurium.

When evaluated as part of the integrated risk analysis, SEQSOR is run in the "Sampling mode." That is, most of the variables in the release fraction equations are determined by sampling from distributions for that variable, and the value for each variable varies from observation to observation. Most of these distributions were provided by an expert panel.

Equations 3.1 and 3.2 contain 11 variables. Distributions for seven of these variables were provided by the source term expert panel: FCOR, FVES, FCONV, DST, FCCI, FCONC, and FLATE. Two other variables were also nertially quantified by the expert panel; for DFE and DFL, distrioutions for the IC decontamination factor (DF) were provided. The distributions for the other DFs considered for DFE and DFL (such as the DFs for sprays or pool scrubbing) and the distribution for FPART and LATEI were determined either by the expert panel for the previous draft of this report or internally.

For each variable in Equations 3.1 and 3.2, a distribution is usually provided for the nine radionuclide release classes defined in Table $3.2-1$, although release classes are sometimes grouped together. For example, for FCOR, the experts provided separate distributions for ali nine classes; whereas for other variables, they stated chat classes 5 through 9 should be considered together as an aerosol class. The distributions for the nine radionuclide classes are assumed to be completely correlated. That is, a single Latin Hypercube sample (LHS) vartable applies to each variable in the release fraction uquation, and it applies to the distributions for all nine radionuclide classes. For example, if the random variable provided by the LHS for FCOR is 0.777 , the 77.7 th percentile value is chosen from the iodine distribution, the cesium distribution, the tellurium distribution etc., for FCOR.

[^8]

Many of the variables in Equations 3.1 and 3.2 are determined directly by sampling from distributions provided by a panel of experts (see NUREG/CR4551, Volume 2, Part 4). Other varlables are derived from such values, and still others were determined internally (see NUREG/CR-4551, Volume 2, Part 6 and the XSOR document*). A brief discussion of each variable in Equations 3.1 and 3.2 follows.

FCOR is the fraction of the fission products released from the core to the vessel before vessel fallure. The value used in each sample observation is obtained directly from the experts' aggregate distribution. There are separate distributions for each fission product group for two cases: high and low in-vessel zirconium oxidation.

FVES is the fraction of the fission products released to the vessel that is subsequently released to the containment before or at vessel failure. As for FCOR, the value used in each sample observation is obtained directly from the experts' aggregate distribution, and there are separate distribu. tions for each fission product group. There are four cases: RCS at system setpoint pressure, RCS at high or intermediate pressure, RCS at low pressure, and Event V.

FCONV is the fraction of the fission products in the containment from the RCS release that is released from the containment in the absence of mitigating factors such as sprays. The expert panel provided distributions for FCONV for five cases, each of which applies to all species except the noble gases. The five cases are containment leak at or before VB and the contair nt sprays not operating, containment leak at or before VB and the containaent sprays operating, containment rupture in the upper compartment (UC) at or before VB, containment rupture in the lower compartment (LC) at or before VB, and late containment rupture. The case differentiation on spray operation is to accour- for differences in containment atmosphere temperature and humidity. Distributions for other levels and times of containment failure (except for very late fallures) are derived in SEQSOR from these five distributions. A sixth distribution applies so Event V and was quantified internally. If the containment failure happens a day or more after the start of the accident, none of these distributions is used for FCONV. These very late failures occur due to long-term overpressurization or basemat melt-through (BMT). For very late failures, the long time period allows the engineered and natural removal processes to reduce the concentration of the fission products in the containment atmosphere, so the fraction of the fission products released before or at VB remaining airborne at the time of containment failure is very small. This fraction was estimated internally to be $1.0 \mathrm{E}-6$, and FCONV is set to that value for containment failure at very late times.

DFE is the DF for early releases. At Sequoyah, the containment sprays and the IC are the mechanisms that contribute to DFE for non-bypass accidents. The variable for the early IC DF is DFICV and the variable for the early spray DF is DFSPV. DFE is the product of DFICV and DFSPV for non-bypass

[^9]accidents. For Event V, when the releases are scrubbed by fire sprays, the variable for the scrubbing $D F$ is VDF. DFE is set equal to VDF when used for Event V. The distribution for VDF was determined internally.

DFICV is the DF for the IC for early releases. The source term expert panel determined the DFICV distributions for four cases: fans operating and no prior containment fallure; fans operating and the containment is falled; fans not operating; and fallure of the vessel involved a DCH event. Fans are considered because the DF for multiple passes through the IC is higher than for a single pass. The DCH event is considered separately because conditions are very different from normal blowdown. A bypass fraction is applied to DFICV, and can be one of three levels: no bypass, partial bypass, or the ice is completely bypassed or melted. DFICV is then described by:

```
DFICV = 1./((1. - FBYPV)/DFICV + FBYPV),
```

(Eq. 3. 3)
where FBYPV is the effective bypass fraction for the RCS releases. For completely melted ice FBYPV - i. 0 , except when fans are operating, in which case, FBYPV $=0.8$. For partial bypass, FBYPV $=0.1$, for catastrophic rupture, FBYPV = 1.0 , and for no bypass, FBYPV $=0.0$. More detall about DFICV is provided in the XSOR document. *

DFSPV is the DF for the sprays for early releases. The distributions for DFSPV were determined internally. There are two spray distributions which apply to the fission products released from the RCS before or at VB: the first applies when the containment fails before or at VB and the RCS is at high pressure at VB; and the second applies when the containment fails after VB or when the containment fails at VB but the RCS is at low pressure. Each distribution applies to all species except the noble gases. For failures of the containment in the very late time period, the value from the distribution is multiplied by 10 to account for the long time period which the sprays have to wash particulate material out of the containment atmosphere.

DST is the fission product release (in fraction of the original core inventory) from the fine core debris particles that are rapidly spread throughout the containment in a DCH event at $V B$. The experts provided distributions for the fractions of the fission products that are released from the portion of the core involved in DCH for VB at high pressure (1000 to 2500 psia) and for VB at intermediate pressure (200 to 1000 psia). There are separate distributions for each fission product group (Inert gases, iodine, cesium, etc.). These distributions are used only if the containment fails at (or within a few minutes of) vessel failure. For containment fallures that occur hours after VB, it was internally estimated that the amount of fission products from DCH remaining in the atmosphere many hours after VB would be negligible.

[^10]FPART is the fraction of the core leaving the vessel and not participating in high pressure melt ejection (HPML) that participates in CCI. The value of this variable is determined in the accident progression event tree (APET). There are four ranges of values for FPART: none, small (nominally 158), moderate (nominally 50\%), and large (nominally 100 percent). Five percent of the core is estimated to remain in the vessel indefinitely and is not avallable to participate in CCI under any circumstances; SEQSOR subtracts this 58 from FPART. The amount of the core participating in HPME is not included in FPAKf; that is, FPART always assumes the large range when HPME occurs.

FCCI is the fraction of the fission products present in the core material at the start of CCI that is released to the containment during CCI. The experts provided distrivutions for four cases that depended upon the fraction of the zirconium oxidized in the vessel and the presence or absence of water over the core debris during CCI. There are separate distributions for each fission product group.

FCONC is the fraction of the fission products released to the containment from the CCI that is released from the containment. The expert panel provided distributions for FCONC for five cases. There are separate distributions for each fission product group (inert gases, iodine, cesium, etc.). The five cases are the same as for FCONV, and there is also an additional sixth case for Event V. None of these cases is used for containment failure in the very late period (after 24 h). Since containment fallure occurs many hours after most of the fission products have been released from CCI, only a very small fraction of these fission products will still be in the containment atmosphere at the time of containment failure. This fraction was estimated internally to be on the order of 1.0E-4. The exact velue is determined by using the FCONC distribution for case 3 , containment rupture in the UC at or before VB. The ratio of the LHS value from the distribution to the median value of the distribution is multiplied by $1.0 \mathrm{E}-4$ to obtain the value of FCONC used for very late period containment fallure. This value is used whether the release is due to BMT or aboveground failure by long-term overpressurization.

DFL is the DF for late releases. At Sequoyah, DFL can be due to the $I C$, the containment sprays, or a pool of water over the core debris during CCI. The variable for the late IC DF is DFICC, the variable for the late spray DF is DFSPC, and the variable for the pool scrubbing DF is VPS. For nonbypass accidents, DFL is the product of DFICC and the larger value of DFSPC and VPS. As with DFE, DFL is set equal to VDF when used for Event V.

DFICC is the DF for the IC for late releases. The source term expert panel determined the DFICC distributions for three cases that are identical to the first three cases for DFICV. The bypass fraction applied to DFICC is similar to that applied for DFICV, although the bypass is determined at a later time in the APET.

DFSPC is the DF for the sprays for late releases. There is a single distribution used for DFSPC, which was determined internally. The distribution applies to all species except the noble gases. As for DFSPV, if the containment fails in the very late period, the value from the late
containment failure spray distribution is multiplied by 10 to account for the very long time the sprays have to wash particulate material out of the containment atmosphere.

VPS is the pool scrubbing DF and is obtained from one of two internally determined distributions. One distribution applies to a full cavity and the other to a partially full cavity (accumulator water only).

FLATE accounts for the release of radionuclides from the RCS late in the accident. Like DST, it is a fraction of the original core inventcry. Fission products deposited in the RCS before VB may revert to a volatile form after the vessel fails and make their way to the environment. This term considers only revolatilization from the RCS. Revolatilization from the containment is considered to be significant only for iodine, and is included in the LATEI variable. The expert panel provided distributions for the fraction of the radionuciides remaining in the RCS that are revolatilized. The amount remaining in the RCS is a function of FCOR, FVES, and other terms and is calculated in SEQSOR. The experts concluded that whether there was effective natural circulation through the vessel was important in determining the amount of revolatilization. Thus, there are two cases: one large hole in the RCS, and two large large holes in the RCS The experts provided separate distributions only for iodine, cesium, and tellurium. Revolatilization is not possible for the inert gases as they would not deposit, and the experts concluded that it is negligible for radionuclide classes 5 through 9. FLATE is coraputed in the following manner: the value from the experts distributions is applied to the fraction of the radionuclide remaining in the RCS to obtain the fraction of the core inventory released to the containment by this mechanism. This is multiplied by the FCONC value for tellurium to determine the fraction that escapes to the environment. The tellurium value for FCONC is considered to be appropriate for revolatilized material because it, like tellurium, is slowly released over a long time period.

LATEI accounts for iodine in the contalnment that may assume a volatile form, such as methyl iodice, and be released late in the accident. The primary source of this iodine is the water in the reactor cavity and the containment sumps (separato at Sequoyah). This term is added to the late release only for radionuc ide class 2 , iodine. The experts provided a distribution for the fraction of iodine in the containment that is converted to volatile forns. The method of calculating the amount of iodine remaining in the containment depends upon FCOR, FVES, FCCI, and other variables and is explained in the XSOR document.*

FISG and FOSG are the release fractions used for the RCS release for SGTR accidents. FISG is the fraction released from the core that enters the steam generator (SG), and FOSO is the fraction entering the SG that is released from the SG to the environment. For SGTR accidents, Equation 3.1 for the early or RCS release becomes:

[^11]```
ST(1)=[FCOR(1) * (FISG(1) * FOSG(1) + [1.0 - FISG(1)]
* FVES(1) * FCONV (1) / DFE(1))] + DST(1).
```

As the material passing from the $S G$ to the atmosphere bypasses the containment, the variables FCONV and DFE are not applied to this release path. FISG and FOSG each have two cases: SGTRs in which the secondary SRVs reclose and SGTRs in which the secondary SRVs stick open.

No differentiation is made between BMT and above-ground leaks in the very late period. Even though the release point for BMT is underground, no allowance is made for attenuation or decontamination of the late fission product release. The BMT release is often dominated by the iodine release due to the LATEI term. The very slow passage of the gases through wet soll with a low driving pressure would undoubtedly result in some reduction in this release. This reduction could be quite large. Although giving no credit for removal in the wet soil is conservative, it is unimportant for the sample as a whole. The total releases from all the BMT fallures of the containment are small compared to the releases from accidents and pathways in which the containment fails at or before VB, or when the containment is bypassed.

### 3.2.3 Variables Sampled for the Source Term Analysis

The 13 variables sampled for the source term analysis are listed in Table 3.2-2. That is, when SEQSOR was evaluated for all the bins generated by the APET evaluation for a given sample observation, all the sampled variables in SEQSOR had values chosen specifically for that observation. These values were selected by the LHS program from distributions previously defined. Most of these distributions were determined by the source term expert panel.

The sampling process works somewhat differently for the source term analysis than it does for the accident progression analysis. For the source term analysis, the LHS provided only a random number between 0.0 and 1.0 for each variable to be sampled. The actual distributions are in a data file (listed in Appendix B) read by SEQSOR before execution. The variables provided by the LHS are used to define quantiles in the variable distributions; the values associated with these quantiles are used as variable values in SEQSOR.

As an example of the sampling process, assume that the LHS value is 0.05 for FCOR for Sample Observation 1. The data tables in Appendix B. 2 show that for low zirconium oxidation in-vessel, the 0.05 quantile values for FCOR are 0.18 for inert gases, 0.084 for iodine, 0.067 for cesium, etc. There is no correlation between any of the source term variables, but complete correlation within a variable. FCOR is not correlated with FVES, FCONV, or any other varlable, but the values for the different cases and for ths different radionuclide classes are completely correlated. That is, if the 0.05 quantile value is chosen for iodine for low zirconium oxidation, the 0.05 quantile value is also chosen for all the other radionuclide classes and for all values for high zirconfum oxidation.

As all the source term variables are uniformly distributed from 0,0 to 1,0 , and are uncorrelated, there are no columns for this information in Table $3.2-2$. There is a separate distribution for each radionuclide class for each variable in this table unless otherwise noted in the variable description. The different cases for each variable are noted in the description. Not all tho cases considered by SEQSOR are listed in Table 3.2 .2 variable values for other cases are determined internally in SEQSOR, often from the values for the cases listed. For ixample, there is no distribution for FCONV for late leak. The value of FCONV for late leak is derived from the distribution for another case. (See the listing of subroutine FCONVC in Appendix B.)

Table 3.2-2
Varlables Sampled in the Source Term Analysis

Variable
PCOR

FVES

VDF

DST

DFIC

FCONV Fraction of each fission product group in the containment from
the RCS release that is released from the contaimment in the
Fraction of each fission product group in the containment from
the RCS release that is released from the containment in the absence of mitigating factors such as sprays.

FCCI Fraction of each fission product group in the the core material at the start of CCIs that is released to the containment.

FCONC Fraction of each flesion product group in the containment from the CCI release that is released from the contalnment in the absence of mitigating factors such as sprays.

DFSP DF for sprays; DFSPV for early releases, DFSPC for late releases.

LATEI Fraction of the iodine deposited in the containment that is revolatilized and released to the environment late in the accident:

FLATE Fraction of the deposited amount of each fission product group in the RCS that is revolatilized after VB and released to the containment.
Fraction of each fission product group released from the core to the vessel before or at VB.

Fraction of each fission product group released from the vessel to the containment before or at VB.

DF for Event $V$ when the releases are scrubbed by fire sprays. ra the start of ccis that is released co the containment. fraction - -ations

Fraction of each fission product group in the the core material that becomes aerosol particles in a DCH event at VB that is released to the containment.

DF for the IC; DFICV for the early releases, DFICC for the late releases

Table $3.2 \cdot 2$ (continued)

Vaciable
FISC FOSG

VPS

Description
Fraction of each fission product group released from the reactor vessel to the $S G$, and from the $S G$ to the environment, in an SGTR accident.

DF for a pool of water overlying the core debris during CCI.

The variable identifiers given in Table $3.2-2$ are used in several ways in the source term analysis. Consider FCOR, the first variable in Table $3.2-2$. FCOR in the equation for fission product release is the actual fraction of each fission product group released from the core to the vessel before or at VB for the sample observation in question. But, FCOR is also used to refer to the experts' aggregate distributions from which the nine values (one for each radionuclide class or fission product group) for FCOR are chosen. Further, in the sampling process, FCOR is used to refer to the random number from the LHS used to select the values from these distributions. That is, as used in sampling, FCOR defines a quantile in these distributions. The release fractions associated with this quantile are used in SEQSOR as the FCOR values. Thus, in Table $3 \cdot 2 \cdot 2$, the end use of each variable is given although the actual sampled variable is a random number between 0.0 and 1.0 used to select an actual value.

The 13 variables in Table $3.2-2$ have been described more fully in the preceding section. The distributions for FCOR, FVES, FCONV, FCCI, FCONC, FLATE, DST, and DFIC were provided by the source term expert panel. These distributions, the reasoning that led each expert to his conclusions, and the aggregation of the individual distributions are fully described in NUREG/CR-4551, Volume 2, Part 4. VDF, DFSP, LATEI, FISG, FOSG, and VSP are discussed briefly below; the distributions for these source term variables and more discussion of them can be found in Appendix B.

The SGTR accidents with the secondary SRVs stuck open were not known to be significant to risk at Sequoyah when the source term expert panel met for the last time. Therefore, a special ad hoc panel was convened to consider the variables FISG and FOSG. These variables are discussed briefly below; more detail can be found in NUREG/CR-4551, Volume 2, Part 6. The LATEI variable was considered by the expert panel for the bolling water reactors (BWRs), but the BWR distributions were not used directly for the PWRs as discussed in more detail in Appendix $B$ of this report.

VDF is the DF used for Event $V$ when the releases are scrubbed by fire sprays. These accidents are referred to as $V$-Wet accidents. For these types of accidents, SEQSOR sets DFE to the value of VDF. The distribution for VDF was determined by the project staff. The range for VDF is from 1.6 to 5100 ; the median value is 6.2 . VDF represents only scrubbing by passage of the aerosols through the water sprays. Any additional removal in the auxiliary building is accounted for by FCONV. The distribution for VDF is given in Appendix B.

DFSP refers to both the spray DF for the RCS (vessel) release, DFSPV, and the CCI spray DF, DFSPC. There is only one value for each of these DFs; that is, each DF applies to all radionuclide groups except the inert gases. The same random value between 0.0 and 1.0 from the LHS progran is used select both the RCS and CCI spray DF values. That is, the spray of distributions are completely correlated. The spray DF distributions were determined by the project staff. For the RCS release with containment fallure at VB, there are two distributions for the spray DF. One applies if the RCS was at high pressure before VB. In this case, most of the RCS release will escape from the vessel just at VB, and the sprays will be very ineffective. The range of the spray DF distribution is from 1.0 (no effect) to 2.8 and the median value is 1.6 . For the RCS release with containment failure at VB with the RCS at low pressure before VB, much of the RCS release will have escaped from the vessel before VB, and the sprays will be very effective for that portion of the RCS release. The range of this spray DF distribution is from 2.3 to 2800 ; the median value is 40 . The distribution for the CCI spray DF distribution ranges from 6.7 to 3200 ; the median value is 28 . The complete distributions are contained in Appendix B.

LATEI refers to the evolution of iodine in volatile form from water in the containment late in the accident. Because of its volatile form (typically organic), this volatile iodine is released to the environment because it is unaffected by all the removal mechanisms (pool scrubbing, sprays, deposition, etc.). The release fraction determined by LATEI applies to all the iodine released from the fuel and retainod in the containment in aqueous solution, which is expected to be the bulk of the iodine released from the vessel and remaining in the containment. In Sequoyah, this iodine would be expected to be contained in the water in the sump. The sump water does not play the same role in heat removal that the suppiession pool does in the BWR, so the results of the expert panel (which apply to BWRs only) were not used directiy. Instead, the distribution obtained specifically for PWRs in the first draft of this rerusi 20 used. This is discussed further in Appendix B. The distribution used for LATEI ranges from 0.0 to 0.10 ; the median value is 0.05 .

For the SCTRs where the secondary system SRVs reclose, the distributions for FISG and FOSG were determined by the project staff. For the SGTRs where the secondary system SRVs stick open, the distributions for FISG and FOSG were determined by an ad hoc expert panel. The panel provided distributions for the product FISG * FOSG for iodine, cesium, tellurium, and aerosols. There is no retention in the SGs for the noble gases. Complete distributions for FISG and FOSO are listed in Appendix B.

SPV is the DF for the late pool scrubbing of the CCI release. This DF is applied when the core debris is not coolable and CCI takes place under water. There are two distributions: one applies for a shallow pool (approximately 5 ft deep) that results if only the accumulator water enters the cavity, and the other distribution applies when the cavity is full (at least 10 ft deep). For both the shallow and deep pool distributions, one distribution applies to the iodine, cesium, barium, ruthenium, lanthanum, and cerium radionuclide classes, and another applies to the tellurium and strontium radionuclide classes. The distributions were determined by the NUREG-1150 project staff and are listed in Appendix B.

### 3.3 Results of the Source Term Analysis

This section presents the results of computing the source terms for the APBs produced by evaluating the APET. The APET's evaluation produced a large number of APBs , so, as in Section 2.5 , only more likely and more important APBs are discussed here. However, source terms were computed for all the APBs for each of the 200 observations in the sample. The source term is composed of release fractions for the nine radionuclide groups for an early and a late release as well as release timing, release height, and release energy. As discussed previously, the source terms are computed by a fast-running parametric computer code, SEQSOR.

Section 3.3 .1 presents the results for the internal initiators. The tables in this section are only a very small portion of the output obtained by computing source terms for each APB. More detalled results are contained in Appendix $B$, and complete listings are available on computer media by request.

### 3.3.1 Results for Internal Initiators

As in Section 2.5.1, the results of the source term analysis for internal initiators are presented for each PDS group.
3.3.1.1 Results for PDS Group 1: Slow SBO. As discussed in Section 2.5 .1 .1 , this plant damage state (PDS) group consists of accidents in which all ac power is lost in the plant, but the steam-turbine-driven (STD) auxiliary feedwater system (AFWS) operates for several hours. When the batteries deplete, control of the STD AFWS is lost and it fails. This PDS group contains four PDSs: one has the RCS intact at uncovering of top of active fuel (UTAF), two have failure of the RCP seals before UTAF, and one has stuck-open PORVs before UTAF. In two of the four PDSs, the operators depressurized the secondary system before UTAF, and in two PDSs they did not. The PDSs in this group are listed in Table 2.2-2.

For this PDS group, VB is not inevitable because electric power may be recovered before the vessel fails. Releases are calculated by SEQSOR in this case, as fission products may escape to the containment through the PORVs or a temperature-induced (T-I) break before the arrest of core damage. In a small fraction of the times that core damage is arrested, the containment fails during core degradation (CD) due to hydrogen events. If so, an appropriate source term is provided by SEQSOR.

Table 2.5.1 lists the five most probable APBs for PDS Group 1, the five most probable APBs that have VB, and the five most probable APBs that have VB and early containment failure. Table 3.3.1 lists the mean source terms for these same APBs. The source term consists of the release fractions, the relase height and energy, and the times associated with the release. The release fractions give the early (RCS) and late (CCI) releases as fractions of the core inventory at the start of the accident. Table 3.3-1 shows the time (in seconds) when the warning is given to evacuate the surrounding area, when the release starts, and the duration of the release. The elevation of the release is given in meters, and the energy in watts.

Although the same bins are shown in both Tables 2.5.1 and 3.3.1 and the structures of both tables are roughly analogous, there are some important differences. First, Table 3.3-1 has two deslgnators for each APB. The first designator is the APB definition initially produced in the analysis of the APET; the second designator is the rebinned definition input to SEQSOR. Consider the first APB in Table 3.3-1: GDCFCDADFAAAB. Following evaluation of the APET, it was rebinned to GDCCFCDADDAAAB, with the tenth characteristic changing from $F$ to $D$ (see Section 2.4.2). Another important feature of Table $3 \cdot 3 \cdot 1$ is that the characteristics of the early release segment are provided on the first line for each bin, and the characteris. tics of the late release segment are provided on the second inne.

The other difference between the nature of Tables $2.5-1$ and $3.3-1$ lies in the nature of the information presented. In Table 2.5-1, the bin itself was well defined; that is, the characteristics of the bin did not vary from observation to observaiion. The only item that varied from observation to observation was the probability of the occurrence of the bin itself. Thus, Table 2.5-1 1ists a conditional probability averaged over the 200 observa. tions in the sample. In Table 3.3-1, the bin is still well defined, but because the variables used in calculating the fission product release vary from observation to observation, the source term for a specific bin varies with the observation. Thus, the entries in all columns in Table 3.3-1 except the Order and Bin columns represent averages over the 200 observations in the sample

For example, consider the first APB in Table 3.3-1: GDCCFCDADDAAAB. Of the 200 observations in the sample, 38 had non-zero conditional probabilities for this bin. Because source terms are not computed for zero-probability bins, 38 source terms are associated with APB GDCCFCDADDAAAB. These 38 source terms were summed and then divided by 38 to produce the mean source terms given in the first two lines of Table 3.3-1.

The five most probable APBs and three of the five most probable APBs with VB for PDS Group 1 did not have containment failure. As a result, the releases associated with these APBs are very small. The first and fifth bins listed for the most probable APBs with VB have late failures. These releases are relatively large when compared with the releases for no failures. When there is no containment failure or late containment failure, SEQSOR describes releases with a single release segment rather than the two release segments used when there is containment fallure. The five most probable $A P B s$ with $V B$ and early containment failure have low conditional probabilities (see Table $2.5-1$ ) but larger releases than the $A P B s$ without containment failure or with late containment fallure. The mean source terms in Table 3.3.1 can be used to compare the releases for specific APBs. However, as these mean source terms are typically not calculated over the same sample elements, fine distinctions between source terms associated with different APBs may be lost in the averaging.

Table 3.3-1 presents mean source terms but does not contain any frequency information. In contrast, Figure 3.3.1 presents information on both source term size and frequency. Figure 3.3.1 summarizes the release fraction (CCDFs) for the iodine, cesium, strontium, and lanthanum radionuclide classes. It indicates the frequency with which different values of the release fraction are exceeded, and displays the uncertainty in that
frequency. The curves in Figure $3,3-1$ are derived in the fo.lowing manner: for each observation, evaluation of the APET produced a conditional probability for each APB. Multipling by the frequency of the PDS group for that observation gives a frequency for the APB. Calculation of the source term for the APB gives a total release fraction for each APB. When all the $A P B s$ are considered, a curve of exceedance frequency versus release fraction can be plotted for each observation. Figure 3.3-1 summarizes these curves or the 200 observations in the sample.

Instead of placing all 200 curves on one figure, only four statistical measures are shown. These measures are generated by analyzing the curves in the vertical direction. For each release fraction on the abscissa, there are 200 values of the exceedance frequency (one for each sample element). From these 200 values, it is possible to caloulate mean, median ( 50 th quantile), 95 th quantile, and 5 th quantile values. When this is done for each value of the release fraction, the curves in Figure 3.3.1 are obtained. Thus, Figure 3.3 .1 provides information on the rela ionship between the size of the relaase fractions associated with PDS Grcap 1 and the frequency at which these release fractions are exceeded, as we." \&s the variation in that relationship between the observations in the sam le.

As an illustration of the information in Figure 3.3-1, the mean i.equi...y ( $\mathrm{yr}^{-1}$ ) at which a release fraction of $10^{-6}$ is exceeded aue to PDS Group 1 is $4 \times 10^{-6}, 1 \times 10^{-6}, 1 \times 10^{-6}$, and $8 \times 10^{-7}$ for the iodine, cesium, strontium, and lanthanum release classes, respectively. For a release fraction of 0.1 , the corresponding mean exceedance frequencies are $4 \times 10^{-7}, 4 \times 10^{-7}$, $2 \times 10^{-8}$, and $<10^{-10}$, respectively. The chree quantiles (i.e., the median, 95 th, and 5 th) indicated the often large spread between observations. Typically, the mean curves drop very rapidly and move above the 95 th quantile curve. This happens when the mean curve is dominated by a few large observations. This often occurs for large release fractions because only a few of the sample observations have nonzero exceedance frequencies for these large release fractions. Taken as a whole, the results in Figure 3.3-1 indicate that large source terms (e.g., release fractions $\geq 0.1$ ) occur infrequently with PDS Group 1.


Release
Duration Duration Release

Start | Release |
| :--- |
| Energy |
| （W） | Elavation

（0） | Warning |
| :--- |
| Iime |
| （s） | ｜

$\begin{array}{llllllllllll}0.00 \mathrm{E}+00 & 4.70 \mathrm{E}+04 & 0.00 \mathrm{E}+00 end{array}$ $\begin{array}{ll}90 \mathrm{E}-13 & 5.30 \mathrm{E}-12 \\ 00 \mathrm{E}+00 & 9.00 \mathrm{E}+00\end{array}$ $\begin{array}{ll}0 \mathrm{E}+00 & 9.00 \mathrm{E}+00 \\ 0 \mathrm{E}-11 & 2.10 \mathrm{E}-10\end{array}$施


 $0 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00$ $\begin{array}{ll}50 \mathrm{E}-13 & 4.20 \mathrm{E}-12 \\ 0 \mathrm{E}+00 & 0.20 \mathrm{E}+00\end{array}$ $\begin{array}{ll}0 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ 0 \mathrm{E}-11 & 7.60 \mathrm{E}-11\end{array}$ $+00 \quad 0.00 \mathrm{E}+00$ 12 5． $20 \mathrm{E}-1$ $\begin{array}{ll}.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ .30 \mathrm{E}-05 & 2.50 \mathrm{E}-04\end{array}$


 8
7
4
4
8
8 4． $20 \mathrm{E}-04$
m
容嫘宸 웅菅岁嵩莒品

[^12]

 ．．．路 bib














 | $\mathrm{CF}^{+}$ |
| :---: |
| $.80 \mathrm{E}+04$ |

 $\begin{array}{llll}\text { Most Probable Bins with VB＊} \\ \text { EEADBCAADABAAC } & 2.20 \mathrm{E}+04 & 1.00 \mathrm{E}+01 & 0.00 \mathrm{E}+00 \\ \text { EEADBCAADABAAC } & & & 3.50 \mathrm{E}+06 \\ \text { GGADBCABDFBAAD } & 2.20 \mathrm{E}+04 & 0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ \text { GGADBCABDDBAAD } & & & 0.00 \mathrm{E}+00 \\ \text { GGADBCAADFBAAD } & 2.20 \mathrm{E}+04 & 0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ \text { GGADBCAADDBAAD } & & & 0.00 \mathrm{E}+00 \\ \text { GEADBCABDFBAAC } & 2.20 \mathrm{E}+04 & 0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 \\ \text { GFADBCABDDBAAC } & & & 0.00 \mathrm{E}+00 \\ \text { EEADBCAADAAAAC } & 2.20 \mathrm{E}+04 & 1.00 \mathrm{E}+01 & 0.00 \mathrm{E}+00 \\ \text { EEADBCAADAAAAC } & & & 3.50 \mathrm{E}+06\end{array}$ $\begin{array}{ll}\text { le Bins with VB } \\ 2.20 E+04 & 1.00 \mathrm{E}+01 \\ 2.20 \mathrm{E}+04 & 1.00 \mathrm{E}+01\end{array}$ ive Most Probabl
32 DFADBCAADAAAAD Ive
18
＊A Listing of source terms for all bins is available on computer media

$(109 k-10,0001$ ded) bey eouppee0x3

$(100 \mathrm{~A}-\mathrm{jopone} \mathrm{\lambda} \mathrm{jed})$ bely evuopeeox3
Release Fraction For La
Figure 3.3-1. Exceedance Frequencies for Release Fractions for
Sequoyah Internal Initiators (PDS Group 1: Slow SBO)

(10aR-10pDAA Jed)'bay eวudpaooxz
3.3.1.2 Results for PDS Group 2: Eest SBQ. This PDS group consists of coidents in whict. al c power is lost in the plant and the STD AFWS fafle at or shortly ef:es, the start of the aczident. As discussed in Section 2.5 .1 .2 , the fast station blackout (SBO) PDS group consists of only one PDS, TRRR-RSR, As in the slow SBO PDS group, il offsite electrical power is recovered for a fast $\$ B 0$ accident before the vessel fails, it may be possible to arrest the CD process and avold VB. Table $2,5 \cdot 2$ 1ists the five most probable APBs for the fast SBO PDS group, the five most probable APBs that have VB, and the five wost probable APBs that have VB and early containment fallurs, Table $3.3-$ ? 1 ists the mean source terms for these same APBs. The source term consists of the release fractions, the release height and energy, and the times associated with the release.

For the fast SBO PDS group, the four most probable bins have very low source terms because there is no contalnment fallure. Three of thene four bins have no VB as well. Of the five most probable bins that have VB, the first and fourth listed have no contalniment fallure, the second and third have late containment failure, and the fifth has containment fallure at VB, As discussed previously, for no containment fallure or late containment fallure, the early release is zero, and the late release contains the entire amount estimated to pass to the atmosphere.

The five most probable fast SBO APBs with VB and early containment failure have lower conditional probablifies (see Table $2.5-2$ ) but larger releases than the APBs without contalnment fallure. The release fractions for the fast PDS group are slightly higher than for the siow PDS group, in part because the PDS frequencles are higher and also because there are slightly more early fallures for the fast SBOs. Some of these APBs give rise to source terms in which the release fractions exceed 0.10 , but Figure 3.3 .2
shows that the mean frequencies at shows that the mean frequencies at which release fractions of 0.10 are excesded are quite low: $1 \times 10^{-6}$ for iodine, $9 \times 10^{-7}$ for cesium, $1 \times 10^{-7}$ for strontium, and less than $10^{-10}$ for lanthanum.
Internal Initiators ( PDS Group 2: Fast SBO)

 a im iv $w$ a mo iv रो m N

















 $\begin{array}{ll}\text { e Bins with VB } \\ 2.20 \mathrm{E}+04 & 1.00 \mathrm{E}+01 end{array}$ DHADECABDABAAC DRADBCABCABAAC DHADBCAADABAAC DRADBCABDABAAD DHADBCABDABAAD
DHADBCAADABAAD DHADBCAADABAAD DEABACABBCAACC DFABACABBCACC Eive $\underset{\sim}{4}$
$m$
9

* A listing of source terms for all bins is available on compater medie

$(105 k-10 \mid 5001$ jed) bed esuopeasxy



(נ0ek-jojonai sed) bens apuppeapx3
Release Fraction for La
Figure 3.3-2. Exceedance Frequencies for Release Fractions for (ogs asea :2 dnoxy SGd) sxozeyptui leuxazui qeíonbas

Thif asDejod
$p-307$


Release Fraction For Sr

3.3.1.3 Results for PDS Group 3i LOCAs. This PDS group consists of aceldents inltiated by a break in the RCS pressure boundary, as discussed In section 2.5 .1 .3 , The broaks ate of all (A, $s_{1,} s_{2}$, and $\mathrm{s}_{2}$ ) sites. These PDSs result in core damage because one or more emergenoy core cooling system (ECCS) required to respond does not operate. The PDSs in this group are iisted in Table $2.2 \cdot 2$. Five of the 13 PDSs have the LPIS operating but not infecting at UFAF, to the arrest of core datage before vebsel fallure is possible as discussed in Section 2.5.1.3. Even though the cotzainment does not fail in these core damage arrest cases, design basis leakage results in small but nonzero releases.

Table 2.5-3 1ists the five most probable APBs for this PDS group, the flve most probable APBs that have VB, and the five most probable APBs that have VB and early contafment fallure. Table 3,3-3 lists the mean source terms for these 5 atme APBs. The source term conststs of the release fractions, the release height and energy, and the times of the release. The release fractions give the early (RCS) and latc (CCI) releases as fractions of the core inventory at the start of the accident. However, when there is no contafnment fallure, or late containment fallure, SEQSOR sets the early release to zero and places the entire release into the late release portion.

The five most probable APBs for PDS Group 3 did not have containnent fallure or $V B$, and the releases for these APBs are extremely small. The four most probable APBs that have VB had long term overpressure in the very late period. The releases for these APBs are larger than those with no containment fallure, but are still quite small.

As with the APBs for PDS Groups 1 and 2 that have VB and contafrment fallure at $V B$, some of these APBs give rise to source terms in which the mean release fractions for lodine and cestum exceed 0.10. FY gure 3.3.3 sumarizes the release fraction CCDFs and shows that the frequency at which lodine and cesium release fractions of 0.10 are exceeded are quite low, despite the high frequency of onourrence of this PDS group. Mitigation mechanisms for the releases (sprays, cavity water, etc.) are very ilkely for this PDS group. The frequency of occurronce of a large release is commensurate to that for PDS Group 1; for this PDS group, the mean exceedance frequencies for a release fraction of 0.1 are $4 \times 10^{-1}, 3 \times 10^{-7}$, $5 \times 10^{-9}$, and $<10^{-10}$ for iodine, cesium, strontium, and lanthanum, respectively
Table 3．3－3
Internal Initiaters（PDS Group 3：Loss－of－Coolant Accidents）


| B18 | Werning I上巴 <br> （5） | $\begin{gathered} \text { Eleveticn } \\ \text { (m) } \end{gathered}$ | Eelease Energy （W） | Release Start （s） | Relense <br> Daration <br> （s） | SG | Eelease Fractions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $I$ | Cs | Te | St | En | 2 l | Ce | Be |
| Most Probable Bins＊ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| GDCDFCDADFBAAB | 2．20E＋04 | $0.00 \mathrm{E}+00$ | 0．00E＋00 | 4．79E＋04 | 6．00E＋00 | $0.00 \mathrm{E}+00$ | 0．00E＋90 | 9．00E＋00 | 0．00E＋00 | $0.00 E+00$ | $0.00 \mathrm{e}+60$ | 30E＋00 | 0 |  |
| GUCDFCDADOBAAB |  |  | $0.00 \mathrm{~F}+00$ | 4． $70 \mathrm{E}+04$ | 3． $608+04$ | 3． $90 \mathrm{E}-03$ | 4． $108-05$ | 4．20E－10 | 2．30E－10 | 7．00E－12 | 1．IOE－11 | 4．00E－12 | 1．B0E－12 |  |
| GOCDFCDFDFBAB | 2． $20 \pm+04$ | $0.00 \mathrm{E}+00$ | 0． $00 \mathrm{E}+00$ | 4． $70 \mathrm{E}+04$ | 0．0cE＋00 | 0．00E＋00 | 0．00E＋00 | $0.00 \mathrm{E}+00$ | 0．00E 290 | $0.005+30$ | 0．ces＋00 | 0．008＋00 | 0日E＋De |  |
| GJCLPLDBDDEAAB |  |  | 0．00E＋C0 | 4． $70 \mathrm{E}+04$ | 3． $60 \mathrm{E}+04$ | 4． $20 \mathrm{E}-63$ | 4．70E－05 | 4．30E－10 | 2．30E－10 | 4．208－11 | 1．10E－12 | 2．00E－12 | S0E－12 |  |
| GOCDFCDADFBAAA | 2．20E＋04 | 0．00E＋00 | $0.00 E+00$ | 4．70E＋04 | 0．90E＋00 | 0．00E＋00 | 0．00玉＋00 | 0．00E＋00 | $0.00 \mathrm{E}+00$ | 0．00E＋00 | 0．00E＋00 | $0.00 \mathrm{E}+00$ | v0E +90 |  |
| GECDFCDADOBARA |  |  | 0． $00 E+00$ | 4． $70 \mathrm{E}+04$ | 3． $50 \mathrm{C}+04$ | 3．90E－83 | 4．1CE－05 | 4．20E－10 | 2，30E－10 | 7．00E－11 | 1．10E－11 | 00E－12 | 30E－11 |  |
| GUCDFCDBDFAARE | 2． $20 \pm+04$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+90$ | －．70E＋04 | 0．00E＋00 | 0．00E＋00 | 0．00E＋00 | $0.00 \mathrm{E}+00$ | e．00E＋00 | ข．00E＊00 | 0．00E＋00 | OOE＋90 | OEE＋0C |  |
| GJCDFCDPDDDAAAS |  |  | $0.00 \mathrm{E}+00$ | 4． $70 \mathrm{E}+04$ | B． $60 \mathrm{E}+54$ | 4．10E－03 | 4． $30 \mathrm{E}-05$ | 5．60E－10 | 3．00E－10 | B．SOE－11 | 1． $80 \mathrm{E}-12$ | 3．7eE－12 | 1．60E－11 |  |
| GDCDFCDADFAAAB | 2．20E＋04 | 0．00E＋00 | 0．00E＋00 | 4． $70 \mathrm{E}+04$ | $0.00 \mathrm{E}+00$ | 0．0eg＋00 | 6．00E＋00 | 0．0CE＋00 | 0．00E＋00 | 0．00E＋00 | 0．00E＋00 | 0．00E＋e0 | 0E＋00 |  |
| JCCDFCDADDAAAB |  |  | $0.00 \mathrm{E}+00$ | 4．J0E＋04 | 3． $69 E+04$ | 4．00E－03 | 4． $60 \mathrm{E}-05$ | 7．S0E－10 | 4． $80 \mathrm{E}-10$ | 2．00E－10 | 2． $30 \mathrm{E}-11$ | 1．10E－11 | 5．00E－12 | 8 |

Five Most Probable Bins with VB＊
Five Most Probable Bins with
$\begin{aligned} & \text { FHDDBCAADBBAAB } \\ & \text { F }\end{aligned}$ 2． $20 \mathrm{E}+06$
$1.00 \mathrm{E}+01$
$60+300^{\prime} 000+300^{\prime} 0 \quad 00+300^{\prime} 000+300^{\prime} 0 \quad 00+300^{\prime} 000+300^{\prime} 000+300$＇ $0 \quad 00+300^{\prime} 000+300^{\prime} 0 \quad 00+300^{\prime} 0$ 4． $70 \mathrm{E}+04$

 $00 \mathrm{E}+00 \quad 0.00 \mathrm{EE}+00 \quad 0.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+000.00 \mathrm{E}+00 \quad 0.00 \mathrm{E}+00$ $\begin{array}{llllll}73 \mathrm{E}-06 & 1,20 \mathrm{E}-07 & 1.20 \mathrm{E}-08 & 2.00 \mathrm{E}-08 & 2.00 \mathrm{E}-08 & 1.00 \\ 00 \mathrm{E}+00 & 0.00 \mathrm{E}+0 \mathrm{e}\end{array}$
 0． $00 \mathrm{E}+000$
2． $\mathbf{4 0 \%}-15$ 2． $02-10$ $50-30 \mathrm{e}=$

 8







 $6=$
$8 \%$
落薄 लésmbacio





 1． $00 \mathrm{E}+00$
0．00E +00
3． $70 \mathrm{E}-01$
2． $90 \mathrm{E}-02$
$1.00 \mathrm{E}+00$
0．00E
7． $500 \mathrm{E}-01$
2． $40 \mathrm{E}-01$
8． $70 \mathrm{E}-01$
2． $90 \mathrm{E}-02$ 2． $00 \mathrm{E}+02$ 1．00E 206
2．00E +02 1．00E＋06
2． $00 \mathrm{E}+02$









 1． $30 \mathrm{E}+05$
$4.70 \mathrm{E}+04$
$1.30 \mathrm{E}+05$
$4.70 \mathrm{E}+04$
1． $30 \mathrm{E}+05$
$4.70 \mathrm{E}+04$
1． $30 \mathrm{E}+05$
$4.70 \mathrm{E}+04$
4． $70 \mathrm{E}+04$ e Bins with VB
$2.20 \mathrm{E}+04{ }^{2} 1.00 \mathrm{E}+01$



 FHDDSBCADBDBBAAB FHDDACABDBBAAB
FHDDBCABDBBAAB FHDDBCAADABAAB FHDDBCAADABAAB
FFDOEFABDARAAB FHDOF：ABDABAK FHDDBCABDABAAS GDDDBCAADDBABS DACBACDBSAAMAB ЈACBACDBEAAAAB
DACCACDAAAAAAB DACCACDAAAAARS DACBACD RAAAAAA DACBACDBBAARAA dacsactabamaab DACBACDABAAAAB DACCACDMAAAAA Five $\begin{array}{ll}7 & \text { in } \\ \text { n }\end{array}$
＊A listing of cource terms for all bins is avatlable on computer medie


Figure 3.3-3 Exceedance Frequencies for Release Fractions for
(szuəp,


#### Abstract

3.3.1.4 Results for PDS Group 4: Event V. As discussed in Section 2.5 .1 .4 , this PDS group consists of accidents in which the check valves between the RCS and the LPIS fail. Fallure of the low pressure piping produces a direct path from the RCS to the auxiliary building, bype ng the containment, and falling the LPIS as well. It is expected that there is a considerable probability $(0.80)$ that the area fire sprays in the auxillary bullding will scrub the releases. These sprays can remove and retain a significant portion of the release. When the release is scrubbed, the accident is termed $V$-Wet, and when there is no pool, it is termed $V$. Dry. There is no possibility of avolding VB or CCI in this PDS group. Due to the size of the containment bypass, contalnment failure is not of much interest.

Table $2.5 \cdot 4$ 1ists the 10 most probable APBs for the V PDS group, and Table $3.3-4$ lists the mean source terms for these same APBs. The source term consists of the releaso fractions, the release height and energy, and the times associated with the release. The eight most probable bins are V-Wet and the next two are V-Dry, (The probability of the break location being under water is between 0,60 and 1,0 .) As expected, the $V$-Wet release fractions are considerably lower than the $V$. Dry release fractions

The release fraction CCDF summary curves in Figure 3.3-4 show that the frequency at which iodine and cesium release fractions of 0.10 are exceeded is below $10^{-6} / \mathrm{yr}$. For this PDS group, the mean exceedance frequencies for a release fraction of 0.1 are $4 \times 10^{-7}, 3 \times 10^{-7}, 1 \times 10^{-7}$, and $<10^{-10}$ for iodine, cesium, strontium, and lanthanum, respectively. Although the frequency of occurrence of this accident is low because it bypasses the containment, the releases are likely to be substantial when this accident oocurs. This is indicated in Figure $3,3-4$ by a pronounced drop (threshold effect) in the curves at values of high release fractions.


Table 3.3-4
Mean Source Terms for Sequoyah
Internal Initiators (PDS Group 4: Event V)

| $\underline{ }$ | Bin | Warming | $\begin{aligned} & \text { Elevation } \\ & \text { (m) } \end{aligned}$ | Release Energy(id) | Release Start $\qquad$ | Release Duration $\qquad$ | Release Fractions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (5) |  |  |  |  | NG | 1 | Cs | Ie | Sr | Rut | La | Ce | Ba |
| Ten | Most Probable Bins* |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | BHADBCAADEAARB | 1.30E+03 | $0.00 \mathrm{E}+80$ | 1. $90 \mathrm{E}+06$ | $3.70 \mathrm{E}+03$ | 1. $80 \mathrm{E}+03$ | 9.90E-01 | 7.00E-02 | 7. 20E-E2 | 9,00E-03 | 2.80E-03 | 80E-04 | 23 |  | $1.40 E-02$ |
|  | BFADBCAADDAAB |  |  | 1. $70 \mathrm{E}+05$ | 1.00E+04 | 2.20E+04 | 1. 10E-02 | 4. $40 \mathrm{E}-02$ | 4. $90 \mathrm{E}-63$ | 3.60E-02 | 1. $80 \mathrm{E}-02$ 2. $80 \mathrm{E}-03$ | 20E-04 | 1.1CE-03 | 2. $60 \mathrm{E}-03$ 1. $30 \mathrm{E}-03$ | 3. 10E-03 |
| 2 | BEADBCAADEAAAA | 1.30E+03 | 0.00E+00 | 1.30E+05 | $3.70 \mathrm{E}+03$ | 1.80E+03 | 9.308-01 | 7.00E-02 | 7. 20E-02 | 9.00E-c3 | 2.80E-03 | 20E-04 | 1. $10 \mathrm{E}-03$ | 2. $60 \mathrm{E}-03$ | 1. $40 E-02$ |
|  | BEADBCAADDAAAA |  |  | 1.70E+05 | 1.00E+04 | 2. $20 \mathrm{E}+04$ | 1. $10 \mathrm{E}-02$ | 4.40E-02 | 4. $30 \mathrm{E}-03$ | $3.60 E-02$ $1.30 E-02$ | 02 | 7. $20 \mathrm{E}-04$ 8. $30 \mathrm{E}-04$ | 2.30E-06 | 1. $00 \mathrm{E}-03$ | 3. $\mathrm{BOE}-03$ |
| 3 | BHADBCABDEAAAB | 1.30玉+03 | 0.00E+00 | 1.90E+06 | 3. $708+03$ | $2.80 E+03$ $2.20 E+04$ | 9. $30 \mathrm{E}-01$ | $5.10 \mathrm{E}-02$ $4.50 \mathrm{E}-02$ | 7. $60 \mathrm{E}-02$ | 2. $60 \mathrm{E}-02$ | 6.00E-03 | 1.30E-04 | 7.70E-04 | 5. $50 \mathrm{E}-04$ | 4. $30 \mathrm{E}-03$ |
|  | BEADBCABDDAAAB BradBCampdarab | 1. $30 £+03$ | 0.00E+00 | 1. $70 \mathrm{E}+05$ 1. $30 \mathrm{E}+06$ | 1.00E+04 | 2. $20 E+04$ 1. $80 \Sigma+03$ | 8.00E-03 9.90E-01 | 4. $60 \mathrm{E}-02$ $7.00 \mathrm{E}-02$ | $7.60 \mathrm{E}-03$ $7.20 \mathrm{E}-02$ | $2.60 E-02$ B.00E-03 | 2.00E-03 | $5.80 \mathrm{E}-04$ | 2.40E-04 | 1.30E-03 | 3. $20 \mathrm{E}-03$ |
| - | BEARDBCMADCAAAB | 1,30E+03 | 0.00E+00 | $\text { 1. } 70 E+05$ | 1. $00 \mathrm{E}+06$ | 2.20E+04 | 1.10E-02 | 4.40E-02 | 4.30E-03 | 3.60E-02 | $1.60 \mathrm{E}-02$ | $7.20 \mathrm{E}-04$ | 1. 108 -03 | 2. $60 \mathrm{E}-03$ | 1. $40 \mathrm{E}-02$ |
| 5 | BHADBCABDEARAA | 1. $30 E+03$ | C. $008+00$ | 1. $90 E+06$ | 3. $70 \pm+03$ | 1. $80 \mathrm{E}+03$ | 9.90E-01 | 6. $10 \mathrm{E}-02$ | 6. $20 \mathrm{E}-02$ | 1.30E-02 | 3.50E-03 | 8.30E-04 | 2.30E-04 | 1.00E-03 | B0E-03 |
|  | BHADBCABDDAAAA |  |  | 1. $70 E+05$ | 1.00E+04 | 2. $20 \mathrm{E}+04$ | B. $00 \mathbf{E}-63$ | 4.60E-02 | 7. 60E-03 | 2.60E-02 | 6.00\%-03 | 1.30E-04 | 7.70E-04 | 5.50E-06 | 05 |
| 6 | BEADBCAADDAAA | 2. 30E+03 | 0.00E+00 | 3 90E+06 | $3.70 \mathrm{E}+03$ | 1.80E+03 | 9.90E-01 | 7.00E-02 | 7.20E-02 | 9.00E-03 | 4.8, ${ }^{\text {a }}$-03 | 5.80E-04 | 2.40E-04 | 1.30E-03 | 3.20E-03 |
|  | BHADBCAADCAMAA |  |  | 1. $70 E+05$ | 1.00E+04 | 2. $20 E+04$ | 1. $10 \mathrm{E}-02$ | 4. $40 \mathrm{E}-02$ | 4. $80 \mathrm{E}-03$ | 3.60E-02 | 1.60E-02 | 7. 20E-04 | 1.10E-03 | 2. $60 \mathrm{E}-13$ | 1.40E 02 |
| 7 | BHADBCABDDAAAA | 1.39玉+03 | 9.00E+00 | 1. $90 E+95$ | 3.70x+03 | 1.80E+03 | 8.30E-01 | 5. $10 \mathrm{E}-02$ | 5.20E-02 | 1. 30E-02 | 3,50E-03 | 8. $30 \mathrm{E}-04$ | 30E-04 | O0E-63 |  |
|  | BHADBCABDCAAAA |  |  | 4.70E+05 | 1. $00 \mathrm{E}+06$ | 2. $20 \mathrm{E}+04$ | 8.00E-03 | 4. $60 \mathrm{E}-02$ | 7.60E-03 | 2. $60 \mathrm{E}-02$ | 6.00E-03 | 1. $30 \mathrm{E}-04$ 8. $30 \mathrm{E}-04$ | 70E-04 |  | 4.90E-03 |
| 8 | BEADBCABDDAAAA | 1.30E+03 | 0.00E+00 | 1. $905+05$ | $3.70 \mathrm{E}+03$ | 1. $80 \mathrm{E}+03$ | 9.90E-01 | 6. 10E-02 | 6.20E-02 | 1. $30 \mathrm{E}-02$ | 3.5CE-03 | 8.30E-04 | 7.70E-04 | 5. 50E-06 | 3. $80 \mathrm{E}-03$ 4. $\mathrm{goE}-03$ |
|  | BHADBCABDCARAA |  |  | 1. $70 \mathrm{E}+05$ | 1.00E+04 | 2. $20 \mathrm{E}+04$ | 8.00E-03 | 4.60E-02 | 7.60E-33 | 2.60E-02 | 6.60E-03 |  |  |  | 2.30E-e2 |
| 9 | AHADBCAADEAAAB | 1. $39 \mathrm{E}+03$ | 0.00E+00 | 3.7CE+06 | 3. $70 \mathrm{E}+03$ | 1. $80 \mathrm{E}+03$ | 9.90E-01 | 3. $70 \mathrm{E}-01$ | $\text { 3. } \operatorname{sex}-01$ | 6. $10 \mathrm{E}-02$ | 2. 10e-02 <br> 7.10E-02 | $\begin{aligned} & 3.80 \mathrm{E}-03 \\ & \text { 2. } 40 \mathrm{E}-03 \end{aligned}$ | 5. T 1.50E-03 | 1.10E-02 | 6.10E-02 |
|  | AHADACAADPAAAB |  |  | 1. $70 \mathrm{E}+05$ | 1.00E+04 | 2. $20 \mathrm{E}+04$ | 1.10E-02 | 2. $70 \mathrm{E}-08$ 3. $10 \mathrm{E}-01$ | 3. $10 \mathrm{E}-01$ | 5.60E-02 | 1. $30 \mathrm{E}-02$ | 3. $30 \mathrm{E}-03$ | 7.90E-04 | 3. $30 \mathrm{E}-03$ | 1.50E-02 |
| 10 | AFADBCABDEAAAB | 1. $30 \mathrm{E}+03$ | 0.00E+00 | 3. $70 \mathrm{E}+06$ <br> 1. T0E+05 | 3. $70 E+03$ <br> 1.00E+04 | $\begin{aligned} & 1.80 E+03 \\ & 2.20 E+04 \end{aligned}$ | $\begin{aligned} & \text { 8. } 90 \mathrm{E}-01 \\ & \text { 8. } 00 \mathrm{E}-03 \end{aligned}$ | $\text { 3. } 50 \mathrm{E}-02$ | 7.60E-03 | 1.20E-01 | 4.10E-02 | 5.30E-04 | 3.90E-03 | 2. $50 \mathrm{E}-03$ | 3.30E-02 |

[^13]

Figure 3.3-4. Exceedance Frequencies for Release Fractions for





Release Fraction For 5 r
$(100 k-10,00 a \mu$ jed) be.d evuppee2×3
3.3.1.5 Results for PDS Group 5: Transients. This PDS group consists of accidents in which the RCS is intact but there is no way to remiove heat from the core (bee Secton $2,5,1.5$ ). The ATWS falls at the start of the accident; bleed and feed is ineffective. In PDS TBYY-YNY, high pressure injection system (HPIS) and LPIS are available, but the operators cannot open the PORVs from the control room or have falled to do 60 before the onset of core damage. PDS TBYY-MNY is the domfnant sequence for this PDS group. In the other PDS in this group. TINY-NNY, both HPIS and LPIS are falled. The probability of a T. 1 fallure of the RCS pressure boundary is quite high, about 0.90, Since for the dominant PDS, the HPIS and LP1S ate operating at the onset of core damage, the frobability of arresting the $C D$ process and avoiding $V B$ is also high, about 0,80 .

Table $2.5-5$ 1ists the flive wost probable APBs for the PDS group, the five most probable APBs that have VB, and the five most probable APBs that have VB and early contatniment falture. Tabie 3.3-5 11sts the mean source terms for these same 15 APBs . The five most probable bins and the five most probable bins that have VB all have no containment fallure, and their release fractions are so 10 a as to be negligible in an overall risk context.

The five most probable transient APBs with VB and early containment failure have lower conditional probablifties (see Table 2.5.5) but larger releases than the APBs without contalnment fallure, Note that for these five APBs, $0 C 1$ does not occur, and the late release fractions are essentially zero for the source term groups strontium, ruthenfum, lanthanum, cerfum, and barfum, Figure $3.3 \cdot 5$ shows that the mean frequencies at which release fractions of 0.10 are exceeded is very 1ow: $1 \times 10^{-6}$ for lodine and cesfum, $2 \times 10^{-10}$ for strontium, and less than $10^{-10}$ for 1 anthanum.

|  |  | Werning |  | Selease | Felense | Feleese |  |  |  | Rel | ease Fre | tons |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oxdez | Bin | (s) | $(\mathrm{m})$ | (W) | (5) | (5) | NG | $\underline{1}$ | Cs | Te | St | En | Le | C. | Sa |
| $\begin{gathered} \text { Five } \\ 1 \end{gathered}$ | Most Probable Bins* |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | GDCDFCUBDEBAAB | 2.20E+04 | $0.00 E+00$ | 9.00E+00 | 4. $70 \mathrm{E}+04$ | 0.00E+00 | 0.00E+00 | 0.00E+00 | $0.00 \mathrm{+}+00$ | $0.00 \mathrm{E}+00$ | 0.00E+00 | 0.00E+20 | 0.00E+00 | 0.00 | $0.00 E+00$ +. $70 \mathrm{E}-11$ |
|  | GDCDFCDEDDAAAS |  |  | 9.00E+00 | 4. $70 E+04$ | 3. $60 \mathrm{E}+04$ | 4. $20 \mathrm{E}-03$ | 4. 70E-65 | 4. $30 \mathrm{E}-10$ | 2. 30E-10 | 4.20E-11 | 1. $10 \mathrm{E}-11$ | 2.00E-12 | 7. $60 \mathrm{E}-12$ | P0E-11 OOE +09 |
| 2 | GJCDFCDADFBAAB | 2. $20 E+04$ | 0.00E+00 | 0. $000 \mathrm{E}+00$ | 4. 70E+04 | 0.00E+00 | 0. $00 \mathrm{E}+00$ | e. $00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 0.00E+00 | $0.00 \mathrm{E}+00$ | 0.00E+00 | 0.00E+00 | 0.00E+00 | $0.00 E+00$ $7.50 E-11$ |
|  | GDCDFCDADDBAAB |  |  | 0.00E+00 | 4. $70 E+06$ | 8. $60 \mathrm{E}+04$ | 3. $90 \mathrm{E}-03$ | 4. $10 \mathrm{E}-05$ | 4. 20E-10 | 2. $30 \mathrm{E}-10$ | 7. $0005-11$ | 1. $10 \mathrm{E}-11$ | 4.00E-12 | 1.80E-12 | $7.60 E-11$ $0.00 E+00$ |
| 3 | GDCDFCDADEBC'B | 2.20E+04 | 0.00E+00 | 0.00E+00 | 4.70E+04 | 0.00E+00 | 0.00E+00 | 0. 0 EE+00 | 0.00E+00 | 0.00E+00 | -0.00E+00 | $0.00 \mathrm{E}+00$ | -0E+00 |  | $0.00 \mathrm{+}+00$ 1.00E-10 |
|  | GOCPFCDBDDBCCB |  |  | 0.00E+00 | 4. $70 \mathrm{E}+04$ | 8. $60 \mathrm{E}+04$ | 4. 20E-c3 | 4.70E-05 | 1. $10 \mathrm{E}-09$ | 5.30E-10 | 8.80E-11 | 2. $40 \mathrm{E}-11$ | 4.20E-12 | 1.60e-11 | 1.00E-10 $0.00 \mathrm{E}+00$ |
| 4 | GDCDFCDBDFBAAA | 2.20E+24 | 0.00E+00 | $0.00 \mathrm{E}+00$ | 4. 70E+04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | $0.00 \mathrm{E}+00$ | 0.00E+30 | $0.00 E+60$ 4. $20 \mathrm{E}-11$ | 2.00E-00 |  | $7.00 \mathrm{E}+12$ | 6.00E+00 |
|  | GDCDFCDBDDBAA |  |  | $0.00 \mathrm{t}+00$ | 4. $70 \mathrm{E}+06$ | 8. $60 \mathrm{E}+04$ | 4. 20E-03 | 4. $70 \vec{E}-05$ | 4. $80 \mathrm{E}-10$ | 2.30E-10 | 4. 20E-11 | 1. $0.00 \mathrm{E}+00$ | 2.00E-12 |  | 6. $70 \mathrm{E}-11$ $0.00 \mathrm{E}+00$ |
| 5 | SDCCFCDSOTBAAB | 2. $205+04$ | $0.00 \mathrm{E}+00$ | $0.00 E+00$ | 4. $70 \mathrm{E}+04$ | 0.00E+00 | 4. $300 \mathrm{E}+00$ | 0.00E+00 | 6. 500 E -10 |  | 1. $30 \mathrm{E}-11$ | $6.30 E-12$ | 6.53E-13 | 2.00E-12 | $\text { 1. } 80 \mathrm{E}-11$ |
|  | GDCCFCDBDDBAAB |  |  | $0.00 \mathrm{E}+00$ | 4.702+04 | 6.60E+04 | 4.30E-03 | 3.80E-05 | 4. $505-10$ | 2.00E-10 | 1.302-12 |  |  |  |  |

## Most Probable Bins with VB* G. TLAACAADFAMAB

 $\begin{array}{llll}\text { GD } 2 A A C A A D D A M A B \\ \text { GD IDBCABDFBAAB }\end{array} \quad 2.20 E+04 \quad 0.00 E+00$ $\begin{array}{llll}\text { GD } 2 A A C A A D D A M A B \\ \text { GD IDBCABDFBAAB }\end{array} \quad 2.20 E+04 \quad 0.00 E+00$ $\begin{array}{llll}\text { GD } 2 A A C A A D D A M A B \\ \text { GD IDBCABDFBAAB }\end{array} \quad 2.20 E+04 \quad 0.00 E+00$ $\begin{array}{llll}\text { GD } 2 A A C A A D D A M A B \\ \text { GD IDBCABDFBAAB }\end{array} \quad 2.20 E+04 \quad 0.00 E+00$ DCAACDACDAAAA
GDCDBCDBDFBAAB GDCDBCDBDFBAAB GDCDBCDBDDBAAB


NONONOMON


conodomono


onobonono










 omanomacion $0.00 \mathrm{E}+00 \quad 4.70 \mathrm{E}+04 \quad 8.60 \mathrm{E}+04$
 1.00E+ and Early $\mathrm{CF}^{*}$



 . 80 OE+06 .00E +00 . $00 \mathrm{E}+00$

 23 ACMCDACDMAR | $2.20 E+04$ | $0.00 E+00$ |
| :--- | :--- | :--- | :--- |
| $2.20 E+04$ | $0.00 E+00$ |

* A listing of source terms for all bins is available on conputer sudia


Figure 3.3-5. Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (PDS Group 5: Transients)
3.3.1.6 Results for PDS Group 6: ATWS. This PDS group consists of acoidents in which automatic control rod insertion fails to bring the nuclear reaction under control. The discussion 1 n Section 2.5 .1 .6 polnts out that this PDS group consists of three PDSs, one with the RCS intact at UTAF, one with an $S_{3}$ break, and one with an SGTR. In all three situations, the PORVs will be open at UTAF due to the rate of steam generation in the core. The i.PIs is farating but not infecting in the RCS-Intact and SCTR PDSs. A T-1 break in the RCS, however, wlll allow the LPIS to inject successfully. The water from the RWST injected by the LPIS contains enough boron to shut down the reaction should the core $\partial$ in a configuration where continued reaction is possible.

Table $2.5-6$ lests the 10 most probable APBs for the PDS group and the five most probable $A P B s$ thac have $V B$ and early containment failure or bypass, and Table 3, 3-6 11sts the source terms calculated for these same 15 APEs . Seven of the 10 most probable bins have neither failure nor bypass of the containment and thus have very low releases. The fourth and sixth most probable bins have bypass of the containment (SGTR) and therefore have substantial releases although they have no vB due to the operation of the LPIS throughout the accident. Even in the absence of VB, SEQSOR may calculate significant releases in these SGTR accidents since the $C D$ may not be arrested until it is quite well advanced. By this time, a substantial portion of the fission products may have been roleased from the core. The tenth most probable APB has very late containment fallure by BMT and the releases are larger than those without containment fallure, but still quite small. The small source term is because fallure occurs after many days, and the release point is below ground.

The five most probable APBs with VB and early containment failure or bypass all have SGTR and no contalnment fallure. Whether the vessel falls or not does not have a large effect on the computed relense fractions. Figure 3.3-6 shows that the mean frequencies at which release fractions of 0.10 are exceeded are fairly low for this PDS group in spite of the contribution from the SGTR initiators: $1 \times 10^{-7}$ for iodine and cesium, $1 \times 10^{-8}$ for strontium, and less than $10^{-10}$ for lanthanum.


|  |  | Werning |  | Felease | Felease | Release |  |  |  | Reto | nase Frast | tions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order | Bin | $\begin{array}{r} \text { Time } \\ (s) \end{array}$ | $\begin{aligned} & \text { Elevation } \\ & \text { (n) } \end{aligned}$ | $\begin{gathered} \text { Energy } \\ \text { (w) } \end{gathered}$ | $\begin{gathered} \text { Start } \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \text { Deration } \\ \text { (s) } \end{gathered}$ | NG | 1 | Cs | 1. | S: | En | La | C) | Ba |
| Ten | Most Probable Bins* |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | GDCDFCDRURBAAB | 2.20E+04 | e. $20 \mathrm{E}+00$ | 9.00E+0e | 4. $708+54$ | 0. $00 \pm+00$ | . $000 \mathrm{E}+00$ | 0.00E+00 | 0.00E+00 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+0 \mathrm{U}$ | 0.00E+00 | 0.00E+00 |  |  |
|  | GDCDFCDADDPAAB |  |  | $0.00 \mathrm{~F}+0 \mathrm{D}$ | 4. $70 \mathrm{E}+04$ | 5. $605+04$ | 4. $20 \mathrm{E}-03$ | 4.70E-05 | 4.80E-10 | 2. $30 \mathrm{E}-10$ | 4.20E-11 | 1.10E-11 | $2.00 \mathrm{E}-12$ | 50 | -11 |
| 2 | GODDBCAEDEFARE | 2. $20 \mathrm{E}+6 \mathrm{f}$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 4. $708+04$ | e. $00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 0.00E+00 | 0.00E+90 | 0.00E+00 | a, 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+0 | e. O0E +00 |
|  | GODDBCamodeam |  |  | E.00E+00 | 4. TOE-04 | 8. $60 \pm+04$ | $5.00 \mathrm{E}-03$ | 1.60E-04 | 1.70F-eg | 6. $7 \mathrm{EE}-10$ | 1. $80 \mathrm{E}-10$ | 2. $50 \mathrm{E}-11$ | 1.305-12 | 2. 60E | 1. $808 \mathrm{E}-10$ |
| 3 | GOCDFCDADFBAAB | 2.20E+04 | 0.00E+00 | 0. $00 \mathrm{E}+00$ | 4. $70 \mathrm{E}+\mathrm{C4}$ | $0.00 \mathrm{E}+00$ | e. $00 \mathrm{E}+00$ | e. $00 \mathrm{E}+30$ | C. $20 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $0.00 E+00$ | $0.00 \mathrm{E}+00$ | 0.00E+00 | 0.00E+00 | 00E+00 |
|  | GOCOFCDADURAAB |  |  | 0. $008+90$ | 4. $708+06$ | 8.50E+04 | 3.30E-83 | 4.10E-05 | 4. 20E-10 | 2.30E-10 | 7.00E-11 | 1. $10 \mathrm{E}-11$ | 4.00E-12 | 1.80E-11 | +. 60 ee-11 |
| 4 | GDCDFADBUEBAAS | 1.30E+64 | 1.00E-01 | 1.00E+06 | 2. 20E+04 | $3.60 \mathrm{E}+03$ | 3. $\mathrm{TeE}-01$ | 1.80E-01 | 1.6eE-01 | 1.40E-01 | 1.50E-02 | ,00E | 1.10E-03 | 5. $20 \mathrm{E}-03$ | $1.90 E-02$ |
|  | GDCDFADEDDEAAB |  |  | 9.00E+05 | 1. $00 \mathrm{E}+05$ | 1. $\mathrm{Coge}+06$ | 0.00E+60 | 2.BuE-05 | 0.00E+ee | 0, 00E+00 | 2.00E+00 | 0.00E+イ0 | 0.00E+00 | $0.00 \mathrm{C}+0$ | 00E+00 |
| 5 | GDCDSCDBDFEAAB | 2. 20E+04 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 4. $70 \mathrm{E}+64$ | 0. $00 \mathrm{E}+00$ | 9. 5 . $50 \mathrm{E}+00$ | 0.90E+00 | 0.00E+00 | 0.00E+00 | 9. $00 \mathrm{E}+00$ | 9. $2.00 \mathrm{E}+60$ | $0.00 \mathrm{E}+00$ $4.10 \mathrm{E}-12$ | 2. $00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ |
|  | GDCUBCDRODEAAB |  |  | $0.00 \mathrm{E}+00$ | 4.70E+04 | 9.60E+04 | 5.00E-03 | 3.50E-05 | 1. $30 \mathrm{E}-0$ | 5.20E-1 | 8.8 | 2.3 | 4.10E-12 |  |  |
| 5 | GDDOBCAADFBAAB | 2. 20E+04 | 0.00E+00 | $0.00 \mathrm{~F}+00$ | 4. 70E+04 | $0.00 E+00$ | 0.00E+00 | 0. O0E+00 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 0.00E+00 | 0.00E+00 | 0.00E+09 | 00E+00 |
|  | GDDOBCAADDEAAB |  |  | $0.00 \mathrm{~F}+00$ | 4. $70 \mathrm{E}+04$ | 3.60E+04 | 5.00E-03 | 1.80E-04 | $1.60 \mathrm{E}-09$ | 7. 90E-10 | 2. $40 \mathrm{E}-10$ | 2.60E-11 | 1.80E-11 | 80E-11 | 2.60玉-10 |
| 7 | GDCDFADADEBAAB | 1.30E+06 | 1.00E+01 | 1.00E+05 | 2.00E+04 | 3.60E+03 | 3. 60E-01 | 1. YOE-01 | 1.50E-01 | 1.20E-01 | 2. $60 \mathrm{E}-02$ | 5.205-03 | 2. $10 \mathrm{E}-03$ | 1. $20 \mathrm{E}-02$ | 2. $80 \mathrm{E}-02$ |
|  | GDCDFADADDBAAB |  |  | $0.00 \mathrm{E}+00$ | 1.00E+06 | 1.00E+06 | 0. O0E+00 | 2.60E-05 | $0.00 \mathrm{t}+00$ | 0.00E+00 | 0.00E+00 | 0.90E+00 | 0.00E+00 | 0.00E+00 | 00E+00 |
| 6 | GDDDBCABDFBAA 2. | 2. $20 \mathrm{E}+04$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 4. $70 \leq+04$ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.30E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | $0.00 \mathrm{E}+00$ 1. $90 \mathrm{E}-10$ |
|  | GODDBCABDUBAAA |  |  | 0.00E+00 | 4. $70 \mathrm{E}+04$ | 8. $60 \mathrm{E}+34$ | $5.00 \mathrm{E}-\mathrm{C3}$ $-.50 \mathrm{E}-01$ | 1.50E-04 | 1. $70 \mathrm{E}-08$ $1.50 \mathrm{E}-01$ | 8.80E-10 | 1. $90 \mathrm{E}-10$ 2. $60 \mathrm{E}-92$ | 2. S0E-11 |  |  | 1. $90 \mathrm{E}-10$ 2. $80 \mathrm{E}-02$ |
| 3 | GDCDFADADEBAAB 1 | 1.30E+04 | 1.00E+01 | 1. $00 \mathrm{E}+06$ | 2. $00 \mathrm{E}+04$ <br> 1. $00 \mathrm{E}+06$ | 3. COE +03 <br> 1.00E+06 | 3.60E-02 | 2.60E-05 | 2. $0.00 \mathrm{E}+00$ | 1.00E+00 | 2.60E-02 | - $0.005+00$ | 0. 0 ez+00 | 0.00E+00 | 0.00E+00 |
| 10 | FDODBCABDDPAAE 2 | 2.20E+04 | 1.00E+02 | $0.00 \mathrm{E}+60$ | 4. $70 \mathrm{E}+04$ | $0.90 E+00$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | - DoE+00 | 0.00E+00 | 0.00E+00 | $0.00 \mathrm{E}+00$ | 0.00E+00 | 0. O0E+00 | 0.00E+00 |
|  | FDJUBCABDCEAA3 |  |  | 6. $50 \mathrm{E}+03$ | 1.30E+05 | 1.10E+04 | 1.00E+00 | 3. 20E-02 | T-10E-08 | 4.00E-08 | 9.80E-29 | 2. $\begin{gathered}\text { ex- }-10\end{gathered}$ | 1.008-09 | 1. 10E-09 | B. 20E-09 | VB and Early CF* ass or

Five Most Probable GDCDFADBDDEAAB GDCDFADADEBAAB GDCDFADADDEAAB GDCDFADBDEBAAA GDCDFADBDDEAA GDCDFADADEBARA GDCDFADADDBAAA GACDFADEDEEAAB
GACDFADBDIBAAB




(10ek-10,50es $16 d$ ) bed epuppee5x3


Release Fraction for Sr
(100 -10 pooe. jod) bed asuppeop×3
Figure 3.3-6. Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (FDS Group 6: ATWS)
3.3.1.7 Results for PDS Group 7: SGTRs. As discussed in Section 2.5 .1 .7 , this PDS group consists of accidents in which the initiating event is the rupture of an $S G$ tube and the reaction is shut down successfully. In one of the PDSs in this group, the RCS is depressurized quickly using the three unaffected SGs according to procedures and the SRVs on the main steam 11 nes from the affected $S G$ do not stick open. These accidents, deroted "C" SCTRs, are indlcated by "SCTR" In the SCTR column of Table 2.5. 7. In the other PDS in the SGTR PDS group, the RCS is not depressurized in a timely fashion, and the SRVs on the main steam ine from the affected SG stick open. These accidents, denoted "H" SCTRs, are indicated by "SRVO" in the SOTR column of Tab1e 2.5-7. S1nce all the APBs for this PDS group have bypass of the containment, Table 2.5 .7 11sts the 15 most probable APBs, The "G" SCTR accidents occur less frequently than the "H" SGTR accidente; only four of the 15 most probable bins have the SRVs reciosing, and the other 11 bins have the secondary SRVs stuck open.

Table 3.3-7 1ists the mean source terms for the same 15 APBs listed in Table $2.5 \cdot 7$. All the most probable APBs have fairly substantial release fractions. Note that the start of the release is about 14 h after the start of the accident for the "H" SGTRs. The evacuation warning time is estimated to be much earlier than this, so there is time for the evacuation to be completed. Thus, few early fatalities are to be expected even though the mean fodine release fractions are comonly higher than 0.10 . The mean exceedance frequencies for release fractions of 0,10 are $1 \times 10^{-6}$ for iodine and cesium, $3 \times 10^{-6}$ for strontium, and less than $10^{-10}$ for lanthanum. As with PDS Group 4 (Event V), although the frequency of this accident is low because the contalnment is bypassed, the releases are likely to be substantial if the accident occurs. This is indicated in Figure 3.3 .7 by the pronounced drop in the curves (threshold effect) at values of high release fractions, particularly for iodine and cesium.
Tabie 3.3-7

Internal Initiators (PDS Group 7: SGTRs)






- A listing of source torms for all bins is available on corputer nedia


$($ (1DeA-10ןDon jed) bejf aDuDpeapx3


(102人-10, 2001 jed) bery aruopeerx3
Figure 3.3-7. Exceedance Frequencies for Release Fractions for
3.3.1.8 Results for Generalized Accident Progression Bins. The preceding seven subsections presented the source term results by PDS group. it is also possible to group the source terms in other ways. These other groupings are called generalized APBs. In some cases, these generalized APBs break apart the results in a PDS group, and in others, they put results from several PDS groups together.

Figure $3.3-8$ shows the variation of the exceedance frequency with release fraction for the iodine, cesium, strontium, and lanthanum radionuclide classes for all the APBs that had containment fallure during CD . The contalnment failure is due to hydrogen burn or detonation, or isolation fallure. None of the APBs included in Figure 3.3.8 involved a bypass event; that is, no SGTR or Event $V$ APBs are included. This figure shovs that the frequenc; of a sizeable release from containment fallure during $C D$ is quite low; however, the curves for lodine and cesfum indicate that if the event occurs, the release fraction is likely to exceed 0,01 . For strontium and lanthanum, it is more likely that the releases will be much lower.

Figures $3.3 \cdot 9,3.3 \cdot 10$, and $3.3 \cdot 11$ show the variation of the exceedance frequency with release fraction for all the APBs in which there was containment fallure at $V B$ and the containment was not bypassed. E gure 3.3-9 contains APBs with Alpha mode fallure of the vessel and contain erent, Figure 3.3-10 contains APBs in which the containment failed at VB with the RCS at high ( $>200$ psia) pressure at the time of VB and Figure 3.3-11 contains APBs in which the containment falled at VB with the RCS at lnw ( $<200$ psia) pressure at the time of $V B$. These figures indicate chat if containment fallure occurs at VB, the release fractions for iodine and cesium are likely to exceed 0.01 . Note that the qualitative features of the curves for the early contafnment fallure in Figures 3.3-8 through 3.3-11 are similar. For example, with resiact to the iodine and cesium mean curves, the curves are relatively flat until they begin to decrease slowly at release fractions between $10^{-3}$ and $10^{-2}$. These are basically "threshold" release fractions that form a lower 11 mlt for the magnitude of the release. Variation between the curves is noted due to variation in functioning of mitigating features (sprays, ice, etc.) between and within the generalized bins.

Figure 3.3-12 considers all the APBs in which the containment failed some hours or days after the vessel failed, and the containment was not bypassed. Some of these fallures are due to hydrogen burns a few hours after VB, some are by eventual overpressure due to lack of CHR, or they result from BMT. The figure shows that these types of containment failure are much more frequent than early containment failure but that the release fractions are likely to be much lower. The exceedance frequencies for late containment failure decrease more rapidly at lower release fractions than they do for early fallures; that is, there is not a threshold effect at high release fractions. This also results in a greater spread in the magnitude of the source term for late containment fallure than for early containment failure

Figures $3,3-13$ and $3,3-14$ show the variation of the exceedance frequency with release fraction for Event $V$. All the soaxce terms for the V-Dry APBs were analyzed to produce Figure 3.3-13, while all the source terms for the
V.Wet APBs were analyzed to produce Figure 3.3-14. As expected, the V.Dry release fractions are larger than the $V$-Wet release fractions due to the absence of the scrubbing by the fire sprays. The V-Dry releases are, however, about an order of magnitude less likely than the $V$-Wet releases. The "threshold" release fractions are higher for the $V$ sequence releases (especially V-Dry) than for the early containment failures, and the range of release fractions is smaller for this accident.

Figures 3,3-15 and $3,3-16$ consider all the APBs with SGTRs. Figure 3.3.15 shows the SOTRs in which the secondary SRVs reclose, termed "G" SGTRs, whereas Figure $3.3-16$ shows the SGTks in which the secondary SRVs stick open, termed "H" SGTRs, Almost all these SGTRs are initiating events; a very small portion of these APBs results from $T$ - I SGTRs following the onset of core damage. The T-I SGTR are all "G" SGTRs. As indicated by the discussion in subsection 2.5 .1 .6 and 3.3 .1 .6 , the "H" SOTRs are both more likely and more harmful than the normal "G" SGTRs.
3.3.1.9 Summary, When all the types of internally initlated accidents at Sequoyah are considered together, the exceedance frequency plots shown in Figure 3.3-17 are obtained. The first sheet of Figure 3.3.17 shows the release fractions for iodine, cesium, tellurium, and strontium. The second sheet of Figure $3,3-17$ shows the release fractions for ruthenium, lanthanum, cerium, and barium, which are often treated together as aerosol species. A plot is not shown for the noble gases because almost all of the noble gases (xenon and krypton) In the core are eventually released to the environment whether the containment falls or not. The mean frequency of exceeding a release fraction of 0.10 for iodine is $4 \times 10^{-6}, 3 \times 10^{-6}$ for ceslum, $2 \times 10^{-6}$ for tellurium, $3 \times 10^{-7}$ for strontium, $4 \times 10^{-8}$ for ruthenium, $1 \times 10^{-10}$ for lanthanua, $4 \times 10^{-8}$ for cerlum, and $3 \times 10^{-7}$ for barium.


Figure 3.3-8. Exceedance Frequencies for Release Fractions for


Figure 3.3-9. Exceedance Frequencies for Release Fractions for
Sequoyah Internal Initiators (Alpha Mode)




Figure 3.3-10. Exceedance Frequ ncies for Release Fractions for Sequoyah Internal Initiators (CF at VB with the RCS at High Pressure)


$\begin{array}{lll}1 . E-6 & 1 . E-4 & 1 . E-2 \\ & \text { Release Fraction For Cs }\end{array}$




รมo erau teuxazu qeionbas




Figure 3.3-12. Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (Late CF)








Figure 3.3-14. Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators (Event $V$, Wet)





Figure 3.3-15. Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators. "G" SGTRs (Secondary SRVs Reclosing)





Figure 3.3-16. Exceedance Frequencies for Release Fractions for Sequoyah Internal Initiators, "H" SGTRs (Secondary SRVs Stuck Open)


Figure 3.3-17. Exceedance Frequencies for Release Fractions for Sequoyah (All Internal Initiators)


Figure 3.3-17. (continued).

### 3.4 Partitioning of the Source Terms for the Consequence Analysis

The following discusses the partitioning process in some detall as it presents the partitioning results for internal initiators.

### 3.4.1 Results foi Internal. Initiators

The accident progression analysis and the subsequent source term analysis resulted in the generation of 114,471 source terms for internal initiators. It is not computationally possible to perform a calculation with the MACCS consequence modell for each of these source terms. Therefore, the number of source term groups. These groups are defined so that the source terms within then have similar properties and a frequency-weighted mean source term is determined for each group Then, a single MACCS calchiation Interface between the source term analysis and the consequence analysis is formed by grouping this large number of source terms into a much smaller is performed for each mean source term. This grouping of the source terms is performed with the PARTITION program, ${ }^{2}$ and the process is referred to as "partitioning the source terms" or just "partitioning."

The partitioning process involves the following steps: definition of an early health effect weight (EH) for each source term, definition of a chronic health effect weight (CH) for each source term, subdivision (partitioning) of the source terms on the basis of EH and CH , a further zubdivision on the basis of evacuation timing, and calculation of frequency-weighted mean source terms. The partitioning process is described in detail in NUREG/CR-4551, Vol, 1, and in the user's manual for the PARTITION program, ${ }^{2}$ This section details the partitioning process for source terms generated in the source term analysis for internal initiators.

The EH is based on converting the radionuclide release associated with a source term into an equivalent I-131 release and then estimating the number of early fatalities that would result from this equivalent I- 131 release. This estimated number of early fatalities is the EH. The relationship between early fatalities and equivalent I- 131 releases is shown in Figure B.4-1 of Appendix $B$ and is based on site-specific MACCS calculations for aifferent-sized releases of I-131.

The CH is based on an assumed 11 near relationship between cancer fatalities due to a radionuclide and the amount of thet radionuclide released. Specifically, a site-specific MACCS calculation is performed for a fixed release of each of the 60 radionuclides included in the NUREG- 1150 consequence calculations. The results of these calculations and the assumed 11 near relationship between the amount released and cancer fatalities for each radionuclide are then used to estimate the total number of chronic fatalities associated with a source term. This estimated number of chronic fatalities is the chronic health effect weight CH . The results of the MACCS caloulations used in the determination of CH are shown in Table B.4.1 of Appendix B. Further, the input file for PARTITION containing the site-specific data used in the calculation $f E H$ and $C H$ is shown in Table B. 4-2 of Appendix B.

The site-specific MACCS calculations that underlie the early and chronic health effect weights were performed with very conservative assumptions with respect to the energy and timing of the releases and also with respect to the emergency responses taken. As a result, these weights should be regarded as a measure of the potential of a source term to cause early and chronic fatalities rather than as an estimate of the fatalities that would actually result from a source term.

The particioning process treats the cases for $\mathrm{EH}>0$ and $\mathrm{CH}>0$ and for $\mathrm{EH}=0$ and $\mathrm{CH}>0$ separately. Table $3,4-1$ shows the division of the source terms into these two cases.

The case for EH>O and $\mathrm{CH}>0$ is traated first by PARTITION. As shown in Table $3.4 .1, \log \mathrm{CH}$ ranges from 0.5459 to 5.1442 , and $\log$ EH ranges from -0.5951 to 2.4375. Figure 3.4-1 shows a plot of the pairs (CH, EH) for the 46,714 source terms for which both EH and CH are nonzero. The partitioning process is based on laying a grid on the (CH, EH) space shown in Figure $3.4-1$ and then pooling cells that have either a small frequency or contain a small number of source terms. Specifically, the grid is selected so that the ratio between the maximum and minimum value for CH in any cell and also the ratio between the maximum and minimum value for EH in any cell will be less than a specified value. In this analysis, the maximum allowable ratio was selected to be 4.05, which resulted in a loguniform division of the range of CH into 10 intervals and a similar division of the range of EH into five intervals. The result of placing the selected grid on the ( CH , EH) space is also shown in Figure 3.4.1.

A summary of the partitioning process for $\mathrm{EH}>0$ and $\mathrm{CH}>0$ is givan in Table $3.4-2$. The table is divided into three parts. The first part is labeled "BEFORE PARTITIONING" and shows the distribution of the source terms before the partitioning process. As in Figure $3.4-1$, the abscissa and ordinate correspond to CH and EH, respectively, with the ranges given in Table $3.4-1$. The top plot shows the cell counts, and the bottom plot shows the fraction of the frequency in each cell. The second part of Table 3,4-? is labeled "AFTER PARTITIONING" and shows the distribution of the source terms after the partitioning process. The partitioning process does not result in the loss of any source terms; rather, cells with a small number of source terms or a small frequency are pooled with other cells. Thus, the total number of source terms is not changed. The third part of this table is densted "LABELING AFTER PARTITIONING" and shows the designators that will be used in the identification of source terms derived from the partitioning process.

A summary of the partitioning process for $\mathrm{EH}=0$ and $\mathrm{CH}>0$ is given in Table $3.4-3$, which is structured analogously to Table $3,4-2$ but has only one dimension instead of two. As indicated in Table $3.4-1, \log (\mathrm{CH})$ ranges from -4.0011 to 3.7495 . The cells shown in Table $3.4-3$ are based on a loguniform division of the range of CH into eight intervals.

Table 3.4-1
Summary of Early and Chronic Health Effect Weights for Internal Initiators

|  | Number of <br> Source Terms | Percent of <br> Total Frequency |
| :--- | ---: | ---: |
|  |  |  |
| $\mathrm{EH}>0$ and $\mathrm{CH}>0$ | 46714 | 12.75 |
| $\mathrm{EH}=0$ and $\mathrm{CH}>0$ | 67757 | 87.25 |
| $\mathrm{EH}=0$ and $\mathrm{CH}=0$ | 0 | 0.00 |
| Total | 114471 | 100.00 |

For $\mathrm{EH}>0$ and $\mathrm{CH}>0$, Range $\begin{aligned} & \mathrm{LOG1O}(\mathrm{CH})=-0.5459 \text { to } 5.1442 \\ & \text { Range } L O G 10(\mathrm{EH})=-0.5951 \text { to } 2.4375\end{aligned}$
For $E H=0$ and $\mathrm{CH}>0$, Range LOG10(CH) $=-4,0011$ to 3.7495

SEQUOYAH INTERNAL EVENTS SOURCE TERMS


Figure 3.4-1. Distribution of Nonzero Early and Chronic Health Effect Weights for Internal Initiators

At this point, the result of partitioning is 18 g soups of source terms as shown in Tables $3,4-2$ and $3,4-3$. These source teln groups are now further subdivided on the basis of evacuation timing. Specifically, each group of source terms is subdivided into three subgroups:

Subgroup 1: Evacuation starts at least 30 min before the release begins;

Subgroup 2: Evacuation starts between 30 min before and 1 h after the release begins;

Subgroup 3: Evacuation starts more than 1 h after the release begins.
This sorting of source teims is based on the warning time and the release start time associated with a source term and on the site-specific evacuation delay time. By definition, the evacuation delay is the time interval between the time the warning is given and the time the evacuation actually begins. The evacuation delay time for sequoyah is 2.3 h . Additional discussion of evacuation delay time is given in Volume 2, Part 7 of this report.

Once the source term groups shown in Tables $3,4 \cdot 2$ and $3,4-3$ are sorted into subgroups on the basis of evacuation timing, a frequency-weighted mean source term is calculated for each populated subgroup. In the consequence analysis, a full MACCS caloulation is performed for the mean source term for each source term subgroup. The mean source terms obtained in this analysis are shown in Table $3,4-4$. This table contains frequency-weighted mean source terms for both the source term groups and subgroups. In the table, SEQ-I and SEQI-J are used to label the mean source terms derived from source term groups and subgroups, respectively, where I designates the source term group and $J$ designates the source term subgroup. It is the source terms for the subgroups, SEQ-I-J in Table $3.4-4$, that are actually used for the risk calculations.

Although not parts of the source term definition, Table 3.4 .4 also contains the mean frequency for the source term group, the conditional probability of the source term subgroups, and the mean value for the difference between the time at which release starts and the time at which evacuation starts (labeled dEVAC in the table). A positive value of dEVAC indicates that the evacuation starts before the release and a negative value of dEVAC indicates that the evacuation starts after the release. The mean frequency for a source term group is obtained by summing the frequencies of all source terms assigned to the group and then dividing by the sample size (200 in this analysis). The conditional probability of a subgroup is obtained by summing the frequencies of all source terms assigned to the subgroup and then dividing the resultant sum by the total frequency of all source terms in the associated source term group. Some source term subgroups are unpopulated; a mean source term does not appear for these subgroups in Table $3.4-4$, To calculate the frequency-weighted mean source terms appearing in Table $3.4-4$, cach source term is weighted by the ratio between its frequency and the total frequency associated with the particular source term group or subgroup under consideration.

Source term groups SEQ. 04 and SEQ. 07 are dominated by Event $V$; Group SEQ. 01 is dominated by early containment fallures and "G" SGTRs; and Groups SEQ-16, SEQ-17, and SEQ-18 are dominated by late containment failures. The dominant accident is reflected in the mear. source term for the group. For SEQ-04, Table 3.4 .4 shows that almost all the probability is associated with the subgroup which has early release (at about 1 h ), with evacuation starting after the release has commenced. The group with the highest release fractions, Group SEQ-14, is comprised of about two-thirds Event V source terms. About one-third of the source terms in Group SEQ-14 are from early containment failures and "G" SGTRs, and a small fraction come from "H" SGTRs. The frequency for this group, however, is fairly low; relatively few source terms fall in the grid represented by Group SEQ. 14, and they are not exceptionally frequent. The most likely source term groups are SEQ-16, SEQ-17, and SEQ-18, which do not cause early fatalities and arise from ascidents that do not result in bypass or early containment failure.

Table 3.4-2
Distribution of Source Terms with Nonzero Early Fatality and Chronic Fatality Weights for Internal Initiators

BEFORE PARTITIONING: CELL COUNTS WITHIN THE GRID FOR A TOTAL COUNT OF 46714


## BEFORE PARTITIONING: PERCENT OF FREQUENCY CONTAINED IN EACH CELL



AFTER PARTITIONING: CELL COUNTS WITHIN THE GRID FOR A TOTAL COUNT OF 46714


AEIER PARTITIONING: PERCENT OF FREQUENCY CONTAINED IN EACH CELL


LABELING AFTER PARTITIONING:


Table $3.4-3$
Distribution of Source Terms with Zero Early Fatality Weight and Nonzero Chronic Fatality Weight for Internal Initiators

BEFORE PARTITIONING: CELL COUNTS WITHIN THE GRID FOR A TOTAL COUNT OF 67757


BEFORE PARTITIONING: PERCENT OF FREQUENCY CONTAINED IN EACH CELL


AFTER PARTITIONING: CELL COUNTS WITHIN THE GRID FOR A TOTAL COUNT OF 67757


AFTER PARTITIONING: PERCENT OF FREQUENCY CONTAINED IN EACH CELL


LABELING AFTER PARTITIONING:

Mean Source Terms Resulting from Partitioning for Internal Initiators - Sequoyah

（panu！̣วuoว）サーゲを əIqeI

| Source <br> Term | $\begin{aligned} & \text { Freq. } \\ & \text { fily=2 } \end{aligned}$ | Cond． <br> Prob． | Warn $(s)$ | dEvac (s) | $\begin{aligned} & \text { Elev } \\ & \text { In! } \end{aligned}$ | Energy <br> （W） | $\begin{gathered} \text { Start } \\ (s) \\ \hline \end{gathered}$ | $\begin{array}{r} \text { Dur } \\ -(s) \\ \hline \end{array}$ | Release Fractions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | SG | 1 | Cs | $\underline{\text { Ie }}$ | $\xrightarrow{\text { Sr }}$ | Rna | $L$ | Ce | Ea |
| SEQ－06 | 9．1E－07 |  | 2．3E＋04 | 4．5E＋03 | 10. | 2．9E＋06 | 3． $5 \mathrm{EE}+04$ | 5．9E＋02 | 5．3E－01 | 9．6E－03 | 7．6E－03 | 1．3E－03 | 5．2E－05 | 4．OE－05 | 6． $38-06$ | 9．E－0s | 7．8E－05 |
|  |  |  |  |  |  | 3．1E＋06 | 2． $2 \mathrm{E}+05$ | 1． $9 E+05$ | 4．3E－01 | 3．2E－02 | 5．4E－03 | 6．4E－03 | 3．OE－04 | 7．1E－06 | 1．7E－05 | 2．8E－05 | 2．8E－64 |
| SEQ－06－1 |  | 0． 391 | 2． $4 \mathrm{E}+04$ | 1． $5 \mathrm{E}+\mathrm{CC} 4$ | 10. | 9．9E＋C4 | 4． $7 \mathrm{E}+04$ | 9．9E＋01 | 9．1E－02 | 1．4E－03 | 5．18－04 | 7．9E－05 | 1．2E－06 | 2．1E－07 | 1． PE －08 | 4．9E－08 | 2． $7 \mathrm{E}-06$ |
|  |  |  |  |  |  | 6．8E＋06 | 4．7E＋04 | 1．3E＋03 | 9．1E－01 | 5．4E－02 | S．SE－03 | 7．6E－03 | 3．4E－04 | 1．AE－05 | 2．IF－05 | 4．8E－05 | 2．9E－04 |
| SEQ－06－2 |  | 0.609 | 2． $2 \mathrm{E}+04$ | $-2.5 E+03$ | 10. |  |  |  | 8. 1E-01 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $6.5 E+05$ | $3.2 \mathrm{E}+05$ | $3.2 E+05$ | 1.3E-01 | $\text { 1. } 2 \mathrm{E}-02$ | $\text { 2. } 7 \mathrm{E}-03$ | $5.6 E-03$ | $2.8 \mathrm{E}-04$ | 2.5E-06 | $\text { 1. } 4 E-05$ | $\text { 1. } 6 \mathrm{E}-05$ | $\text { 2. } 8 \mathrm{E}-04$ |
| SEQ－06－3 |  | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SEP－07 | 9．7E－08 |  | 1．3E＋03 | －5．9E＋03 | 0. | 1．9E＋06 | 3． $6 \mathrm{E}+03$ | 1． $\mathrm{BE}+03$ | 1．0E＋00 | 4．7E－02 | 4． $6 \mathrm{E}-02$ | 4．2E－03 | 4．6E－04 |  |  |  |  |
|  |  |  | 1．38403 | 5．8． |  | 1． $7 \mathrm{E}+05$ | 1． $0 \mathrm{E}+04$ | 2．2E＋04 | 2．3E－03 | 1．1E－01 | 3．9E－02 | 5．2E－02 | 1．3E－02 | 1. 1E-04 | 1． EE －03 | $\text { 2. } 0 \mathrm{E}-03$ | 1.0E-02 |
| SEQ－07－1 |  | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SEO－07－2 |  | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SEO－07－3 |  | 2.000 | 1．3E＋03 | $-5.9 E+03$ | 0 | 1． $9 \mathrm{EE}+06$ | 3． $6 E+03$ | 1． $8 \mathrm{EE}+03$ | 1．0E＋00 | 4．7E－02 | 4． $6 \mathrm{EF}-02$ | 4．2E－03 | 4． $4 \mathrm{E}-04$ | 1．65 34 | 2． $8 \mathrm{E}-05$ | 6．15－05 | 5． $6 \mathrm{EE-04}$ |


| $1.7 E+05$ | $1.0 E+04$ | $2.2 \mathrm{E}+05$ | $2.3 \mathrm{E}-03$ | $1.1 \mathrm{E}-01$ | $3.9 \mathrm{E}-02$ | $5.2 \mathrm{E}-02$ | $1.3 \mathrm{E}-02$ | $1.1 \mathrm{E}-04$ | $1.8 \mathrm{E}-03$ | $2.0 \mathrm{E}-03$ | $1.0 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |






\＆\＆\＆\＆\＆
《 $0 \omega+m$

 कणmのおN

会









| SEQ－08 | $3.6 E-07$ |  | $1.5 E+04$ | $-3.32 E+03$ | 7. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SEQ－08－1 | 0.035 | $3.5 E+04$ | $7.7 E+03$ | 10. |  |
| SEQ－08－2 | 0.619 | $2.1 E+04$ | $-2.4 E+03$ | 10. |  |
| SEQ－08－3 | 0.346 | $1.3 E+03$ | $-5.9 E+03$ | 0. |  |




 1．4E＋03 $\begin{array}{ll}3.3 \mathrm{E}+06 & 4.2 \mathrm{E}+04 \\ 4.1 \mathrm{E}+06 & 3.3 \mathrm{E}+05\end{array}$
 1． $0 \mathrm{E}+06$


 $\stackrel{\circ}{0}$
$\stackrel{1}{g}$
N $\circ$
$\vdots$
in
$n$
$n$
n
0
0

 0.000 － SEO－09

SEQ－09－1 $N$
N
$\vdots$
g
g SEQ－09－3
SEQ－10
SEQ－13－1
SEQ－10－2
SEQ－10－3









 4 के

 8是胢




 －o



8영등홍
 －－－－－m
岩岗岗出出出 －1ं लंल ल話枵に合合

古岩出出岁台出出


 6n－

옹Nㅇㅇㅇㅇ응













훙뭉ㅁㅇㅁㅇㅇㅇㅇㅇ


 MNーツーNーツ



4
송Nㅇㅇㅇㅇㅇ



정정NㅇㅇNㅡㅇNㅗㅇ
 かの一のN
NㅡㅇNㅡㅇ등Nㅇㅇ N出还的为耑出


бै
 －क क क क

O
娄
点 8
8
霛
$i$券 8
宩
w

 7E＋04


¿̈
H
H $4 E+04$
$0 E+02$
$9 E+05$ 8
号
$\frac{1}{\omega}$
$\frac{w}{N}$

훙 N最
殅

$\begin{array}{ll}2 \mathrm{E}+05 & 2.8 \mathrm{E}+04 \\ 6 \mathrm{E}+06 & 7.2 \mathrm{E}+05\end{array}$



응응릉Nㅡㅇ 증 Nㅡㅇ岩岩的出耑宸岁岁 nden mion




엉옹Nㅇㅇㅇㅇㅇ응ㅇㅇㅇ














믕Nㅇㅇㅇㅇㄷㅇㅇㅇㅇㅇㅇ








 $70+3 \%$＇I $90+3 k$

号
荅
t



$3 E+06$
$1 E+05$
$0 E+06$
台出出出出出出出












MEN
 monvico

－． $\mathrm{OE}+03-10$  ..... $4 E+04$$\begin{array}{ll}\text { of } \\ \text { i } & \text { 号 } \\ \text { a } & \text { w } \\ \text { m } \\ \text { m } & \mathrm{N}\end{array}$
$9 E+03$
$9 E+03$
 $\widehat{+}$
$\omega$
$\omega$ हt－0as
$2 E+0310$. 3． $2 \mathrm{E}+03$
6． $7 \mathrm{E}+03$ 2． $3 E+03$ $-5.9 E+03$ 0.000 4
1
4
4
4 SEQ－12
SEQ－12－1
SEQ－12－2
SEQ－12－3

## 

 SEP－13－3 SEC－14
$\begin{array}{ll}0 & 0 \\ 0 & \text {－} \\ 0 & 3 \\ 8 & \vdots \\ 4 & \text { H } \\ 40 & \text { N }\end{array}$

| $\begin{aligned} & 0 \\ & \\ & 3 \\ & \vdots \\ & \hline \end{aligned}$ |  |
| :---: | :---: |
|  |  |
|  |  |

 $0.602 \quad 1.2 E+03$

## 9． $3 \mathrm{E}+03$

． 0 E $+0=$

## $0.610 \quad 3.6 \mathrm{E}+04$

$0.384 \quad 2.0 E+04$ $0.006 \quad 1.3 E+03$ C0－39＇6 5t－0as SEQ－14－1 seo－14－2

Table 3.4-4 (continued)

| Source <br> ferm | $\begin{gathered} \text { Freq. } \\ (1 / \mathrm{yz}) \end{gathered}$ | Cond. Prob. | Warn(s) | dEvac(s) | Elev <br> (m) | $\begin{gathered} \text { Energy } \\ \quad(\boldsymbol{W}) \\ \hline \end{gathered}$ | Start (s) | $\begin{array}{r} \text { Dur } \\ \text { (s) } \\ \hline \end{array}$ | Relense Fractions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | 睘 | 1 | Cs | Ie | Sr | Bus | L* | Ce | Ba |
| S50-16 | 2. 2E-05 |  | 2. $2 E+04$ | 1.6E+04 | 0. | 3. 5E-03 | 4. $7 E+04$ | 7. 4E-04 | 1. 9E-08 | 1.6E-15 | 1.2E-15 | 2. 5E-16 | 2. $8 \mathrm{EE}-18$ | 2. $4 \mathrm{E}-22$ | 2. $9 \mathrm{E}-22$ | 1. $9 \mathrm{E}-22$ | 4. $6 \mathrm{E}-18$ |
|  |  |  |  |  |  | 1. 1E-02 | 4. $7 \mathrm{~F}+04$ | 8. $6 E+04$ | 4.3E-03 | 1. $3 \mathrm{E}-05$ | 2. 9E-09 | 2. $1 \mathrm{E}-09$ | 6. $0 \mathrm{E}-10$ | 1. $9 \mathrm{E}-11$ | 6. $7 \mathrm{E}-11$ | 6. $5 \mathrm{E}-11$ | 5. $1 \mathrm{E}-10$ |
| SEO-16-1 |  | 1.000 | 2. 2E+04 | 1. $6 \mathrm{E}+04$ | 0. | 0. 0 E +00 | 4. $7 E+04$ | 0. OE +00 | 0. $0 \mathrm{E}+00$ | 0. $0 \mathrm{E}+00$ | 0.0E+00 | $0.05+00$ | $0.0 \mathrm{E}+00$ | $0.0 \mathrm{E}+00$ | 0. $0 \mathrm{EE}+00$ | 0. $05+00$ | 9. $0 \mathrm{E}+00$ |
|  |  |  |  |  |  | 0. OE +00 | k. $7 E+04$ | 8. $6 E+04$ | 4. 3E-03 | 1.3E-05 | 2. 9E-09 | 2. 1E-09 | 6. $0 \mathrm{E}-10$ | 1.9E-12 | 6. $7 \mathrm{E}-11$ | 6. 5E-11 | 5.1E-10 |
| SEQ-16-2 |  | 0.000 | 2.2E+04 | $-2.6 E+03$ | 10. | 5. $2 \mathrm{E}+04$ | 2. $3 E+04$ | 1. $1 E+04$ | 2. TE-01 | 2.3E-05 | 1. $8 \mathrm{E}-08$ | 3. $7 E-08$ | 4. $1 E-11$ | 3.6E-15 | 2. $\mathrm{sE}-15$ | 2. $8 \mathrm{EE}-15$ | 6. $2 \mathrm{E}-11$ |
|  |  |  |  |  |  | 1. $6 E+05$ | 1. $0 E+06$ | 1. $0 E+06$ | $0.0 \mathrm{E}+00$ | 7.3E-08 | 0. 0 E +00 | 0.0E+00 | $0.0 \mathrm{E}+00$ | $0.0 \mathrm{E}+00$ | 0 CE+00 | O. OE + 00 | 0.0E+00 |
| SEQ-16-3 |  | 6.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SEQ-17 | 1.5E-05 |  | 2. 2 E 404 | 1. $6 E+04$ | 0. | 7. 5E+C2 | 4. $7 \mathrm{E}+04$ | 7. $7 E+00$ | 8. $6 E-04$ | 9. 5E-09 | 2. $6 E-09$ | 2. 5E-09 | 2. 3E-10 | 5. 9E-11 | 1. 1E-11 | 4. 2E-11 | 2. $\mathrm{TE}-10$ |
|  |  |  |  |  |  | 6. $9 \mathrm{E}+04$ | 5. $0 \mathrm{E}+04$ | 8. $4 \mathrm{E}+04$ | 3. TE-02 | 1.8E-04 | 7. $3 \mathrm{E}-08$ | 3. 9E-08 | 4. 4E-09 | 2. 2E-10 | 4.8E-10 | 6. $6 \mathrm{EE}-10$ | 3. 8E-09 |
| SEC-17-1 |  | 0.999 | 2. $2 \mathrm{E}+04$ | 1. $5 E+04$ | 0. | 5. $2 \mathrm{EE}+02$ | 4. $7 E+04$ | 5. $2 \mathrm{E}-01$ | 4. $4 \mathrm{E}-04$ | 4. $5 \mathrm{E}-09$ | 2. 4E-10 | 2. $0 \mathrm{E}-09$ | 1. $8 \mathrm{EE}-10$ | 4. $5 \mathrm{E}-11$ | 8. $3 \mathrm{E}-12$ | 3. $2 \mathrm{E}-12$ | 2. 2E-20 |
|  |  |  |  |  |  | 6. 3E+04 | 5. $0 \mathrm{E}+04$ | 8. $4 \mathrm{E}+04$ | 3. $7 \mathrm{E}-02$ | 1. $8 \mathrm{EE}-04$ | 7. 1E-08 | 3. 9E-08 | 4. $4 \mathrm{E}-09$ | 2. $2 \mathrm{E}-13$ | 4. $8 \pm-10$ | 6. $6 \mathrm{E}-10$ | 3.8E-09 |
| SEO-17-2 |  | 0.001 | 2. $2 E+04$ | $-2.6 \mathrm{E}+03$ | 10. | 3. $1 \mathrm{~F}+05$ | 2. $8 \mathrm{E}+04$ | 9. $7 \mathrm{E}+03$ | 5. $7 \mathrm{E}-01$ | 6.8E-06 | 3. 5E-06 | 6. $98-07$ | 6. $5 \mathrm{E}-08$ | 1. TE-08 | 3. $\mathrm{gE}-09$ | 1. $5 E-0 E$ | 8. $1 \mathrm{E}-08$ |
|  |  |  |  |  |  | 3. $2 \mathrm{E}+05$ | 9. $9 E+05$ | 9. $9 \mathrm{E}+05$ | 1. $8 \mathrm{E}-01$ | 8. $5 \mathrm{E}-84$ | 2. TE-06 | 4. $3 \mathrm{E}-08$ | 3. $4 \mathrm{E}-09$ | 3. 0E-10 | A. $2 \mathrm{E}-10$ | 6. $8 \mathrm{E}-10$ | 3. $2 \mathrm{E}-09$ |
| SEQ-17-3 |  | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SEQ-18 | 1.0E-05 | 0,888 | 2. $2 \mathrm{E}+04$ | 1.4E+04 | 10. | 1. 7E+05 | 4. 5E+04 | 6. 4E+02 | 1.0E-01 | 4.3E-04 | 3. $2 \mathrm{E}-04$ | 8. $4 \mathrm{E}-05$ | 1.8E-05 | 4. TE-07 | 9. $4 E-08$ | 3. $68-07$ | 2. $8 \mathrm{E}-06$ |
|  |  |  |  |  |  | 2. $3 \mathrm{E}+06$ | 2.2E+05 | 1. $1 E+05$ | 8. $8 \mathrm{E}-01$ | 2. 5E-02 | 3. $9 \mathrm{E}-04$ | 2. $1 \mathrm{E}-04$ | 8. $6 \mathrm{E}-06$ | 8.6E-07 | 6. $1 \mathrm{E}-07$ | 5.8E-07 | 6. $8 \mathrm{E}-06$ |
| SEO-18-1 |  |  | 2. $3 \mathrm{E}+04$ | 1. $6 E+04$ | 10. | 1. $8 E+04$ | 4. 7E+04 | 1. $8 \mathrm{EE}+01$ | 1. $0 \mathrm{E}-02$ | 1. $\mathrm{BE}-04$ | 1. 3E-04 | 1. $4 E-05$ | 2.4E-07 | 5.8E-08 | 5.2E-08 | 1. $35-08$ | 4. $4 \mathrm{E}-\mathrm{c7}$ |
|  |  |  |  |  |  | 2. $5 \mathrm{E}+06$ | 1. $2 \mathrm{E}+05$ | 4.15+03 | 9.8E-01 | 2.8E-92 | 3. $1 \mathrm{E}-01$ | 1. $8 \mathrm{EE}-04$ | 9. 5E-06 | 9.3E-07 | 6. 6E-07 | 6.1E-07 | 7.5E-06 |
| SEQ-18-2 |  | 0.112 | 2. $2 \mathrm{E}+04$ | $-2.5 E+03$ | 10. | 1. $4 E+06$ | 2. $8 E+04$ | 5. $6 \mathrm{E}+03$ | 8. $2 \mathrm{E}-01$ | 2. $4 \mathrm{E}-03$ | 1. 9E-03 | 6. $4 \mathrm{E}-04$ | 1. 5E-05 | 3. $7 \mathrm{E}-06$ | 8. $0 \mathrm{E}-07$ | 3. $1 \mathrm{E}-05$ | 2. $2 \mathrm{E}-05$ |
|  |  |  |  |  |  | 5. $9 \mathrm{E}+05$ | 9. $\mathrm{TE}+05$ | 9.7E+05 | 9.7E-02 | 7.0E-03 | 1. 1E-03 | 4. $6 \mathrm{E}-04$ | 1.5E-06 | 2.8E-07 | 1. $\mathrm{TE}-07$ | $3.12-07$ | 1.4E-06 |
| SEQ-18-3 |  | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 3.5 Insights from the Source Term Analysis

The range in the releass fractions calculated for similar accidents is large. -typically two orders of magnitude for the more volatile radionuclide classes and four orders of magnitude of more for the less volatile radionuclides. While iodine and cesium release fractions exceeding 0.20 are possible for many different types of accidents, they are most likely for bypass events. For containment bypass sequences, a large release is virtually assured because there are no mechanisms by which the releases can be mitigated. For accident sequences in which the containment is not bypassed but fails, the potential for mitigation of the releases exists, partioularly for the late fallures. The result is that the range of release fractions for non-bypass accidents with containment failure is extended beyond that for bypass ascidents in the direction of ower releases.

The timing of evacuation relative to the release of the radionuclides is important for evaluating the early consequences of the releases. For Event $V$, evacuation starts more than 1 h after the release has begun. For containment failures at VB and SGTRs without stuck-open secondary SRVs, the evacuation occurs between 30 min before and 1 h after the release begins. For SGTRs with stuck-open secondary SRVs and late failures of containment, the evacuation occurs at times much greater than 30 min before the release begins
3.6 References

1. H. N Jow, J, L. Sprung, J, A, Ro:listin, and D, I, Chanin, "MELCOR Accident Consequence Code System (MAACS): Model Description, "NUREG/CR4691, SANDB6-1562, Volume 2, Sandia National Laboratories, February 1990.
2. R. L. Iman, J. C. Helton, and J. D. Johnson, "A User's Guide for PARTITION: A Program for Defining the Source Term/Consequence Analysis Interfaces in the NUREG-1150 Probabilistic Risk Assessments, "NUREG/CR5253, SAND88-2940, Sandia National Laboratories, May 1990.

Offsite consequences were calculated with MACCS 1,2,3 for each of the source term groups defined in the partitioning process. This code has been used for some time and will not be described in detail. Although the variables thought to be the largest contributors to the uncertainty in risk were sampled from distributions in the accident frequency analysis, the accident progression analysis, and the source term analysis, there was no analogous treatment of uncertainties in the consequence analysis. Variability in the weather was fully acounted for, but the uncertainty in other parameters snch as the dry deposition speed or the evacuation rate was not considered.

### 4.1 Description of the Consequence Analysis

Offsite consequences were calculated with MACCS for each of the source term groups defined in the partitioning process. MACCS tracks the dispersion of the radioactive material in the atmosphere from the plant and computes deposition on the ground. MACCS then calculates the effects of this radioactivity on the population and the environment. Doses and the ensuing health effects from 60 radionuclides are computed for the following pathways: immersion or cloudshine, inhalation from the plume, groundshine, depasition on the $s k i n$, inhalation of resuspended ground contamination, ingestion of contaminated water, and ingestion of contaminated food.

MACCS treats atmospheric dispersion by the use of multiple, straight-line Gaussian plumes. Each plume can have a different direction, duration, and initial radionuclide concentration. Crosswind dispersion is treated by a multi-step function. Dry deposition and wet deposition are treated as independent processes. The weather variability is treated by means of a stratified sampling process.

For early exposure, the following pathways are considered: immersion or cloudshine, inhalation from the plume, groundshine, deposition on the skin, and inhalation of resuspended ground contamination. Skin deposition and inhal tion of resuspended ground contamination have generally not been considered in previous consequence models. For the long-term exposure, MACCS considers the following four pathways: groundshine, inhalation of resuspended ground contamination, ingestion of contaminated water, and ingestion of contaminated food. The direct exposure pathways (groundshine and inhalation of resuspended ground contamination) produce doses in the population living in the area surrounding the plant. The indirect exposure pathways (ingestion of contaminated water and food) produce doses in those who ingest food or water emanating from the area around the accident site. The contamination of water bodies is estimated for the washoff of 1 and deposited material as well as direct deposition. The food pathway model includes direct deposition onto crop and uptake from the soil. The health effects models link the dose received by an organ to predicted morbidity or mortality. The models used in MACCS calculate both short-term and long. term effects for a number of organs.

Both short-term and long-term mitigative measures are modeled in MACCS Short-term actions include evacuation, sheltering, and emergency relocation out of the emergency planing zone. Long-term actions include later relocation and restrictions on 1 and use and crop disposition. Relocation
and land decontamination, interdiction, and condemnation are based on projected long-term doses from groundshine and inhaletion of resuspended radioactivity. The disposal of agricultural producis is based on the products' contamination levels and the removal of farmland from crop production is based on ground contamination criteria.

The MACCS consequence model calculates a large number of different consequence measures. Results for the following six consequence measures are given in this report: eariy fatalities, total latent cancer fatalities, population dose within 50 miles, population dose for the entire region, early fatality risk within 1 mile, and latent cancer fatality risk within 10 miles. These consequence measures are described in Table 4.1-1. For the analyses performed for NUREG-1150, 99.5 percent of the population evacuates and 0.5 percent of the population does not evacuate and continues normal activity. Details of the methods used to incorporate the consequence results for the source term groups into the integrated risk analysis are given in Volume 1 of this report.

### 4.2 MACCS Input for Sequoyah

The values of most MACCS input parameters (e.g., aerosol dry deposition velocity, health effects model parameter values, food pathway transfer factors) do not depend on site characteristics. For those parameters that depend on site characteristics (e.g., evacuation speed, shielding factors, farmland usage), the methods used to calculate the parameters are essentially the same for all sites. Because the methods used to develop input parameter values for the MACCS NUREG- 1150 analyses and the parameter values developed using those methods are documented in Volume 2, Part 7 of this report, only a small portion of the MACCS input is presented here.

Table $4.2-1$ lists the MACCS input parameters that are highly dependent upon site location and presents the values of these parameters used in the MACCS calculations for the Sequoyah site. The evacuation delay period begins when general emergency conditions occur and ends when the general public starts to evacuate. Nonfarm wealth includes personnel, business, and public property. The farmland fractions do not add to one because not all farmland is under cultivation. In addition to the site specific data presented in Table $4.2 \cdot 1$, the Sequoyah MACCS calculations used one year of meteorological data from the Sequoyah site and regional population data developed from the 1980 census tapes. The following table gives the population within certain distances of the plant as sumarized from the MACCS demographic input.

| Distance | Erom_Plant |  |
| ---: | ---: | ---: |
| $\frac{(\mathrm{km})}{1.6}$ | $\frac{(m 1 \text { les) }}{1.0}$ | Population |
| 4.8 | 3.0 | 213 |
| 16.1 | 10.0 | 2432 |
| 48.3 | 30.0 | 514,226 |
| 160.9 | 100.0 | $3,221,558$ |
| 563.3 | 350.0 | $36,593,188$ |
| 1609.3 | 1000.0 | $180,568,384$ |

Table 4.2-2 1ists the shielding parameters used in this analysis.

Table 4.1-1
Definition of Consequence Analysis Results

| Variable | Defindtion |
| :---: | :---: |
| Early fatalities | Number of fatalities within 1 yr of the accident. |
| Total latent cancer fatalities | Number of latent cancer fatalities due to both early and chronic exposure. |
| Population dose within 50 miles | Population dose, expressed in effective dose equivalents for whole body exposure (personrem) due to early and chronic exposure pathways within 50 miles of the reactor. Due to the nature of the chronic pathways models, the actual exposure due to food and water consumption may take place beyond 50 miles. |
| Population dose within entire region | Population dose, expressed in effective dose equivalents for whole body exposure (personrem) due to early and chronic exposure pathways within the entire region. |
| ```Individual early fatality risk within one mile``` | The probability of dying within 1 yr for an individual within one mile of the exciusion boundary [i.e., $\Sigma(e f / p o p) p$, where ef is the number of early fatalities, pop is the population size, $p$ is the weather condition probability, and the summation is over all weather conditions]. |
| Individual latent cancer risk within 10 miles | The probability of dying from cancer due to the accident for an individual within 10 miles of the plant [i.e., $\Sigma(c f / p o p) p$, where $c f$ is the number of cancer fatalities due to direct exposure in the resident population, pop is the population size, $p$ is the weather condition probability, and the summation is over all weather conditions; chronic exposure does not include ingestion, but does include integrated groundshine and inhalation exposure from $t=0$ to $t=\infty]$. |

Table 4.2-1
Site Specific Input Data for Sequoyah MACCS Caloulations

| Parameter |  |
| :--- | :---: |
| Reactor Power Level (MWt) | 3423 |
| Containment Height (m) | 40 |
| Containment Width (m) | 40 |
| Exclusion Zone Distance (km) | 0.585 |
| Evacuation Delay (h) | 2.3 |
|  |  |
| Evacuation Speed (m/s) | 1.8 |
|  |  |
| Farmland Fractions by Crop Categories |  |
| Pasture | 0.69 |
| Stored Forage | 0.006 |
| Grains | 0.16 |
| Green Leafy Vegetables | 0.0007 |
| Legumes and Seeds | 0.15 |
| Roots and Tubers | 0.001 |
| Other Food Crops | 0.005 |
| Non-Farm Wealth (\$/person) | 66,000 |
| Farm Wealth (\$/hectare) |  |
| Value (mprovements | 1855 |
| Fraction in Imp |  |

Table 4.2-2
Shielding Factors for Sequoyah MACCS Calculations

Population Response

## Radiation Pathway

Evacuate
Normal

Internal Initiators

| Cloudshine | 1.0 | 0.75 | 0.65 |
| :--- | :--- | :--- | :--- |
| Groundshine | 0.5 | 0.33 | 0.20 |
| Inhalation | 1.0 | 0.41 | 0.33 |
| Skin | 1.0 | 0.41 | 0.33 |

### 4.3 Results of MACCS Consequence Calculations

The results in this eection are conditional on the ocourrence of a release. That is, given that a release takes place, with release fractions and other characteristics as defined by one of the source term groups, then the consequences reported in this section are calculated. The tables and figures in this section contain no information about the frequency with which these consequences may be expected. Information about the frequencies of consequences of various magnitudes is contained in the risk results (Chapter 5).

### 4.3.1 Results for Internal Indthatora

The integration of the NUREG- 1150 probabilistic risk assessments uses the results of the MACCS consequence caloulations in two forms. In the first form, a single mean (over weather variation) result is reported for each consequence measure. This produces at: $n S T G \times n C$ matrix of mean consequence measures, where $\operatorname{nSTG}$ is the numbs of souroo term groups and nC is the number of consequence measures under nonsideration. For internal initiators at Sequoyah, nSTG - 5 : and nt $=6$. The resultant $55 \times 6$ matrix of mean consequence measures is shown in lable 4.3-1. The source terms that give rise to these mean cormequence measures are given in Table 3.4-4. Some of the cases indicated in table 3.4 .4 have a zero frequency, and no consequence results are reportect for thest cases in Table 4.3-1. The mean consequence measures in Table 4.1 .1 are used by PRAMIS ${ }^{4}$ and RISQUE in the calculation of the mean risk res.its for intarnal initiators at Sequoyah. An early fatality consequence valum loss than 1.0 may be interpreted as the probability of obtaining one deach. The population dose is the effective dose equivalent to the whole pody for the population in the region indicated

Table C.1-1 in Appendix $C$ provicies a breakdown of mean consequence results between individuals who evacuate, continue normal activities, and actively shelter; information on the division of results between early and chronic exposure is also given. In addicion to the six consequence measures reported here, Table C.1-1 contains vesults for early infuries (prodromal vomfcing), ecouowic cost, and individual early fatality risk at 1 mille. Note that the individual early fatality risk at one mile is distinct from individual early fatality risk withln one mile. The risk at one mile (listed orily in Appendix C) is for a hypothetical individual at that distance. The risk within one mile (reported in the text) uses the actual residence distances for all people living within one mile of the plant. Only if there are no people living one mile of the plant is the calculation made assuming that a hypothetical person is located exactly one mile from the plant

In the second form, a complementary cumblative distribution function (CCDF) is used for each consequence measure. Conditional on the occurrence of a source term, each of these CCDFs gives the probability that individual consequence values will be exceeded due to the uncertalnty in the weather conditions at the time of an accident. These CCDFs are given in Figure 4.3-1. Each frame in this figure displays the OCDFs for a single conse. quence measure for all the subgroup source terms (SEQ-I.J) in Table 3.4-4 that have a nonzero frequency. The CODFs were generated using the estimate

Table 4.3-1
Mean Consequence Results for Internal Initiators
(Population Doses in Sv)

| Source <br> Term <br> Group | $\begin{gathered} \text { Early } \\ \text { Eatalities } \end{gathered}$ | Total Lat. <br> Cancer <br> Eatalities | $\begin{aligned} & \text { Pop. Dose } \\ & \text { Within } \\ & 50 \mathrm{m!} \\ & \hline \end{aligned}$ | Pop. Dose Entire Region | $\begin{gathered} \text { Individual } \\ \text { Early Fat. } \\ \text { Risk } \\ 0.1 \mathrm{mi} \\ \hline \end{gathered}$ | Individual <br> Lat. Can. <br> Fat. Risk <br> 0. 10 mf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEQ.01-1 |  |  | $\cdots$ |  | .- |  |
| SEQ-01-2 | 1.73E-05 | 1.14E+01 | $3.19 E+02$ | 7.04E+02 | 4.35E.08 | 3.94E-05 |
| SEQ-01-3 | .. | .. | .. | .. | .. |  |
| SEQ-02.1 | 2.82E-05 | 5.01E+01 | 1.26E+03 | $4.46 \mathrm{E}+03$ | 7.10E.08 | 1.33E-05 |
| SEQ-02-2 | 7.24E-05 | 6.09E+01 | 1.26E+03 | $3.78 \mathrm{E}+03$ | 1.82E.07 | 8.12E.05 |
| SEQ-02-3 | 8.15E-01 | $3.55 \mathrm{E}+01$ | $1.06 \mathrm{E}+03$ | 1.94E +03 | 1.37E-03 | 2.35E-04 |
| SEQ.03.1 | 6.15E-05 | $2.41 \mathrm{E}+02$ | 2.91E+03 | 1.51E+04 | $1.54 \mathrm{E}-07$ | 3.15E-05 |
| SEQ.03-2 | $0.00 \mathrm{E}+00$ | 3.15E+02 | $3.17 \mathrm{E}+03$ | 1.81E+04 | 0.00E+00 | 1.01E-04 |
| SEQ-03-3 | .. | .. | .. | .. | -. |  |
| SEQ-04-1 | 2.87E-02 | 4.94E+02 | 7.71E+03 | 2.92E+04 | 5.60E-05 | $9.12 \mathrm{E} \cdot 05$ |
| SEQ-04-2 | 8.63E-01 | 1.91E+02 | 4. $60 \mathrm{E}+03$ | 2. $222 \mathrm{E}+04$ | $2.09 \mathrm{E} \cdot 03$ | $2.90 \mathrm{E}-04$ |
| SEQ-04-3 | 8,41E-01 | 3.71E+02 | $6.32 \mathrm{E}+03$ | $2.17 \mathrm{E}+04$ | $1.42 \mathrm{E} \cdot 03$ | $3.53 \mathrm{E}-04$ |
| SEQ.05-1 | 2.15E-04 | $9.01 \mathrm{E}+02$ | 4.41E+03 | 5.20E+04 | 5.25E. 07 | 5.25E-05 |
| SEQ.05-2 | 2.12E.05 | 7.67E+02 | 6.42E+03 | 4. $53 \mathrm{E}+04$ | $5.35 \mathrm{E}-08$ | $3.26 \mathrm{E}-04$ |
| SEQ-05-3 | .. | .- | .. | .. | .. | -. |
| SEQ.06-1 | 4.97E.05 | 5.80E+02 | $3.79 \mathrm{E}+03$ | 3.39E+04 | 1.25E-07 | 5.43E-05 |
| SEQ-06-2 | 7.00E-07 | 6.77E+02 | 5.83E+03 | 3.85E+04 | $1.76 \mathrm{E}-09$ | $1.91 \mathrm{E}-04$ |
| SEQ-06-3 | ... | .- | -.. | -. | .. |  |
| SEQ-07-1 | . | .- | .- | . |  |  |
| SEQ-07-2 | -. | - ${ }^{\text {- }}$ | . | *- | - |  |
| SEQ-07-3 | 1.95E+00 | $1.69 \mathrm{E}+03$ | $1.49 \mathrm{E}+04$ | 9.93E+04 | 3.06E-03 | $7.04 \mathrm{E}-04$ |
| SEQ-08-1 | 2. $20 \mathrm{E}-03$ | 1.50E+03 | 1.30E+04 | 9.64E+04 | $5.40 \mathrm{E}-06$ | 1.37E. 04 |
| SEQ-08-2 | 3.16E-04 | $1.89 E+03$ | 1.02E+04 | 1.12E+05 | $7.45 \mathrm{E}-07$ | 4.86E-04 |
| SEQ-08-3 | 1. $62 \mathrm{E}+00$ | $1.05 \mathrm{E}+03$ | 1.07E+04 | 6. $25 \mathrm{E}+04$ | $2.61 \mathrm{E}-03$ | $5.53 \mathrm{E} \cdot 04$ |
| SEQ-09.1 | 2.52E-03 | 1. $61 \mathrm{E}+03$ | 9.32E+03 | 9.27E+04 | $6.25 \mathrm{E}-06$ | $1.47 \mathrm{E} \cdot 04$ |
| SEQ-09-2 | 1.89E-C4 | $1.45 \mathrm{E}+03$ | 8.32E+03 | 8. $44 \mathrm{E}+0.4$ | 4.65E-07 | 5.87E-04 |
| SEQ-09-3 | .- | .. | -. | .. | . | . |

Thble $4.3 \cdot 1$ (continued)

| Source <br> Term <br> Group | $\begin{gathered} \text { Early } \\ \text { Eatalities } \end{gathered}$ | Total Lat. Cancer $\qquad$ | $\begin{aligned} & \text { Pop. Dose } \\ & \text { Within } \\ & 50 \mathrm{md} \\ & \hline \end{aligned}$ | Pop, Dose <br> Entire $\qquad$ | $\begin{gathered} \text { Individual } \\ \text { Early Fat, } \\ \text { Risk } \\ 0 \quad 1 \mathrm{mi} \\ \hline \end{gathered}$ | Individual <br> Lat. Can. <br> Fat. Risk <br> $0=10 \mathrm{mi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEQ - 10-1 | 5.50E-04 | 1.26E+03 | 7.20E+03 | $7.18 \mathrm{E}+04$ | 1.39E-06 | 1.35E-04 |
| SEQ - 10-2 | 1.01 E .06 | 1.24E+03 | $1.08 \mathrm{E}+04$ | $7.11 \mathrm{E}+04$ | 2.55E-09 | 3.06E-0.4 |
| SEQ-10-3 | -.. | .. | . . | .. | .. | -. |
| SEQ-11-1 | 9.50E-02 | 3.16E+03 | 2.57E+04 | $1.87 \mathrm{E}+05$ | 1.02E-04 | 6.38E-04 |
| SEQ-11-2 | 2.28E-02 | 3.70E+03 | 1.97E+04 | 2. $24 \mathrm{E}+05$ | 2.56E-05 | $1.01 \mathrm{E}-03$ |
| SEQ-11-3 | 2.81E+01 | 2. $72 \mathrm{E}+03$ | 3.37E+04 | 1. $52 \mathrm{E}+05$ | 1.57E-02 | $7.38 \mathrm{E}-03$ |
| SEQ-12-1 | 2.91E-02 | 2. $58 \mathrm{E}+03$ | 1.63E+04 | 1. $52 \mathrm{E}+05$ | 5.35E-05 | 1.77E-04 |
| SEQ-12-2 | $3.49 \mathrm{E}-03$ | $3.08 \mathrm{E}+03$ | 1.45E+04 | 1.80E+05 | 5.12E-06 | 8.66E.04 |
| SEQ-12-3 | 2. $50 \mathrm{E}+00$ | 1.82E+03 | 1.09E+04 | 1.05E+05 | 5. 54E-03 | 7.52E.04 |
| SEQ-13-1 | $1.10 \mathrm{E}-02$ | 1.62E+03 | 1.21E+04 | 9.54E+04 | 2.40E-05 | 1.95E-04 |
| SEQ-13-2 | $1.89 \mathrm{E}-04$ | 2.46E+03 | $1.16 \mathrm{E}+04$ | 1.41E+05 | 4.63 E .07 | $4.09 \mathrm{E}-04$ |
| SEQ-13-3 | . . | -. | - . | . . | .- | .. |
| SEQ-14-1 | 1.29E+01 | $8.80 \mathrm{E}+03$ | $1.13 \mathrm{E}+05$ | 4.00E+05 | 1.43E-03 | $8.18 \mathrm{E}-03$ |
| SEQ-14-2 | 2.49E+00 | $6.96 \mathrm{E}+03$ | 2.96E+04 | 4.18E+05 | 5.42E-04 | $3.07 \mathrm{E}-03$ |
| SEQ-14-3 | 1.41E+02 | 5.90E+03 | 8. $20 \mathrm{E}+04$ | 3.15E+05 | 2.92E-02 | $1.48 \mathrm{E}-02$ |
| SEQ-15-1 | $1.08 \mathrm{E}-01$ | 3, 45E+03 | 2.27E+04 | $2.04 \mathrm{E}+05$ | 1.09E-04 | 4.76E-04 |
| SEQ - 15-2 | $1.98 \mathrm{E}-01$ | 5.41E+03 | 2. $10 \mathrm{~F}+04$ | 3.23E+05 | 1. $54 \mathrm{E}-04$ | 1.28E-03 |
| SEQ-15-3 | 1.61E+01 | $3.50 E+03$ | 2. $54 \mathrm{E}+04$ | $2.09 \mathrm{E}+05$ | 1. $38 \mathrm{E}-02$ | 2. $00 \mathrm{E}-\mathrm{O} 3$ |
| SEQ-16-1 | 0.00E+00 | 2.24E-02 | 1. $38 \mathrm{E}+00$ | 2.34E+00 | $0.00 \mathrm{E}+00$ | 7.29 E .09 |
| SEQ-16-2 | $0.00 \mathrm{E}+00$ | 6.02E-01 | 1.98E+01 | 3.21E+01 | $0.00 \mathrm{E}+00$ | 3.03 E .06 |
| SEQ-16-3 | *- | .- | -. | .. | . . |  |
| SEQ-17-1 | $0.00 \mathrm{E}+00$ | 2.35E-01 | 1.14E+01 | 2.41E+01 | 0. ${ }^{\sim} \mathrm{n} E+00$ | $1.06 \mathrm{E} \cdot 07$ |
| SEQ-17-2 | $0.00 \mathrm{E}+00$ | 2. $53 \mathrm{E}+00$ | $8.09 \mathrm{E}+01$ | 1.82E+02 | 0.C. E+00 | 7.71E-06 |
| SEQ-17-3 | - . | . . | - . | -. | -. |  |
| SEQ-18-1 | $0.00 \mathrm{E}+00$ | 4.70E+01 | 1.06E+03 | $3.45 \mathrm{E}+03$ | $0.00 \mathrm{E}+00$ | $3.54 \mathrm{E}-05$ |
| SEQ-18-2 | $0.00 \mathrm{E}+00$ | 1.84E+02 | $3.06 \mathrm{E}+03$ | 1.05E+04 | $0.00 \mathrm{E}+00$ | 1. $34 \mathrm{E}-04$ |
| SEQ-18-3 | - . | . . | . | .. |  |  |
| SEQ-19 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $0.00 E+00$ | $0.00 \mathrm{E}+00$ |




Figure 4.3-1. Consequences Conditional on Source Terms



Figure 4.3-1. (continued)


Figure 4.3-1. (continued)
that 99.58 of the population evacuates and 0.58 of the population continues normal activities. Each of the mean consequence results in Table 4.3-1 is the result of reducing one of the CCDFs in Figure 4.3-1 to a single number. The CCDFs in Figure 4.3-1 will subsequently be used to create CCDFs for risk, with the PRPOST code, which is described in Volume 1 of this report. The CCDFs for risk are presented in the next chapter; they relate consequence values with the frequency at which these values are exceeded.

1. D. 1. Chanin, J L. Sprung, L. T, RItchie, and H. N N, Jow, "MELCus. Accident Consequence Code Syetem (MACCS): User's Guide, "NUREG/CR. 4691, SAND86.1562, Volune 1, Sandla National Laboratories, February 1990.
2. H, N, Jow, J, L, Sprung, J. A. Rollstin, and D, I. Chanin, "MELCOR Accident Consequence Code System (MACCS): Model Description, " : ZURFC/CR-4691, SAND86-1562, Volume 2, Sandia National Laboratories, February 1990,
3. J. A. Rollstin, D. 1. Chanin, and H. N N, Jow, "MELCOR Accident Consequence Code System (MACCS): Programmer's Reference Maraai, " NUREG/CR-4691, SAND86-1562, Volume 3, Sandia National Laboratoties, February 1990.
4. R. L. Iman, J. D. Johnson, and J, C. Helton, "A User's Guide for the Probabilistic Risk Assessment Model Integration System (PRAMIS)," NUREC/CR.5262, SAND88.3493, Sanila National Laboratories, May 1989.

## 5. RISK RESULTS FOR SEQUOYAH

This section gives the results of the integrated risk analysis for the Sequoyah plant. Section 5.1 gives the risk results for internal initiators.

Risk is determined by bringing together the results of four constituent analyses: the accident frequency, accident progression, source term, and consequence analyses. The phrase, integrated risk analysis, is uoed to refer to the combined result when all four analyses are combined. The way in which these analyses contribute to risk analysis is sunmarized in Section 1.4 of this volume. More detall on the methods used in calculating risk ctn be found in Volume 1.

The figures in this section present only a very small portion of the total risk output available. Detalled listings of results are available on computer media by request.

### 5.1 Results for Internal Initiators

This section describes the results of the integrated risk analysis for internal initiators at the Sequoyah plant. Section 5.1.1 discusser basic risk resules for internal initiators. Section 5.1.2 addresses the types of accidents and plant fepcures that are important in determining the risk from internal initiato:s at Sequoyah. Finally, Section 5.1.3 gives the results of the regression analysis performed to determine the important contributors to the uncertainty in risk.

### 5.1.1 R1sk Results

Figure $5.1-1$ shows the basic results of the integrated risk analysis for internal initiators at Soquoyah. This figure shows the complementary cumulative ilstribution functions (CCDFs) for early fatalities, latent cancer fatalities, population dose within 50 mlles , population dose within the entire region, individual risk of early fatality within one mile of the fite boundary, and individual risk of latent cancer fatality within 10 miles.

The SCDFs display the relationship between the frequency of the consequence and the magnitude of the consequence. Af thete bav 308 observations in the copfis Sof setwoyah, the comolete set of risk results, at the most basic level, consists of 200 CCDFs for each consequence measure. Plots showing these 200 curves are contained in AppenAix $D$; only four statistical measures of the 200 curves are shown in Figure 5,1-1, it, se measures are generated by analyaing the plots in the vertical direction. For each consequence value on the absclssa, there are 200 values of the exceedance frequency (one for each observation or sample element), and from these 200 values, the mean, median, 95 th percentile, and 5 th percentile values are calculated. When this is done for each value of the consequence measure. the curves in Figure 5.1-1 are obtained. Thus, Figure $5.1-1$ gives the reiationship between the magnitude of the consequence and the frequency at which the consequence is exceeded, as well as the variation in that



Figure 5.1-1. Exceedance Frequencies for Risk
(Sequoyah, All Internal Initiators)



Figure 5.1-1, (continued)



Figure 5.1-1. (continued)
reiationsniy, The percentile and mean curves in Figure 5.1-1 and similar figures are only valid when read from the abscissa; that is, the percen. files end means do not apply for a given value of exceedance frequency.
Although the abscissa in the last two plots in Figure $5.1-1$ is labeled "Risk," this reflects historical usage and is not really correct. The $x$-axis in these plote fetually represents conditional probubility: specifi. cally, the probability that an individual, randomly located in the spatial interval according to the population distribution, will die if the accident ocours. The ordinate gives the frequency of an accident that produces a conditional probability that exceeds the value on the abscissa. The actual risk measure (1.e., product of the consequence and its associated frequenoy) does not result until the curves in the last two plots of Figure 5.1.1 are reduced to single values.

The curves for latent cancer fatalities in Figure 5.1.1 are relatively flat from about 0.6 to 10 fatalities. This means that latent cancer fatalities in this range are very unlikely. Any type of containment failure (CF) or bypass is likely to lead to more than 10 delayed fatalities; it is quite unllkely, however, that an accident will result in more than a few thousand delayed fatalities. If the containment does not fall, the eventual release of the noble gases (xenon and krypton) from the containment due to design basis leakage will probably cause less than 0.6 latent cancer fatalities.

The variation from the 5 th to the 95 th percentiles indicates the uncertain. ty in the risk estimates due to uncertainty in the basic parameters in the three sampled constituent analyses (the accident frequency, accident progression, and source term analyses). The variation along a curve in Figure 5.1-1 (or along one of the individual curves in Appendix D) is indicative of the variation in risk due to different types of accidents and due to different weather conditions at the time of the accident. Thus, the individual curves in Appendix $D$ can be viewed as representing stochastio variability (i,e., the effects of probabilistic events in which it is possible for the accident to develop in more than one way), and the variabilfty between curves can be seen as representing the effects of imprecisely known parameters and processes that are mostly nonstochastic. As the magnitude of the consequence measure increases, the mean curve typically approaches or exceeds the 95 th percentile ourve. This results when the mean is dominated by a few large observations, which often happens for large values of the consequences because only a few observations have nonzero exceedance frequencies for these large consequencss. Figure 5.1.1 shows the following mean and median exceedance frequencies for fised values of early fatalities (EFs) and latent cancer fatalities (LCFs):

## Exceedance Erequency $(1 / R-y r)$

| Consequence | Mean | Median |
| :---: | :---: | :---: |
| EF | $6 \mathrm{E}-7$ |  |
| 100 EF | $5 \mathrm{E}-8$ | $1 \mathrm{E}-7$ |
| 100 LCF | $7 \mathrm{E}-6$ | $3 \mathrm{E}-9$ |
| $10,000 \mathrm{LCF}$ | $6 \mathrm{E}-8$ | $3 \mathrm{E}-6$ |
|  | $1 \mathrm{E} \cdot 8$ |  |

Although the LCF values mentioned above may appear large, they must be considered in perspective; the calculated LCFs occur throughout the entire region and over several decades. Between 400,000 to 500,000 deaths due to cancer occur every year in the U.S. The population within 350 miles of the plant is about 37 million and within 1000 miles of the plant is about 180 million. When spread over two or three decades, even tens of thousands of additional LCFs are statistically indistinguishable from the general background morbidity due to malignant neoplasms in such a large population.

Although the CCDF for each observation conveys the most information about risk, a single number may be generated for each consequence measure for each observation. This value, denoted annual risk, is determined by summing the product of the frequencies and consequences for all the points used to construct the CCDF for each observation in the sample. The construction of annual risk has the effect of averaging over the different weather states and includes contributions from all the different types of accidents that can ocour. Since the complete analysis consisted of a sample of 200 observations, there ere 200 values of annual risk for each consequence measure. These 200 values may be ordered and plotred as histograms, as in Figure 5.1-2. The four statistical measures used above are shown on these plots and are also reported in Table 5,1-1. Note that considerable information has been lost in going from the CCDFs in Appendix D to the histograms of annual values in Figure 5.1-2; the relationship between the size of the consequence and its frequency has been sacrificed to obtain a single value for risk for each observation.

The plots in Figure 5.1.2 show the variation in the annual risk for six consequence measures. Where the mean is close to the 95 th percentile, it may be inferred that a relatively small number of observations dominate the mean value. This is more likely to occur for the EF consequence measures than for the latent cancer fatality or population dose consequence measures due to the threshold effect for EFs. In essence, Figure 5.1.2 shows the probability density functions of the logarithms of the consequence measures. Equivalent density functions could be generated for the consequence measures themselves, but would appear quite different due to the change in scale. Another alternative, but equivalent display, for the results in Figure 5.1-2 would be to use cumulative distribution functions.

The safety goals are expressed in terms of mean Individual fatality risks, which is really an individuai's probability of becoming a casualty of a reactor acoident in a given year. The individual Ef risk within one mile is the frequency (per year) that a person living within one mile of the site boundary will die within a year due to the accident. The entire population within one mile is considered to obtain an average value. The individual latent cancer fatality risk within 10 miles is the frequency (per year) that a person living within 10 miles of the plant will die many years later from cancer due to radiation exposure received from the accident. The entire population within 10 miles is considered to obtain an average value A single value for individual fatality risk for each observation is obtained by reducing the CCDF for each observation to a single value. The density distribution of these 200 values is plocted in the last two frames of Figure 5:1-2. Although the values are really frequencies, they are so small that they are essentially probabilities that an individual will become a casualty of a reactor accident in a given year.


The plots for individual risk in Figure 5.1.2 show that both risk distributions for Sequoyah fall well below the safety goal. A single measure of risk for the entire sample may be obtained by taking the average value from the histograms in Eigure 5.1.2. This measure of risk is commonly called mean risk, although it is actually the average of the annual risk, or the mean value of the mean riak. The mean risk values for the six consequence measures reported here are displayed in Figure 5,1.2. The important contributors to mean risk are considered in Seotion 5,1,2.

The offsite risk at Sequoyah is relatively low with respect to the safety goals. There are several factors that lead to these low values for risk. The core damage frequency for Sequoyah is quite low, and the mean value is 5.6E-05. If core damage occurs, it is unlikely that the containment will fail, and if it dues fall, there are several features of the Sequoyah plant that tend to reduce the source term and therefore the consequences.

A factor influencing the risk estimates is arresting the core damage process before vessel fallure and achieving a safe, stable state, as at TMI-2. Obtaining sufficient ECCI after the onset of core damage may come about through the recovery of offsite power, or the depressurization of the ROS to the point that injection by systems operating at the onset of core damage commences. A significant fraction o, the time, the accidents in the most likely three plant damage state (PDS) grups loss-of-coolant accidents (LOCAs), fast station blackout (SBO), and slow SBO, comprising about 89 of the mean core damage frequency (MCDF) result in arrest of the core damage process and no vessel breach (VB). If the vessel fails, it is likely that either the core debris released from the vessel will be cosled or, if core. conczete interaction (CCI) is initiated, it will oocur under a pool of water.

The EF risk depends on both the magnitude of the release and on the timing of $C F$. If the containment fails early in the accident, or if the containment is bypassed, it is more likely that a portion of the population w111 be exposed to the release than if the containment falls after the nearby population has been evacuated. A large potential exists for $C F$ at the ilme of VB at Sequoyah. Postulated pressure rises at vessel failure resulting from direct containment heating ( $D C H$ ) coupled with hydrogen combustion can be high with respect to the predicted strength of the Sequoyah containment.

The DCH/hydrogen threat is reduced by two means. The first is when the cavity becomes deeply flooded; that is, the water level is above the bottom head of the vessel and can be up to the hot $\operatorname{leg}$ inlets on the vessel. Dispersal of debris from the cavity into the lower containment is therefore inhibited when the cavity is flooded to this level. The second is when mechanisms that lead to depressurization of the reactor coolant system (RCS) before fallure of the vessel are considered. The RCS depressuriza. tion mechanisms included are temperature-induced (T-I) failure of the hot leg or surge line, power operated relief valves (PORVs) sticking open, T-I reactor coolant pumps (RCP) seal failure, T-I SCTR, and deliberate opening of the porve by the operators. Only the flrst three of these mechanisms were very effective in this analysis, but they were sufficient to ensure that only a small fraction of the accidents that were at full system pressure at the onset of core damage were stil1 at that pressure at VB.

Reducing the RCS pressure at VB, of course, reduces the loads placed on the containment at $V B$, and thus reduees the probability of $C F$.

The LCFs are generally assoclated with the population that does not evacuate. Thus, this risk measure is not particularly sensitive to the timing of CF, but rather to whether the containment fails. Furthermore, bectuse there is no threshold elfect for LCFs, this consequence measure is not as sensitive to the magnitude of the release as is the EF risk. LCF risk is primarily dependent on frequency of Cf. Unlike EF risk, late CFs as well as EFs of the contalntent are important to the latent cancers.

There are several features of the sequoyah plant that reduce the magnitude of the source term. In the majority of the accidents analyzed, the in vessel releases experience decontamination by the lee condenser (IC). Many $t$ imes if is is predicted to oocur, the CCI is either inhibited because a coolable debris bed is formed and the cavity water is replenished, or the release from the CCI is scrubbed by an overlying weter pool. Operation of the containment spray system (css) also helps to mitigate the source term.

Table 5.1-1
Distributions for Annual Risk at Sequoyah Due to Internal Initiators (All values per reactor-yr; population doses in person-rem)
Risk Measure
Core Damage
EFs
LCFs
Population Dose 50 mi
Population Dose Entire
Region
Ind, EF Risk,
0.1 mile
Ind. LCF Risk
0.10 miles

| 5thet12e | Median | Mean | 2.5 thetile |
| :---: | :---: | :---: | :---: |
| 1.5E-5 | 3.9E-5 | 5.6E-5 | 1.5E.4 |
| 4.7E-8 | 2.4E-6 | 2.6E.5 | 1.2E-4 |
| $5.6 \mathrm{E} \cdot 4$ | 4.8E-3 | $1.4 \mathrm{E} \cdot 2$ | 5.3E-2 |
| 8.7E. 1 | $5.0 \mathrm{E}+0$ | 1.2E+1 | 4. 68.1 |
| 3. $5 \mathrm{E}+0$ | $2.9 \mathrm{E}+1$ | $8.15+1$ | $3.1 \mathrm{E}+2$ |
| 4.6E. 11 | 1.5E-9 | 1.2E.8 | 4.3E-8 |
| 3.9E-10 | 3.2E-9 | 1.0E-8 | 3,5E-8 |

### 5.1.2 Contributors to Risk

Thote afe two distinct ways to calculate contribution to risk, and to facilitate their definition, the following quantities are introduced:
rCy $=r i s k$ (units: consequences/reactor-yr) for consequence measure $j$,
$r C_{i j}=$ value for $r C_{j}$ obtained for observation 1 ,
$\mathrm{rC}_{3 k}=r i s k$ (units: consequences/reactor-yr) for consequence measure f due to PDS group $k$,
$r C_{i j k} *$ value for $r C_{j k}$ obtained for observation 1, and
ntHS - number of observations in the Latin Hypercube Sample (LHS).
The notation here is similar to that in Section 1,4 The value of nlas is 200 for Sequoyah. The risk $r C_{i j}$ is the $j^{\text {th }}$ element of the vector $r C_{i}$ in Equation 1.9 of Section 1.4. The $r i s k r C_{i j k}$ is the fth element of the vector $r C_{i}$ when the frequencies of all the PDS groups except group $k$ in the vector $\mathrm{fPDS}_{1}$ are set to zero. The vector $\mathrm{fPDS}_{i}$ is equal to the product $\mathrm{fIE}_{1} \mathrm{P}_{1}(\mathrm{IE} \rightarrow \mathrm{PDS})$.

The result of tho first method for computing contribution to risk is denoted the fractional contribution to mean risk (FCMR). The contribution of PDS group $k$ to the risk for consequence measure $j$, FCMR $; k$, is defined as the ratio of the annual risk due to PDS group to the total annual risk. That is, FCMR $_{j k}$ is defined by

$$
F C M R_{j k}=E\left(r C_{j k}\right) / E\left(r C_{j}\right)
$$

where $E(x)$ represents the annual value of $x$. Computationally, $F C M R_{j k}$ is found by use of the relation

$$
\begin{aligned}
\mathrm{FCMR}_{j k}=[\Sigma & \left.\mathrm{rC}_{i j k} / \mathrm{nLHS}\right] /\left[\Sigma \mathrm{rC}_{i j} / \mathrm{nLHS}\right] \\
& =\Sigma \mathrm{rC}_{i j k} / \Sigma: \mathrm{rC}_{i j}
\end{aligned}
$$

where the summations are from $1=1$ to $1=n$ LHS
The result of the second methot for computing contribution to risk is denoted the mean fractional contribution to risk (MFCR). The contribution of PDS group $k$ to the risk for consequence measure $j, F^{F C M R} R_{j k}$, is defined as the annual value of ratio of the risk due to PDS group $k$ to the total risk. That is,

$$
M F C R_{j k}=E\left(\mathrm{rC}_{j k} / \mathrm{rC}_{j}\right)
$$

Computationally, $\mathrm{MFCR}_{j k}$ is found by use of the relation

$$
\mathrm{MFCR}_{j k}=\Sigma\left(r C_{1 j k} / r C_{i j}\right) / n L H S,
$$

where the summation again is from $i=1$ to $i=n L H S$.

For FCMR, the averaging over the observations is done before the ratio of group risk to total risk is formed; for $M F C R$, the averaging over the abservations is done after the ratio of group risk to total risk is formed.

Table 5.1.2 gives the values of FCMR and MFCR for the seven PDS groups. Not surprisingly, the two methods of calculating contribution to risk yield different values. Both thethods of computing the contributions to risk are conceptually valid, so the conclusion is clear: contributors to mean risk can only be interpreted in a very broad sense. That is, it is valid to say that Event $V$ is a major contributor to mean EF risk at Sequoyah. It is not valid to state that Event $V$ contributes to $68 \%$ of the EF risk at Sequoyah.

Ple charts for both methods of computing the contribution to risk are shown in Figure 5.1-3 for EFs and for LCFs for the seven $P$ DS groups. The varlations between the two methods of computing contribution to risk are higher for EFs than for LCFs because of the threshold effect involved in determining the number of early fatalities. The differences are readily apparent when this method of displaying the results is used, and suggest the level of confidence that these results warrant.

The contributions of the summary accident progression bins (APBs) to mean risk can also be computed in two ways. Table 5.1-3 and Figure 5,1.4 dis. play the results of these calculations.

To determine the reproducibility of the integrated risk analyses performed for NUREG-1150, a second sample was run through the entire integrated risk analyses for the Surry plant. The second sample is just as valid as the first sample, and differs from the first sample only in that a different random seed was used in the LHS program. Therefore, the differences in the results between the two samples indicate of the robustness of the analysis mothods. In addition, a comparison of the two samples indicates which method of calcula, ing the contribution to risk tends to be more stable. The results from the Surry analysis regarding second sample and a comparison of the two samples are presented in NUREG/CR-4551, Volume 3. Several insights gleaned from this comparison are summarized below. First, considering the EF and L.CF risk distributions, the agreement between the two samples is remarkably good. This agreement indicates that the methods used for this integrated risk analysis are sound. Differences between the two samples can generally be found at the extremes of the distribution, which is not surprising since the extremes are deternined by relatively few observations. Also, the variations between samples are higher for FCMR than for MFCR, indicating that MFCR is a more robust measure of the risk results than FCMR.

The FCMR measure of the contribution to mean risk tends to be less stable than the MFCR measure because often the annual risk for each observation is dominated by a few $A P B s$ that have both h'gh frequency and high source terms, and the mean risk is dominated by a few observations that have very large values of annual risk. The bulk of the mean risk is contributed by about 10 to 20 observations. While the sample as a whole is reproducible, the 10 to 20 observations that control mean risk are generally not reproducible. Since it is the exact nature of these 10 or so

Table 5.1-2
Eractional PDS Contributions to Annual Risk at
Sequoyah Due to Internal Initiators

| $\begin{aligned} & \text { PDS } \\ & \text { Group } \end{aligned}$ | Methord | Core Damage | EF | LCE | Population Dose 50 miles | Population Dose Region | $\begin{gathered} \text { Ind. EF } \\ \text { Risk-1 mile } \end{gathered}$ | Ind. LCF Risk-10 mile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slow SBO | ECMR | 8.2 | 6.9 | 12.5 | 11.1 | 12.5 | 8.5 | 11.8 |
|  | MPCR | 8.0 | 6.7 | 8.4 | 8.3 | 8.3 | 7.0 | 8.2 |
| Fast SBO | FCMR | 16.6 | 16.0 | 28.6 | 26.5 | 28.7 | 17.7 | 28.3 |
|  | MFCR | 16.8 | 18.2 | 25.4 | 24.3 | 25.4 | 19.0 | 23.9 |
| LOCAs | FCMR | 63.1 | 1.7 | 14.2 | 18.6 | 14.6 | 3.2 | 14.9 |
|  | MFCR | 60.2 | 13.0 | 20.9 | 28.1 | 22.1 | 12.8 | 25.7 |
| Event V | FCMR | 1.2 | 68.0 | 10.3 | 14.9 | 9.8 | 61.8 | 29.2 |
|  | MFCR | 1.5 | 40.5 | 16.0 | 10.4 | 9.7 | 37.7 | 16.2 |
| Transients | FCMR | 4.2 | 0.1 | 0.5 | 0.5 | 0.5 | 0.2 | 0.5 |
|  | MFCR | 5.7 | 1.3 | 1.4 | 1.3 | 1.4 | 1.4 | 1.7 |
| ATWS | FCMR | 3.7 | 1.9 | 3.8 | 3.7 | 3.8 | 2.2 | 4.1 |
|  | MFCR | 4.3 | 6.8 | 5.7 | 5.3 | 5.6 | 7.2 | 7.5 |
| SGTR | FCMR | 3.1 | 5.3 | 30.1 | 24.7 | 30.1 | 6.4 | 11.3 |
|  | MFCR | 3.6 | 13.5 | 28.1 | 22.6 | 27.5 | 14.9 | 16.9 |



[^14]Table 5.1-3
Eractional APB Contributions ( 8 ) to Annual
Risk at Sequoyah Due to Internal Initiators

| Sumnary APB | Method | EFs | LCFs | Population Dose Dose 50 miles | Population Dose Region. | $\begin{gathered} \text { Ind. EF } \\ \text { Risk- } 1 \text { mile } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Ind. LCF } \\ \text { Risk-10 mile } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VB, CF during $\mathrm{CO}^{-}=$ | FCMR | 1.6 | 4.4 | 3.7 | 4.3 | 2.3 | 4.3 |
| degradation | MFCR | 8.5 | 5.6 | 4.1 | 5.4 | 7.8 | 6.0 |
| VB, Alpha mode | FCMR | 0.4 | 0.8 | 0.7 | 0.8 | 0.5 | 0.9 |
|  | MFCR | 3.9 | 1.6 | 1.2 | 1.5 | 3.5 | 2.0 |
| VB, CF at VB, RCS pressure >200 psia | FCMR | 8.0 | 22.8 | 21.0 | 22.7 | 11.3 | 22.7 |
|  | MFCR | 7.6 | 11.5 | 10.7 | 11.3 | 8.9 | 12.3 |
| VB, CF at VB, RCS pressure $<200$ psia | FCMR | 13.9 | 16.7 | 14.7 | 16.7 | 13.4 | 18.5 |
|  | MFCR | 14.6 | 11.9 | 10.2 | 11.7 | 14.4 | 12.6 |
| VB, late CF | FCMR | 0.0 | 3.8 | 4.9 | 4.0 | 0.0 | 1.0 |
|  | MFCR | 0.5 | 9.0 | 9.6 | 9.2 | 0.8 | 4.9 |
| VB, very late CF. or BMT | FCMR | 0.0 | 2.2 | 6.9 | 2.8 | 0.0 | 3.0 |
|  | MFCR | 0.0 | 10.9 | 21.0 | 12.7 | 0.0 | 15.7 |
| Bypass | FCMR | 75.4 | 44.2 | 42.9 | 43.7 | 70.6 | 44.6 |
|  | MFCR | 61.7 | 43.8 | 37.6 | 42.6 | 60.6 | 40.4 |
| vs, No CF, No Bypass | FCMR | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
|  | MFCR | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 |
| No VB, CF during core degradation | FCMR | 0.8 | 5.? | 5.0 | 5.1 | 1.8 | 5.1 |
|  | MFCR | 3.3 | 3.6 | 5.2 | 5.5 | 4.1 | 6.1 |
| No vB, No CF | FCMR | 19.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
|  | MFCR | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 |



Figure 5.1-4. Fractional $A P B$ Contributions to Annual Risk, Sequoyah (Internal Initiators)
observations that determines the contributors to mean risk, it is not surprising that FOMR is not a robust measure of the entire risk analysis.

Both FCMR and MFCR are conceptually valid methods of computing the contributions to mean risk. However. given the overall structure of the PRAs performed for NUREG.1150, MFCR is the more approptiate measure. The analysis performed for each observation in the sample can be viewed as a complete PRA. In a single observation, each sampled variable has a fixed value representirig one possible value for an imprecisely inown quantity. Ea a observation ylelds an estimate for the ratio rC $\mathrm{Jk}_{\mathrm{k}} / \mathrm{rC} \mathrm{C}_{\text {g }}$ (the fractional contribution of PDS group $k$ to the risk for oonsequence measure $f$ ) based on an internally consistent set of assumptions: Taken as a whole, the sample produces a distribution for fractional contributions to risk.

MFCR results from averaging over the sampled variables and is thus consistent with other annual values reported in this study. That is, for other quantities, a single value is obtained for each observation in the sample, and distributions and means are reported for these values. Thus, the calculation of MFCR is consistent with the manner in which mean risk values are calculated. The FMCR results are not consistent with this pattern of obtaining a complete result for each observation and then analyzing the distribution of results.

This is an appropriate place to remind the reader of a caveat made elsewhere in this report: a mean value is a summary measure and information is lost in generating it. Thus, considerable caution should be used in drawing conclusions solely from mean values. A mean is obtained by reducing an entire distribution to a single number.

Even though the measures for determining the contributors to mean risk are only approximate, the types of accidents that are the largest contributors to offsite risk at Sequoyah are clear. For the two consequence measures that depend on a large early release. EFs and individual risk of EF within one mile, Event $V$ is the major contributor to mean risk, with the blackout sequences also playing an important role.

Although its overall frequency is low, Event $V$ dominates the EF risks because a large unmitigated release ocours shortly after the accident begins. Evacuation occurs after the release has begun. One might expect that SGTR accidents would contribute to EF risks in a similar fashion. However the SGTR accidents that lead to large releases, the "H" SGTRs with stuck-open secondary $S R V s$, are very lengthy accidents. Therefore, although the releases from the "H" SGTR accidents are large, they occur after the evacuation is complete and cause relatively few early fatalities.

The SBOs are also significant contributors to EF risks. The blackout accidents are responsible for a large part of the early CFs. By referring to Table $5.1-3$, it can be seen that the fourth bin involving containment fallure at VB (CF at VB) with the RCS at low pressure (failure due mainly to hydrogen burns) is the dominant bin contributing to the early fatality risks. The third bin, which involves failure of the containment when the vessel is breached at high pressure, also contributes, but as discussed in Subsection 5.1.1, although the potential for CF at VB with high RCS
pressure is quite high, the actual probability is lower due to deepflooding of the cavity, core damage arrest before VB, and RCS depressurization. Also, for the nonblackout accidents in which CF occurs at VB with the RCS at high pressure, there is more mitigation of the releases due to the operation of sprays, etc.

It might be expected that early CF would contribute about the same to risk as Event $V$ because, given core damage, the frequency of early CF is about the same as the frequency of Event V. When comparing to Event V, however, the evacuation for the early CFs for $\$ B 0$ occurs earlier with respect to the timing of the releases. The early CFs usually involve energetic releases due to the dominance of rupture failures of containment. This results in lofting of the plume above the population, thus reducing the EF risks and increasing slightly the LCF risks. The energy associated with Event $V$ releases is much lower.

LCFs and population dose depend primarily on the lotal amount of radioactivity released. Thus, unlike EF risk, the timing of CF is not particularly important for the remaining four consequence measures: population dose within 50 miles, population dose within the entire region, LCFs, and individual risk of LCF within 10 miles. The LCF risk and population dose are dominated by SBO, SGTRs, and LOCAs. For SBOs and LOCAs, the early failures of containment dominate the contributions, with less contribution from the late $C F$. The later failures of containment involve more time for natural deposition mechanisms and mitigation mechanisms such as sprays to reduce the releases to the environment.

Most of the contribution from SGTRs to LCFs and population dose comes from the "H" SGTRs (secondary SRVs stuck open). Although the "H" SGTR accident is unlikely (MCDF about 1.3E-6/R-yr), there is a direct open path from the reactor vessel to the environmenc throughout the accident. SGTRs were not considered as initiators in the previous version of this analysis ${ }^{2}$, so the "H" SOTRs are "riew" accidents for the NUREG- 1150 pressurized water reactor (PWR) analyses. Thus, their impurtance to the latent cancer fatality risk was unrecognized at the time the expert panel on source term issues was meeting. After the contribution of the "H" SGTRs was evident, an ad hoc expert panel was convened to consider releases from "H" SGTR accidents (see NUREG-4551 Volume 2, Part 6). This panel concluded that there would be few effective removal mechanisms operating in the release path through the steam generator (SG) and the secondary system safety valves. Thus, the release fractions are high for this accident. Since the onset of core damage ocours about 10 h after the start of the accident for "H" SGTRs, the evacuation is complete before the releases commence; thus, "H" SGTRs are not significant contributors to the EF risk. However, the "H" SGTR accidents significantly contribute to LCF risk and population dose.

The ninth bin that involves accidents in which the vessel does not fall but the containment fails during core degradation ( $C D$ ) or the containment is not isolated at the uncovering of top of active fuel (UTAF) makes a minor contribution to the EF risk , and a somewhat greater contribution to the LCF risk. It must be remembered that although the vessel does not fall in these accidents, compromise of the containment pressure boundary will allow a portion of the in-vessel releases to escape into the environment, The
combination of the threshold effect associated with EFs with the fact that the releases associated with this bin are fairly small results in few EFs. For latent cancers, on the other hand, there is no threshold effect. resulting in lifger values for latent cancers.

### 5.1.3 Contributors to Uncertalnty

Figure 5.1-1 provides information on the frequency at which values for individual consequence measures will be exceeded. Specifically, mean, medion, 5th percentile, and 95 th percentile values are shown for these excredance frequencies. Thus, Figure 5.1 .1 can be viewed as presenting uncertainty analysis results for the risk at Sequoyah due to internal initiators. The 200 underlying exceedance frequency curves (CCDFs) for Figure 5.1.1 are contained in Appendix $D$.

As the curves in Figure 5.1 .1 and in Appendix $D$ show, there is eignificant uncertainty in the frequency at which a given consequence value will be exceeded. Due to the complexity of the underlying analysis and the concurrent variation of a large number of variables within this analysis, it is difficult to ascertain the cause of this uncertainty on the basis of a simple inspection of the results. However, numerical sensitivity analysis techniques provide a systematic way of investigating the observed variation in exceedance frequencies.

This section presents the results of using regression-based sensitivity analysis techniques to examine the variability in the consequences of internally initiated accidents at Sequoyah. The dependent variable is the risk (units: consequences/year) for each consequence measure. For a given observation in the sample, this variable is obtained by multiplying the each consequence value by its frequency and then suming these products. This variable can be viewed as the result of reducing each of the curves in Figure D .1 to a single number.

The uncertainty analysis techniques used in this study can be viewed as creating a mapping from analysis input to analysis results. The variables sampled in the generation of this mapping are presented in Tables 2.2.5, $2.3-2$, and $3.2-2$. These variables are the independent variables in the sensitivity studies presented in this section. Variables that are correlated to each other are treated as a single variable in sensitivity analysis. For example, in Table $2.3-2$, the variables RCP-SL-P2 through RCP-SL-P4 are all correlated, and therefore, in the sensitivity analysis, they are treated as a single variable (i.e., RCP.SL.P).

Regression-based sensitivity dnalysis results for EFs and LCFs for all internally initiated events are presented in Table $5.1-4$. This table contains the results of performing a stepwise regression on these two measures of risk. The results for individual risk of EF within 1 mile are similar to the results for EFs. The results for population dose within 50 miles, and within the entire region, and individual risk of LCF within 10 iniles are similar to the results for LCF. Therefore, these data are not presented here. The statistical package SAS ${ }^{1}$ was used to perform the regression.

For EFs and LCFs, Table 5.1.4 lists the variables in the order that they entered the regression analysis, gives the sign (i.e., positive or negative) on regression coefficients for the variables in the final regression model and shows the $R^{2}$ values that result with the entry of successive variables into the model. The tendency of a dependent variable to increase with an independent variable is indicated by a positive regression coefficient, and the tendency of $a$ dependent variable to decrease when an independent variable increases is indicated by a negative regression coefficient.

The regression analysis for EFs accounts for about 508 of the observed variability. The independent variables that account for this variability determine the frequency and the magnitude of an early release. The regression analysis for LCF is somewhat less successful, as it is able to account for only 308 of the variability. The independent variables that account for this variability are predominantly those variables that determine the frequencies of the eccident.

Because the regression results for all internal events do not account for much of the variability, the same type of stepwise regression analysis was performed for each PDS group. The results from the regression performed for the EFs and LCFs for each PDS group are presented in Tables 5.1.5 through $5.1-11$. The most robust results are exhibited for the bypass accidents, PDS Groups 4 and 7 , and to a lesser degree, for the ATWS accidents, PDS Group 6. For PDS Group 4, Event V, more than 95 of the variability is explained for both early fatality and latent cancer fatality risks. At least 908 is accounted for by the initiating event frequency of check valve fallure in one of the LPIS trains, V-TRAIN. Most of the remaining variability for both risk measures involves the probability that the releases are scrubbed by fire sprays, V-SPRAYS, as well as the decontamination factor associated with the sprays, VDF,

For PDS Group 7, SOTRs, about 808 of the variables for both risk measures is explained: the variables involved include the release fraction from the vessel to the enviroment, FISGFOSG; the initiating event frequency for SGTRs, IE-SGTR; and the fraction of the fission products released from the core to the vessel, FCOR.

The bypass accidents lend themselves best to analysis with a linear regression model, because the risks are directly related to a product of several variables. For example, for Event $V$, the isks are directly related to V-TRAIN * FVES * FCOR, and for SGTR, the risks are directly related to IE-SGTR * FCOR * FISGFOSG.

For PDS Group 6, ATWS, much of the risk is associated with the PDS that involves an SGTR. For this group, 658 of the variability is explained for early fatalities, and 868 for latent cancers. The variables involved include the same as mentioned for SGTR, as well as the probabilicy of fallure of automatic insertion of control rods. AU.SCRAM, and the probability of fallure to effect manual scram due to operator error, MN.
SCRAM.

For PDS Groups 1, 2, 3, and 5, the SBO, LOCA and Transient PDS Groups, less than 608 of the variability is explained for both early fatalities and latent cancer fatalities. The models involved with these PDS groups are more complex and nonlinear than for the bypass acciclents, and different variables come into play for different degrees of risk measures. Some of the variables that are involved with explaining the variability in the early and latent cancer fatality risks for these PDS Groups include: the CF pressure, CF-PRES; the pressure rise in containment at VB, DP1-VB; the fraction of core that is involved in HPME, FR-HPME; and the decontamination factor for the ice condenser, DF-IC.

When the signs of the regression coefficients are noted, it is seen that most are positive; that is, an increase in the variable tends to increase the consequence. The variables that show negative signs are CF pressure, CF-PRES; probability that the PORVs will stick open, PORV-STK; probability that the releases from Event V, V-SPRAYS are scrubbed; and probability that a T-I RCP seal fallure will occur after UTAF, RCP-SL.P. Obviously, increasing the failure pressure of the containment, as well as increasing the probability that the $V$ releases are scrubbed will decrease the conse. quences. Increase in the other two variables decreases the amount of vessel iallures at high pressure, and thus, the CFs at VB bs well as the consequences are decreased. The accident frequency variable, RCP-SL-F, that represents the probability of a $\mathrm{T}=1$ RCP seal fallure before UTAF has a positive sign associated with it because it is related to the accident initiation frequency.

Table 5.1-4
Sumnary of Regression Analyses for
Annual Risk at Secubyah for Internal Initiators

|  | $\begin{aligned} & \text { Early } \\ & \text { Eatalities } \end{aligned}$ |  |  | Latent Cancer Entalities |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ster | VARE | $B C$ | $\mathrm{R}^{26}$ | V_ VAR | $R$ | $R^{2}$ |
| 1 | v.Trpate | Pos. | 0.26 | 1E-SGTR | Pos. | 0.10 |
| 2 | FVES | Pos. | 0.30 | CF-PRES | Neg. | 0.15 |
| 3 | RCP - $51-\mathrm{P}$ | Neg . | 0.33 | DF2.VB | Pos. | 0.21 |
| 4 | CF-PRES | Neg. | 0.36 | V-TRATN | Pos. | 0.25 |
| 5 | DP1-VB | Pos. | 0.39 | SRV-DRPZ | Pos. | 0.28 |
| 6 | FCony | Pos. | 0.41 |  |  |  |
| 7 | FISGFOSG | Pos. | 0.43 |  |  |  |
| 8 | DFIC | Pos. | 0.46 |  |  |  |
| 9 | FOOT | Pos | 0.48 |  |  |  |

- Variables listed in the order that they entered the regression analysis.
v Sign (positive or negative) on the regression coefficients (RCs) in final regression model.
Pos: Increase in independent variable increases dependent variable.
Neg: Increase in Independent variable decreases dependent variable.
- $R^{2}$ values with the entry of successive variables into the regression model.

Table 5.1 .5
Summary of Regression Analyses for
Annual Risk at Sequoyah for PDS Group 1: Slow Sko

|  | $\begin{aligned} & \text { Early } \\ & \text { Fatalities } \end{aligned}$ |  |  | Latent Cancer Fatalities |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | VAR ${ }^{\text {a }}$ | RCb | $\mathrm{B}^{2 \mathrm{E}}$ | VAR | RC | $\mathrm{R}^{2}$ |
| 1 | CF-PRES | Neg. | 0.0668 | DG-FSTRT | Pos. | 0.1227 |
| 2 | DP1-VB | Pos. | 0.1365 | CF-PRES | Neg. | 0.2075 |
| 3 | H2-INV | Pos. | 0.2009 | AC. UN1T2 | Pos. | 0.2829 |
| 4 | FR-HPME | Pos. | 0.2367 | IE-LOSP | Pos. | 0.3338 |
| 5 | DG-FSTRT | Pos. | 0.2671 | RCP-SL-F | Pos. | 0.3869 |
| 6 | BETA2-DG | Pos, | 0.2956 | H2-INV | Pos. | 0.4305 |
| 7 | DFIC | Pos. | 0.3236 | DP1-VB | Pos. | 0,4602 |
| 8 |  |  |  | DG - FRUN6 | Pos. | 0.4832 |
| 9 |  |  |  | H2-EXV | Pos. | 0.5052 |
| 10 |  |  |  | FR-HPME | Pos. | 0.5234 |
| 11 |  |  |  | BETA2-DG | Pos. | 0.5406 |

a Variables listed in the order that they entered the regression analysis.
b Slgn (positive or negative) on the RCs in final regression model.
Pos: Increase in independent variable increases dependent variable.
Neg: Increase in independent variable decreases dependent variable.

- $R^{2}$ values with the entry of successive variables into the regression model.

Table 5.1.6
Summary of Regression Analyses for Annual Risk at Sequoyah for PDS Sroup 2: Fast SBO

| $\begin{aligned} & \text { Early } \\ & \text { Fatalities } \end{aligned}$ |  |  |  | Latent Cancer$\qquad$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | VARa | RCb | $\mathrm{R}^{20}$ | VAR | RC | $R^{2}$ |
| 1 | CF-PRES | Neg. | 0.0669 | DG.FSTRT | Pos. | 0.1216 |
| 2 | DG-FSTRT | Pos. | 0.1065 | CF-PRES | Neg . | 0.1913 |
| 3 | TDP-FSTR | Pos. | 0.1456 | 1E-10SP | Pos. | 0.2586 |
| 4 | RCP-SL-P | Neg. | 0.1845 | TDP-FSTR | Pos. | 0.3101 |
| 5 | H2-EXV | Pos. | 0.2284 | H2-EXV | Pos. | 0.3440 |
| 6 | DP1 - VB | Pos. | 0.2722 | DG-FRUN6 | Pos. | 0.3778 |
| 7 | RCP-SL-F | Pos. | 0.3053 | DP1.VB | Pos | 0.4083 |
| 8 |  |  |  | RCP-SL-F | Pos. | 0.4338 |
| 9 |  |  |  | RCP - SL-P | Neg. | 0.4557 |
| 10 |  |  |  | HE-XTIE | Pos. | 0.4780 |
| 11 |  |  |  | BETA2 - DG | Pos. | 0.5042 |

* Variables listed in the order that they entered the regression analysis.
${ }^{5}$ Sign (positive or negative) on the RCs in final regression model.
Pos: Increase in independent variable increases dependent variable.
Neg: Increase in independent variable decreases dependent variable.
- $\mathrm{R}^{2}$ values with the entry of successive variables into the regression model.

Table 5.1.7
Summary of Regression Anelyses for Annual Risk at Sequoyah for PDS Oroup 3: LOCAs

| $\begin{aligned} & \text { Early } \\ & \text { Eatalities } \end{aligned}$ |  |  |  | Latent Cancer Eatalaties |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ster | VAR | RCb | $\mathrm{R}^{2 \mathrm{C}}$ | VAR | $\underline{R}$ | $\mathrm{R}^{2}$ |
| 1 | ER - HPME | Pos. | 0.0671 | HE.FOV | Pos. | 0.1345 |
| 2 | VL-CCI | Pos. | 0.1218 | MOV - FOPN | Pos. | 0.1797 |
| 3 | CF.PRES | Neg. | 0.1617 | CF-PRES | Neg. | 0.2133 |
| 4 | DFIC | POS. | 0.1986 | VB. ALPHA | Pos. | 0.2415 |
| 5 | VB-ALPHA | Pos. | 0.2393 | DP1.VB | Pos. | 0.2678 |
| 6 | FCONV | Pos. | 0.2808 |  |  |  |
| 7 | MOV-FOPN | Pos. | 0.3058 |  |  |  |
| 8 | AFW-STMB | Pos. | 0.3301 |  |  |  |

* Varlabies listed in the order that they entered the regression analysia.
b Sign (positive or negative) on the RCs in final regression model.
Pos: Increase in indepencient variable increases dependent variable.
Neg: Increase in independent variable decreases dependent variable.
- $R^{2}$ values with the entry of successive variables into the regression model

Table 5, 2-
Summary of Regression hit hyes for Annual Risk at Sequoyah for PDS Strap is: Event V

| Sten | $\begin{aligned} & \text { Early } \\ & \text { Eatalittes } \end{aligned}$ |  |  | Litent Cancer - Zatalities |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VARe | $\xrightarrow{\text { RCb }}$ | $\mathrm{R}^{20}$ |  | $\xrightarrow{R C}$ | $R^{2}$ |
| 1 | V-TRAIN | Pos. | 0.8959 | V-7tuat | Pos. | 0.9651 |
| 2 | V-SPRAYS | Neg. | 0.9132 | V1\% | Pos. | 0.9787 |
| 3 | FCONC | Pos. | 0.9285 | V-Splows | Neg. | 0.9835 |
| 4 | VDF | Pos. | 0.9440 |  |  |  |
| 5 | FCONV | Pos. | 0.9537 |  |  |  |
| 6 | FVES | Pos. | 0.9634 |  |  |  |

a Variables listed in the order that they ontertit the refression analyefe.
b Sign (positive or negative) on the RCs in finai regression model.
Pos: Increase in independent variable increases dependent variable.
Neg: Increase in independent varisble decreases copendeat varlable.
e $R^{2}$ values with the entry of successive variables into the regression model.

Table 5.1.9
Summary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 5: Transients

| Step | $\begin{aligned} & \text { Early } \\ & \text { Fatalities } \end{aligned}$ |  |  | Latent Cancer Eatalities. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VAR ${ }^{\text {a }}$ | $\underline{R C b}$ | $\mathrm{B}^{20}$ | VAR | RC. | $\mathrm{R}^{2}$ |
| 1 | H2-INV | Pos. | 0.1052 | H2-INV | Pos. | 0.1724 |
| 2 | FR-HPME | Pos. | 0.1530 | BETABAOV | Pos | 0.2384 |
| 3 | FCOR | Pos. | 0.1966 | HE-FDBLD | Pos. | 0.3013 |
| 4 | CF-PRES | Neg. | 0.2392 | PORV-STK | Neg. | 0.3487 |
| 5 | DP1.VB | Pos. | 0.2734 | MDP-FSTR | Pos. | 0.3951 |
| 6 | PORV-STK | Neg. | 0.3048 | FR - HPME | Pos. | 0,4342 |
| 7 |  |  |  | CNT-ISO | Pos. | 0,4640 |
| 8 |  |  |  | FCOR | Pos. | 0.4887 |
| 9 |  |  |  | IE-LMFWS | Pos. | 0.5103 |
| 10 |  |  |  | CF. PRES | Neg. | 0.5304 |

* Variables listed in the order that they entered the regression analysis.
b Sign (positive or negative) on the RCs in final regression model. Pos: Increase in independent variable increases dependent variable. Neg: Increase in independent variable decreases dependent variable.
- $R^{2}$ values with the entry of successive variables into the regression model.

Table 5.1.10
Summary of Regression Analyses for Annual Risk at Sequoyah for PDS Group 6: ATWS

| $\qquad$ <br> Fatalities |  |  |  | Latent Cancer$\qquad$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | VARa | $\underline{\mathrm{RCb}}$ | $\mathrm{R}^{20}$ | VAR | PC | $\mathrm{R}^{2}$ |
| 1 | FISGFOSG | Pos. | 0.2728 | IE.SGTR | Pos. | 0.3016 |
| 2 | FCOR | Pos. | 0.4498 | AU-SCRAM | Pos. | 0.5718 |
| 3 | IE SGTR | Pos. | 0.5483 | MN - SCRAM | Pos. | 0.7317 |
| 4 | AU-SCRAM | Pos. | 0.6201 | FISGFOSG | Pos. | 0.7875 |
| 5 | MN- SCKAM | Pos. | 0.6554 | FCOR | Pos. | 0.8261 |
| 6 |  |  |  | VB-ALPHA | Pos. | 0.8432 |
| 7 |  |  |  | UNFV - MOD | Pos. | 0.8556 |
| 8 |  |  |  | H2-INV | Pos | 0.8631 |

a Variables ifsted in the order that they entered the regression analysis.
b Sign (positive or negative) on the RCs in final regression model.
Pos: Increase in independent variable increases dependent variable.
Neg: Increase in independent variable decreases dependent variable.
${ }^{6} \mathrm{R}^{2}$ values with the entry of successive variables into the regression model.

Table 5.1.11
Summary of Kegression Analyges for Annual Kisk at Eequoyah for PDS Group 7: SGTRs

|  | $\begin{aligned} & \text { Early } \\ & \text { Eatalities } \end{aligned}$ |  |  | Latent Cancer Fatalities |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | VARE | $\xrightarrow{\mathrm{RCb}^{\text {b }}}$ | $\mathrm{R}^{20}$ | VAR | RC | $R^{2}$ |
| 1 | FISGIOSG | Pos. | 0.3946 | IE - SGTR | Pos. | 0.4033 |
| 2 | FCOR | Pos. | 0.6178 | FISGFOSG | Pos. | 0.5708 |
| 3 | IE. SGTR | Pos. | 0.7507 | SKV.DPRZ | Pos. | 0.6459 |
| 4 | MFW-FRST | Pos, | 0.7671 | FCOR | Pos. | 0.7110 |
| 5 | CF-PRES | Neg. | 0.7799 | HE-DPRSG | Pos | 0.7574 |
| 6 | MDP-FSTR | Pos. | 0.7906 | MS-LIAS | Pos. | 0.7723 |
| 7 |  |  |  | MFW-FRST | Pos. | 0.7823 |
| 8 |  |  |  | MDP-FSTR | Fos. | 0.7923 |
| 9 |  |  |  | CF-PRES | Pos. | 0.8010 |

[^15]5.2 References
2. SAS Institute, Inc. "SAS User's Guide: Statistics," Version 5 Edition, Cary, North Carolina: SAS Institute Inc., 1985.
2. USNRC, "Severe Accident Risks: An Assessment of Five Nuclear Power Plants," U, S. Nuclear Regulatory Comission, NUREG-1150, June 1989.

## 6. INSIGHTS AND CONCLUSIONS

Core D. Arrest. The inclusion of the possibility of arresting the core degradativu (CD) process before vessel failure is an important feature of this analysis. For internal initiators, there is a good chance that nonbypass accidents will be arrested before vessel fallure. This may be due to the recovery of offsite power (ROSP) or the reduction of reactor coolant system (RCS) pressure to the point where an operable system can inject. The arrest of core damage before vessel breach (VB) plays an important part in reducing the risk due to the most frequent types of internal accidents: loss-of-coolant acsidents (LOCAs) and station blackouts (SBOs).

Depressurization of the RCS. Depressurization of the RCS before the vessel fails is. firuz:ant in leducing the loads placed upon the containment at VB and in arresting core damage before VB. ©or accidents in which the RCS is at the power-operated relief valve (PORV) setpoint pressure during CD, the effective mechanisms for pressure reduction are temperature-induced (T-I) fallurs of the hot leg or surge line, T-I fallure of the RCP seals, and the stiching open of the PORVs. All of these mechanisms are inadvertent and beyond the control of the operators. The apparent beneficial effects of reducing the pressure in the RCS when lower head fallure is imminent indicate that further investigation of cepressurization may be warranted. The dependency of the probability of containment failure (CF) on RCS pressure boundary failures that occur at unpredictable iocaiions and at unpredictable times is somewhat unsettling. Studies of the effects of increasing YORV capacity, providing the means to open the PORVs in blackout situations, and changing the procedures to remove restrictive conditions on deliberate RCS pressure reduction might prove rewarding in decreasing the probability of early $C F$ at pressurized water reactors (PWRs). Depressurization may involve the loss of considerable inventory from the RCS. Any studies undertaken should consider possible drawbacks as well as benefits.

Containment. Failure. If a core damage accident proceeds to the point where the lower head of the reactor vessel fails, the containment is not likely to fall at this time. This is partially due to the depressurization of the RCS before vessel failure, partially due to deep-flooding of the reactor cavity, which inh!bits dispersal of core debris from the cavity in hizh pressure accidents, and partially due to the strength of the Sequoyah contalnment relative to the loads expected. Hydrogen burns before VB for the SBO accidents and hydrogen burn/direct containment heating (DCH) events are the factors that lead to early CFs when they do occur. Early CFs contribute significantly to the risks that depend on a large early release (early fatalities (EFs)) and are major contributors to the risks that are functions of the total release (latent cancer fatalities (LCFs) and population dose). For SBOs, late fallures occur from hydrogen burns upon power recovery during core-concrete interaction (CCI). Very late failures that are many hours after VB depend upon the availability of containment heat removal (CHR). If CHR is recovered within a day or so, basemat meltthrough is the most probable failure mode. If CHR is not recovered, an overpressure fallure within a day or two after the start of the accident is the likely mode.

Bypase Accidents. Bypass accidents are major contributors to the risks that depend on a large early release as well as thase that are functions of the total release. Event $V$ is the accident most likely to result in a large, early release for internal initiators. Steam generator tube ruptures (SGTRs) are also important contributors to large releases, but most of the large releases due to SGTRs occur many hours after the start of the aociftent, and thus they contribute significantly to the risks that depend on the total release. The most important SGTRs are those in which the SRVs on the seoondary system stick open. Although the bypass accidents are not the most frequent types of internal accidents, the somewhat low probability of CF (especially early CF) for the non-bypass accidents results in the large contributions of the bypass accidents to risk.

Eission Product Releassa. There is considerable uncertainty in the release fractions for all types of socidents. There are several features of the Sequoyah plant that tend to mitigate the release. First, the in-vessel releases are generally directed to the ioe condenser where they experience some decontamination. If the sprays are operating, the radionuclides will also contribute to the decontamination of the releases. The reactor cavity pool also offors a mechanism for reducing the release of radionuclides from CCI. The largest releases tend to occur when the containment is bypassed or when early failure of containment involving catastrophic rupture occurs. Catastrophio rupture is assumed to cause bypass of the ice condenser and fallure of the containment sprays.

Uncertainty in Risk. Considerable uncertainty is associated with the risk estimates produced in this analysis. The largest contributors to the uncertalnty in EFs and LCFs for the bypass sequences are the variability in frequencies of the inftiating events and the uncertainty in some of the parameters that determine the magnitude of the fission product release to the environment. For non-bypass accidents, the variability in frequencies of the inftiating events and the uncertainty in the accident progression parameters and probabilities contribute to the uncertainty in latent cancers. The contribution to the uncertainty in EFs for non-bypass accidents arises from variability in all the constituent analyses that were incorporated into the uncertainty analysis: initiating events, accident progression, and fission product release.

Comparison with the Safety Goals. For both the individual risk of $E F$ within one mile of the site boundary and the individual risk of LCF within 10 miles, the mean annual risk and awon the 95 th percentile for annual risk fall more than an order of magnicude below the safety goals. Indeed, even the maximum of the 200 values that make up the annual risk distributions falls well below the safety goals.

```
Frank Abbey
U. K. Atomic Energy &uthority
Wigshaw Lane, Culcheth
Warrington, Cheshire, WA3 4NE
ENGLAND
Kiyoharu Abe
Department of Reactor Safety
 Research
Nuclear Safety Resear 'I Center
ToKai Research Establishment
JAERI
Tokai-mura, Naga-gun
Ibaraki-ken,
JAPAN
Ulvi Adalioglu
Nuclear Engineering Division
Cekmece Nuclear Research and
 Training Centre
P.K.1, Havaalani
Istanbul
TURKEY
Bharat Agrawal
USNRC-RES/AEB
MS: NL/N.344
Kiyoto Aizawa
Safety Research Group
Reactor Research and Develcpment
 Project
PNC
9.13m 1-Chome Akasaka
Minatu-Ku
Tokyo
JAPAN
Oguz Akalin
Ontario Hydro
700 University Avenue
Toronto, Ontario
CANADA M5G 1X6
Davi& SIH二1:+
Science Applications International
 Corporation
1 7 1 0 \text { Goodridge Drive}
Mclean, VA }2210
```

Agustin Alonso
University Politecnica De Madrid
$J$ Gutierrez Abascal, 2
28006 Madrid
SPAIN

Christopher Amos
Science Applications International
Corporation
2109 Air Park Road SE
Albuquerque, NM 87106

Richard C. Anoba
Project Engr., Corp. Nuclear Safety
Carolina Power and Light Co.
P. C. Box 1551

Raleigh, NC 27602
George Apostolakis
UCLA
Boelter Hall, Room 5532
Los Angeles, CA 90024

James W. Ashkar
Boston Edison Company
800 Boylston Street
Boston, MA 02199

Donald H. Ashton
Bechtel Power Corporation
P.O. Box 2166

Houston, TX 77252-2166
$J$. de Assuncao
Cabinete de Proteccao e Seguranca Nuclear
Secretario de Estado de Energia
Ministerio da Industria
av, da Republica, $45-6^{\circ}$
1000 Lisbon
PORTUGAL

Mark Averett
Florida Power Corporation P.O. Box 14042

St. Petorshrerg FL 33733
Raymond 0. Bagley
Northeast Utilities
P.O. Box 270

Hartford, CT 06141.0270

```
Juan Bagues
Consejo de Seguridad Nucleare
Sarangela de la Cruz 3
28020 Madrid
SPAIN
George F. Balley
Washington Public Power Supply
 system
P. 0, Box 968
RLchland, WA 99352
H. Bairiot
Belgonucleaire S A
Rue de Champ de Mars 25
B-1050 Brussels
BELGIUM
Louis Baker
Reactor Analysis and Safety
 Division
Building 207
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
H-P, Ba, Eanz
TUV-Norddeutschl and
Grosse Bahnstrasse 31,
2000 Hamburg }5
FEDERAL. REPUBLIC OF GERMANY
Patrick Baranowsky
USNRC-NRR/OEAB
MS: 11E-22
H. Bargmann
Dept, de Mecanique
Inst, de Machines Hydrauliques
 et de Mecaniques des Fluides
Ecole Polytechnique de Lausanne
CH-1003 Lausanne
M.E. (ECUBLENS)
CH. }1015\mathrm{ Lausanne
SWITZERLAND
Robert A. Bari
Brookhaven National Laboratory
Building 130
Upton, NY }1197
Richard Barrett
US! RC-NRR/PRAB
MS: 10A-2
```

Kenneth S. Baskin
S. California Edison Company
P.O. Box 800

Rosemead, CA 91770
J. Basselier

Belgonucleaire S A
Rue du Champ de Mars 25, B- 1050
Brussels
BELGIUM

Werner Bastl
Gesellschaft Fur Reaktorsicherheit
Fozschungsgelande
D-8046 Garching
FEDERAL REPUBLIIC OF GERMANY

Anton Bayer
BGA/ISH/2DB
Postfach 1108
D. 8042 Neuherberg

FEDERAL REPUBLIC OF GERMANY
Ronald Bayer
Virginia Electric Power Co.
P. O. Box 26666

Richmond, VA 23261
Eric S, Beckjord
Director
USNRC-RES
MS: NL/S.007
Bruce B. Beckley
Public Service Company
P.0. Box 330

Manchester, NH 03105
William Beckner
USNRC-RES/SAIB
MS: NL/S-324
Robert $M$. Bernero
Director
USNRC-NMSS
MS: 6A-4

Ronald Berryman [2]
Virginia Electric Power Co
P. O. Box 26666

Richmond, VA 23261

```
Robert C. Bertucio
NUS Corporation
1301 S. Central Ave, Suite 202
Kent, WA 98032
John H. Bickel
EG&G Idaho
P.O. Box 1625
Idaho Falls, ID 83415
Peter Bieniarz
Risk Management Associalion
2 3 0 9 ~ D i e t z ~ F a r m ~ R o a d , ~ N W ~
Albuquerque, NM 8710%
Adolf Birkhofer
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. }8046\mathrm{ Garching
FEDERAL REPUBLIC OF GERMANY
James Blackburn
Illinois Dept, of Nuclear Safety
1035 Outer Park Drive
Springfield, IL. 62704
Dennis C. Bley
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA }9266
Roger M. I ond
Science Applications Int, Corp.
20030 Century Blvd., Suite 201
Germantown, MD 20874
Simon Board
Central Electricity Generating
 Board
Technology and Planning Research
 Division
Berkeley Nuclear Laboratory
Berkeley Gloucestershire, GL139PB
UNITED KINGDOM
Mario V, Bonace
Northeast Utilities Service Company
P.O. Box 270
Hartfo=d, CT 06101
```

Gary J. Boyd
Safety and Reliability Optimization Services
9724 Kingston Pike, Suite 102
Knoxville, TN 37922
Robert J, Breen
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303
Charles Brinkman
Combustion Engineering
7910 Woodmont Avenue
Bethesda, MD 20814
K, J, Brinkmann
Netherlands Energy Res. Fdtn.
P.0. Box 1

1755 ZG Petten NH
NETHERLANDS
Allan R. Brown
Manager, Nuclear Systems and
Safety Department
Ontario Hydro
700 University Ave.
Toronto, Ontario M5G1X5
CANADA
Robert $G$. Brown
TENERA L. P.
1340 Saratoga-Sunnyvale Rd.
Suite 206
San Jose, CA 95129
Sharon Brown
EI Services
1851 So. Central Place, Suite 201
Kent, WA 98031
Ben Buchbinder
NASA, Code QS
600 Maryland Ave. SW
Washington, DC 20546
R. H. Buchholz

Nutech
6835 Via Del Oro
San Jose, CA 95119

```
Robert J. Pudnitz
Future Rescurces Associates
74 Al ameda
Berkeley, Cf 94707
Gary R. Burdick
USNRC-RES/DSR
MS: NL/S -007
Arthur J, Buslik
USNRC-RES/PRAB
MS: NL/S-372
M. Bustraan
Netherlands Energy Res. Fdtn.
P.O. Box 1
17552G Petten NH
NETHERLANDS
Nigel E. Buttery
Central Electricity Generating
 Board
Booths Hall
Chelford Road, Knutsford
Cheshire, WA168QG
UNITED KINGDOM
Jose I. Calvo Molins
Probabilistic Safety Analysis
 Group
Consejo de Seguridad Nuclear
Sor Angela de la Cruz 3, P1. 6
28020 Madrid
SPAIN
J. F, Campbell
Nuclear Installations Inspectorate
St. Peters House
Balliol Road, Bootle
Merseyside, L20 3LZ
UNITED KINGDOM
Kenneth S. Canady
Duke Power Company
422 S. Church Street
Charlotte, NC }2821
Lennart Carlsson
IAEA A-1400
Wagramerstrasse 5
P.O. Box }10
Vienna, }2
AUSTRIA
```

Annick Carnino
Electricite de France
32 Rue de Monceau BEME
Paris, F5008
FRANCE
G. Caropreso

Dept. for Envir. Protect. \& Hlth.
ENEA Cre Casaccia
Via Anguillarese, 301
00100 Roma
ITALY

James C. Carter, III
TENERA L. P.
Advantage Place
308 North Peters Road
Sulte 280
Knoxville, TN 37922
Eric Cazzoli
Brookhaven National Laboratory
Building 130
Upton, NY 11973
John G. Cesare
SERI
Director Nuclear Licensing
5360 I- 55 North
Jackson, MS 39211
S. Chakraborty

Radiation Protection Section
Div. De La Securite Des Inst. Nuc.

5303 Wurenlingen
SWITZERLAND
Sen-I Chang
Institute of Nuclear Energy Research
P.O. Box 3

Lungtan, 325
TAIWAN
J. R. Chapman

Yankee Atomic Electric Company
1671 Worcester Road
Framingham, MA 01701
Robert F, Christie
Tennessee Valley Authority 400 W. Summit Hill Avenue, W10D190
Knoxville, TN 37902


Vernon Denny
Science Applications Int. Corp
5150 El Canino Real, Suite 3
Los Altos, CA 94303
J. Devooget

Faculte des Sciences Appliques
Universite Libre de Bruxelles
av. Franklin Roosevelt
B. 1050 Bruxelles

BELOIUM
R. A. Diederich

Supervising Engineer
Environmental Branch
Philadelphia Electric Co.
2301 Market St
Philadelphia, PA 19101
Raymond DiSalvo
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201
Mary T. Drouin
Science Applications International
Corporation
2109 Air Park Road S.E
Albuquerque, NM 87106
Andrzef Drozd
Stone and Webster
Engineering Corp
243 Summer Street
Boston, MA 02107

## N. W. Edwards

NUTECH
145 Marti lille Lane
San Jose, CA 95119

Ward Edwards
Social Sciences Research Institute University of Southern California
Los Angeles, CA 90089.1111
Joachim Ehrhardt
Kernforschungszentrum Karlsruhe/INR
Postfach 3640
D-7500 Karlsruhe 1
FEDERAL REPUBLIC OF GERMANY

Adel A. El-Bassioni
USNRC•NRR/PRAB
MS: 10A-2
J. Mark Elliott

International Energy Associates, Ltd., Suite 600
600 New Hampshire Ave. , NW
Washington, DC 20037
Farouk Eltawila
USNRC-RES/AEB
MS: NL/N-344
Mike Epstein
Fauske and Associates
P. O. Box 1625

16 W 070 West 83 rd Street
Burr Ridge, IL 60521
Malcolm L. Ernst
USNRC-RGN II
F, R. Farmer
The Long Wood, Lyons Lane
Appleton, Warrington
WA4 5ND
UNITED KINGDOM

## P. Fehrenback

Atomic Energy of Canada, Ltd. Chalk River Nuclear Laboratories Chalk River Ontario, K0J1PO CANADA
P. Ficara

ENEA Cre Casaccia
Department for Thermal Reactors
Via Anguillarese, 301
00100 ROMA
ITALY
え. Fiege
Kernforschungszentrum
Postfach 3640
D- 7500 Karlsruhe
FEDERAL REPUBLIC OF GERMANY
John Flack
USNRC-RES/SATB
MS: NLS-324

```
George F. Flanagan
Oak Ridge National Laboratory
P.0. BoX Y
Oak Ridge, TN 37831
Karl N, Fleming
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA }9266
Terry Foppe
Rocky Flats Plant
P. 0. Box 464, Building T886A
Golden, CO 80402-0464
Joseph R, Fragola
Science Applications International
 Corporation
274 Madison Avenue
New York, NY }1001
Wiktor Frid
Swedish Nuclear Power Inspectorate
Division of Reactor Technology
P. O. Box 27106
S-102 52 Stockholm
SWEDEN
James Fulford
NUS Corporation
910 Clopper Road
Gaithersburg, MD 20878
Urho Fulkkinen
Technical Research Centre of
Finland
Electrical Engineering Laboratory
Otakaari 7 B
SF-02150 Espoo 15
FINLAND
J. B. Fussel1
JBF Associates, Inc.
1630 Downtown West Boulevard
Knoxville, TN 37919
John Garrick
Pickard, Lowe & Garrick, Inc.
2260 University Drive
Newport Beach, CA }9266
```

John Gaunt
British Embassy
3100 Massachusetts Avenue, NW
Washington, DC 20008
Jim Gieseke
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201

Frank P, Gillespie
USNRC-NRR/PMAS
MS: $12 \mathrm{G}-18$
Ted Ginsburg
Department of Nuclear Energy
Building 820
Brookhaven National Laboratory
Upton, NY 11973
James C, Glynn
USNRC-RES/PRAB
MS: NL/S-372
P. Govaerts

Departement de la Surete Nucleaire
Association Vincotte
avenue du Roi 157
B-1060 Bruxelles
BELGIUM
George Greene
Building 820 M
Brookhaven National Laboratory
Upton, NY 11973
Carrie Grimshaw
Brookhaven National Laboratory
Building 130
Upton, NY 11973
H. J. Van Grol

Energy Technology Division
Energieonderzoek Centrum Nederland
Westerduinweg 3
Postbus 1
NL- 1755 Petten ZG
NETHERLANDS
Sergio Guarro
Lawrence Livermore Laboratories
P. O. Box 808

Livermore, CA 94550

| Sigfried Hagen |
| :---: |
| Kernforschungzentrum Karlsruhe |
| P. O. Box 3640 |
| D. 7500 Karlsruhe 1 |
| FEDERAL REFUBLIC OF GERMANY |
| L. Hammar |
| Statens Karnkraftinspektion |
| P.0. Box 27106 |
| S. 10252 Stockholm |
| SWEDEN |
| Stephen Hanauer |
| Technical Analysis Corp. |
| 6723 Whtstier Avenue |
| Suite ev2 |
| McLean, VA 22101 |
| Brad Hardin |
| USNRC-RES/TRAB |
| MS: NL/S-169 |
| R. J, Hardwich, Jr. |
| Virginia Electric Power Co, |
| P.0. Box 26666 |
| Richmond, Va 23261 |
| Michael R. Haynes |
| UKAEA Harwel1 Laboratory |
| Oxfordshire |
| Didcot, Oxon., OX11 ORA ENGLAND |
|  |  |
|  |
| Stone \& Webster |
| 3 Executive Campus |
| Cherry Hill, NJ 08034 |
| A. Hedgran |
| Royal Institute of Technology |
| Nuclear Safety Department |
| Bunellvagen 60 |
| 10044 Stookholm |
| SWEDEN |
| Sharif Heger |
| UNM Chemical and Nuclear |
| Enginearing Departaent |
| Farris Engineering |
| Room 209 |
| Albuquerque, NM 87131 |


Dept, of Mathematics
Arizona State University
Tempe, AZ 85287
Robert E, Henry
Fauske and Associates, Inc.
16 W070 West 83rd Street
Burr Ridge, IL 60521
P. M. Herttrich
Federal Ministry for the
Environment, Preservation of
Nature and Reactor Safety
Husarenstrasse 30
Postfach 120629
D. 5300 Bonn 1
FEDERAL REPUBLIC OF GERMANY
F. Heuser
Giesellschaft Fur Reaktorsicherheit
Forschurgsgelande
D. 8046 Garching
FEDERAL REPUBLIC OF GERMANY
E. F. Hicken
Giesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. 8046 Garching
FEDERAL REPUBLIC OF GERMANY
D. J. Higson
Radiological Support Group
Nuclear Safety Bureau
Australian Nuclear Science and
Technology Organisation
P.O. Box 153
Rosebery, NSW 2018
AUSTRALIA
Daniel Hirsch
University of California
A. Stevenson Program on
Nuclear Policy
Santa Cruz, CA 95064
H. Hirschmann

Hauptabteilung Sicherheit und Umwelt
Swiss Federal Institute for Reactor Research (EIR)
CH-5303 Wurenlingen
SWITZERLAND

```
Mike Hitchler
Westinghouse Electric Corp.
Savanna River Site
Aiken, SC 29808
Richard Hobbins
EG&G Idaho
P. O. Box 1625
Idaho Falls, ID 83415
Steven Hodge
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37831
Lars Hoegberg
Office of Regulation and Research
Swedish Nuclear Power Inspectorate
P. O. Box 27106
S-102 52 Stockholm
SWEDEN
Lars Hoeghort
IAEA A. 1400
Wagranerstraase 5
P.0. Box }10
Vienna, }2
AUSTRIA
Edward Hofer
Giesellschaft Fur Reaktorsicherheit
Forschurgsgelande
D. }8046\mathrm{ Garching
FEDERAL REPUBLIC OF GERMANY
Peter Hoffmann
Kernforschingszentrum Kar1sruhe
Institute for Material
 Und Festkorperforsching I
Postfach }364
D.7500 Karlsruhe 1
FEDERAL REPUBLIC OF GERMANY
N. J. Holloway
UKAEA Safety and Reliability
 Directorate
Wigshaw Lane, Culcheth
Warrington, Cheshire, WA34NE
UNITED KINGDOM
```

Stephen C. Hora
University of Hawail at Hilo
Division of Business Administration and Economics
College of Arts and Sciences
Hilo, HI 96720-4091
J. Peter Hoseman

Swiss Federal Institute for Reactor Research
$\mathrm{CH}-5303$, Wurenlingen
SWITZ.ERLAND
Thomas C. Houghton
KMC, Inc.
1747 Pennsylvania Avenue, NW
Washington, DC 20006
Dean Houston
USNRC-ACRS
MS: P-315
Der Yu Hsia
Taiwan Atomic Energy Council
67, Lane 144, Keelung Rd.
Sec. 4
Taipei
TAIWAN
Alejandro Huerta-Bahena
National Commission on Nuclear Safety and Safeguards (CNSNS)
Insurgentes Sur N. 1776
Col. Florida
C. P. 04230 Mexico, D. F.

MEXICO
Kenneth Hughey (2)
SERI
5360 I- 55 North
Jackson, MS 39211
Won-Guk Hwang
Kzunghee University
Yongin-Kun
Kyung i : Do 170-23
KOREA

Michio Iohikawa
Japan Atomic Energy Research Institute
Dept. of Fuel Safety Research Tokai-Mura, Naka-Qun
Ibaraki-Ken, 319-1
JAPAN
Sanford Isracl
USNRC•AEOD/ROA?
MS: MNBB-9715
Krishna R, Iyengar
Loulsiana Power and Light
200 A Huey P. Long Avenue
Gretna, LA 70053
Jerry E, Jackson
USNRC-RES
MS: NL/S.302
R. E. Jaquith

Combustion Engineering, Inc
1000 Prospect Hill Road
M/C 9490-2405
Windsor, CT 06095
S. E, Jensen

Exxon Nuclear Company
2101 Horn Rapids Road
Richland, WA 99352
Kjell Johannson
Studsvik Energiteknik $A B$
S. 611 82, Nykoping

SWEDEN
Richard John
SSM, Room 102
927 W. 35 th Place
USC, University Park
Los Angeles, CA 90089.0021
D. H. Johnson

Pickard, Lowe \& Garrick, Inc 2260 University Drive
Newport Beach, CA 92660
W. Reed Johnson

Department of Nuclear Enginee:ing
University of Virginia
Reactor Facility
Charlotesville, VA 22901

Jeifery Julius
NUS Corporation
1301 S. Central Ave, Suite 202
Kent, WA 98032
H. R. Jun

Korea Adv, Energy Research Inst.
P. O, Box 7, Daeduk Danju

Chungnam 300-31
KOREA

Peter Kafka
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. 8046 Garching

FEDERAL REPUBLIC OF GERMANY
Geoffrey D. Kaiser
Science Application Int. Corp.
1710 Goodridge Drive
McLean, VA 22102
William Kastenberg
UCLA
Boelter Hall, Room 5532
Los Angeles, CA 90024
Walter Kato
Brookhaven National Laboratory Associated Universities, Inc.
Upton, NY 11973
M. S, Kazimi

MIT, 24-219
Cambridge, MA 02139
Ralph L. Keeney
101 Lombard Street
Sulte 704W
San Francisco, CA 94111
Henry Kendall
Executive Director
Union of Concerned Scientists
Cambridge, MA
Frank King
Ontario Hydro
700 University Avenue
Bldg, H11 G5
Toronto
CANADA M5G1X6

```
Oliver D. Kingsley, Jr.
Tennessee Valley Authority
1101 Market Street
GN-38A Lookout Place
Chattanooga, TN }3740
Stephen R, Kinnersly
Winfrith Atomic Energy
 Establishment
Reactor Systems Analysis Division
Winfrith, Dorchester
Dorset DT2 8DH
ENGLAND
Ryohel Kiyose
University of Tokyo
Dept, of Nuclear Engineering
7-3-1 Hongo Bunkyo
Tokyo 113
JAPAN
George Klopp
Commonwealth Edison Company
P.0. Box 767, Room 35W
Chicago, IL 60690
Klaus Koberlein
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D-8046 Garching
FEDERAL REPUBLIC OF GERMANY
E. Kohn
Atomic Enerzy Canada Ltd.
Candu Operations
Mississauga
Ontario, L5K 1B2
CANADA
Alan M. Kolaczkowski
Science Applications International
 Corporation
2109 Air Park Road, S.E.
Albuquerque, NM }8710
S. Kondo
Department of Nuclear Engineering
Facility of Engineering
University of Tokyo
3-1, Hongo 7, Bunkyo-ku
Tokyo
JAPAN
```

Herbert J. C. Kouts
Brookhaven National Leboracory
Building 179 C
Upton, NY 11973
Thomas Kress
Oak Ridge National Laboratory
P.O. Box Y

Oak Ridge, TN 37831
W. Kroger

Institut fur Nukleare
Sicherheitsforschung
Kernforschungsanlage Julich GmbH
Postfach 1913
D. 5170 Julich 1

FEDERAL REPUBLIC OF GERMANY
Greg Krueger (3)
Philadelphia Electric Co.
2301 Market St.
Philadelphia, PA 19101
Bernhard Kuczera
Kernforschungzentrum Karlsruhe
LWR Safety Project Group (PRS)
P. O. Box 3640
D. 7500 Karlsruhe 1

FEDERAL REPUBLIC OF GERMANY
Jeffrey L. LaChance
Science Applications International Corporation
2109 Air Park Road S.E.
Albuquerque, NM 87106
H. Larsen

Riso National Laboratory
Postbox 49
DK-4000 Roskilde
DENMARK
Wang L. Lau
Tennessee Valley Authority 400 West Summit Hill Avenue Knoxville, TN 37902

Timothy J. Leahy
EI Services
1851 South Central Place, Suite 201
Kent, WA 98031

```
John C. Lee
University of Michigan
North Campus
Dept. of Nuclear Engineering
Ann Arbor, MI 48109
Tim Lee
USNRC-RES/RPSB
MS: NL/N - 353
Mark T. Leonard
Science Applications International
 Corporation
2109 Air Park Road, SE
Albuquerque, NM }8710
Leo LeSage
Director, Applied Physics Div.
Argonne National Laboratory
Building 208, }9700\mathrm{ South Cass Ave.
Argonne, IL 60439
Milton Levenson
Bechtel Western Power Company
50 Beale St.
San Francisco, CA }9411
Librarian
NUMARC/USCEA
1776 I Screet NW, Suite 400
Washington, DC }8000
Eng lin
Taiwan Power Company
242, Roosevelt Rd., Sec. 3
Taipei
TAIWAN
N. J. Liparulo
Westinghouse Electric Corp.
F. O. Box 355
Pittsburgh, PA 15230
Y. H. (Ben) Liu
Department of Mechanical
 Engineering
University of Minnesota
Minneapolis,MN 55455
\begin{tabular}{|c|c|}
\hline John C. Lee & Bo Liwnang \\
\hline University of Michigan & IAEA A-1400 \\
\hline North Campus & Swedish Nuclear Power Inspectorate \\
\hline Dept. of Nuclear Engineering & P.O. Box 27106 \\
\hline Ann Arbor, MI 48109 & S. 10252 Stockholm \\
\hline & SWEDEN \\
\hline \multicolumn{2}{|l|}{Tim Lee} \\
\hline USNRC-RES/RPSB & J. P. Longworth \\
\hline MS: NL/N-353 & Central Electric Generating Board \\
\hline & Berkeley Gloucester \\
\hline Mark T. Leonard & cli 13 9PB \\
\hline \multicolumn{2}{|l|}{Corporation} \\
\hline 2109 Air Park Road, SE & Walter Lowenstein \\
\hline Albuquerque, NM 87106 & Electric Power Research Institute 3412 Hillview Avenue \\
\hline Leo LeSage & P. O. Box 10412 \\
\hline Director, Applied Physics Div. & Palo Alto, CA 94303 \\
\hline \multicolumn{2}{|l|}{Argonne National Laboratory} \\
\hline Building 208, 9700 South Cass Ave. & William J, Luckas \\
\hline Argonne, IL 60439 & Brookhaven National Laboratory \\
\hline & Suilding 130 \\
\hline Milton Levenson & Upton, NY 11973 \\
\hline \multicolumn{2}{|l|}{Bechtel Western Power Company} \\
\hline 50 Beale St. & Hans Ludew 1 g \\
\hline San Francisco, CA 94119 & Brookhaven National Laboratory \\
\hline & Building 130 \\
\hline Librarian & Upton, NY 11973 \\
\hline \multicolumn{2}{|l|}{NUMARC/USCEA} \\
\hline 1776 I Screet NW, Suite 400 & Robert J. Lutz, Jr. \\
\hline Washington, DC 80006 & Westinghouse Electric Corporation \\
\hline & Monroeville Energy Center \\
\hline Eng 1.1 n & EC.E.371, P. O, Dox 355 \\
\hline Taiwan Power Company & Pittsburgh, PA 15230.0355 \\
\hline \multicolumn{2}{|l|}{242, Roosevelt Rd., Sec. 3 ,} \\
\hline Taipe1 & Phillip E. MacDonald \\
\hline TAIWAN & EG\&G Idaho, Inc. \\
\hline & P.O. Box 1625 \\
\hline N. J. Liparulo & Idaho Falls, ID 83415 \\
\hline \multicolumn{2}{|l|}{Westinghouse Electric Corp. 83415} \\
\hline F. O. Box 355 & Jim Mackenzie \\
\hline Pittsburgh, PA 15230 & World Resources Institute \\
\hline & 1735 New York Ave. NW \\
\hline Y. H. (Ben) Liu & Washington, DC 20006 \\
\hline \multicolumn{2}{|l|}{Department of Mechanical Washington, DC 20006} \\
\hline Engineering & Richard D. Fowler \\
\hline \multirow[t]{3}{*}{University of Minnesota
Minneapolis, MN 55455} & Idaho Nat. Engineering Laboratory \\
\hline & P.O. Box 1625 \\
\hline & Idaho Falls, ID 83415 \\
\hline & A. P. Malinauskas \\
\hline & Oak Ridge National Laboratory \\
\hline & P.O. Box Y \\
\hline & Oak Ridge, TN 37831 \\
\hline
\end{tabular}
```

```
Giuseppe Mancini
Conmission European Comm.
OEC-JRC Eraton
Ispra Varese
ITALY
Lasse Mattila
Technical Research Centre of
 Finland
Lonnrotinkatu 37, P, O. Box }16
SF-00181 Helsinki }1
FINLAND
Roger J. Mattson
SCIENTECH Inc.
11821 Parklawn Dr.
Rockville, MD 20852
Donald McPherson
USNRC-NRR/DONRR
MS: 12G-18
Jim Metcalf
Stone and Webster Engineering
 Corporation
245 Summer St.
Boston, MA 02107
Mary Meyer
A.1, MS F600
Los Alamos National Laboratory
Los Alamos, NM }8754
Ralph Meyer
USNRC-RES/AEB
MS: NL/N-344
Charles Miller
8 Hastings Rd.
Momsey, NY 10952
Joseph Miller
Gulf States Utilities
P. 0. Box 220
St. Francisville, LA }7077
William Mims
Tennessee Valley Authority
400 West Summit Hill DrIve.
W10D199C.K
Knoxvil16, TN 37902
```

Jocelyn Mitchell
USNRC-RES/SAIB
MS: NL./S. 324
Kam Mohktarian
CBI Na-Con Inc.
800 Jorie Blvd.
Oak Brook, IL. 60521
James Moody
P.O. Box 641

Rye, NH 03870
S. Mori

Nuclear Safety Division
OECD Nuclear Euergy Agency
38 Blvd. Suchet
75016 Paris
FRANCE
Walter B, Murfin
P.O. Box 550

Mesquite, NM 88048
Joseph A. Murphy
USNRC-RES/DSR
MS: NL/S.007
V. I. Nath

Safety Branch
Safety Engineering Group
Sheridan Park Research Community
Mississauga, Ontario L5K 1B2
CANADA
Susan J, Niemozyk
1545 18th St. NW, \#112
Washington, DC 20036
Pradyot K, Niyogi
USDOE-Office of Nuclear Safety
Washington, DC 20545
Paul North
EG\&G Idaho, Inc.
P. O. Box 1625

Idaho Falls, ID 83415
Edward P, O'Donnell
Ebasco Services, Inc.
2 World Trade Center, 89th Floor New York, NY 10048

```
David Okrent
UCLA
Boelter Hall, Room 5532
Los Angeles, CA 90024
Robert L. Olson
Tennessee Valley Authority
4 0 0 \text { West Summit Hill Rd.}
Knoxville, TN 37902
Simon Ostrach
Case Western Reserve University
418 Glenman Bldg
Cleveland, OH 44106
D. Paddleford
Westinghouse Electric Corporation
Savanna River Site
A1ken, SC 29808
Robert L. Palla, Jr.
USNRC-NRR/PRAB
MS: 10A-2
Chang K. Park
Brookhaven National Laboratory
Building 130
Upton, NY 11973
Michael C. Parker
Illinois Department of Nuclear
 Safety
1035 Outer Park Dr.
Springfield, IL. }6270
Gareth Parry
NUS Corporation
910 Clopper Road
Gaithersburg, MD 20878
J. Pelce
Departement de Surete Nucleaire
IPSN
Centre d'Estudes Nucleaires du CEA
B.P, no. 6, Cedex
F.92260 Fontenay - aux-Roses
FRANCE
G. Petrangeli
ENEA Nuclear Energy ALT Disp
Via V. Brancati, 48
00144 Rome
TALY
```

Marty Plys
Fauske and Associates
16 W070 West 83 rd St.
Burr Ridge, IL 60521
Mike Podowski
Department of Nuclear Engineering and Engineering Physics
RPI
Troy, NY 12180-3590
Robert D. Pollard
Union of Concerned Scientists
1616 P Street, NW, Suite 310
Washington, DC 20036
R. Potter

UK Atomic Energy Authority
Winfrith, Dorchester
Dorset, DT2 8DH
UNITED KINGDOM

William T. Pratt
Brookhaven National Laboratory
Building 130
Upton, NY 11973
M. Preat

Chef du Service Surete Nucleaire et Assurance Qualite
TRACTEBEL
Bd , du Regent 8
B-100 Bruxe11s
BELGIUM

David Pyatt
USDOE
MS: EH-332
Washington, DC 20545
William Raisin
NUMAEC
$1726 \mathrm{M} \mathrm{St.NW}$
Suite 904
Washington, DC 20036
Joe Rashid
ANATECH Research Corp.
3344 N . Torrey Pines Ct.
Suite 1320
La Jolla, CA 90237

```
Dale M, Rasmuson
USNRC-RES/PRAB
MS: NL/S.372
Ingvard Rasmussen
Riso National Laboratory
Postbox 49
DK-4000, Roskilde
DENMARK
Norman C. Rasmussen
Massachusetts Institute of
 Technology
7 7 \text { Massachusetts Avenue}
Cambridge, MA 02139
John W. Reed
Jack R. Benjamin & Associates, Inc.
444 Castro St., Suite 501
Mountain View, CA }9404
David B. Rhodes
Atomic Energy of Canada, Ltd.
Chalk River Nuclear Laboratories
Chalk River, Ontario K0J1PO
CANADA
Dennis Richardon
Westinghouse Electric Corporation
P.O. Box 355
Pittsburgh, PA }1523
Doug Richeard
Virginia Electric Power Co.
P.O.Box }2666
Richmond, VA }2326
Robert Ritzman
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA }9430
Richard Robinson
USNRC-RES/PRAB
MS: NL./S-372
Jack E, Rosenthal
USNRC-AEOD/ROAB
MS: MNBB-9715
Denwood F, Ross
USNRC}\cdot\mathrm{ RES
MS: NL/S.007
```

```
S. Serra
Ente Nazionale per l'Energia
 Electtrica (ENEL)
via G. B. Martini 3
Rome
ITALY
Bonnie J, Shapiro
Science Applications International
 Corporation
gou Eay Street
Sulte 200
Augusta, Gn 30901
H. Shapiro
Licensing and Risk Branch
Atomic Energy of Canada Ltd,
Sheridan Park Research Community
Mississauga, Ontario L5K 1B2
CANADA
Dave Sharp
Westinghouse Savannah River Co.
Building 773-41A, P, O. Box 616
Aiken, SC 29802
John Sherman
Tentessee Environmental Council
171. st End Avenue, Suite 227
Nashville, TN }3720
Brian Sheron
USNRC-RES/DSR
MS: NL/N-007
Rick Sherry
JAYCOR
P. O. Box }8515
San Diego, CA 92138
Steven C. Sholly
MHB Technical Associates
1723 Hamilton Avenue, Suite K
San Jose, CA 95125
Louis M. Shotkin
USNRC-RES/RPSB
MS: NL/N-353
```

```
M. Siebertz
 Chef de la Section Surete' des
 Reacteurs
 CEN/SCK
 Boeretang, 200
 B. 2400 Mol
 BELGIUM
 Melvin Silberberg
USNRC-RES/DE/WNB
MS: NL/S - 260
Gary Smith
SERI
5 3 6 0 ~ I - 5 5 ~ N o r t h ~
Jackson, MS 39211
Gary L. Saith
Westinghouse Electric Corasutition
Hanford Site
Box }197
Richland, WA 99352
Lanny N. Smith
Science Applications International
 Corporation
2109 Air Park Road SE
Albuquerque, NM }8710
K. Soda
Japan Atomic Energy Res. Inst.
Tokai-Mura Naka-Gun
Ibaraki-Ken 319-11
JAPAN
David Sommers
Virginia Electric Power Company
P. O. Box 26666
Richmond, VA 23261
Herschel Spector
New York Power Authority
123 Main Street
White Plains, NY }1060
Themis P. Speis
USNRC-RES
MS: NL/S-007
Klaus B. Stadie
OECD-NEA, 38 Bld. Suchet
75016 Paris
FRANOE
```

```
John Stetkar
Piokard, Lowe & Garriok, Inc
2216 University Drive
Newport Beach, CA }9266
Wayne L. Stiede
Commonwealth Edison Company
P.O, Box }76
Chicago, IL 60690
Wllliam Stratton
Stratton of Associates
2. Acoma Lane
Los Alamos, NM 87544
Soo-Pong Suk
Korea Advanced Energy Research
 Institute
P. 0. Box 7
Daeduk Danji, Chungnam 300-31
KOREA
W. P. Sullivan
GE Nuclear Energy
275 Curtner Ave., M/C 789
San Jose, CA 95125
Tony Taig
U.K. Atomic Energy Authority
Wigshaw Lane, Culcheth
Warrington, Cheshire, WA3 4NE
UNITED KINCDOM
John Taylor
Electric Power Research Institute
3412 Hlllview Avenue
Palo Alto, CA }9430
Harry Teague
U.K. Atomic Energy Authority
Wigshaw Lane, Culoheth
Warrington, Cheshire, WA3 4NE
UNITED KINGDOM
Technical Library
Electric Power Research Institute
P.O. Box 10412
Palo Alto, CA 94304
Mark I. Temme
General Electric, Inc.
P.0, Box 3508
Sunnyvale, CA }9408
```

T. G. Theofanous

University of Califormia, S.B.
Department of Chemical and Nuclear Engineering
Santa Barbara, CA 93106
David Teolis
Westinghouse-Bettis Atomic Power Laboratory
P. O, Box 79, 2AP 34N

West Mifflin, PA 15122.0079
Ashok C. Thadani
USNRC-NRR/SAD
MS: 7E-4
Garry Thomas
L-499 (Bldg. 490)
Lawrence Livermore National
Laboratory
7000 East Ave.
P. O. Box 808

Livermore, CA 94550
Gordion Thompson
Institute for Research and Security Studies
27 Ellworth Avenue
Cambridge, MA 02139
Grant Thompson
League of Women Voters
1730 M. Street, NW
Washington, DC 20036
Arthur Tingle
Brookhaven National Laboratory
Bullding 130
Upton, NY 11973
Rich Toland
United Engineers and Construction
$30 \mathrm{~s}, 17 \mathrm{th}$ St., MS 4 V 7
Philadelphia, PA 19101
Brian J, R. Tolley
DG/XII/D/1
Commission of the European Communities
Rue de la Los, 200
B-1049 Brussels
BELGIUM

Devid R. Torgerson
Atomic Energy of Canada Ltd.
Whiteshell Nuc1ear Research Establishment
Pinawa, Manitoba, ROE ILO
CANADA
Alfred $F$. Torri
Pickard, Lowe \& Garrick, Inc.
191 Calle Magdalena, Suite 290
Encinitas, CA 92024
Klau Trambauer
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. 8046 Garching

FERERAL REPUBLIC OF GERMANY
Nicholas Tsoulfanidis
Nuclear Engineering Dept.
University of Missouri-Ro1la
Ro11a, MO 65401.0249
Chao-Chin Tung
c/o H.B. Bengelsdorf
ERC Environmental Services Co.
P. O. Box 10130

Fairfax, VA 22030
Brian D. Turland
UKAEA Culham Laboratory
Abingdon, Oxon OX14 3DB
ENGLAND
Takeo Uga
Japan Institute of Nuclear Safety Nuclear Power Engineering Test Center
3-6-2, Toranomon
Minato-ku, Tokyo 108
JAPAN
Stephen D. Unwin
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201
A. Valeri

DISP
ENEA
Via Vitaliano Brancati, 48
I-00144 Rome
ITALY

Harold Vandermolen
USNRC-RES/PRAB
MS: NL/S-372
G. Bruce Varnado

ERC International
1717 Louisiana B1vd. NE, Suite 202
Albuquerque, NM 87110
Jussi K. Vaurio
Imatran Voima Oy
Lovilisa NPS
SF-07900 Loviisa
FINLAND
William E. Vesely
Science Applications International
Corporation
2929 Kenny Road, Suite 245
Columbus, OH 43221
J. I. Villadoniga Tallon

Div, of Analysis and Assessment
Consefo de Segurfdad Nuclear
c) Sor Angela de la Cruz, 3

28020 Madrid
SPAIN
Willem F. Vinck
Kapellestract 25
1980
Tervuren
BELGIUM
R. Virolainen

Office of Systems Integration
Finnish Centre for Radiation and Nuclear Safety
Department of Nuclear Safety
P.O. Box 268

Kumpulantie 7
SF-00520 Helsinki
FINLAND
Raymond Viskanta
School of Mechanical Engineering
Purdue University
West Lafayette, IN 47907
S. Visweswaran

General Electric Company
175 Curtner Avenue
San Jose, CA 95125

```
Truong Vo
Pacific Northwest Laboratory
Battelle Blvd
Richland, WA }9935
Richard Vogel
Electric Power Research Institute
P. O. Box }1041
Palo Alto, CA }9430
G. Volta
Engineering Division
CEC Joint Research Centre
CP No. 1
I-21020 Ispra (Varese)
ITALY
Ian B. Wall
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA ?4303
Adolf Walser
Sargent and Lundy Engineers
55 E. Monroe Street
Chicago, IL 60603
Edward Warman
Stone & Webster Engineering Corp.
P.O. Box 2325
Boston, MA 02107
Norman Weber
Sargent & Lundy Co.
55 E. Monroe Street
Chicago, IL 60603
Lois Webster
American Nuclear Society
555 N. Kensington Avenue
La Grange Park, IL 60525
Wolfgang Werner
Gesellschaft Fur Reaktorsicherheit
Forschungsgelande
D. }8046\mathrm{ Garching
FEDERAL REPUBLIC OF GERMANY
Don Wesley
IMPELL
1651 East 4th Street
Sulte 210
Santa Ana, CA }9270
```

Detlof von Winterfeldt
Institute of Safety and systems
Management
Universi:y of Southern California
Los Angeles, CA 90089-0021
Pat Worthis, ton
USNRC-RES/AEB
MS: NL/N-344
John Wreathall
Science Applications International
Corporation
2929 Kenny Road, Suite 245
Columbus, OH 43221
D. J. Wren

Atomic Energy of Canada Ltd.
Whiteshell Nuclear Research Establishment
Pinawa, Manitoba, ROE 1 LO
CANADA

Roger Wyrick
Inst, for Nuclear Power Operations 1100 Circle 75 Parkway, Suite 1500
Atlanta, GA 30339
Kun-Joong Yoo
Korea Advanced Energy Research Institute
P. O. Box 7

Daeduk Danj1, Chungnam 300-31
KOREA

Faith Young
Energy People, Inc.
Dixou Springs, TN 37057
Jonathan Young
R. Lynette and Associates

15042 Northeast 40 th St.
Suite 206
Redmond, WA 98052
C. Zaffiro

Division of Safety Studies
Directorate for Nuclear Safety and Health Protection
Ente Nazionale Energie Alternative
Via Vitaliano Brancati, 48
I-00144 Rome
ITALY

```
Mike Zentner
6 4 6 0 ~ J . ~ V . ~ W a l k e r ~
Westinghouse Hanford CO.
P. O. Box }197
Richland, WA 99352
X. Zikidis
Greek Atomic Energy Commission
Agla Paraskevi, Attiki
Athens
GREECE
Bernhard Zuczera
Kernforschungszentrum
Postfach 3640
D-7500 Karlsruhe
FEDERAL REPUBLIC OF GERMANY
1521 J. R. Weatherby
3141 S. A. Landenberger [5]
3151 G. L. Esch
5214 D. B. Clauss
6344 E. D. Gorhan
6 4 1 1 ~ D . ~ D . ~ C a r l s o n ~
6411 R. J. Breeding
6 4 1 1 ~ D . ~ M . ~ K u n s m a n ~
6 4 0 0 \text { D. J. McCloskey}
6 4 1 0 ~ D . ~ A . ~ D a h l g r e n ~
6 4 1 2 ~ A . ~ L . ~ C a m p ~
6 4 1 2 ~ S . ~ L . ~ D a n i e l ~
6 4 1 2 ~ T . ~ M . ~ H a k e ~
6 4 1 2 ~ L . ~ A . ~ M i l l e r ~
6 4 1 2 ~ D . ~ B . ~ M i t c h e l l ~
6 4 1 2 ~ A . ~ C . ~ P a y n e , ~ J r . ~
6412 T, T, Sype
6 4 1 2 ~ T . ~ A . ~ W h e e l e r ~
6412 D. W. Whitehead
6 4 1 3 ~ T . ~ D . ~ B r o w n ~
6 4 1 3 ~ F . ~ T . ~ H a r p e r ~ (2) ~
6 4 1 5 ~ R . ~ M . ~ C r a n w e l l ~
6 4 1 5 ~ W . ~ R . ~ O r a m o n d ~ [3] ~
6 4 1 5 ~ R . ~ L . ~ I m a n ~
6418 S. L. Thompson
6 4 1 8 \text { K. J. Maloney}
6 4 1 9 ~ M . ~ P . ~ B o h n ~
6 4 1 9 ~ J . ~ A . ~ L a m b r i g h t ~
6 4 2 2 \text { D. A. Powers}
6424 K. D. Bergeron
6 4 2 4 ~ J . ~ J . ~ G r e g o r y ~
6 4 2 4 ~ D . ~ C . ~ W 1 1 1 i a m s ~
6 4 5 3 ~ J . ~ S . ~ P h i l b i n ~
```




[^0]:    'Technadyne, Albuquerque, NM
    ${ }^{2}$ Arizona State University, Tempe, AZ

[^1]:    * A listing of all birus, and a listing by observation are availiable on computer media.
    ** Mean probability conditional on the occurrence of the PDS.

[^2]:    - A listing of all bins, and a listing by observation are available on computer media.
    * Mean probability conditional on the occurrence of the PDS.

[^3]:    ＊A listing of all bins，and a listing by observation are available on computer media．
    ＊Mean probability conditional on the occurrence of the PDS．

[^4]:    - A listing of all bins, and a listing by observation are available on computer media.
    ** Mean probability conditional on the occurrence of the PDS.

[^5]:    1. PORVs or SRVs stick open:
    2. T-I RCP seal failure:
    3. Deliberate opening of the PORVs by the operators;
    4. T.I SCTR; and
    5. T-I hot leg or surge line failure
[^6]:    "H. -N. Jow, W. B. Murfin, and J. D. Johnson, "XSOR Codes Users Manual," NUREG/CR-5360, SAND89.0943, Sandia Nationa. Laboratories, (unpublished)

[^7]:    "H. - N. Jow, W. B. Muifin, and J. D. Johnson, "XSOR Codes Users Manual," NUREG/CR-5360, SAND89-0943, Sandia National Laboratories, (unpublished).

[^8]:    *H. - N. Jow, W. B. Murfin, and J. D. Johnson, "XSOR Codes Users Manual," NUREG/CR-5360, SAND89-0943, Sandia National Laboratories, (unpublished)

[^9]:    "H, -N. Jow, W. B. Murfin, and J. D. Johnson, "XSOR Codes Users Manual," NUREG/CR-5360, SAND89-0943, Sandia National Laboratories, (unpublished).

[^10]:    "H. N. Jow, W. B. Murfin, and J. D. Johnson, "XSOR Codes Users Manual," NUREG/CR-5360, SAND89-0943, Sandia National Laboratories, (unpublished).

[^11]:    "H. - N. Jow, W. B. Murfin, and J. D. Johnson, "XSOR Codes Users Manual," NUREG/GR.5360, SAND89-0943, Sandia National Laboratories, (unpublished).

[^12]:    $20-300 \cdot \varepsilon$

[^13]:    A. Iisting of source tezms for all bins is available on computer medie

[^14]:    

[^15]:    "Variahles listed in the order tha they entered the regression analysis
    b Sign (pesitive or negative) on the RCs in final regression model.
    Pos: Inrease in itdependent variable increases dependent variable
    Neg: Increase in independent variable decreases fependent variable.

    - $R^{2}$ values with the entry of succescive variables into the regression model

