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ABSTRACT

The corrosion behavior of TiCode-12 (T1-0.3 Mo-0.8 Ni) high
level nuclear waste container alloy has been studied for a
simulated WIPP brine at a temperature of 150°C or below.
Crevice corrosion was identified as a potentially important
failure mode for this material. Within a mechanical crevice,
a thick oxlide film was found and shown to be the rutile form
of Ti0z, with a trace of lower oxide also present. Acidic
conditions were found to cause a breakdown of the passive
oxide layer. Solution aeration and 1increased acidity ac-
celerate the corrosion rate. In hydrogen embrittlement
studies, it was found that hydrogen causes a significant
decrease in the apparent stress intensity level in fractur»
mechanics samples. Hydride formation is thought to be - .-
sponsible for crack initiation. Stress corrosion cracking
under static loads was not observed. Attention has also been
piven to methods for extrapolating short term uniform corro-
sion rate data to extended times.

INTRODUCTION

Currently in the U.S.A. there is an effort to develop titanium alloy
TiCode=12 (Ti-0.3 Mo-0.8 Ni) as a prime corrosion resistant material for high
level nuclear waste containers which will be emplaced in mined geologic reposi-
tories [1-7]. Preliminary data indicate that although uniform corrosion is
unlikely to present a problem with respect to failure of the container, little
information is available on possible localized corrosion failure mechanisms.
The assessment of localized corrosion mechanisms 1is, therefore, e:sential for
the prediction of the life time of the containers. This paper outlines initial
results on the possible major localized failure modes of TiCode=12 in simulated
rock salt brine solutions. Emphasis was on the study of crevice corrosion and
hydropen embrittlement. Crevice-type enviromments are expected to form between
the TiCode=12 container and surrounding backfill materials or metallic emplace-
ment sleeves. Hydrogen embrittlement is also possible since this material
typically contains 30 ppm of hydrogen as a residual element. Furthermore,
radiolysis of the groundwater may cause an increase in the hydrogen level.
Preliminary results on stress corrosion cracking (SCC) are presented. Atten-
tlon has also been given to methods for extrapolating short term uniform corro-
sion rate data to extended times, in order to predict container performance.

*This work was performed under the auspices of the U.S. Nuclear Regulatory
Commission.



MATERIALS AND ENVIRONMENT

TiCode=12 1s a two-phase material composed of alpha and minor beta phases
Plate and sheet materials were obtained from three differeni sources: RML,
Timet, and Crucible. The nominal compositions are shown ir Table I. Differ-
cnces In the compositions were found by BNL in the analysis of Ni, Mo, and Fe
in the various heats of TiCode~12. The maximum variation was a factor two
larger than values specified by the vendors.

FABLE 1
Nominal compositions of TiCode-12 (weight percent)

Ni Mo Fe C H N 0 Ti

0.80 0.30 0.3M3) 0.1M 0.015M 0.03M 0.25M Balance

a)M denotes the maximum.

Brine solutions selected for this study were based on those used by Sandia
National Laboratories [l] which are considered to simulate salt repository con-
ditions at the Waste Isolation Pilot Plant site. The concentrations of the
ma jor ifons in the two solutions used are shown in Table II. The majority of
the work was performed on Brine A. The reference text temperature was 150°C,
Lower temperatures were sometimes used to develop an understanding of the
mechanisms of failure.

TABLE II
Compositions of brine solutions (ppm) [1]

Brine Na* k*  Mg*?  ca*? se*t? c1- so;2 I Ho; Br~  BOJ

A 42000 30000 35000 500 5 190000 3500 10 7C0 400 12000
B 11590 15 10 900 15 175000 35000 10 10 400 10

EXPERIMENTAL PROCEDURES

Three different sizes of coupon were used (1 x 2, 2 x 2, and 2 x 4 cm) for
the tests on crevice corrosion. After mirror polishing of the coupons, a crev=
lce was simulated by joining metal/metal or metal/Teflon couples with titanium
bolts. The immersion studies were performed in quartz tubes or in static auto-
claves for two to four week periods at 1500C. The solution acidity and
oxypen concentration of the solutions were varied. The degree of corrosion was
examined optically and the corrosion products were analyzed by SEM and TEM.

llydrogen embrittlement was evaluated at room temperature using thermally
hydropenated single-edged=-notched (SEN) tensile samples [8] (cross head speed
0.005 em/min) to detcrmine the susceptibility of TiCode-12 to hydrogen embrit-
tlement and to ascertaln the probable mechanisms involved. The hydrogen con-
centration was determined after the tests by the vacuum extraction method and
the fracture surface was examined by SEM. Hydrogen uptake experiments were



performend in Brine B during immersion tests on single and creviced coupons at
1509C in an autoclave with a hydrogen overpressure at a room temperature of
1.5 MPa (220 psi).

In the SCC study, both notched and un-notched C-rings were designed follow-
e ASTM standards [9] and these were loaded and sealed in quartz tubes con=
(uining acidified brines (pH = l.l1) to simulate crevice conditions. The test
was performed at 150°C for au exposure time of three months. The acidified
brine was also used in an attempt to understand the passi ation behavior of
TiCode=-12. The open circuit corrosion potential was measured at 80°C for
this purpose.

lamersion tests on single coupons (1 x 2 cm) were performed at 150°C. The
weipht gain was measured aftrer varying exposure time to obtain uniform corro-
sion kinetics.

RESULTS AND DISCUSSIONS

During the initial stage of the crevice corrosion in Brine A (first few days
immersion) a very thin multicolored corrosion product was observed (Fig. 1).
This film was found to be the anatase form of TiOz. For exposures of over
two weeks the largest samples (2 x 4 cm) with the smallest crevice gap showed a
thicker black corrosion product (Fig. 2). This was composed of the rutile form
of Ti0p with traces of lower oxides such as Ti305. Higher 02 concentra-
tions promote rutile formation. In general, lower pH, larger sample sizes, and
smaller crevice paps pave higher crevice corrosion rates. In order to under-
stand the crevice corrosion mechanism, measurements of the open-circuit corro=
sion potentials were made at 8J°C. These showed a breakdown of the passive
film occurs as the pH of the brine falls below 1.0. Since a pH drop is ex~
pected to occur in the crevice, loss of passivatioa and crevice attack are also
anticipated. These results are similar to the crevice corrosion of pure
titanium in NaCl solution [10,11]. However, the crevice corrosion rates are
much slower in TiCode-12. Mass transport calculations for oxygen inside the
crevice showed a significant oxygen depletion in this region. The results
imply that the compact and passive anatase form of TiOz [12] is no longer
stable as the macroscopic concentration cell is developed. Consequently, the
more porous rutile form of TiO; and lower oxides are probably formed in the
crevice.

In the hydrogen embrittlement tests for SEN samples, the apparent stress
intensity (Kq) [13] values and hydrogen concentrations were determined and
are given in Table III. At the 100 ppm hydrogen concentration level, the
sample was very ductile (Fig. 3) with a slanted fracture surface and it had a
high Kq value. The Ky values for 6560 and 10900 ppm of hydrogen were de-
creased by a factor of about 10 compared to the 100 ppm hydrogen sample.
Fractopraphs show both alpha phase brittle fracture and alpha-beta interface
cracking (Fip. 4). These features are similar to those observed in other
near-alpha titanium alloys [14,15], and implies that the formation of hydride
is responsible for crack initiation [16,17].

In the hydrogen uptake tests, single coupons, as well as creviced samples,
were used to check the enhanced hydrogen uptake rate caused by the breakdown of
the passive film inside the crevice. As shown in Table IV, the hydrogen uptake
rate in the crevice sample was significantly higher than that for the single
coupons. The breakdown of the passive film inside the crevice is probably re~
sponsible for the enhanced attack. Also, the reducing enviromment may have
slowed down oxide scale prowth which in turn inhibits hydrogen penetration.

C-ring tests did not show cracking for either elastically or plastically
deformed samples. However, there is a possibility that dynamic tests, or the
Presenee ol radiat ion=induced oxidants such as cloj or 12072, nay
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TABLE IV
Hydrogen uptake results (ppm) for TiCode-12 in Brine B

Run Single coupon Crevice samples
1 65.8 80.6 91.2
2 2.5 74.4

Note: The hydrogen concentration is 34 ppm in the as-
received sample.

induce stress corrosion cracking since we observed hydrogen embrittlement and
an increase in the open-circuit corrosion potential with the addition ot
oxidants to the brine,

Preliminary data on long term uniform corrosion rates showed that the corro-
sion rates decrease pradually with time. Corrosion rates are not reproducible
it the present time because of the formation of precipitates (amorphous pro-
ducts of My and Si) on the samples. For the extrapolation of uniform corrosion
rates to longer periods, the effect of this precipitate on the kinetics must be

established.



CONCLUSIONS

The corrosion of TiCode-12 in simulated rock salt brine was inv-3tigated.
The following conclusions may be drawn from this study:

o Crevice corrosion of TiCode-12 was observed at 150°C. The corrosion
product was the rutile form of Ti07 with a trice of lower oxides.

o Hydrogen caused a significant decrease in the apparent stress intensity
level in fracture mechanics samples. Hydride formation is thought to be
responsible for crack initiation.

o FEnhanced hydrogen uptake was observed in crevice samples.

o Static C-ring tests did not show stress corrosion cracking in acidified
brines.

o FExtrapolating of short term uniform corrosion rate data is complicated by
the presence of precipitates on the sample.
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