Tal 36

Commonwealth Edison LaSalle County Nuclear Station Unit 1

AUGMENTED INSERVICE INSPECTIONS

P.INC-820603

Augmented Inservice Inspections (AISI) are not ASME Section XI Code requirements but are 1) additional examination area requirements, or 2) increased inspection frequency requirements or combinations of both which are requested by the Nuclear Regulatory Commission. When components fall into the scheduled testing of both ISI and AISI, credit for both requirements is taken (no double testing).

There are presently 4 types of Augmented Inservice Inspections required at LaSalle County Nuclear Stations:

- Type Description
- 1A The ASME Category B-F and B-J welds of the high energy line break exclusion regions as identified in the FSAR and requested by the NRC. See response to FSAR Q111.72.
- 1B Examinations of the Feedwater Nozzle Inner Radii, Nozzles Bores, Nozzle Safe Ends, and Spargers, as requested by the NRC in NUREG-0619.
- 1C Examinations of the High and Low Pressure Core Spray Spargers and the associated piping inside the RPV each refueling outage, as requested by the NRC in IE Bulletin No. 80-13.
- 2A Examinations of the Reactor Core Isolation Coolant lines that are exempted by ASME Section XI, IWC-1220(b), but are examined due to the NRC requesting this system be treated as an essential system.

Augmented Inservice Inspection Type 1A

The following ASME Category B-F and B-J welds receive 100% volumetric examination each inspection interval, except as noted. Those welds marked by asterisk(s) receive alternate examinations as follows:

- * See RI-05 for alternate examination.
- ** See RI-11 for alternate examination.

For further information on a component, such as configuration, material, cal. std., etc., see Tab 11 "ASME Category B-F", or Tab 15 "ASME Category B-J".

Feedwater	Low Pressure Core Spray	Main Steam
IFW-1001-10	ILP-1001-2	IMS-1054-18
IFW-1001-10LD	ILP-1001-2A	IMS-1054-18LD
IFW-1001-13	ILP-1001-8	IMS-1054-19*
IFW-1001-13LD	ILP-1001-9	IMS-1054-19LU*
IFW-1001-13LU	ILP-1001-12	IMS-1054-21
IFW-1001-16	ILP-1001-14	IMS-1054-21LD
IFW-1001-16LU	ILP-1001-15	IMS-1054-26
IFW-1001-18*	ILP-1001-16	IMS-1054-25LU
IFW-1001-18LD*	ILP-1001-17	and the set of the set of the
IFW-1001-20	ILP-1001-18	IMS-0014A-13
IFW-1001-20LU	ILP-1001-19	IMS-0014A-14
	ILP-1001-21	
IFW-1002-10	Main Steam	Residual Heat Removal
IFW 1002 12	TMC 1051 15	TPH 1001 2
IFW-1002-12	IMS 1051-15	IRH-1001-2
IFW-1002-12LU	IMS 1051-15LU	IRH-1001-7
IFW-1002-12L0	IMS_1051_16LIH	IRH-1001-10
IFW-1002-15	IMS 1051-10LU*	IRH-1001-12
IFW-1002-15L0	IMS-1051-10	IRH-1001-13
IFW-1002-17	IMS 1051-10LU	IRH-1001-14
IFW 1002-20	IMS 1051 26111	IRH-1001-17
IFW 1002-20	143-1031-2010	IRH-1001-10
IFW-1002-2010	TMS_1052_17	IRH-1001-19
High Processo Core Spray	IMS-1052-17	IRH-1001-20
nigh Pressure core spray	IMS-1052-17LD	IRH-1001-21
THE 1001-2	IMS-1052-10"	IKH-1001-24
INC 1001-2	IMS 1052 - 10LU*	TPH-1002-2
THP-1001-10	IMS-1052-201 D	IRH-1002-2
IHP_1001-13	IMS-1052-22L0	IRH-1002-5
THP 1001-15	IMS-1052-26111	IRH-1002-0
THP 1001-15	145-1052-2020	IRH-1002-12
THP 1001-10	TMS 1052 15	IRH-1002-14
THP 1001-10	IMS-1053-15	IRH-1002-15
THP 1001-19	IMS-1053-15LD	IRH-1002-19
THP_1001_21	IMS-1053-161 U*	IRH-1002-20
-HP_1001-22	IMS-1053-10L0*	IRH-1002-22
THP_1001_20	IMS-1053-10 D	1002-25
111-1001-20	IMS-1053-1400	
	IMS-1053-26	
	113-1033-2020	

Commonwealth Edison LaSalle County Nuclear Station Unit 1

Augmented Inservice Inspection Type 1A (Cont'd)

Residual Heat	Residual Heat	Reactor Core
Removal (Cont'd)	Removal (Cont'd)	Isolation Coolant
104 1003 2	IPH 1021 2001 D	IRI-1002-1
IRH-1003-2	IRH-1031-20ALD	IRI-1002-1
IRH-1003-9	IRH-1031-20BLD	IRI-1002-3
IRH-1003-10	IRH-1031-25	IRI-1002-4
IRH-1003-12	IRH-1031-25ALU	IRI-1002-5
IRH-1003-13	IRH-1031-25BLU	IRI-1002-6
IRH-1003-15	IRH-1031-27	IRI-1002-8
IRH-1003-16	IRH-1031-29	IRI-1002-9
IRH-1003-19	IRH-1031-31	
IRH-1003-20	IRH-1031-31ALD	IRI-1003-9
IRH-1003-21	IRH-1031-31BLD	IRI-1003-10
IRH-1003-22	IRH-1031-32	IRI-1003-11
IRH-1003-24	IRH-1031-32ALU	IRI-1003-13C
IRH-1003-25	IRH-1031-32BLU	IRI-1003-14
1111 1000 20	IRH-1031-40	IRI-1003-15
IRH-1004-2	IRH-1031-43	IRI-1003-17
IPH-1004-3	1111 1001 10	IRI-1003-18
IPH-1004-9	Reactor Core	IRI-1003-19
IPH 1004-11	Teolation Coolant	IRI-1003-20
IRH-1004-11	TSOTACTON COOTAIL	IRI-1003-22
INH-1004-12	TPT 1001 1	IPI-1003-22
IRH-1004-10	IRI-1001-1	IDI 1003-23
IRH-1004-17	IRI-1001-2	IRI-1003-24
IRH-1004-19	IRI-1001-5	IRI-1003-25
IRH-1004-20	IRI-1001-4	IRI-1003-27
104 1005 0	IRI-1001-5	IRI-1003-28
IRH-1005-2	IRI-1001-6	IRI-1003-29
IRH-1005-8	IR1-1001-7	IRI-1003-30
IRH-1005-10	IRI-1001-7A	IR1-1003-31
IRH-1005-13	IRI-1001-8	IR1-1003-32
IRH-1005-15	IRI-1001-9	
IRH-1005-16	IRI-1001-9A**	Reactor Water Clean-Up
IRH-1005-17	IRI-1001-15	
IRH-1005-18	IRI-1001-16	IRT-1001-24
IRH-1005-20	IRI-1001-16A	IRT-1001-25
	IRI-1001-18	IRT-1001-26
IRH-1031-9	IRI-1001-19	IRT-1001-27
IRH-1031-12	IRI-1001-20	IRT-1001-28
IRH-1031-12ALD	IRI-1001-21	IRT-1001-29
IRH-1031-128LD	IRI-1001-24	IRT-1001-30
IRH-1031-17	IRI-1001-25	IRT-1001-31
IRH-1031-174LU	IRI-1001-26	IRT-1001-32
IRH-1031-17RLU	IRI-1001-27	IRT-1001-33
IPH-1031-20	IPI-1001-29	IRT-1001-37
1031-20	111-1001-20	IRT-1001-39
		111-1001-30

Augmented Inservice Inspection Type 1B

The feedwater components listed in Table 1 receive examination per Section 4.3.2.3 of NUREG-0619 and Table 2. As required by Section 4.4.3.1 of NUREG-0619, within 6 months of completing an outage at which an inspection was performed in accordance with Table 2, the licensee must submit a detailed report discussing the inspection(s) performed. Information required includes:

- (a) Number of startup/shutdown cycles since the previous inspection, and the total number of cycles. This will include cycles accumulated during the initial startup and testing of the plant.
- (b) Summary of methods used and results of previous inspections, including maximum crack depth and number of cracks found in previous PT-and-grind operations, and number of startup/shutdown cylces between such inspections.
- (c) Description of any additional system changes or changes in operating procedures that will affect feedwater flow or temperature and that should be considered in predicting future cracking tendencies based on past history.
- (d) A detailed discussion of the inspection results, including a complete description of cracking location, dimensions, and profile, if cracking was found. Drawings and photographs, if available, are requested.
- (e) Information regarding the results of leakage monitoring. However, the staff must be informed immediately if on-line leakage monitoring during operation discloses any leakage on welded spargers or leakage on the order of 0.3 gpm through single-sleeve/single-piston-ring spargers or triple-sleeve spargers.
- (f) Information regarding all UT crack-like indications and any subsequent PT indications. Information regarding UT techniques should be as precise and as extensive as possible in order that it may be of benefit in future inspections.
- (g) The above information is to be submitted to the Regional Director, IE, with copies to Director, IE, and Director, NRR.

Commonwealth Edison

aSalle County Nuclear Station Unit 1

Table 1 Components Receiving Examination

Exam./Component I.D. No.	For Further Information See:
1 - NIR - 4A (and Nozzle Bore)	Tab 9 "ASME Category B-D"
1 - NIR - 4B (and Nozzle Bore)	Tab 9 "ASME Category B-D"
1 - NIR - 4C (and Nozzle Bore)	Tab 9 "ASME Category B-D"
1 - NIR - 4D (and Nozzle Bore)	Tab 9 "ASME Category B-D"
1 - NIR - 4E (and Nozzle Bore)	Tab 9 "ASME Category B-D"
1 - NIR - 4F (and Nozzle Bore)	Tab 9 "ASME Category B-D"
1 - Feedwater Spargers	Tab 21 "ASME Category B-N-1"
IFW-1001-71A	Tab 11 "ASME Category B-F"
IFW-1001-81A	Tab 11 "ASME Category B-F"
IFW-1001-89A	Tab 11 "ASME Category B-F"
IFW-1002-53A	Tab 11 "ASME Category B-F"
IFW-1002-63A	Tab 11 "ASME Category B-F"
IFW-1002-72A	Tab 11 "ASME Category B-F"

¹Further information such as: examination type, material specification, calibration standard, etc.

Table 2

Routine Inspection Intervals

	Inspection Interval-Refueling Cycles (or Startup/shutdown Cycles)		
Configuration	Visual Inspection UT of Sparger ¹ Routine PT	2,3	
Triple-sleeve spargers with two piston-ring seals, clad removed.	2 4 9 (or 13	5)	

 1 Visual inspection of flow holes and welds in sparger arms and sparger tees.

²To be performed even if the UT and leak test results are satisfactory.

³The routine PT consists of removal of a sparger from one nozzle followed by flapper wheel grinding of the nozzle and PT examination of both the nozzle and the accessible portions of the other feedwater nozzles.

⁴The UT examination consists of external UT examination of all feedwater nozzle safe ends, nozzles bores, and nozzle blend radii.

⁵If UT recordable indications are interpreted to be cracks in any nozzle(s), remove the sparger(s) from the nozzle(s), perform PT examination on the nozzle bore and nozzle blend radius, and repair. Also, perform PT examination on the accessible portions of the remaining nozzles.

Augmented Inservice Inspection Type 1C

Visual examination of the High and Low Pressure Core Spray Spargers and the associated piping inside the RPV is performed each refueling outage, as requested by the NRC in IE Builetin No. 80-13. The visual examination is performed using LaSalle County Station Procedure LTS 600-8.

Augmented Inservice Inspection Type 2A

The components of the Reactor Core Isolation Coolant piping lines listed in Table 3 are exempt from examination by ASME Section XI, IWC-1220(b). Due to the NRC requesting this system be treated as an essential system, the components are scheduled for examination using ASME Section XI selection criteria. For further information, see Tab 5 "Component and Piping Line Number Table: CPLN". The type and number of components requiring examination are listed in the CPLN.

		lable	3	
RCIC	System	AISI	Piping	Lines
		1010	20	
		INIU	<u>CM</u>	
		1RIO	2B	
		1RIO	20	
		1R11	2A	
		1RI1	6A	
		1RI1	6B	
		1RI1	7A	
		1R12	4A	
		1RI4	OB	
		1RI4	3B	

Commonwealth Edison LaSalle County Nuclear Station Unit 1

NDE PROCEDURES

Jab 42

The NDE procedures used to perform the Inservice Inspection examinations are listed in Table 1. The NDE procedures are contained in the LaSalle County Station Inservice Inspection Nondestructive Examination Procedures Manual and are available for review at the LaSalle County Station.

The NDE procedures are written in accordance with the ASME Boiler and Pressure Vessel Code, 1980 Edition thru Winter 1980 Addenda. The ISI examinations are performed using the revision of the NDE procedure in effect at the time of the examination.

Commonwealth Edison LaSalle County Nuclear Station Unit 1

TABLE 1

NDE Procedure No.	Title	
APUN-W801	Automated Ultrasonic Testing of Nozzle to Vessel Welds	
APUV-W801	Automated Ultrasonic Testing of RPV Welds and Base Material	
MPUB-W801	Ultrasonic Inspection of Pressure Retaining Greater Than Two Inches in Diameter	
MPUD-W801	Manual UT Examination of Full Penetration Piping Welds (Half-Vee Technique)	
MPUL-W801	Manual UT Examination of Flange Ligaments	
MPUP-W801	Manual UT Examination of Full Penetration Piping Welds	
MPURHX-W801	Manual Ultrasonic Testing of RHR Heat Exchanger Welds	
MPUV-W801	Manual Ultrasonic Testing of RPV Welds	
NIRRHX-W801	Ultrasonic Examination of RHR Heat Exchanger Nozzle Inner Radius	
NIRZ1-W801	Procedure for Nozzle Inner Radius Zone 1 Ultrasonic Examination	
NIRZ2-W801	Procedure for Nozzle Inner Radius Zone 2 Ultrasonic Examination	
NIRZ2-N9-W801	Ultrasonic Examination for Nozzle Inner Radius Zone 2 on LaSalle Unit 1 Jet Pump Instrumentation Nozzles	
PP-W801	Liquid Penetrant Examination of Nuclear Power Plant Components	
PV1-W801	Visual Examination VT-1	
PV2-W801	Visual Examination VT-2	
PV3-W801	Visual Examination VT-3	
PV4-W801	Visual Examination VT-4	

TNSERVICE Juspection4 LA SANE Un ume Th