U. §. NUCLEAR REGULATORY COMNISSION

REGION I

Report No. $50-199 / 90-92$
Docket No, 50-199
License No. R-94
License: Manhattan College Corporation Mechanical Engineering Department Riverdale, New York 10471

Facility Name: Zero Power Reactor
Inspection At: Riverdale, New York
Inspection Conducted: December 10-12, 1990

Inspectors:

$12 / 21 / 90$
M. A. Austin, Radiation Specialist,
Effluents Radiation Protection Section (ERPS), Facilities Radiological Safety and Safeguards Branch (FRSSB)

Approved by:
 of Radiation Safety and Safeguards

Inspection Summary: Inspection on December 10-12, 1990 (Report No. 50-199/90-02)

Areas Inspected: Routine, anr:inoed inspection by a region-based inspector of the licensed program including organization, review of operations, radiological controls, transporation, procedures, and reviews and audits.

Results: Within the areas inspected two apparent violations were observed. Violations: Failure to calibrate the two radiation monitoring channels of the Radiation Monitoring System annually (paragraph 4.1); failure of the ROC to conduct independent audits or have independent audits conducted biennially (paragraph 8.0). In addition, several weaknesses were identified in the conduct of your Radiological) Protection and Measurements Programs (paragraphs $4.2,4.3,6.2$ and 7.0).

DETAILS

1.0 Individuals Contacted

V. Antonetti, Chafrman, Mechanical Engineering Department
*R. Berlin, Reactor Administrator
**W. Duggan, Chief Reactor Supervisor
*denotes those who attended the exit interview on December 11. 1990
**denotes those who attended the exit interview on December 11 and 12, 1990

2.0 Organization

The inspector determined that the organization for the management of the reactor facility was structured as required by Technical Specification
(TS) 6.1.1. At the time of the current inspection, the Reactor Administrator was the only licensee employee on site who was authorized to operate the reactor. An individual was hired in August 1990, to $f 111$ the position of Chief Reactor Supervisor, but he does not have a Senior Reactor Operator (SRO) ilcense as required by TS 6,2,2.F.

The $m i n f m u m$ staffing when the reactor is not secured, as required by is 6.1.3, includes in part, a licensed Reactor Operator (RO) in the control room and a licensed SRO present in the beo Engineering Building, which houses the reactor facility. The Reactor Administrator stated that the Andividual who had previously been the Chfef Reactor Supervisor still had a valid SRO license and was available to assist in reactor operations until the individual recently hired in the Chief Reactor Supervisor position has successfully completed the SRO examination.

3.0 Facility Tour

The inspector toured the various rooms within the reactor facility, accompanied by the new Chief Reactor Super, isor. The inspector observed that the doors that served as the entrance to the reactor facility were locked, but they were not posted with signs "Caution - Radioactive Materials" as required by 10 CFR 20. The licensee was aware of this situation and explained that the signs had been inadvertently painted over by outside contractor personnel who had been hired to paint the hallways of the Leo Engineering Building. The licensee stated that replacement signs had been ordered. The inspector stated that the required postings must be in place before any fuel handiing, core loading or reactor operations were performed.

The inspector observed that a cabinet in the counting room being used for the storage of radloactive sources was maintained in a locked condition, but it was not posted with a "Caution - Radiotctive Matertals" stgn. The inspector examined several of the sources, and this partial examination indicated that the cabinet did not contain a total quantity of radioactive materials that would require the posting describet in 10 CFR 20 . However, the licensee stated thet such a posting would be placee on the storage cabinet as a good health physics practice.

4.0 Radiological Controls

4.1 Radtation Monttorthe Systems

The inspector observed that the licensee had installed gamma radiation monftors in compliance with the design requirements of 75 3.7.3. The Anspector determined that the ixemsee cten perform operability tests of these gamma radiation monitors by using the check sources built into the detector units. However, the inspector determined through neview of logs and discussions with the licensee, that calibration of these radiation monitors had not been performed for at least the lest three years. TS 4.7.3. A. requires that these monftors be callibrated annually. Fallure to calibrate annually is an apparent violation (50-199/90-02-01).
4.2 Health Physics Logbook

The inspector reviewed a Health Physics Logbook used by the licensee to decument health physics surveillance activit es performed in support of reactor operations. This logbook was a poorly maintained, untidy record, consisting mainly of handwritten information on tablet paper, which had been stapled onto the bound pages of a hardcover record book. The handwritten information was very difficult to read, and the data were entered in an inconsistent and confusing manner. For example, the result of the semi-annual pool water sampling analysis, dated October 11, 1989, required by "\$ 4.3.3.B., was recorded as less than 0.0001 microcuries per " $100 \mathrm{~cm}^{2}$ removable." Air sample results, dated November 9, 1987, were recorded as less than " 0,0005 microcuries $/ 60,000 \mathrm{ft}^{3}$ ", whereas, air sample results, dated May 6, 1988, were recorded as less than "0.0001 microcuries $/ 1200 \mathrm{ft}^{3}$ ". Based upon this review of the logbook, the inspector could not dentify the specific radioisotopes of concern and could make no comparisons between these analytical results and the applicable limits in Appendix B of 10 CFR 20. The inspector stated that the documentation in the Mealth Physics Logpook needed substantfal improvement. The itcensee representative suateo that they would work with the health phystcs consultant to upgrade the quality of recordkeeping (50-199/90-02-02).

4.3 Radioanalytical Methoos

```
The itcensee penioddcally has collected samples of reactor factlity
air, reactor pool water and reactor demineralizer resin, and has submitted
these samples to a nealth physics consultant for radiological analyses.
All records reviewed by the inspector indicated that this health physics
consultant consistent`y reporied that the samples had less tnan detectable
activity. The health physics consultant also collected and analyzed
smear samples for removable surface contamination within the reactor
fac{lity, and "Tess than cetectable" results were typically recorded
in the Health Phystcs Logbook. In July 1990, the nealth phystcs
consultant sent the smear semples to a commerclal lab for radioanalysis.
The resulis from the commercial lab ranged from approximately two to
six times greater than the detectable level of the results typically
reported by the health physics consultant. Aciditionally, many of the
sample results (about 70%) reported by the Commercial Lab were positive
results greater than the "detectable" limit (0.0001 microcurie) recorded
by the consultant in the Health Physics Logbook for past smear sample
results. The manner in which the sample results were reported by the
health physics consultant did not provide sufficient infommation to
determine the actual sensitivity of the radioanalytical method being
used. The inspector stated that an evalvation of the adeouacy of the
radioanalytical methods used by the consultant was needed, and that
the sensitivity of these methods must be determined to assure that
the radioactivity in col'ected samples of reactor facility air, pool
water &nd demineralizer resin is accurately identified and quantified,
such that appropriate hardling or treatment of these medta can be
ensured. The ilcensee representative stated that he would work with
the health physics consultant to perform these necessary evaluations.
This item would be neexamined during a future inspection
(50-199/90-02-03).
```


5.0 Operations

The Reactor Administrator foformed the inspector that the high-enriched urantum (HEU) fuel had been removed from the reactor pool in November, 1989. Reactor maintenance activities were then conducted and completed in April, 1990. The reactor had been maintained in a shutdown condition, Without fuel, stace the completion of matntentace. At the time of the current inspection, the hicensee expected to receive a new core of low-enrtched urantum (LEU) fuel by the end of January, 1991.

6.0 Transportetion

6.2 Fuel Shtpment

The inspector reviewed the quality assurance (QA) program, approved by the NRC in a letter cated February 26, 1990, for the shipment of HEU fuel elements from the licensee's reactor factlity to Oak Ridge

National Laboratories. The inspector noted that the QA program approval, which authorizes the licensee to use only the DOT-6M Type B container, had an expiration date of January 31, 1991. The inspector also noted that the QA program contained explicit requirements for internal inspections and audits to be performed for this HEU fuel shipment, and it specified the types of QA records that must be maintained by the licensee. The inspector stated that these QA records would be reviewed during a future inspection and noted that the QA program approval would need to te renewed if the HEU fuel shipment could not be made tefore the end of January 1991. The licensee acknow'edged the inspector's comments.

6.2 Demineralizer Resin Disposal

The inspector was informed by the licensee that spent demineralizer resin, which had been used to process the reactor pool water, was disposed as non-radioactive waste. The licensee did this based upon radioanalytical results from the health physics consultant, who reported that no detectable radfoactive contamination was present in the collected samples of spent demineralizer resin. Based upon the questions that had been raised regarding the adequacy and sensitivity of the health physics consultant's raoloanalytical methods, as described in Section 4.3 of this inspection report, the inspector questioned the validity of the determination that the spent resin was non-radioactive waste. On December 14, 1990, NRC Region I management contacted the licensee via telephone and requested that the licensee suspend any further disposal of spent demineralizer resin until the adequacy of the methods used for the radioanalysis of this material had been evaluated and upgraded, if necessary, to obtain a reliable determination. The licensee agreed to suspend disposal of the spent resins unt 11 these actions nad been completed.

7.0 Procedures

The inspector reviewed a typed, first draft of the licensee's Reactor Operations Manual. This manual appeared to incorporate the ifcensee's previous Radiation Safety Manual and consolidate many of the procedures required by TS 6.3. However, at the time of this inspection, the Reactor Operations Manual had not beer reviewed by the Reactor Operations Committee nor approved by the Reactor Administratar, as required by TS 6.3 , and was not being fully implemented. The inspector stated that, in the licensee's review of this manual, the licensee should assure that its - equirements are consistent with license, Technical Specificattons and actual practices within the reactor facility. The licensee representatives stated that their review would include these items.
8.0 Reviews and Audits
The inspector examined records of the Reactor Operations Committee (ROC)anc interviewed the Reactor Administrator regarding the review and auditof the safety aspects of the reactor facility operation by the ROC, asrequired by TS 6.2. The inspector was not able to verify that the ROC wasperforming the eudit function reoutred by is $6,2.4$. Based on discussionswith the licensee and review of available documentation, the inspectordetermined that the ROC had essentially not performed the biennial auditactivities required by TS 6.2 .4 of those items TS 6.2 .4 .1 through TS 6.2.4.4,for at least three years. Fallure of the ROC to function as required by6.2 .4 is an apparant violation (50-199/90-02-04).

9.0 Exit Interview

The inspector met with the personnel denoted in Section 1.0 at the conclusion of the inspection on December 11 and 12, 1990. The scope and findings of the inspection were presented at that time.

1. Operations	
2. Rad-Con	
3. Maintenance	
4. Surveillance	
4. Outages	
5. Emerg. Prep.	
6. Sec/Safegrds.	
	8. Training
9. Lice ing	
	10. QA
11. Other	
12. Fire Protection/	
Housekeeping	

\qquad
Area Action Due Date Updt/Clsout Rpt/
|R|D|p|

Date 0 Hesenty

 $\frac{\text { Item Number }}{\text { |q|o|-|0|z|-|0|i }} \quad$| Type |
| :---: |
| $\|5\| L\|4\|$ |

Originator Amontaner

Descriptive Title

Originator/Alodtyter
 |A|u|S|T|I|N| I II
 Resp Sec
 |II

Descriptive Title

Region I Form 6
(January 1987)

1. Operations	7. Outages
2. Rad-Con	B. Training
3. Maintenance	9. Licensing
4. Surveiflance	10. QA
5. Emerg. Prep.	11. Other
6. Sec/Safegris.	12. Fire Pretection/
Housekepping	

\square $-$
\qquad Cutrow Docket No. 1015101119191 Oriqinator AUSTVN
Reviewing Supervisot? BCLES

Item Number	Type	SAIP Area	Area	Action Due Date	Updt/CIsout Rpt/	Date 0atreaser												
\|aloi-io	zi-	0	4		\|s	civi	Telalolchin 1 1 1	Iriof	T 1 1-1\| 1-1		1\| 1	-1		-1 1 I	11\|z-11	z	-19	c
				M M D D Y Y		M M D 0												

Descriptive Title

