Byron Nuclear Power Station
 Unit 1

INSERVICE TESTING
(ISI)
PROGRAM PLAN FOR

VALVES
Table of Contents
2.0. Inservice Testing Program for Valves
Page
2.1 Program Description 3
2.2 Program Tables 4
2.3 Relief Requests 9
2.4 Notes 24

2.1 Byron Unit 1 Valve Inservice Inspection Program Plan.

The Inservice testing program for ASME Section XI Class 1, 2, \& 3 valves meets the requirements of subsection IWV of Section XI, 1980 edition, winter, 1980 addenda of the ASME Code. Where code requirements are determined to be impractical, specific requests for relief are written, referenced in, and included with the tables. The tables list all code Class 1,2 \& 3 valves which have been assigned a specific code category as directed by Subsection IWV of Section XI. The tables are organized by system and further identified by code class and code category, using P \& ID references.

Each valve, after installation and prior to service, will be tested as required by Subsection IWV-3100 Section XI of ASME. These tests will be conducted under conditions similar to those to be experienced during subsequent inservice tests.

Section 2.2

TABLES FOR THE INSERVICE VALVE
PROGRAM PLAN
(ISI)

Byron Unit 1

The following information is included in the summary tables.
d. SYSTEM

The system in which a valve is located is denoted by the abbreviated systom identification.
B. $\quad P \& I D$

The P \& ID column references the specific P \& ID number and sheet number, which the valves are located on.
C. REVISION \& DATE

The revision and date corresponds to the most current revision for use at the date the program was written.
D. PAGE

The pages are number sequentially and show the total number of tables.
E. VALVE NUMBER

The valve number references the unique Byron Station equipment piece number (EPN). This specific valve number identifies the unit and system.
F. COORD

The coordinates reference a specific location on a particular P \& ID, via an $X-Y$ coordinate system.
G. CLASS

The class refers to the ISI class assigned to the specific valve.
H. VALVE CATEGORY

The valve category identifies the valve category defined in subsection IWV of ASME Section XI, paragraph IWV- 2200.
I. VALVE SIZE

The valve size lists the nominal pipe size of each valve in inches.

VALVE TYPE
The valve type categorizes the valve as to its valve design. The following abbreviations will be used to identify specific valve types:

Gate	GA
Globe	GL
Butterfly	BTF
Check	CK
Safety	SV
Angle Relief	GV
Diaphragm Seated	C
Plug	P

K. ACT TYPE

The actuator type identifies the valve actuator. The following abbreviations will be used to designate specific types of valve actuators:

Motor Operated	MO
Air Operated	AO
Hydraulic Operated	HO
Self Actuated	SA
Manual	M
Solenoid Operated	SO

L. NORMAL POSITION

Normal position identifies the normal operating position of a specific valve. O for open and C for closed.
M. STROKE DIRECT

The stroke direction identifies the direction the valve actuator moves a specific valve stem to place the valve disc in a position to perform its designed safety function. O for open, and C for closed. This identifies the direction the valve stem will move to be tested.

Note: In order to stroke a valve in the direction required for its safety function, it must first be stroked in the opposite direction to place the valve in a position to be tested. By virtue of chilo, such valves are stroke tested in both directions. Therefore, the program plan specifies only the direction in which valves must be stroked to be timed.

The test method column identifies specific tests which will be performed on specific valves to fulfill the requirements of Subsection IWV of Section XI. The tests and abbreviations used are as follows:

1. Seat Leakage Test (Lt)

The seat leakage tests will meet the requirements of IWV-3420, for Category (A) valves. On these valves seat leakage is 1 imited to a specific maximum amount in the closed position for fulfillment of their function.
2. Full Stroke Test (St)

Valve exercising tests of Category A and B valves will be performed in accordance with IWV-3410. The test will include full stroke testing to verify operability in the direction required to fulfill the required function.
3. Check Valve Exercise Test (Ct)

The check valve disc will be exercised to the position required to fulfill its safety function in accordance with IWV-3520.
4. Relief Valve Setpoint Check (Rt)

Relief valve setpoints will be verified in accordance with IWV-3510 of ASME Section XI.
5. Fail Safe Test (Ft)

Valves with fail safe actuators will be tested to verify the valve operator moves the valve stem to the required fail safe position upon interruption of the motive force in accordance with IWV-3415.
6. Position Indication Check (It)

Valves which are identified to require a PIT will be inspected in accordance with IWV-3300 of ASME Section XI.
7. Part-Stroke Test (Xt)

If only limited operation is practical, during plant operation the valves shall be part-stroke (Xt) exercised during plant operation and full-stroke exercised during cold shutdowns, in accordance with IWV-3412 and IWV-3522.
0. MAX STROKE TIME

The maximum allowable stroke time is specified in seconds for power operated valves requiring a full stroke (St) test in order to meet the requirements of IWV-3413, where (N/A) is not applicable.

Normal Operation
Tests designated $O P$ will be done once every 3 months.
Cold Shutdown
CS
In-service valve testing at cold shutdown is a valve testing program which commences within 2 hours after the plant reaches a cold shutdown condition but in no case later than 48 hours after cold shutdown i:s reached. Completion of cold shutdown valve testing is not a prerequisite to plant startup. Valve testings which are not completed during a cold shutdown shall be completed during subsequent cold shutdowns that may occur to meet the code specified testing frequency. In case of frequent cold shutdowns, valve testing need not be performed more often than once in a three-month interval for any valve with a test mode designation of cold shutdown. When plant conditions (system orientation) are aligned such that specific valves cannot be tested at the interval prescribed, the situation will be documented and tracked with the ISI Program.

In the event a valve must be declared inoperable as a result of cold shutdown testing, the applicable unit startup limitations will be as stated in the Technical Specifications, Limiting Condition for Operation.

Reactor Refueling
 RR

Tests with this designation will be conducted during reactor refueling outages only.
Q. RELIEF REQUEST

Relief Requests references a specific request for relief from Code Requirements. All Relief Requests are included immediately following the presentation tables. More Valve Relief Requests may be necessary for the Valve Inservice Inspection Program and will be identified during the performance of the Preservice Inspection.

	INSERVICE STING PROGRAMISI CLASS 1,2 and 3 VALVESBYRON NUCLEAR POWER STATION											UNIT 1
SYSTEM	AF							$\begin{aligned} & \mathrm{P} \& \text { ID } \\ & \mathrm{M}-37 \end{aligned}$	REVISIO 1	$\begin{gathered} N-\text { DATE } \\ 7 / 26 / 82 \end{gathered}$	PAGE 2 of 47	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \end{aligned}$	VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	TEST RELIEF MODE REQUEST	REMARKS
1AF001A	D-2	3	C	6.0	CK	S.A.	C	0	N/A	Ct	OP	
1AF001B	B-2	3	C	6.0	CK	S.A.	C	0	N/A	Ct	OP	
1AF003A	D-5	3	C	6.0	CK	S.A.	C	0	N/A	Ct	OP	
1AF003B	B-5	3	C	6.0	CK	S.A.	C	0	N/A	Ct	OP	
1AF006A	E-3	3	B	6.0	GA	M.O.	C	0	30.0	$\begin{aligned} & \mathrm{St} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$	
1AF006B	B-3	3	B	6.0	GA	M.O.	C	0	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \mathrm{RR} \end{aligned}$	
$1 \mathrm{AFO13A}$	C-8	2	B	4.0	GL	M.O.	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$	
1AF013B	A-8	2	B	4.0	GL	M.O.	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \mathrm{RR} \end{aligned}$	
$1 \mathrm{AF013C}$	E-8	2	B	4.0	GL	M.O.	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$	
1AF013D	B-8	2	B	4.0	GL	M.O.	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \end{aligned}$	
1AF013E	D-5	2	B	4.0	GL	M. 0	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & \mathrm{RR} \end{aligned}$	
1AF013F	B-8 $F-8$	2	B	4.0	GL	M.O.	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & \mathrm{RR} \end{aligned}$	
1AF013G	F-8	2	B	4.0	GL	M. 0.	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$	
1AF013H	C-8	2	B	4.0	GL	M. 0 .	0	C	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$	
1 AF 014 A	C-8	2	C	4.0	CK	S.A.	C	0	N/A	Ct	OP	
1AF014B	A-8	2	C	4.0	CK	S.A.	C	0	N/A	Ct	OP	

	Common	ALTH			INSERVICE T ING PROGRAMISI CLASS 1, and 3 VALVESBYRON NUCLEAR POWER STATION							$)_{\text {UNIT } 1}$	
SYSTEM	CC							$P \& I D$ $M-66-2$	$\begin{aligned} & \text { REV ISIO } \\ & 1 \end{aligned}$	$\begin{array}{r} N-D A T E \\ 7 / 26 / 82 \end{array}$		PAGE 5 of 47	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY		VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { STROKE } \\ & \text { DIRECT. } \end{aligned}$	$\begin{aligned} & \text { MAX. STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
1CC9412B	F-3	3	B	12.0	GA	M.O.	C	0	14.5	$\begin{aligned} & \mathrm{St} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$		
1CC9412A	D-3	3	B	12.0	GA	M.O.	C	0	14.5	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$		

	COMMONWEALTH EDISON				INSERVICE - TING PROGRAMISI CLASS 1, 2 and 3 VALVESBYRON NUCLEAR POWER STATION								UNIT 1
SYSTEM	CC							$\begin{aligned} & P \& I D \\ & M-66-3 \end{aligned}$	REVISIO 1	$\begin{array}{r} N-\text { DATE } \\ 7 / 26 / 82 \end{array}$		$\begin{aligned} & \text { PAGE } \\ & 6 \text { of } 47 \end{aligned}$	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	$\begin{aligned} & \hline \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \\ & \hline \end{aligned}$	VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
1 CC 9463 A	$\mathrm{C}-2$	3	C	12.0	CK	S.A.	C	0	N/A	Ct	OP		
1CC9463B	C-3	3	C	12.0	CK	S.A.	C	0	N/A	Ct	OP		
OCC9464	C-4	3	C	12.0	CK	S.A.	C	0	N/A	Ct	OP		
1CC9473A	E-5	3	B	16.0	GA	M.O.	C	0	(later)	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \mathrm{RR} \end{aligned}$		
1CC9473B	D-5	3	B	16.0	GA	M. 0.	C	0	(later)	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & R R \end{aligned}$		

	COMMON	ALTH E			INSERVICE T ING PROGRAM ISI CLASS 1, 2 and 3 valves byron nuclear power station							$)_{\text {UNIT } 1}$	
SYSTEM	CS							$\begin{aligned} & P \& \text { ID } \\ & M-46-1 \end{aligned}$	$\begin{aligned} & \text { REVISIO: } \\ & 1 \end{aligned}$	$\begin{array}{r} \mathrm{N}-\mathrm{DATE} \\ 7 / 26 / 82 \end{array}$		$\begin{aligned} & \text { PAGE } \\ & 8 \text { of } 47 \end{aligned}$	
VALVE NUMBER	COORD	CLASS	$\begin{aligned} & \text { VALVE } \\ & \text { CATEGORY } \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \\ & \hline \end{aligned}$	Valve TYPE	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	RELIEF REQUEST	REMARKS
16S007A	E-7	2	A	10.0	GA	M.O.	C	0	12.0	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { OP } \\ & \text { RR } \end{aligned}$	VR-1	
1CS007B	C-7	2	A	10.0	GA	M.O.	C	0	12.0	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { OP } \\ & \mathrm{RR} \end{aligned}$	VR-1	
1CS008A	E-7	2	A	10.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$	VR-1	
1 CS 008 B	C-7	2	A	10.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \mathrm{RR} \end{aligned}$	VR-1	
1CSO10A	D-4	2	B	3.0	GL	A.O.	C	0	10.0	$\begin{aligned} & \text { St } \\ & \mathrm{It} \\ & \mathrm{Ft} \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \\ & \text { OP } \end{aligned}$		
1CS010B	B-4	2	B	3.0	GL	A.O.	C	0	10.0	$\begin{array}{r} \mathrm{St} \\ \mathrm{It} \\ \mathrm{Ft} \\ \hline \end{array}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \\ & \text { OP } \end{aligned}$		
1CS011A	D-2	2	C	6.0	CK	S.A.	c	0	N/A	Ct	OP		
1 csolim	C-2	2	C	6.0	CK	S.A.	c	0	N/A	Ct	OP		
1CS019A	C-5	2	B	3.0	GA	M.O.	C	0	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & \mathrm{RR} \\ & \hline \end{aligned}$		
1CS019B	B-5	2	B	3.0	GA	M.O.	C	0	30.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$		
$1 \mathrm{CSO2OA}$	C-3	2	C	3.0	CK	S.A.	C	0	N/A	Ct	CS	vR-2	
$1 \mathrm{CSO2OB}$	B-2	2	C	3.0	CK	S.A.	C	0	N/A	Ct	CS	vR-2	
1cs003A	E-3	2	c	10.0	CK	S.A.	c	0	N/A	Ct	OP		
$1 \mathrm{CSO03B}$	C-3	2	c	10.0	CK	S.A.	c	0	N/A	Ct	OP		

	COMMON	ALTH E			INSERVICE T ING PROGRAMISI CLASS 1, 4 and 3 VALVESBYRON NUCLEAR POWER STATION							$)_{\text {UNIT } 1}$	
SYSTEM	CV							$\begin{aligned} & P \& I D \\ & M-64-1 \end{aligned}$	REVISIO 1	$\begin{aligned} & N-D A T E \\ & 7 / 26 / 82 \end{aligned}$		PAGE 9 of 47	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	VALVE SIZE (IN.)	VALVE TYPE	ACT. TYPE	NORMAL POSITION	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	TEST METHOD	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
1CV8355A	B-8	2	A	2.0	GL	M. 0.	0	C	(later)	It Lt St	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{RR} \\ & \mathrm{CS} \end{aligned}$	VR-9	
1CV8355B	B-4	2	A	2.0	GL	M.O.	0	C	(later)	It Lt St	$\begin{aligned} & \text { RR } \\ & \text { RR } \\ & \text { CS } \\ & \hline \end{aligned}$	VR-9	
1CV8368A	C-7	2	AC	2.0	CK	S.A.	0	C	N/A	Lt $\mathrm{Ct}-1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{CS} \\ & \hline \end{aligned}$	VR-9	
1CV8368B	C-4	2	AC	2.0	CK	S.A.	0	C	N/A	$\begin{aligned} & \text { Lt } \\ & \mathrm{Ct}-1 \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{CS} \end{aligned}$	VR-9	

	Commonwealth edison				INSERVICE - TING PROGRAM ISI CLASS 1, 2 and 3 valves byron nuclear power station						$)_{\text {UNIT } 1}$		
SYSTEM	FP							$\begin{aligned} & \text { P\& ID } \\ & M-52-1 \end{aligned}$	REvisio 1	$\begin{array}{r} \mathrm{N}-\mathrm{DATE} \\ 7 / 26 / 82 \end{array}$		PAGE 16 of 47	
VALVE NUMBER	COORD	CLASs	valve CATEGORY	valve SIzE (IN.)	$\begin{aligned} & \text { VALVE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	MAX. STROKE TIME (SEC.)	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	TEST MODE	RELIEF REQUEST	Remarks
$1 \mathrm{FP010}$	E-6	2	A	4.0	GL	A.O.	0	c	12.0	$\begin{aligned} & \hline \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \\ & \mathrm{Lt} \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \end{aligned}$		
1FP011	E-7	2	A	4.0	GL	A.O.	0	c	12.0	$\begin{aligned} & \hline \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \\ & \mathrm{Lt} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \text { RR } \\ & \text { Cs } \\ & \text { RR } \\ & \hline \end{aligned}$		Note 3

	Commonnealth edison				INSERVICE T ${ }^{\text {ING PROGRAM }}$ byron nuclear power station ISI CLASS 1,2 and 3 VALVES							$)_{\text {UNIT } 1}$	
SYSTEM	LA							$\begin{aligned} & P \& 10 \\ & M-55-2 \end{aligned}$	REvisio	$\begin{gathered} \mathrm{N}-\mathrm{DATE} \\ 7 / 26 / 82 \end{gathered}$		page 19 of 47	
$\begin{aligned} & \text { VALVE } \\ & \text { NUMBER } \end{aligned}$	COORD	Class	VALVE CATEGORY	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { TEST } \\ \text { METHOD } \end{gathered}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
114066	E-7	2	A	3.0	GL	A.O.	0	C	35.0	$\begin{aligned} & \hline \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{Ft} \\ & \mathrm{It} \\ & \hline \end{aligned}$	RR CS Cs RR R	$\begin{aligned} & \hline \text { VR-1 } \\ & \text { VR-11 } \\ & \text { VR-11 } \end{aligned}$	Note 3
11A065	E-6	2	A	3.0	GL	A.O.	0	C	35.0	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{Ft} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{RR} \\ & \mathrm{CS} \\ & \mathrm{cs} \\ & \mathrm{RR} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VR-1 } \\ & \text { VR-11 } \\ & \text { VR-11 } \end{aligned}$	Note 3
11A091	F-7	2	A	0.75	cK	S.A.	0	c	N/A	Lt	RR	vR-1	

	COMMONWEALTH EDISON				$\begin{aligned} & \text { INERVICE } 1 \text { ING PROGRM } \\ & \text { ISI CLAAS } 1, \text { 2 and } 3 \text { VALVES } \\ & \text { BYRON NUCLEAR POWER STATION } \end{aligned}$							$)_{\text {UNIT } 1}$
system	OG							$\begin{aligned} & p \text { \& ID } \\ & M-47-2 \end{aligned}$	Revisio			$\begin{aligned} & \text { PAGE } \\ & 22 \text { of } 47 \end{aligned}$
$\begin{aligned} & \text { VALVE } \\ & \text { NTMBER } \end{aligned}$	COORD	class	VaLVE CATEGORY	VALVE sIze (IN.)	$\begin{aligned} & \mathrm{VALVE} \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \text { ACT. } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \end{aligned}$	$\begin{gathered} \text { TEST } \\ \text { METHOD } \end{gathered}$	$\begin{aligned} & \text { TESTT } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQEEESTARKS } \end{aligned}$
106057A	E-6	2	A	3.0	BTF	M.O.	${ }^{\text {c }}$	0	10.0	$\begin{gathered} \mathrm{Lt} \\ \mathrm{Lt} \\ \mathrm{St} \\ \mathrm{It} \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{RR} \\ \text { OR } \\ \mathrm{oR} \\ \hline \mathrm{R} \end{array}$	vR-1
106079	E-6	2	${ }^{\text {A }}$	3.0	BTF	M.O.	c	\bigcirc	10.0	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{Lt} \\ & \mathrm{st} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \hline \mathrm{RR} \\ & \mathrm{OR} \\ & \hline \mathrm{RR} \end{aligned}$	vR-1
106080	E-5	2	A	3.0	${ }_{\text {BTF }}$	м.о.	${ }^{\text {c }}$	0	10.0	$\begin{aligned} & \text { ret } \\ & \hline \mathrm{Lt} \\ & \mathrm{st} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { R } \\ & \text { OR } \\ & \hline \end{aligned}$	vR-1
106081	D-5	2	${ }^{\text {A }}$	3.0	${ }_{\text {BTF }}$	м.0.	${ }^{\text {c }}$	\bigcirc	10.0	$\begin{aligned} & \text { Lt } \\ & \text { Lt } \\ & \text { st } \\ & \mathrm{It} \\ & \hline \end{aligned}$		vR-1
106082	E-6	${ }^{2}$	A	3.0	BTF	м.о.	${ }^{\text {c }}$	\bigcirc	10.0	$\begin{aligned} & \text { Lt } \\ & \hline \mathrm{Lt} \\ & \text { St } \\ & \mathrm{It} \\ & \hline \end{aligned}$		vR-1
106083	D-6	2	${ }^{\text {A }}$	3.0	BTF	м.0.	c	0	10.0	$\begin{aligned} & \mathrm{tut} \\ & \hline \mathrm{Lt} \\ & \text { st } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 筧 } \\ & \text { OR } \\ & \hline \end{aligned}$	vR-1
106084	E-4	2	A	3.0	BTF	м.о.	c	0	10.0	$\begin{aligned} & \text { Lt } \\ & \text { St } \\ & \text { st } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \mathrm{RR} \\ & \hline \begin{array}{l} \mathrm{RR} \\ \mathrm{OR} \end{array} \end{aligned}$	IR-1
106085	D-4	2	A	${ }^{3.0}$	BTF	м.о.	c	0	10.0	$\begin{aligned} & \mathrm{tut} \\ & \hline \mathrm{Lt} \\ & \mathrm{st} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{c} \mathrm{an} \\ \mathrm{RR} \\ \text { OR } \\ \mathrm{RR} \\ \hline \end{array} \\ & \hline \end{aligned}$	vz-1

Commonwealth edison				INSERVICE FING PROGRAM ISI CLASS $1, \frac{1}{2}$ and 3 valves byron nuclear power station								$\text { UNIT } 1$	
SYSTEM	PR							$\begin{aligned} & P \& \text { ID } \\ & M-78-1 \end{aligned}$	$\begin{array}{ll} \text { D } & \text { REVISIO } \\ 10 & 1 \end{array}$	$\begin{gathered} N-\text { DATE } \\ 4 / 30 / 81 \end{gathered}$		PAGE 23 of 47	
$\begin{aligned} & \hline \text { VALVE } \\ & \text { NUMBER } \end{aligned}$	COORD	class		VALVE SIZE (IN.)	valve TYPE	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	MAX.STROKE TIME (SEC.)	TEST METHOD \qquad	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	RELIEF REQUEST	REMARKS
1PR001A	F-7	2	A	1.0	GL	A.O.	0	C	(later)	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{Ft} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \hline \end{aligned}$	VR-1	
1PR001B	F-8	2	A	1.0	GL	A.O.	0	c	(later)	$\begin{aligned} & \mathrm{It} \\ & \mathrm{Lt} \\ & \mathrm{Ft} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \hline \end{aligned}$	RR OP OP RR	VR-1	
1PR066	E-2	2	A	1.0	GL	A.O.	0	C	(later)	$\begin{aligned} & \mathrm{It} \\ & \mathrm{Lt} \\ & \mathrm{Ft} \\ & \mathrm{It} \\ & \mathrm{St} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Kn} \\ & \hline \mathrm{RR} \\ & \mathrm{oP} \\ & \mathrm{RR} \\ & \mathrm{OP} \\ & \hline \end{aligned}$	VR-1	
1PR032	E-i	2	A	1.0	CK	S.A.	0	c	N/A	Lt Ct	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OR} \\ & \hline \end{aligned}$	vR-1	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{4}{|l|}{Cammonealth edison} \& \multicolumn{4}{|l|}{INSERVICE T Fing program ISI CLASS T, byron nuclear power station} \& \& \& \& \()_{\text {UNIT } 1}\) \\
\hline system \& PS \& \& \& \& \& \& \& \& REVISION \& \[
\begin{gathered}
\hline \text { N DATE } \\
7 / 26 / 82
\end{gathered}
\] \& \& \[
\begin{aligned}
\& \text { PaGE } \\
\& 25 \text { of } 47
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \text { VALVE } \\
\& \hline \text { NTMBER }
\end{aligned}
\] \& COORD \& class \& VALVE CATEGORY \& \[
\begin{gathered}
\mathrm{VALVE} \\
\text { (} \mathrm{VAIVE} \\
\text { (IN.) } \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { VALVE } \\
\& \begin{array}{l}
\text { YYPE }
\end{array}
\end{aligned}
\] \& \[
\begin{gathered}
\substack{\mathrm{cct} . \\
\mathrm{TYPDP}^{\prime}}
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { NORMAL } \\
\& \text { POSITION }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { MAX.STROKEE } \\
\& \text { TIME } \\
\& \text { (SEC.) } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { TEST } \\
\& \text { METHOD }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { TEST } \\
\& \text { MODE }
\end{aligned}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
\text { RELIEF } \\
\text { REQUEST }
\end{array} \\
\& \text { REMARKS }
\end{aligned}
\] \\
\hline 1PS228A \& e-7 \& 2 \& A \& 0.50 \& GL \& s.o. \& 0 \& \(c\) \& N/A \& \[
\begin{aligned}
\& \mathrm{Lt} \\
\& \mathrm{Lt} \\
\& \mathrm{Ft} \\
\& \mathrm{Ft}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{Rr} \\
\mathrm{or} \\
0 \mathrm{OP} \\
\mathrm{RR}
\end{gathered}
\] \& VR-1 \\
\hline 1PS229A \& E-6 \& 2 \& A \& 0.50 \& GL \& s.o. \& \(\bigcirc\) \& c \& N/A \& \[
\begin{aligned}
\& \text { Lt } \\
\& \text { St } \\
\& \text { st } \\
\& \text { Ht } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Rr } \\
\& \text { or } \\
\& \text { op } \\
\& \text { RR } \\
\& \hline \text { }
\end{aligned}
\] \& vk \\
\hline 1PS230A \& D-7 \& 2 \& A \& 0.50 \& cL \& s.o. \& 0 \& c \& N/A \& \[
\begin{aligned}
\& \mathrm{Lt} \\
\& \mathrm{Lt} \\
\& \mathrm{st} \\
\& \mathrm{Ft} \\
\& \hline \mathrm{It}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { RR } \\
\& \text { OR } \\
\& \text { OP } \\
\& \text { RR } \\
\& \hline
\end{aligned}
\] \& VR-1 \\
\hline 1PS231A \& D-8 \& 2 \& AC \& 0.50 \& ck \& s.A. \& c \& 0 \& N/A \& \(\stackrel{\text { Lt }}{\text { Lt }}\) \& \({ }_{\text {RR }}^{\text {OR }}\) \& \\
\hline \({ }^{\text {1PS228B }}\) \& c-7 \& 2 \& A \& 0.50 \& GL \& s.o. \& - \& c \& N/A \& \begin{tabular}{l}
Lt \\
Lt \\
st \\
Ft \\
It \\
\hline tt
\end{tabular} \& \begin{tabular}{l}
RR \\
\hline RR \\
OP \\
OP \\
RR
\end{tabular} \& vR-1 \\
\hline \({ }^{1 P 52298}\) \& c-6 \& 2 \& A \& 0.50 \& GL \& s.o. \& 0 \& c \& N/A \& Lt

Lt
St
Ft
It
It \& \& vR-1

\hline ${ }^{1 P 5230 B}$ \& ${ }^{\text {B-7 }}$ \& 2 \& A \& 0.50 \& GL \& s.o. \& 0 \& c \& N/A \& $$
\begin{aligned}
& \text { Lt } \\
& \text { St } \\
& \text { St } \\
& \text { Ft }
\end{aligned}
$$ \& \& VR-1

\hline 1Ps231B \& ${ }^{3-8}$ \& 2 \& ${ }^{\text {Ac }}$ \& 0.50 \& ck \& s.a. \& c \& 0 \& N/A \& ${ }_{\text {Lt }}^{\text {Lt }}$ \& ${ }_{\text {RR }}^{\text {RR }}$ \& vR-1

\hline
\end{tabular}

	COMMONWEALTH EDISON				byron nuclear power station 							$\text { UNIT } 1$	
SYSTEM	RC							$\begin{aligned} & P \& i d \\ & M-60-1 \end{aligned}$	REvision	$\begin{gathered} \mathrm{N}-\mathrm{DATE} \\ 7 / 26 / 82 \end{gathered}$		$\begin{aligned} & \text { PAGE } \\ & 26 \text { of } 47 \end{aligned}$	
VALVE NUMBER	COORD	Class	$\begin{aligned} & \text { VALVE } \\ & \text { CATEGORY } \end{aligned}$	valve SIZE (IN.)	valve TYPE	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	MAX.STROKE TIME (SEC.)	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MO~ } \end{aligned}$	$\begin{aligned} & \hline \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
1RC014A	E-5	1	A	1.0	GL	s.o.	c	0	N/A	$\begin{aligned} & \mathrm{St} \\ & \mathrm{Ft} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & \mathrm{OP} \\ & \mathrm{RR} \end{aligned}$		
$\overline{\text { 1RC014B }}$	E-5	1	A	1.0	GL	s.o.	c	\bigcirc	N/A	$\begin{aligned} & \hline \mathrm{St} \\ & \mathrm{Ft} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \hline \end{aligned}$		
1RC014C	E-5	1	A	1.0	GL	s.o.	c	\bigcirc	N/A	$\begin{aligned} & \hline \mathrm{St} \\ & \mathrm{Ft} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \hline \end{aligned}$		
1RC014D	E-5	1	A	1.0	GL	s.o.	C	0	N/A	$\begin{aligned} & \hline \mathrm{St} \\ & \mathrm{Ft} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$		

	Commonwealth edison				INSERVICE ${ }^{\top} \boldsymbol{Y}^{\text {ING }}$ PROGRAMISI CLASS 1, and $^{2} 3$ vaLves byron nuclear power station							$)_{\text {UNIT } 1}$	
SYSTEM	RH							$\begin{aligned} & \text { P\& ID } \\ & M-62-1 \end{aligned}$	$\begin{aligned} & \text { REVISION } \\ & 1 \end{aligned}$	$\begin{array}{r} \text { N - DATE } \\ 7 / 26 / 82 \end{array}$		$\begin{aligned} & \text { PAGE } \\ & 29 \text { of } 47 \end{aligned}$	
$\begin{aligned} & \text { VALVE } \\ & \text { NUMBER } \end{aligned}$	COORD	Class	$\begin{aligned} & \text { VALVE } \\ & \text { CATEGORY } \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	Religf REQUEST	REMARKS
1RH8701A	E-2	1	A	12.0	GA	м.о.	c	0	120.0	$\begin{aligned} & \hline \mathrm{Lt} \\ & \mathrm{st} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{op} \\ & \mathrm{op} \\ & \hline \end{aligned}$		
1RH8701B	E-1	1	A	12.0	GA	м.о.	c	0	120.0	$\begin{aligned} & \text { Lt } \\ & \text { St } \\ & \text { It } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \hline \end{aligned}$		
1RH8702A	E-2	1	A	12.0	GA	M.O.	c	0	120.0	$\begin{aligned} & \hline \mathrm{Lt} \\ & \mathrm{st} \\ & \mathrm{It} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{RR} \\ \mathrm{op} \\ \mathrm{RR} \\ \hline \end{array} \\ & \hline \end{aligned}$		
1RH8702B	E-1	1	A	12.0	GA	M.0.	c	0	120.0	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{st} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{RR} \\ & \mathrm{OR} \\ & \mathrm{RR} \\ & \hline \end{aligned}$		
1RH8716A	D-7	2	B	8.0	GA	M.O.	0	c	10.0	$\begin{aligned} & \begin{array}{l} \text { st } \\ \mathrm{It} \\ \hline \end{array} . \begin{array}{l} \mathrm{It} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{OP} \\ \mathrm{RR} \end{array} \\ & \hline \end{aligned}$		
1RH8716B	C-7	2	B	8.0	GA	M.O.	0	c	10.0	$\begin{aligned} & \mathrm{St} \\ & \mathrm{It} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { OP } \\ \text { RR } \end{array} \\ & \hline \end{aligned}$		
1RH8730A	E-3	2	c	8.0	CK	S.A.	c	0	N/A	$\mathrm{ct} / \mathrm{xt}$	cs/op	vR-12	
1RH8730B	B-3	2	c	8.0	CK	S.A.	c	0	N/A	$\mathrm{Ct} / \mathrm{Xt}$	CS/OP	vR-12	

SYSTEM	SD							$\begin{aligned} & P \& I D \\ & M=48-5 \end{aligned}$	REVISIO 1	$\begin{array}{r} N-\text { DATE } \\ 7 / 26 / 82 \end{array}$		PAGE 33 of 47	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	VALVE SIZE (IN.)	VALVE TYPE	ACT. TYPE	$\begin{gathered} \text { NORMAL } \\ \text { POSITION } \end{gathered}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { TEST } \\ \text { METHOD } \end{gathered}$	TEST MODE	RELIEF REQUEST	REMARKS
1SD002A	E-8	2	A	2.0	GL	A.0.	0	C	7.5	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \mathrm{OP} \\ & \hline \end{aligned}$	VR-1	
1SD002B	E-7	2	A	2.0	GL	A.0.	0	C	7.5	Lt St It Ft	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \mathrm{OP} \\ & \hline \end{aligned}$	VR-1	
1SD002C	E-7	2	A	2.0	GL	A.O.	0	C	7.5	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \mathrm{OP} \\ & \hline \end{aligned}$	VR-1	
1SD002D	E-6	2	A	2.0	GL	A.0.	0	C	7.5	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \end{aligned}$	$\begin{aligned} & R 2 \\ & \text { OP } \\ & R R \\ & \text { OP } \end{aligned}$	VR-1	
1SL002E	E-5	2	A	2.0	GL	A. 0.	0	C	7.5	$\begin{aligned} & \text { Lt } \\ & \text { St } \\ & \text { It } \\ & \text { Ft } \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{OP} \\ & \mathrm{RR} \\ & \mathrm{OP} \\ & \hline \end{aligned}$	VR-1	
1SD002F	E-4	2	A	2.0	GL	A.0.	0	C	7.5	$\begin{aligned} & \text { Lt } \\ & \text { St } \\ & \text { It } \\ & \text { Ft } \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { OP } \\ & \text { RR } \\ & \text { OP } \\ & \hline \end{aligned}$	VR-1	
1SD002G	E-3	2	A	2.0	GL	A.0.	0	C	7.5	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { OP } \\ & \text { RR } \\ & \text { OP } \\ & \hline \end{aligned}$	VR-1	
13D002H	E-3	2	A	2.0	GL	A. 0.	0	C	7.5	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{St} \\ & \mathrm{It} \\ & \mathrm{Ft} \end{aligned}$	$\begin{aligned} & \hline R R \\ & \text { OP } \\ & \text { RR } \\ & \text { OP } \\ & \hline \end{aligned}$	VR-1	
1SD005A	D-8	2	A	375	GL	A. 0.	C	C	N/A	Lt	RR	VR-1	Passive
1SD00SB	D-7	2	A	. 375	GL	A. 0 .	C	C	N/A	Lt	RR	VR-1	Passive
150005 C	D-5	2	A	. 375	GL	A.0.	C	C	N/A	Lt	R2	VR-1	Passive
1SD005D	D-4	2	A	. 375	GL	A.0.	C	C	N/A	Lt	RR	VR-1	Passive

	COMMON	EALTH E			INSERVICE T ING PROGRAMISI CLASS 1, and 3 VALVESBYRON NUCLEAR POWER STATION						UNIT 1		
SYSTEM	SI							$\begin{aligned} & \text { P \& II } \\ & M-61- \end{aligned}$	REVISIO 1	$\begin{aligned} & \mathrm{N}-\mathrm{DATE} \\ & 7 / 26 / 82 \end{aligned}$		PAGE 38 of 47	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	VALVE SIZE (IN.)	VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX. STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \end{aligned}$	TEST METHOD	TEST MODE	RELIEF REQUEST	REMARKS
1SI8809A	E-4	2	B	8.0	GA	M. 0.	0	C	10.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \text { RR } \end{aligned}$		
1SI8809B	D-4	2	B	8.0	GA	M. 0.	0	C	10.0	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$		
1SI8811A	B-5	2	B	24.0	GA	M.O.	C	0	29.4	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & \mathrm{RR} \end{aligned}$		
1SI8811B	A-5	2	B	24.0	GA	M.O.	C	0	29.4	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \hline \text { OP } \\ & \text { RR } \end{aligned}$		
1SI8812A	C-4	2	B	12.0	GA	M.O.	0	C	14.5	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$		
1SI8812B	B-4	2	B	12.0	GA	M.O.	0	C	14.5	$\begin{aligned} & \text { St } \\ & \text { It } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \end{aligned}$		
1SI8958A	C-4	2	C	12.0	CK	S.A.	C	0	N/A	$\mathrm{Ct} / \mathrm{Xt}$	CS/OP	VR-4	
1SI8958B	B-4	2	C	12.0	CK	S.A.	C	0	N/A	$\mathrm{Ct} / \mathrm{Xt}$	CS/OP	VR-4	
1SI8818A	F-7	1	AC	6.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CS} \\ & \mathrm{RR} \\ & \hline \end{aligned}$	VR-4	
1SI8818B	D-7	1	AC	6.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \end{aligned}$	$\begin{aligned} & \mathrm{CS} \\ & \mathrm{RR} \end{aligned}$	VR-4	
1SI8818C	D-7	1	AC	6.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CS } \\ & \text { RR } \\ & \hline \end{aligned}$	VR-4	
1SI8818D	E-7	1	AC	6.0	CK	S.A.	C	0	N/A	Ct Lt	$\begin{aligned} & \mathrm{CS} \\ & \mathrm{RR} \\ & \hline \end{aligned}$	VR-4	

	COMMON	ALTH			INSERVICE T ING PROGRAMISI CLASS 1, and 3 VALVESBYRON NUCLEAR POWER STATION						UNIT 1		
SYSTEM	SI							$\begin{aligned} & P \& I I \\ & M-61- \end{aligned}$	$\begin{aligned} & \text { REVISION } \\ & 1 \end{aligned}$	$\begin{array}{r} N-\text { DATE } \\ 7 / 26 / 82 \end{array}$		$\begin{aligned} & \text { PAGE } \\ & 40 \text { of } 47 \end{aligned}$	
VALVE NLMBER	COORD	CLASS	VALVE CATEGORY	VALVE SIZE (IN.)	VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	TEST METHOD	TEST MODE	RELIEF REQUEST	REMARXS
1SI8808C	C-7	1	B	10.0	GA	M. 0.	0	C	12.0	$\begin{aligned} & \text { St } \\ & \text { It } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$		
1SI8808D	C-5	1	B	10.0	GA	M.O.	0	C	12.0	$\begin{aligned} & \text { St } \\ & \text { It } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { RR } \\ & \hline \end{aligned}$		
1 SI 8880	$\mathrm{F}-3$	2	A	1.0	GL	A. 0.	C	C	N/A	Lt	RR	VR-1	Passive
1SI8956C	B-7	2	AC	10.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{Ct} \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{CS} \end{aligned}$	VR-5	
1SI8956D	B-4	2	1 C	10.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Lt} \\ & \mathrm{Ct} \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{CS} \\ & \hline \end{aligned}$	VR-5	
1SI8948C	B-8	2	AC	10.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CS} \\ & \mathrm{RR} \\ & \hline \end{aligned}$	VR-5	
1SI8948D	B-5	2	AC	10.0	CK	S.A.	C	0	N/A	$\begin{aligned} & \mathrm{Ct} \\ & \mathrm{Lt} \end{aligned}$	$\begin{aligned} & \mathrm{CS} \\ & \mathrm{RR} \\ & \hline \end{aligned}$	VR-5	
1518871	A-3	2	A	. 75	GL	A.O.	C	C	N/A	Lt	RR	VR-1	Passive
1SI8964	D-3	2	A	. 75	GL	A.O.	C	C	N/A	Lt	RR	VR-1	Passive
1SI8968	F-4	2	AC	1.0	CK	S.A.	C	C	N/A	Lt	RR	VR-1	Passive

	ZOMMONWEALTH EDISON				INSERVICE T ${ }^{-}$ING PROGRAMISI CLASS 1, and 3 VALVESBYRON NUCLEAR POWER STATION								NIT 1
SYSTEM	SX							$\begin{aligned} & P \& I D \\ & M-42-1 \end{aligned}$	$\begin{aligned} & \text { REVISION } \\ & 1 \end{aligned}$	$\begin{array}{r} N-\text { DATE } \\ 7 / 26 / 82 \end{array}$		FAGE 42 of 4	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \\ & \hline \end{aligned}$	VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
1SX002A	F-6	3	C	36.0	CK	S.A.	C	0	N/A	Ct	OP		
1SX002B	C-6	3	C	36.0	CK	S.A.	C	0	N/A	Ct	OP		

	Commonnealth edison				INSERVICE T^{-}ING PROGRAMISI CLASS 1, and 3 vaLves ${ }_{\text {BYRON NUCLEAR POWER STATION }}$							$)_{\text {UNIT } 1}$	
SYSTEM	vQ							$\begin{aligned} & \text { P\& ID } \\ & M-105-3 \end{aligned}$	REvision	$\begin{gathered} \text { N - DATE } \\ 7 / 26 / 82 \end{gathered}$		PAGE 45 of 47	
$\begin{aligned} & \text { VALVE } \\ & \text { NUMBER } \end{aligned}$	COORD	CLASS	$\begin{aligned} & \text { VALVE } \\ & \text { CATEGORY } \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \hline \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT \qquad	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	RELIEF REQUES	Remarks
1VQ016	C-7	2	A	. 50	GL	M	c	0	N/A	Lt	RR	VR-1	
1 Q Q017	C-7	2	A	. 50	GL	M	c	0	N/A	Lt	RR	VR-1	
1VQ018	c-5	2	A	. 50	GL	M	c	0	N/A	Lt	RR	vR-1	
1VQ019	c-5	2	A	. 50	GL	M	c	0	N/A	Lt	RR	VR-1	

	Commonnealth edison				inservice t Ying program ISI CLASS 1, 1 and 3 valves byron nuclear poner station							$)_{\text {UNIT } 1}$	
SYSTEM	wM							$\begin{aligned} & P \& I D \\ & M-49-1 \end{aligned}$	REVISIO 1	$\begin{aligned} & \text { N - DATE } \\ & 7 / 26 / 82 \end{aligned}$		PAGE 46 of 47	
valve NUMBER	COORD	Class	$\begin{aligned} & \text { VALVE } \\ & \text { CATEGORY } \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & (\mathrm{IN} .) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VALVE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { ACT. } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$	STROKE DIRECT.	$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	RELIEF REQUEST	REMARKS
16M190	D-6	2	A	2.0	GL	M	c	c	N/A	Lt	RR	VR-1	Passive
1WM191	C-7	2	A	2.0	CK	s.A.	c	c	N/A	Lt	RR	VR-1	Passive

	COMMON	ALTH E	ISON		INSERVICE T'gING PROGRAMISI CLASS 1, and 3 VALVESBYRON NUCLEAR POWER STATION						$)_{\text {UNIT } 1}$		
SYSTEM	Wo							$\begin{aligned} & \text { P \& II } \\ & M-118 \end{aligned}$	$\begin{array}{ll} \text { D } & \text { REVISIO } \\ -5 & 1 \end{array}$	$\begin{aligned} & N-\text { DATE } \\ & 7 / 26 / 82 \end{aligned}$		PAGE 47 of 47	
VALVE NUMBER	COORD	CLASS	VALVE CATEGORY	$\begin{aligned} & \text { VALVE } \\ & \text { SIZE } \\ & \text { (IN.) } \end{aligned}$	VALVE TYPE	ACT. TYPE	$\begin{aligned} & \text { NORMAL } \\ & \text { POSITION } \end{aligned}$		$\begin{aligned} & \text { MAX.STROKE } \\ & \text { TIME } \\ & \text { (SEC.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { METHOD } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { RELIEF } \\ & \text { REQUEST } \end{aligned}$	REMARKS
1W0006A	E-5	2	A	10.0	GA	M.O.	C	C	50	Lt	RR	VR-1	Passive
1W0006B	B-4	2	A	10.0	GA	M.O.	C	C	50	Lt	RR	VR-1	Passive
1W0007A	E-6	2	A	10.0	CK	S.A.	C	C	N/A	Lt	RR	VR-1	Passive
1W0020A	D-5	2	A	10.0	GA	M. 0.	C	C	50	Lt	RR	VR-1	Passive
1W0020B	B-4	2	A	10.0	GA	M. 0.	C	C	50	Lt	RR	VR-1	Passive
1W0007B	B-4	2	A	10.0	CK	S.A.	C	C	N/A	Lt	RR	VR-1	Passive
1W0056A	D-6	2	A	10.0	GA	M. 0.	C	C	N/A	Lt	RR	VR-1	Passive
1W0056B	B-3	2	A	10.0	GA	M. 0.	C	C	N/A	Lt	RR	VR-1	Passive

Section 2.3

Relief Requests for the Inservice Valve Program Plan

1. Valve Number:

All primary containment isolation valves are listed in this program as Category A :

	$\underline{\text { VALVE \# }}$		VALVE \#		VAL.VE \#
1)	$1 \mathrm{CC685}$	45)	1 PS 9354 A	89)	1VQ002A
2)	1 CC 9413 A	46)	1PS9354B	90)	1VQ002B
3)	$1 \mathrm{CC9414}$	47)	1PS9355A	91)	IVQ003
4)	1 CC 9416	48)	1PS9355B	92)	IVQ004A
5)	$1 \mathrm{CC9438}$	49)	1PS9357A	93)	IVQ004B
6)	1CC9486	50)	1PS9357B	94)	IVQ005A
7)	1 CC 9518	51)	1PS9356A	95)	1VQ005B
8)	$1 \mathrm{CC9534}$	52)	1PS9356B	96)	IVOO05C
9)	1 CS 007 A	53)	1RE9159A	97)	IVQ016
10)	1CS007B	54)	1RE9159B	98)	1VQ017
11)	1CS008A	55)	1RE9160A	99)	1VQ018
12)	1CS008B	56)	1 RE9160B	100)	1VQ019
13)	1 CV 8100	57)	1RE9157	101)	1WM190
14)	1 CV8112	58)	1 RE9170	102)	IWM191
15)	1 CV 8113	59)	1 RE1003	103)	1 W0006A
16)	1 CV 8160	60)	1 RF026	104)	1 W0006B
17)	1 CV 8152	61)	1RF027	105)	1W0007A
18)	1 FC009	62)	1 RY8026	106)	1 W0007B
19)	1 FC010	63)	1RY8025	107)	I W0020A
20)	1 FCO 11	64)	1RY8028	108)	1 W0020B
21)	1 FC012	65)	1RY8046	109)	1W0056A
22)	1 IA066	66)	1 RY8047	110)	1 W0056B
23)	11 A065	67)	1RY8033		
24)	11 A 091	68)	1 SA 033		
25)	10G057A	69)	1 SA 032		
26)	$10 \mathrm{G079}$	70)	1SD002A		
27)	10G080	71)	1SD002B		
28)	10G081	72)	1SD002C		
29)	10G082	73)	1SD002D		
30)	10G083	74)	1SD002E		
31)	10G084	75)	1SD002F		
32)	10G085	76)	1SD002G		
33)	1PR001A	77)	1SD002H		
34)	1PR001B	78)	1 SD 005 A		
35)	1 PR066	79)	1SD005B		
36)	1 PR032	80)	1 SD 005 C		
37)	1PS228A	81)	1SD005D		
38)	1PS228B	82)	1 SI8888		
39)	1PS229A	83)	1SI8880		
40)	1PS229B	84)	1SI8871		
41)	1PS230A	85)	1SI8964		
42)	1 PS 230 B	86)	1518968		
43)	1PS231A	87)	IVQ001A		
44)	1PS231B	88)	IVQ001B		

2. Number of Items: 110 .
3. ASME Code Category: A.
4. ASME Codes, Section XI Requirements:

Seat Leakage Measurement per IWV-3420.
5. Basis For Relief:

It would be impractical to perform separate tests to both Section XI and Appendix J.
6. Alternate Testing:

Primary containment isolation valves whose functional differential pressure does not exceed the primary containment accident pressure will be seat leak tested in accordance with the Appendix J requirements of 10 CFR 50.
7. Justification:

At this functional differential pressure, Section XI testing requirements are essentially equivalent to those of Appendix J.
2. Number of Items: 2
3. ASME Code Category: C
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months, per IWV 3521.
5. Basis for rellef:

These check valves in the spray additive system cannot be stroked without introducing NAOH into the CS system.
6. Alternate Testing:

Operability of these two valves will be verified at a frequency of one valve each year. Operability will be verified by either disassembly of the valve to check for free movement of the moving parts or by a special full flow flushing procedure during cold shutdown.
7. Justification:

Stroke exercising of these check valves is impractical during plant operation. Per IWV-3522 they shall be full-stroke exercised during cold shutdown.

1. Valve Nut, er: 1SI8905A-D

1SI8949A-D
1SI8819A-D
1SI8900A-D
1 SI8815
2. Number of Items: 17
3. ASME Code Category: $A C \& C$
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months, per IWV-3521.
5. Basis for relief:

These check valves cannot be full stroke tested during unit operation as the shutoff head of the SI and Centrifugal charging pumps are lower than reactor coolant system pressure.
6. Alternate Testing:

These valves will be full stroke tested during cold shutdown providing the reactor vessel head is removed.
7. Justification:

Full stroke testing of these check valves will be demonstrated by total pump discharge flow duriag cold shutdown providing the reactor vessel head is removed. Performance of this test with the reactor coolant system depressurized but intact could lead to an inadvertent overpressurization of the system. The alternative method of protecting against overpressurization by partial draining of the reactor coolant system to provide a surge volume is not considered a safe practice due to concerns of maintaining adequate water level above the reactor core.

1. Valve Number: 1 SI8958A-B
2. Number of Items: 8
3. ASME Code Category: C \& AC
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months, per IWV-3521.
5. Basis for relief:

These check valves cannot be tested during unit operation as the shutolf head of the pumps are lower than reactor coolant system pressure.
6. Alternate Testing:

These valves will be full stroke tested during cold shutdown providing the reactor vessel head is removed.
7. Justification:

Full stroke exercising of all the branch run check valves can only be demonstrated by total pump discharge during cold shutdown providing the reactor vessel head is removed. This condition is required to establish suction from the RWST and provide system flow conditions similar to design injection flow. Performance of this testing with the reactor coolant system depressurized but intact would not provide adequate surge volume for influx from the RWST to allow the RHR injection system to reach these design flows. The alternative method of providing a surge volume by partial draining of the reactor coolant system is not considered a safe practice due to concerns of maintaining adequate water level above the reactor core.

VR-5

```
1. Valve Number: 1SI8948A-D
    ISI8956A-D
2. Number of Items: 8
3. ASME Code Category: AC
4. ASME Code, Section XI Requirements:
    Exercise for operability (Ct) of check valves every 3 months, per
    IWV-3521.
5. Basis for relief:
    The accumulator check valves cannot be tested during unit operation due
    to the pressure differential between the accumulators ( }600\textrm{psig}\mathrm{ ) and the
    reactor coolant system (2235 psig).
```


6. Alternate Testing:

```
These valves will be partial stroke tested during cold shutdown, providing the reactor vessel head is removed.
7. Justification:
These valves cannot be full stroke tested except by a rapid depressurization of the reactor coolant system as would occur during the design basis cold leg double guillatine break.
```

1. Valve Number: 1 CV8481A, B
2. Number of Items: 2
3. ASME Code Category: C
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months, per IWV-3521.
5. Basis for Relief:

Full stroke exercising of the charging pump discharge check valves cannot be demonstrated during unit operation as the reactor coolant system pressure prevents the pumps from reaching full flow infection conditions.
6. Alternate Testing:

These valves will be partial stroke tested by establishing proper pump discharge flow during operation. Full stroke excreising will be done at cold shutdown providing the reactor vessel head is removed.
7. Justification:

Per 1WV-3522, full stroke exercising of these check valves will be demonstrated during cold shutdown providing the reactor vessel head is removed. Performance of this test with the reactor coolant system intact could lead to an inadvertent overpressurization of the system. The alternative method of protecting against overpressurization by partial draining of the reactor coolant system to provide a surge volume is not considered a safe practice due to concerns of maintaining adequate water level above the reactor core.

1. Valve Number: ICV8546
2. Number of Items: 1
3. ASME Code Category: C
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months, per 1WV-3521.
5. Basis for Relief:

Full stroke exercising of the charging pump suction check valve from the RWST cannot be demonstrated during unit operation as the reactor coolant system pressare prevenis the pumps from reaching full injection flow condition.
6. Alternate Testing:

This valve will be partial stroke tested by veritying charging flow is maintained when the charging pump suction flowpath is transferred from the Volume Control Tank to the RWST during the quarterly valve exercise test.

7. Justification:

Per 1WV-3522, full stroke exercising of this check valve will be demonstrated during cold shutdown providing that the reactor vessel head is removed. Performance of this test with the reactor coolant system intact could lead to an inadvertant overpressurization of the system. The alternative method of protecting against overpressurization by parital draining of the reactor coolant system to provide a surge volume is not considered a safe practice due to concerns of maintaining, adequate level above the reactor core.

VR-8

1. Valve Number: 1CC685 ICC9438

1CC9413A, B 1CC9486
1CC9414 ICC9518
1 CC9416 1CC9534
2. Number of Items: 9
3. ASME Code Category: A \& AC
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months per 1WV-3521.

Exercise for operability (St) of Category A and B valves every 3 months, per IWV-3411.
5. Basis for Relief:

Component cooling water flow to the reactor coolant pumps is requircd at all times while the pumps are in operation. Failure of one of these valves in a closed position during an exercise test would result in a loss of cooling flow to the pumps and eventual pump damage and for trip.
6. Alternate Testing:

These valves will be exercise tested during cold shutdown providing all reactor coolant pumps are not in operation. This testing will be each refueling outage as is maximum.
7. Justification:

Per $1 W V-3522$ and $1 W V-3412$ exemption is taken to the quarterly exercise test of these valves since it is impractical to test these valves during normal operation as pump damage and/or a reactor trip would result.

VR-9

1. Valve Number: LCV8355A, B LCV8355C, D

1CV8368A, B 1 CV8368C, D
1CV8100 ICV8113
1CV8112
2. Number of Items: 11
3. ASME Code Category: A \& AC
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months per 1WV-3521.

Exercise for operability (St) of Category A \& B valves every 3 months per 1WV-3411.
5. Basis for Relief:

These valves cannot be tested during unit operation as sealing water flow to the reactor coolant pumps is required at all times while the pumps are in operation. Fallure of one of these valves in a closed position during an exercise test would result in loss of seal water flow, seal damage, and an eventual unit trip.
6. Alternate Testing:

These valves will be exercise tested during cold shutdown providing all reactor coolant pumps are not in operation. This testing period will be each refueling outage as a maximum.
7. Justification:

Per $1 W V-3522$ and $1 W V-3412$ exemption is taken to the quarterly exercise test of these valves since it is impractical to test these valves during unit operation as seal damage, seal water loss, and eventual inft trip would occur.

1. Valve Number: 1FW009A, B, C, D

1FW040A, B, C, D 1FW043A, B, C, D 1FW038A, B, C, D
2. Number of Items: 16
3. ASME Code Category: B \& C
4. ASME Code, Section XI Requirements:

Exercise for oparability (Ct) of check valves every 3 months, per 1WV-3521.

Exercise for operability (St \& Ft) of category A \& B walves every ${ }^{3}$ months per IWV-3411.
5. Basis for Relief:

These check and isolation valves cannot be tested during unit operation as main feedwater would be terminated causing a reactor trip. These valves main function is to provide water flow as the normal heat removal for the steam generators.
6. Alternate Testing:

To avoid any transient, these valves will not be full stroke tested during unit operation or hot shutdown conditions. These valves can only be tested at cold shutdown whenever the feedwater and condensate systems are not in operation. Although, partial stroke testing will be done during operation.
7. Justification:

In cold shutdown the steam generators are placed in the "wet layup" condition with the secondary side essentially filled with feedwater. Stroke testing in this condition with the feedwater or condensate system running could lead to an inadvertant overfill in the main steam piping. The potential of overpressurizing the secondary side of the steam generators would then exist. This testing period will be each refueling outage as a maximum.

1. Valve Number: 1IA066

1IA065
2. Number of Items: 2
3. ASME Code Category: A
4. ASME Code, Section XI Requirements:

Exercise for operability (St and Ft) of category A and B valves every 3 months per IWV-3411.
5. Basis for Relief:

Stroke testing of these valves during plant operation would isolate the air operated instruments and valves inside the containment building.
6. Alternate Testing:

These valves will be exercised during cold shutdown providing that all necessary equipment required for cold shutdown operations would not be affected.

This testing period will be each refueling outage as a maximum.
Justification:
Stroke exercising of these valves would be impractical as instrumentation would not function properly and valves would stroke to their failure position, possibly causing a reactor trip.

1. Valve Number: 1RH8730A, B
2. Number of Items: 2
3. ASME Code Category: C
4. ASME Code, Section XI Requirements

Exercise for operability (Ct) of check valves every 3 months, per 1WV-3521.
5. Basis for Relief:

Full stroke exercising of the residual heat removal pump discharge check valves cannot be demonstrated during unit operation as the reactor coolant system pressure prevents the pumps from reaching full flow injection conditions.
6. Alternate Testing:

These valves will be partial stroke tested by establishing proper pump discharge flow during periodic pump testing and as required during cold shutdown. They will be full stoke tested at cold shutdown providing that the reactor vessel head is removed.
7. Justification:

Per lWV-2522, full stroke exercising of these check valves will be demonstrated during cold shutdown providing the reactor vessel head is removed. Performance of this test with the Reactor Coolant System depressurized but intact could lead to an inadvertant overpressurization of the system. The alternative method of protecting against overpressurization by partial draining of the reactor coolant system to provide a surge volume is not considered a safe practice due to concerns of maintaining adequate water level above the reactor core.

1. Vaive Number: 1 SI8922A, B 1SI8926
2. Number of Items: 3
3. ASME Code Category: C
4. ASME Code, Section XI Requirements:

Exercise for operability (Ct) of check valves every 3 months, per $1 \mathrm{WV}-3521$.
5. Basis for Relief:

Full stroke exercising of the Safety Injection Pumps suction and discharge check valves cannot be demonstrated during unit operation as the reactor coolant system pressure p-events the pumps from reaching: full flow injection condition.
6. Alternate Testing:

These valves will be partial stroke tested by establishing proper pump discharge flow during periodic pump testing. Full stroke exercising will be done at cold shutdown provid'ng the reactor vessel head is removed.
7. Justification:

Per 1 WV-2522, full stroke exercising of these check valves will be demonstrated during cold shutdown providing the reactor vessel head is removed. Performance of this test with the reactor coolant system depressurized but intact could lead to an inadvertent overpressurization of the system. The alternative method of protecting against overpressurization by partial draining of the reactor coolant sy:tem to provide a surge volume is not considered a safe practice due to concorns of maintaining adequate water level above the reactor core.

Section 2.4
NOTES FOR THE INSERVICE
VAI.VE PROGRAM PI. \mathcal{L} N

NOTE 1

Closure of the Main Steam isolation valves during unit operation would result in reactor trip and safety injection actuation. To avoid this transient, thess. valves will be partially stroked every three months. Full stroke testing: will be done during cold shutdown, per IWV-3412.

NOTE 2
The testing of this check valve during normal operation would introduce boric acid into the CV, SI, and RHR Systems. The operability of this valve will be verified during cold shutdown.

$$
\text { NOTE } 3
$$

The fail safe actuation test for these valves cannot be demonstrated as they are located inside containment where their source of actuation cannot be reached during unit operation. Per 1 WV- 3415 , these valves will be stroked during cold shutdown.

NOTE 4

Closure of these letdown and makeup valves during normal tuit operation would result in loss of flow which would result in a reactor coulant inventory transient and a subsequent reactor trip. These valves will be full stroke exercised during cold shutdown as required by IWV-3412.

