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ABSTRACT -

Definitions of statistical terms and methods used to derive uncertainty estimates for experimental
measurements at the Semiscale Test Facility are presented in this report. Error propagation equations are
developed to aid in determining uncertainties for complex calculations. Uncertainty estimates of the data -
system are present-d, as well as the other types of errors, which are analyzed in more detailin subsequent
volumes that will cover each of the various types of measurements.
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SUMMARY J,Y

$ 4,
v

Uncertainty estimates for Semiscale experimental test data are calculated by the Measuremeritsystcms Engi ,, #g~
'

neering section. The purpose of this report is to provide a referencable document describing the error sources .

considered and the methods used to calculate uncertainty estimates for Semiscale test det.t ilncertaigyA, y; M
estimates at a 95% confidence level are required by the Nuclear Regulatory Commission ip M1 r$fts base (t onW ' 3 Y,
experimental test data from the Idaho National Engineering Laboratory. ., j x -| / Ni' ' i

(f G*$ ..
The International Standards Organization's draft standard, " Fluid Flow, Measure, ment Uncertainty." *

(ISO TC30 SC9) is the basis of the method used at Semiscale. This method has Qn .A'epted by,ssveral tech.
nical societies such as the American Society of Mechanical Engineers and the Instrtmient Society of America.

-| .; p ' s-
'

All measurements are subject to two types of errars, : e , bias (systematic) and precision (random). Calibd- V.
tion data (transducer, special, and others) are used as : he pinary sources of estimaltes of the various errors. The 4R,
root-sum-square method is used to accumulate the bias and precision err' r) separai,ly. The root-sum-square ho
method is used to combine the accumulated bias and precision errors for the uncertstinty estimate,

j m!s ),

All uncertainty estimates of Semiscale experimental test data are at the 95% confidence . level. This y '

represents the uncertainty band outside of which only one data value out of twenty will fall, on the average. .*

.
~ <

This document, including subsequent solumes, represents the pretest uncertainty analysis. Fpttcrs that are
*

expected to be reviewed during a posttest analysis are discussed in the vohrme; to be issued sqbnquent f o this 1 G.

report. Results of posttest analysis will need to be addressed in the cWimental data repons.' gp \r:
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3 6v', fis documenQNt1 REG /CR-2459pEGG-2142) reports the methods used for uncertainty analyses cf

p S,emhcale (est r@surements. Measurement uncertainty analyses are performed t.o evaluate the anticipated
peyldrmana, lor "ach,experimerital meaitgrement in the Semiscale system. Results of these analyses are,

,

g ieported in both expettmental dat3 4 pi>fts and topical reports that cover the measurements made for a
;L ~ giyenTest. The silbseqtte6*t[olumes of tilis report will provide more detail on the analysis of each type of

,

,

Ny' ' measurement. Measurement uncertari) h. required by the Nuclear Regulatory Commission in all reports. * 'using experifental data.,
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NOMENCLATURE
Accuracy The closeness or agreement between a measured value and a standard or

true salue; uncertainty as used herein, is the maximum inaccuracy or error
that may reasonably be expected. (See measurement error and total
estimation error.)

*

Bias (#) The difference between the average of all possible measured values and the
true or standard value. The fixed or systematic error that characterizes
esery member of a set of measurements. The sign may or may not be known

* on the bias value.

Calibration Hierarchy The chain of calibrations that link or trace a measuring instrument to the
National Bureau of Standards.

Confidence The value of 1 - a of the probability associated with a confidence interval or a
statistical tolerance interval. The percentage frequency that an interval
estimate of a parameter contains the true value. Ninety-five percent con-
fidence is used in this report, implying that one out of twenty values may lie
outside the stated interval.

Degrees of Freedom (r) A sample of N values is said to have N1 degrees of freedom, w here N1 = N - k,
and where k functions of the sample values are held constant. For example,
using a least-square regression curve fit of a fourth-order, k = 5; this is
because five parameters are held constant (Ao to A.g).

Elemental Error The bias and/or precision error associated with a sample source or process
in r chain of sources or processes. Lower case symbols (s, b) are used to
represent elemental precision or bias errors, respectively.

.

Estimate A value calculated from a sample of data as a substitute for an unknown
population constant. For example, the sample standard deviation (s) is the
estimate that describes the population standard deviation (o).

,

Laboratory Standard An instrument that is calibrated periodically at the National Bureau of Stand-
ards (NBS). The laboratory standard may also be called an interlab standard.

Steasurement Error The collective term meaning the difference between the true value and the
measured value. Includes both bias and precision error; see accuracy and
uncertainty. Accuracy implies small measurement error and small
uncertainty.

Precision The closeness of agreement between the results obtained by applying the
experimental procedure several times under prescribed conditions. The
smaller the ranaom part of the experimental errors that affect the results,
the more precise the procedure.

.

Preliminary Data Recorded data that have not been evaluated and determined to be true
representative of the condition that existed during the test within defined
error bands.

.

Precision Error (S) The random error observed in a set of repeated measurements. This errer is
the result of a large number of small effects-the known repeatability error
and sampling error. The precision index, S, defined herein is the computed
standard deviation of the measurements.

vii



Qualified Data Information that has been evaluated and verified to truly represent the associ-

ated measure and information desired within defined and defendable
uncertainty limits.

Qualified Test A test that, after review of the preliminary data available, can be deter-
mined to have met the requirements and intent (within physically reliable
limits) as to " contracted" information to be supplied to the requesting
source. .

Range The difference between the greatest and the smallest observed values of a
quantitative cb= acteristic. Two ranges are used in this report; the
mechanical range that is given by the manufacturer's specification, and the

-

electronic full-scale, which is the applied signal that will deliver 10 V to the
data system with appropriate amplifier gain.

Standard Deviation (o) The most widely used measure of dispersion of a frequency distribution. It
is the precision index and the square root of the variance: s is an estimate of
a o calculated from a sample of data.

Standard Error The standard deviation of an estimator; the standard error provides an
estimate of the random part of the total estimation error involved in
estimating a population parameter from a sample.

Standard Error of The measure of dispersion of the dependent variable (output) about the

Estimate (See) least-squares line in curve fitting or regression analysis. It is the precision
index of the output for any fixed level of the independent variable (input).
Also called the Residual Standard Deviation, the formula for calculating
this is

- 1/2
" *

.[ (Yobs - Yeal)S = y_yee
1=1 _

e

for a curve fit of N data points in which k constants are estimated for the
curve.

Student-t Distribution The ratio of the difference between the population mean and the sample
mean to a sample standard deviation (multiplied by a constant) in a sample
from a normal population. It is used to set confidence limits for the popula-
tion mean, and it is obtained from tables entered with degrees of freedom
and risk level. For a 95Fo confidence level, a Sto two-tailed risk level is
used, and if the degrees of freedom are greater than 30, the value of 2 is
used as an estimate of t.

Total Estimation Error in the estimation of the parameter, the difference between the calculated
value of the estimator and the true value of this parameter.

.

Traceability The ability to trace the calibration of a measuring device through a chain of
calibration to the NBS.

.

Transfer Standard A laboratory instrument that is used to calibrate working standards and
that is periodically calibrated against the laboratory standard.

viii



Uncertainty Interval (U) The maximum error reasonably expected for the defined measurement
process.

[t95(") SIU *1B +
95

Welch-Satterthwaite A formula that is used to estimate the degrees of freedom (v) when combin-.

Formula ing precision errors of different degrees of freedom. The degrees of freedom
for the measurement precision index, S, is

.

/ 2

I [ s;2
2

v=

[ F. /v.* *
i

where vi s the degrees of freedom and S;is the sample standard deviationi
fot error component i. The equation is a function of the degrees of freedom
and magnitude of each elemental precision index.

.

.
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SEMISCALE UNCERTAINTY REPORT:
METHODOLOGY

1. INTRODUCTION
.

This document defines the techniques and the data sources used to estimate uncertainty values of
measurements in the Semiscale system.1,2 The measurements considered here are only those used for experi-

'

ments, and those operational measurements that have been reviewed and " qualified"a for reports such as the
Semiscale Experimental Data Reports.

1.1 Objective

The objective is to present the method used for treating measurement error or uncertainty for measurements
of Semiscale experimental data. The need for a common method is obvious to those who have reviewed the
numerous methods currently used. This report attempts to use the tr.ethod outlined in International Standards
Organization (ISO) Report ISO TC30 SC9 " Fluid Flow Measurement Uncertainty,"3 the technical contents of
which were approved by ISO member nations at a meeting in Leningrad, USSR, in June 1982.

1.2 Scope

This report presents a working outline detailing and illustrating the techniques used for estimating meas-
urement uncertainty. Each type of measurement provides an example of the parameters and techniques used
to calculate measurement uncertainty. Additional volumes will be published to cover particular measurement
types; temperature, pressure, etc.

.

An effort has been made to use simple prose with a minimum of jargon. The notation and defm* itions given
are consistent with ISO 3534, " Statistics-Vocabulary and Symbols."

.

.

.

a. Measurements are qualified according to the requirements of an internal working document of the Semiscale Program.

I



2. UNCERTAINTY ESTIMATES

Estimates of uncertainty must be provided for 111 experimental results reported by organizations within the
Nuclear Technology Department of EG&G Idaho; the Semiscale Program is one such organization.

Experimental data are used extensively to check calculations and to support decisions affecting nuclear
system safety. Users of these data may not be associated with the experimental program; therefore, the group
performing an experiment has an obligation to supply the users of the data with uncertainty estimates for all -

reported quantities.

Uncertainties fall into two categories; the first is the statistical and metrological uncertainties, and the second ,

is the mistakes or " blunders," and failures. Statistical and metrological uncertainties are expected and ideally
will be estimated in advance. N1istakes or blunders and failures are not expected, but if detected must be
addressed if reported.

Instrument failures or mistakes, if detected, are addressed in the Experimental Data Reports (EDRs) in a
table with a label of data presentation. Any subsequent technical report will address these problems in the
body of the text, only if the measurement is reported. hicasurements with failures or mistakes will not be
published, unless the measurement contains some significant information. If a measurement has any known
problem, it will not have statistical uncertainty published with it. llecause failures or mistakes are not known
in advance, they are beyond the scope of this report.

This report will concern i self with the statistical and metrological type of uncertainties.

Uncertainty is an estimate of the test measurement which, in most cases, would not be exceeded.
Nicasurement error,6, has two components; a fixed error, J, and a random error, c.

To decide if a gisen elemental source contributes to bias, precision, or both, we adopt the recommendationd
"The uncertainty of a measurement should be put into one of two categories depending on how the uncertainty
is derived. A random uncertainty derived by a statistical analysis of repeated measurements, while a systematic
uncertainty is estimated by nonstatistical methods." This recommendation avoids a complex decision and keeps
the statistical estimates separate from the judgment estimates as long as possible. *

In making uncertainty analyses, definition of the measurement process is of utmost importance. Uncertainty
statements must be based on a well-defined measurement process. The uncertainty of a measurement process ,

will contain errors due to variations between calibrations, test facilities, and measurement instruments. The
uncertainty analysis for a comparatise, back-to-back test, to compare the effects of changed variables or condi-
tions, will be different from the uncertainty analysis for a single test. Ilias may be ignored in comparative testing
if the same equipment is used for all testing, and biases do not affect the comparison of one test with another.

At the Semiscai Test Facility, there has been tne tendency over several years to install the same instrument on
the same data channel to make the same measurement. This practice would tend to reduce the effects of the
instrument and data channel biases for a test-to-test comparison, but would tend to make it more difficult to
determine salaes of biases for a single test. Uncertainty values given are on a single test basis. If the tests are
being used for a test-to-test comparison, the uncertainties could be reduced slightly. However, some instruments
undoubtedly have been changed or replaced, so this reduction of uncertainty should be done only after verifying
that the instrumentation has not been changed.

2.1 Precision (Random Error) -

hieasurements do not, and are not expected to, agree exactly. There are numerous small effects that can
cause disagreements, or random error (4). The variation between repeated measurements is called precision

*

error. The standard deviation (a) is used as a measure of the precision error, c. A large standard deviation
means large scatter in the measurements.1 he statistic (s) is calculated to estimate the standard deviation and
is called the precision index

2
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1/2-

"- 1/2 y,
n n 1

[ (X; - X) [ X; - ); n
*" *"

(1)=

s=L n-1
_ _

n-1 .
.

where n is the number of measurements made and k is the average value of individual measurements Xj.

*
The precision error of the measurement can often be reduced by taking several repeated or simultaneous

observations and averaging. The distribution of the averages will have a smaller precision index

#
individuals 2b.

and SX
,

average g g

Throughout this document, the precision index is the sample standard deviation of the measurement,
whether it is a single reading or the average of several readings.

The precision index (s) is calculated in many ways:

1. If the variable to be mearated can be held constant, a number of repeated measurements can be used
to evaluate Equation (1) as an estimate of the precision index.

2. If there are k redundant instruments and the variable to be measured can be held constant to take i
repeated readings, the following pooled estimate of the precision index should be used:

- "

1/ 2.

k i _

[ [ (Xmn - Xn)2
*

,

n=1 m=1s= *

, (k * i) - k _

.

3. If an instrument is calibrated and the regression (least-squares) curve fit is used to estimate the applied
signal (inverse estimation), then the standard error of estimate multiplied by the regression factor (R)
(see Section 4.3, " Transducer Errors") is used to estimate the precision index.

- 1/2
n

[ (Xapplied Xcalculated).

g,1
s=RS =R (3).

ee _ n-k-1 .

where n is the number of calibration points and k is the order of the curve fit.

4. If a pair of instruments is used to measure a variable that is not coristant with time, the difference
between the readings may be used to estimate the precision of the individual instruments as follows:

,

let 0 = X ; - X2i1

. 1/2.
1

[ e. - O'

(4)s= =
. .2(1 - 1)g

_

i

3

, _ _ _ _
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5. For sample sizes of 10 or less, the range (largest minus smallest) may be used to estimate the precision
index.S There is loss of degrees of freedom with this technique, and the estimate given by this method is
less precise than those above, but it is less complex than Equation (1). The procedure is to estimate s by:

_

e.N.
d

2

e
- .

Values of d, and degrees of freedom, r, are taken from Table 1, and R is the average range based
on (g) samples of size (m).

In general, the degrees of freedom will be given approximately by the reciprocal of (* 2/1 + 2 (c.v.)2fg),
,

where c.v. is the coefficient of variation (d /d ) of the range and g is the number of subgroups. Values for3 2
d and d are given in Table 2. Both d and d are taken as belonging to a normal universe w, where w2 3 2 3
equals R/o'. By definition, d equals the mean value of w, and d equals the reciprocal of a,(o,,is the2 3

2 s given approximately by d2 (i.e., the infinity value of d ) timesi 2standard deviation of w). Also, d
(1 + 1/4 r). Values of r are also readily built up from the constant differences. Table 1 is a basic table that
may be used wheneser the average range is used in lieu of s.

2,2 Bias (Fixed Error)

Bias, J. is the fixed or constant components, also called systematic error. A bias error is relatively fixed
for the duration of a test. For repeated measurements, each one has the same bias. The bias cannot be
Jetermined unles; the measurements are compared with the true value of the quantity "easured.

Bias is categorized into five dasses: (a) know n biases calibrated out; (b) Ic now n biases ignored; (c) unknown
biases eliminated by centrol of the measurement process; (d) small unknown biases that may have an unknown
sign ( *); and (e) small unknown biases with known sign and which contribute to the uncertainty.

2.2.1 Known Biases-Calibrated Out. Known biases are eliminated by comparing the instrument with a
*

standard instrument and obtaining a correction. This process is called calibration or in-place calibration, which
diminishes the bias of the measurement and introduces a randoi.: uncertainty that will be discussed later.

2.2.2 Known Biases-Ignored. If known biases are considered to be negligible relative to the test objective, a

they may be ignored.

2.2.3 Unknown Biases Eliminated by Control of the Measurement Process. Unknown biases are
not correctable although they may exist. Every effort is made to climinate all significant biases in order to
secure a properly controlled measurement process.

To ensure control, all measurements are monitored with statistical quality control chart methods.a
Drifts, trends, and movements leading to out-of-control situations should be identified and investigated.
llistories of data from calibrations are maintained in an active file while an instrument exists, liistorical
calibration data are transferred to an inactive file for several years after an instrument is disposed of. These
precautions are observed and all measurement data are reviewed and " qualified" before the uncertainty
values are considered valid.

Data are qualified in two stages. The first stage is test qualification, in which the preliminary data are *

reviewed to determine if the test requirements have been met. All measurements are reviewed and com-
pared to other measurements for consistency. Any measurement that is slightly suspicious is flagged for
further review. The second stage is data qualification. After all corrections have been applied, all .

measurements are evaluated and verified to truly represent the associated measurand information desired
within defined and defendable uncertainty limits.

a. These requiicments are set fonh in an internal working document of the EG&G Idaho Nuclear Technology Department.
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Tahic 1e Values associated with the distribution of the average range 5

Number of Obwesatens Per Sample

2 3 # I * I 'Number _

30

*'
e e o e e o e e e

Sampks e d, e d, e d, e d, e e, e d, e d, e d e d,3

i 10 4.41 2.0 1.91 2.9 2.24 3.8 2.48 4.7 2 67 55 2 83 63 2% 70 3 08 7.7 3 18

2 1.9 1.28 38 I 81 5.7 2.15 7.5 2 40 92 2 60 to 8 2.77 12.3 2.91 13.8 3.02 15.1 3 13
3 28 1.23 5.7 1.77 84 2.12 11.1 2.38 13 6 2.58 16.0 2.75 18.3 2.89 20.5 3 01 22 6 3.11
4 3.7 1.21 7.5 1.75 11.2 2.11 14 7 2.37 I ?. 2 57 21.3 2 74 24 4 2 88 27.3 3 00 30.I 3 10
5 46 1.19 9.3 1.74 13 9 2.10 18.4 2.36 22 6 2 54 26 6 2.73 30 4 2 87 34 0 2W 37.5 3 10

6 55 1.18 11.3 1.73 16 6 2.M 22.0 2 35 27.1 2 56 31 8 2.73 36.4 28? 40 8 2 99 45 0 3 to
u 7 6.4 1.17 12 9 1.71 19 4 2.09 25 6 2.35 31.5 2 55 37.1 2.72 42.5 2 87 47.5 2 99 92.4 3.10

8 7.2 1.17 14 7 1 72 22.1 2 08 29.3 2 15 36 0 2 55 42 4 2.72 48 5 . s7 54 3 1 98 59 9 3 09*

9 8.1 1.16 16.6 1.72 24 8 2 08 32.9 2.34 40.5 2 55 47.7 2.72 54 5 2 86 61 0 2 98 67.3 3 no

10 90 1.16 18 4 1.72 27.6 2 08 36 5 2.34 44 9 2.55 52.9 2.72 to 6 2 86 67.8 2 98 74 8 3 09

Ii 99 1.16 20.2 1.71 30.3 2 08 Mi 2.34 49 4 2 55 58.2 2.72 66 6 2 so 74 6 2 98 52.3 3.09
12 10 5 1.15 22b 1.71 33.0 2 07 43.? 2.34 53.9 2.55 63.5 2.72 72 7 2 85 31.3 2.98 19 7 3 09
13 11 6 1.15 23 9 1.71 35.7 2 07 47.4 2.34 58 4 2.55 68 4 2 71 ?s.7 2.85 sd i 2 98 91 t 3.09

14 12.5 1.15 25.7 1.71 38.5 2.07 51.0 2.34 62 8 2.54 74 0 2.71 84 7 2.35 94 8 2 98 804 6 3.08

:S 13.4 1.15 27.5 1.71 41.2 2 07 54 6 2.34 6?.3 2.54 79 3 2.71 90.8 2 85 101.6 2 98 112 1 3.08

d, 1.13 1 69 2.0h 2.31 2.53 2.70 2.85 2 97 *w
^

c.d." 0.88 I 82 2 74 3 62 4 47 5.2' 6 03 6.76 7.4*

a. c.d. = constant difference
. . . . _ - -



Table 2. Percenta,ge points of the distribution of the relative range w = R/o', normal
universe *

Probability That w in Less than or Equal to Tabular Entry*

%, , ,

or or
d

, 2 d) 0.001 0.005 ylw 0.050 0.950 0.975 0.990 0.995 0.999

2 1.128 0.8$2$ 0.00 0.01 0.02 0.09 2.77 3 17 3.64 3.97 4 65

3 1 693 0.8884 0 06 0.l3 0.19 0.43 3 31 3.68 4.12 4.42 $.06 .

4 2.059 0.8796 0.20 c.34 0.43 0.76 3.63 3 98 4.40 4.69 5.31

5 2.326 0.8641 0.37 0.S $ 0.66 1.03 3.86 4.20 4.60 4 39 $.48

6 2.$ 34 0.8430 0.54 0.75 0.87 1.23 4.03 4.36 4.76 5.03 $.62

7 2.704 0.833 0.69 0.92 1.05 1.44 4 17 4.49 4.88 5.1 $ $.73 .

8 2.847 0 820 0.83 1.08 f.20 1.60 4.29 4 61 4.99 5.26 3.82

9 2.970 0.808 0 96 1.21 1.34 1.74 4.39 4 ?0 $.08 5.34 5.90

10 30'8 0.797 f.cs 1.33 1.47 1.86 4.47 4.79 $.16 S.42 $.97

11 3.173 0.757 1.20 3.45 1.58 3.97 4.5 $ 4.86 5.23 S 49 6.04

12 3.258 0.778 B.30 3.$$ l.68 2.07 4 62 4.92 $.29 S.54 6.09

Data that do not meet all requirements of qualification are either deleted or have notations identifying
the restrictions.

2.2.4 Remaining Blases, Unknown Signs, and/or Unknown Magnitudes-Contribution to
Uncertainty. In most cases, the bias error is equally likely to be plus or minus about the measurement. That
is, it is not known if the bias error is positive or negative, and the bias limit reflects this. The bias limit B, is
estimated as an upper limit on the fixed error, #.3

It is both difficult and frustrating to estimate the limit of an unknown bias. To determine the exact bias in a
measurement, it would be necessary to compare the true value with the measurements. This is almost always
impossible. An effort must be made to obtain special tests or data that will provide bias information. The
following examples are in order of performance:

1. Interlab, interfacility, independent tests on measurement devices. (See proposed ISO Draft 5725
*

" Precision of Test Methods-Determination of Repeatability and Reproducibility.") With these data
it is possible to obtain the distribution of bias errors between facilities.

.

2. Special comparisons of standards with instruments in the actual test environment; "in-place
calibration." All instrument calibration would ideally be in an actual or similar test environment. This is
almost always impossible.

3. Ancillary or concomitant functions that provide the same performance parameter; in a water turbine
meter test, flow may be measured with (a) a drag screen device, (b) an orifice, (c) pump speed
characteristics, (d) 'ine resistance pressure drops, and (e) weigh tanks.

4. When it is known that a bias results from a particular cause, special calibrations (separate effects
tests) may be performed, niioing the cause to perturbate through its complete range to determine
the range of bias.

5. When the cause of a bias is known, analysis of the physics of the measurement may be performed,
allowing an estimate of the range to be calculated based on measurements of the secondary parameters. -

6. If there is no source of data for bias, the estimate must be based on judgment. An estimate of an
upper limit on the largest possible bias error is needed. (Largest is intended to imply the equivalent of ,

a 95T0 chance that the measurement will fall within the estimate.) When requesting a judgment of the
bias estimate from a person with a nonstatistical background, ask for a bias judgment that will not be
exceeded 99W0 of the time. The resulting value will be approximately a 95% value; this technique is
based on the recommendation of R. B. Abernethy. It is the author's observation that after checking

6
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this technique against some known bias values, an actua195% value will be realized about 70% of the
time. This technique should also be used when dealing with a " pride of measurement" problem, as it
will allow for some personal bias. Instrumentation manufacturer reports and other references may
provide information.

2.2.5 Remaining Blases, Known Sign, and Unknown Magnitude-Nonsymmetrical. Sometimes
the physics of the measurement system provides knowledge of the sign, but not the magnitude of the bias.

*
For exmaple, hot fluid thermocouples radiate and conduct energy to cooler pipe walls to indicate lower
temperatures, or cool fluid thermocouples r:ceive energy radiated and conducted from hotter pipe walls to
indicate higher temperatures. During the course of an experiment, the above example may cover both con-
ditions with a known sign change occurring. The bias limits that result may be nonsymmetrical; i.e., not of*

the form * B. The.'are of the form + B - C, where both limits may be positive, negative, or the limits may
be of mixed sign as indicated.

Estimates of bias with unknown magnitude are derived in the manner discussed in Subsection 2.2.4.

2.3 Combining Precision Errors

The root-sum-squares (RSS) method is used at the Semiscale facility. The precision index (s) is the root-
sum-square of the elemental precision indices from all sources

[ 31/2
S={ [[s (5)j .

/\J 1

| where j defines the subprocesses (a) calibration, (b) data acquisition, and (c) data recording and i defines
the sources within the subprocess. For example, the precision index for the calibration process is the RSS'

of the elemental precision indices

.

I!

(s
2 2 2

S =S +s +s=
.

Ic 2c 3cc cal
.

The precision index for the data acquisition process is the RSS of the elemental precision indices

I

=(s2 2 2 2 2 2 2

id + s2d + s3d 4d 5d * '6d * '7d/+s +sd" data acquisition
*

The precision index for the transducer is the RSS of the elemental precision indices.

31/2

= (s2 2+s IS =S .

it 2t>t t ransduce r

i The precision index for the system is the RSS of the elemental precision indices.

1/2l -

2 2 2
S =S

s system 1s + s2s 3s= s . +s .

!

| The basic measurement precision index is the RSS of all the elemental precision indices in the measurement*

system

{ I 1/2
| S=| S2+S2 2+S
, ( 1 2 3
i

|
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[s2 2 2 2 2 2 2 2 2 2 2 i

( 1c 2c 3c * '4c 1d * 82d * '3d + s4d * '5d 6d * 87d Is + s *8 *8

!

+s +s * b *b (6).

2t 2s

Precision errors from the calibration process merit special consideration. There are four cases to consider: .

1. If the test period is sufficiently long that instrumentation may be calibrated more than once, the preci-
sion errors in the calibration hierarchy should be treated as contributing to the overall precision index.

,

2. For a single set of instrumentation, calibrated only once during the test, all the calibration error is
frozen or fossilized into bias. The uncertainty of the calibration process is all bias.

3. For comparative, back-to-back, development tests in which the test objective is the difference between
two successive tests, all the calibration error (bias plus precision) is a constant in both tests and is

,

cancelled by taking the difference. Trending errors are an exception, as described next.

4. Elemental calibration errors that trend with time merit special attention. If the calibration data show
some trending characteristics, every effort should be made to remove or reduce the trending. If the test
process is long, including many calibrations, this error is a precision error (see Paragraph 1).4

On the other hand, if the test is short, an argument can be made that this error is fixed, a bias. We
believe this argument is weak, too complex, and may lead to opt mistic uncertainty estimates. We there-i

fore recommend trending errors always be treated as precision errors. In back-to-back, comparative
tests, trending errors should be carefully evaluated since they may introduce large errors.

In summary, trending errors are (a) treated as precision-a sample standard deviation can be
calculated from the calibration history, (b) never fossilized into bias, and (c) always included in all
uncertainty estimates. In other words, a trending error will be the exception to both Paragraphs 2 -

and 3 above, and will always contribute to the precision term of the uncertainty estimate.

At the Semiscale Test Facility, calibration is on either an annual or semiannual basis. Testing occurs at .

approximately two week intervals during a given test series; thus, the measurements Gt in Category 2-
instrumentatior. calibrated only once for a test.

,
Trend errors are treated as precision errors, if the tradir.g error is larger than a 2% slope change, it will

j be recalibrated (see Section 4.1).

An exception to the root-sum-square method of combining precision errors is when the engineering unit con-
version curve is derived from calibration data that were not processed through our data system. In that case, the
precision error of the data system is between the transducer and the engineering unit conversion curve and is
multiplicative, and the precision errors are added (see " Propagation of Measurement Errors," Section 3).

2.4 Combining Bias Errors
.

Bias error or systematic errors, as described in Section 2.2, are combined using the root-sum-square
method of combining. Bias errors are the estimate of the amount that the mean value would differ from
the "true value." ,

if there were only a few sources of elemental bias errors, it would be reasonable to add them together to
obtain the overall bias limits. For example, if there were three sources, the probability that they would all be

8
,
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plus (or minus) would be one-half raised to the th;'l power or one-eighth. In actual practice, most measure-
ments will have 10, 20, or more sources of bias ( 'eference 3, p.10). The probability that they would all be
plus or minus is extiemely small; therefore, it is inore appropriate to combine them by root-sum-square
(Reference 3, p.19).

If a measurement uncertainty analysis identifies four or less sources of bias, there should be concern that
some sources have been overlooked. The analysis should be redone and expert help should be recruited to
examine the calibration hierarchy, the data acquisition process, and the data reduction procedure for-

additional sources.

Therefore, the bias limit will be used herein as the root-sum-square of the elemental errors from all.

sources.

B = { [ [ Bf.)j /2[ 1

.

\] i )

For example: The bias limit for the calibration hierarchy is

Ic 2c 3c + b4c)1/2= (b +b +b (7)B =B .

c cal

The bias limit for the data acquisition process is

d"Ddata acquisition " d* d* d*D4d * d+b6d * d (8).

The bias limit for the transducer error is |

1/2.

b +b (9)B =B = .

t transducer it 2t

The bias limit for the basic measurement process is*

B = (B + B )1/2+B
tc

+bfdB= b +b +b +b 2d * d+ 4d Sd d d
* *

3c

2)/2
U

2
(10)+b +b .

it 2t

If any of the elemental bias limits are nensymmetrical, separate root-sum-squares are used to obtain B +
and B . For example, assume b2c and b2t are asymmetrical, i.e., b +c, bje, b +, bit are available. Then2 2

,

1/2
2

b + b +b3c + b4 d
B +B *b + D=

.

-

1/2
* * * * * * * *

. c 2c c 4e d t 2t _
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2,5 Combining Degrees of Freedom

Estimates of the number of degrees of freedom (r)is needed to estimate the value of the Student-t statistic.
The Welch-Satterthwaite formula, which is a function of the degrees of freedom and magnitude of each
elemental precision index, is used to approximate the degrees of frmdom. Being weighted by the precision
indices, the larger precision errors carry a larger weighting. There are exact methods of calculating the com-
bined degrees of freedom; however, due to ease of calculation, the Welch-Satterthwaite formula is used.

*

Also, by keeping the sample sizes large (greater than 30), particularly the ones with the larger elemental preci-
sion errors, the degrees of freedom will always be greater than 30, and the value of 2 can be used as an
estimate for the 95% Student-t statistic.

,

The effect of degrees of freedom is shown in Figure 1. Notice how a few degrees of freedom changes the
shape of the curve. As the degrees of freedom approaches inf'mity the t-distribution approaches the normal
Gaussian distribution.

0.5 i ; i i , i i i

0.4 -
-

**A t-distribution
v= = n rmal Gaussian

3
0.3 -

-

0.2 -
-

0.1 -
-

*

' ' ' ' '
'

-O
-5 -4 -3 -2 -1 0 1 2 3 4 X5

INEL-A 20 089

Figure 1. Student-t distribution for various degrees of freedom.

In a sample, the number of degrees of freedom is the size of the sample. When a statistic is calculated from
the sample, the degrees of freedom associated with the statistic are reduced by, one for every estimated
parameter used in calculating the statistic. For example, from a sample of size n, X is calculated as

n

_X = [1 X;/n
i=

.

which has n degrees of freedom and

1/2~

n ,

[ (X; - X)2
1-13,

- n-1 _
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which has n - I degrees of freedom because X (based on the same sample of data)is used to calculate S. In
calculating other statistics, more than one degree of freedom may be lost. For example, in calculating the
standard error of a curve fit, the number of degrees of freedom that are lost is equal to the number of
estimated coefficients for the curve.

For example; The degrees of freedom for the calibration precision index (Scal) are
.

/n i 2
2{S |1

Ni ']*

v - .

c n
4

b
ic

7

Ic;

where ric is the degree of freedom of each elemental precision index.

b *b *
c c c 4e

"c " 4 4 4 4
*

Ic , 32c g3e , 3
g

4c

"Ic "2c "3e "4c

The degrees of freedom for the measurement precision index, S, is

(2
2 2 2 2 2 2 2 2 2 2 2 2

* * * * * * * * * * *
Ic 2e 3c 4e Id 2d 3d 4d 5d 6d 7d lt 2t>

"~
4 4 4 4 4 4 4 4 4 4 4 4 4

ld 2d , J JJ,y,J,3,3g 3 g 3 3
3 + .g2 c , ,g,3,c , 34c , 33 g 3

2

"Ic "2c "3e "4e "l1 "2d "3d "4d "5d "6d "7d "It "2L.

2.6 Combining Bias and Precision Errors

Two methods of combining bias and precision errors are approved in the draft ISO standard " Fluid
Flow Measurement Uncertainty."3 The first is linear addition [ Equation (A)] called U99, and the second is
the root-sum-square method [ Equation (B)] called U95-

. .

U = (B + t IAIgg 95
|

- ~ 1/2
B +h (B)U =

.

93 _ 95
.

The terminology U99 and U95 are consistent with usage in the ISO standard.3 In the above equations the
' symbol B is the bias limit, S is the precision index, and 195 s the 95th percentile point for the two-tailedi

Student-t distribution. The t-value is a function of the number of degrees of freedom (r) used in calculating S,

(see Table 3). For small samples, t will be larger, and for larger samples t will be smaller, approaching 1.% as
a lower limit. The use of the t inflates the limit U to reduce the risk of underestimating S when a small sample

. is used to calculate S. Since 30 degrees of freedom (c) yield a t of 2.Gl and infinite degrees of freedom yield a t
'

of 1.%, a selection of t = 2 for values of v from 30 to infinity was made,i.e., U99 = (B + 2S), when r 2: 30.

|
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Table 3. Two-tailed student-t distribution

.* t w

95 %

j %
~, % '

,

///

k *

2.5 % :3x& 1 ? 2.5 %
,9V/, '/ ) , [F, .

is -

O,;,Q,9; %y,,?:/,'// V' //,..i

<

Degrees of Degrees of
Freedom t Freedom t

i 12.706 17 2.1i0
2 4.303 18 2.101
3 3.I82 19 2.093 *

4 2.776 20 2.086
t

5 2.571 21 2.080
6 2.447 22 2.074
7 2.365 23 2.069
8 2.306 24 2.064

.

9 2.262 25 2.060
10 2.228 26 2.056
11 2.201 27 2.052

,

12 2.179 28 2.048

13 2.160 29 2.045
14 2.145 30 2.042
15 2.131 31 or more use 2.0'

16 2.120

The National Bureau of Standards accepts this standard, provided: the uncertainty interval selected
[ Equation (A) or (B)] is provided in the presentation; and components (bias, precision, degrees of freedom)
are available in an appendix or in supporting documentation.

These three components may be required to (a) substantiate and explain the uncertainty value, (b) pro.ide a
sound technical base for improved measurements, and (c) propagate the uncertainty from measured parameters ,

to 11uid flow parameters, and from fluid flow parameters to other, more complex parameters (i.e., drag force to
mass flow rate, etc.)

*

A measurement uncertainty analysis is largely completed when:,

1. All the elemental sources of error have been identified and categorized into bias limits and precision
indices

,

12
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2. These errors have been propagated to errors in the test results, keeping bias and precision separate

3. Ar. estimate of the degrees of freedom of the precision index of the test results has been calculated
from the Welch-Satterthwaite formula, if less than 30.

Ilowever, for simplicity of presentation, a single number (some combination of bias and precision) is needed
to express a reasonable limit for error. The single number must have a simple interpretation (such as the largest
error reasonably expected) and be useful without complex explanation. It is impossible to define a single.

rigorous statistic because the bias is an upper limit based on judgment or analysis, which has unknown
characteristics. Any function of these two numbers must be a hybrid combination of an unknown quantity
(bias) and a statistic (precision). If both numbers were statistics, a confidence interval would be recommended.,

Ninety-five pcreent confidence levels would be available at the discretion of the analyst.

2.6.1 Uncertainty Interval Coverage. A requirement for a 95To confidence intervala is the reason that
the root-sum-square method of combining the bias and precision errors is used. This represents approx-
imately one data value out of twenty lying outside the uncertainty bandwidth. A 95?e confidence level is
also approximately the value that an experienced measurement engineer is comfortable with (neither too
large nor too small).

Dr. R. B. Abernethy performed hionte Carlo simulations of the U99 and U93 methods and presented
the following conclusions:3

"A rigorous calculation of confidence level or the coverage of the true value by the intervalis
not possible because the distributions of bias errors and limits, based on judgment, cannot be
rigorously defined. hionte Carlo simulation of the intervals can provide approximate coverage
on the basis of assuming various bias error distributions and bias limits. As the actual bias error
and bias limit distributions will probably never be known, the simulation studies were based on
a range of assumptions. The results of these studies comparing the two intervals are:

1. U99 averages approximately 99.1% coverage, whereas U93 provides 95fo based on bias
limits assumed to be 95To. For 99.70/o bias limits, U99 averages 99.7To coverage, and,

U95 averages 97.5To coverage.

99 nterval size to U95 nterval size is 1.35:1.2. The ratio of the average U i i
,

3. If the bias error is negligible, both intervals provide a 95To statistical confidence
(coverage).

4. If the precision error is negligible, both intervals provide 95 or 99.7% confidence,
depending on the assumed bias limit size.

The simulation cases considered were:

1. From 3 to 19 error sources, both bias and precision

2. Bias errors distributed both normally and rectangularly

3. Precision distributed normally
.

4. Bias limits at both 95 and 99.7% for both the normal and the rectangular

*

5. Precision indices based on sample sizes from 3 to 30

6. Ratio of precision to bias errors at 0.5,1.0, and 2.0."

a. As set fonh in an internal working docurnent of the EG&G Idaho Nuclear Technology Departn:ent.
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2.6.2 Symmetrical interval. Uncertainty (Figure 2) for the symmetrical bias case (zero mean va!ue) is
centered about the measurement. The uncertainty intervalis given by

- ~1/2 - ~

1/2
~

(B) ' *
5 . * (*95 . 95 " # . 95 .

U *~
*

.

Measurement

Largest negative error Largest positive error
,

= -U = = +U =

-= -B = = +B =

_

Measurement scale
,

-195S +t95S
Uncertainty interval

(the true value should be within -==

this interval)

INEL A 20 087

Figure 2. Measurement uncertainty; symmetrical bias.

2.6.3 Nonsymmetrical Interval. Uncertainty (Figure 3) for the nonsymmetrical bias case (nonzero mean
value) is not centered about the measurement. The upper limit of the intervalis defined by the upper limit
of the bias interval (B +); the lower limit is defined by the lower limit of the bias interval (B-).

The uncertainty interval is given by
.

- 1/2
- ~

1/2
(B )2 + (t t U

-

(B Y + (t ("'U S" . 95 . g3 _ 95 . .

=
*

2.6.4 How to interpret Uncertainty. Uncertaintyis a function of the measurement process. It provides
an estimate of the largest error that may reasonably be expected for that measurement process.
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Figure 3. Measurement uncertainty; nonsymmetrical bias.

.

Errors larger than the uncertainty should rarely occur. On repeated runs within a given measurement process,-

the variation in test results should be within the uncertainty value. These differences might look like Figure 4.

In summary, measurements are subject to two types of errors, i.e., bias and precision. One sample standard
deviation is used as the precision index, s. The fixed error, f, is estimated and used as the bias limit, B. An

! accurate measurement is one that has small error, both bias and precision. The bias and precision errors are
combined using the root-sum-square method, with the precision errors being multiplied by the 95% t-value.

|

!
|

Parameter A E
=
0

3.+u =
T T e-

[c$$ 2o T T-

1 0j gg - 1 0
,,E

| #m 1 1 T>
"

| o 5
-U'-

Run number
INEL-A 20 091

Figure 4. Run-to-run difference.
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2.6.5 Pretest Versus Posttest Measurement Uncertainty Analysis. The accuracy of the test is often part
of the test requirements. Such requirements are defined by pretest uncertainty analysis, which allows for correc-
tive action before the test to improve the uncertainties when they are too large. The pretest analysis is based on
data and informatiors that exist before the test, such as calibration histories, previous tests with similar
instrumentation, prior measurement uncertainty analysis, and expert opinions. For complex tests there are often
alternatives to evaluate, such as different test designs, instrumentatior. layouts, alternate calculation procedures,
concomitant variables, etc. Pretest analysia will identify the most accurate test method.

.

Il the difference to be detected in an experiment is of the same size or smaller than the projected uncertainty,
corrective action should be taken to redace the uncertainty. Therefore, a measurement uncertainty analysis
should always be done before the test or experiment. The corrective action to reduce the uncertainty may .

involve (a) improvements or additions to the instrumentation, (b) selection of a different function to obtain the
parameter of interest, and/or (c) repeated testing. Cost ud t;me will dictate the choice. If corrective action can-
not be taken, the test should be cancelled, since there is a high risk that the real differences will be lost in the
uncertainty interval (undetected).

Posttest analysis is required to confirm the pretest estimates or to identify problems. Comparison of test
results with the pretest analysis is an excellent data validity check. The precision of the repeated points or redun-
dant instruments should not be significantly larger than the pretest estimates. When redundant instrumentation
or calculation methods are available, the individual averages should be within the pretest uncertainty interval
(for individuals). The final uncertainty intervals should be based on postrest analysis.

At the Semiscale Test Facility, in-place calibrations for some primary and secondary effects are performed
prior to testing. Comparisons of test data with known data values tha* should be obtained-both before and
after all tests-allow (a) data corrections such as zero offsets to be determined and (b) verification of test data
and uncertainty values. Data corrections are mede if the correction moves the data to within the uncertainty
bands. When data corrections cannot move the data to within uncertainty bands, further analysis is performed
to either reject the data or increase the uncertainty bands.

Uncertainty bands should be increased on.'y after a thorough analysis of the available information concerning
*

that measurement. The method used to increase the size of the uncertainty band uses Table I and the average
range of the deviations to estimate the equivalent of a standard deviation. Bias from some known or unknown
source is usually the cause and can easily be root-sum-squared into the pretest uncertainty. (Square the old
uncertainty value and add the bias squared and take the square root.) If the source is precision, one must go -

back to the original components of bias and precision to add in the new precision component.

.

.
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3. PROPAGATION OF MEASUREMENT ERRORS (Taylor's Series)

The " law of propagation of error" is a tool that physical scientis9 have conveniently and frequently used
in their work for many years.6The derivation of the Taylor's series will be given first (Section 3.1), followed
by an example (Section 3.2).

Rarely are fluid flow parameters measured directly; usually, more basic quantities such as temperature.

and pressure are measured and the fluid flow parameter is calculated as a function of the measurements.
Error in the measurements is propagated to the parameter through the function. The effect of the propaga-

. tion may be approximated with the Taylor's series methods. It is convenient to introduce the concept of the
sensitivity of a result to a subsidiary quantity as the error propagated to the result due to unit error in the
measurement of the component quantity. The " sensitivity coefficient" of each subsidiary quantity is most
easily obtained in one of two ways.

1. Analytically: When a known mathematical relationship exists between the result, R, and subsidiary
quantities, Yg, Y , . . ., Y , the dimensional sensitivity coefficient, O , of the quantity Yj is obtained by2 k i
partial differentiation.

Thus, if R = f(Yg, Y , . . ., Y ), then2 k

e.=# .

3Y;1

2. Numerically: When no mathematical relationship is available or when differentiation is difficult,
finite increments may be used to evaluate 0;.

Here ej, is given by

AR.

0 g = 77, .

1

The result is calculated using Y;, to obtain R, and then recalculated using (Y + AY;) to obtain-

i
(R + AR). The value of AY used should be as small as practicable.i

Care should be taken to ensure that the errors are independent. With complex parameters, the same measure-
ment may be used more than once in the formula. This may increase or decrease the error, depending on
whether the sign of the measurement is the same or opposite. If the Taylor's series relates the most elementary
measurements to the ultimate parameter or result, these " linked" relationships will be properly accounted for.

This subject is discussed further in the following section, in which examples are given.

3.1 Derivation of Propagation of Errors by Taylor's Series

The proofs in this section are shown for two- and three-variable functions. These proofs can be easily
extended to functions with more variables, although, because of its length, the general case is not shown-

here.3

- 3.1.1 Two independent Variables. The terms x and y are independent; therefore, cross product terms
will not appear. If x and y are not independent, linked terms can be treated as a third variable. If it is
assumed that response Z is defined as a function of measured variables (x and y), the two restrictions that
must be corisidered are:

17
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1 Z is continuous in the neighborhood of the point (gx, p ). Both x and y will have error distributionsy
about this point and the notation (px and p ) indicates the mean values of these distributions.y

2. Z has continuous partial derivatives in a neighborhood of the point ( x, p ).y

These conditions cre satisfied if the functions to be considered are restricted to smooth cunes in a
neighborhood of the point with no discontinuities (jumps or breaks in the curve). The Taylor's series expansion
for Z is

,

Z=Z(p , u,) + (x - p )+ (y - p )+R {l2)2
.

where g and Z are evaluated at the point ( x,y).
37 d

g

2 2

(y - u,) (13)R 1 1/2 (x - p ) +
2

, ,

d' d'Zwhere Z and , are evaluated at (6 ,6 ), with 6g between x and px, and 6 between y and y.3 2 2
Ox' dy '

The quantity R , the remainder after two terms, is not significant if either:2

1. (x - x) and (v - g ) are smally

2

The second partials ,a Z and a Z:7 are small or zero. These partials are zero for linear functions.2.
Ox' Dy'

.

2 o be small or zero, Equation (12) becomesBy assuming R t

Z=u + (x - u * (Y ~ "y II4)*g x

By defining Z as the average value of the distribution cf Z, the difference (Z- FZ)is the difference of Z
about its average value. This difference may be approximated by

Z = E (x - p ) + E (y p ) (15)Z-p .

ax x ay y

where the partials are evaluated at the point ( x, p ).y

The variation in Z is defined by

2 d - u )2 p Mo E *

g Z g

where pz is the probability density function of Z. Therefore,
.

- .,

Z = [[ _ax x
(x p ) + ay (y - p ) p dxdy (16)o

y_ xy

18
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2 dydx+ffU(y-u)2
- -

*[[ E (x - p ) p p dxdy
3y y , xy3x x_ xy

+ 2 [[ (x - p ) (y - p ) p dxdy (17)

.

where p3y is the joint distribution function of x and y. Integrating the first term of Equation (17) with
respect to y and the second term of the equation with respect to x gives

.

dx + * (y - p ) p dyg=[ (x - u ) po x x

+ 2 ff E (x - p ) E (y - p )p dxdy (18).

JJ 3x x ay y xy

if and g are the means of the distributions of x and y, then define the following:x y

=[(x-p ) p dx (19)o

2 , f (y _ p )2 p dy (20)a
y

= II (x - p )(y - p )p dxdy (21)o o o
xy x y JJ x y xy

.

where pxy s the coefficient of correlation between x and y. Combining the definitions and Equation (19) givesi

2 , h ,2 ,2 +2 p o a (22)
* *

a .

z \3xj x \3y) y By 3x xy x y

if x and y are independent variables, then pxy = 0 and

"y (23)a = * *

x .

3.1.2 Three Independent Variables. The terms x, y, and w are independent; therefore, cross product
terms will not appear. If x, y, and w are not independent, linked terms can be treated as a third variable, if
it is assumed that Z is a function of variables x, y, and w, two restrictions must be considered:

,

1. Z is continuous in a neighborhood of the point (px, p , pw)- y

2. Z has continuous partial derivatives in a neighborhood of ( x, p , w).y
'~

| If these restrictions are satisfied, the Taylor's series expansion for Z in the vicinity of (px, p , w) isy

Z=u + (x - u ) + (y - p )+ (w - u,) + R2 I24)g x y
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I
1

where

E , E , and E are evaluated at (px, u , u ),ax ay aw y w

] R2 < 1/2 (x - u ) + (y - p ) + (w - py) (25)x , ,

_ax ay aw

These second partials are evaluated at a point eg,6 . 8 defined so that Og is between px and x,0 is between2 3 2 y .,

and y, and 0 is between and w. The same restrie: ions apply to R as defined for two-variable functions.3 w 21

By assuming R to be small or zero, Equation (24) becomes2

Z-ug= ix u)+ (y - p )+ (w - p ) 126)x y y

where the partials are evaluated at the point (px, p , pw).4 y
:

The variation in Z is defined by
i

of =[(Z u ) p (27)g Z

'
where pZ s the probability density function of Z. Therefore,i

.

2

Z*[[[ _3x (x - p ) + E (y - p ) + aw (w - p ) p dxdydu! o
x ay y w x,y,w

,

-

.,

%fff (X - u ) p dwdydx + . (28). .

x_ x,y,y
.

+ 2 [[[ (x - u )(y p )p dwdxdy + . (29). .x y x,y,w,

,

1

| where px,y,w is the joint distribution function of x, y, and w. Integrating in the proper order produces

=f(E)2(x y ) p dxo
Z ax x x

+ . . . + 2 [[ (x - u )(y - p )p dxdy (30).x

Therefore,
.

Z"[\ax'1 2+faz- #

2
2 [aZ) 'w2+2 32 az

2 aZ
p o cy (aw/ 3x 3y xy x yx \ay/ .,

+2 o o o, + 2 p c o (31).xy x yw y y
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If x, y, and w are independent variables, then pxy = pxw = p w = 0 andy

f 2 \2 f 12
2

I aZ 2

-ay/ y
3Z

l 2 aZ 2
I ~aw /Io (32)a + o +o = .

Z kax x t w

3.1.3 Monte Carlo Simulation. To determine the restrictions that must be placed on applications of the.

method of partial derivatives, Dr. R. B. Abernethy performed a Monte Carlo simulation to check for the
computation of various functions. Comparative results are listed in Tables 4 and 5.a

*

2 2
Table 4. Results of Monte Carlo simulation for theoreticalinput ox e #x, oy , s:y

Method of Method of
Pamain Pamals input Vaniance

I"P'' E sumated Est mated Corrected for
kmulasson Vanance Variance Nonindependence ObwreeJ Variance

2 ,2f uncuan Run Number e ,,
_

(thecterical) nactual input) (method of partials) (simulator result 9

: +y I l0 10 40 20 5.0 4.9477 484% 4.8567

2 1.0 10 4.0 20 $.0 4 9186 4.8435 4.8506

) 1.0 10 40 20 5.0 $.0756 4.9493 4 9564

4 1.0 le 4.0 20 5.0 S.1639 5.2444 S.2$15

a-y 6 1.0 10 4.0 20 $.0 4.9477 $.0358 5.0410

2 1.0 10 40 20 $.0 4 9186 4.9937 4.9885

3 1.0 10 40 20 $0 5.0786 S.2079 3 2028

4 to 10 4.0 20 $.0 3.1639 5.0834 5.0782

(sgy) I 1.0 10 40 20 800.0 792.81 7'3.27 768.63

2 1.0 10 40 20 800.0 794 33 779.29 797 48

3 1.0 10 4.0 20 000.0 802.28 776.44 775.75

4 1.0 10 4.0 20 800.0 567.67 88).8S 881.38

m/y 1 1.0 10 40 20 0.005 0.0050 0.0051 0.0054

2 I .0 10 40 20 0.00$ 0.0050 0 0051 0 0094

3 1.0 to 4.0 20 0.005 0.0050 0.0052 0.0055.

4 1.0 10 44 20 0.00$ 0.0054 0.0033 0 0057

2-

Table 5. Results of Monte Carlo simulation for theoreticalinput #xie xia

Theoretaal Estimated Parameters
input (mett.od of partials) Smulation Resulta

Number et ,2
*3 g,'t i #Z Z #2 2Fundson, a %mulations

li n vn 2 20 1.0 20 3.00 20.2 2.56
gy 3

20.6 3.24

tu s kI"3'4'S) 0 M 0.05 Ll2 a 10 Om 3.6mId0
g2

la s '3'4M'5'6'78 2 .M M M M M M
g2

20.25 8 41

* tass) n i 20 1.0 1.25 m 10 3.52 m 10 1.29 a 10 4.0 m 10'IO4 40 4
g 3 gu

6
N n, (gs,n,) 2 20 1.0 8000 1.44 m 40$ 8850 169 a 10,

kl 8100 1.82 40

a. Taken from Reference 3, p. 22.
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Table 4 contrasts the results of the hionte Carlo simulation of the tabulated functions, Column 7, with the
estimates using partial derivatives, Column 6. One thousand functional values were obtained in each simula.
tion. Column I identifies the function simulated and Column 2 gives the number of the simulation run. ~

'

Column 3, Theoretical Input, includes the parameters of the populations from which the random m mbers
were drawn. Column 4 lists the method of partials est: mates of variance for the function based on the q
theoretical input (Column 3). Column 5 lists the estimates of variance for the function calculated using the '

method of partial derivatives from the observed variation of the variables x and y. Column 6 gives Column 5
corrected for the observed correlation between the pairs of x, y input values. The correction factor is

.

2 2 aZ az
2p o o --

xy x y ax ay
,

and f are the observed varianceswhere p is the observed correlation between paired values of x and y, a2

of x and y, and |f and % are the partial derivatives of the function Z. Column 7 lists the simulator results
for the function (Column 1) for 1000 data points.

Columns I through 3 of Table 5 present the input to the h!onte Carlo simulator. The theoreticalinput,
Column 3, shows the parameters of the populatiom of random numbers that were used to produce the
functional values. Column 5 summarizes the results of the simulation; these results may be compared with
the estiraates from the method of partials, Column 4.

Simulation results have shown that the method of partial derivatives is most accurate for functions involving
sums and differenes of the observed variables. For these functions, if the variables are mutually independent, ~

the Taylor's series is exact for any magnitude of error in the measured parameters. If the variables are not

mutually indep(endent, a correction factor can be computed that will ensure exactitude of the method. The cor-be included in estimating of.fy h his the third term in Equation (22). If pxyrection factor 2pxy o a is not zero, this term shouldx

From data, pxy may be estimated with

_ _

{ (x; x) (y y)S
g

r=3g - ~

1/ 2 (33) -
=

*Y
_

{(y y)
_

(x; - x) g
_

.

where n pairs of observations are available, and x and y are the average of the x and yi values, respectively.

Close approximations can be made for errors that exist in functions involsing products and quotients of
independently varying observed values if the ratio of measured crrors to their respective nominal values is
small(<0.I). The approximation improves as measured errors decrease in relation to their nominals. For
all of the functions examined invciving two or more independent variables, the approximation is within
10% of the true error. The simulation results are summarized in Tables 4 and 5.

Table 6 shows the Taylor's formula for several functions. The Taylor's formula for the coefficient of
variation is also listed. The coefficient of variation is easily converted to a percentage variation by
multiplying by 100.

3.2 Airflow Example .

In this example, airfow is determined by the use of a choked venturi and measurements of upstream .

stagnation temperature and stagnation pressure (Figure 5).
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Figure 5. Flow through a choked venturi.

The flow is calculated from

* Plt.

m = CaFa$ (34)
VTit

where

mass flow rate of airm =

Fa factor to account for thermal expansion of the venturi=

venturi throat area. =

total (stagnation) pressure upstreamPit =

Tit total temperature upstream ~
=

*
factor to account for the properties of the air (critical flow constant)c =

.

C discharge coefficient=

A rr = Ca (may be determined from calibration).e

The precision index for the flow (S ) is calculated using the Taylor's series expansion (this method ism
derived in Subsection 3.2.1):

_

/ 2 2 2 2g, $. , ,

m _ a Fa/ \ a/ \3P t Plt /

1/2/ 2
. .

*

a t Tit / _ (35)

where '

.

am
gg denotes the partial derivative of r'n with respect to Fa.
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Taking the necessary partial derivatives and assuming C = 1 and has negligible error,

.

(* ) ( ) { \*
*

S =C S | + +1 S |1

S* kVTit #/.k/ Tit. a/ \VTit"

.

1/2
32 / Y-

/ .*

,| g j ! Fad aPit jFad a
S (36)

kVTit I k -2 Tlt .

.

By inserting the values and precision errors from Table 7 into Equation (36), the precision index of 0.17. kg/s
for airflow is obtained.

Table 7. Flow data

Parameter Units Nominal Value Precision Index _ Bias Limit

F - 1.00 0 0.001a

4* E 0.0404 0.0 4.04 x 10-5N.

2 0.191 0.148 9.55 x 10-5 3.82 x 104a m
.

Pg Pa 2.54 x 105 345.0 345.03

Tgi K 303.0 0.17 0.17.

m kg/s 112.64 0.17 0.32

The bias limit in the flow calculation is propagated from the bias limits of the measured variables. Using
the Taylor's series formula gives

f X1 X2 X3 'Xn
~ * }*** *

3 ,

For this example, where m = Fac*CaPit/ Tit:

.

/a; 32 /,; 2 ,; 2

)2
,;

m" k3F Fa/ (34
* * ~ +

* $ aa a 3Plc Plta.

~

1/2
* *

T1 Tit _
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Taking the necessary partial derivatives gives

.

2/* T 7 32 g **, 32 g**,* 32** ** l

B* *
I +l B B |

/ kVTit af + |k VT1t
B =C 1 B | +|

_kdi't */ k VTit"

.

- 1/ 2*

.[Fa4aPlt B (39)T1t-2Q j .

By inserting the values and bias limits of the measured parameters from Table 7 into Equation (39), a
bias limit of 0.32 kg/s is obtained for a nominal airflow of I12.64 kg/s.

Table 7 contains a summary of the measurement uncertainty analysis for this flow measurement. It
should be noted that the listed errors apply only to the nominal values.

3.3 Brief Check of Error Propagation

The method used to calculate the uncertainty values for Semiscale test data has been presented. To verify
that error propagation equations work, they have been used for estimating errors on calculations such as
"R - Prime" (fluid flow line resistance).

R' = # =
*

2 2
9Q*

'

Time-averaged stepswere usal-one out of twenty data vaices should fall outside of the error-propagated
uncertainty bands as 95% uncertainty bands are used. Results obtained from three examples are as follows:
none out of 17 data points fell outside, one out of 27 data points, and one out of 32 data points. This was an
indication that (a) uncertainty estimates were correct, and (b) results of error propagation appear correct. *

*

,
|

D

1

$
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4. MEASUREMENT ERROR

All measurements have errors. These errors are the difference between the measurements and the true
value. The problem is that the true value is usually unknown. The errors may be positive or ne ,ative ande

may be of a variable magnitude. Many errors vary with time or other parameters. The actual errors are
rarely known; however, uncertainty intervals can be estimated or inferred as upper bounds on the errors.

,

The problem is to construct r n uncertainty interval that models these errors.

Twa simile exampio te h:1p cf.trify ine demiption of errors are demonstrated below.
,

A marksman in the field of shooting is concerned with uncertainty. The marksman uses different termi-
nology to describe the uncertainty. When a marksman discusses the " size of group," he is referring to the
diameter of a circle that will cover the scatter of the shots fired. When we discuss " precision" we are referring
to a dimension that is expected to contain a given percentage of the scatter of a measurement. A marksman
will refer to the group as being "a certain number of inches to the right or to the left." We would refer to the
measurement as having a " bias" of a certain value, positive or negative if known. The marksman may refer
to a "five-shot group." We would sa.v "the sample size is five."

The number of shots in a group is a measure of significance, i.e., a 10-shot group being more significant than
a three-shot group. Likewise,10 degrees of freedom carries more significance than 3 degrees of freedom.

In both of the following examples there are 20 data points or " shots."

Example 1

The marksman would refer to Figure 6 as having a 4.4-unit group that is centered 2 units right and
2 units up. A measurement specialist would say that Figure 2 has a standard deviation of one unit in
both x and y axes, with a positive bias of two units in both the x and y axes. Instead of sayir.g it is a
20-shot group, the specialist would say the sample size is 20 and there are 19 degrees of freedom.

(1 degree of freedom was used to estimate the standard deviation). To estimate the total uncertainty
(see Section 3.3), the following equation is used:

~

1/2
U =3 Masf + h hecisichgg 93 _

where'
,

i t95 t-value for 95?o confidence level and 19 degrees of freedom is 2.093=

U93 = uncertainty at 95% level is from -0.9 units to 4.9 units in both the x and y axis.

At the bottom of Figure 6 is a plot of relative expected frequency in the x axis. The total area under this
curve from plus to minus infinity is 1 or 100%.

Example 2
.

A marksman would refer to Figure 7 as having a 12-unit group that is centered " dead on." The
measurement specialist would say that Figure 7 has a standard deviation of 3 units in both x and y axes,
with no bias. Total uncertainty at 95% confidence level, using the same equation as Example 1, is equal.

to *6.3 units in both x and y axes.

At the bottom of Figure 7 is a plot of relative expect 7d frequency in the x axis.
,
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Examples given cover (Example 1) large bias with small precision errors, and (Example 2) small bias with
large precision errors. Two additional rossibilities exist: (a) large bias with large precision errors usually
called inaccurate, and (b) small bias with small precision errors usua::y called accurate.

In target shooting, the process is similar to calibration. Calibration involves an assumed true value-in
this case the bullseye, and the actual data-in this case the bullet holes. Comparisons and decisions based
on these comparisons are made, such as adjustment of the sights or other corrective action such as more
practice, or the decision may be that no action is needed.

.

An actual measurement in contrast to calibration does not have the true value assessable. This would be simi-
lar to examining the back side of the target. The game is to look at the data-the pattern of the shots-and,
using past information such as the performance of the marksman, rifle, shells, and environmental effects, guess -

the true value or where the bullseye was.

Associated with the environmental effects are several bias factors that raise questions in the posttest
analysis: (a) what was the temperature and how much effect does it have on the powderburn rate i.e.,
bullet velocity, (b) how much wind (most ranges have flags to estimate the magnitude and direction) and
what was the effect, and (c) was compensation made by the marksman for any of these effects?

For ease of estimating where the true value is, you may break the system into parts that can be analyzed
separately. For example, you might choose to analyze the f ollowing items separately: (a) the marksman,
(b) the rifle, (c) the cartridges, and (di the environment.

Semiscale also breaks the measurement system (see Figure 8) into parts that can be analyzed separately.
Some of these parts will not change, and thus not need to be reanalyzed for other measurements. The
measurement system is broken down into subsections and analyzed for the following errors:

1. Calibration Errors-Those errors that occur in the calibration hierarchy between the National
Bureau of Standards and the measurement of the instrument.

2. Data System Errors-Those errors that occur in the data acquisition system. Included are the excita-
'

tion voltage source, signal conditioning, amplifier, multiplexing, analog-to-digital conversion, and
round-off errors within the computer.

.

Transducer
Computer

- Excitation
__ voltage

.
-~~

7

Analog / digital
Amplifier convertorSignal

andconditioning Multiplexor
,

filtenng-

#,

.# e

INEL A-20 096

Figure 8. Data acquisition system.
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3. Transducer Error-Those errors that occur at the transducer and the errors in the transducer's
engineering unit conversion curve (usually derived from calibration data), and zeroing of the
transducer.

4. System Errors-Those errors that occur between the system being measured and the transducer doing
the measuring. Included are the errors that occur in the interface, such as in the tubing between a
pressure probe and the pressure transducer, and secondary effects.

,

4.1 Calibration
.

In discussing calibration errors, there are two types; those associated with calibration of an instrument,
referred to as " transducer error," and those associated with the calibration hierarchy and errors with the
standards, referred to as " calibration errors."

The measurement error of the test result may be increased or reduced by calibration of the measurement
instrument. The objective of this section is to estimate the error contribution of the calibration process to
the test result. Both precision and bias errors may be involved.

There are a number of issues involved. To illustrate, we will consider an example first, followed by a
discussion of several types of calibration (Subsection 2.2.4). Section 2.3 relates t e defined measurementh

process to calibration errors and calibration errors that shift, jump, or trend with time.

Example 3-A Calibration Constant

Assume a test meter is to be compared or calibrated with a master meter at one flow level. The
objective is to determine a correction, called a calibration constant, that will be added to the test

,

meter observations when it is instelled for test. This calibration constant correction will make the,

| test meter " read like" the master meter. During the calibration, the master meter is used to set the
flow level, since it is usually more accitrate than the test meter. To reduce the calibration precision.

error, n comparisons wil,' be made and averaged. If the data were plotted, they might look like this:

N1 aster Test
,

hieter Meter

| A
'

d
d
d
d
d
d
d
d
d X

d XX

A XXX X
* d X XXXXX

90 Flow 91.4

'

If the master meter bias limit from its own calibration is judged to be no larger than Bm, what will
the test meter uncertainty be after calibration?

Define d;, = Master Meter Reading; minus Test Meter Reading [. Calibration constant equals the
average d.
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The sample standard deviation of the calibration data is
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1/2 *

g

{ (a - k)g
'

i=1
S *

A .
N-1 _

The standard deviation of k is

S

S = - -
.k g

The test meter is later installed in a test spool piece. Each observation made on the test meter is corrected
by adding k. By this process the error in k from the calibration process is propagated to the corrected data
from the spool piece.

As k is constant, this error must be a constant or bias error. It includes the bias errar in the master meter
plus the precision error in the calibration process. We can estimate an upper limit for this bias as

B =B +t S .

k- m 95 k

This calibration bias limit would be combined with bias limits from data acquisition and data reduction
,

to obtain the measurement bias limit. There would also be precision error from these processes.

If the uncalibrated test meter had a bias limit judged to be B , the calibration process improves the testT
accuracy if B is less than B . Note that the calibration process does not change the test meter precision error *

k T
(repeatability), which is included in the data acquisition precision. However, the test meter precision contributes
to the calibration gecision S . This contribution is reduced by averaging the calibration data.k

4.1.1 Why Calibrate. There are at least three reasons for subjecting a test instrument to a special calibration.
If none of these are required or justified, the instrument may be used without calibration.

1. Improve Accuracy-If the test meter is calibrated against a master meter of much better accuracy, the
measurement accuracy of the test meter may be significantly improved. As indicated in Example 3, a
measurement uncertainty analysis, with and without calibration, may be used to quantify the
improvement.

2. Provide Traceability-In recent years, the demanding requirements of military and commercial con-
tracts have led to the establishment of extensive hierarchies of laboratories within industry. In this

*

country, a national standards laboratory is at the apex of these hierarchies, providing the ultimate
reference for each standards laboratory. It has become commonplace for Government contracting
agencies (including the Department of Energy) to require contractors to establish and prove traceabil-
ity of their measurements to this laboratory. This requirement has created extensive hierarchies of *

standards within the individual standards laboratories.

Each calibration in the hierarchy constitutes an error source. Figure 9 presents a typical transducer
calibration hierarchy. Associated with each comparison in the calibration hierarchy is a pair of
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Figure 9. Basic measurement calibration hierarchy.

elemental errors. Thue errors are the known bias and the precision index in each process. Note that
these elemental errors are not cumulative, e.g., B2c is not a function of Bge. The error sources are
listed in Table 8. Calibration to establish traceability may not improve accuracy, but is required.

3. Functional Checkout-Sometimes instruments are compared to master meters to check compliance
with a purchase specification. A calibration curve or constant is not generated. If the test meter
appears to satisfy the specificatien, it is accepted; if not, it will be rejected and returned to the vendor.
Functional checkouts of instnamentation do not affect the measurement uncertainty analysis
quantitatively; rather, they are nept rejected tests.

4.1.2 Calibration. Calibrations at the Semiscale Test Facility fit into each of the categories listed in the
preceding subsection, and each of the various types of measurements have different calibration errors.> .

Therefore, the actual analysis will be reported in the appropriate volume to be issued for the various
measurement types.

.

Calibration errors are, in reality, calibration hierarchy errors. The National Bureau of Standards is at the
pinnacle of the calibration hierarchy and is considered as having the true value. Error values for calibration
are derived from estimrtes provided by whoever does our calibration. This includes the Standards and
Calibration Laboratory, outside contractors, or ourselves.

Table 8. Calibration hierarchy error sources
a

Bias Precision Degrees of
Calibration Limit Index Freedom

SL-ILS B3 Si dfg
.

ILS-TS B2 S2 df2
i

| TS-WS B3 S3 df3,

WS-Mi B4 S4 df4
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'4.2 Data System

As discussed in Section 4, " Measurement Error," the data system consists of a signal conditioner,
amplifier, multiplexer, analog-to-digital converter, and roundoff error on the engineering unit conversion
coefficients. Components of the data system will be described and analysed for errors in the following
subsections. Error estimates will be summarized in a table combined into bias and precision error estimates
for the data system.

,

4.2.1 Signal Conditioners and Amplifiers. The signal conditioner and amplifier subsystem adapts the
signals from the detectors to the recording subsystem. The data system uses a universal signal conditioner
(Bay Laboratories, Inc., Model 7442) through which most data signals are processed. A thermocouple '

mode card is plugged into the signal conditioner for a temperature measurement and a full bridge mode
card for a strain gauge type of measurement such as pressure. The mode cards have the capability of pro-
viding calibration signals to the amplifiers. Mode card calibration accuracy is 0.lWo (0.05% at the 75We
step) in 25% steps, and is 'ised as a check on amplifier performance.

A Bay Laboratories, Ir:., Model 5204 amplifier is set juxtaposed with the 7442 signal conditioner.
Manufacturer specificatio s for the amplifier accuracy is 0.1% of reading, stability is *0.2% of reading
per six months and linearity is *0.005% of full-scale. The amplifiers are calibrated once a year with a
precision voltage source. Any amplifier that is not consistent within the 0.1% of reading using a preci-
sjon voltage source is removed and repaired so that it meets the requirement. Voltage substitutions using
mode cards and signal conditioners are used as a check to comply with the requirement of calibrating
amplifers at least once every 180 days;a additional checks may be performed if there are any suspicions
about an amplifier.

Specifications for the signal conditioner, which is a passive device, pertain to the power supply and will
be covered as excitation voltage. Estimates of the precision error of the signal conditioner and amplifier
pair is 0.1% of the full-scale value.

4.2.2 Multiplexer and Analog-to-Digital Converter. The multiplexer and analog-to-digital converter ,

are within the same case. Data Technology is the manufacturer of both units used at the test facility. One
unit has a 12-bit analog-to-digital converter, the other has 16 bits connected to use only 12 bits. The
manufacturer's specifications for the units are as follows: accuracy is stated as *0.065% of reading with

,,

an offset of *0.5 the least significant bit, plus a drift of 0.1% of reading per 30 days on the 12-bit unit.
Accuracy is stated as 0.023 % * 0.5 the least significaat bit on the 16-bit unit.

During tests, each of the units have a precision voltage source on one channel and a short for a zero
reading on another channel. Statistical data on both channels are very similar. Precision errors, as
estimated from the reference channels, are *0.02% of the full-scale value. Bias errors, as estimated from
the shorted channels, are 0.024% of the full-scale value.

4.2.3 Roundoff Errors. Coefficients for the engineering unit conversion curves (except for thermo-
couples) are symmetrically rounded at four significant digits. Estimated errors from this process could
have been handled with transducer errors, Section 4.3, but will be handled in this section. Maximum error
would be *0.05%, and this error will be handled as if it were a precision error. Precision error, as
estimated, has an expected value of *0.022% of the full-scale value. Bias error is estimated as negligible.

.

4.2.4 Excitation Voltage. Excitation voltage is provided by a power supply within each signal condi-
tioner. Noise and ripple is specified as *0.004% of reading, plus 150 pV when monitored. The noise and
ripple is essentially nonexistent. When checked, the 5-V value is normally within *3 mV. Precision error is

*
estimated as nonexistent. Power supplies are estimated as having a value of 0.05% of the full-scale value
bias error,

a. As stated in an EG&G Idaho Quahty manual.
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' 4.2.5 Summary of Data System. The results of the data system errors are summarized in Table 9. At the
bottom of the table is the root-sum-square of the precision and the bias errors. These results will be used in
the subsequent solumes that will cover the various measurement types.

Table 3. Data system error summary

- .

Degrees of
Error Source Precision, S Bias, B Freedom, y

Signal conditioner and amplifier 0.1% of full scale 0.02% of full scale 600,

Multiplexer and analog-digital 0.02% of full scale 0.024% of full scale 1838

converter

Roundoff 0.0022% of full scale - 100

Excitation voltage - 0.05% of full scale -

Root-sum-square 0.104% of full scale 0.059% of full scale 649

4

4,3 Transducer Errors -

Transducer error as defined here includes the errors due to the engineering unit conversion curve (based
on calibration data) as well as errors associated with the transducer (secondary effects).

Secondary effects are those parameters other than the primary parameter of interest that have an effect on.

the transducer. An example of this would be the pressure sensitivity of a differential pressure transducer.
Most of the secondary effects values are derived from special or in-place calibrations that are used specifically -
to remove or correct measurement data for these effects. Frequent use of the word calibration may give the

.

feeling that this section should be renamed " Calibration Errors." If all of the calibrations were made in-place
with the same exact environmental conditions as during an experiment, the secondary effects would be
cancelled out. Since it is impossible to establish the exact environmental conditions, we are dependent on the
special calibration to qualify or quantify these effects. The calibrations used and typical values will be listed
in the subsequent volumes that will cover the various types of measurements.

4.3.1 Transducer Calibration. Calibration, in this subsection, is the primary calibration of an instru-
ment as required by EG&G Idaho Quality standards. Calibration requirements of instruments are usually
for a one-year interval; however, if the experimental environment is severe, such as during large-scale
breaks, transducers are normally calibrated on a six-month interval.

Calibration consists of recording the output response of a test instrument with respect to an applied
signal referenced to a master instrument. One of the instruments, usually the master since it is more

,

accurate, is used to set the measurement parameter in incremental steps (uniform or variable) over the'
.

range of the test instrument. A curve fit of this relationship is needed for use in the data reduction process.
This will allow measurements from the test instrument to be corrected to those of the master instrument to
improve accuracy and provide traceability. Errors in the calibration process contribute to errors in the test

,

measurement and are included in the measurement uncertainty (see Section 4.2).

For datp reduction at the Semiscale facility, the engineering unit conversion curves can be up to a fourth
order polynominal curve fit. Least squares, also called regression analysis, is the method used to estimate,

the coefficknts in the engineering unit conversion curve of the form
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Y=a0*"I +"2 2 + "3 3 * "4 *
-

The objective of regression analysis is to define the constants, ao, ag, . . ., a of the curve, such that the '

x,

sum of the squares of the vertical deviations of each data point from the curve is minimized, i.e., least sum
of squared deviations

.

.2 2

E [Y - (a +*Q = E (Y - Y) = **k*

0 l'
'

.

where h is the calculated or estimated value of Y.

This theory can be restarted using matrix notation as follows:7

2 c
Let Y = y ,X= x x . . .x , and A = a

y y 0
2 c

Y *2 *2 *2 "12
. . . . .

. . . . .

.; . . . . .

2 e
I * * *h "c *

] n n n

The expected value of the Y's, then, is expressed as

E(Y) = XA and the condition of independence and common variance.

Under these conditions, the minimum variance unbiased estimates of A are given by the solution of
the normal equations. *

XX =XY
.

where the superscript t means transposed.

A solution for the A 's can be arrived at without explicitly computing the C j's, of course, but is neededi;
'

in the following equations.

In matrix notation, this step is given by computing the inverse of the matrix of normal equations, i.e.,
!

(X X) = c # * * *# "
00 01 0c

c
! l0 "11 * * *1c*

! <
. . .

. . .

*; . . .

| c c . .cc0 K1 r<

|

(X X)-1 (X X A) = CX Y = IA
- -

*
.

| The trace of IA yields the coefficients no, . . ., ak'

|

|
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' Standard error of estimate or standard deviation about the curve (see Figure 10) is calculated from
calibration data using the following equation:

(Y.-kX.)(Y.-h.)" "

(S,,)2 ,. n k-1 ". n - k-- 1

i=1 i=1
.

where

~

the known applied signalY =

h the estimated or calculated applied signal=

:k the coefficient matrix=

X = the measured transducer output signal

n = the number of calibration data points'

the order or degree of curve fit.k =

f

.

*/A
s

\
,

e

\

's

's
s y = f(x)

-. Y \

fNEL A-20 090
.

Figure 10. Normal distribution about a regression curve.

4.3.2 Inverse Estimation. The purpose of a calibration curve is to estimate master instrument readings*

(Y's) from observed output values of the test instrument (X's). Initially, the Y's were known with small error.
in proceeding from observed X's to estimated Y's, the errors of observation and calibration will be carried
along.
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For example, if the relationship is a straight line and determined by least squares, the estimates of the

of each other and each will be independent of the residual error (See)2 ), bo and bg will be independent
parameters, a0 and al, will have errors. In the form Y = b0 + bg (X - X

|

(S )
**

for b , S =

0 b "
0

.

.(S**)
~

for b , S = .

1 [(X-X)

An inversely estimated YO or given outpta X becomesf

A _ X-b
0

YO" b
1

X, bo, and b . The concept of using inverse estima-which is now a function of three estimated quantities: i
tion wher,e error is present in both the X and Y variaoies was first introduced by Berkson.8 The inverse
estimate Yo will be approximately normally distributed about its unknown trup value (neglecting bias for
the moment). From the propagation of errors, the variance of the estimated Y is approximatelyO

/-Y /-Y /- V
2 ! O l 2+1 0 l 2+l 0 l 2

SA S SS=

0/ (ab (ab /
.

bY X
O 0 0 l l

_

Evaluating the partial derivatives *

A

3Y
O 1

'

"b
ab

0

A

3Y
0 , 1,,

ab
0

A

3Y ~

O,_ 0

1 b

(S )2 (X - b )2
*

1+1+**
S* = .

0 (b )2 b2[(X-X)n
y ,

Note that both E(X k)2 and n increase with n (the number of calibration points). Therefore, as the
pedigree of the calibration is improved with more data, Sy will approach
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9Another method of accounting for the inverse estimation is multiply the standard error of estimate by a ;

regression factor, R, where j
;

.|
.

1-
~

1/2 j
*

(X - X)2
-

(n[X) -(bX)
; R= 1 + 1/n ++

. n .

I

for the linear case usina ,artial regression form. Partial regression is formed by subtracting the mean j
value from the original form.>

l-

0 * *1X+. +a X |Y=a . .

;
- T-

Y=a0 * "l' +* * * *
ic

This leads to the paritial regression form

K i

;
- _ _

(X - X*)
_

; Y-Y=AX-AX=a1 (X - X) + . A(X - X). .a =
.

t e

Note that the "O erm subtracts out and the matrix calculation is one order lower; this will improve thet,

i accuracy of the matrix inversion routine for higher order curve fits.
,

I

! R=[1+1/n+(X-k)E C(X-5)]I!2
,

where C is the variance /covariance matrix in the partial regression form.4

For the full regression form,6
! .

1/2
-

-

R = .x (X X)x.
g ,

! t 2 vwhere x = x, x , , , ,, x , x is the value of x at the point of interest, and X is matrix of summation of all
j the x's.

Because the computer systems at the Standards and Calibration Laboratory are not programmed to,

calculate R in either form, calculations of R for several instruments were performed by hand. It was decided
to provide an estimate of typical R for various orders of curve fits for a purely linear case.

The regression factor R will produce the Scheffel0 prediction bands, which are of one order higher than
the curve fit (see Figure Il), i.e., a first-order linear curve has a second-order uncertainty band. Since the

j regression factor R is estimated from a purely linear case and the actual value for R is slightly larger, we,

: choose the value for R from the end. This choice will give a slightly conservative value for R. More detail
; will be pre.ided in a subsequent volume on differential pressure or pressure measurements.

;

!
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Figure 11. Regression factor for linear data.

4.3.3 Calibration Variation. The standard error of estimate (See) is a measure of the precision error
about the curve within the calibration data. From calibration-to-calibration, there may be additional varia-

| tion, which is estimated using calibration histories. At the Semiscale Test Facility we have some calibration
histories for transducers in active service that date back nearly 10 years. Calibrating yearly as required by
EG&G Idaho Quality standards, and with our own six-month requirement during large break tests, means
that the older transducers may have 10 or 12 calibrations on them, and newer transducers one or two.

.

Transducers of a given measurement type with a slope change of less than 2% have their percent of
change on the slope lumped together. Lumping all the percent of slope change together allows the calcula-
tion of a statistically significant number. Transducers with more than a 2% change of slope have their -

calibration histories analyzed for a trend, and may be returned for recalibration. Many of the transducers
with more than a 2% change return to their former slopes with future calibration. This tends to indicate a
possible systematic error in the calibration procedure, which, fortunately, occurs infrequently and the
trend seems to be decreasing.
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For cases in which this calibration-to-calibration history is unavailable, an additional bias error based on
judgment is added to the other elemental transducer bias limits to account for calibration-t(H:alibration error..

4.3.4 Transducer Zeroing. At the Semiscale Test Facility, the nominal co'iditions existing when transducers .
have zeros adjusted are: primary system is liquid full, temperature 295 K, pressure 0.43 h!Pa; and secondary
systems are liquid full, temperature 295 K,' pressuie 0.086 h1Pa. Amplifiers for thermocouples are zeroed with
shorted inputs. hiost measurements have their "zero" adjusted at the amplifier, thus removing errors such as

*
bridge zero measurand output, etc. Checks are made before a test to verify consistency, such as comparing
temperatures at isothermal conditions with and without flow, and comparing pressure readings with a master
pressure measurement while varying the pressure hydrostatically. Amplifier zero adjustments are within 5 mV,
with a full-scale of * 10 V; this amounts to a 0.05% ot' full-scale bias error, B -*-

t

4.3.5 Order of Curve Fit. Pressure and differential pressure transducers have the order of curve fit chosen
by a program called " minimum-bias."Il Bias as addressed in this subsection is not bias as defined in this
report. Bias, as used here is a systematic discrepancy between a fitted curve and the true equation governing
the data, and can arise from either oversmoothing or undersmoothing a curve fitted to experimental data.
Bias is almost sure to exist in the representation of data by an arbitrary curve. The minimum bias criterion
selects that curve out of several least squares polynomial approximations, beginning with degree zero and of -
increasing degree of which the ratio of the overall sum of residuals (actual value minus estimated value)
squared to the sum of two subset sums of residuals squared is minimum. To restate this, the same order of
curve is fitted to data from the first half, data from the second half, and overall data. The bias factor, h1 . ISB
equal to the ratio of residuals over all the data divided by the sum of residuals of the first half of the data plus
the residuals of the second half of the data. h1athematically expressed,

n

{ (Y - h ) +C

1g ==

B n/2 .n

(Y-h)) (Y - h ) +C- +
2

1 n/2+1
'

w here %

Y original data=

^

Y estimated dat.: from overall curve=t

estimated data from first half curveYg =

A

Y2 estimated data from second half curve.=

C a small constant added to keep equation within bounds if denominator goes to ze o=

Sig minimum bias factor.-=

. *
The object is to find the order that minimizes h1. This criterion strongly favors curves having highB

prcJictive merit for future data. In other words, the curve in the first half predicts the data in the second
half.

.

Curves for thermocouples are all of fourth order, and all other measurements (except pressure and
differential pressure, previously discussed, and those with known curves) are linear, first-order curves.
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4.3.8 Summary. Various forms of calibration, dependent on the type of measurement, are used,'and
since calibration forms the basis for the " transducer" errors, the discussion will be provided in subsequent
volumes for the various types of measurements.

4.4 System Errors

System errors refer to those errors that are a function of probe design, environmental conditions, and ,

installation effects. System errors are discussed in more detail in the volumes for the various types of
measurements.

'

. System errors are among the more difficult to analyze. Installation effects should be determined or .
estimated by either performing " separate effects" tests, which are special calibrations to determine the

Imeasurement characteristics, or by mathematically analyzing the " physics" of the measurement. Another ~
method sometimes used is estimation based on experience; this should be avoided if possible, since most of
these errors are bias errors and during replicated tests are not observable.

Environmental errors are those errors that affect the transducer as a function of its environment. An example
would be the temperature sensitivity of a differential pressure transducer. Since these types of problems are
dependent on the type of measurement they are addressed in the volumes on the various types of measurements.
Environmental errors that are not covered with transducer errors (Section 4.3) but are determined by pre- or
postlest checks are treated as system errors.

,
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5. REPORTING UNCERTAINTIES

The equation, U95 = * 2 + (t95 S) , used for calculating uncertainties is awkward to use when
either or both bias and precision errors are m the form of a constant plus a percent of reading. To simplify
the form, a linear, first-order equation is fitted to the values at 10% steps.

As a result, for the worst case there is a high value for uncertainty at zero reading, the value is ca at.

approximately 12% of the full-scale reading, it is about 10% low at approximately 30% of the full-scale
reading, is on at approximately 80% of reading, and reads 7% high at 100% of the full-scale reading. The
form that the uncertainty value then takes is a constant in the engineering unit: plus a percent of reading.,

Errors in using this form are less than 10% of the uncertainty value and are much easier to use. Uncertainty
values are thus reported in the following form:

U95 = * (XX engineering units + YY percent of reading)

where XX and YY is a two-digit, unknown number.

Values for uncertainty are carried out to two significant digits, end either the constant portion or the
percent of reading may have a zero value. An example would be a temperature reading:

U95 = (2.3 K + 0.23% of reading).

5.1 Reporting Error Summary

The uncertainty analysis report should include (a) a summary of test result errors and (b) a table showing
the contributions of the elementary error sources.

The definition of the components, bias limit, precision index, and the limit (U) suggests a summary for-
mat for reporting measurement error. The format will describe the components of error, which are*

necessary to estimate further propagation of the errors, and a single value (U) that is the largest error
expected from the combined errors. Additional information, degrees of freedom for the estimate of S, is
required to use the precision index. These summary numbers provide the information necessary to accept'

or reject the measurement error, The reporting format is:

1. S, the estimate of the precision index, calculated from data.

. 2. r, the degrees of freedom associated with the estimate of the precision index (S). The degrees of
l freedom for small samples (less than 30) is obtained from the Welch-Satterthwaite procedure

illustrated in the examples given in Section 2.5. This may be omitted if the alternate modelis used'

; and there is no need to further propagate the error.

| 3. B, the upper limit of the bias error of the measurement process or B and B+ if the bias limit is
asymmetrical.

.

~U2
9 S)2The uncertainty interval formula should be stated. U99 = (B + t 3 S) or U95 = B 954.

the uncertainty limit within which the error should fall. The t-value is the 95th percenYile(tof thelwo-*

tailed Student-t distribution and is taken as 2 if the sample size is 30 or greater. If the bias limit is

nonsymmetrical, two values will be given for the uncertainty; U95 "" "95 nm than two
significant places should be reported., ,

|

The model components, S, y, B, and U, are required to report the error of any measurement process.,

For simplification, the first three components may be relegated to the detailed sections of uncertainty
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reports and presentations. The first three components, S, r, and B, are necessary to (a) indicate corrective
action if the uncertainty is unacceptably large before the test, (b) to propagate the uncertainty to more
complex parameters, and (c) to substantiate the uncertainty limit.

To support the measurement uncertainty summary, a tabie detailing the elemental error sources is needed
for several purposes. If corrective action is needed to reduce the uncertainty or to identify data validity prob.
lems, the elemental contributions are required. Further, if the uncertainty quoted in the summary appears to
be optimistically small, the list of sources considered should be reviewed to identify missing sources. For this

,

reason, it is important to list all sources considered, even if negligible.

Note that all errors in Table 9 have been propagated from the basic measurement to the end test result
'

before listing and, therefore, they are expressed in units of the test result.

.

$

l

1
.



6. CONCLUSIONS

In summary, measurements are subject to two types of errors, i.e., bias and precision. One sample stan-
dard deviation is used as the precision index, s. The fixed error, s, is estimated and used as the bias limit,
B. Both bias and precision are combined independently of each other using the root-sum-square method.
To combine bias and precision, the total combined precision is first multiplied by the 95% t-value and,

combined with the bias using the root-sum-square method.

Accuracy of the test may be a part of the test requirements. Pretest uncertainty analysis will allow for,

corrective action before the test if the uncertainties are too large. Posttest analysis is required to confirm
the pretest analysis or to identify problems. Comparison of test results with pretest analysis is an excellent
data validity check.

Propagation of errors using the Taylor's series method is derived. Two approaches are used to calculate
errors when two or more measurements are used to calculate additional parameters. First is the analytical
approach; when a known mathematical relationship exists, partial derivatives are used to determine sen-
sitivities. Second is the numerical approach; when a complex relationship exists, the finite differences are
used to determine sensitivities.

Monte Carlo simulations are presented to show restrictions that must be placed on the method of partial
derivatives. This is most accurate for functions involving sums and differences of the observed variables.
For these functions if the variables are not mutually independent, a correction factor can be computed that
will ensure exactitude of the method. Close approximations can be made for errors that exist in functions
involving products and quotients of independently varying observed values, if the ratio of measured errors
to their respective nominal values is small(less than 10%). For all of the functions examined involving two
or more independent variables, the approximation is within 10% of the true value.

All measurements have errors. Calibration has two types of errors, the hierarchical errors referred to as
" calibration errors," and transducer response to calibration referred to as " transducers errors." Three,

reasons are given to calibrate; to improve accuracy, to prove traceability, and as a functional checkout.

Components of the data system are defined, including specifications and test measurements, to identify,

error parameters. Results of error analysis of the data system are summarized in a tabular form. These
results will be used in the subsequent volumes in analyzing uncertaintiu for each type of measurement.

Transducer errors are defined as those that occur at the transducer, and the values are determined by
calibration. The method of least squares is developed, " inverse estimation" is defined, and the effects of
regression analysis are described. Effects of calibration-to-calibration variation are discussed. Typical
conditions existing when transducer are zeroed in both the primary and secondary systems are mentioned.

Transducers that have unique engineering unit conversion curves on the basis of calibration data have the
order of curve fit determined by the " minimum bias" criterion. The minimum bias criterion is described by
the type of curves that it prefers.

System errors are defined as errors due to environmental conditions and installation factors. Analysis of
system errors are deferred to the subsequent volumes that will cover each type of measurement reported..

The form in which uncertainty will be reported is covered. When the bias or precision is a function of
percent of reading, the uncertainty, U95, will be nonlinear because of the square root. This function is,

linearized to make it easier to use and the effects are described. The error of using this technique will be
within 10% of the true value of U95-

The standard on uncertainty of the International Standards Organization requires that all elemental error
sources considered be identified for reference, and that the three components of uncertainty (precision s, bias
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l
,

11, and degrees of freedom y) be referenced in some report. The elemental sources considered to be typical
values of precision, bias, and degrees of freedom will be provided in the subsequent volumes for a given type
of measurement.

Uncertainty values, U95, are calculated and presented in all reports that reference " qualified"
experimental data.
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