September 21, 1982

```
Mr. Ross A Scarano, Chief
Uranium Recovery Licensing Branch Division of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555
```

Dear Mr. Scarano,
The enclosed report shows the Pb^{210} assays for both the surface water and ground water for the second quarter of 1982. Also shown are the Pb^{21} assays for the month of June, !982 from our continuous air samples around our perimeter.

We are sorry for the inconvenience this may have caused you, but these assays are done by a private lab and we had not received the analysis until recently.

Yours Very Truly,
Walk 2. Ecluard

Dale L. Edwards
Radiation Safety Coordinator
Enclosures
CC:
Glen D. Brown, Chief
Director of Inspection and Enforcement Region IV
U.S. Nuclear Regulatory Commission

611 Ryan Plaza Drive
Arlington, Texas 76011

R. E. Blubaugh

DLE/rm

8211060646820921 CDR ADOCK 04003453

OFFICNL DOCKET COPY

Original Not Rec'd.

$$
\begin{array}{ll}
\text { Above mill } & =0 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
1 / 4 \mathrm{mi} \text { below mill } & =1 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
1 / 2 \mathrm{mi} \text { below mill } & =0 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
1 \mathrm{mi} \text { below mill } & =1 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
5 \mathrm{mi} \text { below mill } & =3 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
10 \mathrm{mi} \text { below mill } & =2 \times 10^{-9} \mathrm{uci} / \mathrm{ml}
\end{array}
$$

$$
\begin{aligned}
& \text { GRCUND WATER RESULTS } \\
& \text { Pb }^{210} \text { for Second Quarter } 1982
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Arches } & =1 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
\text { Well \#1 } & =10 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
\text { Well \#2 } & =46 \times 10^{-9} \mathrm{uci} / \mathrm{ml} \\
\text { Well \#3 } & =12 \times 10^{-9} \mathrm{uci} / \mathrm{ml}
\end{array}
$$

CONTINUOUS AIR SAMPLES

\#1

$$
=.19 \times 10^{-14} \text { uci/ml }
$$

\#2

$$
=.43 \times 10^{-14} \mathrm{uci} / \mathrm{ml}
$$

\#3
$=1.0 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
\#4

$$
=.37 \times 10^{-14} \mathrm{uci} / \mathrm{ml}
$$

\#5 $=.12 \times 10^{-14}$ uci $/ \mathrm{ml}$
\#6

$$
=.31 \times 10^{-14} \mathrm{uci} / \mathrm{ml}
$$

