

Bart D. Withers President and Chief Executive Officer

December 28, 1990

WM 90-0204

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Mail Station F1-137 Washington, D. C. 20555

- Reference: 1) Letter dated May 25, 1989 from F. J. Hebdon, NRC to B. D. Withers, WCNOC
 - 2) ET 89-0076, dated September 22, 1989 from F. T. Rhodes, WCNOC to NRC
 - 3) Letter dated March 27, 1990 from D. V. Pickett, NRC to B. D. Withers, WCNOC
 - 4) WM 90-0118, dated July 5, 1990 from B. D. Withers, WCNOC to NRC
 - 5) Letter dated September 27, 1990 from D. V. Pickett, NRC to B. D. Withers, WCNOC

Subjecti

Docket No 50+482: Response to Request for Additional Information Concerning Seisaic Design Considerations for Certain Safety-Related Vertical Steel Tanks

Gentlemen:

Attachment 1 provides Wolf Creek Nuclear Operating Corporation's (WCNOC) response to the request for additional information which is documented in Reference 5. The request for additional information concerned the seismic design considerations for certain safety-related vertical steel tanks.

Reference 1 requested information concerning seismic design considerations for the Wolf Greek Generating Station (WCGS) Refueling Water Storage Tank (RWST) which was subsequently provided in Reference 2. Reference 2 provided the results of a reanalysis of the RWST which was performed in accordance with the guidance of Draft Revision 2 of the Standard Review Plan Section 3.7.3. The Nuclear Regulatory Commission (NRC) Staff performed an audit of the reanalysis on February 14, 1990, which resulted in a request for additional information (Reference 3). Reference 4 provided WCNOC's response to the request for additional information. Reference 5 requested additional information for the staff to continue its review.

9101040147 901228 PDR ADOCK 05000482

WM 90-0204 Page 2 of 2

If you have any questions concerning this matter, please contact me or Mr. H. K. Chernoff of my staff.

Very truly yours,

Bart D. Withers President and Chief Executive Officer

BDW/jra

Attachment

cc: A. T. Howell (NRC),w/a
R. D. Martin (NRC), w/a
D. V. Pickett (NRC, w/a
M. E. Skow (NRC, w/a)

Attachment to WM 90-0204 Page 1 of 3

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION REGARDING SEISMIC DESIGN CONSIDERATIONS FOR CERTAIN SAFETY-RELATED VERTICAL STEEL TANKS

QUESTION 1:

During the audit on February 14, 1990, the licensee's consultant (Bechtel) had provided a handout of what was presented. Provide revised Tables 2 and 3 and any other changes to the handout resulting from the reanalysis.

RESPONSE:

The handout presented to the NRC during the audit on February 14, 1990 has been revised to indicate the subsequent results of the reanalysis. Attachment 2 provides the revised handout including Tables 2 and 3. Pages 18, 19, 26, 28 (Table 2), 29, and 31 (Table 3) of 31 have been revised as indicated by Revision bars on these pages. New pages 20 and 30 are due to text "carryover" from changes to previous pages.

Changes were made to Table 2, Flexible Analysis, Shell Course 6 OBE calculated and allowable stresses. The calculated stress was revised to reflect the use of the licensed OBE level of 0.12g rather than the previous use of 0.13g. The allowable stress was revised to reflect a more accurate interpolation of values from Figure VII-1102-4 of the ASME Code, 1974 Edition through Winter 1975 Addenda.

The Table 3 value for shear in a typical slab strip, calculated using flexible analysis, was revised per the response to Question 3 below.

QUESTION 2:

Provide the maximum stress values (due to sloshing) in the angle welds at the roof-cylinder junction with stresses combined from the three components of earthquake (SSE). Compare with the allowables.

RESPONSE:

The maximum force on the 1/4 inch circumferential fillet weld of the steel angle connecting the tank roof to the tank cylinder was calculated with consideration given to the sloshing effects during an earthquake. A comparison of the calculated maximum force with the allowable force is shown below.

CALCULATED MAXIMUM	
FORCE (KIPS/INCH)	ALLOWABLE FORCE(KIPS/INCH)
0.0253	3.00

Attachment to WM 90-0204 Page 2 of 3

QUESTION 3:

Provide a summary of the maximum stresses in base slab (rebar and concrete), including those under the sump. Compare with the allowables.

RESPONSE:

The table below provides values of the allowable moments and shears at various sections of the base slab and the corresponding maximum design values. The maximum design values are based on factored loads and the allowable values are based on nominal strength multiplied by strength reduction factors in accordance with the American Concrete Institute code (ACI 318-1983).

	LOCATION	ALLOWABLE MOMENT (KIP-FT/ft)	MAXIMUM DESIGN/MOMENT (KIF-FT/ft)	ALLOWABLE SHEAR (KIPS/ft)	MAXIMUM DESIGN SHEAR (KIPS/ft)	
1.	Typical base slab strip	216.57	174.2	79.35	63.5	
2.	Slab strip around the sump pit	568.3	494.0	79.35	74.5	
3.	Sump pit slab (2'6"Thick)	88.5	13.2	32.9	11.9	

QUESTION 4:

In response to question 2(a) of the previous RAI, it is indicated that the bolts will not experience any shear load because of the static friction between the tank bottom and the concrete slab. This cannot be justified unless slotted or oversized bolt holes are used to allow for tank bending and flexibility. Provide maximum calculated stresses in bolts under the three components of earthquake (SSE), in pure tension as well as when tension and shear are combined. Compare them with the corresponding allowables.

RESPONSE:

As requested in Reference 3 and reported in Reference 4, the anchor bolt analysis was revised using classical methods to be consistent with the foundation analysis. The analysis for transmitting shear loads from the tank to the foundation was also revised to utilize static friction between the tank bottom and the concrete footing. With consideration given to this static friction, it was demonstrated that tank sliding did not occur, and therefore, the anchor bolts did not experience any shear loads. Attachment to WM 90-0204 Page 3 of 3

The tank base is anchored to the foundation by 2 inch diameter anchor bolts and the base plate is provided with 3 1/4 inch diameter holes for the bolts. Since oversized bolt holes are used, the static friction utilized in the analysis for transferring shear loads is justified. Based upon the above, the anchor bolts have been adequately evaluated for pure tension resulting from uplift loads. The maximum tension load calculated in any anchor bolt under the three components of the earthquake (SSE) is 9.854 kips and the corresponding allowable bolt tension value is 50.625 kips.

CALLAWAY & WOLF CREEK

RWST SEISMIC ANALYSIS

1. TANK MODEL - MASS

1 MASS FOR CONVECTIVE (SLOSHING) EFFECTS

1 MASS FOR BASE SLAB

9 MASS POINTS FOR SHELL AND IMPULSIVE COMPONENTS OF FLUID

4894	and the following of the second		C-1989	-130	REV. NO.	BHEET N
Ange	a De Sty	Imo	DATE 7-10-29	CHECKED QC Olia	il 7.	14.89
	POINT	HORIZONTAL	VERTICAL	* THE CONVE	CTIVE WATER	WILL
	1	0	0	P P 7 3 1 4 P 4	BA MAR ALAA M A	FAR
	1	8	8	DE LUMPL THE VEDT	TO AT NODE 4	FOR
	2	8 12 6	8 12 4	THE VERT	CAL ANALYSI	FOR S. FOR
	2 3 4	8 12 6 4	12 4 725	THE VERT	CAL ANALYSIS CCEPTABLE F CAL DIRECTION	FOR S. FOR I SINCE
	4 5	8 12 4 9	12 6 725 9	THE VERTI THIS IS A THE VERTIC SLOSHING	CAL ANALYSIS CCEPTABLE F CAL DIRECTION DOES NOT OCC	FOR S. FOR I SINCE UR
	1 2 3 4 5 6	8 12 4 9 2859	8 12 4 725 9 2859	THE VERTI THIS IS A THE VERTIC SLOSHING	CAL ANALYSIS CCEPTABLE F CAL DIRECTION DOES NOT OCC	FOR S. FOR I SINCE UR.
	1 2 3 4 5 6 7	8 12 4 9 2859 18	8 12 4 725 9 2859 18	THE VERTI THIS IS A THE VERTIC SLOSHING	CAL ANALYSIS CCEPTABLE F CAL DIRECTION DOES NOT OCC	FOR S. FOR I SINCE UR.
	1 2 3 4 5 6 7 8	8 12 4 9 2859 18 20	8 12 4 725 9 2859 18 20	THE VERTI THIS IS A THE VERTIC SLOSHING	CAL ANALYSIS CCEPTABLE F CAL DIRECTION DOES NOT OCC	FOR S. FOR I SINCE UR.
	123456789	8 12 4 9 2859 18 20 34	8 12 4 725 9 2859 18 20 34	THE VERTI THIS IS A THE VERTIC SLOSHING	CAL ANALYSIS CCEPTABLE A CAL DIRECTION DOES NOT OCC	FOR S. FOR I SINCE UR.
	12345678910	8 12 4 9 2859 18 20 34 721	8 12 4 725 9 2859 18 20 34 0	* THE VERTI THIS IS A THE VERTIC SLOSHING	CAL ANALYSIS CCEPTABLE A CAL DIRECTION DOES NOT OCC	FOR S. FOR I SINCE UR.

NOTE :

Z =

4903 K

4903 K

THE PREVIOUS ANALYSES, BY THE VENDOR (REFERENCES 12-14), CONSERVATIVELY INCLUDED AN ADDITIONAL ROOF LOAD (SNOW LL AT 73 NSF, 91.734 ") AT MASS FOINT (D. CONSISTENT WITH THE SNUPPS CRITERIA AND BUILDING ANALYSES (REFERENCES 27-29), THIS LOAD NEED NOT BE INCLUDED IN THE SEISMIC ANALYSIS.

94			C-198	NO. 9-130		NEV. NO.
ATOR	h.	Itelmo	DATE	CHECKED	TO MAN	DATT
			/~/~0/	Y	C. Bernik	
	SUMM	ARY OF	LUMPED MAR	PRODUCTED	C 1	
		time in the second s		11121-16160	allerer.	
	Mare			(1. X/ X)		
1	NASS	NEIGHT	REIGHT MBOYE	_(W_X, K)		Ihi -
1	0	I WAT	DASE (AL) IT	K-12-	K-fE-	K. 122
	e	8	55.77	24882	863	25745
	(B)	16	48.77	28542	1617	30159
	é		41.10	10155	1084	11219
	õ	10	22 42	5700	754	6454
	õ	2859	22.42	10058	1686	11744
	õ	10	25.70	107/169	2768	1899937
	Õ	20	10.09	2891	3514	9405
	õ	3/	275	21/2	4015	6187
	õ	721	37.75	1027070	2008	2280
	Õ	1210	0	102 1470	151707	1027470
	2-	4903		3012201	130191	153797
			1 1	0012241	110106	1 3182397
	TOTAL	IN: -	I 3, 182, 3	97 K-J22 (BOTH HORIZON	TAL DIRECTIO
, .	-	31823	97			
	5-	- 32.1	- 988	32 K-ft-sec ²	•	
				-		

•

4

34

35

Г

1. TANK MODEL - STIFFNESS

STRUCTURE - 3D BEAMS (TANK SHELL ONLY)

BASE SLAB - 3D BEAM

CONVECTIVE (SLOSHING) EFFECTS - SPRING

SOIL - SPRINGS

2. <u>LUMPED MASS MODEL OF STRUCTURE-FOUNDATION NOT SHOWN, SEE</u>	ENO.		GALC NO	nonestationalistic sectors of comparison	and the second	PREV NO	I SPORT IN
2 INTOR 6-27-29 OCCOLINIE TO T-11-99 2. INMPED MASS MODEL OF STRUCTURE-FOUNDATION SUSTEM:	\$894		C-1989-	130		0	B
2. <u>IUMPED MASS MODEL OF STRUCTURE-FOUNDATION SYSTEM</u> : FOR JUFORMATION NOT SHOWN, SEE SHEET NO. 7	Dangor-	D. Selmo	DATE 6-29-89	OHSICKED	J.C. Olimik	7-11	- 89
FOR INFORMATION NOT SHOWN, SEE SHEET NO. 7	2.	<u>LUMPED MASS F</u>	10DEL OF STR.	UCTURE-R	OUNDATION SUSTE	<u>7</u> :	
(MODEL YSING BOUNDARY ELEMENTS)		E O E O E	-@	FOR INFOR	SOIL SPRINGS ATJ	WN, SEE	25
		() E		(MODEL Y	SING BOUNDARY	ELEMEN	(27
		æ	5 ÷ +	a. 			
		Ó	N - N - 1	•• • • •	· · · · · · · · · · · · · · · · · · ·		
	6						
	-3	TKy SKy	cr cy				
$C_{3} = K_{3} + K_{4} + C_{3} + C_{4}$							

50	CALCUI	LATION SHEET	665PC-876	-
JOB NO. 14894	CALC. NO C-1989-	130	NEV. NO.	SHEET NO
Jampe B. Stfmo	DATE 7-1/-89	CHECKED Q.C. Olimik	0AT 7.	4.99

SUMMARY OF MEMBER PROPERTIES :

23 34 35

\$1

MEMBEE	AREA	SHEAR A	AREAS (11")	AREA MOMENT	OF EVERTIA (ft*)
NUMBER	(ft")	NS	BU	NS	BN
1	4.202	2.101	2.101	488	488
2	1.9627	0.982	0.982	392	392
3	1.9627	0.982	0.982	392	392
4	1.9627	0.982	0.982	392	392
5	3.27	1.635	1.635	653	653
4	3.924	1.962	1.962	784	784
7	5.231	2.6155	2.6155	1044	1044
8	5.231	2.6155	2.6155	1044	1044
9	1500	1350	1350	184397	184397

(1) SHEAR AREMS ARE TAKEN AS "& AREA FOR TANK SHELL PER REFERENCE 31. FOR SLAB, SHEARS ARE TAKEN AS 0.9 AREA PER REFERENCE 31 ASSUMING, A CILCULAR SOLID SECTION.

DUE TO SYMMETRY, TORSION WILL NOT OCCUR. THE COMPUTER RUNS, HOWEVER, REQUIRE AN INPUT FOR J (TORSIONAL MOMENT OF INERTIA) TO EXECUTE. AS SUCH, EITHER THE CALCULATED VALUES OF C OR A FICTIONS VALUE (OF 1.0 ft⁴) WILL BE INPUT. PG. 7 OF 31

INO.	NY COLOR DELL'ASSAULTER, RESIDUCT DE ANTRAL	CALC. NO.	angan ang ang ang ang ang ang ang ang an	1	REV. NO. BHEET N
BINATOR	Homo	DATE C 7-1/-89	HECKED Q.C. Olin	l	04TE 7-14-80
for an and the second					
H. MATEL	RIAL PROPE	RTIES :			
DENSIT	Y, OF CON OF STE	ICRETE El	Ve - W Vs	- 1	45 pcf 90 pcf
Youne	'S MODULUS	, OF CONCRETE (1) OF STEEL	E _c E _s	4 52	176000 Ksf
WHE	$ERE E_c = ($	w) (33) / f' = (14	(33) (33) /4000 psi	(2)	
SHEAR	MODULUS	OF CONCRETE (3) OF STEEL	Gc Gis	= 2 = 10	09903 Ksf 12800 Ksf
WH	ERE Go -	0.4 Ec			
Poisso	N'S RATIO	, FOR CONCRETE FOR STEEL	Ve Vs	- 0	25 30
WH	ERE V. IS	BASED ON THE R	ELATIONSHIP BET	VEEN	E. AND G.
DAMPI	NG, (4) STRL	CTURE	E	- 2	2 (OBE)
	. Can	VECTIVE FLUID	(REFERENCE 3)	- 4	2 (SSE)
 (1) SEE (2) SEE (3) SEE (4) PER FRO 	SECTION 8 REFERENCE PAGE 137 CENT OF CR M REFEREN	5.1 OF REFERENCE E 22. OF REFERENCE 2 ITTICAL DAMPING ICE 25.	E 24. G. FOR A WELDED STE	EL STR	UCTURE

36

1. TANK MODEL - DAMPING

BASED ON SNUPPS FSAR (REG.GUIDE 1.61)

STEEL TANK OBE - 2% SSE - 4%

CONVECTIVE FLUID

SOIL (BASED ON SNUPPS EHS/FEA STUDY APPROACH)

RWST SEISMIC ANALYSIS 2. FOUNDATION MEDIUM

- NRC SUGGESTION TO USE SIMPLIFIED APPROACH
- CONSISTENT WITH EHS/FEA STUDY
- RICHERT EQUATIONS
- LAYERING BASED ON WEIGHTED AVERAGE (DEPTH = BASE DIM.)

PG.11 OF 31

36

3. SUMMARY OF RESPONSE MODES:

FREQ.	MODE	EFFECTIVE
RANGE		MASS
(Hz)		

.22(CONVECTIVE)15%4.6/6.2(1ST HORIZ)70%8.4/13.1(1ST VERT)93%

4. TREATMENT OF MODES

HORIZONTAL DIRECTIONS

- HYDRODYNAMIC COMPUTED PER NUREG CR-1161 (SRSS OF IMPULSE, SLOSHING AND VERTICAL MODES

- HYDROSTATIC & HYDRODYNAMIC SUMMED ABS

4. TREATMENT OF MODES

HORIZONTAL DIRECTIONS: (CONTINUED)

- ONE HORIZ. ANALYSIS (DUE TO SYMMETRY)
- 2ND HORIZ. DIRECTION IS 40% OF FIRST
- ADDED NOZZLE LOADS FROM SEPARATE ANALYSIS FOR EACH DIRECTION

- 4. TREATMENT OF MODES (CONTINUED)
 - COMBINED TWO HORIZ. DIRECTIONS AS VECTOR SUM
 - VERTICAL DIRECTION CONSERVATIVELY ADDED ABS TO HORIZ

- USED MULTIMODE APROACH TO COMBINE ALL MODES IN A SPECIFIC DIRECTION

- 5. SLOSHING HEIGHT
 - BASED ON NUREG CR-1161
 - CONSIDERED ROOF STRESSES
 - SNOW LOAD CONTROLLED

A Super Contract Mark

6. UPLIFT POTENTIAL

-ANALYSIS BY CLASSICAL METHOD INDICATES UPLIFT (I.E. TENSION IN BOLTS)

-TANK DISPLACEMENTS CONSIDERED IN PIPE ANALYSIS

7. OVERTURNING MOMENTS

-CONTROLLING CASES

Þ

-FULL TANK W/SEISMIC -EMPTY TANK W/WIND

-BOLTS DESIGN PER CLASSICAL METHOD, BOLTS TAKE TENSION LOAD ONLY

-SHEAR LOAD TRANSFERRED TO CONCRETE FOOTING BY STATIC FRICTION BETWEEN TANK BOTTOM AND CONCRETE (OVERSIZED HOLES PROVIDED

IN TANK BASE TO JUSTIFY THE ABOVE)

- 8. STRESSES IN SHELL
 - BASED ON ORIGINAL SPEC. FOR TANKS

- ASME SECTION III SUBSECTION NC

9. SUMMARY - HOOP STRESS RIGID ANALYSIS:

-ONLY HYDROSTATIC PRESSURES CONSIDERED

-PRESSURES COMPUTED AT BASE OF EACH COURSE

PG. 23 OF 31

FLEXIBLE ANALYSIS:

-HYDRODYNAMIC AND HYDROSTATIC PRESSURES WERE CONSIDERED

-PRESSURES COMPUTED ONE FOOT ABOVE BASE OF EACH COURSE

THICKNESS REQUIREMENTS COMPARED IN TABLE 1

6.0 %	-		1676	
T &	- 84	т.	- NC	
* **	40	-	-	

Shell	Computed Rec	Actual	
Courses	Rigid Analysis	Flexible Analysis	Thickness
1	0.0520	0.1875 *	0.1875
2	0.1041	0.1875 *	0.1875
3	0.1563	0.2179	0.3125
4	0.2083	0.2789	0.3750
5	0.2605	0.3418	0.5000
6	0.3126	0.4061	0.5000

Comparison Of Required Shell Course Thicknesses (inches)

* Minimum Requirements Govern

.

0 -

9. SUMMARY - ROOF DESIGN

]

-SLOSH HEIGHT OF 3.36 FT (CALCULATED PER NUREG CR-1161)

-PREVIOUS DESIGN LOADS (ROOF SNOW LOADS) CONTROL

-CONNECTION WELD BETWEEN TANK ROOF AND CYLINDER JUNCTION CHECKED 9. SUMMARY - COMPRESSION

-SEISMIC GOVERNED OVER WIND

- -SSE CONTROLLED RIGID ANALYSIS
- -FLEXIBLE ANALYSIS CONSIDERED OBE AND SSE

COMPRESSION STRESSES COMPARED IN TABLE 2

Shell	Rigid	Analysis	Flexible Analysis			
Courses	Stress	Allowable	Stress	Allowable		
1	*		134 ()	2698 (1484)		
2	*		165 ()	2698 (1484)		
3	1912	3307	140 ()	4200 (2310)		
4	2925	3933	2670 ()	5400 (2970)		
5	**		4273 (2749)	7000 (3850)		
6	4235	4964	6584 (3927)	7000 (3960)		

Comparison Of Longitudinal Compression Stresses (PSI)

* Signifies Negligible

٠.

1

** Course 5 was enveloped by Course 6

In flexible analysis, OBE values are given in parenthesis. Values shown as (----) were not computed since SSE stress was less than the OBE allowable.

9. SUMMARY - FOUNDATION

-SOIL PRESSURES

-SHEAR AND MOMENT IN BASE SLAB EVALUATED

-SHEAR AND MOMENT IN BASE SLAB ADJACENT TO SUMP PIT EVALUATED

-SHEAR AND MOMENT IN SUMP PIT SLAB (2'-6"THICK) EVALUATED

-COMPARISONS PROVIDED IN TABLE 3

TABLE 3

Foundation Comparisons

Item of Comparison	Rigid Analysis	Flexible Analysis	Allowable
Pressure (ksf)	3.36	3.27	20.00
Dynamic Soil Pressure (ksf)	7.81	15.14	30.00
Shear in Typ. Slab Strip (Vu in Kips/FT)	49.90	63.5	79.35
Moment in Typ. Slab Strip (Mu in Kip-Ft/Ft)	107.90	174.20	216.57
Shear in Slab Strip around the Sump Pit (Vu in Kips/ft)	-	74.5	79.35
Moment in Slab Strip around the Sump Pit (Mu in Kip-FT/ft)	-	494.0	568.3
Shear in 2'-6" thick Sump Pit Slab (Vu in Kips/ft)	-	11.9	32.9
Moment in 2'-6" thick Sump Pit Slab (Mu in kip-FT/ft)	-	13.2	88.5