SECOND ANNUAL REPORT August 28, 1981 thru August 27, 1982

submitted to

Department of Environmental Quality State of Wyoming

for the

BISON BASIN PROJECT In-Situ Leach Uranium Mine Permit to Mine No. 504

> Ogle Petroleum Inc. 150 N. Nichols Avenue Casper, Wy 82601

8211050057 820827 PDR ADOCK 04008745

OFFICIAL DOCKET COPY

I. MINING ACTIVITIES

Ogle Petroleum Inc. (OPI) began mining in the commercial phase on August 21, 1981. Mining was initiated in Mining Unit No. 1 (which includes the one acre R & D field) and has continued in this unit up to the present time using sodium carbonate/bicarbonate as the lixiviant and oxygen as the primary oxidant. There are currently 115 injection wells and 71 recovery wells in operation in Mining Unit No. 1. Mining Unit No. 1 is comprised of 11.7 acres of land, including the one acre R & D field.

During the period covered by this report, the processing plant has operated at an average flow rate of 371.5 gallons per minute (gpm). Table 1, below, lists the average monthly flow rates to the processing plant during the reporting period.

TABLE 1

Average Monthly Flow Rates to the Processing Plant

1 1001	000	
August, 1981	336	gpm
September, 1981	334	gpm
October, 1981	317	gpm
November, 1981	383	gpm
December, 1981	415	gpm
January, 1982	352	gpm
February, 1982	379	gpm
March, 1982	446	gpm
April, 1982	388	gpm
May, 1982	405	gpm
June, 1982	460	gpm
July, 1982	351	gpm
August 17, 1982	264	gpm

Table 2 below lists the average flow rates to the evaporation ponds for this reporting period.

TABLE 2

Average Flow Rates to the Evaporation Ponds

August, 1981	0.97	gpm
September, 1981	7.33	gpm
October, 1981	10.19	gpm
November, 1981	7.62	gpm
December, 1981	5.03	gpm

January, 1982	4.49	gpm
February, 1982	4.63	gpm
March, 1982	5.90	gpm
April, 1982	7.70	gpm
May, 1982	0.80	gpm
June, 1982	0.45	gpm
July, 1982	2.30	gpm
August 17, 1982	0.81	

Flow rates to the evaporation ponds for the months of May and June, 1982 show substantially lower flow rates than those observed in previous months. These reduced flow rates were due primarily to a conservation effort by OPI to stabilize the aquifers prior to and during the pump test conducted in Mining Unit No. 2 in May, 1982. Reduced flow rates to the ponds in June and July are a result of changes in the filter wash system. Water used for backwashing the sand filters is now contained in a "closed" system where filter wash water is recycled. Prior to this "closed" system, water from the production zone was utilized for washing the sand filters, thus increasing the flows to the evaporation ponds.

The total number of gallons injected and recovered during this reporting period are as presented in Table 3 below:

TABLE 3

Total Number of Gallons Injected and Recovered

Injected	191,186,695
Recovered	193,616,143

The total volume of liquid waste effluent (processing plant bleed) discharged to the evaporation ponds during this report period was 2,429,448 gallons.

II. CONSTRUCTION AND DEVELOPMENT

During the period covered by this report, OPI has completed several projects which were under construction at the time of the first Annual Report. The addition to the north side of the pro-

cessing plant building which contains offices, a laboratory, shop, etc., was completed in November of 1981. Figure 1 shows an updated drawing of the plant facility layout including this new adaition.

Construction of Pond No. 2 - Cell No. 2 was completed in September 1981 and construction of Evaporation Pond No. 3 was completed in October of 1981. The location of these evaporation ponds is shown on Figure 2, the Site Plan Layout. The land area disturbed and the topsoil volumes stockpiled for the evaporation ponds are discussed in following sections.

Additional development at the Bison Basin Mine includes the completion of drilling and completing the wells contained in Mining Unit No. 2. Drilling of production, injection, and monitor wells for Mining Unit No. 2 was completed in November, 1981.

Other minor construction activities performed during this report period include the development of an outside chemical storage area within the plant facilities compound. This area lies north of the processing plant and is used for fuel storage and storage of bagged salt and soda ash. Approximately one foot of topsoil was removed from this area to insure that contamination of topsoil does not occur. A small impoundment was also constructed around the fuel storage area, to contain any leaks or spills of gasoline or diesel fuel. The fuel storage area is shown on Figure 2.

The equipment storage area, or boneyard which was located south of the plant facility compound has been located inside the plant facility compound as shown on Figure 2. Prior to placing the equipment within this area, OPI stripped and stockpiled approximately 6 inches of topsoil from the boneyard area within the compound. As of July 15, 1982, all equipment and materials have been moved to the new storage area.

On April 15, 1982, the DEQ conducted an inspection of the mine site. During this inspection, the DEQ concluded that top-soil impacts on wellfield areas and roadways were severe enough to warrant topsoil removal from these areas. OPI submitted a Topsoil Impact Mitigation Plan on May 13, 1982 which required OPI to strip topsoil from wellfield roadways and alternate rows within the wellfield. Following the submittal of this plan, OPI

OFFICIAL DOCKET COPY

20772 OGLE PETROLEUM INC. requested additional discussion concerning the removal of topsoil from the wellfields. The DEQ again visited the mine site
in June and observed a significant amount of growth on areas
in the wellfield previously thought to be severly impacted.
Following the June visit to the mine by the DEQ, OPI submitted a
Revised Topsoil Impact Mitigation Plan dated June 15, 1982. This
revised plan waived the requirement to strip topsoil from wellfield rows. Instead of stripping topsoil from the wellfield,
OPI has closed every other row to vehicular traffic as shown on
Figure 2. Mine site personnel have also been instructed to limit
their travel whenever possible and have also been instructed to
drive only on designated roadways which are illustrated on Figure 2.

Also included in the Revised Topsoil Impact Mitigation Plan of April 15, 1982 was a commitment by OPI to strip topsoil from well-field access roads. OPI has carried out this requirement by stripping and stockpiling 3 to 4 inches of topsoil from the wellfield roadways as shown on Figure 2.

The procedures outline above which include closing certain areas to vehicular traffic and stripping main roadways is believed to result in minimal impacts on topsoil in areas where topsoil is partially removed or left in place.

At the present time, the "hook-up" of Mining Unit No. 2 is the only construction activity being conducted. These activities include the installation of pumps, surface pipe and electrical equipment. Mining Unit No. 2 is essentially ready for start-up.

III. SURFACE DISTURBANCES AND TOPSOIL STOCKPILE VOLUMES

This section contains tabulations of surface area disturbances within the permit area. Surface disturbances are categorized under two type of disturbances. Category "A" consists of those areas where excavations are necessary or topsoil may be degraded by chemicals or frequent trafficking. Category "B" consists of those areas where topsoil is minimally impacted by infrequent vehicular traffic. Tabulations for surface disturbances list areas disturbed only to the present time. Tables 4 and 5 list tabulations of Category "A" and Category "B" disturbances, respectively. These areas are shown on Figure 2, the Site Plan Layout.

OFFICIAL DOCKET COPY

OGLE PETROLEUM INC.

TABLE 4

Category "A" Disturbances

Description		Area (Sq. Ft.)	
	n Building including upport Facilities	27,700	
Diesel Fuel Sto	orage Tanks	1,500	
Carbon Dioxide	Storage Tanks	1,500	
Septic Tank and	d Leach Field	3,000	
Solid Waste Lar	ndfill	7,500	
Access Roads to	Wellfields	116,880	
Outside Chemica	al Storage Area	13,700	
Boneyard Area (material storage	(Equipment parking, ge, etc)	23,770	
Evaporation Por	nd	433,376	
Mud Pits		22,160	
	Total land area disturbed	651,086 Sq.	F:

Total land area disturbed 651,086 Sq. Ft. to date under Category "A" (14.9 acres)

TABLE 5

Category "B" Disturbances

Description	Area (Sq. Ft.)
Office, Personnel, and Storage Trailers	6,000
L.P. Gas Storage Tanks	2,000
Vehicle Parking Area	4,000
Wellfield Areas (including 0.93 acre R & D Test Area)	1,004,483
Total land area disturbed to date under Category "B"	1,016,483 (23.3 acres)

The estimated topsoil quantities removed and stockpiled for the category "A" areas described above are presented in Table 6 below:

OFFICIAL DOCKET COPY

TABLE 6

Estimated Stockpiled Topsoil Volumes

Area Description	Cubic Yards
Processing Plant Building including Tank Pad and Support Facilities Addition	1500
Diesel Fuel Storage Tanks	56
Carbon Dioxide Storage Tanks	56
Septic Tank and Leach Field	111
Solid Waste Landfill	277
Access Roads to Wellfield	1442
Outside Chemical Storage Area	254
Boneyard Area (Equipment parking, materials storage, etc)	290
Evaporation Ponds	15,300
Total Volume	19,286 Cu. Yds.

All topsoil stockpiles and topsoil substitute stockpiles will be seeded this fall with Crested Wheatgrass to provide for temporary stabilization. The seeding rate will be 12 pounds per acre of pure live seed.

IV. MINING AND RESTORATION/RECLAMATION SCHEDULE

Table 7 below is a revised Mining and Restoration/Reclamation Schedule for the Bison Basin Mine. This schedule has been revised due to plans which include mining the first and second mining units for two years each instead of one year each as previously estimated.

TABLE 7
Revised Mining and Restoration/Reclamation Schedule

Year of Operation	Mining Unit(s) to be Mined	Mining Unit to be Restored	Mining Unit to be Reclaimed
1			
2	1		
3	1 & 2		
4	2	, 1	
5	3	2	1
6	3 & 4	-	
7	4	3	2
8		4	3
9			4

V. RESTORATION AND RECLAMATION

No restoration has been performed at the Bison Basin Mine during the time period covered by this report. According to the Restoration/Reclamation Schedule presented in the previous section, no restoration activities are expected to begin until the fourth year of the license.

Additionally, no reclamation work other than the establishment of two test plots has been conducted at the Bison Basin Mine Site during the past year. Reclamation is not scheduled to begin until the fifth year of operations.

Two reclamation demonstration test plots were established in April, 1982 at the Mine Site. These test plots were established in order to demonstate the effects of topsoil impacts within the wellfield areas which will not be stripped of topsoil. For the locations of these test plots, please refer to Figure 2. Recent observations of these plots show that a large number of seeds have germinated and are growing. For a more complete discussion of these test plots, please refer to OPI's letter of May 4, 1982.

OFFICIAL DOCKET COPY

VI. GROUNDWATER MONITORING

Analytical results and water level data for all excursion monitor wells are presented in Tables 8 thru 22. These results are also presented in graphical form in Figures 7 thru 153. Monitor well locations are shown on Figure 3.

The analytical results presented are for all of the monitor wells used in conjunction with Mining Unit No. 1. These results cover the time period of August 12, 1981 thru July 28, 1982. The August 12, 1981 samples are pre-operational samples collected for OPI's own information.

During this reporting period, OPI reported two wells to be in excursion status. These wells which have since recovered from excursions are M-14 and M-17. The February 4, 1982 sampling detected an excursion at monitor well N-14. A sample was collected on February 11, 1982 which confirmed the excursion, at which time the NRC and DEQ were notified. After confirming this excursion, OPI began sampling M-14 on a weekly basis. Samples collected from M-14 on March 30, 1982 indicated that M-14 had recovered, as all values had reached baseline concentrations. For a complete report of this excursion and recovery, please refer to OPI's reports dated February 16, February 26, March 22, April 9, and July 22, 1982.

On April 8, 1982 your office was notified by telephone that monitor well M-17 had gone into excursion status. Samples collected on March 30, 1982 indicated total carbonate plus bicarbonate and chloride had exceeded their upper control limits (UCL's). A confirmation sample was collected on April 5, 1982 which confirmed the excursion at M-17. OPI then began sampling M-17 on a weekly basis as required. On June 2, 1982 sample analyses on M-17 exhibited reduction to a point where all excursion parameters were below the UCL's. Since June 2, 1982, M-17 has remained off excursion. For more complete details of this excursion please refer to OPI's reports dated April 9, May 17, and July 13, 1982.

VII. EVAPORATION POND MONITORING

OPI's evaporation pond monitoring program includes daily

visual inspections of all pond embankments, freeboard limitations and leak detection systems. Daily inspection reports are kept on file at the mine office. Additionally, the evaporation pond monitor wells are sampled on a quarterly basis and analyzed for the six UCL parameters. Water samples from the evaporation ponds are also collected on a quarterly basis and analyzed for a number of elements.

Analytical results from the quarterly samplings of the evaporation pond monitor wells are presented in Tables 23 thru 28. The location of these wells are shown on Figure 4.

One evaporation pond monitor well, M-72 was reported to be in excursion status in OPI's letter of April 9, 1982. As of April, 1982 OPI has collected samples from M-72 on a weekly basis as required. Conductivity, chloride and sodium continue to exceed their UCL's in these samplings. As previously discussed in OPI's correspondence with your office, OPI believes that these values are due to poor ground water quality and drilling fluid contamination of M-72 and not due to a leak in the ponds. The concentrations of the excursion parameters in the pond effluent are considerably higher than those concentrations found in samples collected from M-72. Also, the leak detection system which underlies the liner has not indicated any leakage. The leak detection system under the liner is the primary indicator of leaks. For more information on M-72, please refer to OPI's reports of April 9, May 18, and July 13, 1982.

Water samples are collected on a quarterly basis from the evaporation ponds. This effluent water quality data is presented in Table 29.

VIII. ENVIRONMENTAL MONITORING

In addition to OPI's groundwater monitoring program, various other environmental factors are monitored during the mining operation. Surface water quality is collected annually at three locations: West Alkali Creek (upstream point and downstream point) and Grassy Lake. These locations are shown on Figure 5. Surface

water samples were collected on March 11, 1982 during spring runoff at the two collection points on West Alkali Creek. Grassy Lake has remained dry since the summer of 1981. Surface water quality data are presented in Tables 30, 31 and 32.

OPI's environmental dosimetry program consists of monitoring 8 thermoluminescence dosimetry (TLD) locations on a continuous basis, with the dosimeters being exchanged quarterly. The TLD results are presented in Table 33 and the monitoring locations are shown on Figure 6.

IX. BONDING

OPI's most recent review and revision of bonding requirements presented in the 1981 Annual Report has been increased to reflect the cost of restoration of Mining Unit No. 2. Injection into Unit No. 2 is expected to take place as soon as approval is given. OPI's bonding estimate contained in the 1981 Annual Report was \$755,980. This estimate is being increased by \$275,000 for the restoration costs of Mining Unit No. 2, for a total bonding amount of \$1,030,980. Your letter of May 20, 1982 accepts OPI's bonding calculation of \$1,030,980. An additional bond bringing the bonded amount to \$1,030,980 has recently been submitted to your office. The following is a breakdown of restoration and reclamation costs for OPI's Bison Basin Mine:

Restoration and Reclamation Costs

Loading and transporting pond residue from site to nearest tailings dams (308 tons, 100 miles round trip	16 trips @ \$4/mile (includes loading)	\$ 6,400
Backfiling ponds (40,000 yd ³)	\$0.75/yd ³	30,000
Regrading Subsoil and Spreading Topsoil (50,000 ydg)	\$1.99/yd ³	50,000
Seeding (50 acres)	\$65/acre	3,250
Mulching (50 acres)	\$250/acre	12,500

OFFICIAL DOCKET COPY

Building and Equipment Removal and Burial of Unsalvageable Equipment		60,000
Well Plugging (853 wells)	\$110/hole	93,830
Restoration (First Mining Unit)		500,000
Restoration (Second Mining Unit)		275,000
	Total	\$1,030,980

Monitor Well N	lo. M-8				Minin	g Unit No	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2150	117	33	420	910	0.009	N/A
UCL	2580	140	40	504	1092	1.009	N/A
UCL Plus 20%	3096	168	48	605	1310	1.211	N/A
08/12/81	2030	107	34	393	860	0.027	100.25
09/03/81	2250	120	39	385	760	0.036	120.60
09/10/81	2100	98	34	379	760	0.021	140.20
09/16/81	, 2050	117	34	389	777	0.014	193.80
09/23/81	2130	120	33	379	740	0.010	201.00
10/01/81	2020	117	37	352	560	0.011	219.50
10/14/81	0	0	0	0	0	0.000	203.80
10/21/81	2062	117	32	373	845	0.016	230.00
10/29/81	2300	137	32	399	700	0.016	234.40
11/11/81	2340	122	30	355	670	0.017	216.40
11/25/81	0	0	0	0	0	0.000	219.20
12/09/81	2200	117	30	384	735	0.025	225.80
12/14/81	2200	119	32	298	860	0.024	219.00
12/23/81	1900	63	34	177	850	0.023	204.30
01/08/82	1725	124	30	404	835	001	192.20

Table No. 8

Page 1 of 2

Monitor Well 1	No. M-8				Minin	g Unit No		77
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/l)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	30
Baseline	2150	117	33	420	910	0.009	N/A	
UCL	2580	140	40	504	1092	1.009	N/A	
UCL Plus 20%	3096	168	48	605	1310	1.211	N/A	
01/13/82	1725	127	32	416	885	0.004	204.40	
01/21/82	1950	109	31	430	805	005	199.60	
01/28/82	1850	112	32	442	800	0.008	206.00	
02/04/82	1920	112	31	380	785	005	214.70	2
02/18/82	1800	114	31	403	810	005	204.00	0
03/30/82	1900	114	32	373	630	005	225.10	0
04/27/82	2200	112	29	395	730	005	224.60	1
06/02/82	1850	119	31	364	815	005	183.40	=
06/17/82	1800	119	30	343	835	005	199.00	8
07/01/82	1840	112	32	401	695	005	205.30	0
07/16/82	1810	114	31	437	765	005	190.80	
07/28/82	1825	120	26	392	825	0.007	176.00	5
								OFFI

Table No. 8

Page 2_ of 2_

Monitor Well M	No. M-9				Minin	g Unit No	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2190	117	35	410	864	0.010	N/A
UCL	2628	140	42	492	1037	1.010	N/A
UCL Plus 20%	3153	168	50	590	1244	1.212	N/A
08/12/81	2000	122	36	375	825	0.833	99.80
08/26/81	2010	117	36	344	765	0.210	174.50
09/03/81	2100	122	36	385	810	0.127	200.70
09/11/81	2050	98	34	415	680	0.147	121.40
09/16/81	2000	117	34	403	750	0.053	225.50
09/23/81	2050	117	33	363	705	0.105	226.00
10/01/81	0	. 0	0	0	0	0.000	252.20
10/07/81	2130	117	33	409	788	0.060	240.10
10/14/81	2150	127	34	400	765	0.041	226.40
10/29/81	2360	117	33	397	645	0.049	249.50
11/05/81	2250	122	35	393	764	0.070	243.30
11/11/81	2330	122	33	397	695	0.043	230.80
11/16/81	2230	117	34	334	772	0.060	230.80
11/25/81	2070	114	32	383	700	0.056	247.50
12/02/81	2000	117	35	411	730	0.066	236.40

Table No. 9

Page _1 of _3_

Monitor Well N	No. M-9				Minin	g Unit No	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2190	117	35	410	864	0.010	N/A
UCL	2628	140	42	492	1037	1.010	N/A
UCL Plus 20%	3153	168	50	590	1244	1.212	N/A
12/09/81	2170	117	32	378	750	0.044	238.80
12/14/81	2150	117	34	361	815	0.043	229.90
12/23/81	1810	49	34	170	795	0.043	213.50
01/08/82	1700	129	30	395	825	0.029	170.50
01/13/82	1725	124	32	399	820	0.032	214.40
01/21/82	1800	114	33	413	580	0.030	198.50
02/04/82	1820	114	35	385	800	0.038	201.30
02/11/82	2000	120	32	389	790	0.026	229.50
02/18/82	1780	114	33	381	805	0.038	204.80
02/25/82	1900	117	35	404	800	0.033	0.00
03/30/82	1870	114	34	357	760	0.012	243.60
04/27/82	2080	114	31	397	815	0.011	220.10
06/02/82	1830	114	32	378	800	0.026	179.80
06/17/82	1800	119	32	351	805	0.012	194.80
07/01/82	1810	117	35	394	710	0.028	200.10

Table No. 9

Page 2 of 3

Monitor Well N	lo. M-9				Minin	g Unit No	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2190	117	35	410	864	0.010	N/A
UCL	2628	140	42	492	1037	1.010	N/A
UCL Plus 20%	3153	168	50	590	1244	1.212	N/A
07/16/82	1800	117	33	298	805	0.031	195.50
07/28/82	1790	124	35	391	792	0.024	129.60

Table No. 9

Page $\frac{3}{}$ of $\frac{3}{}$

Monitor Well M	No. M-10				Mini	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2000	142	40	418	805	0.008	N/A
UCL	2400	170	48	502	966	1.008	N/A
UCL Plus 20%	2880	204	58	602	1159	1.210	N/A
08/12/81	1850	117	38	357	765	0.010	91.00
09/03/81	2000	127	38	363	675	0.013	101.30
09/16/81	1780	132	36	357	607	005	108.00
10/01/81	1800	124	37	300	550	0.006	102.10
10/14/81	2000	127	36	370	710	0.015	93.40
10/29/81	0	0	0	0	0	0.000	89.60
11/11/81	2230	117	32	345	695	0.014	78.00
11/25/81	2300	122	31	376	690	0.021	99.40
12/03/81	2010	112	33	415	748	0.013	86.70
12/09/81	2220	117	31	376	750	0.017	84.80
12/24/81	1890	89	33	350	805	0.019	91.80
01/08/82	1850	127	30	394	805	001	130.70
01/21/82	1800	111	32	416	765	005	135.30
02/04/82	1800	109	30	385	740	005	104.60
02/18/82	1700	107	31	381	765	005	117.60

Monitor Well N	o. M-10				Mini	ng Unit No.	1	7
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	10
Baseline	2000	142	40	418	805	0.008	N/A	
UCL	2400	170	48	502	966	1.008	N/A	
UCL Plus 20%	2880	204	58	602	1159	1.210	N/A	
03/30/82	1820	114	32	345	735	0.005	122.40	
04/27/82	2000	117	30	382	743	0.005	148.20	
06/02/82	1800	122	31	331	775	005	140.10	
06/17/82	1800	124	32	329	750	005	125.90	
07/01/82	1730	117	33	372	644	005	121.40	
07/16/82	1700	119	32	364	755	005	114.40	
07/28/82	1725	121	33	387	738	005	119.20	

Monitor Well N	No. M-11				Mini	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1).	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2160	132	40	423	760	0.010	N/A
UCL	2597	158	48	508	912	1.010	N/A
UCL Plus 20%	3116	190	58	610	1088	1.212	N/A
08/13/81	1980	122	38	363	695	0.012	78.70
09/03/81	0	0	0	0	0	0.000	81.00
09/16/81	0	0	0	0	0	0.000	84.00
10/01/81	1850	124	38	347	595	005	87.00
10/14/81	1850	127	35	376	785	0.015	82.10
10/29/81	2200	122	35	378	674	0.012	83.20
11/11/81	2140	127	35	218	645	0.014	85.70
11/25/81	2210	107	33	374	680	0.019	167.00
12/03/81	2000	113	34	404	700	0.013	131.60
12/09/81	2140	125	31	369	685	0.022	129.40
12/14/81	2160	126	34	363	750	0.021	138.00
12/23/81	1850	102	35	376	710	0.021	143.20
01/08/82	1575	134	32	375	710	001	148.70
01/21/82	1750	119	32	399	725	005	148.10
02/04/82	1550	122	33	380	705	005	134.20

Table No. ___11

Monitor Well M	No. M-11				Mining Unit No1			
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	
Baseline	2160	132	40	423	760	0.010	N/A	
UCL	2597	158	48	508	912	1.010	N/A	
UCL Plus 20%	3116	190	58	610	1088	1.212	N/A	
02/18/82	1700	112	32	370	745	005	148.90	
03/30/82	1800	114	33	365	680	005	148.30	
04/27/82	1950	122	30	382	743	005	164.60	
06/02/82	1750	124	33	376	740	005	149.80	
05/17/82	1700	124	31	340	680	005	146.30	
07/01/82	1710	119	34	370	630	005	152.10	
07/16/82	1710	119	32	345	745	005	138.10	
07/28/82	1680	120	33	378	756	0.036	135.40	

	and the last
	>
. 3	
- 4	
	-
- 0	-
	Percuit
- 1	_2
1	MINISTER .
i	
l.	23
- 64	Laid!
-	5
400	-
-	
-	Name -
	2
- 400	riger.
	3
Bony	nealt
44.00	
96.00	PRIOT
Revise.	ger -
1000	Section 1
-00	Section .
	3
-	
	-
Buch	cook is
1 .	71
Streets	region .
parrie	Marie II
-	A.1.

Monitor Well N	o. M-12				Mini	ng Unit No.	11	00
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/l)	SULFATE (mg/1)	URANIUM (mg/1)	HATER LEVEL (FEET)	d
Baseline	2070	132	31	420	820	0.013	N/A	
UCL	2484	158	37	504	984	1.013	N/A	
UCL Plus 20%	2980	198	44	605	1181	1.216	N/A	
08/12/81	2170	117	32	381	830	0.016	98.00	
09/03/81	2150	122	32	391	880	0.016	106.00	
09/16/81	1980	122	30	387	680	005	112.50	
10/01/81	1950	117	29	313	750	005	117.50	>
10/14/81	2100	127	28	370	835	0.016	79.40	OPY
10/29/81	2270	117	29	401	728	0.012	102.00	O
11/11/81	2280	127	28	373	745	0.012	107.10	1
11/25/81	2310	112	30	396	720	0.021	167.80	DOCKE
12/03/81	2050	119	31	417	760	0.015	172.10	0
12/09/81	2150	122	28	386	790	0.020	160.20	8
12/14/81	2100	122	30	398	835	0.021	172.70	
12/23/81	1700	68	32	358	805	0.022	175.00	FFICIAL
01/08/82	1675	129	28	404	773	001	184.60	9
01/21/82	1900	117	29	425	795	005	192.80	hd.,
01/28/82	1910	121	32	451	805	0.008	0.00	0

Monitor Well N	lo. M-12				Mini	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2070	132	31	420	820	0.013	N/A
UCL	2484	158	37	504	984	1.013	N/A
UCL Plus 20%	2980	198	44	605	1181	1.216	N/A
02/04/82	1800	122	30	396	695	005	164.9
02/11/82	1990	122	29	334	740	005	158.2
02/18/82	1800	112	29	400	835	005	215.6
03/30/82	1820	117	30	357	725	005	182.0
04/27/82	2000	112	28	404	747	005	226.9
06/02/82	1800	114	30	389	805	005	175.3
06/17/82	1850	127	27	334	810	005	190.0
07/01/82	1750	114	30	370	680	005	197.8
07/16/82	1750	117	30	382	765	005	167.7
07/28/82	1775	125	28	402	780	0.031	159.90

Monitor Well N	No. M-13				Mini	ng Unit No.	1	77
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	80
Baseline	2110	122	33	430	862	0.014	N/A	
UCL	2532	146	40	516	1034	1.014	N/A	
UCL . Plus 20%	3038	175	48	619	1241	1.217	N/A	
08/12/81	2100	122	34	399	800	0.012	113.00	
09/03/81	2150	122	32	404	895	0.017	146.60	
09/16/81	2170	117	32	393	737	005	170.50	à
10/01/81	2040	117	34	358	630	005	182.20	d
10/14/81	2250	122	31	400	840	0.013	164.60	(
10/29/81	2330	117	31	412	640	0.012	183.40	占
11/11/81	2400	122	29	355	840	0.012	174.30	- 32
11/25/81	2400	120	29	401	743	0.017	170.50	
12/09/81	2270	119	30	395	825	0.019	178.40	5
12/14/81	2300	124	30	386	860	0.022	185.20	-
12/23/81	1790	107	31	362	835	0.023	150.70	
01/08/82	1750	134	28	425	850	001	164.10	-
01/21/82	1210	115	31	437	765	005	159.70	Lubra
02/04/32	1860	117	30	412	845	005	198.30	
02/18/82	1800	117	30	406	805	005	207.10	

Table No. 13

Page 1 of 2

Monitor Well N	o. M-13				Minin	g Unit No.	1 - 1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/l)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2110	122	33	430	862	0.014	N/A
UCL	2532	146	40	516	1034	1.014	N/A
UCL Plus 20%	3038	175	48	619	1241	1.217	N/A
08/22/84	8224	8224	8224	*11597	%14641	0.0	0.00
03/30/82	1880	114	33	399	760	005	240.40
04/27/82	2050	109	30	410	805	005	222.30
06/02/82	1910	114	31	337	820	005	170.70
06/17/82	1800	114	31	312	920	005	176.90
07/01/82	1800	114	33	367	610	005	184.00
07/16/82	1810	114	31	369	770	005	151.90
07/28/82	1820	115	31	409	804	0.021	174.50

Table No. ____13

Page $\frac{2}{}$ of $\frac{2}{}$

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Monitor Well No. M-14		r Well No. M-14			Minii	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2200	127	29	437	850	0.015	N/A
UCL	2640	152	35	524	1020	1.015	N/A
UCL Plus 20%	3168	182	42	629	1224	1.218	N/A
08/12/81	2120	122	28	402	848	0.016	119.30
09/03/81	2300	127	28	404	860	0.017	166.40
09/16/81	2010	122	27	418	770	005	203.10
10/01/81	2080	124	26	398	670	0.013	200.80
10/14/81	2150	127	26	417	785	0.014	183.50
10/29/81	2390	122	31	418	645	0.015	201.00
11/11/81	2450	129	30	363	815	0.011	189.30
13/25/81	2350	122	27	393	800	0.019	168.60
12/03/81	2150	124	29	432	795	0.015	228.20
12/09/81	2290	124	26	405	805	0.022	186.60
12/14/81	2300	127	27	446	885	0.024	113.00
12/23/81	1950	122	29	376	800	0.020	210.90
01/08/82	1725	137	26	411	850	001	179.80
01/13/82	1775	134	28	414	885	0.004	172.80
01/21/82	1890	122	28	435	830	005	166.50

Table No. 14

Page 1 of 2

Monitor Well N	lo. M-14				Minin	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2200	127	29	437	850	0.015	N/A
UCL	2640	152	35	524	1020	1.015	N/A
UCL Plus 20%	3168	182	42	629	1224	1.218	N/A
01/28/82	1900	126	28	467	735	005	190.10
02/04/82	2100	139	90	451	760	005	216.80
02/11/82	3400	163	275	592	1110	0.156	205.00
02/18/82	2950	169	214	577	1116	0.059	226.40
03/30/82	1900	119	30	382	755	0.010	261.00
04/27/82	2080	119	27	419	765	005	239.00
06/02/82	1900	119	27	382	835	005	191.00
06/17/82	1900	124	27	360	830	005	216.30
07/01/82	1810	122	30	410	724	005	220.20
07/16/82	1830	124	28	296	855	005	164.20
07/28/82	1890	122	27	408	840	0.021	197.10

Monitor Well N	lo. M-15				Mini	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/l)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2150	122	42	430	898	0.012	N/A
UCL	2580	146	50	516	1078	1.012	N/A
UCL Plus 20%	3096	175	60	619	1294	1.214	N/A
08/12/81	2110	117	32	396	880	0.014	117.00
09/03/81	2200	122	30	397	870	0.021	184.10
09/11/81	2070	122	30	391	810	0.011	121.90
09/16/81	2150	122	28	403	777	005	204.50
09/23/81	2110	122	29	354	740	0.010	195.70
10/01/81	2030	120	29	352	690	005	215.50
10/14/81	2100	122	27	491	835	0.014	202.80
10/29/81	2400	122	27	410	665	0.014	256.40
11/11/81	2500	127	26	412	695	0.013	192.00
11/25/81	2410	122	27	419	737	0.020	205.00
12/03/81	2290	127	30	441	820	0.017	226.50
12/09/81	2340	129	27	412	750	0.019	209.20
12/14/81	2320	129	27	423	855	0.022	220.70
12/23/81	1950	122	29	380	860	0.025	141.40
01/08/82	0	0	0	0	0	0.000	176.40

Hollicol Well No. 19-13				CHIEATE HEANTIM WATER			
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2150	122	42	430	898	0.012	N/A
UCL	2580	146	50	516	1078	1.012	N/A
UCL Plus 20%	3096	175	60	619	1294	1.214	N/A
01/13/82	1775	132	26	421	930	0.002	0.00
01/21/82	1950	122	27	440	820	005	201.20
01/28/82	0	0	0	0	0	0.000	223.50
02/04/82	1890	127	25	418	790	005	249.20
02/11/82	0	0	0	0	0	0.000	260.20
02/18/82	1860	114	27	420	830	005	225.50
03/30/82	0	0	0	0	0	0.000	263.40
04/27/82	2130	122	25	437	865	005	216.30
06/02/82	1920	119	29	411	835	005	154.00
06/17/82	1950	129	27	405	860	005	220.90
07/01/82	1880	117	28	399	730	005	225.00
07/16/82	1850	119	27	413	810	005	130.10
07/28/82	1910	125	27	398	810	0.006	171.30

Monitor Well No. M-15

Mining Unit No.

OGLE PETROLEUM INC. BISON BASIN PROJECT MONITOR WELL DATA

Monitor Well No. M-16				Mini	Mining Unit No.		
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/l)	CHLORIDE (mg/1)	SODIUM (mg/1)	CULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2183	122	40	450	848	0.013	N/A
UCL	2620	146	48	540	1018	1.013	N/A
UCL Plus 20%	3144	175	58	648	1222	1.216	N/A
08/12/81	2240	122	30	402	790	0.018	121.20
09/03/81	2130	127	30	407	885	0.018	167.00
09/16/81	2000	117	27	418	767	0.007	190.60
10/01/81	2030	124	29	373	735	0.008	201.40
10/14/81	2100	127	26	412	880	0.014	191.20
10/29/81	2360	122	27	416	806	0.015	214.00
11/11/81	2450	127	26	424	670	0.011	192.80
11/25/81	2350	117	28	419	810	0.024	203.10
12/03/81	2150	112	29	443	745	0.016	117.30
12/09/81	2250	126	27	410	835	0.022	205.60
12/14/81	2250	126	27	453	870	0.024	209.50
12/23/81	1960	117	29	433	800	0.022	190.60
01/08/82	1775	134	26	417	900	001	185.30
01/13/82	1775	132	26	421	930	0.002	190.70
01/21/82	1900	117	27	450	850	005	186.60

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 16

Page 1 of 2

OGLE PETROLEUM INC. BISON BASIN PROJECT MONITOR WELL DATA

Monitor Well N	No. M-16				Mini	ng Unit No.	1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2183	122	40	450	848	0.013	N/A
UCL	2620	146	48	540	1018	1.013	N/A
UCL Plus 20%	3144	175	58	648	1222	1.216	N/A
01/28/82	1900	127	27	464	875	0.014	209.10
02/04/82	0	0	0	0	0	0.000	223.40
02/18/82	0	0	0	0	0	0.000	220.00
03/30/82	2100	124	26	433	825	005	240.10
04/27/82	2100	124	26	433	825	005	206.90
06/02/82	1950	122	26	341	840	005	164.30
05/17/82	1900	124	27	390	860	005	182.00
07/01/82	1850	124	28	410	960	005	191.30
07/16/82	1900	124	26	437	810	005	145.80
07/28/82	1905	128	25	392	888	005	170.60

Mining Unit No.

Monitor Well No. M-3(UI	PPER)
-------------------------	-------

						mining oni	- 110.	
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	
Baseline	2275	110	18	583	1310	001	N/A	
UCL	2730	132	22	700	1572	1.001	N/A	
UCL 'Plus 20%	3276	158	26	840	1886	1.201	N/A	
08/12/81	2690	93	19	477	1270	0.021	77.00	
09/03/81	2700	98	19	485	1205	0.015	73.50	
09/16/81	2590	98	16	457	1050	005	96.50	
10/01/81	2600	98	19	459	920	005	99.20	
10/14/81	2600	98	16	486	1155	0.021	83.40	
10/29/81	2650	88	17	473	1070	0.016	125.50	
11/11/81	2805	95	17	486	950	0.016	119.30	
11/18/81	2400	112	* 20	499	1220	0.002	0.00	
11/25/81	3000	98	15	525	1140	0.031	93.40	
12/03/81	2400	110	16	486	1155	001	117.30	
12/09/81	2175	110	16	486	1155	001	110.30	
12/23/81	2390	93	18	440	1160	0.031	144.20	4
01/08/82	2125	100	16	491	1160	001	134.60	-
01/21/82	2430	81	18	514	1105	005	118.40	1000
02/04/82	2300	90	16	517	1155	005	124.80	

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 17

Page 1 of 2

Monitor Well No. M-3 (UPPER)

woultor well i	nitor well No. M-3(UPPER)			Mining Unit No				
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	
Baseline	2275	110	18	583	1310	001	N/A	
UCL	2730	132	22	700	1572	1.001	N/A	
UCL Plus 20%	3276	158	26	840	1836	1.201	N/A	
02/18/82	2250	85	17	478	1190	005	141.40	
04/05/82	2400	83	16	455	1135	0.007	113.00	
04/27/82	2600	88	17	519	1100	005	100.20	
06/02/82	2430	65	20	410	1135	005	164.60	
06/17/82	2200	85	17	457	1130	005	84.30	
07/01/82	2250	80	17	488	920	005	80.50	
07/16/82	2250	85	16	482	1245	005	82.90	
07/28/82	2250	85	16	482	1209	005	79.40	

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Page 2 of 2

Mining Unit No.

Monitor Well No.	M-17 (UPPER)
------------------	--------------

Houseof well i	o. H I/(OFFER)					mining on	1 NO
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2960	103	19	549	1255	0.017	N/A
UCL	3552	124	23	659	1506	1.017	N/A
UCL Plus 20%	4262	149	28	791	1807	1.220	N/A
08/12/81	2700	73	17	487	1140	0.025	74.50
09/03/81	2700	91	19	481	1145	0.023	70.90
09/16/81	2400	64	17	459	1050	005	93.50
10/01/81	2550	90	18	462	900	0.008	94.60
10/14/81	2700	93	16	497	1200	0.016	80.40
10/29/81	3000	90	16	489	950	0.015	115.00
11/11/81	2950	95	16	457	1095	0.012	116.30
11/25/81	2740	107	16	466	1047	0.029	93.50
12/03/81	2650	117	18	506	980	0.024	106.50
12/09/81	2750	112	15	480	970	0.027	106.50
12/14/81	2700	110	16	496	1020	0.030	121.00
12/23/81	2310	102	17	473	1080	0.028	138.10
01/08/82	2100	101	19	487	1115	001	128.20
01/21/82	2250	93	16	512	1080	005	114.80
02/04/82	2300	118	16	498	1050	005	122.50

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 18

Page 1 of 2

Monitor Well N	No. M-17(UPPER)					Mining Un	it No	18
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	
Baseline	2960	103	19	549	1255	0.017	N/A	
UCL	3552	124	23	659	1506	1.017	N/A	
UCL Plus 20%	4262	149	28	791	1807	1.220	N/A	
02/18/82	2230	112	20	509	1150	005	137.50	
03/30/82	2450	176	51	536	1000	005	122.40	
04/05/82	2610	191	50	514	1145	0.011	108.80	_
04/12/82	2500	141	27	495	1100	0.017	0.00	COPY
04/19/82	2250	147	27	505	1140	0.010	0.00	2
04/27/82	2175	144	22	465	1060	0.023	0.00	
05/04/82	2225	144	22	479	1115	001	0.00	DOCKET
05/11/82	2175	141	22	486	1050	001	0.00	×
06/02/82	2300	112	20	495	17.85	005	0.00	0
06/17/82	2290	129	21	478	1135	005	74.00	0
06/24/82	2300	129	22	482	930	005	72.60	=
07/01/82	2210	127	23	399	1180	005	71.20	3
07/09/82	2250	129	23	509	870	005	88.50	豆
07/16/82	2200	127	22	474	1100	005	79.30	OFFICIAL
07/28/82	2280	126	20	460	1152	0.020	76.70	<u>U</u> ,

Table No. ____18

Page $\frac{2}{}$ of $\frac{2}{}$

Monitor Well No. M-18(UPPER)

Mining Unit No.

SAMPLE DATE	CONDUCTIVITY	CARBONATE	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
	(mmhos/cm)	PLUS BICARBONATE (mg/1)					
Baseline	2760	93	20	545	1230	005	N/A
UCL	3312	112	24	654	1476	1.005	N/A
UCL Plus 20%	3974	134	29	785	1771	1.206	· N/A
08/12/81	2760	78	17	481	1230	0.022	59.60
09/03/81	2800	78	19	499	1330	0.026	60.50
09/16/81	2640	83	16	500	1100	005	67.70
10/01/81	2700	78	17	485	1110	0.010	78.0
10/14/81	2800	83	17	513	1195	0.017	72.00
10/29/81	3090	78	17	518	1040	0.018	82.00
11/11/81	3090	83	16	501	1070	0.011	91.0
11/25/81	3000	80	17	528	1340	0.033	82.50
12/03/81	2910	75	19	556	1185	0.031	93.40
12/09/81	3000	85	16	541	750	0.034	83.50
12/14/81	3090	88	18	537	1130	0.034	92.30
12/23/81	2650	73	21	528	745	0.029	94.10
01/08/82	2325	93	20	518	1210	001	99.00
01/13/82	2275	88	20	511	1245	001	91.20
01/21/82	2500	80	19	544	1190	005	89.50

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. ___19

Page _1 of _2

Monitor Well N	No. M-18(UPPER)					Mining Un	it No
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2760	93	20	545	1230	005	N/A
UCL	3312	112	24	654	1476	1.005	N/A
UCL Plus 20%	3974	134	29	785	1771	1.206	N/A
01/28/82	2500	83	21	581	1270	005	82.50
02/04/82	2450	75	18	541	1275	0.010	82.60
02/18/82	2410	75	19	544	1250	005	107.70
03/30/82	2500	78	20	490	1250	005	85.70
04/27/82	2480	83	17	502	960	005	81.70
06/02/82	2550	78	20	440	1260	0.009	71.60
06/17/82	2490	78	19	467	1290	005	68.50
07/01/82	2450	75	19	549	1345	005	67.70
07/16/82	2410	75	18	555	1270	005	65.90
07/28/82	2510	79	15	537	1330	0.019	68.20

Table No. 19

Page 2 of 2

Mining	Unit	No.	

SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/l)	WATER LEVEL (FEET)
Baseline	2632	83	22	480	1190	0.016	N/A
UCL	3158	100	26	576	1428	1.016	N/A
UCL Plus 20%	3790	120	31	691	1714	1.219	N/A
08/12/81	2400	78	17	444	1070	0.016	57.00
09/03/81	2650	83	19	464	1220	0.025	57.80
09/16/81	2430	83	17	472	990	005	63.40
10/01/81	2300	81	17	397	900	005	70.00
10/14/81	2600	83	18	476	1185	0.018	67.50
10/29/81	2850	78	17	477	920	0.015	78.50
11/11/81	2790	83	17	477	915	0.009	89.20
11/25/81	2700	85	16	511	1100	0.029	0.00
12/03/81	2600	83	18	506	980	0.027	92.30
12/09/81	2650	83	17	489	1010	0.024	84.90
12/23/81	2280	78	20	411	1140	0.029	86.60
01/08/82	2100	90	20	472	1100	001	89.80
01/21/82	2230	76	17	440	1110	005	84.80
02/04/82	2200	78	18	498	1140	005	84.50
02/18/82	2200	75	18	500	1095	005	102.80

Since	
	500,004
- 407	-
200	
- 60	
Stone	Series .
- 1700	-
200	
. 1657	
150	
200	
100	
Book	
-	
E.	
X0000	
40	
New	
100	
0	256
5	51
Ç.,	5)
5	
5	3
C	3
5	3
4	3
500	5
5	555
5	
5	55
200	200
700	7000
000	7 200
200	1 000
CCC	1 200
CCC IV	1000
CCC IV	11/100
COU IN	11 DOG
COU IN	11 JOS
JUL IN	WALL DOD
CAL INC	DOM THE
SAL INC	2007 7000
COL INICI	ממת שוויים
COL INCI	2007 7576
CICIAL DANS	DON'T DON
COL INCID	1000 Julion
CLOIN IN PAR	יוטור ביוטור
FIGHT DAY	200 11101
FEIGHT DAY	TOTAL DOOR
FEIGHT DAY	

Monitor Well N	Io. M-61 (UPPER)					Mining Un	it No
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2632	83	22	480	1190	0.016	N/A
UCL	3158	100	26	576	1428	1.016	N/A
UCL Plus 20%	3790	120	31	691	1714	1.219	N/A
03/30/82	2780	78	18	450	1015	005	99.50
04/27/82	2480	83	17	502	960	005	81.70
06/02/82	2200	81	18	406	1090	005	80.50
06/17/82	2160	80	18	467	1105	005	64.70
07/01/82	2150	85	19	372	925	005	62.50
07/16/82	2140	80	18	446	1085	005	64.00
07/28/82	2205	81	16	462	1116	0.020	64.80

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Monitor Well	No.	M-62 (UPPER)
--------------	-----	--------------

SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE	CHLORIDE (mg/1)	SODIUM	SULFATE	URANIUM	
		(mg/1)		(mg/1)	(mg/1)	(mg/1)	WATER LEVEL (FEET)
Baseline	2740	98	20	506	1240	0.022	N/A
ncr	3288	118	24	607	1488	1.002	N/A
UCL Plus 20%	3946	142	29	728	1786	1.226	N/A
08/12/81	2610	83	17	457	1240	0.022	71.50
09/03/81	2700	88	19	481	1230	0.027	69.50
09/16/81	2490	83	16	466	925	005	79.60
10/01/81	2530	85	16	488	985	005	84.50
10/14/81	2600	88	16	483	1190	0.017	72.40
10/29/81	2900	83	16	496	940	0.016	101.80
11/11/81	2900	88	15	515	965	0.010	101.50
11/25/81	2850	87	15	511	980	0.026	82.70
12/03/81	2650	88	18	533	1100	0.022	101.70
12/09/81	2850	88	17	506	1175	0.029	97.00
12/14/81	2880	88	17	514	1070	0.028	108.40
12/23/81	2350	88	21	358	1035	0.032	122.00
01/08/82	2175	98	18	488	1160	001	
01/21/82	2300	80	19	460	1115	0.008	114.70
02/04/82	2260	80	18	523	1100	005	104.50

Table No. 21

Page $\frac{1}{}$ of $\frac{2}{}$

Monitor Well N	lo. M-62 (UPPER)					Mining Un	it No1
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	2740	98	20	506	1240	0.022	N/A
UCL	3288	118	24	607	1498	1.002	N/A
UCL Plus 20%	3946	142	29	728	1786	1.226	N/A
02/18/82	2240	83	18	509	1130	005	124.50
03/30/82	2300	88	18	473	1050	005	115.20
06/02/82	2300	83	18	426	1110	005	71.30
06/17/82	2300	80	17	447	1085	005	70.00
07/01/82	2200	80	18	491	990	005	69.70
07/16/82	2250	85	17	475	1110	0.030	67.30

Table No. 21

Page $\frac{2}{}$ of $\frac{2}{}$

Mining Unit No.

SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	1880	127	53	390	616	0.010	N/A
UCL	2256	152	64	468	739	1.010	N/A
UCL Plus 20%	2707	182	77	562	887	1.212	N/A
08/12/81	1810	107	47	337	615	0.011	113.50
09/03/81	1760	119	43	342	580	0.017	115.00
09/11/81	1820	122	40	353	545	0.007	115.10
09/16/81	1660	122	40	359	533	005	113.50
09/23/81	1770	124	40	345	450	005	118.50
10/01/81	1750	129	38	332	490	005	119.80
10/14/81	1750	129	40	334	660	0.009	120.50
10/29/81	2000	122	36	353	604	0.011	116.50
11/11/81	1990	129	40	327	530	005	121.50
11/25/81	1900	124	40	354	586	0.016	120.00
12/03/81	1700	122	40	381	535	0.015	121.80
12/09/81	1770	127	39	357	590	0.017	124.00
12/14/81	1920	129	41	386	660	0.014	124.50
12/23/81	1750	122	41	334	602	0.016	122.30
01/08/82	1475	124	20	342	660	001	125.70

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 22

Page 1 of 2

Monitor Well N	No. M-19 (LOWER)					Mining Un	it No
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	1880	127	53	390	616	0.010	N/A
UCL	2256	152	64	468	739	1.010	N/A
UCL Plus 20%	2707	182	77	562	887	1.212	N/A
01/13/82	1525	134	40	356	700	001	123.00
01/21/82	1550	120	41	360	520	005	125.60
01/28/82	1550	121	39	383	605	005	126.30
02/04/82	1550	122	41	364	565	005	126.30
02/18/82	1550	122	41	370	595	005	127.70
03/30/82	1580	117	40	343	545	005	134.20
04/27/82	1750	119	40	365	600	005	134.00
06/02/82	1560	124	40	331	600	005	122.40
06/17/82	1550	132	41	306	580	005	128.30
07/01/82	1500	122	41	344	540	005	127.50
07/16/82	1500	122	41	345	660	005	127.50
07/28/82	1500	125	40	322	600	0.036	127.10

OFFICIAL DOCKET COPY

Monitor Well No. M-7

Evaporation Ponds

SAMPLE DATE Baseline	CONDUCTIVITY (mmhos/cm) 1060 1272	(mmhos/cm) PLUS BICARBONATE (mg/1) 1060 220	CHLORIDE (mg/1) 16 19	SODIUM (mg/1) 67 80	SULFATE (mg/1) 520 624	URANIUM (mg/1) 0.006 1.006	WATER LEVEL (FEET) N/A N/A
UCL Plus 20%							
02/18/82	950	166	8	48	385	005	52.88
05/20/82	1050	185	8	50	450	0.015	51.90

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Monitor Well No. M-71

Evaporation Ponds

SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	1200	244	117	124	218	0.022	N/A
UCL	1440	293	140	149	262	1.022	N/A
UCL Plus 20%	1728	352	168	179	314	1.226	N/A
11/25/81	1360	207	88	86	263	0.014	55.30
02/18/82	1000	210	72	88	300	0.011	57.60
05/20/82	1090	210	50	71	372	0.011	57.60

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 24

Page 1 of 1

DFFICIAL DOCKET COPY

Monitor	Mell	No.	M-72	

					Evap	oration Pond	S
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CREORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	6600	394	98	79	283	0.007	N/A
UCL	7920	473	118	95	340	1.007	N/A
UCL Plus 20%	9504	568	142	114	408	1.208	N/A
08/12/82	9150	72	328	290	5	005	72.30
11/25/81	10500	72	114	100	-1	005	52.20
02/18/82	8000	144	125	95	-1	005	52.50
03/30/82	8800	58	160	100	-1	005	52.70
04/12/82	3620	34	173	180	6	005	76.50
04/19/82	6200	108	224	219	12	005	75.40
04/26/82	8200	139	239	239	2	005	74.00
05/04/82	7850	67	224	201	3	005	74.00
05/11/82	8395	62	244	212	7	005	72.35
05/20/82	8600	84	215	251	10	005	71.60
06/03/82	9100	62	283	233	4	005	70.30
06/10/82	9000	62	273	226	5	005	71.10
06/17/82	8800	108	283	266	5	005	71.30
07/01/82	9050	120	312	267	4	005	72.20
07/09/82	10500	72	296	276	4	005	72.20

Page _ 1 ot _ 2

	Monit	or We	11 N	o. M	-72
--	-------	-------	------	------	-----

Evaporati	on P	onds
-----------	------	------

SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)
Baseline	6600	394	98	79	283	0.007	N/A
UCL	7920	473	118	95	340	1.007	N/A
UCL Plus 20%	9504	568	142	114	408	1.208	N/A
07/16/82	10300	84	305	243	4	005	72.10
07/23/82	9350	72	338	297	5	005	72.10
07/30/82	9250	72	328	300	5	005	72.40
08/06/82	9200	84	328	300	4	005	72.20

Monitor Well N	o. M-73				Evap	oration Pond	s !
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FRET)
Baseline	1590	122	55	111	590	0.519	N/A
UCL	1908	163	66	133	708	1.519	N/A
UCL Plus 20%	2290	196	79	160	850	1.823	N/A
11/25/81	1320	147	14	69	462	0.013	56.20
02/18/82	1000	142	14	66	458	0.009	56.55
05/20/82	1100	146	17	68	468	0.017	56.60

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 26

Page _1 of 1

0.011

440

51.70

OGLE PETROLEUM INC. BISON BASIN PROJECT MONITOR WELL DATA

Monitor Well N	No. M-74				Evapo	oration Pond	s	0
SAMPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	B
Baseline	1380	234	28	80	528	0.022	N/A	
UCL	1656	281	34	96	634	1.022	N/A	
UCL Plus 20%	1987	337	41	115	761	1.226	N/A	
11/25/81	1350	244	13	71	460	0.024	50.70	
02/18/82	1000	224	12	64	428	0.012	51.04	

11

229

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Table No. 27

1050

05/20/82

Page $\frac{1}{}$ of $\frac{1}{}$

Monitor Well N	o. M-75
----------------	---------

						Буар	oracion rond		0
SAM	IPLE DATE	CONDUCTIVITY (mmhos/cm)	CARBONATE PLUS BICARBONATE (mg/1)	CHLORIDE (mg/1)	SODIUM (mg/1)	SULFATE (mg/1)	URANIUM (mg/1)	WATER LEVEL (FEET)	4
	Baseline	2360	53	68	189	427	0.061	N/A	
	UCL	2832	64	82	227	512	1.061	N/A	
	UCL Plus 20%	3398	77	98	272	614	1.273	N/A	
	11/25/81	1950	24	32	77	342	0.013	45.50	,
	02/18/82	940	48	25	62	358	005	45.35	;
	05/20/82	840	10	23	61	354	005	45.60)

Evaporation Pond

NOTE: "-" Before number means not detected at level indicated. Water level is the distance from top of well casing to the water surface. N/A means not applicable. Baseline means high baseline. UCL means upper control limit. "O" means unable to collect sample due to pump or other problems.

Turbidity (JTU's) Dissolved Oxygen pH (pH units) Total Dissolved Solids Conductivity (mhos/cm) Ammonia (as N) Nitrate (as N) ditrite (as N) Carbonate Bicarbonate Calcium Chloride Boron Fluoride Magnesium Potassium Sodium Sodium Gooper Lead Marganese Manganese Mangan	3416 	8.32 11,564 17,100 0.12 78 -0.01 19 1215 99 4119 -0.1 0.47 38 32 3,858 2,800	8.64 13,327 19,800 -0.05 14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38		DFFICIAL DOCKET COPY
pH (pH units) Total Disso.ved Solids Conductivity (mhos/cm) Ammonia (as N) Nitrate (as N) Vitrite (as N) Carbonate Bicarbonate Calcium Chloride Boron Fluoride Magnesium Potassium Sodium Sodium Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury	0 14,980 	8.32 11,564 17,100 0.12 78 -0.01 19 1215 99 4119 -0.1 0.47 38 32	8.64 13,327 19,800 -0.05 14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38		COPY
Total Disso ved Solids Conductivity (mhos/cm) Anmonia (as N) Nitrate (as N) ditrite (as N) Carbonate Bicarbonate Calcium Chloride Boron Fluoride Hagnesium Potassium Sodium Sodium Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury 20,40 Alwins/calcium 6028 4100	0 14,980 0 1932 3416 3240	8.32 11,564 17,100 0.12 78 -0.01 19 1215 99 4119 -0.1 0.47 38 32	8.64 13,327 19,800 -0.05 14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38		COPY
Conductivity (mhos/cm) Ammonia (as N) Hitrate (as N	0 14,980 0 1932 3416 3240	11,564 17,100 0.12 78 -0.01 19 1215 99 4119 -0.1 0.47 38 32	13,327 19,800 -0.05 14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38		COPY
Ammonia (as N) vitrate (as N) ditrite (as N) ditrit	3416 	17,100 0.12 78 -0.01 19 1215 99 4119 -0.1 0.47 38 32 3,858	19,800 -0.05 14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38 4,476		COPY
Ammonia (as N) itrate (as N) i	3416 	0.12 78 -0.01 19 1215 99 4119 -0.1 0.47 38 32 3,858	-0.05 14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38		COPY
titrate (as N) itrite (as N) carbonate iticarbonate iticarbonate alcium chloride soron luoride lagnesium cotassium cotass	3416 3240	78 -0.01 19 1215 99 4119 -0.1 0.47 38 32 3,858	14.32 -0.01 72 1086 48 4880 0.5 0.46 48 38		COPY
ditrite (as N)	3416 3240	-0.01 19 1215 99 4119 -0.1 0.47 38 32	-0.01 72 1086 48 4880 0.5 0.46 48 38		COPY
arbonate 0 licarbonate 1829 lalcium 5450 loron 5450 loron 6028 lor	0 1932 3416 	19 1215 99 4119 -0.1 0.47 38 32 3,858	72 1086 48 4880 0.5 0.46 48 38		COPY
Bicarbonate 1829 alcium 5450 bloride 5450 bloron 61 luoride 75 dagnesium 75 blodium 6028 bluminum 6028 bluminum 75 barium 75 cadmium 75 chromium 75 ch	3416 	1215 99 4119 -0.1 0.47 38 32 3,858	1086 48 4880 0.5 0.46 48 38		COPY
alcium chloride 5450 boron 5450 luoride 6430 cotassium 6028 culfate 4100 kurinum 6750 cadmium 67	3416	99 4119 -0.1 0.47 38 32 3,858	48 4880 0.5 0.46 48 38 4,476		COPY
chloride 5450 boron cluoride sagnesium codassium codium 6028 culfate 4100 kluminum cluoride 4100 kluminum cluoride 4100 kroenic cluoride 4100 kanganese cluoride 4100 kanganese cluoride 4100 kead cluoride 410	3416	-0.1 0.47 38 32 3,858	4880 0.5 0.46 48 38 4,476		COPY
luoride lagnesium oodium oodiu	3240	-0.1 0.47 38 32 3,858	0.5 0.46 48 38 4,476		COPY
Ituoride Itagnesium Potassium Sodium Sorsenic Sarium Sarsenic Sarium Sopper Sop	3240	0.47 38 32 3,858	0.46 48 38 4,476		COPY
tagnesium Potassium Godium Godium Godium Godium Godium Godium Arsenic Garium Gadmium Chromium Gopper Gron Lead Hanganese Hercury	3240	38 32 3,858	48 38 4,476		60
Accepted the second sec	3240	3,858	38		3
oddium 6028 Sulfate 4100 Aluminum Arsenic Barium Cadmium Copper Iron Lead Aanganese Hercury	3240	3,858	4,476		9
Sulfate 4100 Aluminum Arsenic Barium Ladmium Copper Iron Lead Manganese Mercury				No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	
Aluminum Arsenic Barium Cadmium Chromium Iron Lead Hanganese Mercury	2780	2 800			
Arsenic Barium Cadmium Chromium Iron Lead Manganese Mercury			3,230		H H
Barium Cadmium Chromium Copper Iron Lead Manganese Mercury	**	-0.05	-0.05		*
Cadmium Chromium Copper Iron Lead Manganese Mercury	**	0.080	0.090		
Chromium Copper Iron Lead Hanganese Hercury	**	-0.02	-0.02		8
Copper		0.034	0.042		
Iron		0.03	0.62		7
Lead		0.03	0.03		
Manganese		0.30	1		2
Mercury		0.16	0.15		<u></u>
		0.10	0.21		
at at a second		-0.001	0.02		
		0.14	-0.001		
Selenium		0.300	0.17		
Zinc		0.009	0.550		
tolybdenum	1 1	-0.05	0.017		
fanadium		-0.05	-0.05		
Iranium 61.5	47.15	52.70	-0.05		
Radium 226 (pCi/1)	41.13	217 + 2	77.88		
Thorium 230 (pCi/1)	**	12.0 + 0.07	181 + 2 30.3 + 0.7		

NOTES: All values in mg/l except as otherwise noted.

⁻ Means not detected at levels indicated.

Mest Alkall Creek (Upper)
Mater Quality Data

																		有	d	0	10).	1	3.	У	01	0	0	7	14	11:)(F	川川	3)		The second second second							
SAMPLE	03/11/82				8.42	370	555	0000	50.0	4.39	-0.01	10	302	200		26	0.3	0 63	0.00	0.02	15	111	32	0 61	0.00	6.04	-0.62	-0.005	10 0-	-0.01	1.11	-0.65	0 00	-0 001	0.001	-0.6	-0.002	0 016	0.010	-0.05	-0.05	0.045	1.43 + 0.51	27.000	r
SAMPLE	03/30/81	11	7 7	0.0	0.0	750	970			0.01	-0.01	16	663	601	6	99	0 1-	0 30	6.30	10	17	231	86			0.03	0.05	-0.01	-0.05	-0.02	0.86	-0.05	50:00	70.00	-0.001	-0.04	-0.01			-0.	-0.05	0.023		90+1	
SAMPLE COLLECTED 05/07/80	2011010	12	8.5	80	7011	9011	1250	-0.1	8 -		-0.01	80,7	919	14	101	*0*	-1.0	0.93	13		308	360	176	94.0	0 072	-0.06	60.0	0.01	-0.02	-0.02	0.3	-0.05	0.01	-0.001	1000	+0.0-	-0.01	-0.01	-0.05	50.0-	50.00	0.043	.61 + 0.24	3.78 + 2.07	
SAMPLE COLLECTED 04/30/80		20	0.7	8.5	890	1250		1.0	93.0	-0.01	7.	-	430	61	84		0.1.	99.0	88	36	222	//7	144		0.04	-0.05	-0.01	-0.02		0.03		-0.05	90.0	-0.001	ī	ī	_		_	_		-	_	22 ± 6.1 3	
SAMPLE COLLECTED 05/18/79		:		3.5		006	-0.1		4.7	-0.01	168	011	2:		58	-1.0	0 31	0.7	2	18	198	60	000	0.50	0.04	-0.05	-0.01	-0.01	0.14	00 1	20.0-				-0.04	-0.01				-	0.030	-	0.00	-	The second secon
PARAMETER	Turbidity (JTU's)	Dissolved Oxygen	pH (pH units)	Total Dissolved Calla	Spilos and action	CONGUETIVITY (MNOS/CM)	Allinonia (as N)	Nitrate (as N)		(M cp) 21111	Larbonate	Bicarbonate	Calcium	Chlorida	30	poton	Fluoride	Magnesium	Document	TOTASS LUM	Sodium	Sulfate	Aluminum	Arsenic	Ray	Carlow Land	The deline than	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel		selenium	Zinc	Molybdenum	Vanadium	1	Or an i tum				

NOTES: All values in mg/! except as otherwise noted,

- Neans not detected at least last

TABLE 31
West Alkali Creek (Lower)
Water Quality Data

													1	10):)	13	И)(00]	71	11:)!	4.	11)							
SAMPLE				0.47	410	630	0.10	-0.01	10	322	20	30	-0.1	0.53	0.02	91	133	2 63	0.04	-0.02	-0.005	-0.01	-0.01	1.09	-0.05	0.02	-0.001	-0.01	-0.002	0.017	-0.05	-6.05	30 + 0.16	
SAMPLE COLLECTED 03/30/81	34	6,3	2.0	6.0	920	050	-0.01	-0.01	21	415	61	64	-1.0	0.51	10	15	198	1.0	0.03	-0.05	-0.01	-0.05	-0.02	0.89	-0.05	0.05	-0.001	-0.04	-0.61	-0.01	-0.05	-0.05	0.0	0.4 + 0.9
SAMPLE COLLECTED 05/07/81	346	4,4	0.0	1178	1660	-0.10	9 1	-0.01	99	573	7-	110	-1.0	96.0	-13	39	382	09.0	0.08	-0.05	-0.01	-0.02	-0.02	9.0	-0.05	0.04	-0.001	+0.0+	-0.01	-0.01	-0.05	-0.05	540	6.2 + 2.6
SAMPLE COLLECTED 04/30/80	88	6.9	8 6	816	1150	-0.10	90.0	-0.01	14	644	18	19	-1.0	0.62	00	23	757	0.8	0.04	-0.05	-0.01	-0.02	0.02	0.84	-0.05	0.05	-0.001	-0.04	-0.01	0.10	-0.05	-0.05	0.042	5.9 + 2.6
SAMPLE COLLECTED 05/18/79	-	:	9.3	724	1165	-0.10	3.0	-0.01	156	263	7-	96	-1.0	0.81	9	25	907	2.15									-0.001				-	_	0 06 + 0 23	-
PARAMETER	Turbidity (JTU's)	Dissolved Oxygen	DH (DH units)	Total Dissolved Solids	Conductivity (mhos/cm)	Anmonia (as N)	Nitrate (as N)	itrite (as N)	Larbonate	Bicarbonate	Calcium	Chloride	Boron	Fluoride	Magnesium	Potassium	Sulfate	Aluminum	Arsenic	Barium	Cadmium	Chromium	Copper	ron	Lead	Manganese	Mercury	Nickel	Selenium	Z10C	Holybdenum		Radium 226 (pCi/1)	_

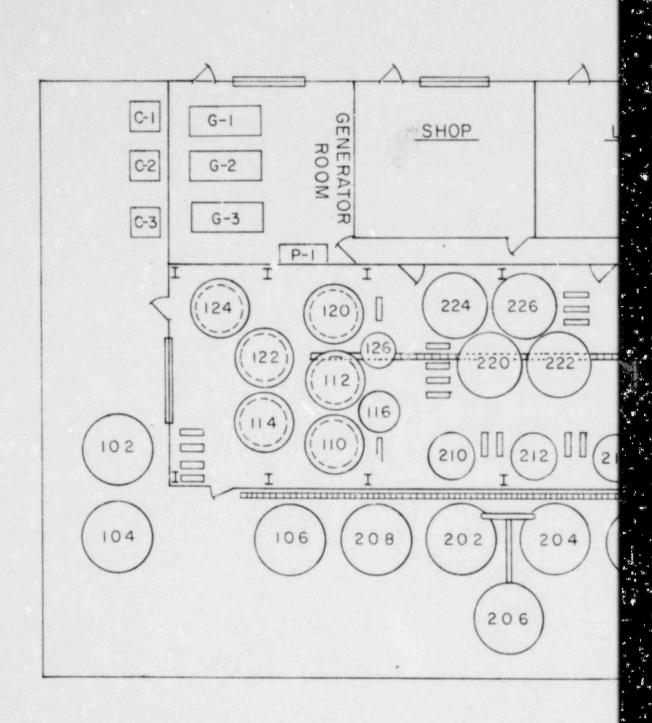
NOTES: All values in mg/l except as otherwise noted.

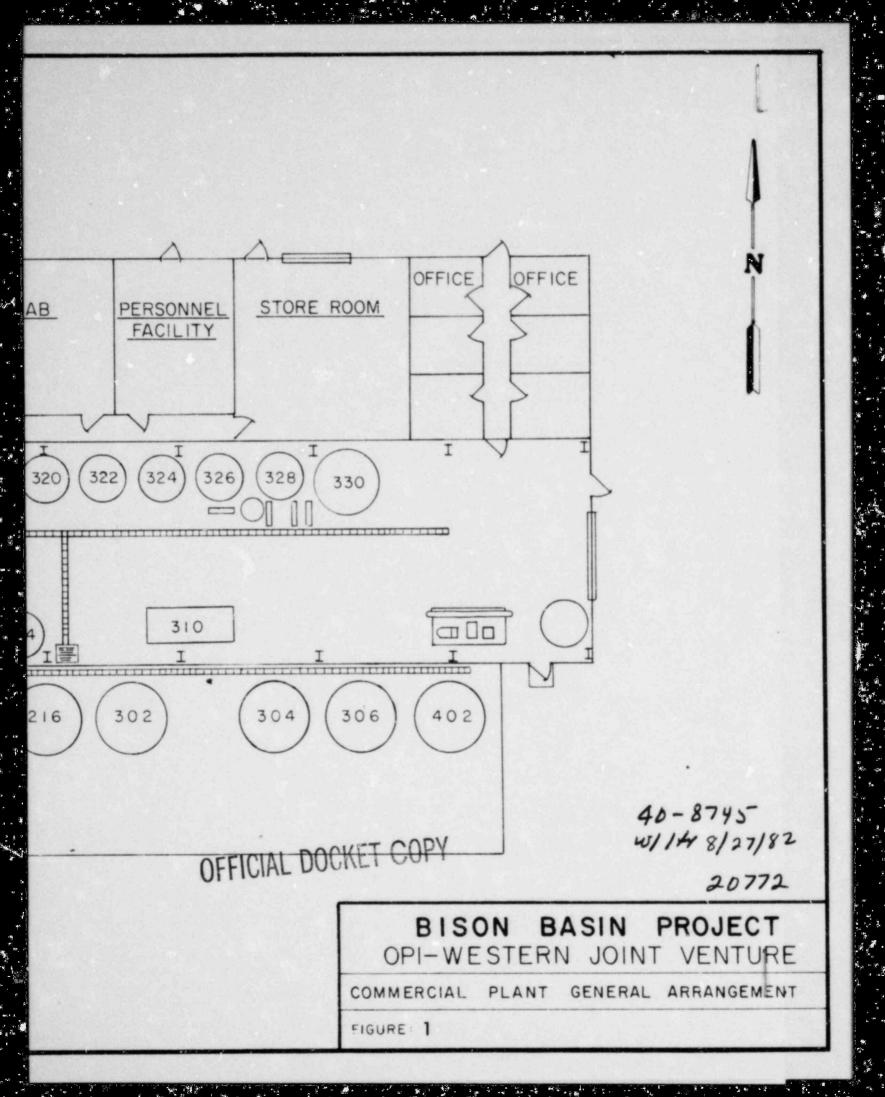
- Means not detected at levels indicated.

TABLE 32 Grassy Lake Water Quality Data

PARAMETER	SAMPLE COLLECTED 05/01/80	SAMPLE COLLECTED 05/07/80	1981	1982		
Turbidity (JTU's)	180	3.6				
Dissolved Oxygen	4.8	7.0	No Sample	No Sample	그 아이들이 내고 내 가장 아이들이 나는 내가 나가 나를 보고 있다면 하셨다.	
pH (pH units)	228	198	Collected	Collected	현기가 바다 다양하다 하는 사람이 되는 그 전하는 것은 살았다. 얼마 없다.	
Conductivity (mhos/cm)	345	300				
Ammonia (as N)	-0.10	-0.10	Lake Dry	Lake Dry		
Nitrate (as N)	-0.01	0.5	All	All		
Nitrile (as N)	-0.01	-0.01	Year	Year		
Carbonate	0	0				
Bicarbonate	81	63				
Calcium	81 36	31				
Chloride	6	4			내 것	-
Boron	-1.0	-1.0				COPY
Fluoride	0.06	0.0				7
Magnesium	10	9			나 가는 경우 하는 것이 없네요. 전환에 모르는 것은 것이 하는 것이 없는 것이 없다.	- 3
Potassium	7	8				-
Sodium	17	16				L
Sulfate	101	105				-
Aluminum	0.8	0.10				WITHCH DOCKE
Arsenic	-0.01	-0.01				3
Barium	-0.05	-0.05				
Cadmium	-0.01	-0.01		The second second		7
Chromium	-0.02	-0.02				=
Copper	0.02	0.02				=
Iron	0.64	0.2				de.
Lead	-0.05	-0.05		The state of the state of	2	5
Manganese	0.09	6.01				-0
Mercury	-0.001	-0.001			그 살이 가지 않는 것이 없는 나를 하는 것이 없는 것이 없는 것이 없는 것이 없다.	
Nickel	-0.04	-0.04		F 100 K 2 50		
Selenium	-0.01	-0.01				
Zinc	-0.01	-0.01		MILES CONT.		
Molybdenum	-0.05	-0.05				
Vanadium	-0.05	-0.05				
Uranium	0.011	-0.001				
Radium 226 (pCi/1)	2.1 + 0.58	0.40 + 0.14				
Thorium 230 (pCi/1)	15.5 ± 4.3	4.72 + 1.65				

Notes: All values in mg/l except as otherwise noted.

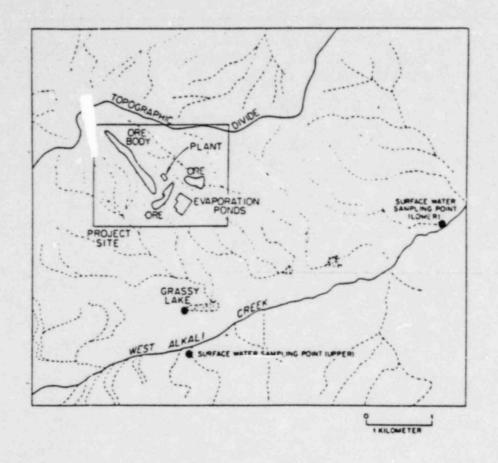

- Means not detected at levels indicated.

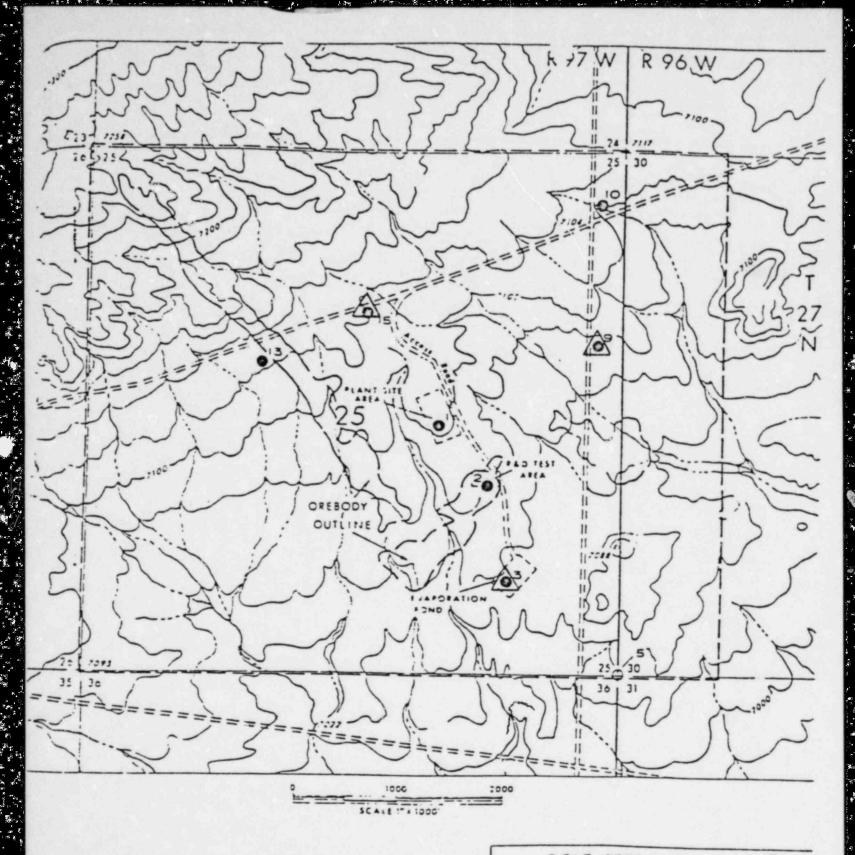

TABLE 33 ENVIRONMENTAL DOSIMETERS

STATION NUMBER 5	MREM/Week	TOOKET COR
	Net MREM Ave ± 20	47.7 ± 20.4 41.2 ± 12.0 43.4 ± 7.6 34.7 ± 5.1
STATION NUMBER 3	MREM/Week	2.48 2.29 2.83 2.79
	Net MREM Ave ± 20	42.5 ± 11.1 40.5 ± 11.1 42.6 ± 11.9 47.5 ± 25.6
STATION NUMBER 2	MREM/Week	2.77 2.10 2.83 2.13
	Net HREM Ave ± 20	47.4 ± 7.7 37.2 ± 23.4 45.2 ± 5.6 36.2 ± 7.4
STATION NUMBER 1	MREM/Week	2.45 2.06 1.87
	Net MREM Ave ± 20	32.0 ± 5.4 32.9 ± 5.2 31.8 ± 5.1
CONTROL	AREM/Week	2.14
	Net MREM Ave + 20	36.6 ± 5.8 35.1 ± 9.8 32.0 ± 8.6 28.5 ± 7.4
SAMPLE	PERIOD	07/01/81-10/19/81 10/01/81-01/14/82 01/01/82-04/05/32 04/01/82-07/08/82

TABLE 33 ENVIRONMENTAL DOSIMETERS

		OFFICIAL DOCKET CUES
HBER 22	HREH/Week	2.29 2.44 2.18 1.72
STATION NUMBER 22	Net HREM Ave ± 20	39.2 ± 11.0 43.2 ± 9.1 34.8 ± 6.9 24.3 ± 5.5
STATION NUMBER 21	HREM/Week	2.23 2.50 2.24 1.84
STATION	Net MREM Ave ± 20	38.3 ± 15.0 44.3 ± 9.9 35.8 ± 7.3 31.3 ± 7.0
STATION NUMBER 13	MREM/Week	2.58 2.44 1.93
STATION	Net MREM Ave ± 20	40.6 ± 14.8 45.7 ± 8.3 39.1 ± 9.1 32.8 ± 6.6
NUMBER 10	MREH/Week	2.90
STATION NUMBER	Net MREM Ave ± 20	34.2 ± 6.6 48.2 ± 16.4 39.7 ± 9.0 32.3 ± 8.8
SAMPLE		07/01/81-10/19/81 10/01/81-01/14/82 01/01/82-04/05/82 04/01/82-07/08/82


DOCUMENT/ PAGE PULLED


ANO. BRUDSODEN

NO. OF PAGES		
REASON		
PAGE ILLEGIBLE		
HARD COPY FILED AT.	POR OTHER	
D BETTER COPY REQUEST	ED ON_	
PAGE 100 LARGE 10 FLM		~ .
PAGE 100 LARGE 10 FILM. WHARD COPY FILED AT:	POR	CF .
	DIHER	
FILMED ON APERTURE	CARD N	884020021

821102002103

Figure 5
Sediment and Surface Water
Sampling Points

EXPLANATION

Project Arec Boundary

Oil field Road and Fisan Basin Mine Food

EATION 22- intersection of US 287 and Bison Rosin Cill Field Road

Soil & Vegetation Sample Site

OGLE PETROLEUM INC.

BISON BASIN PROJECT BISON BASIN MINE

SAMPLING AND

DOSIMETER LOCATIONS

Figure No. 6