wr-C0-82-06

NRC Researchandfor TechnicaL Assistonoe Rept

INTERNAL TECHNICAL REPORT

Title: JET PUMP GDMPLETION REPCRT

Organization
CODE DEVELOPMENT DIVISION

Author \qquad Er. Jon A. Irapp \qquad

Checked By \qquad Approved By: \qquad $\because A+4 i+i a r$ \qquad

Courtesy release to the public on request.
This document: was prepared primarily for
internal use. Citation or quotation of this document or is contents is inappropriate,

JET PUIMP COMPLETION REPORT

February 1982
(Revised May 1982)

PREPARED BY

PRACTICAL ANALYSIS \& COMPUTING, INC.
13932 W. 73rd PLACE ARVADA, COLORADO 80005

PRINCIPAL INVESTIGATOR
DR. JOHN A. TRAPP

PREPARED FOR

IDAHO NATIONAL ENGINEERING LAB
IDAHO FALLS, IDAHO 83401

RELAPS PROJECT MANAGER
DR. V. RANSOM

ABSTRACT

This report describes the development and testing of a jet mixing component, JETMIXEF, for RELAPS. When the jet mixing component is used the momentum equations are modified to reflect the additional momentum flux terms that result from the one-dimensional mixing of two parallel fluid streams. The JETMIXER component is primarily intended to be the basic building block used to model the jet pumps present in boiling water. It could also bs used to model the momentum mixing that takes place at ECC injection points or for aspirators in steam generators.

For check out, the new JETMIXER component is used, along with standard RELAPS components, to model the $1 / 6$-scale jet pump from the General Electric single loop test apparatus that was tested at the Idaho National Engineering Laboratory.

CONTENTS

Page1. Introduction-Jet Pump Flow Characteristics. 1
2. Basic Jet Mixing Model 6
3. Numerical Implementation/Code Changes 15
4. Input Preparation. 17
5. Jet Pump Application. 18
6. References 24
Appendix A - VEXPLT 25
Appendix B - HLOSS 27
Appendix C - Input Listing. 28

INTRODUCTION-JET PUMP PERFORMANCE

There are several components : a typical reactor plant where the momentum effects due to the mixing of two parallel streams of fluid at different velocities may be important. The primary component being the jet pump in a BWR. In this component the pumping action is caused by the momentum mixing of two fluid streams. Momentum mixing effects may also be important at ECC injection points or for the aspirators present in some steam generators. A new JETMIXER component was developed for these cases and tested out for a jet pump. The remainder of this report documents the jet pump application of the JETMIXER component.

1A. JET PUMP FLOW CHARACTERISTICS

Jet pumps are an important component in the design of boiling water reactors-BWR (Figure 1). Jet pumps provide a simple virtually maintenance free efficient primary pumping system.

Under normal operating conditions, a jet pump operates with a high fluid momentum in the drive line (Figure 2) generated by the auxiliary recirculation pump. This momentum creates the necessary suction at the nozzle exit plane to draw fluid from the suction region (the downcomer region in a $B W R$) into the jet pump. This suction flow then mixes with the high speed drive flow in the mixing region. The high momentum flow leaving the mixing section is converted to a pressure head in the diffuser section.

Figure 3 shows flow directions under normal operating conditions (first quadrant) and the five additional steady state flow regimes that could exist within the jet pump under abnormal conditions. (Two other possible flow regimes exists but they violate continuity assumptions for incompressible steady flow.)

It has been customary to identify jet pump operations in terms of two dimensionless parameters. Theses are the M and N parameters defined

Figure 1. Typical BWR Structure

Figure 2. Normal Jet Pump Operation
(1) The 11 - Ratio is the suction flow rate, W_{S}, divided by the drive flow rate W_{j},

$$
\begin{equation*}
M+W_{S} / W_{j} \tag{1.1}
\end{equation*}
$$

(2) The N - Ratio (head ratio) is the increase in dynamic pressure for the suction-discharge path divided by the loss of dynamic pressure for the drive-discharge path,

$$
\begin{equation*}
N=\frac{\left(P+\frac{1}{2} \rho v^{2}+\rho g h\right)_{D}-\left(P+\frac{1}{2} \rho v^{2}+\rho g h\right)_{S}}{\left(P+\frac{1}{2} \rho v^{2}+\rho g h\right)_{j}-\left(P+\frac{1}{2} \rho v^{2}+\rho g h\right)_{D}} . \tag{1.2}
\end{equation*}
$$

1B. EXPERIMENTAL RESULTS

Figure 3 shows typical jet pump data in terms of the $M-N$ parameters and the associated flow regimes. This data is for the $1 / 6$-scale jet pump from the General Electric single loop test apparatus that was tested at INEL [1].

Data was collected in all six of the operating regimes shown in Figure 3 but the data scatter was execessive for the positive drive/negative discharge case. The experimental data analysis report [1] indicated that it would be inadvisable to use the $M-N$ data base for positive drive with M less than -0.8 for the development and assessment of analytic models. We have therefore not plotted this data in Figure 3. The data in Figure 3 will be used to test the JETMIXER component developed in Section 2.

[^0]

BASIC JET MIXING MODEL

2A. MOMENTUM ANALYSIS FOR JET MIXING IN SINGLE PHASE FLOWS

To develop the momentum equations needed to model a jet pump we will consider the schematic of the drive and suction junctions ${ }^{1}$ shown in Figure 4.

Figure 4. Schematic of Mixing Junctions

[^1]The suction junction (with velocity v_{S} and area A_{S}) connects the last upstream suction region volume, K_{S}, to the mixing volume, L. The drive junction (with velocity v_{j} and area A_{j}) connects the last upstream drive line volume, K_{j}, to the mixing volume, L. Figure 4 shows the drive junction as a smooth junction and the suction junction as abrupt. The user can model either junction either way if the appropriate loss factors are included (see discussion in Section 5). Void fractions and densities at junctions j or S when subscripted by a j or S are donored valves. If the subscript a is used they are then volume averaged values.

The mixing of the drive and suction flows between section 1 and 2 requires a re-evaluation of the momentum flux terms. The wall drag, interphase drag, temporal acceleration, momentum exchange due to mass transfer, and gravity head terms for the drive and suction junctions are treated exactly as they are at any other junction. Only the pressure and momentum flux terms will be examined in the following momentum equation development.

Consider a control volume in the mixing region between sections 1 and 2. If we apply the conservation of momentum principle for this control volume with the following assumptions:
(1) steady single phase flow,
(2) one-dimensional flow at sections 1 and 2 ,
(3) pressures at junctions j and S are equal, we obtain

$$
\begin{equation*}
\left(P_{L}-P_{1}\right) A_{L}+\rho v_{L}^{2} A_{L}-o_{S} v_{S}^{2} A_{S}-\rho_{j} v_{j}^{2} A_{j}=0 \tag{2.1}
\end{equation*}
$$

Conservation of mass applied with these same assumptions gives

$$
\begin{equation*}
\rho_{L} v_{L} A_{L}-\rho_{S} v_{S} A_{S}-o_{j} v_{j} A_{j}=0 . \tag{2.2}
\end{equation*}
$$

We now use Equation (2.2) to write Equation (2.1) in its "nonconservative" form, obtaining

$$
\begin{equation*}
\left(P_{L}-P_{1}\right)+o_{S} v_{S} A_{S}\left(v_{L}-v_{S}\right) / A_{L}+o_{j} v_{j} A_{j}\left(v_{L}-v_{j}\right) / A_{L}=0 . \tag{2.}
\end{equation*}
$$

Equation (2.3) gives the momentum equation (pressure and flux terms, that is) for the mixing volume. To develop the momentum equation for the suction junction we write a normal half cell momentum equation from K_{S} to section 1 i.e.

$$
\begin{equation*}
\left(P_{1}-P_{K S}\right)+\frac{1}{2} \rho_{K S}\left(v_{S}^{2}-v_{K S}^{2}\right)=0 . \tag{2.4}
\end{equation*}
$$

and add this to the half cell momentum Equation (2.3) for section 1 to L. This gives

$$
\begin{align*}
& \left(P_{L}-P_{K S}\right)+\frac{1}{2} \rho_{K S}\left(v_{S}^{2}-v_{K S}^{2}\right) \\
& +\rho_{S} v_{S} A_{S}\left(v_{L}-v_{S}\right) / A_{L}+\rho_{j} v_{j} A_{j}\left(v_{L}-v_{j}\right) / A_{L}=0 . \tag{2.5}
\end{align*}
$$

If the suction junction were a normal junction its momentum equation would be

$$
\begin{equation*}
\left(P_{L}-P_{K S}\right)+\frac{1}{2} \rho_{S a}\left(v_{L}^{2}-v_{K S}^{2}\right)=0 . \tag{2.6}
\end{equation*}
$$

A completely parallel development is obtained for the drive junction equations. Comparing Equations (2.6) and (2.5) shows how the convective terms are modified at a suction or drive junction due to the mixing that is taking place there.

2B. MOMENTUM ANALYSIS FOR JET MIXING IN TWO-PHASE FLOWS

If a similar development is carried out for the pressure and momentum flux terms in the two-phase case the following equations are obtained for the liquid phase in the mixing region:
(1) Conservation of momentum (for section 1 to L)

$$
\begin{align*}
& \alpha_{f L} A_{L}\left(P_{L}-p_{1}\right)+\alpha_{f L} \rho_{f L} v_{f L}^{2} A_{L} \\
& -\alpha_{f S} \rho_{f S} v_{f S}^{2} A_{S}-\alpha_{f j} \rho_{f j} v_{f j}^{2} A_{j}=0, \tag{2.7}
\end{align*}
$$

(2) Conservation of mass ${ }^{1}$ (for section 1 to L)

$$
\begin{equation*}
\alpha_{f L}{ }^{\rho} f L^{\vee}{ }_{f L}^{A L}-\alpha_{f S^{\rho}}{ }_{f S}{ }^{\vee} f S_{S}^{A}-\alpha_{f j}{ }_{f} j_{j}^{v} f j_{j}^{A}=0 . \tag{2.8}
\end{equation*}
$$

We now use Equation (2.8) to rewrite Equation (2.7) in its nonconservative form

$$
\begin{align*}
\alpha_{f L}\left(P_{L}-P_{I}\right) & +\alpha_{f S} \rho_{f S} v_{f S} A_{S}\left(v_{f L}-v_{f S}\right) / A_{L} \\
& +\alpha_{f j} \rho_{f j} v_{f j} A_{j}\left(v_{f L}-v_{f j}\right) / A_{L}=0 . \tag{2.9}
\end{align*}
$$

Equation (2.9) could now be combined with the appropriate half cell momentum equation for the upstream volume to obtain the final momentum equation for the liquid flow at the suction junction. In RELAPS the phasic momentum equations are used as a sum momentum equation and a difference momentum equation. We will derive these equations directly from Equation (2.9).

To derive the sum momentum equation for the suction junct.on we add Equation (2.9) for the liquid phase and the parallel equation for the gas phase to obtain

$$
\begin{align*}
\left(p_{L}-p_{1}\right) & +\alpha_{f S} \rho f S^{v_{f S}} A_{S}\left(v_{f L}-v_{f S}\right) / A_{L}+\alpha_{f j} \rho_{f j} v_{f j} A_{j}\left(v_{f L}-v_{f j}\right) / A_{L} \\
& +\alpha_{g S} \rho_{g S} v_{g S} A_{S}\left(v_{g L}-v_{g S}\right) / A_{L}+\alpha_{g j} \rho_{g j} v_{g j} A_{j}\left(v_{g L}-v_{g j}\right) / A_{L}=0 . \tag{2.10}
\end{align*}
$$

[^2]The normal halfcell sum momentum equation for the upstream suction volume can then be added to Equation (2.10) giving

$$
\begin{align*}
\left(P_{L}-P_{K S}\right) & +\alpha_{f S} \rho_{f S} v_{f S} A_{S}\left(v_{f L}-v_{f S}\right) / A_{L}+\alpha_{f j} \rho_{f j} v_{f j} A_{j}\left(v_{f L}-v_{f j}\right) / A_{L} \\
& +\alpha_{g S} \rho_{g S} v_{g S} A_{S}\left(v_{g L}-v_{g S}\right) / A_{L}+\alpha_{g j} \rho_{g j} v_{g j} A_{j}\left(v_{g L}-v_{g j}\right) / A_{L} \\
& +\frac{1 / 2}{} \alpha_{f K S} \rho_{f K S}\left(v_{f S}^{2}-v_{f K S}^{2}\right)+\frac{1}{2} \alpha_{g K S} \rho_{g K S}\left(v_{g S}^{2}-v_{g K S}^{2}\right)=0 . \tag{2.11}
\end{align*}
$$

as the final form of the pressure and momentum flux terms in the new sum momentum equation to be used at junction S. A parallel equation must be used at the drive junction j. The pressure term in this equation is in exactly the same form as the pressure term in the normal sum momentum equation. Hence at the drive and suction mixing junctions we must replace the normal momentum flux terms by those in Equation (2.11).

To derive the difference momentum equation for the suction junction we divide the liquid mixing Equation (2.9) by $\alpha_{f L}$ and add it to the half cell liquid equation for the upstream suction volume (also divided by the appropriate void fraction, $\alpha_{f K S}$) to obtain

$$
\begin{align*}
\left(P_{L}-P_{K S}\right) & +\alpha_{f S} \rho_{f S} v_{f S} A_{S}\left(v_{f L}-v_{f S}\right) / \alpha_{f L} A_{L}+\alpha_{f j} \rho_{f j} v_{f j} A_{j}\left(v_{f L}-v_{f j}\right) / \alpha_{f L} A_{L} \\
& +\frac{1}{2} \rho_{f K S}\left(v_{f S}^{2}-v_{f K S}^{2}\right)=0 \tag{2.12}
\end{align*}
$$

We now divide Equation (2.12) by the average junction liquid density, ρ_{f}, and subtract it from the corresponding gas equation to obtain

$$
\begin{align*}
& \frac{\rho_{f}-\rho_{g}}{\rho_{f} \rho_{g}}\left(P_{L}-\rho_{K S}\right)+\alpha_{g S} \rho_{g S} v_{g S} A_{S}\left(v_{g L}-v_{g S}\right) / \alpha_{g L} \rho_{g}^{A} L_{L} \\
& +\alpha_{g j} \rho_{g j} v_{g j} A_{j}\left(v_{g L}-v_{g j}\right) / \alpha_{g L} \rho_{g} A_{L}+\frac{1_{2} \rho_{g K S}}{}\left(v_{g S}^{2}-v_{g K S}^{2}\right) / \rho_{g} \\
& -\alpha_{f S} \rho_{f S} v_{f S} A_{S}\left(v_{f L}-v_{f S}\right) / \alpha_{f L} \rho_{f} A_{L}-\alpha_{f j} \rho_{f j} v_{f j} A_{j}\left(v_{f j}-v_{f j}\right) / \alpha_{f L} \rho_{f} A_{L} \\
& -\frac{1}{2} \rho_{f K S}\left(v_{f S}^{2}-v_{f K S}^{2}\right) / \rho_{f}=0 . \tag{2.13}
\end{align*}
$$

as the final difference momentum equation to be used at junction S. A parallel equation must be used at the drive junction. The pressure term in Equation (2.13) is in exactly the same form as the pressure term in the normal difference momentum equation. Hence we must replace the normal momentum flux at these junctions by the momentum flux terms in Equation (2.13).

2C. ASSOCIATED FLOW LOSSES

The flow taking place in the "mixing" region of volume L can in reality be either a true jet mixing, corresponding to regime 1 in Figure 3, or a flow split corresponding to re me 4 in Figure 3. The f 2 Jw separation case is governed by different physics than the jet mixing case considered in the previous discussions. The redistribution taking place when the flow splits is primarily determined by the effective resistances downstream of the separation point in the suction and drive flow paths. The mixing terms derived above do not apply. For this reason and to preserve continuity on the respective performance curves in Figure 3 we apply the additional mixing terms only for the positive drive flow regimes. We use the normal momentum flux calculations for the negative drive flow regimes.

The junctions associated with the JETMIXER component can be modeled as smooth or abrupt. If the junctions are input as smooth then the appropriate flow resistances should be calculated in a standard fashion (see Reference [2]) and input as form loss coefficients at the appropriate junctions by
the user. The junctions in the test calculation were modeled in this manner. (See the detailed discussion and user guidelines in Section 5). If the junctions in the JETMIXER component are input as abrupt then the code will calculate form loss coefficients as usual except that (1) the forward loss coefficients at the drive and suction junctions are set to zero. The forward losses at these junctions are really associated with the expansion from the vana contracta to the downstream mixing volume flow area. Because of the parallel mixing streams this loss is no longer appropriate. (2) The reverse loss coefficients for the suction and drive junctions are those associated with the expansions from the junction areas to the suction or drive inlet volume areas. The losses associated with any contraction from the mixing volume to the suction or drive junctions is also neglected for the same reason.

If one considers a typical BWF configuration (Figure 1) then two jet pump related accidents that must be considered are (1) loss of power for a recirculation pump and the resulting pump coastdown and (2) blowdown resulting from the rupture of a drive line. In the first case as the drive flow declines, so does the head developed by the pump and eventually the suction flow reverses. The pump is then operating in flow regime 2 . In case 2 the jet pump will be operating in flow regime 5.

If normal flow losses are used in these two cases (as described above for smooth or abrupt area changes) it will be found that the jet pump performance in regime 5 is accurately modeled but that the N Ratio in flow regime 2 is significantly below the experimental data. The reverse flow loss coefficient applied in the suction junction has a significant effect on the jet pump performance in flow regimes 2 and 3 . This $10 s z$ coefficient (in addition to the normal loss coefficient associated with the expansion from A_{S} to area $A_{K S}$) represents all the irreversable losses associated with the turning and expansion of the flow from the drive junction. Because this flow regime is an important regime in the accident analysis of a BWR it was decided to include an approximation for this flow dependent loss in the jet mixing model.

This reverse suction flow loss was based upon the expansion losses
experienced by the flow as it moves from the drive to the suction junction (Figure 5). In regime 2 the expansion loss associated with the area change A_{j} to A_{S} i.e.

$$
\begin{equation*}
K=\left(A_{S} / A_{j}-1\right)^{2} \tag{2.14}
\end{equation*}
$$

is added to the user input reverse loss coefficient (or the standard abrupt area change loss factor if the junction is input as abrupt) for the suction junction. ${ }^{1}$ In regime 3 the effective area for the suction flow that comes from the drive junction is less than A_{S} because the discharge flow has reversed. In this regime the effective areas for the expansion loss are A_{j} and $A_{S}\left(\left|W_{j} / W_{S}\right|\right)$. Hence for regime 3 the loss coefficient

$$
\begin{equation*}
K=\left(\frac{A_{S}\left|W_{j} / W_{S}\right|}{A_{j}}-1\right)^{2} \tag{2.15}
\end{equation*}
$$

is added to the user input reverse loss coefficient (or the abrupt area loss factor if the junction input is abrupt) at the suction junction

Figure 5. Flow Regimes and Dividing Streamline

[^3]so long as $A_{S}\left|W_{j} / W_{S}\right|$ is greater than A_{j}. If $A_{j}\left|W_{j} / W_{S}\right|$ is less than A_{j} the drive to suction flow is effectively a contraction and the additional loss coefficient is set to zero.

Since the jet mixing and effective resistances are handled with special terms in the suction and drive junction equations the normal losses associated with the partitioning of volume L are not included in these junction equations. The normal losses associated with the area ratios experienced by the flow upstream of the suction and drive junctions are retained in the junction momentum equations.

NUMERICAL IMPLEMENTATION AND CODING CHANGES

The basic numerical algorithm used to evaluate the new momentum flux terms in Equations (2.11) and (2.13) is exactly parallel to the numerical evaluation of the normal momentum flux terms. The present momentum flux terms are calculated explicitly at time level n in the subroutine VEXPLT. The new monentum flux terms in Equation (2.11) and (2.13) are also explicitly evaluated in VEXPL.T. The spatial location of each variable is indicated by its subscript.

When Equations (2.11) and (2.13) are examined it is found that the momentum equations for the suction junction S require a knowledge of the drive junction properties and velocities (a parallel statement holds for the drive junction momentum equations). In the present VEXPLT, when we are calculating the momentum terms for junction i, we have no available indices to obtain the properties at any other junction. For this reason it was necessary to define a new component, JETMIXER, and to require the user to input the drive and suction junctions in this component in a pre-assigned order (for details of the input preparation see section 5). ${ }^{1}$ Because VEXPLT already contains an outer component loop (with an inner junction loop) no new structuring of the loops in VEXPLT was required. The special terms in Equations (2.11) and (2.13) are then easily built in VEXPLT when the component being processed is a JETMIXER and we know that the first junction in this component is the drive and the second is the suction.

The additional loss coefficients in Equations (2.14) and (2.15) are calculated in VEXPLT immediately following the special momentum flux calculations.

The added mass terms and any stratified flow forces that could be inadvertently included in the drive or suction junctions are set to

[^4]zero in the same section of coding. A Fortran listing of the appropriate section of VEXPLT showing these changes is included in Appendix A.

The oniy other routines modified are listed below with the appropriate changes noted:

HLOSS - several lines were added to flag a JETMIXER component and in this case to skip the normal loss calculation. See Appendix B for Fortran lisiting of appropriate changes.

RBRANCH - input checking and messages were added to see that the drive, suction and discharge junctions of the special JETMIXER branch component are properly connected by the user. Section 4 gives the input requirements and input error messages.

No new array variables were added to the code. Several local variables are used in the special section of coding for a JETMIXER component in VEXPLT. The only local variable used outside of this region of coding is FJET which contains the special JETMIXER resistance coefficient for reverse suction flow.

INPUT PREPARATION AND OUTPUT CHANGES

The component name JETMIXER has been added to the component names that can be used. The input for a JETMIXER component is the same as that for a BRANCH component with the following modifications:
(1) For a BRANCH component the junctions connected to that branch can be input with the branch or as separate components. For a JETMIXER three (and only three) junctions, representing the drive, suction and discharge, must be input with the JETMIXER component, i.e. $N J=3$. If NJ $=3$ an input error message is printed.
(2) The three junction card sequences must be numbered as follows; cards cccll01 and cccl201 represent the drive junction, cards $\operatorname{ccc} 2101$ and $\operatorname{ccc} 2201$ represent the suction junction, and cards $\operatorname{ccc} 3101$ and $\operatorname{ccc} 3201$ represent the junction in the mixing section. (3) The drive and suction junctions must be "pointing" into the JETMIXER volume i.e. these junctions must have to connection codes refering to the JETMIXER volume. If this is not the case an input error message is printed. The drive and suction junctions must be connected to the inlet side of the JETMIXER volume and the mixing junction must be connected to the outlet of the JETMIXER volume. If this is not the case an input error message is printed.

Although the junction and volume areas for a JETMIXER are not restricted, the JETMIXER will properly model a jet pump only if the drive and suction flow areas sum to the mixing volume area.

There is no special output for a JETMIXER component.

Section 5

APPLICATION TO JET PUMP MODELING

This section will describe the use of the JETMIXER component to model the $1 / 6$ - scale jet pump test at INEL [1].

5A. MODEL DESCRIPTION

The model, as shown in Figure 6, has the following features:
(1) the suction region is represented by two equal volumes ($A=5.088 \mathrm{E}-3 \mathrm{M}^{2}, \mathrm{~L}=1.6 \mathrm{M}$) with the suction junction modeled as smooth.
(2) the drive line is also represented by two volumes $\left(A=7.26 E-4 \mathrm{M}^{2}\right.$, $\mathrm{L}=1.6 \mathrm{M}$) with a smooth drive junction.
(3) a mixing section represented by two similar volumes ($A=6.605 \mathrm{E}-4 \mathrm{M}^{2}$).

The first is a JETMIXER component and the second is a normal volume.
(4) A three volume diffuser PIPE ($L=4.26 \mathrm{M}$) component followed by a normal volume ($A=40.7 E-4 \mathrm{M}^{2}$).

The drive and suctions junctions could be modeled with smooth or abrupt area changes. If they are modeled as smooth junctions then the appropriate forward and reverse loss coefficients must be user input. Runs were made both ways with basically the same results. The use of smooth junctions gives the user more explicit control over the resistance coefficients and for this reason was used below, .

The resistance coefficients used were calculated in a standard fashion from reference [2] for configurations similar to those of the jet pump. These additives resistance coefficients were taken as turning losses in the drive line ($K=0.42$) entrance ($K=0.02$) and exit ($K=1.0$) losses in the suction junction, mixing ($K=0.07$) and diffuss? losses in the primary piping, and a reverse flow exit loss in the drive line. The expressions used for calculating the loss coefficient in the diffuser section were

Figure 6. Schematic of Jet Pump Model

$$
\begin{equation*}
k_{c}=0.8 \sin \theta\left(1-3^{2}\right) \quad \text { (for contraction) } \tag{5.1}
\end{equation*}
$$

ana

$$
\begin{equation*}
\text { e } 2.6 \sin \theta\left(1-\beta^{2}\right)^{2} \quad \text { (for expansion), } \tag{5.2}
\end{equation*}
$$

where β^{2} is the area contraction ratio and θ is the half-angle of contraction. For this specıfic pump these evaluate o $K_{c}=0.0337$ and $K_{e}=0.0919$. The contraction loss associated with the drive nozzle was set to zero. This loss is really associated with the expansion beyond the venacontracta point. For the merging of two streams taking place in the jet pump it was felt that this expansion loss was nct really present. For reverse drive flow Equation (5.2) was used with a resulting $K_{e}=0.238$.

5B. BOUNDRY CONDITIONS

To generate a point on the performance curve a transient was run to steady state. The boundry conditions used were:
(1) Diffuser discharge pressure, $P=75.85 E S \mathrm{~Pa}$.
(2) Two drive mass flows $\pm 3.0611 \mathrm{~kg} / \mathrm{s}$ (volumetric flow $\pm 4.1 / \mathrm{s}$) with temperature $T=555.0^{\circ} \mathrm{K}$.
(3) The suction inlet mass flows were varied between $-3.048 \mathrm{Kg} / \mathrm{s}$ $(M=-.986)$ and $9.907 \mathrm{~kg} / \mathrm{s}(M=3.22)$ with $T+555.0^{\circ} \mathrm{K}$. A flow rate was imposed at the suction inlet because in this way a whole performance curve could be generated with a single computer run using a time dependent inlet Flow table. Several points on the $M-N$ curve were then rerun with the appropriate pressure boundry conditions replacing the imposed suction mass flow. There was no change in the predicted results using the preasure boundry conditions.

5C. CODE PREDICTIONS

Figures 7 and 8 shows the code predictions compared to the experimental data. Figure 7 shows the basic agreement in all four quadrants. A curve

is also plotted showing the disagreement that existed in regime 2
before the reverse suction loss coefficient described in section 2 was included.

Figure 8 shows an expanded view of the normal operating region with several curves representing different flow resistances. This figure can be used as a guide for modeling different jet pump geometries. Each curve shows the $M-N$ performance generated with the loss coefficients discussed above plus a single additional loss coefficient ($K=0.2$) added to either the drive or suction or mixing junction. This figure gives an indication of the quantitative change in performance caused by the respective drive, suction or mixing losses. Using this figure, one should be able (with a few preliminary code runs) to design a code model for his specific jet pump if he has the performance data available. If no specific performance data is available it is recommended that the standard losses used above be applied.

There is no special output printed for the JETMIXER component. It is recommended that control variables be used to set up the M and N parameters for minor edit purposes and that these parameters be printed with every edit. A listing of the input cards used to generate the positive drive flow branch of the $M-N$ curves is shown in Appendix C. This input data also shows an example of the use of the control variables to print out the $M-N$ performance parameters.

Section 6

REFERENCES

1. G.E. Wilson, INEL One-Sixth Scale Jet Pump Data Analysis, EGG-CAAD-5357, EG\&G, Idaho, Feb. 1981.
2. Flow of Fluids, Crane Company; Report No. 410, (1979).

VトXDLT

FTN 4.8+53d

Gา T7 116

) ? 116/8? 17.13.14
PAGE I

NNNmmmmmmn

 む

```
LISTING OF ITIPGI UATA FGR CASE I
```

 -JFT PUTP It I C CASE
 30.NU NE IRANDITI
 jODO2U1 OC.O \(1 . t-t\). US COJOL 00 00 4000
 * minar elit variables
 \({ }^{*} 0 \mathrm{MINGK}\) ELITVAKIAEL
 \}00 U302 CNTRLVAR C12
 3000303 P L CCOACOCE
 \(0000^{20} 04\) P U4CO1600U
 JJJJC3C6 VELFJ J12000000
 0000307 VELFJ 03200000
 000 C 3 C VELFJ O72COCOCO
 * vulume cells
 3100000 DIM TMDRVCL

J1Ju20

2200200 3.75.0.E 5 5 555 .

0210200
$\rho 300000$
33001 CL 2.088t-3 C. Lt C.C $0 . C \quad 0.0$ C.O 0.0 C.C CC
$3300200{ }^{3} 008$ 施
3300201
040 CUCO 5 S SNGLVEL

$345 C 200 ~ 3$
0410000 S2 SNi.:VEL

O410200 350000 HIXI JETHIIXER
0500001

$\begin{array}{llllllll}0502201 & 0.0 & 0.0 & 0 . C \\ 0503101 & 5 S C O I C C O C ~ C 5 S O C C O C O & 0.005 E-4 & 0.0 i & 3.07 & 0000\end{array}$
$\begin{array}{lll}35032 C 1 & 0.0 & 0.0 \\ 055 u U_{0} & \text { mixa Singlvoi }\end{array}$

0600000
3500001

O60C2ul 14.75 c-4 1 26.11E-4
$0600301 \quad 0 \cdot 1+2,3$
$3604401-40.0^{3} 3$
－XELAP5／MJ01／211
KLACTGK LUSS LF CDCLANT GNALYSIS PRUGRAM

$$
9300261
$$

$$
\begin{aligned}
& 3120600 \\
& 3120101
\end{aligned}
$$

$$
3120200
$$

$$
3320200
$$

$$
\begin{aligned}
& 132020 \frac{1}{2} \\
& 03320<03 \\
& \text { 1) } 3 ? 020
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
-6.142 \\
0.0 \\
0 & 0^{3}
\end{array} \\
& \text { OOU }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OISCH NGLVGL } \\
& 40.7 \mathrm{t}-4 \quad \mathrm{C} .1 \quad 0.0 \quad 0.0 \quad-90.0-.10 \text { C.C O.O OC } \\
& 3 \quad 15 \cdot 32 t+5 \text { ぶ } \\
& +6.7 \mathrm{E}-4 \mathrm{C} .1 \mathrm{O} \text { O.C }-90.0-10 \quad 0.0 \quad 0.1 \text { OC } \\
& 3 \\
& \text { 0.c 7ン.とよt+2 55 . } \\
& \begin{array}{l}
\text { IONS } \\
\text { JOIN THUPJUN }
\end{array} \\
& \begin{array}{l}
\text { JDIN THUP JLN } \\
\text { UICUCJJLC CZOOCOCO }
\end{array} \\
& 7=20 \mathrm{k}-4 \\
& \begin{array}{lrrr}
0.0 & 0.0 & 0.0 & \text { C.0 } \\
2.0 & 3.63 & 5.63 & \text { C. } 0
\end{array}
\end{aligned}
$$

$$
\therefore 7
$$

$$
\begin{aligned}
& 3726101 \\
& 372 c 201
\end{aligned}
$$

$$
3720201
$$

$$
\begin{array}{lll}
27.0 & 2.00 & 2.00 \\
2 y: 0 & 200 & 2.00 \\
00 & 2.0 & 2.0
\end{array}
$$

$$
\begin{aligned}
& 2 y .0 \\
& 00.0 \\
& j 0 . E 0 \\
& j u g i v L N
\end{aligned} .00
$$

C.0

$$
0.0 \quad 0.0 \text { l. } 0
$$

js si. GLJUR
jnix sngijun.

$$
0.0
$$

$$
\begin{array}{llllll}
J L 1 F F \\
0600100 C O \\
0 & C 7 U J O U L C C & 46.7 E-4 & 0.0 & 0.0 & 00 J 0
\end{array}
$$

JusSen SNGLJUNO

$$
\begin{aligned}
& \text { JUSOG SNGL JUN } \\
& 07001060
\end{aligned}
$$

*

< O.C U.G C.O

$$
\begin{aligned}
& \text { culviku } \\
& \text { ujivo }
\end{aligned}
$$

$$
\begin{aligned}
& 23500100 \\
& 205001061 \\
& 2950120
\end{aligned}
$$

$$
21561200
$$

$$
\begin{aligned}
& 1501200 \\
& 25500201
\end{aligned}
$$

$$
\text { VSt JUM 1. } 1.0 \text { VEir, } 1 \text { U4 ULUJOLO }
$$

$$
\begin{aligned}
& \text { 2)50usue } \\
& 2) 500301
\end{aligned}
$$

$$
\begin{aligned}
& 25500301 \\
& 20500400 \\
& 2050046
\end{aligned}
$$

$$
20500500
$$

$$
30500 \div 01
$$

$$
205 u \text { utjo }
$$

2)jcutbi
$2050 \cup 700$
29500701
2
2
2
5 00600
23540906
29500401
I VARIABLES FUK MLEI FLRPUSES

5.268t-3 J.C 0.C 3000
$205 C 100$
20501001
20501100
20501.91
$205 \mathrm{C120}$
$205 C 1<01$
20501300
$2) 5 C 13 C 1$

3

$$
\begin{aligned}
& 20501401 \\
& 205015 C O \\
& \text { KHOF DIV } 040 C 10000 \text { CNTHLVAR }
\end{aligned}
$$

$20501=C 0$ M DIV lo O O.C 1

$$
\begin{aligned}
& 001
\end{aligned}
$$

$0.003 \mathrm{E}-4 \quad 3.074 y$
cuco

$$
\begin{aligned}
& \text { OZutivuju u } 2000000 \quad 7.20 \mathrm{E}-4 \quad 0.420 .420006 \\
& \text {.20L-4 } \cup .420 .46 \quad 0000
\end{aligned}
$$

[^0]: 1
 Subscripts j, S, D, are used to indicate variables defined at the drive nozzle jet, the suction entrance, and the discharge at the exit of the diffuser section respectfully. If the intended application of the JETMIXER component is not a jet pump then the drive flow should be the high speed stream and the suction the low speed stream. For example, at an ECC injection point the injected fluid is the drive flow and the main upstream flow is the suction flow.

[^1]: 1 The drive and suction junctions should be the high speed and low speed junctions respetively with the JETMIXER component is used for other than jet pump applications.

[^2]: 1 As stated before, the momentum equation terms due to mass exchange are not being changed by this model addition, so the mass transfer terms in Equation (2.8) are not shown.

[^3]: 1 In reality the expansion loss should be based upon the effective area change $A_{j}\left(W_{S} / W_{j}\right)$ to A_{S}. This form gives an infinitely large loss coefficient when $W_{j}=0$ and approaches Equation (2.14) when W_{S} and W_{j} are the same order. A kink in the performance curve at $M=0$ was removed using Equation (2.14).

[^4]: 1 The drive junction must be the first junction input for a JETMIXER component and the suction junction input must be the second junction data input.

