U. §. NUCLEAR REGULATORY COMMISSION

REGION I
Report No. 50-219/90-21
Docket No. 50-219
License No. DPR-16
License: OPU Nuclear Corporation
P.O. Box 388

Forked River, New Jersey 08731
Facility Name: Oyster Creek Nuclear Generding Station
Inspection At: Forked River, New Jersey
Inspection Conducted: October 29-31, 1990

Inspector:

Approved by:

Inspection Summary: Inspection on October 29-31, 1290 (Report No. 50-2:9/90-21)
Areas Inspected: An announced inspection of the licensee's activities involving the drywell corrosion problem activities. The scope of this inspection included review of ult:asonic thickness procedures and records. inspection and repairs of suspected sources of leakage, review of metallurgical reports and a facility tour.

Results: On the basis of this inspect, on, it was concluded that the licensee's program for monitoring, repairing and evaluating the corrosion problem was comprehensive and was being conducted in a systematic mariner in accordance with prescribed procedures, of the area inspected, no violations were identified. The licensee has presented substantial evidence that the nlant can be operated safely until the $14 R$ refuel outage provided that thickness measurements are taken in the prescribed intervals, and show no significant loss in wall thickness.

DETAILS

1.0 Persons Contacted

1.1 Solg Nukletr Corpurtation

*E. E. Fitzpatrick, fice president and Director
*J. A Martin, Mechanical Engineer

* Y Amamovict, Mansyer, Pressury Vesse's
*R. iak, Licensing Engineer
*5. Gicobbi, Manager, Materizls Engineering

1.2 U.5. Nut1par Pegutatory Contstron finc)

*G. Sagcht, Office of Nuelear Reactor Ragulation (NRR), ESGB
*t. Collinis, Sr. Resident Inspector
*Denctes attencance at exit meeting or October 30,1990 .

2.0 scope

The objective of this inspection iwas to revtew the licerisee's cortinunus on site activities "egarding the crywell corrosion problen. The results of a plant walkdown of accessible areas and an evaluation of the licansee's analytical methodoiogy by NRR wlll be reported separately by Mr. Goutam Bagchi. The dverall stritegy to monttof dred cuntrol drymell cerfeston had deen presented by the licensee in a meeting held in Headquarters on Septerber 19, 1990.

3.0 H1story

Corroston was initially atscovered hy the licensee on the outside surface of the drywell in the sand cushion region of she drywell in late 1986. since then, the licansee has carried out an extensive plogran to eisure the short and iong termi integrity of the drywell. The progremi includes cantinuous montioring of the corrastion as reflected by frequent thickness measurements, tnspection and repatr of suspected sources of leakage which are belleved to be responstble for the leaks, reatalysts of the drywell stresseb, and a study of feastble corrective actions.

The corrosion apparently was caused by moisture trakped inside the thermal insulation surroutding the drywell and in the sand cushion around its base. The highest corrosfon rate has occurred in the sand bed area ($39 \mathrm{mfls/year}$) followed by the spherical region ($4.6 \mathrm{mfl} / \mathrm{s} / \mathrm{year}$). No recent corrosion has been otserved in the upper cylinder region. Aithough the calculated stresses based on thickness measurements and corrosion rates indicate a margimgl condftion from the standpotnt of code allowable stresses, the 1icenaee has concluded that the crywell will still be in compliance with the code at refuel outage $14 R$ on the basis of assuming th the major source of leakage has been eliminated.

4.0 Findings

4.1 Ultrasonic Thickness Measurements

4.2 Repair Activities

The inspector reviewtd certain aspects of the licensee's activities regarding the inspection and/or repair of ae suspected sources of leakage. The major source of leakage which appears to be responsible for the corrosion of the drywell shell is the reactor cavity liner. The cavity is filled with demineralized water during refueling and thus provides a direct leak path to the outside surface of the drywell if there were defects in the ilner. The inspector reviewed comprehensive yisual and liqutd penetrant inspection reports as documented in Materfal Nonconformance Report ह77-240 Which showed that the $.109^{\prime \prime}$ thick type 304 stainless steel liner exhibi.ed numerous cracks on its 1.0 . surface in addition to 2 severely damagec areas which were reported have been caused by muvement of equipment used in refuelting. The ciacks showed no preferred orlentation or preforred locatton with regerd to base metal or welds. The inspector reviewed a metallungical redort (Genaral Electric 88-178-0.06) which covered an evaluation of two
through-wall samples which were removed from the cavity liner to include the cracks. The investigation did not disclose any material deficienctes or anomalies associated with the fatlure. Although the cracks were found to be transgranular, no detrimental anions such as Cl or F wich are known to cause transgranular stress corrosion cracking were found to be associatad with the cracking.

The report concluded that because of the wetted surface and thermal fluctuations, the most likely cause of fallure was corrosion fatigue. The source of stress was belfeved to have occurred during initial welding and the restraint caused by welding to backing strips embedded in the concrete. The fluctuations may have been righer than anticipated because the ifner was found to be $109^{\prime \prime}$ instead of the specified $.250^{\prime \prime}$. The conclusions in the subject report appear to be valid.

Because of the excessive number of defects found in the cavity liner, the licansee opted to employ a unique, temporary system that covered 100% of the I.D. surface. The system consisted of a cumbination of stainless steel adhesive 'ape covered by two coats of a Latex barrter (950LOCK 300). The licensee provided the inspector a report (TOR-938) which showed that the tape-coating had been qualified for $125^{\circ} \mathrm{F}-10$ keak inmersion service using both adhesion, pressure and leachate testing. The system is designed to be removed after refueling and is applled with the reactor head in place.

The itispector reviewed other documents peftsining to the inspection and repair of the suspected sources of leakage. These are iisted below:

15-328 257-001 - Repair of Reactor Cavity Conerete Trough
Material Nonconformance Report 85-934 Weld Repair and Inspection of Weld Defects in Equipment Storaç Pool

Technical Specification - SP-1302-82-005 of Reactor Cavity - Repair of Reactor Cavity and Storage Pozi Lining

Materfal Nonconformance Report 87:840
Installation Specification for Replacement of Drywell Vessel Core Sample Plugs

The inspector's review of these documents indicated that the prescribed activities were performed in accordance with appropriate procedures: Repair welds were inspected using vacious NDE procedures (magnetic particle, liquid penetrant and vacuum box). Documents included Quality Aszurance require= ments including inspection points and records. A sampling of welding activities indicated the use of appropriate ASME Section IX qualified procedures.

The licensee is currently exploring mathods for removing the wet sand and possible repairs to reinforce the arywell if required. The cathodic
protection system which has been in operation for several years has not been effective apparently because the major sourie of leakage has been eltminated.

5.0 Conclusions

On the basis of the above findings, the inspector concluded that the licensee's program for monitoring, repairing and evaluating the corrosion problem was being conducted in a systematic manner in accordance with prescribed procedures. Since the majon sources of leakage has been found and corrected, no significant leakage has been abserved as indicated by frequent inspections of five sand bed drains.

6.0 Management Meetings

Management was informed of the scope and purpose of the inspection at the entrance meeting at the start of the inspection. The findings of the inspection were discussed with licensee representatives during the course of the inspection and presented to licensee management at the October 30,1990 exit interview (see Paragraph 1 for attendees)

```
At ro time during the inspection, was written material provided to the
licensee by the inspector. The licensee did not indicate that proprietary
information was involved within the scope of this inspection.
```

