OPERATING DATA REPORT

DOCKET NO. 50-245 BATE 810210 COMPLETED BY G. Newburgh TELEPHONE (203) 447-1791 X4400

OPER	ATING STATUS			<u> </u>	
1. Unit N	м.	Notes			
	ting Period:Se				
	ed Thermal Power (MWt):				
	plate Rating (Gross MWe):				
	Electrical Rating (Net MW	662			
_	um Dependable Capacity (c).	504		
	ium Dependable Capacity (654		
	nges Occur in Capacity Rat			ince Last Passet Circ E	
o. II Char	nges Occur in Capacity Rat		I/A	ince Last Report, Give r	leasons:
			I/A		
				705 MIL.	
	Level To Which Restricted			595 MWe	2421
0. Reason	s For Restrictions, If Any:	Main_it	irbine complete	e 14th stage rem	ovai
			This Month	Yrto-Date	Cumulative
1 Hours I	In Reporting Period		720	6551	95,015
	r Of Hours Reactor Was Cr	itical	698.2	2614.6	69,073.6
	r Reserve Shutdown Hours		0	1248.5	2,775.8
	Generator On-Line		622.8	2351.7	66,477.9
	eserve Shutdown Hours		0	0	26.5
	hermal Energy Generated	(MWH)	1.198.531	4.375.177	118,805,304
	lectrical Energy Generated		370.700	1.346.000	40,141,896
	ctrical Energy Generated (351,493	1,262,395	38,292,349
	rvice Factor		86.5	35.9	70.0
0. Unit Av	vailability Factor		86.5	35.9	70.0
	pacity Factor (Using MDC	Net)	74.6	29.5	61.6
	pacity Factor (Using DER		74.0	29.2	61.1
	orced Outage Rate		13.5	40.2	16.6
			Date, and Duration		

8211030242 811013 PDR ADDCK 05000245 R PDR

25. If Shut Down At End Of Report Period, Estimated Date of Startup: __

INITIAL CRITICALITY
INITIAL ELECTRICITY
COMMERCIAL OPERATION

26. Units In Test Status (Prior to Commercial Operation):

Achieved

N/A

Forecast

UNIT SHUTDOWNS AND POWER REDUCTIONS

50-245 DOCKET NO. Millstone UNIT NAME 811007 DATE G. Newburgh COMPLETED BY (203) 447-179 TELEPHONE

REPORT MONTH September

No.	Date	Type1	Duration (Hours)	Reason-2	Method of Shutting Sown Reactor	Licensee Event Report #	System Code ⁴	Component Code ⁵	Cause & Corrective Action to Prevent Recurrence
11	810905	S	55.2	В	1	N/A	НА	TURBIN	Shut down to balance main turbine
12	810914	F	42	A :	3	N/A	IA	222222	Power surge to A.T.W.S. system causing scram air header to depressurize

F: Forced

S: Scheduled

Reason:

A-Equipment Failure (Explain) B-Maintenance of Test

C-Refueling

D-Regulatory Restriction E-Operator Training & License Examination

F-Administrative

G-Operational Error (Explain)

H-Other (Explain)

3 Method:

1-Manual

2-Manual Scram.

3-Automatic Scrain.

4-Other (Explain)

Exhibit G · Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161)

Exhibit 1 - Same Source

(9/77)

REFUELING INFORMATION REQUEST

	Name of facility: Millstone 1
	Scheduled date for next refueling shutdown: Fall 1982
	Scheduled date for restart following refueling: Winter 1982
	Will refueling or resumption of operation thereafter require a technical specification change or other license amendment? Yes. Technical Specification changes regarding:
	(1) Maximum average planar linear heat generating rate
	(2) Maximum critical power ratio
	Scheduled date(s) for submitting proposed licensing action and supporting information:
	Summer 1982
-	methods, significant changes in fuel design, new operating procedures:
	different fuel design or supplier, unreviewed design or performance analysis
	different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures: 172 "Retrofit" 8 X 8 fuel assemblies are scheduled for insertion in Cycle 9
	different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures: 172 "Retrofit" 8 X 8 fuel assemblies are scheduled for insertion in Cycle 9 (Reload 8) The number of fuel assemblies (a) in the core and (b) in the spent fuel store
- 7 6	different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures: 172 "Retrofit" 8 X 8 fuel assemblies are scheduled for insertion in Cycle 9 (Reload 8) The number of fuel assemblies (a) in the core and (b) in the spent fuel store and (core and (document)).
	different fuel design or supplier, unreviewed design or performance analysimethods, significant changes in fuel design, new operating procedures: 172 "Retrofit" 8 X 8 fuel assemblies are scheduled for insertion in Cycle 9 (Reload 8) The number of fuel assemblies (a) in the core and (b) in the spent fuel storool: (a) In Core:
- 7 6	different fuel design or supplier, unreviewed design or performance analysimethods, significant changes in fuel design, new operating procedures: 172 "Retrofit" 8 X 8 fuel assemblies are scheduled for insertion in Cycle 9 (Reload 8) The number of fuel assemblies (a) in the core and (b) in the spent fuel storool: (a) In Core:
- T C T C T C T C T C T C T C T C T C T	different fuel design or supplier, unreviewed design or performance analysismethods, significant changes in fuel design, new operating procedures: 172 "Retrofit" 8 X 8 fuel assemblies are scheduled for insertion in Cycle 9 (Reload 8) The number of fuel assemblies (a) in the core and (b) in the spent fuel storbool: (a) In Core:

AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO.	50-245		
UNIT	Millstone 1		
DATE	810210		
COMPLETED BY	G. Newburgh		
TELEPHONE	(203)447-1791		
TEELINGAE	X 4400		

AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY	AVERAGE DAILY POWER LEV (MWe-Net)	EL
588	17	543	
588	18	465	
589	19	589	_
544	20	589	_
0	21	588	_
0	22	589	_
262	23	589	_
551	24	594	
586	25	593	
587	26	593	
587	27	592	
587	28	592	
587	29	594	
281	30	591	
0	31	N/A	
251			

INSTRUCTIONS

On this format, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

MDC of 654 based on commitment to New England Power Exchange

September 1981 Operating History

September 1, 1981		Reactor power at 100%
September 4, 1981	2100 Hours	Decreasing reactor power to shutdown for main turbine balancing.
	2355 Hours	Generator off line.
September 7, 1981	2356 Hours	Reactor critical, rod 18-15, notch 6, period 114 sec., moderator temp. 230°F.
September 8, 1981	0711 Hours	Generator on line.
September 8, 1981	1800 Hours	Reactor power at 100%.
September 14, 1981	1131 Hours	Reactor scram due to low scram air header pressure caused by spurious ATWS system isolation.
	2225 Hours	Reactor critical, rod 38-39, notch 6, period 238 sec., moderator temp 470°F.
September 15, 1981	1057 Hours	Reactor scram due to IRM Hi-Hi flux.
	2150 Hours	Reactor critical, rod 18-31, notch 4, period 163 sec., Moderator temp. 453°F.
September 16, 1981	0528 Hours .	Generator on line.
September 17, 1981	1600 Hours	Reactor power at 100%.
September 18, 1981	0045 Hours	Reactor power at 40% for main condenser repairs.
	2030 Hours	Reactor power at 100%.
September 23, 1981	0015 Hours	Reactor power at 90% for turbine stop valve testing and main condenser backwashing.
	0117 Hours	Reactor power at 100%.

September 30, 1981

0015 Hours

Reactor power at 90% for turbine stop valve testing and main condenser backwashing. Reactor power at 100%.

0150 Hours