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ARETRACT

An analysis of the OECD~LOFT«LP~SB~2 experiment making use of
TRAC=PFLl/MOD]l is described in the report.

LP=SB2 experiment studies the effect of a delayed pump trip
in a emall break LOCA scenaric with a 3 inches eguivalent
diameter break in the hot leg of a commercial PWR operating
at ful' power.

The experiment was performed on 14 July 1983 {n the LOFT
facility at the Idaho National Engineering Laboratory under
the auspices of the Organisation for Economic Co-operation
and Development (OECD). This analysis presents an evaluation
of the code capability in reproducing the complex phenomena
which determined the LP«~§B-2 transient evolution. The
analyeis comprises the results obtained from two different
runs. The first run is described in detail analysing the
main variables over two time spans: sghort and longer ternm.
Several conclusions are drawn and then a second run testing
some of these conclusions ie shown.

All of the calculations were performed at the United Kingdem
Atomic Energy Establishment at Winfrith under the auspices of
an agreement between the UKAEA (United Kingdom Atomic Energy
Auth?rity) and the Consejo de Seguridad Nuclear Espafiol

(C8N) .
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COMMERCIAL IN CONPIDENCE
1 ZNTROROCTION

Experiment LP-8B~2 studies the effect of a delayed pumps trip
in & Small Breakx LOCA scenario with a three inches eguivalent
diameter break in the hot leg of &« commercial PWR operating
at full power. The experiment was performed on l4 July 1983
in the LOPT facility at the ldaho National Engineering
Laborastory under the auspices of the Organisation for
Economic Co-operation and Development (OECD)., The evolution
of the experiment was determined by several features, among
the most important of which were the flow patterns present in
the loop, vapour pull~through and ligquid entrainment observed
in the break line, and pumps behaiour.

Early in the transient a density gradient developed in the
vertical section of the hot leg. The break line density was
sensitive to thin gradient: moreover a preferential flow of
rteam was detected as soon as two-phase conditions occurred.
Under stratified conditions and later in the transient, the
break suddenly uncovered increasing the dépressurisation
rate; from then on some liguid entrainment was observed to
oceur.

The pumps behaviour was important i determining the fluid
velocities and density distribution as well as changes in
flow distribution and flow patterns in the loop.

Many of the features of TRAC-PFl/MODl were ue.d during the
analysis of the experiment, ie the flow regime dependent
constitutive eguation package, choked flow model, pump model
under two-phase conditions, fluid transport and asscciated
two~phase pressure loeses along the whole loop, etc.

The SETS numerics were applied to all the components in the
system as no three-~dimensional vessel was used,

All the calculations were performed on a CRAY X=-MP computer
and the Code versiors used were the Winfrith versions BO2A
for RUN A and BO2C for RUN B. Both versions contain Los
Alamos updates up to Version 12.7. A description of the
difference between the Winfrith code version and Version 12.7
is given in Appendix B.

2 LOPT FACILITY
2.1 gystes Description

The LOFT test facility simulates a four loop PWR 1000 MW
(electric) commercial plant. It has a thermal power of 50 MW
produced by nuclear fission sustained in the reactor core.
The system wae designed to simulate the major components and
system responses during LOCAs or operational transient
accidents. The facility components were inestrumented to
record the main system variables during the experiments.

AEEW - R 2202 1



The facility consiste of a reactor vessel volumetrically
scaled to 1/47: an intact loop with an sctive steam
generator, pressuriser, and two primary coolant pumps
connected in parallel: a broken loop connected by
recirculation lines to the intact loop to keep the fluid
temperature at about the core inlet temperature prior to
experiment, a reflood assist bypass valve connecting both
legs of the broken loop as a safety device, and two quick
opening valves (kept closed during SB-2 experiment)
connecting both legs of the broken loop to the . u,pression
tank header. During experiment LP-8B«2 the hlowdown valves
and isolation valves were kept closed as the break was in the
hot leg of the "intact" loop. The broke loop spool pieces
with orifices to simulate the steam gen .Jtor and pump
hydraulic resistance were not installed for this experiment,
but were replaced by a straight piping spool piece.

The LOFT ECCS simulates that of a commerciali PWR, It
consiste of two acow . tors, a high pressure injection
system, and a low pressvre .njection cystem, Each system s
arranged to inject scaled fliows of emergency core coolant
directly into the primary coolant system, During
experiments LP-8B-l and 2 .he accumulators and LPIS were not
used and scaled HPIS flow was directed into the intact cold
leg. Volume scaling of the HPIS flow was based on the
assumption that only one of three charainag pumps and one of
three HPIS pumps in the reference plant were available,

The LOFT steam generator located in the intact loop is a
vertical U~tube design steam generator. The use of auxiliary
feedwater flow to the steam generatour during the experiment
reflected the initiation and employment of backup emergency
feedwater in a commercial PWR until the simulated depletion
of feedwater source (about 30 minutes).

In experiments LP~8B-l and 2 the breakline was connected
between the midplane of the hot leg and the blowdown
suppressicn tank,

An axonometric projection of the LOFT system configuration
for experiments LP~S§B~-1 and LP~SB-2, and a ILOFT piping
schematic with instrumentation are shown respectively in
Figures 1 and 2, More detailed information on the LOFT
system configuration ie provided in Reference 1.

3 P DEL © ACIL

Starting from the nodalisation used in the analyses of the
experiments LP-LB-l and LP-FP-l, an existing Atomic Energy
Establishment of Winfrith (AEEW) input deck was adapted to
reproduce the actual configuration of experiments LP-8B-~l and
LP=8B=2 (Ref 2) these modifications were:=-

Removal of the three-dimensional vessel and
implementation of a one=-dimensional model.

AEEW - R 2202 2



Nodalisation of the broken loop.
Addition of pump injection,
Removal of accumulator and line.
Nodalisation of the hot leg break.

The final noding diagram is shown in Figure 3. The number of
components used to model the facility were 36, with 142 cells
and 42 fjunctions,

3.1 Reactor Vessel

After the initial consideration that in LP~8B~2 the

transient evolution in the vessel did not show strongly
asymmetrical behaviour it wae decided to take advantage of
the multistep numerics of TRAC-PF1/MODl, which are restricted
to one~dimensional components, by changing to a
one~dimensional vessel.

The one~dimensional vessel geometry was developed by
transposing fluid volumes, flow areas and cell lengths from
the three-~dimensional vessel cell mesh of the LP~FP~1 deck,
and the results were cross checked with the LOFT refererce
documentation,

The nature of the deecription, to TRAC, of heat structures
(spezification of a pipe's internal radius and thickness)
prohibits the exact representation of the surface areas, and
volume and thickness of the vessel metalwork., Any two
parameters m&y be input precisely and some compromise between
all three may be used, The apprcach adopted here was to
concentrate on preserving the overall volumes and surface
areas of the metalwork, No representation of two sided heat
structures is available in the one or three dimenseional
vessel, resulting in a further substantial limitation.

On the basis of steady state mode caiculations, friction
factors were derived which enable reasonable agreement with
the available pressure drop data to be obtained., Five of six
core bypass paths were modelled (see Figure 4): Bypass Path
1 (lower core support structure bypass), Bypass Path 2 (lower
end box bypass) and Bypass Path 3 (gauge hole bypass) were
represented by the side arm of a TEE component (Figure 5).
Bypase Path 4 (outlet nozzle gap) was modelled ae a PIPE.
Bypass Path 5 (core barrel alignment key) was represented by
a PIPE component between the two sections of the upper
plenum, It was not possible to model Bypass Path 6 (core
filler block gap) because the one-~dimensional core component
is permitted to have only two junctions, The downcomer
bypass was also modelled.

AEEW - R 2202 3



P i T e A

3.2 Steam Generator and Steam Line

The steam generator consisted of a boiler, a separator and a
downicomer region. In order to adequately reproduce the
subcooled region of the boiler, the bottom cell of the boiler
was halved in lenath, as well as the corresponding primary
side cells. The steam separator was simply modelled by
imposing perfect separation at its top junction.

The overall heat losses were set to 21.4 Kw as the best fit
to the ava lable data (Ref 3).

Heat structures in the stesm generator were better
represented than in the vessel due to the capability of the
steam generator component to cope with two-sided and multiple
heat structures.

The friction loss in the junction between the downcomer and
the boiler was modified to fit the reported recirculation
ration 4.8, No steam bypass valve was modelled; its function
was taken over by the main steam control valve., A detailed
description of the modelling can be seen in Figure 6,

3.3 Intact and Broken Loops

The loss of coolant occurred through a break in the intact
loop hot leg, therefore the hot leg representation in the
TRAC deck was modified ¢t accommodate the break.

The length of the bsoug line was 5.6l m with flow 'ro,
section of 6.82 107 m* aid a nozzle g! 1.2668 107™% m* that
corresponds to a diameter of 1,27 10 m. The length of the
cell connectina tc the nozile was made equal to 0.1 m. The
HPI8 discharged into the cold leg at an angle of 90° to the
mainline,

A characteristic of the LOFT facility ie the existence of a
fluid path connection butween both legs of the broken loop in
order to egualise the pressures between the upper core and
upper downcomer, making it easy to flood the core under
unexpected conditions, This bypass was supposed to be closed
during the experiment but a leakage of about 5,3% of the
circuit flow (480 kg’sec) passed through the reflood assist
bypass valves (Reference 3). In the nodalisation the flow
area of this junction was adjusted to obtain a flow rate in
reasconable agreement with the data.

4 EXPERIMENY LP-§B:-2

Experiment LP~SB-2 addresses the analysis of a small break
loss of coolant accident with the break at the midplane of
the intact loop hot leg. In contrast with LP-8B~l the
primary coolant pumps were running for most of the experiment
until the trip set point on pressure was reached,
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A detailed description of the experiments is found in
Reference 4,

4.1 gteady State Calculations

Starting with input conditions well awcy from the operating
steady state, 500 secondes of steady state calculations were
run to achieve a reasonable degree of convergence. During
this period the predominant timestep was 1 sec and the
(CPU/Problem) time was 0.36. 1In order to obtain a final
steady state a subseguent run of 70 secs with a maximum
timestep of 0,1 sec was performed: the (CPU/Problem) time was
2.0, The total (CPU/Problem) time ratio was 0,56,

To establish the required steady state a control system was
implemented acting on the foliowing variables:=-

Steam generator mass balance
Downcomer liguid level
Secondary pressure

Primary system pump speed

A further description of the control system may be found in
References 5 and 6,

The model environmental heat losses from the primary side
were 224 ¥w and 2..4 Kw from the steam generator in agreement
with Reference 3,

The percentage of the loop mass flow (480 Kg/s) diverted
through the different bypasses was the following:~

Component
79 Core Barrel Alignment Key 0.04%
83 Outlet Nozzle Gap 2.7%
8% Downcomer Bypass 20%
89 Core Bypass 3.5%
3l Reflood Asesist Bypass Valve $.3%

The obtained primary side initial mass was 5640 Kg, The
total deviation with the computed inventory for the LOFT
facility of around + 7,68, A further study on the broken
1§op structure allowed for a reduction of thic offset up to a
+3.8%,

The steam generator secondary side water mass inventory
obtained for the steady state was 2089 Kg.

The steady state initial conditions obtained are shown in
Table 1.
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4.2 Transient Boundary Conditions
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was not observed in the calculation resulting in a lower
density than the experiment for a period of about

200 seconds. In general, though, the density in the
cold leg is reasonably well reproduced during this
period.

The calcilated density in the hot leg initially
increased because the more dense fluid overrode the
incipient voidage being traneported from the vessel
during the first 100 seconds; from then orn the density
decreased steadily. Early in the experiment (~ 50 secs)
a more or less continuous density gradient develops in
the pipe and at around 600 seconds it turns into a steep
gradient indicating a probable flow transition. This
complicated pattern is not observed in the cold leg as
the mixing from the pumps tends to maintain an
homogenous void distribution in the cross section of the

pipe.

As is clear from Figure 22, a systematic overprediction
¢! the break line density was obtained; the calculated
density practically matches that of the average hot leg
while the experimental is almost that of the top beam in
hot leg¢. This vapour pull-through phenomenon is not
modelled in the code.

$.1.2.5 PFluid Velocities

LP-SB~2 experiment was characterised by he long time
both reactor coolant pumps were running. During the
period under study no cessation of loop forced flow
happened, therefore the fluid velocity in the loon was
closely related to the pumps performance. The : iuction
in pump pressure riese implied a reduction in fluid
velocity: this trend was specially well reproduced in
the cold leg (Fig 23). The calculated velocity
reduction in the hot leg was analogous to the one in the
cold leg but it 4id not fit the experimental trend so
well (f"ig 24). The fluid velocity in *he downcomer had
an initial value lower than the experimental one, the
flow ‘irected through the downcomer bypass c(.uld account
for most of this initial mismatch, Figure 25. The
constant decrease in velocity observ-d4 in the experiment
is not observed in the calculation. An asymmetrical
flow distribution in the downccmer an ulus could explain
in some degree this discrepancy.

The calculated fluid velocities in the core inlet and
outlet were multiplied by 1.3 to account for the
difference in flow area in the measurements location
between the experiment and the calculation (Table 4):
with this correction the results obtained are shown in
Figures 26 and 27 respectively. The results obtained
before the pumps degraded show a better agreement than
after. The pumps degradacion was not reproduced with
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5.1.3.3 Density Distribution

The calculated hot leg density (Fig 26) shows an
evolution in reasonable agreement to the experiment up
to ~ 1500 sec»nds in which the calculated and
experimental trend noticeably starts to differ. In the
calculation no forced flow cessation is detected and at
~ 1800 seconds the hot leg is completely depleted while
in the experiment forced flow cessation is observed
which res:lts in a fall in the hot leg level but later
the level rises again. The explanation given in
Reference 4 is the following: The level rise is...

“due to a coolant density decrease in the core as a
result of decreased fluid velocity and a liquid level
drop in the downcomer because the pump operation
pressurised the cold leg and upper part of the downcomer
relative to the upper plenum. The downcomer liquid
level alsc decreased due to the manometer effect between
the column of liquid in the dcwncomer and the column of
less dense coolant i{n the core and upper plenum". After
the punps werv tripped the consequent increase in the
core vold fract.on accounts for “he observed rising in
level. This late rise in level was not observed in the
calculation due to the small inventory of water
remaining in the system which 4id not allow the core
swell level to reach the nozzles.

The calculated tendency in the cold leg (Fig 37) was
quite similar to that of the hut leg, reproducing the
phencomena observed in the hot ‘eg. Note, though,

that after the pumps were tripped an increase in the
cold leg density was observed. This is due to the
growth of the layer of water coming from the HPIS which
at this time ie no longer dragged to the vessel by the
steam previously pumped from the pumps. At the same
time the density in the loop seal increased as the water
was running down to the bottom of the loop seal from the
cold leg. The experimental trend is markedly different
frcm that of the hot leg. First of all there was no
density gradient across the pipe until ~ 1200 seconds,
due to the mechanical mixing provided by the pumps. As
soon as the forced flow ceased, around ~ 1500 seconds,
the fluid stratified. It is thought that after ~ 1200
seconds of transient the transport of liquid in the
upside of the U~tubes »f the steam generator greatly
worsened due to the low velocity of the steam and to the
onset of clear stratification conditions througout the
hot leg. This produced a gradual depletion of the cold
leg with regpect to the hot leg, and as a result the
level above th> bottom of the pipe was considerably
lower than “hat of the hot ‘eg. After the pumps trip a
jump in the cold leg density was observed. This was due
to the level increase in the downcomer that reached the
cold leg level allowing its flooding. Once the leve.
was enough to pass over the pumps outlet lip (~ 10 com
height) part of the liquid ran down to the loop seal.
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In the nodalisation used this lip was not modelled,
therefore the flow to the cold leg was greatly
favoured.

The break flow density (Fig 38) was systematically
overpredicted until the hot leg pipe emptied, From then
on the density was correctly calculated,

5.1.3,4 Fluid Velocities

The liquid and vapour velocities in the downcomer (Fig
39) followed a cuite different trend with one another.
To start with there is an initial slip induced by the
steam buoyancy. The liquid velocity shows an increasing
trend as the void fraction increases, as a result of the
liquid fiow are: reduction. At around 2000 seconds the
void fraction starte to decrease, reducing the lig'id
velocity until it stagnates., The steam follows the
opposite trend, and after a further decrease in the pump
Ap at ~ 1200 seconds and the depletion of the broken
loop, it changes direction, and instead of flowing
towards the core through the lower plenum it rises,
going to the broken loop cold leg nozzle, towards the
broken loop hot leg via RABV,

T™e trend observed in the measurement from the
experiment is markedly different. The decrease in
velocity is sharper and at around 600 gseconds the
valocity is extremely low, Meanwhile the velocity in
core inlet, Figure 40, dces not reproduce this

.sult, having at *hat time a high velocity. This
points to an asymmetrical distribution of the flow in
the downcomer, in which most of the flow is falling in a
fairly narrow section, centred on the cold leg nozzle.
This could be supported by the fact that the measurement
location in the downcomer is situated at ~ 160° from the
cold leg nozzle. This suggests that the use of a three-
dimensional model of the vessel in a SBLOCA simulation
could be beneficial.

In the calculated core inlet velocities there ie an
initial slip due to the positive effect of the buoyancy
of the steam bubbles. The liguid velocity red.ces at a
lower rate than the experiment although the pumps 4P
(Fig 41) is well reproduced; at ~ 1200 seconds the
further decrease in the pumps pressure rise is followed
by a sharp reduction in the ligquid and steam velocities.
Finally there is a residual liquid flow up to ~ 2000
seconds when the flow definitely stagnates,

The velocities in the core outlet (Fig 42) practically
follow the core inlet velocities. The evolution of the
liguid and steam velocities after the pumps trip refl ct
the level drop in the core followed by the minor core
uncovery.
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The hot leg ve.ocities (Fig 43) are following the same
trend as the core velocities. Just after the sharp drop
in velocities after ~ 1200 seconds the code detects
stratified flow conditions, according to the Taitel
Dukler's criterion built into the code flow regime map.
From then on the liguid and steam velocity are less
strongly coupled and as a resuvlt the slip ratio
increases markedly. No cessation of the ligquid flow is
calculated, stabilising at a velocity of around 1 m/s
when the bottom of the pipe fluid velocity detector
indicates stagnation. Along the top of the pipe the
steam is flowing toward the break and the steam
generator. Once the pumps are tripped a sharp decrease
in the velocities is detectrd and a residual steam flow
is maintained feeding the break, The liguid in the
upside of the steam generator is observed to begin to
drain towards the inlet plenum at around ~ 2000 secs
where it stagnates until the pumpe are tripped. Then
the ligquid is drained back to the hot leg.

The experimental and calculated cold leg velocities,
are very similar to those of the hot leg. The code
detected stratified conditions at about the same time
as in the hot leg independently of the strong mixing
produced by the pumps.

An important feature wbserved in the calculation is the
asymmetrical further pump degradation observed at around
1200 secs. A sudden instability develops in which the
pump number 2 is delivering all the fluid, while through
pump 1 some fluid is being recirculated. As a result
the system velocities drop quite substantially. A
somewhat similar behaviour is reported in Reference 4
developing at the moment of the pumps degradation in the
experiment (582 secs).

The break line velocities (Fig 45) are well predicted
before the break uncovers ~ 1200 secs, at that time the
calculated density in the break line is much bigger than
in the experiment, At around ~ 2000 secs the code
cetects the break uncovery and then the velocities are
again well predicted.

As a result of the reasonable representation of the
velocities and 7 1sities in the pipework the hot leg
mass flow rate rig 46) was in good agreement with the
experimental results up to ~ 1500 seconds.

5.1.3.5 Transient Mass Inventory

The permanent overestimation of the break mass flow rate
(Fig 47) produced a greater mass loss than .n the
experiment. At around ~ 2000 secs the calculated rate
of mass loss equalised the inlet water from HPIS and
pumps cooling injection. In the experiment this time is
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subject to a large uncertainty. A possible time at
which the LOCA was effectively termina:ed is ~ 2200

BeCs .,

The minimum inventory calculated was about 1100

Ky while in the experiment it was around 1800 Kg (Figure

48).
5.1“

5.2 Run B

Qggc;u!;ggg Derived From Run A

TRAC PF1-MOD1 (12.7) provides a reasonably good
account of the evolution of the SB=-2 traneient.,

The main discrepancy between the experiment and
calculation is the overprediction of mass loss
from the primary esystem.

The TRAC built-in flow regime map performs well
in identifying fully stratified conditions.

To improve the predictive capability of TRAC for
transients where phase separation upstream of
the break affects the break density, reguires a
model relating qual’‘ty in a branch to the
thermal hydraulic condi* on of the fluid in the
main pipe as well as corsidering the geometric
characteristics of the break line junction to
the main line.

Predi * ‘on of the corre:: b -2k flow should
redu remove d‘s .paio. .8 between the
exper’ - . al and c.ic.latedi~

- Primary Pressure

- Hot Leg Density

- Cold Leg Density

- Primary Mass

-~ Vessel Invertory and Subsequent Heat Up
The use of a one-dimensional vessel did ndt
allow reproduction of an asymmetrical flow
distribution in the cross section of the
downcomer annulus and its influence in the
transient flow distribution through the
bypasses, especially the RABV bypass,
SETS allow timesteps ~ 0.5 seconds to be used

for large parts of the calculation, and results
in relatively economical computing times,

In order to test the validity of Conclusion e derived from
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Run A a secund run was made. Trne main modifications with
respect to the input deck of Cas2 A where:~

- Set up, using the TRAC control logic and twe
offtakes, of a syst-m which effectively could control
the quality in the break line as a function of the
void fraction in the hot leg.

= Modification of pump head multipliers to force a
sharp degradation at an inlet void fraction of ~ 0,35
and further modification of Pump No 1 head
multipliers in order to try to reproduce the
asymmetrical pump behaviour after degradation,

= Addition of a factor /x missinyg in the determination
of the critical gas velocity in the stratified model
(agreed from Los Alamos Raference 16),

The steady state conditions and chronology of events can be

seen

AEEW

in Tables 5 and 6 respectively.

5.2:1 Results Rev)ew

The control on the quality in the break line allowed the
reproduction of the experimental density with adeguate
accuracy during all the transient (¥ig 49). At the
moment at which the pumps were tripped the level in the
hot leg increased, &'l wing the discharge of a more
dense mixture. This t. wnsition was slightly accentuated
in the calculation although the final density at 3000
secs is correct,

The break mass flow rate (Fig 50) shows as expected a
much better agreement with the experiment than ir Run 2.
It is cbserved that the region from subcooled hlowdown
to very low quality two phase shows a tendency o
underpredict the mass flow, and that at higher guantity
there is a tendency to overprediction.

The primary system mass inventory (Fig $1) agrees well
with the experiment, the minimum inventory is reached at
around ~ 1865 secs with a mass of about ~ 2060 Kg., In
the experiment the minimum inventory is reached after ~
2200 s~cs with a minimum mass of about ~ 1800 Kg that
agrees well with the calculation [conaidering the
initial offset of ~ 250 kg|. The slight underprediction
of tne .veak flow in the very hiagh guality region

X » C.99 implies a faster mass inventory recovery than
in the experiment. The correct description of che break
flow as well as the appropriate heat losses results in
an excellent description of the primary prescure

(Fig 52). The change in the depressurigcation rate after
break uncovery is properly calculated. The secondary
side pressure (Fig 53) has improved as well, although
some discrepancies in the trend of depressurisation
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appear after 1200 esecs. Corresponding to the good
primary pressure calculated, the fluid temperatures are
very well reproduced. The ligquid hot leg temperature is
shown in Figure 54, Similarly the cladding temperature,
Pigure 55, in the core was correctly calculated; the
increase in temperature¢ after the pumps trip was due to
the increase in pressure following the decrease in
voluwnetric flux through the break after the growth of
the hot leqg liquid level.

The smaller amount of mass lost through the break
implied in general a higher density of the fluid

throughout the transient thar in A, In Figure 56
the hot leg density is show o value obtained up to
~ 1400 secs is reasonable w ne evolution of the
density after tiat time, as ssation of forced flow
was obtained, differs signific v from that of the
experiment and a constant value the density,

corresponding to a nornalized col.apsed level above the
bottom of the pipe of ~ 0.3 was obtained. After the
pumps were tripped an increase in the hot leg density
was obtained due to the draining of water from the
upside of the steam generator, and the increase in the
swell level of the vessel which overrides the decrease
in the collapsed level in the core. The computed cold
leg density (Fig 57) shows a similar behaviour to that
of the hot leg before the pumps degrade., After the
gsubsequent sharp decrease in velccity a build up cf
liquid with respect to the hot leg is calculated. The
fajlure of the code to predict the end of the forced
flow in the system prevents the pumps from emptying the
loop seal and cold leg, therefore the density calculated
from ~ 1400 secs on is considerably higher than that of
the experiment. Once the pumps are tripped the fluid in
the cold leg drains partly to the vessel and partly to
the loop seal producing a considerable reduction in the
cold leg density,

The transient fluid velocities in the system were
significantly affected by the modifications %o the pumps
as well as by the higher densities calculated in Run B,
compared to Run A. The downcomer liquid velocity (Fig
§58) ie no longer steadily increasing as in Run A, At ~
1200 sece the broken loop empties, establishing a new
flow distribution in which the steam content in the
downcomer rises and is diverted tc the upper plenum via
the RABV (vapour velocity negative in Fig 58) while
practically only liquid is flowing to the core. This
strongly affected the density distribution in the core,
Figure 59, inducing a voidage decrease end a slight drop
in the swell level., The general trend of the core inlet
velocities is reasonably reproduced (Fig 60), although
the rate in decrease of the velocity ies always
underestimated. At around 1300 secs the liquid and
steam velocities became stable and no cessation of the
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forced loop flow is observed., The fluid velocities
calculated in the hot leg (Fig 61) d4id not reproduce the
permanent slowing down observed in the experiment. On
the contrary after the pumpe degradation an almost
constant velocity is obtained. The reasonable
description of the pumps delta pressure (Fig 62), that
after degradation shows a weak dependency on the voidage
and volumetric flux, seems to eliminate its influence as
a main source of the problem unless the data is
significantly in error. Three factors could play an
important role in the explanation of the discrepancy in
the velocities. First of all there could be an
underprediction of the two-phase preossure losses in the
circuit., Secondly the considerable liquid mass flow
transported from the hot leg, under stratified
conditions, to the steam generator inlet plenum,
overcoming the upside bend section of the hot leg which
prevents the loop seal from being depeleted. Thirdly,
the phases separate in the downcomer inlet annulus, with
the steam being bypassed through the RABV line, If the
RABV leakage were smaller this would present a greater
resistance to the general loop circulation, in
particular reducing the steam velocity, As a result cof
the poor prediction of the velocity the mass flow rate
in the hot leg was not properly reproduced after the
pumps degradation (Fig 63). The prediction for
tratified flow was acceptably performed in the code; at
around 700 secs (at a steam velocity slightly below the
experimental value of 1.5 m/s) transition to stratified
flow begins. At ~ 1150 secs the code computes pure
stratified flow that is in good agreement with the
expariment. (See Chapter 6).

Before the break uncovery the velocities in the brea’
line (Fig 64) showed a permanent overprediction while
after the uncovery, when practically only steam was
flowing, the velocities were underpredicted. As the
density in the break line was correctly .eproduced a
possible explanation would lie in the velocity predicted
by the choked flow model.

5.2.2 Conclusions Der: £ Run B

a The good reproduction of the break line density
notably improves the results for:-

- Primary Pressures and Temperatures

= Primary Mass Inventory

- Vessel Inventory (No Core Heat Up)
b The removal of a model deficiency in the

description of break flow aliows a deeper insight
into the ability of TRAC=-PFl1/MOD1 in reproducing
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phenomena which ctherwise would have been masked,
eg loop flow velocities.

¢ Taitel anéd Dukler's critericon built into the code
performs well in determining fully stratified
conditions. The interpolating criteria used by
TRAC properly identifies the transition to
stratified flow, although at & lower steam velocity
than in the experiment.

d The pumps bshaviour in LP-SB-2 experiment is
considered to have been only partially reproduced
and considerable uncertainties remain about the
true pump characteristics for the LOFT
configuration.

@ The loop iluid velocities never dropped toc almost
stagnation conditions in contrast to indications
from the experiment. It is possible that a better
prediction of two-phase pressure losses and ligquid
transport from horizontal stratified conditions in
the hot leg toward the inlet plenum of the steam
generator, together with an accurate RABV bypass
flow may he'p to remove the discrepancies,

6  SELECTED ITEMS
6A LP-SB-2 Pumps Modelling

The experiment LP-8B-2 was characterised by the important
role played by the primary ccolant pumps. They were a main
factor in explaining many of the features observed in the
experiment: density distribution, RABV and vessel flows, and
flow regimes.

The uncertainty involved in the descriptioun of the two-phase
performance of the pumps has been regarded as a limiting
factor in the capability to reproduce the experiment (Ref 9).
The intact loop of the facility contains two similar pumps
working in parallel. The strong coupling between both pumps
constitutes a potential source of instability as soon as
asymmetrical perturbations in the flow conditions affect the
pumps inlet,

The assumption of sinilar behaviour of both pumps could not
be sustained as the actual trend observed in the experiment
pointed to a clearly asymmetrical one (Ref 4). Thus in order
to create an acagquate set of head multipiiers it would have
been desirable to know the individual fluid conditions and
performance for each pump: unfortunately that was not the
situation and the available data only provides an average
description.

In experiment LP-SB-2 tre cdensity measurement in the vertical
section connecting the steam generator with the bottom of the
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The consequences of this asymmetrical degradation were
important as the fall in the pressure increase provided .
the pumpe implied a sudden drop in the loop velocities (P.
43) and the onset of counter-current flow in the downcomer
the vessel (Fig 39). A somewhat similar asymmetrical
degradation wae reported in Reference 4 to happen in the FF
experiment at the moment of the pumps two-phase performancc
degradation. In order to try to reproduce this experimental
trend in RUN B the pump head multipliers were modified as
shown in Table A2: it is observed that the head multipliers
Aiffer from one pump to the other after degradation, this in
fact constitutes a coarse approximation but allowe us to
induce ti.e asymmetrical behaviour to happen at the monent of
the degradation as it actually happened in the experiment.
An indication of the ability to reproduce these results may
be compared in Figures A8 and A9 (no possible guantitative
comparison is available as the motor and pump efficiencies
are not known for SB=2). At the murent of the degradation
Pump 2 takes over the delivery of the fluid mixture, thus
increasing the hydraulic torqgue while through Pump 1 soma
fluid is being recirculated from Pump 2. The mass flow for
each pump are shown in Figure AlO, where the sudden reduction
in the loop masas flow is evident; this in fact happens to be
too large at this stage if we compare with the experimental
result, Figure 63, which suggeats that the degradation has
not been accurately reproduced and therefore a better set of
head multipliers would be desirable.

6B Break Flouw Density in Experiment SB~2

The ability to reproduce the flow through the break line in a
small break LOCA scenario constitutes an important, if not
the main, factor in performing a satisfactory best estimate
calculation,

The problem of predicting the correct break flow can be
divided into two parts, first obtaining the corrrect mixture
density of the fluid convected from the main pipe to the
break line and recondly predicting the liquid and steam
velocities at th: break norz-le under choked flow conditions,
This section de._ls with the first of these two elements.

In experiment SB-2 the observed density in the break line
strongly differed from the average of the density in the hot
leg: being biased towards the drnsity at the top of the hot
leg pipe (Fig Bl). The pressure drop from the hot leg to the
break line was not large enough to explain the observed
Aifference between the average density in the hot leg and the
break line in terms of flashing so it should be related to
the phenomenon of vapour pull=-through.

To reproduce this behaviour has been a common problem for

different organisations and codes including TRAC~PF1=MOD1
(see Fig 38) trying to reproduce the LP-8B-2 experiment, eg
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Refarences 9, 10, 12, and at the present time it remains ae
an open problem,

No information has been found covering the characteristice of
the experiment 8B-2, tha la: liquid and steam velozities in
the main pipe up to 8m/eec and flow condltions from bubbly
with high density gradient {n the cruss section to stratified
flow with steam at the top of the pipe and nonhomogenous
two-phagse in the bottom of the pipe. The available
information covered purely stratified flow with stagnant or

very small velocities in the liquid, g References 13 and
14,

From Reference 13 a correlation of the type:=

h = hy
KppancH @ EXP | Cg| e )
g " M,

h = collansed liquid height in hot leg

was attempted, where the height for the cnset of entrained
fluid hy; is obtained from:=-

0.2
/ 2
hy 1 & ( l"g Branch )

- B o = e

D 2 D

and analogously the height for the onset of vapour pull
through hq:-

1 c

h e e
e (ﬁ'%{*wﬁ>
A 4 Uﬁ\ Lt Py - Pgl

where C,, C; and C, were constants to be obtained, #, and f,
are the gas and liguid mases flux respectively, D is iho main
pipe dlameter. The resulta obtained were unsatisfactory due
to the uncertainty in determining the mentioned constants and
the inability to find a single correlation applicable to all
the transient, in particular {t wae difficult tc reproduce
the transition between the steady drop in density up to 1100
seconde and the quite sharp decrease as the break uncovers
(1100 =~ 1300 secs).

An alternative approach was finally adopted and the quality
in the break line was correlated to the void fraction in the
hot leg in the form of a table of pairs (a, x), see Table BL,
being ueed in conjunction with the Winfrith offtake model
(Ref 15). This of course implied that {t would be only
applicable to the 3B-2 experiment thus losing the generality
of a proper correlatiorn.. The values fnr the vold fraction in
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the hat lag were deduced from Referance %, although for

¢ » 9.4 vhe correlated q:ality had tc re slightly rt-udauatod
4n wn iterative fashion to reproduce the experimental timing.
To jmplament thia correiation the hot leg noding was modified
ue seen in Fig B2, An extra cofftake sttached to the hot leg
wns added and invoking a pure neparstor model would guarantee
» source of pure steam from the hot leg which would be
discharged to the brask line, The flow of steam delivered to
ihe break line was controilzd by the so called “control
qualiity valve". The schere of the control logic is provided
ir. Pigure B.3, At the same time the original offtake from
the hot ley maken use of the Winfrith offtake model for a
horigontal offtsxe when the level of the stratified fluid
drops balow a determined values. This way of implementation
sae the advantage of allowing the testing of different
correlations in a straight forward way, eliminating the
problems involved in modifying the cell edge quality within
the TRAC code.

The results obtained with this procedure can be seen in
Figure 49,

6C  Plow Regimes Prediction for LP-SB-2

Frow the point of view of the a. .lysis of flow regimes, the
experiment LP=SB-2 constitutes an interesting example of the
important role the axact nature of the flow can play during
the evolution of a transient. In LP=-SB=2 the break flow was
strongly determined by the flow conditions in the hot leg.

"he existence of density data at different elevaticns in the
hot and cold leg allows us to obtain at least an idea of the
somplexity of the flow patterns during the transient. As can
be saen in Figure 56, early in the transient (~ 200 secs) the
outputs from the gamma densitometers indicate the onset of a
density gradient across the pipe with trailing bubbles in the
upper section of the pipe. After the pumps degradation and
up to ~ 1200 secs the reduction in fluid valocity allows the
staam to concentrate in the upper half of the pipe and as &
result the density gradient noticeably steepened. The
possibility of strat,fication in the sense of pure steam in
the very to, »f the pipe could be considered but the idea of
a well defined level cannot be supported as the density
reading in the top of the pipe indicates the presence of
liguid while the other two measurements indicate the presence
of steam. From 1200 seccnds on, the top beam is indicating
only the presence of steam; from Reference 9 and according to
the trend of the collapsed and swell levels the flow was
stratified up to 1400 sece, stratified with bubbles up o
2000 secs and from then on pure stratified again. In the c¢old
leg, Pigure 57, there is no detachment between the
densitometer readings up te 1200 secs which is due to the
transport of the mixing created by the pumps. From 1200 secs
up to 1500 secs a density gradient is present in tr~ crosse
section of the pipe. from 1500 secs up to 2000 sec. the noisy
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reading from the densitometers could indicate the presence of
erratic waves probably cauvsed by fluctuaticns in the fiow
delivered from the pumpe am the loop seal is being depleted.
Despite this the fiow regime may be censidered as etratified
throughout the rest of the transient.

The recognition by TRAC of some of t* flow patterns involved
in the transient is difficult especiailly when they involve
non fully developed regimes, ie partially stratified flow in
which the separation of the ligquid and steam prases is far
from complete. The TRAC flow regime map from Reference 5 is
shown in Figure Cl plotted ae log (FROUDE) ve vapour void
fraction. Inciuded on the map is the TRAC implementation of
Tajtel-Dukler stratified flow criterion and the limit for
interpolation for transitions lanto stratified flow.

The prediction for Run B can be considered satisfactory as
the code is able to predict the trend of the experiment
fairly well., Up to ~ 500 secs, sez Figure C2, only bubbly
flow is predicted. From 500 secs up to ~ 700 secs some
welghting with slug is made. At 700 geconds the
interpolating criterion for stratified flow iv reached.
Finally at around 1150 sece pure stratified flow is
predicted, this »e¢ing the flow ragime for the rest of the
transient., For the ¢old le¢ the results obtained indicated
transition to fully stratified conditions at about the same

‘time as that in the hot leg, that is ~ 1100 secs; this i¢ not

the trend of the experimental measurement which by that time
indicated the onset of a vertical density gradient. 1his
discrepancy is mainly dependent on the high degree of
mechanical mixing in the fluid induced by the rotating pumps
being traneported along the cold leg. Thiw effect should be
taken inno account as the flow through a bHreak in the cold
leg would be dependent on the fluid charscceristics in the
main pipe and in particular the void profile at the break
line offtake location, It should also e noted that for Run
B a miswing factor /n in the determination of gas critical
velocity in the Taitel Dukler Test was implemented 2s agreed
from Les Alamos, Reference 16,

7 GUMMARY AND FINAL CONCLUSICONS

& Two calculaticns of LOFT test LP-SB«2 were carried
out with TRAC PF1/MODLl (appr ximately Version 12.7;.

¢ A one~dimensional description of the vessel was
implemented in the input deck. Due to the relative
importance of the different core bypasses, espscially
the RABV, it would be desirable to use a 3-D
representation of the vessel in order to assess the
degree the prediction ¢f the transient evolution is
affected. It would also help to evaluate the
possibility of asymmetrical flow distribution in the
downcomer annulus.
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¢ The representation ¢f the vessel,
three~ dimensional, %“as the limita

descri ion for heat structures. No double sided
heat ¢ ¢« ivre is available and thus the radial heat
£1lux mll the vessel structures is only

partl Ly rveproducsd At tY t

e present time |
inpertant limitation in the TRAC PF1/MOD

of the vessel and

desirable,
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was considered

¢ The use of large timesteps was found as a
source of running problems as the code
failed when trying to reduce the timest
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¢ The chronology :f events for Run A ar B matched the
experiment in s degree. Not surpri ngl when

1l reproduced (Run B)
es of the experiment results better

L.

on
the break flow is wei
overall reproduc

¢ Vapour pull through nnd liqu'd entrainment were
observed to occur at the offtake >f the break line.
TRAC PF1/MOD1 was unacle to recognise this phen
ag no relevant model is actually implemented relating
n & branch to the thermal h 1
d in the mall

i
ions of the flu nain pipe, as well as
i 8t
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\omenon
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ng the geometric characteri
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e ”‘e TRAC buil
entifying f

t=-in flow regime map performs well in
. o

ully stratified conditions in the hot
‘eg. The introducstion of =« missing factor vn
(modificaticon agreed by LANI i~ the determination of
the gas critical velocity (performed in Run B) helps
to improve the results and f):e code is able to
predict the initiation of the transition to
stratified flow at about the correct time, although
the steam velocity at that time is und restimated.

¢ The calculated flow transitions predicted for the
cold leg closely match in time those of the hot leg.
The experiment shows that the high mixing provoked by
the pumps maintains bubbly conditions for a long
period. This generation of mechanical mixing, 1its

~
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transport and then ites influence on the flow regime
map should be corisidered for small breaks located in
the cold leg. The break flow will still be a
function of the void profile in the cold leg, but
this is likely to be quite different from that in a
fully developed flow,

¢ The reproduction of the pumpes behaviour in LP«~SB-2
constitutes an important problem and no satisfactory
solution has been found yet. The pump model could
not be appropriately validated as the set of head
rultipliers was not completely reliable, because it
was deduced under the assumptions of p ..ps average
behaviour and similitude to L3-6 exreriment. Further
uncertainties were i{nvolved i{n thr reproduction of
the asymmetrical pumps degradaticn, ie pumps inlet
flow condition.

It seems likely that in order to reproduce the
observed behaviour a priori, more sophisticated
mode's of the pumps themselves, and of the effect of
the pump inlet branching geomutry on inlet
conditions, would be needed than TRAC currently
provides. Better data from the teet, however, wculd
probably allow an improved (a posteriori) fit within
the scope of the existing models.

¢ The velocities predicted by the code after the pumpese
degradation were not entirely satisfactory and the
steady rall in velocity observed in the experiment
was not reproduced. Finally no ligquid flow cessation
was calculated., Three possible causes may be
mentioned: underprediction of two-phase pressure
losses, handling of the liquid convected from the hot
leg towards the steam generator inlet plenum under
stratified conditions, and influence of the flow
through the RABV.

¢ The choked flow model predicted the results with
reasonable accuracy and the subcooled and two-phase
multipliers used for all the calculations were 1.0.
Small discrepancies in the velocities were observed
when the break line density was correct (RUNB).

¢ The mass loes predicted for Run A was large enough to
provoke a mild uncovery of the top of the core after
the pumpe trip, contrary to experiment. 1In Run B
the break flow was adequately predicted and the mass
loss clogely matched the experimental result. No
core uncovery was predicted.
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TABLE 1

INITIAL CONDITION POR EXPERIMENT LP~5B~2 - RUN A

Parameter

Core AT

Hot leg press
Cold leg temp
Mass flow rate

Power level

TRAC

O

Steam Generator Secondary Side

Liquid level
Pressure

Steam mass flow

Pressurizer
Liquid volume
Water temp

Pressure

AEEW - R 2202

618.

P

13

0.6462

w

Plant

18,6 + 1.7 °*K

~—
&
90
w

i+
O

11l MPa

480.0 + 3.2 kg/sec
49.1 + 1.2 Mw

3.13 +# 0.0l m

5.60 + 0.09 MPa
26.7 + 0.8 Kg
0.6462 + 0,002 m?

15.08 0.16 MPa

1+




TARLE 2

OPERATION SET POINTS FOR EXPERIMENT LP-SB~2

Action

Small break
valve copened

Reactor scrammed

Main feed water
shutoff

HPIS flow
initiated

Auxiliary
feedwater
initiated

Auxiliary
feedwater
terminated

Primary coolant

pump tripped off

AEEW - R 2202

Reference

time

intact loop hot
leg pressure

intact loop hot
leg pressure

isntact loop hot
leg pressure

time after
reactor scram

time after
reactor scram

intact loop hot
leg pressure

114

Plant

0.0

14,28

14,28

8.07

62.0

1800.2

3.161

TRAC

0.0 secs

14,28 MPa

14.28 MPa

8,07 MPa

62.0 secs

1800.2 secs

3.161 MPa



2MNE D
CHRONO 0 R_EXPERIMENT LP-SB-2 - RUN

time after initiation (seconds)

EVENT PLANT TRAC
Small break valve opened 0.0 0.0
Reactor scrammed 1.8 ¢t 0,08 e:31
Main feedwater shutoff 1.8 ¢ 0.2 2.31
Main steam control valve 2,8 t 0.2 3.4
started to close
Main feedwater isolated 4.30 2 0,058 4.14
Main steam control valve 14,8 ¢ 0.2 80. (a)
fully closed
HPIS initiated 42.4 2 0.2 41.:3
Subcooled blowdown ended $0,2 = 1 $3.3 (®)
Auxiliary feedwater 63.8 64.3
initiated
Pump two phase degradation se2.2 : 0.2 $90.0 (¢)
Indications of stratified flow ~ 600, 1200.0
in the hot leg
Collapsed level reaches break ~ 1000. (4) 804,0
level
Break started to uncover 1192.5 2 2.8 ~ 1920,
Primary system pressure 1290.0 = 45 1307,
became less than secondary
system pressure
Auxiliary feedwater shutoff 1864.0 2 0.2 1864,
Inlet flow exceeded outlet flow 2284.0 = 200, 2059.
Primary coclant pumps trzppoa <882.8 & 0.2 2635.

(3.16 MPa in primary system)

a) In the TRAC input deck the main steam contrcl valve assumed the
function of the steam bypass contrel valve. Thus it kept on
moving up to 80 seconds Wwhen it was latched c¢losed.

Tm"?.
b) That value is such that 100 -59&—-——a = C.]
SAT

) A snooth rather than a sharp degradation was obtained

d) From Reference 9

AEEW - R 2202 115



INSTRUMENT

FE-18T-1
ME-18T~1

FE-S5LP~1
ME-5LP~1

FE-S5UP~1
ME=-3UP~1

FE-PC~-803
ME-PC-803

FE-PC=1A,
ME=-PC-1A,
FE=-PC=2A,
M!'PC':A:

AEEW ~ R

and =2
and «2

and =2
and -2

and
'13,
‘181

'28;
-231

2202

IABIE ¢

INSTRUMENT LOCATIONS FLOW AREAS

-5UP=1

and
and
and
and

-1C
=-1C
-2C
-2C

LOPFT
Flow Area
(M2)

0.141

0.106

0.125

0.0007

0.0634

116

TRAC
Flow Area
(M?)

0.142

0.139

0.164

0.0634



TABLE S

INITTAL CONDITIONS POR EXPERIMENT LP-8B-2 RUN B

PARAMETER TRAC
Core AT 19,1
Hot Leg Pressure 15,11
Cold Leg Temperature 558.1
Mass Flow Rate 480.0
Power Level 49.1

Steam Generator Secondary Side

Ligquid Level 3.13
Pressure 5.60
Steam Mass Flow 25.8
Pressurizer

Liquid Volume 0.6462
Water Temperature 615.3
Pressure 15,09

AEEW - R 2202 117

PLANT
18.6 ¢ 1.7°%K
14,95 ¢ 0,11 MPa

+

§57.2 ¢ 1.5°K
480.0 ¢t 3.2 kg/s

49,1 Mw
3,13 ¢ 0.0l m
5,60 ¢ 0,05 MPa

26.7 ¢t 0.8 kg/s

0.6462 ¢ 0,0002 m?
615.8 ¢+ 8,2°K
15.08 ¢+ 0,16 MPa



TABLE 6

CHRONOLOGY OF EVENTS FOR EXPERIMENT LP-§B=2 Rus ¢

EVENT PLANT TRAC
Small Break Valve opened 0.0 0.0
Reactor scrammed 1.8 ¢t 0,08 1,93
Main Feedwater shutoff 1.8 3 0.2 1.93
Main Steam control valve .8 t 0.2 2.92
started to close
Main feedwater isolated 4.3 ¢t 0.085 3.7
Main steam control valve 14.8 ¢t 0.2 80 (a)
fully closed
HPIS initiated 42,4 ¢ 0.2 54.51
Subcooled blowdown ended §0.2 ¢ 1 70 (b)
Auxiliary feedwater 63.8 69.3
initiated
Pumops two-phase 582.2 ¢ 0.2 522
degradation
Indicators of ~ 600 ~ 700
stratified flow in hot
leg
Stratified flow fully ~ 1200 ~ 1150
developed
Break started to uncover 1192.% = 2.5 1175 (e)
Primary system pressure 1290.0 = 4.5 1178
became less than
secondary system pressure
Auxiliary feedwater shutoff 1864.0 = 0,2 1864
Inlet flow exceeded outlet 2284 t 200 1783
flow
Primary coolant pumps 2852.8 ¢ 0.2 2706

tripped (3.16 MPa
in primary system)

(a) In the TRAC input deck the main steam control valve
assumed the function of the steam bypass control valve.
Thus it kept on moving up to 80 seconds when it was
latched closed.

Tgar = Ty

(b) That value is such that 100 = 0,1

Tgar

(¢) 8Sudden change in depressurisation rate.
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PUMP HEAD MULTIPLIERS RUN A

3 Mla)
0.0 0.0
Q.15 0,14
0.2128 0.202
0.3 0.346
0.33 0.519
0.4 0.712
0.512% 0,702
0.5828 0.7%9
0.712 0.769
0.8125% n.731
0.912% 0.558
0.9625 0.2%
1.0 0.0

The characteristic curves were those implemented in TRAC for
LOFT with the exception of the first gquadrant of the fully
degraded curve that was nade egqual to zero,
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TABLE A.2

(RO e o e

PUMF HEAD MULTIPLIERS RUN B

[ %)
1 4
g .
y FARY
A:"
." n;
.
€ s s
L &
t f )
'
¢ Y
L . Fe.
PUMP ¢
M(a
4( 14
. - 4
J34¢
14 51
- 712
¢ , %0
RRYe 69
A‘A. 169
125 73]
] : EER
) § “‘( .:
)
e characteristi rves were those implemented in TRAC for
FT with the exception of the first guadrant of the fully
egraded rve that was made equal ¢ rerc
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DESIRED BRANCH QUALITY VS VOID FRACTION
IN THE HOT LEG

AEEW - R 2202

0.2¢54
0.2799
0.3084
0.3524
0.4
0.43
0.45
0.47
0.48
0.666
0.7%

IADLE D)

121

0.0
0.0048
0.0113
0.0194
0.027%
0.0378
0.0508
0.0638
0.0639
0.0680
0.0750
0.08
0.09
0.1040
0,15
0.9
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APPENDIX A

A IMES

A set of 26 snapshots describing the evolution of liquid and

steam velocites, fluid density and stratified flow conditions
for Run B is shown,

The nodalization can be compared with that used for Run A
(Pig 3). In the breakline the quality control valve has been
attached., Components 79 and 83 (vessel) are not included in
the snapshots frame.
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IDE BOO1

Identify Version., Change this ident for each change in a
version.

IDE BNO2
Correct core treatment in vessel.

Insert return in bite suite of subroutines.

IDE BOO3 BO2C only

Reset limit on stratified flow to 30 degrees
(ie ARCSIN(0.5))

COM WINF

This com deck contains the new Winfrith na list variable
triggers

COM WINC

This com deck contains the stratified volume flag and
variables for the condensation heat transfer mod

IDE w003

Option to bypass interface sharpener routines while leaving

the fine mesh switched on. See also W007 for changes to
namelist option.
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IDE w004

Plug weighting in interphase condensation heat transfer no
longer applied in stratified flow.

IDE w005

Allow wall condensation heat transfer in horizontal pipes

IDE w006

Allows negative friction factors.

IDE w007

Namelist extensions for W002 mods and printing diesgnostic
triggers.

IDE w008

Add stratified flow regime indicators for graphics. Add
simple stratified offtake model option for tee romponents.*
Add pointers for condensation heat transfer mod (W009).

* (Option not selected for calculation A).

IDE w009
Make ligquid velocity used in interface condensation heat

transfer continuous with changing void fraction.
(Option not selected for these calculations).

IDE w010

Alternative form of veid fraction for flow regime selection.
(Option not selected for these calculations).

IDE WOll

Mod to cure convergence problems in CHF use of secant
method.

AEEW - R 2202 150



IDE w012

Correct error in evaluation of forslund and Rohsenow ligquid
heat transfer coefficient.

IDE w013

Correction to stratified flow head tern.

IDE w014

Correction to upper guess in subroutine CHF.

IDE w0lé

Corrects error for inflow from break when IVDV=(.

IDE wWOl7

Correct unset value of joining cell flag in stear gen comp.

IDE wOl8

Attempt to make SS restart with pressurizer more smooth.

IDE WO19 BO2C only

Insert missing square root of pi in Taitel-Dukler stratified
flow test in subroutine FEMON.
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