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COMMIX-1C: A Thre:-Dimensl:nal Transient Single-Phase C;mputer
Pr: gram f:r Thermal-Hydraulic Analysis of Single-

and Multicomponent Engineering Systems

Volume 1: Equations and Numerics

Abstract

The COMMIX-lC computer program is an extended and improved version of previous
COMMIX codes with four major additions or modifications: (1) a new finite-volume
fannulation for the mass, momentum, and energy equations to extend the applications to
aut> sonic compressible flows and to make the calculations more robust: (2) a Dow-
modulated skew-upwind discretttation scheme to reduce numerical diffusion: (3) two new
matrix solvers for the discretized equations to increase the Dexibility and efficiency of
numerical computation; and (4) a k-t two-equation turbulence model that is more robust
and better validated than tbse in previous COMMIX codes. In addition, there are
numerous smaller modifications that improve overall operation greatly.

COMMIX-1C solves the conservation equations of mass, momentum, and energy, as
well the transport equations of t';rbulence parameters it is designed to perform steady-
state / transient, single-phase, three-dimensional analysis of Duld now with heat transfer in
a single-component or a multicomponent engineering system. The program was developed
for the analysis of heat transfer and Guld flow processes in a nuclear reactor system,
llowever, it is designed in a generalized fashion so that, with httle or no modification, it can
be used to analyze processes in any engineering equipment or in any system.

The following are unique features of the COMMIX-10 code:

* Porous-Medium Forrnulation: COMMIX-lC uses a new ;.orous-medium
formulation with the parameters of volume porosity, directional surface
porosity, distributed resistance, and distributed heat source or sink. With this
fonnulation, the COMMIX code has the capability to model an anisotropic Dow
domain with stationary structures, and it can be used to treat irregular
geometries. The porous-medium fonnulation with the additional parameter of
directional surface porosity represents a unified approach to thennal-
hydraulic an +.ysis. Because of this feature, it is now possible to perform a
multidimensional thennal-hydraulle simulation of either a single component,
such as a rod bundle, reactor plenum, piping system, or heat exchanger, or of
a multicomponent system that is a combination of such components.

* Three Matr(x Sohers: In COMM1blC, three matrix solvers, the successive
overrelaxation method, the Yale Sparse Matrix Package, and the precondi-
tioned conjugate gradient method for symmetric matrix, are available to solve
the pressure equation and scalar transport equations. Depending on the size
of the computational domain, the user can choose the solver that is best suited

ill
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for o given prot)1em, These three matnx solvers greatly increase the flexibility
and efficiency of numerical computation for COMMIX-1C compared to previous
COMMIX codes.

* Geometrical Package: A special geometrical package has been developed and
implemented to pennit modeling of any complex geometry in the most
storage-efficient way.

|

* Skeut-Upwind Discrettzation Scherne: A new flow-modulated skew-upwi'id
discretization scheme has been developed and implemented to reduce the
numerical diffusion observed in simulations of flow inclined to grid lines. The
scheme also eliminates temperature over/undershoots that occur when
simulations are perfonned with other skew-upwind differencing schemes.

Volume I (Equallons and Numerics) of this report describes in detail the basic equations,
formulations, solution procedures, and models for auxiliary phenomena. Volume II (User's
Guide and Manual) contains the input instruction, sample problems, flow charts, and
description of available options and boundary conditions,

iv
,
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DxCcutive Summary

The COMMIX (Component Mking) codes are designed for analyzing heat transfer and
fluid flow The COMMIX-lC computer program-an extendeu version of previous COMMIX
codes-is designed 'o analyze steady-state / transient, single-phase, three-dimensional flow
with heat transfer in a reactor component / multicomponent system.

The four major improvements that have been implemented in previous COMMIX codes
(including COMMIX-lu) to develop COMMIX-lC are

+ New finite-volume formulation for the mass, momentum, and energy equations
to extend application to subsonic compressible flows. The new momentum
formulation employs the concept of a volume-averaged velocity. It makes the
numerical calculation more robust than in previous COMMIX versions. It also
makes the location of pressure change coinelde with that of density change for
one-dimensional flows, in addition, the new discretized momentum equations
also satisfy the one-dimensional Ucrnoulli equation.

* Addition of a new flow-modulated skew-upwind discretization scheme in the
energy equation to reduce numerical diffusion. This new scheme is con-
sidered better than the previous volume-flow-weighted skew-upwind
difference scheme in COMMIX-lO because it not only reduces numerical
diffusion but also has a theoretical basis for not producing overshoots and
undershoots that are physically unrealistic.

+ Addition of two matrix solvers, the Yale Sparse Matrix Package and the
preconditioned conjugate gradient method, for the solution of discretized
equations. These two new matrix solvers, plus the existing solver using the
successive overrelaxation method, greatly enhance the flexibility and efficiency
of COMMIX-IC in dealing with various engineering problems.

* An improved k-c two-equation turbulence model that is more robust and
better validated than that in previous COMMIX codes,

in addition to these mq)or improvements, there are numerous minor modifications that
significantly improve the overall operation.

One of the major unique features of COMMIX is its porous-medium fonnulation, which*

has been rigorously derived through local volume averaging. In the new formulation, we use
volume porosity, directional surface porosity (directional because surface porosity is an
anisotropic vector quantity), distributed resistance, and distributed heat source or sink.
The concept qf adding the parameter qf directional surface porositti is relattwigt new. In
the conventional porous-medium fonnulation, only the volume porosity, dtstributed
resistance, and distributed heat source are used. Volume porosity is the ratio ut the volume
occupied by fluid in a control volume to the total control volume. Surface porosity is
similarly defined as the ratio of fluid flow area through a control surface to the total control
surface area. The porous-medium fonnulation has the capability of modeling both the
anisotropic flow domain and irregular geometry,

i
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In any numerical analysis of an engineering system, modeling must include distributed
resistance (friction factor) because, in general, it is not a precisely known quantity. Thus,
with the conventional porous-medium fonnulation, the flow distribution that we obtain
depends completely on how accurately we model the distributed resistance, llowever, in
the case of the present porous-medium formulation, due to the introduction of directional
surface porosity (a geometrical quantity that can be prescribed accurately), the dependerace
of the velocity field on resistance modeling is reduced lience, we obtain improved
resolution and accuracy in the modeling of velocity and temperature fields. The present
porous-medium fonnulation thus represents the sorst un(Iled approach to thermal-
hydraulle analysis. The conventional porous-medium formulation can be considered a
subset of this present porous-medium formulation.

The COMMtX code provides detailed local velocity and temperature fields for the
problems under consideration. The conservation equations of mass, momentum, and
energy and the transport equations of turbulence parameters are solved as a boundary-value
problem in apace and an initial-value problem in time. The discretization equations are
ootuined by integrating the conservation equations over a control volume.

The code has a wide range of applicability. It is capable of solving thennal-hydraulic
problems involving either a single component, such as a rod bundle, reactor plenum, piping
system, heat exchanger, etc., or a multicomponent system that is a combination of these
components.

COMMIX has two alternative solution schemes. One is semi-implicit and is a modtfl-
cation of the ICE technique, The other, a fully implicit scheme called SIMPLEST-ANL. is a
modification of the numerical procedure known as SIMPLER.

The code has a modular structure and permits analysis with either Cartesian or
cylindrical coordinate systems. It has four thermal-hydraulle property packages: water
vapor, sodium vapor, liquid sodium, and liquid water, Besides these four packages, an
option is available for users to input simplified thermal-physical property correlations that
are valid in the desired range rJ npplications.

Another unique feature of the COMMIX code is its geometrical package. The basic
concept is to use computational cells (either in Cartesian or cylindrical coordinates) as -

building blocks that are stacked to approximate the shape of the physical systems under
consideration. Then volume porosity and directional surface porosity are used to account
for the differences between the geometty used in computation and the actual configuration.
This feature permits the COMMIX code to model any irregular and complex geometry
encountered in a real engineering system. Furthennore, the computer storage require-
ment of the COMMIX code is optimized; only the computational cells used in calculations
are counted.

Volume 1 (Equations and Numerics) of this report describes in detail the basic
equations, formulation, flow-modulated skew-upwind discretization scheme, and solution
procedures. It also describes models used for the following phenomena:

* Momentum interaction between fluid and stationary solid structures.

. Thermal interaction between fluid and stationary solid structures.

|
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k-c two-equation turbulence model.e

In Volume !! (User's Outde and Manuall, we provide flow charts, descripuons of
subroutines, geometry rnodeling, initialtr.ation procedures, input descriptions, etc. Two ;

sample problems are also included so that readers who plan to use COMM1X-lC can |

become familiar with the input / output structures of the code.

1 Introduction
,

COMMIX (for Component Mtving) is a computer code for heat transfer and fluid flow j

analysis. Since the development of COMMIX-1 in 1970, many features have been added and
refined to augment the code's capabPJty and applicability. Consequently, COMMIX has
become a very general-purpose co r.g ter code with a very wide range of applications.
Although developed for nuclear reactor appucations, with no or minimal modifications
COMMIX can be used to analyze various processes in engineering systems,

Many industries and organizations in -lved in the design or analysis of nuclear reactors
are already using COMMIX. However, due to the code's generality of formulation and its
wide range of applications, people from other disciplines have also found COMMIX a very
useful tool. We therefore expect the number of COMMIX users to increase in the future.
Prcapective users of COMMIX can benefit from a comprehensive description of the code.
The purpose of the present report is to meet this need.

In describing COMMIX-lC, we have two riistinct atms. One is to convey to the reader
the capabilities of COMMIX, the equations that are solved, and how they are solved; that is
the subject of this volume (Volume h Equations and Numerics). The second aim is to
present a step-by-step procedure on the use of COMMIX. To achieve this, we must
describe the procedure in su!Itclent detall that a reader has little or no difficulty in
beginning to use COMMIX. This complex task is the subject of the second volume (Volume
!!: User's Outde and Manual).

This volume (I) describes the basic equations, fonnulations of discretization equations.
| awcillary models, solution procedures, etc. Volume !! describes all the infonnation needed
| by the user, e.g., input description, flow chart, sample problems, and user options.

1.1 Overview of COMMIX-10

The COMMIX-lO code is a generalized computer code for heat transfer and fluid flow
analysts. Although designed specifically for reactor component / multicomponent applica-
tions, it has been developed in a way that makes it applicable to many other complex
engineering system, its capability includes steady-state / transient, three-dimensional, and
single-phase analysis of nuclear reactor systems under normal and off-normal operating
conditions,

In general, a computer code developed for numerical simulation of an engineering
process can be classified as either a system code or a component code.

_ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ - _ _ _ - _ _ .



, _ _ _ _ _ _ _ _ _ _ . _ _ _ __

l

4

* A system code generally deals with many interlinking components: it accounts
for cornponent interactions to provide an overall analysts of a whole system
without detailed analysis of all the components of a system.

* A component code, in contrast, deals with only one component of interest and
provides a detailed numerical simulation of a single component.

COMM1X-lC can be described as both a system code and a component code because it is
capable of providing detailed information about a single component or of analyzing a multi-
ccmponent system in sufficient detail. Because of this broad capability, COMMIX-1C can
also provide detailed infonnation about component interactions.

COMMIX-1C is an extended and upgraded version of the previous COMMIX codes,
including COMMIX,1 COMMIX-1A,2 and COMMIX-10,3 which were released in 1981, 1983,
and 1985, respectively. COMMIX-lO has retained all the flexibilities and generalities of its
predecessors, but now contains some additional and improved features:

* A new finite-volume fonnulation of the mass, momentum, and energy equa-
tions to extend the applications to subsonic compressible flows. The new
momentum formulation employs the concept of a volume-averaged velocity,
which makes the computation more robust than in previous COMMIX versions.
The new fonnulation makes the location of pressure change coincide with that
of density change in one-dimensional flows. The new discretized momentum
equations also satisfy the one-dimensional Bernoulli equation.

* A new flow-modulated skew-upwind discretization (FMSUD) scheme to
reduce numerical diffusion for flows inclined to grid lines. The FMSUD
scheme is considered better than the volume-weighted skew-upwind
difference scheme in COMMIX-lu because the FMSUD scheme in COMMIX-
IC not only reduces numerical diffusion but also does not produce overshoots
and undershoots that are physically unrealistic.

* A modified k-c two-equation turbulence model that is more robust and better
validated than the k-c two-equation turbulence model in COMMIX-1B,

* Three matrix solvers, i.e., the successive overrelaxation (SOR) method, the
Yale Sparse Matrix Package (YSMP), and the preconditioned conjugate
gradient (PCG) method, are now available in COMMIX-1C. These matrix
solvers are implemented in modular fashion, which provides the user with
greater Dexibility in choosing a solution method better suited to a given
problem.

COMMIX-10 solves the conservation equations of mass, momentum, and energy, as
well as transport equations of turbulence parametem, as a boundary-value problem in space
and an inlital-value problem in time. The staggered grid system is used, which considers
the field variables as located at the center of a cell and now variables as located at the
surface of a cell.

The COMM1X series of codes are well testeel. Already, many computations for complex
situations have been performed.4-30 A number of simulations using COMMIX-1C have been

|
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performed since 1985.40-41 The structure of the code is modular, it has many impodant
features that are described in the following section.

1.2 Major Features of COMMIX-1C

1.2.1 Porous-MedluM Formulation

As do all the codes in the COMMIX series, COMMtX-1C employs conservation equations
of mass, momentum, and energy that are based on a new porous-medium formulation
ultitzing local volume averaging,42-48 The fonnulation uses four parameters-volume
porosity, directional surface porosity, distributed resistance, and distributed heat source
(sink)- to model the effects of internal solid structures, in the conventional porous-
medium formulation, only three parameters-volume porosity, distnbuted resistance, and
distributed heat source-are used. The addition of a fourth parameter, directional surface
porosity,42-51 ls a relatively new concept.'

The volume porosity parameter is defined as the ratio of the volume occupied by Duld
in a control volume to the total control volume. Directional surface porosity is similarly
defined as the ratto of area allowed for Duid now through a control surface to the total
control surface area. We use the adjective "directionar because surface porosity is an
anisotropic quantity.

Introducing the fourth parameter, directional surface porosity, has several advantages,
in any thennal-hydraulle analysis, now restrance due to internal structures and/or
irregulat geometry (the friction factor) generally is not precisely known for most
engineering applications and must be modeled as a distributed resistance, in the conven-
tional porous-medium formulation, the accuracy of numerical prediction therefore depends
primarily on how well the resistance is modeled. in the case of the new porous-medium
formulation, two parameters (distributed resistance and directional surface porosity) are
available for modeling of velocity and tem: erature fields in anisotropic media incidentally,
directional surface porosity is a geometrical parameter and can be calculated precisely. By
the introduction of directional surface porosity in the new porous-medium formulation, we
reduce the dependence of numerical prediction on the modeling of distributed resistance
(an empirical parameter not precisely known). Thus, the concept of adding directional
surface porosity greatly facilitates the modeling of velocity and temperature fields in
anisotropic media and, in general, improves resolution and accuracy. Another unique
feature of the porous-mediu.n fonnulation is that it can be used to model irregular
geometry.

If we set directional surface porosity equal to one, the new fonnulation reduces to the
conventional porous-medium formulation. We can therefore consider the conventional
Dorous-medium fonnulation as a subset of the new porous-medium fonnulation. Further-
Tore, if we set the volume porosity equal to one and the distributed resistance and heat

S urce to zero, the porous-medium formulation reduces to a continuum-medium

* Ret tntly, the new porous-medtum formulations have been further refined via time-vohime averaging.

,
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forrnulation. Thus, the new porous-medium formulation can be considered a most general
and untfled approach to thermal-hydraulic analysis.

1.2.2 Two Solution Algorithms

in COMMIX-lC, there are two solution algorithms as user options:

* A semi-implicit algorithm derived from the Los Alamos ICE Technique 52-54
This algorithm is ideally suited for analyzing fast transients, where we are
interested in details at small time intervals (on the order of Courant time-step
size).

* A fully implicit algorithm named SIMPLEST-ANL. This algorithm is a
modification of the Patankar-Spalding numerical procedure 55 known as
SIMPLE / SIMPLER. It is particularly suitable for analyzing steady-state systems,
as well as slow and moderate transients.

1.2.3 Three Matrix Solvers

The form of all the discretized equations in COMMIX-lC can be expressed as

at$o - f aj$, - b; = 0,
del

where e is a dependent variable and the subscript t stands for the indices of neighboring
points. This general fonn of the discretir.ation equation lends itself to various solution
schemes. In COMMIX-lC, three matrix solvers (SOR. YSMP, and PCO) are available and the
user can choose any one of the methods to solve the discretized equations. The combina-
tion of two solution algorithms and three matrix solvers greatly increases the flexibility for
the user to select the solution algorithm and the matrix solvem best suited for a given
problem.

1.2.4 Flow-Modulated Skew-Upwind Discrellration (FMSUD) Scheme

in engineering applications, frequently the local velocity is not parallel to the grid
lines. This may introduce the so<alled numerical diliusion, which is nonphysical and thus
reduces the accuracy of the numerical results. In COMMIX-lC, a flow-modulated skew-
upwind discretization scheme is implemented in the energy equatio: to reduce numerical
diffusion. The FMSUD scheme does not produce physically unrealistic overshoots and
undershoots and is, therefore, considered better than the volume-weighted and mass-flow-
weighted skew-upwind difference schemes in other COMMIX versions.

1.2.5 Geometry Package

The geometry package developed and implemented in previous COMMIX versions is
also retained in COMMIX-lC. This package is capable of approximating any irregular
geometry. It uses basic computational cells as building blocks to model the geometry under

- __ _ ____
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consideration. Then bcth volume porosities and directional surface porosities are used to
account for the differences between the approximated and actual configuration.

To save computer storage, a computational cell is defined by a number rather than by
its conventional (1, j, k) location, where 1. j, and k are the computational cell indices in the
three principal axes (e.g., x, y, and z in the Cartesian coordinate system). With this
approach, the storage requ!rement depends only on the total number of computational cells
and not on the value of the product IMAX*JMAX'KMAX, where IMAX, JMAX, and KMAX
denote the maximum values of computational cell indices in the three corresponding
principal axes.

A normal three-dimensional computational cell has stx surfaces. But to facilitate true
and proper modeling of a complex irregular geometry (most geometries in engineering
systems are complex and irregular), we have provided flexibility so that a user can specify
an additional seventh surface, called an irregular surface, to a computational cell.

1.3 Other Features of COMMIX-1C

* Two options are provided to give COMMIX-1C a wide range of applications in
dealing with turbulent flows:
- Constant turbulent diffusivity model.
- Two-equation k-c turbulence model.

* The discretization equations are fonnulated by integrating the conservation
equations and transport equations over a control volume surrounding a grid
point, Thus, the derivation process and resulting equations have direct
physical meaning, and the consequent solution satisfies conservation
principles,

* The program has a decoupled-transient-simulation option that pennits
solution of
- mass-momentum equations only, or
- energy equation only, or
- coupled mass-momentum and energy equations,
at any given time step.

* The code has an option that allows use of either Cartesian or cylindrical
coordinates.

* The COMMIX-1C code has a modular structure that permits rapid implemen-
tation of the latest available drag models, heat-transfer models, etc.

* COMMIX-lC has built-in properties for liquid sodium and water, and sodium
vapor and water vapor, with an option peimitting use of simplified property
correlations for any fluids and solid structures.

* The code also contains
- A generalized resistance model to permit specification of resistance due

to internal structures (fuel rods, wire wrap, baffles, grid spacers, etc.)

1
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- A generalized thennal structure fonnulation to model thermal
interaction between structures (fuel rods, wire wraps, duct wall,
baffles, etc.) and surrounding fluid.

+ lleat source / sink and boundary conditions can be functions of time.
'

* The COMMIX-1C code is structured to pennit solution of 1-D,2-D, or 3-D
calculations.

1,4 Organization of the Report

This volume describes the formulations of the governing equations for three-,-

dimensional, single-phase, steady-state / transient flow with heat transfer. The description
btarts with differential equations and deals with numerical methods incorporated into the
COMMIX-1C prugram. Section 2 is devoted to the general fonn of governing consen'ation
equations for a quasicontinuum domain. This generalization facilitates unified development
of the numerical method and the construction of the computer program.

The quasicontinuum domain is defined as a medium that contains finite, dispersed,
stationary heat-generating (or absorbing) solld structures. The effects of solid structures in
a medium are accounted for by introducing volume porosity, directional surface porosity,
distributed resistance, and distributed heat sources.

Section 3 describes the staggered grid arrangement and the conventions used in
COMMIX-lC to define the location of a control volume. Section 4 assembles the finite-
volume equations. The finite-volun,e fonnulation of the general equation is presented in
Sec. 4.5. Because a staggered grid system is used, the control volumes for momentum
equations are different and require special consideration. The special features of the finite-
volume equations for momentum are discussed in Sec. 4.0.

The pressure appearing in the momentum equation must be such that the velocity
distribution obtained satisfies the continuity equation. The derivation of the pressure
equation (derived by combining the momentum and continuity equations) is presented in
Sec.5.

Currently, two options are available to account for turbulence effects:

* Constant Turbulent D([fuste(ft/; This model is very simple; the turbulent
viscosity and turbulent thennal conductivity are assumed constant. No
transport equation is solved. 'Itts option is suitable only for scoping analysis
because it does not provide detailed infonnation on turbulence.

* The k-c Tivo-Equation Turbulence Model: The transport equations of turbu-
lence kinetic energy k and dissipation rate of turbulence kinetic energy c are
solved to evaluate turbulence quantitles. This is more general than the Prandtl
mixing length hypothesis and the oneequation turbulence model and is
computationally more economical than the complex multiequation models of
turbulence that are still in the development stage.

___ __
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These models are described in Sec. 6.

General practice in the formulation of convective terms is to use pure-upwind
differencing rather than central diferencing. This is because the pure-upwind scheme
prevents instability at high 1'eclet numbers, llowever, it has been found that whh nure-
upwind differencing, the fa e (numerical) diffusion can be large if the flow is trimned to
grid lines. To reduce the t.prical dt!Tusion, we have implemented a new flow-modulated
skew-upwind discretization (FMSUD) scheme. Derivations of the two-dimensional and
three-dimensional FMSUD schemes and numerical examples are presented in Sec. 7.

Section 8 describes several models that have been maintained in COMMIX-lC; these
include a generalized-force model and a generalized thermal-structure model. The force
model computes distributed resistance to account for the faction between fluid and sub-
merged solids. The thermal-structure model is designed foi computing the distributed
heat source (Iluid and submerged solids) and the thermal inertia of submerged solids.

In COMMIX-lC, there are several boundary condition options for momentum, energy.
and continully equations. These options are described in Sec. 9.

In COMMIX-lC two alternative formulations leading to two alternative solution
procedures are available-the semi-implicit modified ICE-type solution scheme and the
fully implicit solution scheme SIMPLEST-ANL. an extension of the numerical procedures
known as SIMPhE/ SIMPLER. These two solution procedures are described in Sec.10.
Tnere are three matrix solvers (the successive over-relaxation method the Yale Sparse
Matrix Packrg,e, and the preconditioned conjugate gradient methe<!) available in COMMIX-
IC to W".: the discretized scalar transport equations and the pressure equation. These
matrix solvers are also described in Src.10.

Volume 11 of this report is written specifically far COMMIX-lc users. It de>,cribes
steady-state and transient calculation and various procedures in the preparation of load
modules, input data, reading and writing of restart files, etc. Two sample problems along
with their description, input, and output, are presented to provide a sound introduction to
the capabilities of COMMIX-lC. The code input description is also included in Volume 11.

2 General Form of Conservation Equations

The conservation equations of mass. raomentum, and energy possess a common fonn.
If we denote the general dependent variable as c. the correspunding conservation equations
have the fo? lowing form in the Cartesian coordinate system:

In conhnuum domain:

+ - F' B& '+ D fr 80 + S'
8'D D 8 0 S

-(p$) + 8x(pu$)' + dy(pve) + dz(pw&) = Dx0 ' r* C& -

Dx ; Dy ( By j Dz s ' DzDi s s .

"
- - . Source

Unsteady con.ecuon Dl!Iuslori
(2. Ia)

l

- _ -
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in quasicontit uum domain:45
j
j

g A(y,,m 's] A(YyPv$) A(y,pw$) |

.dl
'

6y Az j

Unst'eady Convection |

/ i

34 5 D4
r r 3

r, OY ' + A
y, r,34A YyA

Y P, 0* ' + 02' + y, S. (2. lb)
' '=

Ax Ay Az %
"

DitTusion

llere, u, v, and w are the ve!scities in the x, y, and z directions, respectively; yv is the
volume porosity (frac''.sn of the volume occupied by the fluid) and yx, y , and y: are they
directional surfe;e porosities (fraction of the surface area that is unobstructed to fluid flow)
in the x, y, r.nd z directions, respectively. The convective and diffustve terms 6(g)/Axi ni
Eq. 2.lb are defined as

6(9) , Q(x, + Ax / 2) - o(x, - Ax3/ 2)i

Ax Ax,i

n 'nch xi stands for the x, y, or z coordinate. The diffusion coefficient r, and C.e source
term S, are specific to euch meaning of t. The sources for all conservation equations are
given in Tahies 1 and 2.

The conservation equations in the cylindrical coordinate system also have the same
general form (Eq. 2.1) when we place the centri'ugal and Coriolis force tu. T. m the source
term Sp. We can, ti._erefore, ari r all formulations for the ':artesian coordinuus toh

cylindrical coordin .tes with the almple transformations shown in Table 3.

Equation 2..b can be considered very general, because it reduces to the conservation
equation for a continuum (Eq. 2.la) when we make volume porosities and dirmional
surface porosities = 1 (yv = yx = yy = Yz = 1.0), ' distributed resistances Rx = Ry Rz = 0 (or
Rr = Ro = Rz = 0 in a cylindrical coordinate system), and heat source 6,, = 0,

For turbulent flow, all quantitles in Eq. 2.1 are considered time-averaged values, and
the diffusion coefficient r is interpreteo as the effective (laminar and turbulent) diffusion
coefficient, i.e.,

i
I, = T,.iarninar + T,. turbulent . (2.3)

We can also express the effective diffusion coefficient in terms of the corresponding
turbulent Prandtl number, i.e.,

F, = p i ,nina, + N '"'6"""' . (2.4)c,

Here, og is the turbulent F.andtl number based on the diffusivity of variable &.

:'
~

L



11

Tabh L Source terrns in Cartesian coordinate systerna

Diffusion
Coefficient

Equation Variable ($) Direction (0 ) Source Term (S,)9

Continuity 1 Scalar 0 0

Momentum
pg , + V, - R , -

gge

(1) u x p

*fx x

2(ii) v y p p g , + V, R , -
0 .'.K

p g, + V, - R,
gpr

(till w z p
(dts

Energy h Scalar A N+6,,+6+c
dt

aVx,V V: Balance of the viscous diffusion termsy
Rx. Ry. Re Distributed resistances due to solid structures in a momentum

cor. trol volume
Dn Rate of heat liberated from solid structures pt. onit fluid volumee

d Rate ofinternal heat generation per unit fluid volume
& Dissipation function

Table 2. Source terms in cultndrical coordinate systema

. Diffusion -
Coefficient

F/luation Variable ($) Direction (r ) hurce Term (S,)e
_

Continuity 1 Scalar 0 0

Momentum .

og, + V, - R, 1r 3r(rp)(1) Vr r p p
r

+ pg, + V, - R, 11(P)(11) vo 0 - "''
r rM

(111) Va z 4 p g , + V, - R , - B (p)

Energy h Scalar A U+d,,+6+c
dt

.--

** Centrifugal force term
Coriolls force tenn**

Vr,V .Vz Balance of the viscous diffusion terrns0

Rx,Ro,Rz Distributed resistances due to solid structures in a momentum
control volume

D* Rhte cf heat liberated from solid structures per unit fluid volumer

D . Rate of internal heat generation per unit fluid volume
& Dissipation function

__ . _ _ - _ _ _ _ _ _ - _ _ _ -
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: Cartesian Cylindrical
Coordinates Coordinates

_.

X r
Table 3. 7Yansformationsfor Cartesian and y 0

cylindrical coordinate systems z z ,

Ax or
Ay rA0
Az Az
u vt
V v0
w vx j

The transport equations of turbulence parameters k and c for compMation < the
turbulent diffusion coellicient also have the same general form as Eq. 2.1; however, for
clarity of presentation, they are included in Sec. 6.

3 Control Volume

3.1_ Construction of a Computational Cell' i

The computational cells around a grt_d point can be defined in a number of ways. In
3

COMMIX-lC.- the computational ec11 is defined by the locations of cell volume faces, and a
grid point is placed in the geometrical center of each cell volume. Cell sizes can be
nonuniform. This type of construction is shown in Fig.1. The convention used in

.

COMMIX-1C for defining the neighboring _ cells and cell faces is given in Table 4.

' 3,2 Control Volume for Field Variables.-

. In COMMIX, we use the staggered grid system, in which all dependent field variables
(pressure, temperaturci density,' enthalpy, turbulent kinetic energy, physical propettles,
etc.) are calcusated at a cell center and all flow variables (velocity components) are
calculated at the surfaces of a cell.

For a field variable, we consider the control volume to be as shown in Fig. 2. It is-
constructed around a grid point 0, which has grid points 1 (1-1), and 2 (1+1) as its west and
east neighbors; grid ' point 3 0-1) and 4 U+1) as its bottom and top neighbors; and grid
points 5 (k-1) and 6 tk+1) as its south and north neighbom. We integrate each term of the
conservation-equation, step by step, over the control volume to derive the finite-volume
equation.

I

,

_ _ - __
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A typical call
volum

Rg. 1. Constructen of cell volumes

Th ble 4. Convention used in COMMEX-1C to clefine
neighboring-cell control volumes

1

Cell Centers Cell-Face Center
Subscript x y z x y z

O 1. j, k
I l- 1, J. k 1-1/2 J, k
2 1+ 1. j, k 1+ 1/2, j, k
3 1. J-1. k I, J-1/2, k
4 1, J + 1, k 1, J+1/2 k
5 1, J, k-1 1. J, k-1/2
6 1, J, k+1 1, J, k+1/2
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. i

. . .' . . ..6 ..'..k+1.

i e .
. . .

.

1

l

V .P |
c/2 !

/ ..2 ,.r_.

/ A :

,

z -| ..5 __..-k"1.....
. i i

ii g

X

l-1 I i+1

Fig. 2. Cell volume around fx) tnt 0 in tJ,k notation

3.3 Control Volume for Flow Variables

Although most dependent variables are calculated for a grid point, the velocity -
components u, y, and w are exceptions. They are calculated for displaced or " staggered"
locations, not at the grid point. The displaced locations of the velocity components are

'such that they are p! aced on the faces of a control volume. Thus, the P-direction velocity w
p is calculated at the faces normal to the k direction.

- Figure 3 shows the locations of u and w by short arrows on a two-dimensional grid; the .

~

three-dimensional counterpart can be easily imagined. With respect to a grid point, the u
-location is displaced only in the i direction, the w location only in the k direction, and so
- on. The location for w thus lies in the k direction link, joining two a@acent grid points. It
is the pressure difference between these grid points that will be used to drive the velocity
w located between them. This is the main consequence of the staggered grid.

,

.'A direct consequence of the staggered grid is that the control volumes to be used for
- the conservation-of momentum must also be staggered. ' The control volumes shown in
. Figs. I and 2 will nNs be referred to as the main control volumes. The control volumes for -
momentum will be staggered in-the. direction of the momentum such that the faces normal-
to that direction pass through the grid poinm (see Fig. 4). Thus, the pressures at these grid

- points can be directly used for calculating the pressure force on the momentum control -
, volume. Table 5 shows the convention used for the subscripts. and Fig. 4 shcm the7
. momentum control volumes for the x and z directions."

O *

?

H

L

L'
?:

- - , - - .-- -_ -- . _ - _ _ _ _ _ _ _
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Fig. 4. Momentstm control volumes -
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- Thble S. Convention used in COMMEX-1C to define neighburing
control volumesfor z-direction momentum equations

Momentum Control Momentum Control
Volume Centers _ Volume Face Centers

Subscript 'x y- z x .y - z
o

0 1, j, k+ 1/'t
I l- 1, J, k+1/2 1-1/2, j, k+1/2
2 1+ 1, j, k+1/2 i+1/2, j, k+1/2

_

3 1. - j-1, k+1/2 1, j-1/ 2, - k+1/2
4. 1. J + 1, k+1/2 1,' J+1/2 -k+1/2 |

5 1. j, k-1/2 1, - j, k
6- 1. J. k+3/2 1, j, k+1

-

;

4 - Finite-Volume' Formulation

Although the finite-volume fonnulation is applied to a grid in both the Cartesian and<

3 cylindrical coordinate systems, only a Cartesian coordinate grid system is used here to 1

.

-demonstrate the formulation of the finite-volume equations, Similarly, v'e have used only
the z-momentum equation to illustrate the formulation of the momentum equation.
Extension of the derivation to the x and y momentum equations is straightforward. It

.

should be noted that the main control volume is applicable to both the energy and the
; continuity equations, and the momentum control volume is applicable to the momentum-
equations.

: The finite-volume equations are derived by integrating the governing equation (Eq. 2.1)
over a control _ volume We integrate each term separately.

f

1

4.1- Convection -Term

. 4.1' .1 Main Control Volume

The integration of the convection terms over the control volume gives -t

A(7.pu$) A(Y,p v$) A(y,pw&)~ *

1Ax Ay Az
. -

=F(& - Fg($) _+ F ($) - F ($) + F ($) - F ($)f . (4.1) .i' '

2 4 3 6 3

1

-- _ _ _ - - - - . . .
-
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liere, F (= density x velocity x flow area) is the mass flow across the surface of the control
volume, and subscripts 1-6 stand for the west, east, top, bottom, south, and north surfaces,
respectively (see Fig. 5). For example,

F, = F,,,,, = (p){(y, uA yA z), = (p){( u A,), = (p)',,( u A ,),,,,, (4.2),

is the mass flux at the east surface, as shown in Fig. 5. (c)| 1s the value of c associated with
surface *2,* which is convected by the mass flow F . Since only the values of C associated2

with cell volumes are available for the main control volume, a relationship must be assumed
between the associated surface and volume values. The upwind difference scheme provides
one such relation as

(if F is + ve), (4.3a)(c)$ = (&)|,i = c = c, 3o

(if F IS - ye) (4.3b)= $2 = ca.i 2

The superscript location value is to be used for posidve velocity, and the subscript location
is to be used for negative velocity. Each term on the rhht side of Eq. 4.1 can also be
written as, for example,

F(D)=! 2|&o -|0,-F }D I4 4)
2 2 2*

'tal to the greater ~ t w t, v.ments, i.e.,The operator I I is defined i

I A, D I = A if A - o,

=B if B > A. (4.5)

In accordance with the above convention and after some simplification, we rewrite Eq. 4.1
as

~

f[A(Y.p u0) + A(Y,p vc) + A(y,p wc)dx dydz
Ax Ay Az

= (|0. Fa} + |0, F | + |0, Fd + |0,- F | + |0,- F | + |0. - F h 6o4 t 3 3

-(|0,- F,|6, + |0,- Fd6. + |0 - F.|6. + |0, F |6 + |0, F,|6, + |0, F,|6 ) . (4.6)i i 3

Note that we have introduced a curly bar over the dependent variable c in Eq. 4.6. We
define

oc"* + (1 - a)6", (4.7)

where a is an implicitness parameter. The introduction of the implicitness parameter a
makes the convective flux formulation, Eq. 4.6. very general, i.e., from the semi-implicit
formulation where some variables are at old-time values (a = 0) to a fully implicit
formulation where all variables are at new-time values (a = 1).

All six convective Duxes for the main control volume are listed in Table 6

_ .-_-_-_ - _ - _ _
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Fig. 5. Com.: :fluxesfor main control volume

ri - ( As),.u: (9)'.

1 -(^ uh.u, (9)2

.. Table 6.' ConvecttueJhwes for main control volume A*U'
-

1=(A<)g,(p)44 y

s

1"(AsW)k-u25 0

v -(^.w)x.u2 (p)

> 4.1.2 = Mon.emum Control Volume
,

Figure 6 shows the staggered' mesh for the z-momentum control volume. The various-
mass flows shown in the figure are as follows:

1 F,o = (p) A,oW (4.8a)
t

o
4

:F,i=_(p)ai' AsiW- (4,8b)i

Fa2 - (p)m Az2W (4.8c)-

2-

i

-

_ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - -
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Cd
.

$ Fzo
I

Fu i %* fx62
,

-4 ,
U1 F dzo 0 62,

' /jfh' W'*61

"" a Fa2,,
# '

%a w.

/ /
'

.

r ir'g O 2
+ #FT Fx23 5

~d
Fr.5

>x *

$

F(g,6. Convectivefluxes and average velocitiesfor z-momentum
control volume

,

F 3 = (p)| A,3W3 (4,8d)

(p)[A,eW (4.8e)F,e n
e

F,i = (p)' A,3 ui (4.80

Fx2 = (P)$ ^x2 u2 (4.8g)

F,si=(p)|I A,ui u i (4.8h)s

F,e = (p) 2 ^xc2 u (4.81)na

where the velocities w and u are defined at the cell faces as shown in Fig. 3. The mass flow
rates on the north and south faces of the staggered mesh (P,3 and E,e) are not directly
available. In COMMLLIC, it is assumed that

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _
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P,5 = (F,o + F,5)/2 (4.6j)

E,a = (F,o + F,c.)/2. (4.8k)

in previous COMMIX versions, the velocity, w, is assumed to be transported by the
convective fluxes. In COMMIX-1C, however, we assume that the transported quantity is a
momentum per unit mass associated with a certain volume instead of the facial velocity w.
Referring to Fig. 6. the z momentum (Mz) associated with the lower half of the staggered
mesh is

(M,)v /2 = fv /2yypwdxdydz (4.9a)

If a volume-averaged velocity W|, ts defined as

Po W$o = (M,)y,j, (4.9b),

then

2(M,)v /2 2 jyo,,yypwdxdydz
Wo.o= (4.9c)o a

,

VoPo Po Vo

or

2j,,,n j,,(y,pw)dxdy dz
W,.,n ,4.9d)

.

P.V.

The Integralinside the bracket of Eq. 4.9d is the mass flow rate through any cross-
sectional area Az inside the volume Vo/2. In COMMIX-1C, this mess flow rate is assumed to
be equal to Fro and Eq. 4.9d becomes

W$o = ' " ' . (4.9e)
Po Vo

W|, ' presents the momentum per unit mass of the fluid in the volume Vo/2 and is the
quantity assumed to be transported. W|, has the dimension of velocity and can also be
considered as a volume-averaged velocity defined by Eq. 4.9c.

- Sinillarly, a volume-averaged velocity can be defined for the upper half of the s'aggered -

L- ' mesh in Fig. 6:
s

-7

pPo W$a = (M,)y,f, e jv,,,y,pwdxdydz (4.9f)
.. .

,
'and-

I

- W$o = "Po \ n
'" 'a . (4.9g)

The volume-averaged velocities (w') associated with their respective volumes are also
j shown in Fig. 6 and are defined by the following equations:

|
. . . _ . .. -

_ _ _ _ _ _ _ _
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y * , F_, o Azo , (P A0 62
Wo (4. loa)

PO VO PO VO

(p)Azooz6
y*' ,F,oAz6i

' Wo (4. lob),,

0
P6 V6 P6 V6

n , (P)n A starF3 Ar o,y ** ,,
Pt V P1 Vi 1

o , (P)62 A2 Azy*, F,2Ar
(4. lod)-

P2 V2 P2 V2

o , (p) A z562y*, Fsoza 'W (4.lOe)3
PO VO PO VO

<E} L / SEAy a, F6 02 66 *W (4. l Of)
,

6
P6 V P6 Y6 6

(E)n A z1AEy" , F A2 6,t1*
6 m

P61 Vu PuY61

y *2 , F,2 Az6 (P)f2A Az6,z2
,

6 p , y,, p,, y, ,

where V = Yv AxAyAz is the volume of the fluid at that location. Eqt'Ltion 4.10 can be
considered as the closure relations (and assumptions) that link the volume-averaged
velocities to the facial velocities. These assumptions are necessary because the volume
averaged velocities are not directly available quantities. The derivation described here is
somewhat more complicated than those in previous COMMIX versions. But the calculations
using the present formulation are found to be more robust than those in previous COMMIX
versions in some apphcations. In addition, as we shall demonstrate later, the previous
hypothesized closure relations will reduce to a formulation that ensures that the pressure
drop occurs at the same location as the density gradient in one-dimensional steady state
flows. As shown by Padilla and Rowe,50 using the so-called donor flow formulation, this
effect can be important when signihcant density gradients occur in a system. Furthermore,
as we shall demonstrate later, the closure relations described here, used in the momentum
equations, satisfy the one-dhuensional steady-state Bernoulli equation.

Now we can write the finite-volume expressions for the convective terms in the z
momentum equation (Fig. 6).

A(Y PW) dx dy dz
"

Az.

= |0.I,.| W|. - |0 -E,.| W| -|0,F,3| W| + |0, F,,| W|, , (4. I 1a)
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* A(Y,pwu)

Ax !
.

|0-Fx2| W2+ |0,Fx62| W - |0, Fx62| W|0Fx2| W= -

o6 2o

0,F,1| V ' + |0> F,1| V[o - 0,Fx61| W[1 + |0.4x61|4 * '-

3 06

The third conv9tive term (pwv) in Eq. 2.lb can be written similarl,i as Eq. 4.11b. By
adding all three convective terms and by using Eqs. 4.8 and 4.10. we obtain the finite-
volume expression for z momentum control volume in the following form:

A(Y pww), A(Yxpvu) YyP'

dxdyds
As Ax Ay.

(4,12)o - a f* wg a * v2_- a|* w3 - a[* wt a|* w3 - a[* w= a {c w s

where the coefficients are defined by the following equations:

a" = |0,E.o| + 0,- Fxe2| + |0,-F,si|+ 0,- F e4| + |0,- Fy33|*
o y

p .- F,3| + { |0.F,3| 4|0,- F,3| + f|0,F | + |0,- F | (4.13a)a+ y4 y3
p

|0,F,,\ Az.(p)[, A,, /p, V, + |0,F,.i| Az.(p)[, A,, /p., V., (4 13D)a ** = ,

a ,"* = |0,- F,,| Az,(p)[, Az, /p, V + |0,- F, ,| Az.(p)[, Az, /p., V., (4.13c)

e ," = |0,F,3|Az.(p) , Az,/p3 V, + |0,F, 3|Az.(p)[, Az3 /p.3" I418d)-

a |* =' . F , |62,(p)[, Az, / p. V. + |0 - F,..| Az. (p)*, Az. / p.. V.. (4.13e)"

a[*u|0.I:5|Az (p)* Az3/po Vo (4.13f)o g

a|*=|0,-I:6| Az6(P)s6 ^*6/P6 Y (4.13g)
5

Here the superscript "w" indAcates the.w-momentum equation and "c" indicates
convection. The vaHous convective fluxes for the z-rnomen.um control volume are listed in
Table 7.

Similar finite-volume expressions can be derived for the x and y momentum control
volumes. We can rewrite Eq. 4,12 in a more general form

A(Y.Pw&), A(Y,PV&), A(Y.pue)
Az by Ax

. .

.__- . _ - - _ . _ _ - _ _ _ _ . _ _ _



23

Thble 7. Convective fluxes for z-momentum control Lotume

P,3 = (F,3 + P,o) = f(p) Az w + (p)* Az, w.o o

Ee= (F,e + F,o) = (p)* Az. w + (p)* Az ws o o

F,o = (p)",,( Az w),,if, = (p) Az wo o

F,i = (p)|:'j,, ( Az w),,,,,,,,, = (p)' Az, w i

F,2 = (p)",',,",,, ( Az w ),,,,,,,f, = (p)'2 ^2
'

We 2 2

F,3 = (p)[8j,,( Az w)p,,,,,f, = (p)* Az we3 3

F,4 = (p)j'[,,,( Az w);,,,,,,,, = (p)|4," Aze4 w.

F 3 = (p)"''( Az w),,,,, = (o)| Az Wa a

F,, = (p)",'' ( Az w)=.s/2 " (Pb % We

Fx2 = (P)|.,( Ax u)i.i/2 * (P) AX u,2

F,i n (p)|''( Ax u)p,f, = (p)' Axi ui

''
F c2 = (P)[.ii ., ( Ax u),,,,,,,,, = (p)"2 axe 2 u 2a a n

F,,, = (p)[,["g',| ( Ax u),,,,,,,,, (p)"' Ax, ei us

y4 = (p)|,,( Ay v)j.i/2 *(P)AY4F V4

F *'
I

y3 = (p); ( Ay v)pij, = (p)| Ay3 v3;

F e., = (p)f,",1,(Ay v)).1/2.k.i "(P)uAye4 Vy M
|

h "''
ye3 = (p)3[,, (Ay v)p:/2,k. "(P) Aya3VesF

,

- _ - - - - . . - - _ - - _ _ _ - - _ _ _ _ _ . - _ - _ - _ _ _ - . _ _ _ _ _ - _ _ - - - _ _
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(4 14)a7 6, a7 6, - a7 6, - a~ \ a7 6. ar $, - a7 6. .=

liere again, we have employed the general variable 4, which can represent either u, y, or w
because we are dealing with momentum control volumes. Also, we have introduced a curly
bar over the dependent variable &. As defined in Eq. 4.7, 6 represents a combination of old
and new time values.

To demonstrate that the pressure drop occurs at the same location where the density
change occurs, we consider a steady-state one-dimensional flow with constant flow area.
Assuming that convection is dominating, Eq. 2.lb for the z direction becomes

A(Y, PWW) , _y, M , (4, g g)
Az Dz

Integrating over the z momentum control volume (Fig. 6) and assuming that w is positive,
we obtain from Eq. 4.lla

I4'I O)
i k w' - F,5w' = - (P. - P ) Az ,o

where Az is the flow area in the z direction. Substituting Eqs. 4.8 and 4.10 into Eq. 4.10.

(F,o + F, ) P,, / 2 p. Az. - (F,o + F,3 )F,3 /2p,Azs = - (P. - P ) Az (4.17)o

For one-dimensional flow with constant flow area

Az = Az3 = Aze = Az ,o

F,o = po Az Wo = p Az W ,o
(

F,3 = p3 Az W = p Az W ,'
s 3

r
F,e = pe Az We = p AzW ,o

and Eq. 4.17 reduces to

= -(P Po) , (4.18)(pW)* -
6

(96 Po,

which Indicates that the pressure drop occurs at the same location where the density
change occurs, in a similar manner, it can be demonstrated that the same relation holds if
W is negative.

4.2 Diffusion Term

4.2.1 Main Control Volume

The integration of diffusion tenns over a main control volume (Fig. 7) gives

1

- _ - _ - _ _ - - _ _ _ _ _ - - _ _ _ _ _ _ , _ . _ _
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Fig, 7. D#tston jltixes for main control volume

i = ( A,)i-1/2(I + I )/(0*0 * 0*l)D O I

2 * (Ox)1+1/'J(I + I )/(AX0 + Ax 2)D O 2

II'Table 8. D@tston strengtits for main

4 = (A ) (In + I )/(Ayo + Ay4)control voluma D 4y

3 = ( A )k 1/2( o + I )/(azo + AS5)D 5

6 = ( Az)k+1/2(fo + I )/(Azo + Az6)D 6

.-_ _________ - - - - -
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A Y P, - A Y vF, g 3 A Y F, g'
r rg3r

,

*'+ #'+ ' '' dxdyds
Ax Ay Az.

.

= Da(62 - 60)- D (6o - 6 ) + D (64 - ho)- D (6o - 6 ) + Do(ho - 6 )- D (6o - 63),i i 4 3 0 3

a D 6, + D 62 + Da6a + D 64 + D 6 + Do6ei 2 4 3 3

-(D, + Da + Da + D + D + Do) 6o . (4,19)
4 3

Here. D (= effective diffusivity x flow area / distance between the centers of two control
volumes) is the diffusion strength across the surface of the control volume, 6 (Eq. 4.7),
represents the sum of the contributions of old and new time values, and r,is the effective
diffusivity for the variable 4

To determine the value of D at a surface, we assume the diffusivity, r, varies
continuously from one main control volume to the next and use the following average
diffusion strength, e.g.,

D = ( Ax ),,,,, ( fo + F ) / ( Axo+Ax2) (4.20)
2 2

The values of diffusion strength for main control volume are listed in Table 8.

4.2.2 Momentum Control Volume

The integration of tbc diffusion terms over z-momentum control volume (Fig. 8) also
results in an expression similar to Eq. 4.19:

' r g3 3p 'A Y,F, af
r

rA
y , P, 0* ' + AYy , Y' + 0*'j ' ' dxdydz

Ax Ay Az

_

= U 6 + U 62 + Uaha + 5 64 + Us 6s + Ushoi 2 4

-(Uf + U + Ua + E + Us + Us) 6o . (4.21)2 4

The only difference is that we now use the momentum control volume diffusion strength D.
Instead of the main control volume diffusion strength D, e.g.,

- .ep35"3 ( Az)k + *)k+1.y ' b*6
,

The values of the diffusion strengths 3 for the z momentum control volume are listed in
Ta6ie 9.
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Thble 9. D([ fusion strengths for z-momentum control volume

(f + F61) '-

(Po + F )1~ 6i

_( Ax)i 1/2,k * ( A*}i-1/2.ul. (Axo + Ax 3) ( Ax 6 + Ax 61),-Di=-

(I. + I.3)
-D, = - .( Ax),,, n ,,,, + ( Ax),,, n ,,, (I + F ) +(6x + 6x ,),

1' i

_(6x + x,)

(f + T63)(To + F )1
' '

63

_( Ay)j 1/2,k *-D3=- AY J 1/2,k+. (Ayo + Ay3) + (Ay6 + OY63),

(I + I )1
' (Io + I )

4 = - (/.y)j 1/2,k + ( Ay)j+1/2,k+1}),(Ayo + Ayg) (Ay6 + Ay64),
6 644

-D
_

3 .ep3
5"- k+ k1 \['JO,

D6" (AE)k*(A*)k+1

,

J
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4.3 Unsteady Term

4.3.1 Main Control Volume

Representation of the tenn 8(yype)/8t is obtained assuming that the values po and co
prevail over the control volume surrounding point 0 (see Fig. 9). Integration of the
unsteady terms over the control volume then gives

a (Yvpc)dx dydz = (pc),-(pc)"Vo , (4.23)g

where Vo = Yv Ax ay az is the volume of the fluid; the superscript n refers to known old
time-step values, and the superscript n+1 for new time-step values is omitted for
simplicity.

4.3.2 Momentum Control Volume

Referring to the z momentum control volume shown in Fig. 6, and recalling that the
momentum of the staggered mesh consists of two parts, i.e.,

H, = ( H,),,,, + ( H,),,,,

= fy,,,Y,pwdxdydz+ j ,,Y ,pwd x d y d z. (4.24)

Integrating the unsteady tenn ovcr the control volume gives

f (YvPW)lXdydz = jy,f (Yvpw)dxdydz + jy,, (y,pw)dxdydz

{ H,),,,, + (H,),,,,=

, d 'V po W|.
, 8t8 ' V.P. Wl. 'dt 2 2

t , g j

(p. W|. - p| W|.') + (p. W|. p| W|.") (4.25a)=
.

In the derivation of Eq,4.25a. we have employed Eqs. 4.9b and 4.9f, which were introduced
previously to define the volume averaged velocity w'. Again, the superscript n refers to the
old time-step values, and the superscript n+1 for new time-step values is omitted for
simplicity.

Substituting Eq. 4.10 into Eq. 4.25a and after rearranging, we obtain

'd

,
g(Yvpw)dxdy dz

|
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-n

Az (p)f (Azo + Az ) ^Zo (P) (62 4 056)0o e
= wo- - w" (4.25b)

2At 2At 0

In Eq. 4.25b, we have again employed the closure relations (Eq. 4.10) described in Section
4.1.2.

Note that Eq. 4.25b has two potential limitations: (a) if there is a large density change
-in the control volume, the approximation may be less accurate: (b) if the volume porosity is
substantially different than the surface poroslly in the momentum control volume, this may
also lead to less accuracy. An alternative fonnulation of the unsteady term as shos < in Eq.
4.23 is provided as a user's option in which both volume-weighted average porosity and;

| volume-weighted average density are ut.ed.

4.4 Source Term

The finite-different.c representation of the source tenn S in Lg. 2.1 is expressed as

S, = S e, + Sp 0o . (4.20)

where Sc,, Sp4, and oo are assumed ^.0 prevail over the control volume surrounding point O.
This "linearization" of the source term is an effective device for stability and convergence.
The exact expressions for '.ie source term coefficients Sc, and S , depend on the actualp

fonn of the source S,. "ae coefficient S , is always less than or equal to zero; otherwisep

instabill;y, divergence, or physically unrealistic solutions would result.
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Integration of the source term over the main control volume gives -
,

5, d x d y d z a S , Vo + Sg Vo $o . (4.27)e

where Vo u W ax Ay Az is the fluid volume.

Integration of the source term over the z momentum control volume gives
f,

S, dx dy ds = Sc4 o + S g Vo6a . (4.28)V

where |--
t

r 3 I

V, = (Az, + Az.)/ *' + *L (4.29) [
V. V. ,

,

-

0s

f)
Vo is the characteristic volume used in the finite-volume integration. It will become clear

('later why we have employed Eq. 4.29 as the characteristic volume for the integration of the
"

z momentum control volume.

4.5 General Finite-Volume Equation for Main Control Volume

llaving looked at each term of the general equation separately. we now assemble all
terms of Eqs. 4.6. 4.19. 4.23. and 4.27 for the main control volume to obtain the general
finite-volume equation.

C. (Uns t e a dy) + (Convec t ion) - (Di f f usion) - (Sou rce))du dy d z

(P&)o -(P&) Vo + (|0,-Fd + |0 F | + ....)ho=
2

. (Unstenay)- (Convection)

- (|0 F jf, + |0.-F |ha + ....) + (D + Da + * * * *)hoi g i

- (Convection) . (Diffusion)

-(D 6 ~+ Da ha + "")- S Vo - Sp6oVo=0. (4.30)w

(Diffusion)- (Source)

. e now rearrange Eq.-4.30 so that only the terms containing Qo are on the left side of theW.

equation, noting that -

6 = a6 + (1 - n)$" . . (4.31)

After some algebra and rearrangement, we obtain

E
+ a(QO.-F | + . . . . + |0,Fej) + (D + . . . . + Do)- S Vo6o i

_

g

_ _ - - _ _ _
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=[(10. rip o,)o,4... 4 (10,-rd 4 n )e.]ao

+ (|0, rib o,)o" + .... + (10,-rd + o.) d](1 - a)

- d(1 - a){(jo,-rd + . . ..|0,Fel) + (D + . ... n )- S , Vo )i e p

+ Vo + S Vo (4,32)n .

Al
s s

or

3 .. -

f ele, = (a14, + aj e, + at c, + at c. + aI4, e at 0.)n + bl , (4.33)

where

bl = bli + b2| + b3| , (4,34)

For ease in reading, the coefficients of Eqs. 4.33 and 4,34 for the main control volumes are
~ in in Table 10. 13ecause we have combined the extreme semi-implicit and fully implicit

lur aulations in one general form, the coefficierds of Table 10 may appear somewhat
o '.ising We have therefore also included Tables 11 and 12, which give the coefficients
mr extreme semi-implicit (n = 0) fonnulation and fully implicit (n = 1) fonnulation.

It may be noted from Table 10 that we have expressed the coefficient a; in two forms.
The first form, a;(1), is obtained by assembling all the terms of Eqs. 4,6, 4,19, 4.23, and
4.27~ The second fonn, ao(2), is obtained by subtracting the continuity equation from the
first fonn, no(1); that is,

ao(1) - (continuity equation) = ao(2), (4.35)

The use 61 the second fonn, ao(2), is preferred; this is the .onn implemented in COMMIX-
IC. The reason is that this form is independent of the continuity equation that may or may
not be satisfled during the solution of the energy equation. The second fann is also
referred to as the transport fonn.

In deriving the transport form of the coefficient ao for the main control volume, we
have made use < f the - 'ntinuity equation as described below (if the reader is not interested
in detaas, the rr at of tnis section can be skipped).

If we substitute 6 = 1, S, = 0, and F, = 0 in the general equation (Eq. 2.1) for the main
control volum'., we have the continuity equation, Therefore, all formulations derived so far
also are appl! able to the continuity equation.

To derive the continuity equation, we substitute & = ! .n Eq. 4,32, remembering that
o = 0 and S = 0 for the continully equation. After simplification, we have the following:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ _ - _ - _ _ _
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Table 10. Generalfinite-volume equation for main control volume
(Eqs. 4,33 and 4.34) and its coefficients

a!$o' = a(a!6 + .... + a$$e) + (bl$ + b2$ + b3$) ,

|

af = (|0,P | + D ) aj = (j0,-Fa|+ Dg)i

al = (|0,P |+ Ds) a$ = (|0,-F |+ D )3 4

al = (|0,F |+ Ds) a$ e (|0,-Fe|+ D )3

bl$ = (1 - a)(aI&" + a$$" + al&" + c$$" + al&" + a$$")

b2$ = -(1 - a)((|0,-F | + . ... + |0,Fe|) + (D + .. . . + De)- S Vo}$"i i g

n 3

b3$ =
E *n +S Voo

\ /0

mo)a (1) = + a((|0,-F | + .. .. + |0,Fel) + (D + Da * * * * + D )- S Vi i o

(1st form)
<n T

a$(2) = a(aI + al + .... a$) +-S Vo + (1- n)(F - F + F - F + F - Pe)g i 2 3 4 3

. (2nd form)

Continuity Equation in the Discretized Form

E" " + a(|0,-F | + .... + |0,Fe|)- a(|0,P | + . ... + |0,-Fej)i i

- (1 - a)(|0,F | + . . . . + |0,-Fe|) + (1 - a)(|0,-F | + . . . . + (0,Fe|) P = 0. (4,36)i i

Please note that the first density tenn in the continuity equation (Eq, 4.36) is at the
new time. while the second density term is at the old time. The subtraction of Eq 4,36
from ao(l), after some algebra, results in the second form, ao(2):

a$(2) = a$(1)- Continuity Equation 4.36

= a[(D + . . . . + De) - S Vo)+ a(|0,F | + . . . . + |0,-Fe|)e i g

+ (1- a)(|0,F | + . . . . + |0,-Fe|)- (1 - a)(|0,-F | + . . . . + |0,Fe|) + Ei i

1
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7 table 11. Extrerne semt tmplicit (a = 0) finite-volume
'

equation for main control volume
(Eqs. 4.33 and 4.34) and its coeBlctents
aj$. = (b11 + b2| + b3|)

,

b1$ = (af$" + al$" + a|&" + aj$" + al$" + a$$")

b2$ = - {(|0,-F | + . . .. + |0,F |) + (D + . . . . + D.) - S Vo)i i g

r n 3

b3$ =
E *n +S Vo o

\ Jo

a$(1) = E
'

At

ilst form)

a$(2) = + S, Vo + (F - F + F - F + F - Fe)
'

i 3 4 3

(2nd form)

.i

?,ble 12 FLdly implicit (a = ilfinite-volume equation for main
control volume (Eqs, 4.33 and 4.34) and its coed 1ctents

a$$o = (a|$i + ....+ a $e+ b3$)e

af. = (|0,F | + D ) al = (|0,-F |+ Ds)i 2

a$ = (j0,F |+ D ) a| = (j0,-F | + D.), 3 3 4

al = (|0,F |+ D ) aj = (j0,-Fej v Do)3

1

n 5 -

b3$ = E *n + S, Vo
\ JO

a$(1)'= E + ((|0,-F | + . . .. + |0,Fe|} + (D + Da . .. . + De)- S V}i i g o

(1st form)
r n i

a!(2) = (a| + al + .... aj) + -S Vog
.

(2nd form)

.
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e n s

. a[p ril + oi) + .... + (p.-F, + o.|))+ p- as,, vo

+ (1 - a){(j0,Pd - |0,-F |) + .. . . + @,-F.|- |0,F.|}}i

<o s

= a(a| + al + a$ + ai + a! + a!') +-aS, Vap
< >

+ (1 - a)(F - F + F - F. + F - Fe) (4.37)i 3 3

because

10.Fl-10.-rit = Fi i

and

|0.-F |-|0,F | = - F .

Finally, it should be noted that the general variable & for the main control volume can
_ represent any transported variable such as enthalpy, turbulence kinetic energy, or rate of
dissipation of the turbulence kinetic energy,

4.6L General Finite-Volume Equation for z-Momentum Control Volume

We can derive the finite-volume equation for z momentum by following the same
procedure as for the finite-volume equation of the main control volume, with one
exception. We see that the pressure gradient term appears in the momentum equation, but
the pressure field is neither known beforehand nor directly obtainable from some sort of
" conservation equation for pressure," Therefore, we consider pressure as unknown and
determine it indirectly from the constraint that the velocity field satisfies the continuity
equation. For this reason, we display the pressum-containing term in the finite-volume
form of the momentum equation separately and do not include it in the source term.

From these considerations, the discretized equation for the z-momentum control
-

volume shown in Fig. 6 is written as

alwo = af w + af w + aJ w + a!w4 + a7w + alw + by - d,(Pe - Po) (4.38)i 3 s e

where -
,

L .

L d,= Vo/ (Az + Az ) (4.39)o e ,

and 7, is the characteristic volume for the momentum control volume defined by Eq. 4.29.
The reason that Eq. 4.39 is employed here is that we want the discretized momentum
equation to satisfy the one-dimensional steady-state Bernoulli's equation twith constant
density and neglecting gravity elTect), which can be written as (Fig. 6)

p(wi- wj)/ 2 = -(Pe - Po), (4.40)

I
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where 7. and 9, are the average velocities associated with the control volume centered at
grid points 6 and 0, respectively. From continuity, we have

pW * =pwo = F,o = p Az w . (4.41)o oe% azo

Substituting Ec. 4.41 into Eq, 4.40, we obtain the following equation, which must be
satisfied by the discretized, one-dtmensional z-momentum equation

b A26
-
^4

= -(Po - Po). (4.42)
29 y Vo , Vy oj

The one-dimensional momentum equation in the z directica is

O(T*E**) . _ y, $ (4,4 3} '
Az Dz

Integrating over the z-momentum control volume (Fig. 6), and assuming that w is positive
and

jy,y'$ v = g(az, + g) V ,
P" - Pd o

az

we obtain

EoWk-P,5W| = -(Po - Po)Vo / (Az + Az ) (4.44)
n o o ,

where V is the characteristic volume to be determined. Substituting Eqs. 4.8 and 4.10 into
Eq. 4.44,

(F,o+F,a)F,oAzo , (F,o + F,5)P,5Az (Po - Po)Vo . (4.4 5)o

, }(Az + Az )2oVo2 PoVs P o o

For one-dimensional flow with constant density,

Fzo = Fz5 = Frs,

po = ps = p.

Therefore. Eq. 4.45 reduces to

* - (Az + Az ) = -(Po - Po)Vo. (4.46)o o

Dividing Eq. 4.46 by Eq. 4.42, we ob ain

-Vo = Az + Azo. [4,47)o
3, 39
Y We

|

. . . . . . ..
. . .

..
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Equation 4.47 is identical to Eq, 4,29. Thus, the characteristic volume h employed in E-
4.39 is the proper volume for integration over the z-momentum control volume, and th
resulting finite-volume equation satisfies the one-dimensional Bernoulli equation.

'lhe coefficients a|...a| andb| = b1| + b2| + b3| are assembled from Eqs. 4.12, 4.21,
4.25, and 4.28. The resulting equation has the same form as Eq,4 33, except that the
contributions of the source that enter a| and b| do not contain the pressure gradient. The
effect of the pressure gradient is expressed by the hut tenn in Eq. 4.38. The coefficients
for the z-momentum control volume are presented in Tables 13-15. We have again
replaced the velocity w by the general variable c in Tables 13-15. This s only to indicate
that the x- and y-momentum equations can be derived in a similar manner as the z-
momentum equation. In Tables 13-15, we have provided two different fonns of the coef.
ficient a;. The first fonn, a|(1), is obtained from the momentum equation only and is
referred to as the conservative fonn because conservation of momentum is satisfied over
the control volume. The second fonn, a|(2), is derived by employing both the momentum
and the continuity equations even though the latter may not be satisfied during an iteration.
Experience indicates that using the continuity equation often helps to speed up the conver-
gence during iterations. The second fonn of the coefficient is referred to as the transport
form of the momentum equation and is implemented in COMMIX-lC. To derive the
transport fonn of the z-momentum equation, we begin with the discretized continuity
equation for cell 0 and cell 6, which can be written as

(Po - P")V / At + F,o - F,3 + Fx2 - Fu + Fy4 - Fy3 = 0 (4.48)o

for cell 0, and

(Pe - Pe)Ve / At + F,e - F,o + Fxe2 - F,ei + Fyu - Fyea = 0 (4.49)

for cell 6. The transport form of the z-momentum equation is obtained as follows:

transport conservative fonn w'
*

form of z- = of z-momentum - x Eq. 4.48 w" x Eq. 4.49. (4.50)
momentum equation 2 2
equation

it can be observed that Eqs. 4.48 and 4.49 contain only the time-dependent tenns and the
convective fluxes. The diffusion terms and the soume tenns remain the same in the
transport form as compared to conservative form of the z-momentum equation. Thus, all
the coefficients are the same in the conservative and tra:, sport fonns of the z-momentum
equation, with the exception of the coefficient a|. Equation 4.50 can be reduced to

i . .

a!(2) = a$(1)- " x Eq. 4.48 ** x Eq. 4.49. (4.51)

After some manipulation and rearrangement, the final fonns of a|(2) turn out to be
identical to those given in Tables 13-15.

I



,
_ _ _ _ _

37

Table 13. Coe.[ficients of generalfinite-volume equation
for z-momentum control volume
at$, = a(aj$ + + alc,)+ (b1; + b2; + b3%)3

(j0,F,i| Az / pi i + |0,F,ei| Az / pei oi) + U*
af = V Ve io

aj = 2 (|0,-Fx2| azo / P2V + |0,-F s2| azo / Pe2Ve2) + Uc2
2 x 2

O / Pa a + |0,F m| Az / p 3Vea) + Da1 = '(|0,F a| AZ" V y e 3y

a1 = ''(|0,-F | Az / p4V + |0,-F u| Az / pu u) + U" Vy4 o 4 y e 4

al = |0,P,3|+ D0 *
3

90YO

a; = '*|0,-F,e|+U*
o,

bl& = (1- a)(atcj' + alcy + + a&c;)

b2& = -(1- a) 1 |0,F,ij + + |0,-F s4|
pu\,u

' '' ' *
y2 Vpi i

,
,

+|0,F,3| 5 ' +|0,-P,s| + D + + De - S Vo co
* " '"

i g
POVo po\,e

b3$ = Az (p)[(Azo + Az )cS /24t + S ,Vo e c o

a$(1)= Az (p) (Az + Az )/2Ato o e

|0,P,e| + |0,F,e,| + |0,-F eij + |0,F e4|+ |0,-F e3|
*+a x y y

,' |0,-P,3| + |0,F,2| + |0,-F,i| + h0,F | + |0,-F a|+a y4 y

+(D + + Us - S Vo)ai g

a&(2) = Az + b zo Aa2At ,gpo, s pe ,

'" |0,-P,e| - |0,-F u2| + |0,F,ei| + h0,-P u| +0,F e3| + F,o+a x y y

+ a (p)* Az azo |0,F,3| + g(0,-F | + 3|0,F,i| + g|0,-F | + 1|0,F |- F,o
/

o - 1 1 1

x2 y4 y3

+(D, + + De - S V )ag o

-- --- _
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Table 14.- Coeficients of extreme semi-implicit (a = 0) finite-volume
equation for z-momentum control volume
a|$. = b1| + b2| + b3|

bl!' = a|4" + aley + ...+ a!$;

b2$ = - 1 |0,F,ij ' + ... + |0,-F s4| *puVs.
'8'

y2, Vpi i
, ,

+|0,E,3| * + |0,-E,e| + b + . . . + De - S V $8
*

i p4 o
PoVo PeVe

b3$ = Az (p) "(Az + Az )48 /26t + S Voo o e )
|

a$(1)= Az (p) (Az + Az )/26t Io o e

a$(2) = Az + Azo as2At 3 po , spe,
,

|
t

|

._____ _ -_
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Table 15. Coe.[[letents offully implicit (a = 1) finite-volume
equallon for z-momentum contro: volume
a|&, = (a'&, + + a!$, + b31)

,

1

_

af = '(|0,F,i| Az / p V + |0,F,si| Az / pe V ) + Do i e ei i

2 (|0,-F | azo / P2aj = V + |0.-F e2|4Ze / Pe2V )+ Ux2 2 x ea 22

aj = '(|0,F | Az / Pava + |0,F es| AZs / PeaVea)+ Ua
88

y3 o y

al= '00,-P | Az / p4V +|0,-F c4|az /pc4Ve4) + D
4

y4 o 4 y e 4

E
a1=|0,E,3| 5+53

POYo

aj = |0,-E,ej 8 "8 8+5vPe e

b3$ = Az (p)|) (Az + Az )$8 /26t + S Voo o e q

a!(1)= Az (p)|(Az + Az )/2Ato o e

+ (P)eAz az J0f.el+ 3 .F s2| + 3|0,-F,8i|+ g|0,F c4|+0,-F e3|
r 8o e - 1 1 1 1

10 ap,y, y y

|0,-E,3| + |0,F | + |0,-F | + |0,F | + |0,-F a|+ x2 ri y4 y

+ 5: + . . , + 5e - S Vog

a (2)= (p)| Az ''pg '
Az + h' Az ~

'n
o -

o e26t , po , ps ,
_

+(P)e AZoAZe J'0,-F,e| + g|0,-Fa2| + 3|0,F,oi| + 7|0,-F c4| + g|0,F es| + F,o
- 1 1 1 1

p,y, y y

+(P)e AZoAZo/
- 1 1 1 1

'

J0,F,3| + |0eF |+ 3|0J,i| + 3|0,-F | + 3|0,F a|- F,ox2 y4 yp,y,

+ D: + + De - S Vog
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5 Pressure Equation

The pressure appearing in the momentum equation (Eq. 4.38) is unknown and must be
determined from the conservation-of-mass equation. In this section, we present the
derivation of the pressure equation.

The conservation-of-mass equation for the cell around point 0 (Fig. 9) can be derived
from Eq. 4.32 by substituting & = 1, diffusion strength D = 0, and S = 0:

- (A, u)i.1/2(P)' + (A u)i,i/2(P)Vo
ht >

s
<

-(AV)W2(P)0+(^r Y)m(P)y

- (A,w)ka/2(P) + (A *)k.1/2(P) * 0 . (5.1)s 0

Here, Vo = YvaxAyAz is the fluid volume of the main control volume, So is the mass residual
of the continuity equation, <p> is the upwind density, u, v, and w are the normal velocities
at the surface of the control volume, and A is the flow area We define the flow area as the
product of surface area and surface porosity.

When mass is precisely conserved, the right side of Eq. 5.1 vanishes, i.e., 6 = 0.
However, because Eq. 5.1 is solved by an iterative-solution procedure, the mass residual 6,
in general, may not be zero.

To convert the indirect specification of pressure in the continuity equation to an.

explicit form, we write the momentum Eq, 4.38 as

c = 6- d' A(6P) (c = u, y, w), (5.2a)

where

SP = P"* - P", (5.2b)

a|c, + bl& + b2& + b3& - d' AP"a
6= (5.2c),

as

The reason that 6P (instead of P) is used in Eq. 5.2a is to speed the convergence. This is
particularly helpful when the change in pressure is small compared to the absolute pressure
of the system.

For example, the z-direction velocity w at the north surface of the main control volume
is expressed as

e = *e - de (6P - SPo) , (5.3a)w e

where

|

|

_ _ _ _ _ - _ _ _ -
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o

| aZa7 w, + blE + b25 + b35 - d|(Po" - Po").
"'

'

Wo = (5.3b),

0,0

8 (5.3c)dl = s(Az + Az ),a o o

and

azo+ (5.3d)V* = (Az + Az )o o o
(V Vo jo

With similar definitions for 0, 0, d, and V, the other velocities appearing in Eq. 5.1 can be
expressed as

ui = ni- d"(SPo - $P ),i

a = 0 - d"(SP - 6Po),u 2 2

v3 = 9 - dj(SPo - SP ),3 3

v4 = 9 - d!(6P - 6Po),4 4

and

w3 = W - d|(SPo - 6P ), (5.4)3 3

where

"2 id" =
a"(Ax + Axi),o

2 Vj'
dy = a (Ax + Ax ),o o 2

2VJ
dj = a;(Ayo + Ay3),

d' = --

a;(Ayo + A> ),4

and

5 (5.5)dy = a (Az + Az ).o o s

The characteristic volumes are defined as

V" = (Ax + Axi) ( VoV ,, I
0+ :i o

i

l
1

. _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ __ _
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V"_m (Ax + Axg) 0+- '

.

o
_

,

Vs = (Ayo + Aya) b+ *

( Vo _ V ,i3

OY4VI = (6yo + Ay4) +V ,

Vs o 4s

and

Vi = (Az + Az ) t+ 5 (5.6)o s ,

Here, the subscripts 1... 6 for velocities refer to the surfaces of the main control volume.
Substitution of Eqs 5.3 and 5.4 into Eq. 5.1 yields

a$ BPo - f a[8P,'- b$ = Bo , (5.7)-
s.n

The coeIIlcients of Eq. 5.7 are listed in Table 16. These coefficients form a symmetric
m atrix.

Equation 5.7 is the required pressure equation it can be solved by using any one of the
matrix solvers described in Sec.10.4, - 4

6 Turbulence Modeling

6.1 Background of Turbulence Modeling

The subject'of turbulence has attracted countless researchers for more than 80 years. In
1895, Reynolds proposed that a fluid particle in turbulent flow is in randomly unsteady

_

motion. (He averaged the Navier-Stokes equation over a time-scale that is long compared to
the turbulent time scale and derived the equations that describe the mean turbulent
motion. In spite of the long time span and large research effort since then, the problem of

' turbulence has not been resolved completely, for the reasons discussed beiow.

- The appearance of the time-averaged correlations, such as piFi? in the governing
equations, gives rise to the so-called " closure" problem (more unknowns than equations
available for the solution of unknowns). Here, p denotes fluid density, u' and v' are the
fluctuating velocity components in the coordinate directions x and y, and the overbar
denotes the time averaging. The correlations uY are known as Reynolds stresses.

Anothe- difficulty is that the constituents of the turbulence phenomenon normally take
place _in scales of motion that are of very small orders of magnitude in size. while the whole
flow domain may extend over meters or even kilometers. Important details of turbulence
are small-scale in character (although it is not the details but-the time-averaged conse-
quences that are of interest in practical application); As a result, the computational nodes
required to resolve small-scale motions of turbulence will require far more storage capacity

. .
. _ _ ___ _ - - __--_-_______-___-_ _-- _
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Table 16. Coc]Jlcients of pressure equation
(Eq. 5,7)

'''A ' 2 5'"i
a[ = a ; ,,,g,(p)' sJ

Ax , + Ax i,s

' ''A' 2 5'"
a| = a;>s.u,(p)e

4
' bKo * hK n>s \

'A T ' '

2 V''
a [ = -- '- (p)3 -

* bye + bYssag s t a, \

'

a! = A.,'a;,,,g,(p),
',' 2 Y*'

-

' ( Ay, + Ay ,q

' ''A' (p)> az 25*'a| = 1

'g + Az, ja;,s g,

r s r
2 5*"g

(p),*
b*o + b5* s

a[ = 1

(a!,a.ua \

a; # a[ + a; + a; + a: + a| + a|

b| = - V dt j, + ( A, 0)s-va(p) - ( A,0)s,u (P)(

+ ( A, 0) ,(p)[ - ( A,0) ,(p),

+ ( A,4), g,(p){ - ( A,0),,g,(p),

than is available with current computers. The corresponding computer running time also
will be infeasibly long,

An alternative approach to resobring these difficulties is to employ some fonn of
turbulence modeling in which we solve only the time-averaged equations of motion, along
with a set of transport equations of turbulence quantities, e.g., k. the turbulence kinetic
energy, c, the rate of dissipation of k, etc Even this approach requires a significant amount
of numerical computation. It is only in the last 20 years, with the recent advances in
computer power, that this alternative turbulence modeling approach has been feasible.

Many turbulence models have been proposed to resolve the above-meationed diffi.
culties by providing solvable equations for computation of turbulent flows. The centralidea
in most of the turbulence models, except the Reynolds-stress model or algebraic stress
modeling, is the use of an artificial turbulent viscosity ptur to. account for the additional
diffusional flux due to the turbulent motion. To do that, the Reynolds stress tenn is
expressed as

_- ____ -
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!

dv) 3p(u,2y.2,,,2) .
'Bu 1

(6.1)-p u'v' = p m,

!

We must note here that the turbulent viscosity ptur is a property of the local state of
turbulence and not a physical property of the fluid. The turbulence modelin this category
is therefore generally referred to as a viscosity model.

The very early and still popular model among these viscosity models is the Prandtl's
mixing length hypothesis.57 Prandtl's mixing length model is the simplest turbulence
model since it does not require solution of any transport equation of turbulence parameters.
In his mixing length hypothesis, Prandtl assumes that

,

"
p m, = p t (6.2)

dy ,

where t is the mixing length that represents the length scale of the turbulent flow. Itis
known that I can have different forms for different type of flows. For example, in the
boundary layer of a single wall.

t = Ky, (6.3)

where K is the von Kannan constant (0.42) and y is the distance from the wall. For some
free turbulent flows, such as jets or mixing layers,

t = cS, (6.4)

where 5 is the jet half-width, and c is an empirical constant. Even though the mixing
length hypothesis is easy to use and gave fairly good results for some simple flows, it has the
following disadvantages:

* It cannot predict successfu!1y more complicated flows in practical applica-
tions, such as recirculating flows that occur frequently in engineering systems.

* It implies that the effective viscosity and the effective thennal conductivity
vanish where the velocity gradient is zero. This is generally not true and can
lead to erroneous results.

Finally, it should be noted that the mixing length hypothesis does not take into account the !

effects of convection and diffusion on turbulence, and we shall see that it is a special case of
!the more general k-c two-equation turbulence model.

In 1945, Prandtl suggested a more general approach than the mixing-length hypo-
thesis.58 Flis new approach is generally referred to as a one-equation turbulence model. In
this model, the turbulent viscosity is assumed to be a function of the square root of the
turbulence kinetic energy k:

pm, = pt kva . (6. FJ, j

To detennine the value of k, Prandtl suggested that a transport equation of k be solved,
thus taking into account the influence of neighboring regions on the local turbulence
energy. As shown in Eq. 6.5, the turbulent viscosity is related to the turbulent kinetic
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| energy k, instead of a mean velocity gradient. This alleviated the problem encountered in
the mixing length hypothesis where the effects of turbulence vanish when the mean
velocity gradient is zero. For example, on the centerline of a pipc, although the mean
velocity gradient is zero, the turbulence energy is not. Therefore, the turbulent viscosity
does not vanish at the centerline of the pipe. Even though the one-equation turbulence
model generally produces more reliable results than the mixing length hypothesis (at the
expense of more computation), in practice, the model offers only a small advantage over the
mixing length hypothesis since the length scale in Eq. 6.5 still must be specified. Further-
more, the elTect of transport of the length scale is not accounted for in the one-equation
turbulence model. The difficulty of trying to specify a length scale in complicated now
situations for the one-equation turbulence model leads to the development of a two-
equation turbulence model that is the main subject of this chapter.

There are several two-equation turbulence models (k-c model, k-t model, k-W model,
etc.). Here, the symbol k is the kinetic energy of turbulence, c is the dissipation rate of
turbulence energy, I is a macroscopic length scale of turbulence, and W is interpreted as
the time-averaged square of the velocity fluctuations. An.ong the two-equation models, the
k-c model, as proposed by Harlow and Nakayama59 and Jones and Launder,Co is the most
widely used.

The next level in turbulence modeling is represented by the complex Reynolds stress
models.s t-64 These models are still in the development stages.

In COMMIX-lC, as in COMMIX-18. we have adopted the k-c two-equation turbulence
model of Harlow and Nakayama50 and Jones and Launder 40 for the follow'ng reasons:

* The k-c two-equation turbulence model is the most widely used and tested
model. This will provide the user with some confidence in the results of
COMMLX-lC when it is used to predict turbulent Dows.

* The k-c two-equation turbulence model has some generality and can be
applied to various types of turbulent flows. Including internal Dows and free
shear Dows. This generality fits well in the COMMIX code, which is itself a
general-purpose code.

It should be noted that only the k-c two-equation turbulence model ts retained in
COMMIX-1C in an attempt to simplify the code structure by eliminating seldom-used
options. This is different from COMMlX-1B, where three options are available for
calculating turbulent flows, i.e., the Prandtl mixing length hypothesis, the one-equation
turbulence model, and the k-c two-equation model. Because the Prandtl mixing length
hypothesis and the one-equation turbulence model are special cases of the more general k-
c two-equation turbulence model, there is no loss of generality in dealing with various types
of turbulent flows in COMMIX-lC compared to COMMIX ~18. However, the reader should
be aware of both the limitations and the merits of the Prandtl mixing length hypothesis and
the one-equation turbulence model. It is our opinion that understanding the mixing length
hypothesis and the one-equation turbulence model is a prerequisite to understanding the
more complicated and more general k-c two-equation turbulence model and is. therefore.
highly recommended.

..

. .
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Finally, we have retained the constant diffusivity modelin COMMIX-10. Strictly
speaking, the constant diffusivity model is not a turbulence model. We find it useful
sometimes in performing scoping calculations since it does not require the solution of
additional transport equations.

6,2 Constant Tutoulent Diffusivity Model

This is a very simplified turbulence model in which the turbulent viscosity and the
turbulent conductivity are assumed to be constant. The value of turbulent viscosity is a
user-prescribed single input constant.

It is preferable to prescribe values of turbulent viscosity and turbulent conductivity
obtained from experimental data, if the experimental information is not available, then
turbulent viscosity can be estimated with the following equation suggested by Sha and
Launder:05

4 u, = 0.007c,pUnm, t , (6.0)

jwhere

c, = 0.1 for Reom, > 2000,

c, = 0.l(0.001Renm,-1) for 1000 s Re d2000,n

and

c, = 0 for Renm,<1000, (6.7)

liere.

Umax = Max (u,v,w) and (6.8)

Remax = Max (Re , Rey, Re ) , (6.9)x z

the mixing length scale

t = C, D . (6.10)h

the coefficient

C = 0.4 , (6. I 1)f

h s the hydraulic diameter.and D i

If information about turbulent conductivity A ur is not available and not prescribed, wet

can approximate it with the following relation:

NturP,

Ch

c 4:u' (6.12)p
=

U )f ,0.8(1- ex$6 x 10
4 RePr

!

- - . . _ - -
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'

where oh is the turbulent Prandtl number, Re is the characteristic Reynolds number, and
Pr = C p/A is the molecular Prandtl number. Equation 6.12 is based on the proposal ofp

Nijsing and Elfler.06

Again, it must be emphasized that the constant diffusivity model is, strictly speaking,
not a turbulence model. It does save computing time compared to the two-equation
turbulence model and is used only for scoping calculations.

6,3 k-c Two-Equaticin Turbulence Model

The derivations of the transport equations for k and c are well documented in the
literature, e.g., Launder and Spalding,G7 Sha and Launder,65 and Arpaci and Larsen.G8 liere,
we will only bric0y summarize the results, in this section, k and r are defined by the
following equations:

k=h2
u'2 + v'2 + w,2 I (6.13)I

and

".$"I (6.14)r = v&xj dxj '

6,3,1 Transport Equation for k

The transport equation for turbulence kinetic energy, k, can be written as

b + pu b = -puiu}bt + p'u; gi- p "I "Sp
8t 38x ax 8x; dx3 &xi,j 3

A B C

< -

8 ak buiui> - p ; u; u'u --

(6,15)j ~ p"' 8+ 4 + ,

2

D
Equation 6.15 is the exact form of the transport equation for k. Here, the terms are

A: source due to mean shear,

B: buoyancy interactions,

C: loss of k through viscous dissipation, and

D: diffusive transport of k and randomizing action of the pressure-strain correlation.

I
1

.__ __-________ _ - --
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LWe can see that Eq. 6.15 has a closure problem. Using the standard closure relations,
i- Eq. 6.15 reduces to

_P +puj = Pu + G g - pc + N ' + p,.. ,

licre .
r v

0"' O"L + b (6.17)P, =
'"\dxj sdX) OX i c

is the source due to mean shear, and i

Gg = h 2- g (6.18)- .

Poh U (dX)

is the source due to thennal buoyancy, where oh is the turbulent Prandtl number for the
energy equation and has a recommended value of 0.9. The tenu containing ok n Eq. 6.16i
-represents the diffusion of k. ok is called the turbulent Prandtl number for k. Launder et
al.03 have recommended the value 1.0 for ok.

6,3.2 - Transport Equation for c

The exact fonn of the transport equation for e is obtained by taking the derivative of
Eq. 6.1 with respect to xj. and multiplying it by

"L + b, 8 (6.19)
r

k
.

2v .

(UXj dX is

The resulting equation is discussed in detail by Daly and Harlow,60 H utjalle and Launder,02 -
nd lenley and Khajeh-Nourt.70 The only feasible approach toward devising an c _cquation

is to apply both intuition and inteutgent dimensional analysis. The c equation contains
several empirical coefficients that requirc adjusting to_ account for different behaviors of

00 and by Daly and-different shear flows. The_ equation proposed by Jones and Launder
Harlow7013

= C f(Pg + Og)- Cp +p'u) i 2

0 "-
,

+ dX- Elaf+p,,,dX). - (6.20)
Dj.s e /

Here, the source-tenns Pk and Ok have the same form as Eq. 6.17 and Eq. 6.18,-
- respectively; the second term on the right is the dissipation term; and the last term-
represents diffusion. The variable oils the turbulent Prandtl number for c: the
recommended valucos is 1.3.- The coefficient of the production term C1 is normally chosen
by. reference to near-wall turbulence, whereas the coefficient C2 is detennined from the
decay of grid turbulence. The values of Ci and C2 recomm:mded by Launder et al.71 are 1.44
and 1.92, respectively.

-. _ - - .- - - ..
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i

6,3,3 k-c Two-Equation Turbulence Model

in the k-c two-equation turbulence model, we first solve the transport equation for
turbulence kinetic energy k (Eq. 6.16) and the dissipation rate of turbulence kinetic energy
c (Eq. 6.20), After obtaining the values of k and t, we compute the turbulent viscosity ptu-
using the relation

l

D
H iur = (0.21),

tr >

Here, Cp is a constant having the recommended value 0.09. After computing turbulent
viscosity, we compute the thermal conductivity using the relation

" ' " 'A,= (6.22)tu
Oh

For turbulent flow, the diffusivity in the governing conservation equation (2.1) is
considered as a time-averaged value. Therefore, the viscosity and thennal conductivity A
in the momentum and energy equations are replaced by the effective transport coefficients
of momentum and energy, respectively. Thus,

H = Merf = klam + 4tur (6.23)

and

A = Acfr = Alam + A ur. (0.24)t

Here, the subscripts lam and tur stand for laminar (molecular) and turbulent properties,

in Sec. 6.1, we remarked that the Prandtl's mixing length hypothesis is a special case
of the k-c two-equation turbulence model. We shall now proceed to demonstrate this. For
steady-state, one-dimensional flow near a wall, the effects of convection and diffusion are
usually negligible: turbulence production is balanced by dissipation. Equation 6.16 reduces
to

rg"as
piui -- = pt, (6.25)

r& >Y,

l

! Multiplying Eq. 6.21 by Eq. 6.25,
|

/ N2
2 2 2= Co p k . (6.26),

Since

T = peu, (6.27),

Equation 6.26 can be written as
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t = Cg8pk, (6.28)

which expresses the result that the turbulent shear stress is directly proportional to the
turbulence kinetic energy in local equilibrium turbulence. This important relationship is
supported by experiments on flows near walls.

From dimensional considerations,67 the dissipation rate e can be expressed as

c = Co ks/s / t . (6.29) i

Substituting Eqs. 6.21 and 6.29 into Eq. 6.25 and after further rearrangement,

Co k = hu '* l' .
'

(6.30)
(Ds :

Eliminating k between Eqs. 6.28 and 0.30 gives

(6.31)t = Cga t*
Ds

p .

s

Equation 6.31 can be recognized as equivalent to the Prandtl's mixing-length hypothesis
expressed by Eq. 6.2. Thus, the mixing-length hypothesis can be deduced from the
transport equation for the turbulence kinetic energy by neglecting the contributions from
convection and d!Irusion. Its application is limited to local equilibrium turbulent flows that
- usually occur near walls. Consequently, as we shall see, the results of local equilibrium
turbulence model play an important role in the wall function development to be described
in Sec.6.5.

6,4 Boundary Conditions for Turbulent Transport Equations

- There are three types of boundaries: (1) a line or surface (plane) of symmetry, (2) inlet
and outlet boundaries. and (3) a solid wall. The first two boundaries are discussed here.

. and a solid wall boundary is discussed in Sec. 6.5.

6.4.1= : Symmetry- Boundary

The simplest boundary is the line or plane of symmetry; at a symmetry line, the nottnal
- velocity is zero. The gradients of scalar quantitles k and c normal to the symmetry line are
also zero.

6.4.2 Inlet and Outlet Boundarles

- At the outlet plane (free boundary), the gradient of turbulence quantitles is assumed to :
be zero. Thus, at the outlet plane,

Bk/Dz = 0.

and

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _
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i

!

; Oc/Bz = 0, (6.30)
! . where z represents flow direction at the outlet.

| The inlet plane requires special treatment. Both the inlet turbulence kinetic energy
kan and the inlet dissipation mte ein should be obtained from measurements if available, if
measurements are not available at the inlet plane, the following procedure may be used to
estimate kan and ein if the inlet velocity is uniform and equal to uin,

kin = 0.001 u[ (6.31)

and
j

I
cin=Coki/'/t (6.32) Iin ,

where t n is a length scale at the inlet, t n is usually assumed to be equal to the smaller of |i i
0.42 y or 0.15, where y denotes the distance to the nearest wall and 6 is the width of the

|
shear layer. If the profile of the mean velocity at the inlet plane is known, then k n can be ji
estimated from

E" ""kin = Sti (6.33)
.< by > + r d2 ) .

,

where uin is the mean velocity component in the main flow (x) direction. The inlet
dissipation rate tin is again esumated by using Eq. 6.32.

|
It should be noted that k n andcan are user-specified input parameters for COMMIX-i

IC. If the user does not specify kan and cin. COMMIX-IC assumes that the inlet k and c are
negligibly small (k = 10-16 and c = 10-10),

1

6.5 Wall Function Treatment

In the immediate vicinity of a solid wall there is a large variation in the values of
turbulence properties. Therefore, to predict the correct values of momentum flux, energy
11ux, and the gradients of k and c, we apply a special treatment called the wall--function
treatment. In.this procedure, we implicitly account for steep variation near a wall and avoid
the need for a fine mesh. This approach fits well with COMMIX since, in most engineering
appilcations, one rarely has the luxury of resolving the fine details in a boundary layer due ||

primarily to the high cost of computation in using a fine mesh system. '

| In the literatute, there are several different treatments of wall function.72 It appears
| that at the present time, no sing!c wall function treatment can claim superiority in both

generality and accuracy for a variety of turbulent flows. In view of this, we have developed
| the wall-function model in COMMIX-1C based on the following guidelines:

1. Simplicity.

2. Minimizing nume&al d''ilculties.

l

l

_ _ _ _ _ ___.--__ - __________
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3. Wide range of applicability.

.The first two guidelines are straightforward. The third guideline will become clear later.

There are basically two approaches in treating the cells adjacent to the walls. The first
one is that both the k and c are calculated algebraically for the cells next to the walls.
Therefore, transport equations for k and c are not solved for wall-adjacent cells. The
second approach is to calculate c algebraically and solve the transport equation for k for
cells adjacent to walls. In COMMIX-lC, we have adopted the first approach, i.e., both k and
c are solved algebraically, because of its simplicity (guideline 1).

There are also two typs of wall function models; a two-layer model and a three-layer )

model. Again, we have chosen the simpler two-layer wall function model and modified it !

s!!ghtly to meet the gul.ielines described previously. )

6,5.1 A Two-Layer Wall Function Model

in a general purpose code such as COMMIX, one may frequently have tu deal simul-
taneously with laminar and terbulent flows at different locations of a system. Also, during a
transient simulation, dLTcnt flow regimes may occur at the same location but at ditTerent
times. Provision must be made in the code to handle these situations even though the
accuracy of t'ae results may deteriorate in a certain range of the relevant parameters (such
as Reynolds number). Thus, in COMMIX-lC, we have made provision to calculate flows with
Reynolds nut ibers ranging from veiy small (laminar) to very large (hlghly turbulent). This
is what we mean by a wide range of applicability in guideline 3.

Figures 10 and 11 show the two-layer wall function model used in COMMIX-lC. where
P is the node ady,=nt to the wall, yp is the distance from P to the wall, and y is thej

thickness of the viscous sublayer. The distance yp is fixed when the user finishes modeling
the geometry (and mesh system). The thickness of the viscous sublayer y , however, is notg

a constant and often cannot be easily detenntned beforehand. This is why we have made
provision in COMMIX-lO to accommodate both situations shown in Figs.10 and 11. The
distributions of k and e are assumed to be the same in both figures.

When Yp > Yg, the first node is in the fully turbulent zone (Fig.10). The velocity at
node P is given by the law of the wall in the fully turbulent region

p = (u, / K)in(E yj,), (6.34)u

where

ui = (tw/p)l/2 (6.35)

y+ = yu /v . (6.36)r

E is a constant equal to 9.0, K is the von Karman constant (K = 0.42), and v is the kinematic
viscosity. Equation 6.34 can be written as

<

_.m_______ _ _ . _ _ . _ _ _
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(6.34 a)u, = Kup / fn(E y;),

The turbulence kinetic energy k at node P can be calculated by using Eq,6.28, which is
rewritten as

k' = u' / C'o'' , (6.37)

The turbulence dist tion rate e at node P is calculated by using an equation stmtlar to Eq.
6.29

Cp = Ch * k3 2 j[ gyp)

= u /(Kyp) . (6.38)8

When Yp1Yg, the node P is in the laminar sublayer (Fig. I1). The velocity at node P is
given by the law of the wall in the laminar sublayer

(6.39)up = u,y;,

which can be rewritten as

u, e (v up / yp)''' . (6.30a)

The turbulence kinetic energy at node P is calculated by

kg = k,(yp / y,)*, (6.40)

where k is the turbulence kinetic energy at y = w. We assume that Eq. 6.28 for local
f

equilibrium turbulence applies at the edge of the laminar sublayer (y = g) and Eq. 6.40
becomes

i

kg = u (yp /y,)* / Cg2 (6.40a)2

It should be noted that the assumption of local equilibrium at the edge of the laminar
sublayer may not be strictly valid. It is known 8 that local equilibrium applies when 30 < y+G

< 50. We adopt it here to simplify the calculation. It should also be noted that we assume
that the turbulence kinetic energy k is constant outside the laminar sublayer (Fig.10). This
assumption greatly simpilfles the numerical calculation (guideline 1) since no extrapolation
is needed.

|

! The turbulence dissipation rate e at node P is calc'ilated by using Eq. 6.38 and assuming
that the dissipation rate in the laminar sublayer is wastant and equal to that at y = w.

rp = u / ky, (6.41)8

The assumption of constant c in the laminar sublayer is in agreement with most wall
femetton models in the literature. The assumption of cp equal to e at y = g is different from
those in the literature. The reason for making the last assumption is to make e continuous

I

|
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to that numerical difficulties associated with discontinuous functions can be avoided
(guldeline 2),

6.G.1 Evaluating k and e for Cells Adjacent to Walls j

In the computer code, the following paths are followed to detennine the proper values |

of k and c for cells adjacent walls, The key is to determine whether the node adjacent to a |
wallis in the laminar sublayer or in the turbulent zone, The relevant scaling parameter is j
the frictional velocity u , which appears in the equations for k, c, and the velocity '

s

distribution given by the law of the wallin Sec. 6.5.1.

The preliminary step is to evaluate the dimensionless thickness of the laminar sublayer
uf, This is accomplished by matching the velocity at the edge of the viscous sublayer (y =
ys) to that from the law of the wall,

y; - In(E yj), (6.42)

where

yj =y,u, / v , (6,43)

K = 0,42, and E = 9. It should be noted that y/ depends only on the constants K and E,
The value of 7 turns out to be 10.924. Then we proceed to calculate k and op as follows:9 p

Step 1 - Calculate ye based on a guessed value of us

The value of u can be estimated by either the laminar sublayer relationship (Eq, 6.39a), ors

the local equilibrium turbulence relationship (Eq. 6.37), in the code, we take the larger of
the two as the guessed value of u ,s

ua = max "" , Cg2kp (6.44)
.

s YP '

/

Then, ye is calculated by

y, = 'y; / u,,

where y/ is calculed previously and has a value of 10,924.

Step 2 - Compute kp and ep by comparing ye with yt

'Wyp>pg

This indicates the node P is in the turbulent zone, and we recompute the frictional velocity
u,iteratively by ustng the law of wall in the turbulent zone

u, = K up / In(Eyp u, / v), (6.45)

Then, compute kp and op according to Eqs. 6.37 ar.d 6.38

_ _ _ - _ _ _ _ _ _ _ _ - - _ _ - _ _ - - _ _ _
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kp = ui/Cd3

cp = ui / Kyp.

V UP S 14

This indicates that the node P is in the laminar sublayer, and we recompute u by using Eq.s

6.39a,

u, = (vup /yp)v2

Then, compute kp and cp according to Eqs. 6.40a and 6.41

kg = u [yp jy,)2 / Cg2s

cp = u? / Ky,.

The algebraically computed kp and cp of wall adjacent cells are then used in the solution of
the transport equations of k and c for other cells. If the results do not satisfy the
convergence criteria, Steps 1 and 2 are repeated until convergence is reached.

6.6 Solution Procedure for Calculating Turbulent Flows

The procedure for calculating turbulent flows is similar to that described in Chapter
10, except that there are two additional transport equations (k and c) to be solved. These
two equations are solved after the pressure equation and before the energy equation. Table
17 summartzes a solution procedure for calculating turbulent flows.

6,7 Discussion

There are a total of eight constants employed in the k-c two-equation turbulence
model. Table 18 prov. des a summary of these constants. The vaMes listed in this table are
the default values u3ed in COMMIX-1C. These values may or may not be slightly different j

from those used in other k-c two-equation turbulence models. If users wish to use values j

other than those listed in Table 18, they may input these parameters (input preparation is |

described in Volume 11).

( The wall function model described in Sec. 6.5 is different from and simpler than most
other models in the literature. We have thoroughly tested this model against the data for
fully developed pipe flow and for two-dimensional single-sudden-expansion (backward-
facing step).73 The results indicate that the current k-c two-equat. ton turbulence model
compares favorably with the data of fully developed pipe flow at high Reynolds numbers,
while the agreement is less favorable for the backward-facing-step problem, particularly

i
near the reattachment zone. These observations are in agreement with assessment of other

! two-equation turbulence models.74

We have also tested the k-c two-equation turbulence model against data of a circular
buoyant jet.73 Both the calculated centerline velocity and centerline temperature
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Thble 17. Ftt!!y implicil (SIMPLEST-ANL) solution sequence (a = 1)

for turbulent flows

;

1. Calculate velocity-pressufe relation coefficients from the previous iterate values of u, y,
w, and pem - )

l

6,d':($ = u,v,w).

2. Calculate pressure equation coefficients using 6,d' :

a$.af, b$ ,

3. Solve pressure equation for new-time, new-iterate pressure 6P:

a$6Po = Ea[6P, + b$ .

4. Calculate new-time, new iterate velocities u, v, w from velocity-pressure relations:

$ = 4- d' ASP ($ = u,v,w) .

Calculate coe ficients for k and e equations using new-time new-iterate velocities:5. r

as, ay, b) : a&, a), b5

6. - Solve k and c equations for new-time, new-Iterate k and c:

a$ko = Eayk, + b$ a$c = Enje, + b5o

7. - Calculate new-time, new-iterate Heff and Aem

8
|. Hau, = Co pk / c, A , = Cppiur /oiu n

Neff * Ntam +Neurs Aelf " Etam + Ntur

8. Calculate energy equation coefficients using new-time, new-iterate velocities and Aem

a$. ay, b$ .

9. Solve energy equation for new-lime, new-iterate enthalpy h:

asho = Eayh, + b$ ,

10 Check for convergence of u, v, w, h, k, c: if not converged, return to Step 1.
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Thble 18 Summary qf constants employed in
k-c twc>-equatton turbulence model

Appearance
Symbol ValUe (Equation)

oh 0.9 6.18
ok 1.0 6.16

1.3 6.20 ioc
C 1.44 6.20 |

C2 1.92 0,20 !
Co 0.09 6.21 i

K 0,42 6.34 and 6.42
E 9.0 6.34 and 6.42 ,

3

distributions compare favorably with data for a densimetric Froude number of 5. The j

buoyant jet is a free shear flow and therefore is not affected by the wall function model.

Finally, it should be noted that the k-r two-equation turbulence model described in
this section is, strictly speaking, only valid for isotropic turbulence at very high Reynolds-
numbers. Even though the code will perform calculations for flows at lower Reynolds
numbers, the results are less reliable and must be examined and interpreted very carefully.
This is because the k-c two-equation turbulence model does not automatically degenerate
to the low Reynolds flow and is the inherent limitation of most turbulence models. The

_

users must be aware of this limitation. However, as r:mtioned previously, the k-c two-
equation turbulence model is the most widely used ano tested turbulence model,' Our
assessment is that this model does have some generality in treating a variety of turbulent
flows encountered in engineering systems, even though the accuracy may vary from one 4

type of flow to another,

7 ' Flow-Modulated Skew-Upwind Discretization Scheme

7.1 Introduction- !

In fluid-dynamic calculations, the _ pure-upwind difference scheme is generally pre-
ferred-over the central-difference scheme to discretize convective terms. The reason is

"that for high-Peclet number flows, the pure-upwind scheme prevents-instability and
provides a more accurate solution than that obtained with the central-difference scheme.
'However, it has been observed that for flows inclined to grid lines, the pure-upwind

_

scheme causes increased numerical diffusion. To reduce numerical diffusion, we have
developed and. implemented a flow-modulated skew-upwind discretization (FMSUG

- scheme. :This scheme is currently implemented in the energy equation only To keep the = i
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discussion manageable, the demonstrations and derivations that follow are based on the
assumption of unidirectional now in an arbitrary direction (i.e., there is no velocity gradient
anywhere in the now domain). However, this assumption will be removed as shown in
Sec. 7,4.3. In fact, the imolementation of FMSUIs in the energy equation is for all flow
conditions.

7,2 Pure-Upwind Difference Scheme

7,2,1 One-Dimensional

Because of its stabilizing effect, the pure-upwir.d difference scheme is used extensively
in one-dimensional hydrodynamic computer programs.75 The baste concept is briefly
discussed here with reference to Fig.12.

It is easy to difference the model equation

h(u$) = 0 (7.1)a

at node 1, where & is some scalar and u is the velocay. Equation 7.1 can be differenced at
center node i as

(ue),.i/2 - (u $),,,f,
Ax

where the subscript 13.1/2 refers to ;he values of (u$) at the cell edges, in a staggered
mesh system, & and u are not known at the same points. If it is assumed that & is
continuous, Eq. 7.2 can be approximated as

(u$),,,,2 - (u &),. v2 , u,.i/20, - u,. ,/2& .ii
(7.3a)=

'

for the case uul/2 > 0, and

ui.v2& .i- ui v2&'i
(7.3b),

Ax

f U f U +1/2 fI-I l-l/2 i i 141

e = e = e

1-1 i i+ 1

i-l/2 l'+ I/2
Fig. 1 2. One-dimensional upwind or donor cell

_ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - _
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( 1,1 + 1)

.

Y i,lil/2

D Ui-l/2,] i41/2,)
-

. . .

( 1 -1,1 ) (1,11 (l +1,i l

Yi,j l/2
.

( 1,1 1)

=X

Mg. 13. Two-dunensional upwind or donor cell

for uul/2 < 0. That is, the values of 6 are considered ' donated" (or upwinded) to the cell
edge. depending on the signs of uni /2

7.2.2 ' Two-Dimensional

Now consider the two-dimensional situation shown in Fig.13. The application of tb.;
one-dimensional pure-upwind difference scheme to the two-dimensional n.3 dei equation

(uc) + (v&) = 0 (7.4)

produces

8(uc) (uo),,v2.,- (uc), y.1,
,

&x ax

(%vaa&i.;)-(%.v2a&i-ia)
(7.5)

Ax

and

3(vo) _ (V&)i.i.v2 - (vc)i.sv2
by ~ by

(v+va&tj)-(vtev2 0i.pi)ti (7.6),

Ay

assuming u and v are both positive This extension assumes that the velocities are locally
one-dimensional, i.e., each cell face is associated with only one velocity component, as
shown in Fig.13. Extension to other combinations of signs of u and v, as well as to three
dimensions, are straightforward.
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7.2.3 Nurnetical Dillusion

Thh. apparently straightforward application of the one-dimensional pure-upwind
concept to two and three dimensions has been identified as one of the main sources of
numerical diffusion when the streatnline is at an angle to the grid lines.76-78 lt has been
shown that the numerical dtRuston coefficient for a two-dimensional steady-state situation

4 can be approximated by

pU Ax Ay sin 20 (7.7)y"",
4(Ay sin 04 Ax cos"0)'8

where U is the velocity and 0 is the angle between the velocity U and the x coordinate. It
can be observed that numerical diffusion for the upwind dlRerence scheme is affected by
velocity, mesh size, and angle between the local streamlines and the grid lines. Equation
7.7 indicates that numerical diffusion is most serious when 0 = 45'. It is also clear from Eq.
7.7 that numerical diffusion does not exist for a one-dimensional flow or n two-dimensional
flow when the local streamlines are parallel (or perpendicular) to grid lines (0 = 0 and 90').

Note that the term * numerical diffusion" is highly misunderstood among the practi-
tioners of nurnerical analysis. Accordingly, we get different interpretations from d!fferent
practitioners. The concept of numerical diffusion can be described as follows. If we
subtract the finite-difference approximation from its partial differential equattor. In a
Taylor-series expanded form, the resulting equation is generally tenned v * truncation
error * Ilere, we are assuminf that a Taylor-series expanded fonn is an accurate
representation of the partial differential equation under consideration.

The truncation error usually contains many odd and even derivative te.ms. The effect
of even derivative terms is generally to reduce ml gradients in the solutioa, whether
physically correct or artificielly induced. This effect, called dissipation, is often looked on
as if we have introduced an artificial diffusivity. This is why dissipation is often referred to
as false, artificial, or numerical diffusion. The odd derivative tenus, on the other hand, have
a tendency to produce an oscillatory solution. This effect is termed dispersion.

The lowest-order tenn of the truncation error defines the order of the numerical
scheme, in general, if the lowest-order term in the truncation error is an even derivative,
the dissipative error will predominate; if it is an odd derivative, the dispersive error will
predominate.

When we use an upwind-differencing scheme, the lowest-order tenn in the truncation
error is a first-order even derivative of the order O(Ax). The effect of upwind differencing
is therefore to distort sharp gradients by dissipailon, as shown in Fig.14b. In the case of
central differencing, the even-derivative tenn is cancelled. so the lowest-order tenn is a
second-order odd derivative of the order O(Ax2). The effect of central ditTerencing is
therefore dispersive, as shown in Fig.14c.

Since a pure-upwind scheme introduces dissipation, we need not cons. der it as
inaccurate or a misrepresentation of realhy. On the contrary, for convection diffusion flows
parallel to grid lines and at hig,h Peclet numbere, the pure-upwind scheme actually gives a
better and more stable solution than would be obtained from a central-differencing scheme.

|
'

i

-- _ - _ _ . . _-- ___m_.m._._..____ _m__ , _ _ _. . . , _ _ _



02 |

3

N
(a) (b) (C)

ng. H. G[[ects of dissipatton and dispersion: (a) exact solution; (b) numerical
solution distorted primarily by dissipation errors (typical ofjttst-order
mentods); (c) numerical solutton distorted primarily by disperston errors %

(typical of second-order methods)

However, for flows inclined to grid lines, we need modification to reduce numerical
diffusion,

in Sec. 7.3, we shall show some numerical examples so that the reader can better
understand what numerical diffusion is when the upwind diflerence scheme is used and
when the flow is at an angle to the grid lines.

The cause of numerical diffusion for the upwind dtIIerence scheme is the result of
treatlag the flow across each control volume face as locally one-dimensional (Fig.13). This
approach apparently does not take into account the multidimensional naiure of the flow
when it is inclined at an angle to the grid lines. To do so, it is necessary to involve more
neighborn in the discretization equation. We shall describe this approach in more detail
later.

7.2.4 Reducing Numerical Diffusion

The apparent ways to reduce numerical diffusion are to

+ Reduce the velocity.

* Orient the grid co ihnt the grid lines more or less align with the flow direction
(reducing 0).

* Use vety fine mesh.

* Use smaller time-steps for transient problems, but correlate with mesh size so
that it will not impair diffusion-controlled stability criteria.

* Use higher-order finite-difference approximations.

+ Extend the upwind dill'erence scheme to involve more neighbors in the
discretization equation.

The first two ways of reducing numerical diffusion are often not possible since the user
does not have the freedom in choosing the mtignitude and the direction of the local

__-_--_-____----_



. . . . . . . . . . . . . . . . . . . . _ _ _ _

03

vehicities. The third and the fifth methods may not be practical. It is not pra tical to use
very fine mesh when orie is trying to analyze a large, complex, real enginet.ing system.
liigher-order finite-difference approximation will be much rnore involved, and its imple-
mentation in COMMIX would requite major code modifications. Furthennore, the
procedure would become computationally more expensivi lt appears that the last method,
i.e., extending the upwind difference scheme to involve more neighbors in the discrette
tion equation, is the only practical and feasible way to reduce numerical diflusion in
COMMtX calculations at the present time. In the literature, this type of discretization
method is called the skew-upwind difference (SUD) scheme. We shall briefly describe
various skew-upwind difference schemes available in the literature before we move on to
the main subject of this chapter,1 e., the now-modulated skew-upwind discretization
(FMSUD) scheme.

7.3 Review of Skew-Upwind Difference Schemes

7,3,1 Two-Dimensional Skew-Upwind Difference Scheme

The twcy-dimensional SUD scheme was first proposed by Raithby.76 The main idea is
to perfonn differencing in the direction of local streamlines. This requires that the values
of the upstream scalar quantity be known.11y purely geometrical consideration, Pilthby
assumed that the upstream value of the scalar quantity is a linear interpolation of that
particular variable evaluated at two neighbortng grid points. Thus, Raithby's SUD scheme is
able to reduce numerical diffusion caused by assuming the flow to be locally one-
dimensional in the upwind dtfference scheme, llowever, the Raithby SUD scheme has
employed arbitrary cutoffs for the geometrical interpolatian. Furthennore, Raithby's SUD
scheme is known to have undershools and overshoots under certain conditions. The
situation is best illustrated by 'he numerical example described below..

Figure 15 shows the known exact solution for the isothenns (constant-temperature
lines) of a two-dimensional flow with negligible thermal diffusivity. The horizontal axis can
be considered as the entrance of uniform vekicity with mass flow rate my at a unifonn
temperature of 100*C. The vertical axis can be considered as the entrance of unifonn

at a unifonn temperature of O'C. If in = my and ax = Ay,velocity with mass flow rate m xx

the resultant velocity is unifonn everywhere and is inclined at an angle of 45* with :espect
to the x axis. Since there is no numerical diffusion (exact solution) and there is no physical
diffusion (negligible thennal diffusivity), a sharp interface should prevail along the diagonal
beginning from the origin. Above this interface, the fluid temperature should be 0*C every-
where. Etelow this interface, the fluid temperature should be 100;C everywhere, This is
the result shown in Fig.15. The isothenns are concentrated near the diagonal parallel to
the flow direction and are plotted in 5*C intervals. The reason that the hot / cold interface
has a finite width instead of being a single line is the result of the mesh size used in the
computation. It can be observed that the width of the interface region is equal to the
length of the diagonal of a computational cell. If the size of the computational cell is
reduced, the width of this interface region will be reduced conespondingly. It can be
observed that all the isothenns are parallel to each other and are inclined at an angle of 45'
with respect to the horizontal axis. The nonparallel behavior of the isotherms near the two
corners is due to the edge effect, which extends 1/2 cell from the boundarles and is

___ _ _ . _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _
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Fig.15. Isothenns of two-dimensional,llow with m = myx

(exact soluttord ,

1

I

inherent in the plotting package of COMMIX. The important thing to keep in mind is that
'

the results of au cceeptable numerical scheme should approach that of the exact solution
shown in Fig.15,

Figure 16 shows the calculated isothenns by using the pure upwind-difference scheme.
Again, the horizontal mass now rate mx is set equal to the vertical mass flow rate my and
the mesh size is identical to that shown m Fig.15. It is obvious that the isotherms are no
longer concentrated near the diagonal in the flow direction and are spread over a wide
region. Moreover, the isothenns shown in Fig.16 are no longer parallel. Thus, one can
conclude that significant numerical diffusion occuned by using the upwind difference
scheme to calculate the now inclined at an angle to the grid lines.

Figure 17 shows the plot of the isotherms calculated by using Raithby's SUD scheme.
Again, the now is inclined at an angle of 45' with respect to the horizontal axis, and other
conditions are identical to that shown in Fig.15. It is evident that the Ralthby SUD scheme
is able to climinate numerical diffusion completely for this particular case (i.e. a two-
dimensional unidirectional now inclined at an angle of 45' to the grid lines) because the

- ._. . _ _ _ _ ___ .
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result shown in Fig.17 is identical to that shown in Fig.15. Ilowever, as we shall
demonstrate, the Raithby SUD scheme does not offer unquallfled improvement over the
pure upwind difference scheme if the resultant velocity is not inclined at an angle of 45' to
the grid lines.

Figure 18 shows the isotherms of a two-dimensional flow with my = 2 m calculated byx

using the pure upwind difference scheme. As expected. significant numerical diffusion
exists and the isothenns spread over a wide. region. Figure 19 shows the results of a similar
calculation except that the Raithby SUD scheme is used instead of the pure upwind
difference scheme. It can be observed that in some areas. the Raithby SUD scheme does
reduce numerical diffusion by narrowing the distance between isotherms, but it also creates
a strange pattern of isotherms over an even wider area, The temperatures in this region
can be higher than 100*C (in other cases, it can be lower than O'C), which is unrealistic.
The temperature anywhere in the computational domain should be bounded between 0 and
100'C because there is no heat source / sink anywhere in the domain. This type of overshoot
(or undershoot) is obviously not acceptable and is the main shortcoming of the Raithby SUD
scheme.

_ ._ _- _ _ _ _ - _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ - .
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More recently Hassan et al.70 proposarl a mass-flow-weighted SUD scheme for
calculating two-dimensional flows. This scheme is an improvement over the Raithby SUD
scheme because it can eliminate the overshoot /undershoot observed in the Raithby SUD
scheme while retaining the exact 45' solution. We shall describe in more detail the two-
dimensional mass-flow-weighted SUD scheme of Hassan et al. In Sec. 7.4 because it fonns
the basis of the flow-modulated SUD scheme. Here, we present only the calculated results
of the same problem shown in Figs.18 and 19 by using Hassan's SUD scheme.

Figure 20 shows that the overshoot (or undershoot) is indeed absent when the mass-
flow-weighted SUD scheme is used. Also, it can be observed, by comparing Fig. 20 to Fig.
18, that Hassan's SUD scheme is able to reduce numerical diffusion caused by the pure
upwind difference scheme, although some numerical diffusion is still present,

. . . - - . _ _
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7.3.2 Three-Dimensional Skew-Upwind Difference Schemes

Three types of SUD schemes have been employed for three-dimensional applications:

* F.xtended Raithby.

* Volume-weighted.

* Mass-flow-weighted.

The extended Ratthby scheme is a straightforward extension of the two-dimensional
Raithby #UD scheme to three-dimensional problems. This was accomplished and
documented in COMMIX-18. The volume-weighted SUD scheme was developed at ANL
and was implemented and documented in COMMIX-1B in 1985. The mass-flow-weighted
SUD scheme is an extension of the two-dimensional SUD scheme proposed by llassan et al.
and is implemented in an earlier version of COMMIX by Hassan.80 We will not describe the

__ _ _ _ _ _ _ - _ ._
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Fig.19 Isotherms of twcedimensionalflow wHh my = 2 mx
(Raithby skew-upwind d([[erence)

mathematical details of these numerical schemes: instead, we present below a numerical
example and comment briefly on the major features of each of these schemes.

Figure 21 shows the isothenns of a three-dimensional flow with untform velocity (m =x

my = m,) calculated by using the exact solution. The horizontal axis can be considered as
flow entering in the y direction at a unifonn temperature of O'C and the vertical axis can be
considered as flow entering the x direction, also at a unifonn temperature of O'C. Figure 21
represents the first plane (k=1) in the z direction and therefore can be considered as the
bottom (lowest elevation) of the flow channel, The flow entering from the bottom is at a
unifonn temperature of 100*C. Thermal diffusivity is assumed to be negligible, it can be
observed that the isothenns are concentrated near the entrances and are parallel to either
the x or the y axis except near the three corners where the edge effect mentioned
previously is present. Figure 22 shows the isotherms calculated by the exact solution at a
higher elevation (k = 4). As expected, the isotherms remain concentrated in a narrow
band, and the width of the band is proportional to the mesh size used in the computation.
The hot and cold regions are clearly defined.

-- -_ -_ . - , - - - . -
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ng. 20. Isotherms of two-dimensionalfow with my = 2 mx
(mass-jlow-weighted skew-upwind d([ference of
Hassan et aU

Figures 23 and 24 show the isotherms of the same problem calculated by using the
pure upwind difference scheme. It can be observed that numerical diffusion is present
even at the lowest elevation (Fig. 23). At a higher elevation, the effect of numerical d1ITusion
has propagated through the entire plane and a hot / cold interface no longer exists (Fig. 24).

Figuirs 25 and 26 show the isothenna of the three-dimensional flow calculated by
using the extended Raithby SUD scheme. Although the three-dimensional Raithby SUD
scheme is able to reduce numerical diffusion, significant undershoot/ overshoot occurred
(Fig. 26). The result is similar to that of the two-dimenstonal problem described in Sec.
7.3.1. The undershoot/ overshoot is not realistic and is therefore not acceptable from the
physical standpoint.

The volume-weighted SUD scheme implemented in COMMIX-1B is an improvement
o.er the extended Raithby SUD ccheme. The volume-weighted SUD scheme needs no
artificial cutoffs and therefore is less restrictive than the Raithby SUD scheme as far as
undershoots and overshoots are concerned. Even though the volume-weighted SUD

.-



70

%::,t .... !3

gg",;y j..... . . . . _ . _ . . _

go,; * ,M.i. l..i..

h.f!!b!!f"!
' ' "~"' " "" "~"' ' ^

!
u:1"Idi

@c(fi|u;::it
s,: i 't" ~""- ~~" ' " " " " " ~ ~ ~ " ' ' " ~ "

:;io:';:y:i ii 4

!! W 'C

i.::'5||!p:!M],s,-
.., 's. ,P:

. . .g?.. | ;i!
. . - ~~. -~~. . - - -- - - .,

$

g@jj.;s@.ui ,!,
?. ', ,:

nie
Mj;!!!iEiti"

" '

T,"..t. n. :i.;L., l,i,
'

f. .

f|ijfj{!j,ek! " - - + -- - "~~

1

",t.i.i ;;d,;,i,
p{o .

,u ,

k;Zi:;'f!:,fi { II-~
"- -"~" - " -"" ~"

r;::""! !.Mililg p g, i,:;...3: u;
. . . . . . . .

;,,f'Jilii"4................_.........._...................
1" t',1-

:iFi!.9iFi?.siFi.9iFi.5IFi!.siFi?.9iFi!.91F/?.9.~
&YW:;&;< TV.?i! LtV!1i Lt.Vi1 i LV.?1 itLVil i Lt.Vil i LVNi ! LV.*!1 i Vii

Y$@).,h$khYiiIkkYiil$NilbhYiYlIh!hYI[kYillkhfiIMNi$
d .:: :::. .:. ;;: a:::. : nr. ;:: at:::: n:. ::: n::::: a:. ;;:::.-

k
'''K=1
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dimensionalflow with nk a my = ms (exact solution)

!

scheme was able to reduce numerical diffusion and was successful in simulating steady-
state thennal mixing problems with flow oblique to grid lines, stability (no undershoots and
overshoots) cannot be guaranteed over the entire domain.

The three-dimensional mass-flow-weighted SUD scheme is an extension of the two-
dimensional mass-flow-weighted SUD scheme. As described in Sec. 7,3,1, the two-
dimensional mass-flow-weighted SUD scheme is able to reduce numerical diffusion and
prevent overshoots and undershoots. The three-dimensional mass-flow-weighted SUD
scheme prepcsed and implemented by 11assan80 has been demonstrated to reduce
numerical diffusion when the flow is oblique to grid lines, llowever, derivation of the
discretized equations involves ad hoc assumptions in 11assan's mass-flow-weighted SUD
scheme. Furthermore, closer examination of the discretized equations indicates that it is
possible to have negative coefficients that may lead to undershoots and overshoots under
certain conditions (for example, it can be demonstrated that if my = 2 m , and m = 3 mx,x z

the coefficient at in liassan's mass-flow-weighted SUD scheme becomes negative).
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Ag. 22, ' isotherms at higher elevation (k = 4) of a three-
dimensionalflow with m = my = m (exact solution)x s

- 7.4 Flow-Modulated Skew-Upwind Discretization Scheme

The FMSUD scheme is implemented only in the energy equation of COMMIX-lC. Our
objective _is to develop a scheme that is relatively simple.to implement, permits the ucc of
coarser mesh for given accuracy, has acceptable numerical d!!Tusion, and perhaps most
important, prevents the occurrence of physically unrealistic results (undershoots and

- overshoots) in the entire computation domain. Our primary Interest is the three-dimen-
. sional FMSUD scheme because COMMIX is a three-dimensional code, llowever, we will
begin by describing the two-dimensional FMSUD scheme, which is relatively simple and
easy to understand and sets the stage for the development of the three-dimensional
FMSUD scheme. For relative simplicity. as in previous discussions, only arbitrary
unidirectional situations will be considered and demonstrated. As mentioned before. the
assumption of unidirectional flow w!il be removed as shown in Sec. 7.4.3.

- _ _ . _ . - _ _ . _ _ _ , _ - . - . _ _ _ ._.~ _ . -- _, _ _ .. , _ _ _ - . _ ,
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Ftg. 23. Isothertns at lowest elevation (k = D of a three-
dimensional flow with mx = rny = ma (upwind-d([ference)

Certain baste rules ensure that the discret!zation method is stable and does not
produce phys:cally unrealistic solutions such as undershoots and overshoots.77 We shall
briefly outline two of these rules that are of paramount importance and relevant to the
development of the FMSUD scheme. As shown in Chapter 4, the general form of the
discretized equation is

P
i

a co a I ai$i+ b. (7.8)o

Since we are dealing with the energy equation only, the general variable e can be replaced
by the enthalpy h and Eq. 7.8 becomes

ao ho = I ai i + b. (7.9)h

The two baste rules can simply be expressed as

6
1. at2'.O (7.10)

,

_ _ _ _ _ _ _ _ . _ _ . . _ . . _ _ _ _ _ _ _ _ _ _ .
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ng. 24. Isotherms at higher clevauon (k = 4) of a three-
dimensional jlotv tvith mx = rny = m (uptvind-d([[erence)e

n = 2' ai (7.I1)2. o

Rule 1 guarantees that all the coefficients in Eq. 7.9 are positive. This means that the
influence of the neighboring points on a given grid point ir positive.1.e..

B h" 2 0. (7.12)
8 h,

The requirement of positive coefficients is intended to eliminate the possibility of
undershoots and overshoots that are physically unrealistic. Rule 2 is based on the
consideration that the discretired equation should be able to accommodate the arbitrary
change in scaling. More detailed discussions of these rules can be found in Ref. 77.

7.4.1 Two-Dimensional FMSUD Scheme

Consider the two-dimensional mesh system shown in Fig. 27. Remember that we are
dealing with the energy equation so that only the cell-centered mesh must be

_ _ _ _
.

. .. . . .
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ng. 25. Isotherms at lowest elevation (k = 1) of a three-
dimensionalflow with m = my = m (extendedx s

Ratthb i skew-upwind diference)l

considered (the main control volume referred to in Chapter 4). Since the flow is uniform
everywhere, the mass flow rute in a given direction does not change and both m and myx

are positive, This is shown in Fig. 27, where m and my denote the mass now rate in x andx
y direction, respectively. The center cell is denoted by the subscript o, while the
neighboring cells due west, east, south, and north are denoted by the subscripts 1,2,3,
and 4. respectively, The corner cells are represented by 13,24, etc., as shown in Fig. 27.
The enthalpy h at the four faces surrounding the center cell o is represented by the symbol
< > at their corresponding locations. We express the cell facial quantilles in terms of the
cell center quantitles by the following equations:

<h> i = Pxy h i + Sxy h :3 (7.13a)

<h>2 = Pxy ho + Sxy h3 (7.13b)

<h>3 = Pyx ha + Syx his (7.13c)

<h>4 = Pyx ho + Syx h , (7.13d)i

_ ..
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Fig. 26. Isotherms at higher elevation (k = 4) of a three-
dimensionalflow with m = my = m (extendedr s

Raithby skew-upwind d([Terence)

where P (primary) and S (side) are weighting factors and they are functions of the mass
flow rates m and my,x

P(m , my) = Pxy (primary)x

S(m , my) = Sxy (side) (7.14)x

and

Pry + Sxy = 1. (7.15)

If Sxy = 0, then Pxy = 1. and Eq. 7.13a becomes

<h>t= h1, (7.16)

which is the result of the pure upwind difference. Thus, by adding S in Eq. 7.13, we have
accounted for the two-dimens:onal effect. Similarly, the weighting factors Pyx and S x arey
related.
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Pyx + Syx = 1. (7.17)

All the weighting factors are greater or equal to zero By assuming that the transported
quantity is conserved, we obtain the following discretized equation for the facial quantitles
h,

m <h>2 - m <h>l 4 my<h>4 - my<h>3 = 0 , (7.18)a x

Substituting Eq. 7.13 into Eq. 7.18, and rearranging according to the sparse matrix form
expressed by Eq. 7.0 (b = 0 because there is no source term),

a ho = I aihi (7.19)o

where the coefficients are given by

n = m + my - m Sxy - my Syx (7.20)o a m

a t = m - m Sxy - my Syx (7.21)x x

a3 = my - m Sxy - my Sx (7.22)x y

ata = mx Sxy + my S x. (7.23)y

|| can be shown that Eqs. 7.20 to 7.23 satisfy the following relationship:

n = at + a3 + ala. (7.24)o

wa.ch is required by rule 2. Substituting Eq. 7.23 into Eqs 7.20 to 7.22, (eliminating the
weighting factors) and recognizing Eq. 7.10,

n = m + my - ata g 0 (7.25)o x

ai = m - ala 2 0 (7.20)x

aa = my - a t a 2 0 . (7.27)

The following condition must be met in order to satisfy Rule 1, i.e., all coefficients must be
positive:

O s ata s min (m , my), (7.28)x

_ _ - - _ _
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<here min ''ir, my) means the smaller of m and my. It is obvious that if ata = 0, then Eqata

7.L to 7.27 reduce to

no = a t + a3 (7.29)

a1 = ma '7.30)

a3 = my, (7.31)

which are the results of the pure upwind difference. The coefficient ata represents the
contribution of the corner cell (Fig. 27) and is the key coefficient to be detennined for the
present FMSUD scheme. Equations 7.25-7.27 indicate that once ala is detennined, all the
other coefficients in the discretized equation are detennined also. Equation 7.28 provides
the lower and upper bounds for the coefficient ata. It is clear that aia is not unique because
it can have any value between the lower and upper bounds. We would like to stay away from
the lower bound because it is the upwind difference scheme that is known to produce
numerical diffusion when the flow is oblique to the grid lines, in the present FMSUD
scheme, we assume that aia is equal to the upper bound, i.e., the maximum allowable value
without the possibility of obtaining physically unrealistic solutions (undershoots and
overshoots). Thus,

a ta = min (m , my) (*/. 32 )x

Equations 7.23 and 7.32 can be combined to give

S x = min (m , my) (7.33)mx Sxy + my y n

Equation 7.33 must be satisfied by Sxy and S x for any values of m and my. It can be showny x

that the following equations for Sxy and Syx provide a solution to Eq. 7.33:

S,y = min (1,m /m,) (7.34)y

S,= min (1,m, / m ), (7,3 51y y

Substituting Eqs. 7.34 and 7.35 into the left side of Eq. 7.33,

m,a min (1,m, / m )+ m * min (1 m. / m )y y y

min (m,, m )+ min (m.,m )=
y y

= min (m,, m ) ,y

which is identical to the right side of Eq. 7.33.

Once the weighting factors for the corner cells are detennined, i.e., Eqs. 7.34 and
7,35, the weighting factors for the primary cells are calculated by using Eqs. 7.15 and 7.17

P,y = 1 - min (1,m /m.) (7 36iy

P,a 1- min (1,m, / m ), (7,37)y y

The coefficients in the discretized equation can then be calculated in tenns of these
weighting factors.

- _ _ _ _ _ _ - _ _ _ - _ __ _ _ _- _ _ - - _ _ - - _ _ _ - _ - -__
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it is interesting to note the differences among the Raithby,70 }{assan,79 anc' the present
flow-modulated two-dimensional SUD schemes, Die main difference is in the weighting
factor S. The weighting factors employed by the three SUD schemes are

Raithby SUD: S ,, = m in 1,1 *1
2 m,j

llassan SUD: S,y = min .

FMSUD: S,y = 2-min 1. .

( mu

If rnx = my (flow is oblique at an angle of 45' to the grid lines) Sxy = j for all three
schemes. 'Ihis is the reason why the Raithby SUD scheme was able to reproduce the result
of the exact solution shown in Fig.17, if my = 2 mm. then

Raithby SUD: Sxy = 1

Hassan SUD: Sxy = j

FMSUD: Sxy a j,

The results of the liassan SUD schemi anti the present FMSUD scheme are the same, but
the Raithby SUD scheme gives a weig).ttng factor twice as large as that of the other two
schemes, As explained previously, the present FMSUD scheme is based on the criterion of
maximum contribution from the corner cell without the possibility of obtaining physically
unrealistic solutions. The Raithby SUD scheme apparently violated this basic criterion and
the result is shown in Fig,19, where overshoots and undershoots occurred. The Hassan
SUD (and the present FMSUD) scheme was able to eliminate those undershoots and over-
shoots, as shown in Fig. 20. Ilowever, as described earlier, liassan's results were based on
ad hoc assumptions and there was no explicit derivation for the weighting factors.

7,4.2 Three-Dimensionsi FMSUD Scheme

The three-dimerisional FMSUD' scheme is a straightforward extension of the two-
dimension FMSUD scheme, llowever, the algebra becomes much more involved. The user
need not be too cc.acerned about the algebra as long as he or she understands the basic
principle and limitations of the scheme.

Figure 28 shows the mesh system of a three-dimensional untform flow inclined at an
angle to the grid lines. We assume that all the mass flow components are either zero or

. positive,

nix, my, m e, Oz

!

|

l
___- _
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The two mesh syster;s shown in Fig, 28 represent the plane view at two adjacent
elevations. We first define the following weighting factors,

P (m , my, m ) = Pxyz (primary)x z

5 (mx my, mz) = Sxyz (sidel

C (m , my, m ) = Cxyz (corner)x z

llere, the word prirnc 11 means that the weighting factor P is associated with a cell iden-
tified by a single-digit number in Fig. 28. The sideweighting factor S is associated with a
cell identified by a two-digit number, and the corner-weighting factor C is associated with
a cell of three-digit number in Fig. 28. Next, we write down the facial quantitles for the
enthalpy as we did for the two-dtmensional case, and remembering that we now have sLx
faces surrounding a center point:

<h>t = Psy: ht 4 Sxyz his + Suy his + Cxyz hl35

<h>2 = Pryz ho + Sxyz ha + Sxry ho + Cxyz has

<h>3 = Pyu h3 + Syxa h ta + Syn h35 + Cyzx h 35

<h>4 = Pyu h9 + Syu h + S n ho + Cyu h15t y

his + S yx has + Cuy ht35<h>5 * Puy h5 + Suy t

ha, (7.38)<h>o = Puy ho + Suy hl + Szyx ha + Cuy t

The weighting factors are related by the following equations:

Pry + Sxyz + Suy + Cxyz = 1

P zx + Syn + Syzx + Cyzx = 1y

Puy + Say + Sryx + Cz,y = 1. (7.39)

The discretized steady-state convective transport equation can be written as

mx <h>2 - mx <h> + my <h>4 4 my ch>3 + m <h>oz

- m <h>5 = 0, (7,40)
z

Substituting Eqs, 7,38 and 7.39 into Eq. 7.40, rearranging according to the sparse matrix
form,

ao ho = E ai t . (7,41)h

and the coefficients turn out to be as follows:

no = m - m Sny: - m Suy - m Cxyrx x x x

+ my - my Syn - my Syn - my Cpx

+ m - m Say - m Szyx - m Cz (7.42)z z z z

S xz - m Say (7,43)at = m - m Sxyz - m Suy - m Cxy-x x x x c my y z

Cyzx - m Sxyz - m Seyx (7.44)S xz - my Syn - mya3 = my - my x zy

Su (7.4 5)a5 = m - m Say - mz Sfyx - m Cuy - m Sxzy - my yz z z x

.- . .

_ _ _ - _ _ _ _ - _ - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _
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!

; ata = m Sxyz + my Syxx . in: Cuy (7.40)
j als a m Sary + m Suy - my Cyz (7,4 7) jx z

Iny Syn + m Szyx - mg Cxyz (7,4 8) |a35 = e

alas = rn Cxy + my Cru + rn Cuy. (7.49)t a a

2 There are a total of eight coefficients for the three-dimensional flow, as compared to a total
of four coefficients for the two-dimensional flow. Eliminating the weighting factors in Eqs.

,

j 7.42-7.45 by utilizirig Eqs. 7.4G-7.49, we obtain the following equations that express the
,

primary coefficients (coefficients with a single-digit number) in terr.s of the side coem. '

cients (coefficients with a doubie-digit number), and the corner cc efficients (coefficients
,

! with a triple-digit number):
)
"

no = m + my + rn - al3 - als - a35 - 2al35 2 0 (7.50)x

ai = m - als - als-alas 2 0 (7.51)x

a3 = rny - a13 - a35 - alas 2 0 (7.52),

i a5 = m - E;5 - ass - al35 2 0 (7,53)z

and recalling Rule 1 that all the coefficients mud be greater than or equal to zero. After
closer examination of Eqs. 7.50-7.53, the upper and lower limits can be established for the
following coefficients:

O s alas s min (m , my, m ) (7.54a)x z

O s at3 s min (m , my)- alas (7.54b)s

0 s als s min (m , m )- al35 (7.54c)
'

x a

O s a35 s min (my, m )- alas . (7.54d)z

The coemclents given by Eq. 7.54 are not unique. This should not present any problem
since most discretized equations are not unique in the first place. We choose to rnaximize
the influence of the corner and side cells. Thus, by adopting the upper limits in Eq. 7 54,
we obtain

= min (m , rny, m ) (7.55)at35 x z

als a inin (mx, my) - min (m , my, m2)x

= max 10 min (m , rny) - m l (7.50)x a

al5 = min-(m , m ) - inin (m , my, m )x z x z

= max 10, min (m , m ) - my) (7.57)n m

aas = min (my, m ) - min (m , any, m2)z a

= max |0, min (my, m ) - m l . (7.58)e x

Comparing Eq. 7.55 to Eq. 7.49 gives

mx Cxyz + my C x + m Czxy = min (mx, iny, m ) . (7.50)y a a

Similarly, by comparing Eqs. 7.46-7.48 to Eqs. 7.56-7.58, we obtain
I

m Sxyz + my Syxa - m Czxy a rnin (m , my) - min (m , my, m )x z x x z

= max 10, min (m , my) - m l (7.00)x a

- - - . . _ _ - . - - - . - - . - - ~ . . - . - . - -. . - .. . .-
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mm Suy + m Sr.xy - my Cy x = min (m , md - min (mn, my, m,)e s

= max 10, min (m , me) - myl (7.61)x

= tuin (my, m ) - min (m , my, mg)my Syrs + m S yx - mx Cay: z xe i

= max 10, min (my, mt) - m ) , (7.62)x

Ihantions 7.59-7.02 must be satisfled by the weighting factors C and S for arbitrary m , my,x

and m2 It can be shown that the following expressions for C and S satisfy Eqs. 7.50 -7.02:

C,y, = C(m m .m,) = 1 min 1, b , '"1 (7,63)
y 3 g m, m,,

r 3

C o = 1 min 1, *- L,*- L (7.64)
f 3 m m,( y y

C,,y = 1 min 1,l" L , * L (7,65)
3 m, m ,s

*1- *L + 1 nin 1 b,*L (7,00)S,y, = S(m m .m,) = 1< max 0, min 1, t ,

y
y m,, m, 3 ( m, m , ,,2[ ,

max 0. min 1h - L + 1 min 1, 1,l"L (7.67)S ,y = S(m,,m,,m ) = 1< ,

y
; s m, m,, 3 m, m ,2[

e v)
max 0, min 1, *L - *L + 1 min 1,h,*L (7,68)S , = 1< --

y 2 m, m 3 rn m,s y y, y y y
, ,

S,* = 1 max 0, min (1,""L- + A min 1,I."1,*1)L (7.09),

2[ m,, m, , 3 g m, m, ,
,

-
e vt 3

max 0,tuln 1, *- L *L + Amin 1,1"L,l"L (7,70)S ,= 1< ,

y 2 m, m 3 tn m,g y y, s y y
, ,

max 0, min 1, L *1 + 1 min 1,b, (7.71)S,3=1<
( m,, m,, 3 m, m, j j ,2[ (,

lt is straightforward to demonstrate that the weighting factors C and S satisfy Eqs,
7,59-7,02. For example, the left side of Eq. 7,62 can be reduced to

m S , + m, S,y - m , C,y,y p

min (m,,m .m )0 t Tin (m .m,)- m, += max yy

max [0, min (m,,m )- m, + min (m..m .m.)+ y y

Intn(m ,m .m.)-
y

__
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= max 0, min (m .m.)- m.) ,y

which is identical to the right side of Eq. 7.02,

! Once the weighting factors S and C are detennined, all the coefficients in the
discretized transport equation can be calculated according to Eqs. 7,42-7,49.

The results of three-dimensional flow can be reduced to that of the twc>-dimensional
flow by setting m = 0 in all equations derived in this section. If m = 0, thenz z

Cxyz = 0.

Sxyr = .I min 1, *L
2 m,s

alas = 0,

ata = min (m , my),x

ai5 = 0,

nas = 0,

ao = m + my - a t s,a

ng= m -ala,x

a3 = my - a t a,

a5 = 0
These results are identical to those presented in Section 7.4.1 for the two-dimensional
flow,

7,4,3 Generalization of the Formulation of the FMSUD Scheme for All Flow
Conditions

General Expression of the Coefficients Coupling a Cell with lis 26 Neighboring Cells

The FMSUD methodology can be generalized to treat all flow conditions as follows.

Let us introduce first the definition of licaviside's function as

I #0ll(a)= (7.72)gg
,

for every real number a. Ilence,

il(-a) = 1 - II(a), (7.73)

We consider the enthalpy value <h>hi/2J.k at the boundary surface between cell 0, around
node (1, j, k), and cell 1 around node (1-1,J, k), as shown in Fig. 29 CX1, SX1t, and PX1t
are coefis.lents that are products of the weighting factor f and lleaviside function (flow
direction), If uhl/2J,k > 0, the <h>t depends on the enthalpy values of the cells at left: if
ubl/2J.k < 0, the <h>1 depends on the enthalpy values of the cells at right.

i _ _ _ _ - - - - - - - - - - - - - - - _ _ _ - - - - - _ _ ___
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k v>0

13CXi3 CXi SX1 2SX12m ig g

Cxyzl ISxry) (Cxyg)

130 10 140

W>0
PX1 SXi6 SX1p, PX1 SXig4 SX14

(Sxycl IS IxyE
3 0 4

13 1 14

UI 3CX1 SX18 D Gl7 SX18 07 i

|Cxyzl (S l Oxy *Iny

135 :D 145

Mo. 29. Cells tqfluencing enthalpy <h>I (f ul-II2J.k > 0 (lefd and if us. /2J k < >

0 (righ0. Notation in parentheses corresponds to Unat of Sec. 7,4.2

In the case of ul-1/2.j,k > 0: of the nine cells of the left block, only a maximurn of four
contribute to <h>1. They depend on the sign of wi = wi.1/2J,k and vt = vt I /2J k according
to the following scheme:

1. If vi > 0, wt > 0: cells 13.1,135,15 (quadrant bottom left)

2. If vi < 0, wi > 0: cells 14,1,145,15 (quadrant bottom right)

3. If vi > 0, wt < 0; cells 130,1,13,16 (quadrant top left)

4. If v1 < 0, wi < 0: cells 16,146,14,1 (quadrant top right).

For all cases corresponding to un > 0, we can write:

h so + SX12 hio + CXia h:40<h> = h .1/2 j.k = CX1 1 ti

h a + PX1 hi + SXIe ht4+ SX14 i

+ CX17 h 35 + SX1s h 5 + CX10 h:45, (7.74)!

The values of coefficients associated with Eq, 's.74 are as follows:

wi > 0 wi > 0 wi < 0 wi < 0
vi > 0 vi < 0 vi > 0 vt < 0

CX11 = fl li(-w) li(v) 0 0 fl 0

SX12 = 12 II(-w) 0 0 f2 f2

CX13 = f3 ll(-w) ll(-v) 0 0 0 f3

SX14 = f4 li(v) f4 0 f4 0
PX1 = 15 f5 f5 f5 f5

SXIe = f6 Ill-v) 0 f6 0 f6
CX17 = f7 lilw) li(v) f7 0 0 0

- -
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4 SX1s = f8 II(w) f8 f8 0 0
CX10 = f9 II(w) II(-v) 0 f0 0 0 (7. 75)

-

where both velocities w and v are computed at location (1-1/2J,k). f . I " 1,2..,0 aret
weighting factors satisfy the condition

9
,| f, = 1. (7.70)

The values of the weighting factor f (t = 1,2,.. 9) can be calculated as shown in Sec. 7A.2.t

Expressions similar to Eq. 7.75 hold for the coefficients CX2 , SX2 , and PX2.t t
Similarly, for ut < 0, one has

<h>i = hi.1/2J,k = CXI has + SX12 ho + CXia h40

+ SX14 ha + PX1 ho + SX1e h4
+ CX17 has + SX1s h5 + CXlo h45 (7.77)

Equations 7.74 and 7.77 can be combined in a single formula that holds for both ut > 0 and
ut < 0:

,

<h>| = hs.1/2.J.k = 10 uil (CX11 + h:30 + SX12 + h o + CXia e h:40i
a

+ SX 14 * h is + PX 1 + h i + SX 1 o * h :4

+ CX17 + h:35 + SXia + h s + CX19 + h:45)i

-10,-u s | (CX1 1 + h30 + SX12 + ho + CX13 + h40
'

+ SX14 * ha + PX1 + ho + SXlo * h4
+ CX17 * has + SXla + h5 + CX19 + h 5). (7. 78)4,

For the enthalpy on the opposite face, it holds
-,

<h>2 = hai/2.J.k = 10,u2) (CX21 + hao + SX22 + ha + CX23 + h40

+ SX24 * ha + PX2 + ho + SX2a + h4
+ CX27 + has + SX2a + h5 + CX2p * h 5)4

'

-10,-u2) (CX21+h230 + SX22 + h20 + CX23+ h240

+ SX2 + h23 + P72 + h + SX2a + h244 2

+ CX27 * h235 + SX2s * h25 + CX29 + h245). (7.79)
i Similarly, <h>3 and <h>4 can be expressed as follows:

4 <h>3 = hia.1/2.k = [0, val (CY3 + h:30 + SY32 + h30 + CY33 + h2301
#

4

+ SY34 + h:3 + PY3 * h3 + SY3 + h230

+ CY37 + h ss + SY38 + has + CY39 + h235)i

| -(0.-v3] (CY3: + h o + SY32 + ho + CY33 + h20i
*

+ SY34 * h + PY3 * ho + SY30 * h2i

+ CY37 * his + SY38 + h5 + CY3 + h25). (7.80)9

!

_ _ _ . _ . _. __ _.
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<h>4 = hy.1/2,k = 10,v4) (CY4 + hio + SY42 + he + CY43 * h26

+ SY44 + h + PY4 + ho + SY40 + h2i

+ CY47 * h s + SY4s + h5 + CY40 + h25)i

; -|0,-v4] (CY4 * h:40 + SY42 * h40 + CY43 * h240

+ SY44 + h:4 + PY4 + h4 + SY40 + h24

+ CY47 + h:45 + SY48 + h45 + CY40 + h 45). (7.81)2

The values of the coefficients are given by

wa > 0 wa > 0 wa < 0 wa < 0
u3 > 0 us < 0 us > 0 us c o

CY31 = fl ll(-w) II(u) 0 0 f1 0

SY32 = f2 II(-w) 0 0 fl f2

CY33 = f3 II(-w) 11(-u) 0 0 0 f3

SY34 = f4 ll[u) f4 0 f4 0

PY3 = f5 f5 f5 f5 f5

SY30 - f6 II(-u) 0 f6 0 f6

CY37 = 17 II(w) II(u) f7 0 0 0

SY3s = fB ll(w) (8 (8 0 0

CY30 = fB lilwl ll(-u) 0 (9 0 0 (7.82)

Similar expressions hold for the coefficients CY4 SY4 and FY4.t t

Finally. <h>5 and <h>o are expressed as follows:

<h>5 = hy.k-1/2 = [0,ws) (CZ5 + h:45 + SZ52 + h45 + CZ53 * h245

+ SZ54 + his + PZ5 + h5 + SZ5 + h250

+ CZ57 + h:35 + SZ58 + has + CZ5o + h235)
-(0,-ws) (CZ51 * h:4 + SZ52 * h4 + CZ53 * h24

+ SZ54 * hi + PZ5 * ho + SZ50 * h2

+ CZ57 + h:3 4 SZ58 + ha + CZ50 * h23). (7.83)

<h>o = hy,k,i/2 = 10,wol (CZ6: + h:4 + SZ62 * h4 + CZ63 * h24

+ SZ64 * hi + PZ6 * ho + SZGo * h2

+ CZ67 * h 3 + SZ6e * ha + CZ69 + h23)1

-10,-wol (CZ61 + h:40 + SZ62 + h40 + CZ63 * h240

+ SZ64 + h o + PZ6 + ha + SZ6o + h20i

+ CZ67 * h130 + SZ68 + h30 + CZ60 * h230). (7.84)

The values of the coefficients are given by

v5 > 0 v5 > 0 v5 < 0 v5 < 0
uo > 0 us < 0 us > 0 us < 0

CZ5 a fl Fl(-v) II(u) 0 0 fl 0

SZ52 = f2 H(-v) 0 0 f2 f2

CZ53 = f3 It(-v) II(-u) 0 0 0 f3

_-. _ .- . -- - ,, _,
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SZ54 = f4 Illu) f4 0 f4 0
PZ5 = f5 f5 f5 f5 f5
SZ50 = f6 II(-u) 0 f6 0 f6
CZ57 = f7 II(v) II(u) f7 0 0 0
SZ5ti = f8 }{(v) f8 f8 0 0
CZ50 = f9 ll(v) ll(-u) 0 f9 0 0 (7.85)

Similar expressions hold for the coefficients CZ6 , SZ6 , and PZ6.t f

Let us now introc .ce the following symbols (which generahze the notation of the previous
section) to account for the flow rate through the six faces of a computational cell:

m t = (puA)l-i/2.J.kx

m 2 = (puA)i,l/2 9x

my3 = (pvAly.1/2 k

my4 = (pvAly+1/2.k

mts = (pwA)y,k-1/2

in o = (pwA)y.k+ 1/2 (7.86)z

The finite-volume discretization of the convective term of the energy equation yields:

Insa' < h >2 - nin+ < h >i + m . < h >4y

- m,3+ < h >3 + in, * < h >o - m,s < h >3 (7.87)e

Substituting the expressions of <h>t, where t = 1.2.. 6 into Eq. 7,87 gives

2n

a ho + M-a )h , (7.88)c j j
j=l

where the central coefficient no and the 26 coefficients aj of the neighboring cells are given
by

no = 10, mx2 | PX2 + 10. -mx1 1 PX1 + 10, my4 1 PY4

+ 10, -myal PY3 + 10. mtol PZ6 + 10. -mtsi PZS (7.89/1)

ai = 10, m i l PX1 - 10, m 4 1 SY4, - 10, -my31 SY34x y

- 10 m ol SZ64 - 10, -mtsi SZ54 (7.89/2)z

a2 = 10. -m 2 | PX2 - 10 my41 SY40 - 10 -my3 1 SY3ox

- 10, m ol SZ6e - 10 -m sl SZ50 (7.89/3)z z

a3 = 10, m 2 I SX24 - 10, -m t i SX14 + 10, myal PY3x x

- 10, m ol SZ68 - 10. -mts l CZ57 (7,89/4)z

_ _ _ _ _ _ _ - _ _ _ _ __ -_-__ __ _ __ _ ___ _ - _
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x 1 SX2e - 10 -m i| SX1e + 10 -my4 i PY4a4 = 10, m 2 x

- 10, m,ol SZ62 - 10. -m si SZ52 (7,89/5)e

a5 = -10, m 2x 1 SX28 - 10. -mmi i SX1s - 10, my41 SY48

- 10. -mysl SY38 + 10, m:51125 (7.89/6)

no = -10, m 21 SX22 - 10. -mx1i SX12 - 10, my4 ! SY42x

- 10. -myal SY32 + 10. -mzel PZ6 (7,89/7)

ata = 10, mit i SX14 + 10. mysl SY34 - 10, miol CZ67

- 10. -mzsl CZ57 (7.89/8)

ass = -10, m 2x 1 CX27 - 10. -m 1x 1 CX17 + 10, snyal SY38

+ 10 m sl SZ58 (7,89/9)
z

aso = -10, m 21 CX21 - 10. -mx1 i CX11 + 10, mysl SY32x

+ 10, -mgo l SZ68 (7,89/10)
,

a24 = 10. -m 2x 1 SX20 + 10. -my4 i SY40 - 10, miol CZ63

- 10. -m sI CZ53 (7,89/11)
z

1 CX2 - 10. -m 1I CX13 + 10 -my4 i SY42a40 = -10, mx2 3 x

+ 10. -m ol SZ62 (7,89/12)
a

a23 = 10, -m 2I SX24 + 10, mysl SY30 - 10 -mzsl SZhx

- 10, m ei CZGa (7,89/13)z

ai4 = 10, m tx l SX1o + 10, -my4 1 SY44 - 10, m ol CZ61z

- 10. -mzsl CZ51 (7,89/14)

a45 = -10, m 21 SX2 - 10, -m 1x I CXlo + 10. -my4 iSY48x 9

+ 10, m si SZ52 (7,89/15)
e

a15 = 10, m tx i SXia- 10, my4I CY47 - 10 -mysl CY37

+10 m sl SZ54 (7.89/16)a

ata = 10, m tx i SX12 - 10, my4 I CY41 - 10. -myal CY31

+ 10. -m el SZ64 (7.89/17)z

a25 = 10. -mx2| SX2s - 10 my4 i CY40 - 10. -my31 CY39

+ 10, m sl SZ50 (7,89/18)z

. . . . .
.
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a20 = 10, -mx2| SX2 - 10, m 41 CY43 - 10, -my31 CY332 y

+ 10, -m el EZ68 (7.89/19)z

alas = 10, m il CX17 + 10, mysl CY3 4 10, m sl CZ57 (7.89/20)x 7 z

also = 10, m ix l CX11 + 10, my31 CY3 + 10,-m el CZ67 (7,89/21)1 z

ans = 10, -m 2x 1 Q.*27 + 10, mysl CY39 + 10, m sl CZ59 (7.89/22)z

a23c = 10. -mx21 CX2 + 10 my31 CY33 + 10, -m ol CZGo (7.89/23)z

a145 = 10, m t i CX19 + 10, -my4 I CY47 + 10, m t,I CZ5: (7.89/24)x z_

ai40 = 10, m il CX13 + 10. -my4 i CY4: + 10. -m ol CZ6 (7,89/25)x z

a245 = 10. -mx21 CX29 + 10 -my,i CY49 + 10, m sl CZ53 (7.89/26)z

a24s = !O, -mx21 CX23 + 10, -my41 CY43 + 10, -mtal CZ63 (7.89/27)

Verification of the Generalized Equations for Special Flow Conditions

Upwind Finite Volume Formulation, if the primary coeffic;ents PXI, PX2, PY3, PY4, PZ5,
and PZ6 are equal to one, the side and corner coefficients must be equal to zero. Thus, the
general equation, Eq. 7,89, reduces to

ao (upwind) = 10, m 21 + 10, -mxi l + 10, my4 1 + ! O, -mya lx

+ 10, m o l + 10. -m s l 17.00a)z z

a1 = 10, m t I (7.90blx

a2 = 10 -m 2x1 (7.90c)

a3 = 10, my31 (7.90d)

a4 = 10, -my4 I (7,90e)

a5 = 10, m sl (7.90f)z

ao = 10. -m ol, (7.00g)z

which correspond exactly to the upwind finite-vahame formulation.

- - - - - - - -
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Uniform Flow with u, y, w Positive and Constant, in this case, the only weighting factors
different from zero are:

PX1, SX14, SX18, CX17,

PX2, SX24 SX28 CX2,7

PY3, SY34, SY38, CY37,

PY4, SY44, SY4. CY47,8

PZ5, SZ54, SZ58, CZ57.

PZ6, SZ64, SZ68, CZ67

The coefficients different from zero are:

ao = m 2 * PX2 + my4 * PY4 + m o e PZ6x z

4 - m o e SZ64ai = m t * PX1 - my4 * SY4 zx

a3 = -m 2 * SX24 + mya * PY3 - m o * SZ68x z

8 + m s * PZ5a5 = -m 2 * SX2s - my4 * SY4 ax

ala = m t * SX14 + mya * SY3 - mic * CZ67x 4

als = m i e SX1s - my4 * CY47 + m s * SZ54x z

a s5 = -m 2 * CX2 + mya * SY3s + m s * SZ58x 7 a

alas = m t * CX17 + mya * CY37 + m 5 * CZ57, (7.91)x z

which are identical to the coefficients given in Sec. 7.4.2.

7,4,4 Results and Discussion

The three-dimensional FMSUD scheme described in Sec. 7.4.2 has been implemented
in the energy equation of COMMIX-lC for all flow conditions. The derivation presented in
Sec. 7,4.2 with the assumption of unidirectional flow is mt. rely for demonstration of the
concept of the FMSUD scheme and this assumption has been removed in Sec 7.4.3. The
implemented weighting factors for all flow situations remain to be tested. We have per-
fomed calculations of the three-dimensional problem described in Sec. 7.3.2 to test this
newly implemented scheme. The calculated isotherms are shown in Figs. 30 and 31 for
two different elevations. It can be observed that numerical diffusion is reduced significantly
compared to the results of upwind-difference (Figs. 23 and 24). Perhaps even more
important is that the present FMSUD scheme does not produce undershoots or overshoots
anywhere in the computation domain. This is a significant improvement over the extended
Raithby SUD scheme shown in Figs. 25 and 26. The results shown in Figs. 30 and 31 are
certainly encouraging. The final test of the FMSUD scheme will depend upon the results of
using this scheme to calculate various types of flows in engineering applications when the
streamlines are oblique to the grid lines. User feedback will be an important part of this
process.

_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - _ - _ _ ___ -___
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Fig. 30. Isotherms at lowest elevation (k = 1) of a three-dimensionaljlow
with m = my = ma (FMSUD)x

In summary, we have developed a three-dimensional flow-modulated skew-upwind
discretization (FMSUD) scheme for the energy equatlon. Our objectives are to reduce
numerical diffusion and prevent the occurrence of undershoots and overshoots which are
physically unrealistic. Preliminary calculations indicate that the results are encouraging and
that we are moving in the right direction. The mathematics is rather involved in the
derivation of all the equations. However, the user need not be too concerned about the
detailed mathematical derivations. The important thing is to understand the basic
principles and the limitations of this new scheme, it is very easy to use this scheme in
COMMIX-lC. All that is required is a single statement in the input data. Descriptions of
input preparation are provided in Volume 11 of this report.

.____ - _ _ _- - .
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y

- 8' Supplementary Physical Models
.

-1
.

JTo broaden the scope of COMMIX-1C applications and to more accurately account for - a
phenomena that affect thermal-hydraulle simulation a number of supplementary physical-

'

:models have been incorporated into COMMIX-lC.
,

8.1 = Rigorous Fluid: Property Routines
~

iThere are four fluid property packages in COMMIX-1C, i.e... water liquid.'' water vapor,
sodium 11guld. and sodium vapor.: All four property. packages are developed and formulated
.in a modular fashion to accommodate replacement by any other fluid property package.

~

The input description on use of these fluid packages is given in Volitme 11 of this report.

.
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8,2 Simplified Fluid Property Option

Besides the rigorous fluid property packages, another option is available to the user.
This option is known as a simplified propedy option. This option appliet 'o both fluid and
solid materials. Enthalpy, density, thermal conductivity, and viscosity are assumed to have
the following functional fornu

T' + Cm,P ,h = Con + C nT + C2hi

p = Cop + C ,T + C ,P /(T + 273.15),3 2

k = Con + cat + C T' ,2k

and

p = Cop + CgT + C2u /(T 4 273.15), (8.1)

where T is temperature in degrees C, P is pressure in Pascals, and Co, C , C2, and Ca are1

constant coefficients to be specified by the user. The default values for these constants are
zero. We found the simplified property option quite useful in many applications because it
takes very little time in preparing and inputting the coefficients in Eq. 8.1. It should be
noted that for liquids and solid materials, the pressure dependence of the property does
not apply, and the corresponding coefficients should be set to zero. A detailed description
of inputting the simplified property option is given in Volume 11 of this report.

8,3 Heat-Transfer Correlations

To calculate the heat transfer between fluid and solid surfaces (either the solid
bot'ndaries of a flow domain or the surfaces of internal structures), a heat-transfer -
coefficient model is required in the code, in the model implemented in COMMIX, all heat
transfer coefficient correlations are assumed to have the following fonm

C C '

Nu = C + C Re 8 Pr + . (8.2)i 2

Here Nu-is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, and
CI, C2, Ca,,and C4 are the constant coelTicients for a given correlation number NH. The user

| can prescribe several correlations by inputting different values of coefficicuts C , C2, Ca, and1

C . The Nussell number and Reynolds number are based on the characteristic lengths of4

the system under consideration. These characteristic lengths are input and must be
l' prescribed by the user.

8,4 Structure / Fluid Momentum -Interaction

As described before, the solic! structures in a flow domain interact with fluid and
influence the momentum distribution. In the porous-media. formulation employed in
COMMIX, these interactions are modeled with the use of distributed resistances that
appear in the source term of the momentum equations (Table 1). This section describes

-how the calculation of distributed resistance, also known as force structure, is carried out,
and how a wide range of generality and flexibility is provided in COMMIX.

- _ _ _ - . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
- - -.
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8,4.1 . Force Structure Modeling

'

In COMMIX-1C, the pressure ' drop due to stutionary solid structures is expressed in
the following general formi-

8 *

Ap=c pv f.. (8.3)

.The distributed resistance R, which represents pressure drop per unit length, has the form

R = cip f. (8.4)

Here,14Ax, Ay, or Az) is the length of the cell, D is the hydraulic diameter, and ci s thei
coefficient, depending on the form'of the equation desired. The values of ci and D depend
on the geometry and type of structure and must be provided by the user.

-There may be more than one structure in a flow domain of interest, Submerged
structures usually have different geometries and so require dt!Terent values for the
parameters ci and D. In COMMIX, we have provided this flexibility: details are given in
Volume II.

cThe friction factor f in Eq. 8.4 is a function of the Reynolds number and is assumed to -
be of the form

bf = a,,, Re ,a + c,,, (8.5)

for ResRetr and

bf = a go, Re = + c , (8.6)m

for Re> Retr. Here Re is the Reynolds number, and a, b, and c are constants. The
subscript 5 f am, tur, and tr stand for laminar, turbulent, and transition. COMMIX has the
flexibility of permitting as many correlations as the user desires. Each correlation requires-

: seven input nuLbers: atam, blam, clam, atur. btur. Ctur, and Rett,

To simplify the specification of which fluid cells interact wit . et ich structure a
specific input arrangement has been implemented in COMMIXi duads are presented ins

Volume Il-of this report.

A report 81 has been prepared that provides a convenient collection c.* resistance
correlations that are most commonly needed by COMMIX users This collection of
resistance correlations is included as an appendix in Volume 11.

8,4.2 - Friction-Factor: Library -

. Occasionally, the COMMIX-1C user may find that the desired correlation is not of a
! form directly suitable for input as described in Sec. 8.4.1, -The user is then faced with two
choices:

_ . _ _ . - _ - _ _ _- _ _ _ _ _ . - _ _ _ __ _ _ . , _ _ _ .
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+ Approximate the correlation to fit the input fonn, or

+ Use the friction-factor library.

The friction-factor library has been created to accommodate up to 50 different
additional correlations. Currently, only seven correlations, as described in Table 19. have
been added to the library.

An ambitious user who wishes to define his or her own correlation may first examine
the code to see what correlation numbers are free and available. Then, with other library
correlations as a guide, the new correlation can be inserted appropriately in the code and
recompiled. Every effort has been made to modulartze this part of the subroutine so that a
user has minimum difIlculty in inserting new correlations in the code.

8.5 Structure / Fluid Thermal Interaction

3
8.5.1 Introduction

As described earlier, solid structures near or submerged in Guld can interact with the
fluid and influence momentum and energy distributions. The momentum interaction is
taken into account by using the force structure modeling described in Sec. 8.4. In this
section, we describe the structure /0uld thennal interaction when the temperatures of the
solid structures are different from ll.e fluid temperatures. Fluid / structure thermal inter-
action is modeled by distributed heat sources that appear in the source tenn of the energy
equation (see Table 1).

The Duld/ structure thermal interaction consists primarily of the heat transfer between
a structure and surrounding lluid and the heat transfer within a solid structure. In
COMMIX-lC, we model these interactions by using the so-called thermal-structure
module.

The heat transfer to fluici from a structure is calculated by solving the one-dimensional
heat conduction equation for the structure. This assurnes that heat conduction in the other
two directions is negligible. The COMMIX thermal structure model has the following
features:

The model considers all internal structures. The input detennines the total*

number of structures.

A structure can be planar, cylludrical, or spherical, with either one surface (e.g.,*

solid cylinder or sphere) or two surfaces (plane or annular cylinder) having
thermal interactions with surrounding Guld. The axis of alignment of the
structure can be aligned with any of the three coordinate axes.

Each structure can consist of more than one type of material, each separated by*

a gap.

Temperature dependence of thermal conductivity and specific heat of*

structures are incorporated.
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Table 19. FMctton factor libran)

RETLEN
(lengt.1 used

CLENT11 to compute
Correlation (hydraulic ReynoW

Number Description Correlation diameter, m) ' number)

' f = 81.7 ]l , x + Re, , d
0. 8 3.25 x 10-3 3.25 x 10-390 CRBR fuel

Re

x = 0; -Re s 400

x = (Re - 400)/4600: 400 < Re < 5000
x = 1; Re15000

'l - x + 0 48 fx- 3.39 x 10-4 3.39 x 10-491 CRBR blanket f= ,,

assembly
I = 0; Re s 400 to

I = (Re - 400)/4600: 400 < Re < 5000
x = 1: Re z 5000

92 Direct reactor - f= 0.1055 0.1055
,

heat exchanger
A = 0.171 + 0.012 (P/D) - 0.07e-So(P/D-1)
P/D = 1.84

f = E]1 - x 4 0.3164 [X- 0.127 0.12793 CRBR
Re Re ,,,

chimneys
I = 0; Re s 1200 '

x = (Re - 1200)/2500: 1200 < Re < 4000
x = 1: Re 2 4000

--
_ _ _ _ _ _ _ _ - _ _

,
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94 FFTF pin f = E: Res 1000 3.95 x 10-3 3.95 x 10-3*Bundle

f = 1.075 f. 1+0.1746 +0.0745
-

g Re , ( Re j _

r n

= - 0.8686 log,
'

e >

95 CRBR control f = 60.68 ]I , x + 0 48,k 3.48 x 10-3 3.48 x 10-3,

assenibly
I = 0; Re s 400

x = (Re - 400)/4600; 400 < Re.< 5000
x = 0; Re _> 5000

._

4 x Flow Area96 Mixed convection' If Gr/Re s 2000 De = De o
Wetted Perimeter N

through vertical f = fo
rod bundles If Gr/Re > 15000

f = 2fo
if 15.000 > Gr/Re > 2000
f = 15.917 x 10-9 (Gr/Re)2 - 2.367 x 10-5 (Gr/Re)

+ 1.023] x fo
where

24.7,_
' Re""

"
Re =

ii

# rReDe*bGr = P24 Az

- _
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The effec's of gaps in a structure element are accounted for in the model. The*

gap width and heat-transfer coefficient across a gap are input parameters.

The heat source in a structure element is considered in the heat conduction*

equation. The heat source can be transient.

Each structure is divided into a desired number of axial elements. A set of*

discretization equations is obtained for each element, through use of the proper
boundary conditions The equations are solved using the Tri-Diagonal Matrix
Algorithm, The temperature variations in the element and heat transfer from
the element to fluid are calculated,

8.5.2 Thermal Structure Modeling

Geometrical Description

To explain the geometrical features of the model, we consider a cylindrical structure
with its axis aligned in the z direction and its length extending over a number of Az
partitions (K levels), as shown in Fig. 32. Although the description and the subsequent
formulation are geared toward cylindrical-type structures, the model in COMMIX-lC also is
applicable to spherical and slat >-type geometries.

Each Az partition of the structure is referred to as a thermal-structure element. Each
element has its own internal temperature distribution as it interacts with surrounding fluid
cells. Each element has two surfaces, outer and inner. The outer surface interacts with
surrounding Guld, The inner surface can either be adiabatic or can interact with fluid, as
shown in Fig,33. Each element can interact with no more than one fluid cell per element
surface, while each fluid cell can interact with more than one structure element; this can
be seen in Figs. 34 and 35.

Figure 36 shows the cross section of a typical structure element. TPe outside surface is
considered as surface 1 and the inside as surface 2. Each element can be made up of more
than one material, in Fig. 36, there are three materials, Each material region can be
subdivided into a number of partitions as shown

Goveming Equation

The transient one-dimensional heat conduction equation is

(- Aq) + 4" , (8.7)pcp =

liere, p and cp are the density and specific heat of the material, (l"' is the heat source per
unit volume, q is the surface heat flux per unit area, and A is the cross-sectional area.

|

_ _ _ _ _ _ _ _ - _ ____
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Fig. 33. Element of thermal structure, showing outer and inner surfaces
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Rg. 34. Four quarter-cJt lindrical structures, each
interacting with onepuid cell

O

Rg. 35. More than one structure interacting
with a singlefuld cell

|
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Fig. 37. Cross section of a therinal structure element
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Finite-Difference Formulation -

- Figure 37 shows the cross section of.a typical structure element under consideration.
Each element is divided into a number of material regions and each material region is -
subdivided into a number of partitions. Let Ar be the partition size and let L be the total

: number of partition cells.

Consider the energy balance of cell to as shown in Fig. 38. The integrated energy
equation for the structure in the control volume of cell t gives

(T, - Tf) = -(A,,i q,,i - A,q,) + 4" V, , (8.8)
3

Here Vf s the cell volume. The heat flux qt can be expressed in terms of temperaturei

difference:

44 * U,(T .: - T,) = (T, i - T,)/R, . (8.9)t

Here. U is the overall heat transfer coefficient (conductance) and Rg is the overall thermalt

resistance between Tg and T -1*t

1 . 1

U, = R, = (g),,, + (g), for conduction between two
solid cells of similar material. (8.10)

-1 1

_

!

U, = y4 5 (N), a fluid cell and a solid cell.
for conduction and convection between=

(8.11)

.and'
s

1 1 ' (8,12)
U " R' " (Elmis-i + h + ("El

for conduction between twot

A 'i solid celts with ditTerent materiala

Here. A is the thermal conductivity, h is the convection heat transfer coefficient, and heap is
the gap conductance between the two materials..

Substituting Eq. 8.9 into 8.8.and rearranging, we obtain

(a, + b, + b,,i)T, = b,T,.i + b,,i ,,i + d, , (8.13)T

where .

a = pc,V /St. (8.14)'
b = AU = A/R, (8.15) -

and

d = 4"V + a T" . (8.16) .

Here Tn and T are the temperctures at time t and (t + 5t), respectively.

- _ . . . . _ . .. _ _ . - .- _ . . . ..__ _
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A A
^1+1 ^1+2t-1 l
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Fig. 38. Ettergy balance of a partition cell t
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Fig. 39. Energy balance of cell i ucl]acent to coolant

Cell Adjacent to Coolant. For the case of Cell 1 (Fig. 30), adjacent to the fluid, the
integrated energy equation for the structure in the cell gives

(a + b + b )T = b Tig+bT+d. (8.I7)s i 2 i 2 2 i
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11ere, a, b, and d have the same meaning, except that bi now includes the convective
contribution. Therefore,

b=A1= (8.18)^
-

i p - + (g), 'iR i

Similarly, if the other end of the thermal structure, say Cell L, is in contact with fluid, we
get

(at + bo + bui)T, = boTvi + bui a, + do , (8.19a)Ti

where

A ^"' (8.19b)L21 =
bui = R ,,i , ,+(g) .'

i

Cell Adjacent to Different Material. For a cell adjacent to a different material cell, as shown
in Fig. 40,

(a, + b, + b,,i)T, = b,T, i + b,,i ,,i + d, , (8.20)T

Equation 8.20 is similar to Eq. 8.13, except that the term bt+1 includes the gap resistance.
Thtia,

A'''=- A,
b,'i = P,,i (g), + g''+ (g),,, 8.2 0

End Ca with Adiabatic Boundary Condition. In solid cylind:1 cal or spherical structures, the
other end (symmetry line) has the adiabatic boundary condition. The end cell for this
boundary condition is shown in Fig. 41. There is no heat transfer, so thennal resistance is
infinite and the term bt+i goes to zero. The final equation, therefore, is

(at + bo)T, = b ,Tvi + d , . (8.22)
i i i

Solution of the Discretization Equations

We can see from the formulation of the preceding section that there are L number of
equations for L number of unknown temperatures.

Outside Surface Cell (t = 1)*

(ai + b + b )T = b T + d + b Ta, . (8.23a)i 2 i 2 2 i i

Intennedtate Cells (t = 2, **** L-1)*

(a, + b, + b,,i)T, = - b,T,.i + b,,i ,,i + d, . (8.23b)T

______ _ _ _ _ _ - _ _ _ .--
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Adiabatic Boundary
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Fig. 41. Cell with adiabatic boundary
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Inside Surface Cell (t = L)+

(at + b , + b ,i)T, = b ,T.,i + b ,,i m,i, + do (8.23c)Tt t i i i i

If the inside surface is nonadiabatic, and

(ai, + bo)T , = b T .. + d , (8.23d)i t t i

If the inside surface is adiabatic.

Equation 8.23 can be transformed to

Ci T = b T + A'i (t=1) (8.24a)i 2

C', T, = b,,3T,,i + A ', (t = 2....L- 1) (8.24b)

C's, T, = b ,,i mq + Ai, (t = L:nonadiabatic) (8.24c)Ti i

C't. T, = A'i, (t r. L; adiabatic). (8.24d)i

Ilere,

n', = d, + (b, A',.i[C',.i (t = 2;...L) (8.25a)

and

C', = a, + b, + b,,i - (b) /C',.i) (t = 2;. L) (8.25b)

The first set of coefficients is

Ai = d + b T ,i, (8.25c)i im

and

~ C; = ai + b + b . (8.25d)i 2

The inside-surface cell temperature is first calculated from Eq. 8.24c or 8.24d, Then the
rest of the temperatures are computed using Eqs. 8.24a and 8.24b.

Heat Transfor to Adjacent Fluid
,

|
| Once the temperature distribution in a structure element is computed, the heat

transfer rate to the adjacent fluid is computed from

4 = A (T - T,)1
iR i

( = U A (T - T,) for outside surface (T, = T,2,) (8.20)i i

and

q = R o ,3^'''(To - Tr)
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A .i(To - Tr) for inside surface (Tr = Tc% ) . (8.27)= U .it t

liere. 4 is the heat transfer rate in watts, U is the overall heat transfer coefficient given by

U = --- = b + M , (8.28)Il h

. is the surface area, T and TI, are the temperatures of the edge partition cells, and Tr is'
i

the respective fluid temperature.

The prev;?us derivations are for the calculation of temperature distribution in the
thennal structure. We need to derive the expressions for the interaction between the
thennal structure and the Guld. This can be achieved by introducing the distributed heat
source ,n described in Sec. 2. Ilowever, to increase the speed of convergence in
COMMIX-lC, we have adopted an implicit treatment of the interaction between the Guld
and the thermal structure. The integrated (over the main control volume) heat source tenu
can be expressed as

JS cbcdydz = V Q + aho (ho - h8),h o (8.29)

where Vo is the fluid volume, is the rate of heat generation in the Guld per unit Guld
volume, i is the heat transfer rate from the thennal structure to the fiuld, h3 is thet

enthalpy of the Guld cell adjacent to the thennal structure at old time n and ho is the
enthalpy of the fluid cell adjacent to the thennal structure at new time n+1, The
superscript n+1 is omitted for convenience. Equation 4.27 can be written for the energy
equation as

f Sn dxdydz = S n Vo + S n Vo ho . (8.30)c p

Comparing Eq. 8.29 to Eq. 8.30 gives

Sch = - ho g Vo , (8.31)

and

Sn= V (8.32)p o.

In Eq. 8.30. we have separated the tenn containing the new time value ho from the rest of
the tenus that are known. When Eq. 8.30 is substituted into the energy equation, the tenn
containing ho can be lumped into the left side of the general discretized finite-volume
equation (Eq. 4.33). Thus, the effect of the thennal structure has been accounted for when
the energy equation is solved This is what we mean by the implicit treatment of the
interaction between the fluid and the thermal structure. However, we need to derive an
expression for (Si /Sho) so that the two coefficients given by Eqs. 8.31 and 8.32 can bel
calculated.

Consider that case where only the outside surface is in contact with the fluid. At old
time n Eq. 8.26 can be written as

____
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47 = U A (T"- TO). (8.33)
3 i

where Ti s the temperature for cell 1 and Tei is the coolant temperature adjacent to celli
1. At the new time n+1.

4: * Us A (T - T )i i ei

= U A (T" - TO) + (T - Tf)- (T,i - TO)i i, i i

* 4E + Un ^i J- - 1 (ho- h8)/C (8.34)pi ,

where Cpt is the specific heat of the fluid adjacent to the thermal structure, in Eq. 8.34,
the variable qi, T , Tei, and ho represent the new time value and we have omitted thei
superscript n+1 for these variables. From Eq. 8.34, we can obtain the following
approximate expression for (84/Bho),

'34i ..$.i-4" ,U A 'Fri _3 . (8.35)it
Sho ho - h" Cri (Fr ie ,

From Eq. 8.24a,
f e)

BT 1 dr BAt i (8.30
Fr i ( * ( Fr ,, -

e

From Eq. 8.25c,

BA'' = b . (8.37)
i5I,i

Substituting Eqs 8.36 and 8.37 into Eq. 8.35,
< 3

A' = 'A' k 2 +k-1 (8 38).

Bho Cri C dr,i C
i i ,

fdr2/DTei) car. be calculated in terms of the following two recurrence equations:
1 .,

BA,

"' g * Fr,i ,
&T

2"{1 (8 39I
BT,iFrie

and

BA', , b, DA',.i
*

BT,i C',. i Fr i (8.40)e

which are obtained from Eqs. 8.24c and 8.25a. From Eq. 8.24c, we have

DT 1 BAt t t8.41)ar,i "{Fr,-

1

_ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -___
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In summary, (Sqi/Dho) can be calculated analytically by using Eqs. 8.37-8.41 when the
outside surface of the thermal structure is in contact with the fluid.

If only the inside surface of the thermal structure is in contact with the fluid, an
equation similar to Eq. 8.35 can be derived:

b = $ L '' 4 E = .ULJ.-.l h - 1 , (8.42)
8ho ho - h" Cn. s&Tc3 ,

(rTrt,/irr 2) can be calculated by using Eq. 8.24c:c

=h,'

(8.43)BT Coc

where C[is given by Eq. 8.25b (t = L):

C[ = ai, + bc + be,i-(bl/C't.i). (8.25b)

The recurrence fonnula, Eq. 8.25b, can also be used to evaluate C[.i:

C' = a, + b, + b,,i - (bf /C' .i) (t = 2,* * e,L- 1), (8.25b), ,

because C; is known from Eq. 8.25d:

Ci = ai + b, + b . (8.25d)2

Thus, if only the inside surface of the thermal structure is in contact with the fluid,
(aqi,/Dho) can be calculated analytically by using Eqs, 8.42, 8.43, 8.25b, and 8.25d.

9 Initial and Boundary Conditions

9.1 initial Conditions

Generally, before the solution sequence can begin, allvalues of variables must be
assigned in COMMIX, we can accomplish this by either

+ Continuing a previous run via the restart capability (recommended for all but
the [trst run), or

* Specifying the initial distribution throughout the interior points and boundary
of the space under consideration.

When the initialization is not a restart, we must spectfy initial pressure, temperature,
velocity, and turbulence parameters distributions. The dciennination of these distributions
and their subsequent input into the code are generally tedious. In COMMIX, we have
provided several simplified input procedures, which make the initialization of velocity,

' pressure, temperature, and turbulence parameters fairly simple. These procedures are
described in Volume II of this report.

|

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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9.2 Boundary Conditions

This section describes the boundary conditions for mass, momentum, and energy
equations. The boundary conditions for turbulence transport equations have already been
described in Sec 6.4. The surface flux quantitles are oriented with respect to the local
surface normal that points into the fluid from the boundary surface.

9.2.1 Fluid Velocity Boundary Conditions

The most common physical boundaries in an engineering system are solid impervious
wall, inlet, symmetry, and outlet. To accommodate all possible Guld velocity conditions at
these four boundaries, we have provided seven boundary conditions options. Here we
describe the meaning of these options in mathematical tenus. In Table 20, we have
summarized all seven fluid velocity boundary options for the four most commonly occurring
physical conditions. Volume 11 tells how to implement them in the input data.

* Constant Fluid Velocity

This boundary condition implies that nonnal fluid velocity vn = constant. This
option is applicable to a stationary solid surface with zero normal fluid velocity
and to an inlet surface with constant inlet fluid velocity.

* 7Yansient Fluid Velocity

This option is applicable when an inlet velocity varies with time, e.g.,

vn = Vo f(t) . (9.1)

Here,

vn = surface-nonnal fluid velocity at time, t,

Yo = surface-nonnal Guld velocity at time, t = 0,

and

f(t) = transient function.

* Free Slip

-The free-slip option means the shear stress at the surface is zero. Also,

vn = 0.0 . (9.2)

This option is applicable to a symmetry boundary. For a cylindrical coordinate
system in COMMIX, the z axis passing through the origin is considered as a
symmetry boundary with zero surface area.

_ _ - _ -__--____-_____-________________
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Table 20. Ruid velocity boundarl) options '

Option
_ 1

Boundary /Sultable Option No. Remarks

Solid Impervious Surface !

Constant velocity 1 Specify normal velocity vn=0

Inlet
Constant velocity - 1 Specify inlet velocity
Transient velocity- 2 Specify inlet velocity and

appropriate transient function-

Symmetry
Free Slip 3 Axis through origin in

cyhndrical coordinate is a
symmetrical surface

Outlet
Continuative mass flow 4 General outlet condition
Continuative momentum 5 Suitable when areas are equal
Continuative velocity. 6 Suitable when areas and

densities are equal
Uniform velocity 7 Suitable when outlet is finely

divided (Fig. 42)

Continuattue Mass now Outlet*

1his option is for an outlet surface as illustrated in Fig. 42. Here, t and m are
.

- the outlet boundary cells and t+1 and m-1 are the neighboring cells _ The
- continuative mass flow outlet implies that normal surface velocity at the outlet
- must be such as to balance the mass flow, i.e.,

- (pA)"U
- (V ),.y2 - (PA)t-vaut+1/2 (9.3a)n

and'

. (V )m+us " - (EA)m+U2(pA) '" u .g3 (9.3b)n . m

j: The sign difference between Eqs. 9.3a and 9.3b is due to the COMMIX
convention that surface-normalis directed into the flow domain,

.

,,. s s-
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Fig. 42. Near-boundary cells

* Continuative Atomentum Outlet

When an outlet area is the same as the neighboring surface area, Eq. 9.3a
simplifies to

(p u)# *''* l9 4)(v ), i/2 = -n
P4-i/2

We call this option continuative momentum because it appears that we are
eci. 'ng neighboring and outlet momentum fluxes.

* Continuauve Velocity Outlet

if we have a constant area and equal densilles, Eq. 9.3a simplifies to

(v )e.i/2 = (u)s+i/2 - (0.5)n

We call this option continuative velocity because it appears that we are
equating neighboring and outlet velocities.

* Uniform Velocity Outlet

The uniform velocity outlet boundary condition option sets the normal velocity
for all surface elements of a surface to the same value. This value is computed
so that the total mass flow through a surface is the same as that obtained from
the continuative mass flow outlet boundary condition. Mathematically.

.__-_
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(v ) = I(p Au)'''''
I(p A)t-i/a (0.G)n .

IIere, the surnmation is taken over all surface elements of a surface. This
option is suitable when an outlet is very finely divided, as shown in Fig. 43.

9.2,2 Temperaturo Boundary Conditions

The five temperature-boundary-condition options available in COMMIX-lC are briefly
described here and summartzed in Table 21.

* Constant Temperature

This option is for a constant surface temperature. The temperature associated
with each surface clernent, as shown in Fig. 44, is set inillally and remains
unchanged throughout the calculation. While the ternperature remains fixed,
the surface element heat Oux is calculated with the relation

(i = UA(T, - Tr). (9.7)

liere

U=A+AS, (9.8)

where h is the heat transfer coefficient, A is the conductivity of the wall
material, and AI,is the wall thickness. The subscripts w and f refer to the
surface element and boundary fluid cell, respectively. For calculation of the
overall heat transfer coefficient U, we must provide wall thickness, suitable
correlation for h, and material properties for A.

If the wall is very thin, as shown in Fig. 45, we need not specify wall thickness
and material properties. The overall heat transfer U is then equal to h,

if a constant temperature is associated with, say an inlet surface as shown in
Fig. 46, we need not specify even the heat transfer correlation. The surface
heat flux is then calculated frorn the Fourier relation

4 , A r A(T. - T )ct f

g)V
IIere. Actr is the effective thermal conductivity of the fluid in the adjacent
internal cell, Axt is the distance between the surface and the boundary cell
center, and the subscripts w and f stand for wall (surface element) and
adjacent internal cell, respectively.

|
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Outlet Boundary !

o o o
,

. - .

Fig. 13, Model suitablefor uniform velocity outlet option

Table 21. Sultable temperature boundary options

Option ;
'

Boundary / Option No. Remarks

Solid Surface
Constant temperature 1 Tw = constant s

Transient temperature 2 Tw = fit)
Constant heat flux 3 qw = constant

iTransient heat flux 4 qw = f(t)
Adiabatic 5 qw = 0

| Inlet
Constant temperature 1 Tw = constant
Transient temperature 2 Tw = f(t) -

!

Outlet
Adlabatic 5 qw = 0

Symmetry
Adiabatic 5 qw = 0

.

i

,
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,

I ,

Thin Surf ace at
Constant Temperature T

Fig. 4 5. Thin-wall constant-temperature boundary
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e

i

d .

II t

urface at
Constant Temperature Ty

Ftg. 4 0. Nonconvecthe constant-temperature boundar;j

Trunstent Temperaturee

This option is for a surface whose temperature varies with time, e.g.,

(9.10)Tw = To flt)

where

Tw = surface temperature at time t,

To = surface temperature at time = 0,

and

f[t) = translent function .

We calculate the surface-element heat flux with the same procedure described
for the constant-temperature-boundary option.

Constant Heat Flux*

When ws. aave a surface with constant heat flux, we use this option. The heat
flux associater' with each surface element is set initially ar.d remains
unchanged throughout the calcula.Mn. Although the surface heat flux remains
fixed, we now calculate the temperature using Eq. 9.9 based on the effective
thermal conductivity of the adjacent internal cell.

_ _ _ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ - _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ __
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+ 'hansient llent 11nt

This option is useful wi.cn we have surface heat Oux varying with time, e g.,

4 = 4. f(t), (9.11)
where

4: surface heat Qux at time t,

4. : ourface heat Ottx at time t = 0.

rmd

f(t! : transient function number nf.

Ont.c the surface heat flux is known for a given time t, the surface temperature
can be calculated from Eq. 0.9.

* Adiabo.fc Surface

Tht adiabatic boundary conduton implies that surface heat aux 4 = 0. In this
option, the normal heat Oux for all surface elements of a surface are initialized
to zero and remain zero during calculation. The surface-element temperature
is set equal to the temperature of the neighboring internal cell.

9.2.3 Pressure Boundary Conditions

Currently, two types of pressure boundary-<ondition options are provided in
COMMIX 1C:

* Constant pressure, and

+ Transient pressure.

The pressure boundary is app!!cd to cella adjacent to the surface. The option is usupily
used in conjunction with the continuative mass now boundary condition.

If an inlet surface has a spectiled velocity boundary condition, we do not require a
prest.ute boundary option because surface pressure does not enter into any calculation.

It is important to note here that the pressure boundary condition in COMMIX-lC
refera to the pressure of the boundary adjacent fluid cells. It is therefore recommended to
model the geometry so that the pressure boundary is applied to

e A surface with one surface element, or

A surface that is normal to the direction of gravity and has parallel now,a

as shown in Fig. 47.
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When we specify a contttant pressure boundary option, the pressures of all internal cells
achacent to a surface a.'e set to a prescribed value. These values then remain unchanged
during the calculation.

For a transient pressure over a surface, the pressures of all internal cells achaecnt to
that surface are calculated frorn

Pm = Pmo f(t) . (9.12)

liere,

Pm = pressure of the adjacent cell m and time t.

Pmo = pressure of achacent cell m at time = 0,

and

f(t) = transient function.

Volume 11 explains how to implement these options in the input.

9,3 Additional Options

The boundary conditions described in Sec. 9.2 are generally for untform conditions at
boundary surfaces, If the distributton of a parameter is not untfonn for a given boundary
surface, this parameter can be specified by using the boundary surface element intttahzation
procedure in COMMIX-lC. For example, if the inlet velocity is not untform, the velocity can
be specified individually for each surface element at this inlet plane by using the variable
velb. Stmtlarly, if the heat flux on a given surface is not unifonn, the heat flux can be
speelfted individual!y for each surface element by using the variable qbn. Other variables
such as mass flow rate, enthalpy, temperature, density, turbulence ktnetic energy, and
dtssipation rate of turbulence kinetic energy are included in the boundary surface element

. . _ . . .. - ..
. . .

. . . . . . . . . _ _
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inillalization procedure which overrides those described in Sec. 9.2. Quite frequently, a
combination of these two procedures is used for a given simulation in order to achieve
better accuracy in specifying the boundary conditions. The boundary-surface-elernent
initialization procedure provides greater flexibility not only in specifying nonunifonn
boundary conditions, but also in specifying other untfonn boundary conditions not
described in Sec. 9.2. For example, if the user wishes to specify untfonn nass flow at the
inlet, Table 20 does not provide this option, llowever, the user can specify uniform rnass
flow at the tr'let plane by using the boundary surface element inillalizallon procedule, A
detailed description of this procedure is given in Volume 11 of this report.

10 Solution Procedures

10.1 Introduction

COMMIX perfonus thermal hydraulle calculations by marching in time. The values of
the dependent variables at a given time-step, say n, are known and the values of the
dependent variables at time step n+ 1 are calculated. By repeating this procedure, we
detennine thennal-hydraulic conditions for the desired time span. The overall flow chart
of the program is shown in Fig. 48.

For steady-state calculation, the same procedure is followed. We start with an initial
guess and continue the marching-in-time process until the values of all dependent
variables are lower than some spectfled values. The time-step stre for the implicit steady-
state calculation can be many times as large as the Courant time-step criterion,

in COMMIX-lC, we have provided two options for the time-step size:

* The user-desired time-step size (details of this input are given in the input
Description in Volume 11), and

* The automatic time-step option,

in the autornatic thne-step option, the time-step size is evaluated on the basis of the
Courant condition:

At = Cpte . (10.1)

where C i s the user-prescribed coefficient and Atc is the time-step size evaluated fromi

the Courant condition. The Courant time-step size is defined as the minimum time
required for fluid to be convected through a cell. In COMMIX, each computational cell is
examined with respect to all three component directions to calculate the Courant time-
step size.

In COMMIX-lC, we have two dlstinct solution sequences: the fully implicit and the
semi-implicit, Doth are combined into one formulation through an implicit parameter o.
The solution procedure option becomes semi-implicit when u = 0 and fully implicit when u
= 1. Therefore, in principle, we can say that the fonnulation covers a full range from semi-

_ _ _ _ _ _ _ . .. .- .. _ . _ - -
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implicit (n = 0) to fully implicit (a = 1). Uut because we have not perfonned enough testing
at this time, we do not recommend any value of a other than 1. The semi-tmplicit and the
fully implicit schemes are described below in Sees.10.2 and 10.3, respectively.

In COMMIX-lC, three matrix bolvers are provided to solve the discretized equations;
they are the successive overtelaxation (SOR) method, the Yale Sparse Matrix Package
(YSMP), and the preconditioned Conjugate Gradient (PCO) method. All are incorporated in
COMMIX-lO in a modular fashion so that the user has the flexibility of choosing any one of

__ . _ _ _ . _ _ _ - _ - _ _ _ - _ _ - _ - _ _ _ - _ _ _ _ _
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i the soh'ers for the pressure equation becaube the resulting matrix is synunctric. Either SOR
or YSMP can be selected for the scalar transport equations. The three matrix schers are
described in Sec.10.4. Iteration criteria for pressure equation and scalar transport
equations are described in Sec.10.5.

10.2 Fully implicit (SIMPLEST-ANL) Solution Sequence (a = 1)

The fully implicit solution sequence, named SIMPLEST-ANL. is based on a modification
to the SIMPLE / SIMPLER procedures developed at the Imperial College in England.
SIMPLEST /ANL requires less computer storage than SIMPLER and still has comparable or
better cornputing efficiency. Decause this procedure relieves many of the time-step size
limitations and perinits use of larger time-step sizes, it in most suitable for steady-state and
transient calculations.

The procedure is called fully implicit because the new-time values of all variables are
assumed to prevail during the time step. We therefore need an iterative procedure. Each
outer' iteration loop yleids a better estimate of the advanced-time values of all variables.
When the change in all variable values becomes small from one outer iteration to the next,
the iterative process is considered converged and the last outer iterate values are used for
the advanced time-variable values. The solution sequence for the fully implicit formulation
te. a seven step iterative process, as shown in Table 22.

10. ; Semi-implicit Solution Sequence (n = 01

The semi-implicit solution sequence (a = 0) used in the original version of COMMIX-1
is based on a modification of the ICE procedure developed at les Alamos National
Laboratory. The solution sequence is called semi-tmplicit because the old time values of
some variables and parameters are assumed to prevail throughout the time-step period.

Because of the semi-tmplicit nature of the formulation, we are required to limit the
size of the time step to obtain a stable solution. The time-step size must satisfy the Courant
condition and must be less than the time-step sizes associated with all explicitly fannulated
terms. Thus,

At < Atcomni (10.2)-
.

( u i ,,,,

At < At. - C (10.3),

H s nans

At < Atmnd - C p (10.4),

I( h / nun

'llere, outor iteration loop is used to dinunguish it from the inner iterative loops used for the soluuon of a specifle
variable equation, e.g the iterative loop 1 successive overrelaxation procedure or the preconditioned conjugate
gradient method) used for the solutton of prensure equations is constdered as an inner iterative loop.

_ _ _ . _ _ _ .
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n1lli implicit (SIMPILST-ANI) solution sequence (a = 1)Table 22. t

1. Calculate velocity-pressure relation coefficients from the previous iterate
values of u, y, and w;

4, de :(6 = u, y, w).

2. Calculate pressure equation coefficients using $,d':

a$ a[ b5

3. Solte pressure equation for new-time, new-iterate pressure 6P:

a56Po = la[6P,4 b8,

4. Calculate new-time, new iterate velocities u, y, w from velocity-pressure
relations:

4 = 6 - d' ABP ;(& = u, v, w)
,

5. Calculate energy equation coefficients using new-time, new-iterate
velocities:

ah,ay,bh,

6. Solve ene gy equation for new-time enthalpy h:

abho = [aph, + bh ,

7 Check for convergence of u, v, w, h; if not converged, return to Step 1.

etc. Here, subscripts * Courant," *vis.* and *cond" refer to time scales associated with
Courant condition, viscous diffusion, and thennat diffusion, respectively, and subscript i
refers to the three coordinate directions. The coefficient C has a value between 1/6 and
1/2. In most cases, the Courant limitation is the detenntning factor: Atvis and Atcond are
usually much larger, The viscous-dt!Tusion and thernmi-diffusion time scales may require
consideration only in the case of highly turbulent flow,

Although the semi-implicit scheme has time-step limitations, the solution of the
equations requires less computer running time per time step. For fast transients,
therefore, where the interest is in obtaining infonnation at small time intervals, the semi-
implicit sequence may be useful.

Details of the semi-implicit solution sequence are shown in Table 23.

10.4 Matrix Solvets

Of the three matrix solvers available in COMMIX-1C, SOR and PCO are iterative solvers,
while YSMP is a direct solver and therefore requires no iteration. It should be noted that

- _ _ _ _ _ _ _ _ _ _ _ _ _
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Table 23, SemHmplicit (modified ICC) solution sequence la = 0)

1. Calculate momentum coefficients using old-time step values of u, y, and w:

6, de :(c = u, v, w).

2. Calculate pressure equation coefficients using 6,d':

a$ aj', b$ .

3. Solve pressure equation for new-time pressure $pn+1;

a$ 6Po - E a }'6P, - b5 = 0.

4, Calculate new-time velocities using

o = 6 - de A6P ;($ = u, v, w)

and new-time values of pressure.

5. Calculate energy equation coefficient using new-time values of velocities:

aD.a}',bD.

O. Calculate new-time enthalpy hn+1:

ho = la}'h}' +bh/ah ,

both solution procedures, fully implicit and semi-implicit, require the solving of several
sets of algebraic equations. These equations are solved by one or a combination of the three
matrix solvers described in this section.

10.4.1 Successive Overrelaxation llotative Solution

The successive overtelaxation (SOR) iteration scheme uses one pass through the
computational cell domain. As each cell is visited, the residual of the 0-equation to be
solved is computed, using the most recent values of the surrounding 6's, in this way, an
updated value of & is used if the neighboring cell has been visited earlier in the pass, and a
previous flerate value of 6 is used if the neighboring cell is to be visited later, immediately
after the residual of the 6 equation for a cell under consideration is computed, the c is
ad. justed in that cell before the computation proceeds to the next cell in the pass.

After all cells have been visited, the convergence is checked and if it has been
achieved, the iterative process terminates; if convergence has not been achieved, ancther
single-pass iteration is performed.

The SOR scheme requires the relaxation parameier c) to be between 0 and 2.
Generally, convergence can be achieved in fewer iterations than for the Jacobi scheme.

. - - .
.
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Decause to can have values greater than 1.0, it is tenned overrelaxation. The optimum value
of the relaxattol parameter is generally geometry- and problem-dependent; usually, it is
between 1.4 and 1.8.

10.4.2 Yale Sparse Matrix Package

The YSMP is a collection of routtnes for solving the n x n system of .inear algebrate
equations 2 when the coefficient matrix is large and sparse. The package uses direct8

methods based on Gaussian elimination without pivoting. The coefficient matrix can ba
symmetric or nonsymmetric. The routines of YSMP decompose the coefficient matrix into
triangular factors and then successively solve the triangular systems. Since the coefficient
matrix is sparse, most entries of the coefficient matrix and the triangular factors are zero,
and the routines take advantage of this by fonning the decomposition and solving the
triangular systems without storing or operating on zero entries. The advantage of YSMP 1s
that it is a direct solver and no iteration is involved. It can solve symmetric and
nonsymmetric matrices llowever, as the number of computation cells is increased, both
the stcrage and the work increase rapidly and other methods (SOR and PCG) become more
economical and efficient.

10.4.3 Preconditioned Conjugate Gradient Method i
l

The PCO is an tierative procedure that computes a sequence of approximate solutions
to a system of !!near algebraic equations. A number of preconditioned conjugate--gradient-
like methods have been reported in the literature.sa The conjugate gradient method
employed in COMMIX-lC is an iterative procedure for solving symmetric, positive-definite
systems; it requires no estimates of scalar parameters and is relatively inexpensive per step.
These properties make the conjugate gradient method more robust, easier to implement,
and more rapidly convergent than other iterative methods for solving symmetric, positive-
definite problems. The convergence of the conjugate gradient method can be improved by
preconditioning techniques.83 Consider a linear system of the form

hix = b, (10.5)

where M is the coefficient matrix, and x, b are column vectors whose components are xi, bi
(i = 1, 2. , n). Roughly speaking, precondil;oning consists of solving a problem

.

Q-1 Mx = Q-1 b, (10.6)
|

| where Q is an approximation of M so that Eq.10.6 is in some sense easier to solve than
Eq.10.5. The preconditioning technique employed in COMMIX-lC is the incomplete'

factorization of M. More detailed descriptions of the conjugate gradient methods and the
preconditioning '.echniques can be found in Ref. 83.

10.4.4 Discussion

As described previously, the user has the flexibility of choosing any one or a
combination of the three matrix solvers to solve the pressure equations and the scalar

-_. . _ _ _
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Table 24. Properties of the thret matrie sohers in COMMIX ~IC

Sultabi ,Igrt

Matrix Coefficient Pressure Transport
Solver Matrix Scheme Eqs. Eqs.

$0R Symmetric /Nonsymmetric Iterative Yes Yes

YSMP Symmetric /Nonsymmetric Dircet Yes Yes

PCO Symmetric Iterative Yes No

transport (energy, turbulence kinetic energy, etc.) equations. Table 24 summartres the
properties of these matrix solvers and the type of equations each solver is suitable for. The
pressure equations in COMMtX-lO are made symmetric and therefore can be solved by all
three matrix solvers, The transport equations are nonsymmetric and therefore not suitable
for PCO, but can be solved by either the SOR or the YSMP. Practically speaking. YSMP is
more efficient for relatively small numbers of computational cells: it becomes less efficient
when the number of computational cells is greater than 1000. When the number of
computational cells exceeds 2000, PCG and SOR are more efficient and economical than
YSMP. As a rough guide, YSMP should be used for all equations if the number of computa-
tional cells is less than 1000, tf the number of computational cells is greater than 2000,
PCO should be used to solve the pressure equations and SOR should be used to solve the
scalar transport equations.

10.5 Iteration Critoria

In COMMIX-lC there are two numerical schemes (fully implicit and semi-implicit)
and three matrix solvers (SOR, YSMP, and PCO). The user can choose any combination of
numerical scheme and the matrix solver for a given problem, if the fully implicit scheme
(n = 1) is selected, iteration criteria are required for the dependent variables to determine
if further iteration is needed before advancing to the next time step. This is what we
referred to as the outer iteration loop.

The seventh step (Table 22) in the fully implicit scheme is to check for convergence,
liere, the changes from one iteration to the next, in all $'s, are checked against the
convergence criteria. The iteration criteria are satisfied when

|$'" ~ &aktk,
*

4oki

|utww uokl|""" < r3,
rima

jyrn - yoldj"*\ < r3 ,and
nwx
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|wnew - wo6d|"" < r3 (10.7)
V,,,,

simultaneously. IIere Vmax is the maximum vehicity magnitude, t3 is a user input conver-
gence parameter, and the superscripts *new' and *old* refer to current and previous
iterate values. If any one of these convergence criteria is not rnet, the sequence is repeated
from Step 1. The solution proceeds through the sequence until it converges or the
specified maximum number of iterations have been performed, liere, e again represents
the general scalar transport variable (such na enthalpy, turbulence kinetic energy, etc.). It
should be noted that iteraticn criteria are not needed for the semi-tmplicit scheme (a = 0)
because no iteration is involved during the solution sequence (Table 23).

Iteration criteria are also needed for the inner iteration loop if an iterative matrLx
solver is selected. The inner iteration loop solves the individual pressure and scalar
transport equations within a given time step, if either SOR or PCO solver is selected, we
will need a mass convergence criterton for the pressure equation and some other criteria
for the scalar transport equations,

in theory, the presrure equation (Eq. 5.7) is considered solved when mass residue 6 is
equal to O for all cells, Because Eq. 5.7 la solved iteratively, this will, in general, never be
true. Instead, a nonzero mass residual 6 is computed for every cell and a maximum is
determined as 151 max. The iterative process continues until either a maximum specified
number of iterations has been performed or the maximum mass residual falls below the
convergence criterion,

181 max < convergence criterion. (10.8)

The tuass convergence criterion is calculated using the relation

'"'Convergence criterion a t * +fa, (10.9)i
Ah AXI smu .

where ti and r2 are the input convergence constants, and subscript i stands for three
coordinates.

The convergence criteria for the scalar transport equations in the inner iteration loop
within a given time step are defined as

hg*1 - hg ' 6 '
hL - han
kg*l - ka
kL - k'"n$

''

and

f 5'' - f $ s to , (10.10)m m
f ~fmu min

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ . _
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Tuble 25. Contergence criterta for iterattle scherne (fully itnplicit) and
iterattle rnatrix sollcrs (SOR and PCG) used its COMMIX-IC

Convergence Default Iteration
Parameter Value Loop Description

tt 10-4 Inner Mass convergence for
pressure equations

E2 10-0 inner Mass convergence for
pressure equations

r3 5 x 10-5 Outer All transport variables

t5 10-5 Inner Enthalpy

to 10-5 inner Turbulence parametere k and c

where the superscripts m and m+1 represent the previous and the current iterative values,
respectively, the subscripts max and min represent the maximum an0 minimum values of
the variable in the entire computational domain, and the subscript ijk indicates that the
change in value of the variable from one iteration to the next is evaluated at the same
location. The convergence criteria expressed by Eq.10.10 means that if the change in
value of a variable from one iteration to the next at any location divided by the maximum
variation of that variable in the computational domain is equal to or smaller than some
prespecified number c, the solution is considered converged and no more iteration is
required. Again, these criteria apply only to iterative matrix solvers such as SOR and PCO.
If the direct solver YSMP is selected, these iteration criteria are not needed.

Table 25 summarizes the convergence criteria for the iterative scheme (fully implicit)
and the iterative matrix solvers (SOR and PCO) and provides the default values of
convergence parameters employed in COMMIX-1C.

11 Summary and Discussion

11.1 Major Features of COMMIX-1C

All important features of COMMIX-1C are briefly mentioned or described in detail in
the text. Several features are unique and distinct from other computer codes. These
features significantly expand the capabilities and increase the Gexibility of COMMIX-lC.
Five of these features are discussed here:

+ Porous-medium formulation.

* Geometry modeling.

|

.
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+ Turbulence modeling.

+ Plow-madulate skew-upwind discretization.

* Three matrix solvers.

11.1.1 Potous-Medium Formulation

In COMMtX we use four parameters (volume porosity, directional surface porosity,
distributed resistance, and distributed heat source or sink) to model a flow domain with
solid objects. The inclusion of the parameter for directional surface porosity is relatively

: new. This inclusion has greatly facilitated the modeling of flow and heat transfer in an
anisotropic medium and has improved the resolution and accuracy of numerical modeling.

The porous-medium formulation has been rigorously derived from the goventing
partial differential conservativn equation. The derivations use the local-volume-averaging
procedure. The resulting equations are more general. If we set directional surface porosity
equal to the volume porosity in the fannulation, the equations simplify to those for the -
conventional porous-medium fonnulation. Furthennore, if we set volume porosities and
directional surface porosities to unity, and distributed resistances and heat sources to zero,
then the new porous-medium fonnulation simphfies to that of the continuum fonnulation.
We can therefore say that the continuum formulation is a subset of the conventional porous-
medium formulation, which is a further subset of the present porous-medium fonnulation.

It is worth stressing here that the porous-medium fonnulation hes provided a wide
range of applicability to the COMMtX code and can be used to treat irregular geometries
that are often encountered in most engineering applications. We can now analyze

* A single-component system, such as a
fuel assembly+

reactor plenum,+

piping system,+

* e t c.,

as well as

* A multicomponent systein, such as a
vessel,*

downcomer and lower plenum,+

cold leg, high-pressure injection system, downcomer,+

* etc.

In suiTicient detail.

11.1.2 Geometry Modeling

Unique features related to geometry modeling are:

+ Ident(fication of a computational cell by a cell number instead qf its (tJ,k)
location: All *do loops * are perfonned with the cell number as an index

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _____ ____
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|

instead of with the conventional directional indices IJ,k. Consequently, the
storage requirement depends on the total number of computaticnal cells and
not on the dimension o'IMAX*JMAXeKMAX. This is illustrated through a
simple example in Fig. 49.

* Use of surface arrays to store boundary tdues at the boundary surface: We do
not use fictitious boundary cells to store boundary values.

* Fxtra surface to model irregular Dcometry: An trTegular surface is defined as a
surface that is at an angle to a grid plane, An irregular surface is an additional
surface to the st< normal surfaces (parallel to grid planes) of a computational
cell. We also account for heat transfer in the energy equation and shear stress
in the momentum equation from this seventh irregular surface, in addition to
those from the six normal surfaces. This treatment of an trTegular surface as
an additional surface facilitates proper modeling of a complex irregular
geometry.

11,1,3 Turbulence Modeling

Almost all flows in an engineering system are turbulent. For a computer code to
realistically simulate a flow process, the code must account for the effects of turbulence.
COMM!X-1C accounts for the effects of turbulence through

* Distributed resistance modeling and

* Turbulence modeling.

For many geometries and flow conditions, the experimentally vertfled resistance
correlations, wh!ch include the effects of turbulence, are available in the literature, e.g.,
flow in a tube, flow normal to a rod bundle. flow through an ortfice, etc. For such regions of
a system, we employ appropria'.e correlations through distributed resistance modeling and
can provide a realistic account of turbuler.ce.

For geometries where correlations are not available, we have provided the following
options in COMMIX-1C:

* Constant turbulent diffusivity model and

* k-r two-equation turbulence trodel.

With the k-c two-equation turbulence model and the distributed resistance model, one
can perform a very realistic simulation of turbulence flow in any flow geometry system.

11.1.4 Options for Reducing Numerical Diffusion

in the finite-difference formulation, the even derivative terms of the trtmcation error
have a general tendency to reduce the gradients, producing what is known as numerical
diffusion. For high Peclet number flows and for flow parallel to grid lines, numerical
diffusion is generally small. However, for multidimensional flow oblique to grid lines, the
effects due to numerical diffusion can be significant.

. _ - _ .
.
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IMAX = 8
JMAX = 7
Total number of cells = 14
Conventional storage requirements = 8 x 7 = 50
Storage Requirement in COMMIX 1C = 14

Fig. 49. Grid arrangement in two-dimensional ptptng sitstern,
illustrating storage requirements in COMMEX-1C

To provide a more realistk and accurate solution, we have implemented an additional
option, the flow-modulated skew-upwind discretization (FMSUD) scheme in COMMIX-1C,
The FMSUD scheme has been demonstrated to reduce numerical diffusion when the
velocity is oblique to grid lines and it does not produce physically unrealistic overshoots and
undershools.

11.1.5 Matrix Solvers

In COMMIX-lC. we have three matrix solvers:

* Successive overTelaxation (SOR) method,

* Yale Sparse Matrix Package (YSMP), and

* Preconditioned conjugate gradient (PCO) method

These matrix solvers are used to solve the individual distretized equations (pressure and
scalar transport equations) in the inner iteration loop.

The SOR and YSMP solvers are suitable for both symmetric and nonsymmetric
matrices, while the PCO method is limited to symmetric matrices only. Thus, the SOR and
YSMP are applicable to both the pressure and the scalar transport equations, while the PCO

|
.
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method is limited to the pressure equation only Doth the SOR and the pCO methods are
iterative, while the YSMP is a direct solver and no iteration is involved. in general, if the
number of computational cells is less than 1,000, YSMP should be used. On the other har.d,
if the number of computational cells is greater than 2,000, the SOR or pCO method should
be selected.

The three matrix solvers significantly increase the flexibility and efficiency of
COMMIX-IC for the numerical computation of a wide class of engineering problems.

11.2 Code Application and Validation

The COMMIX series of codes has been tested and applied to a variety of problems.
Detailed descriptions and numerical results of problems that we have analyzed are provided
in published ANL technical reports and in papers in technten)joumals.4-30 We have also
compared numerical results with available experimental rneasurements. Major applications
in the nuclear power area include analyses and simulations of fuel assemblies, reactor upper
plenum, reactor downcomer and lower plenum, cold-leg high-temperature tr\Jection
system and downcomer, and reactor vessel. Applications of COMMIX-1C are mainly in the
area of natural circulation in pressurtzed water reactor.40.41 A number of simulations were
performed to investigate the natural circulation phenomena during a postulated transient of
both the Zion (four-loop) plant and the Surry (three-loop) plant. The numerical results are
in general agreement with experimental observations.40 41

Validation of the k-c two-equation turbulence model in COMMIX-IC were carried out
by comparing the calculated results with experimental data on three relatively simple
geometrical systems, i.e. (1) fully developed pipe flow, (2) two-dimensional single sudden
expansion, and (3) axisymmetric buoyant jet. The results indicate that COMMIX-lC is
capable of predicting these simple turbulent flows in general agreement with experimental

| data.73

It should be noted that validation and assessment is an integral part of the code
development process, More validation and assessment will be added to the present
collection of problems as time goes on. User feedback is welcome and will enhance the
code development process.

11.3 Future Developments

Numerical simulation programming is a very active and developing field. New physical
models and better solution procedures are expected to emerge. COMMIX will, therefore,
continue to evolve. Listed below are possible developments that, if incorporated, will
further augment the capabilities of COMMIX.

11.3.1 Single-Phase Development

New single-phase capabilities that are desirable for future implementation are:
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+ Extensfort of the flous-Afodulated Skcut-Upwind Discrettration Scheme to
include the Afornenturn and Turbulence Equations: As described previously, h
flow-modulated skew-upwind discretization scheme (FMSUD) is implemented
in COMMtX-lC in the energy equation. The numerical results indicate that
this new scheme ts able to reduce numerical diffusion without caustrig
phys.lcally unrealistic overshools/undershoots. There is a need to extend the
FMSUD scheme to the momentum and turbulence equations to further reduce
numerical ditTusion when the flow is incitned to the grid lines.

* Mult(species Transport: During the later stage of a postulated reactor
accident, hydrogen may be present simultaneously with steam in the reactor
vessel. To predict this phenomenon accurately, a multispecies transport
model is required. This will involve adding one or more transport equations in
COMM!X-lC.

* Anisotropic Turbulence Afodelfor Natural C(rculation: The k-r two-equation
turbulence model in COMMIX-1C is valid only for isotropic turbulence. Natural
circulation, which occurs in a reactor system under postu'.ated accident
conditions, is not isotropic. To improve the accurucy of COMMIX calculations,
an anisotropic turbulence model (such as the Reynolds stress or the algebrale
stress model) needs to be developed and implemented in COMMIX.

+ 7Yeatment ofirregular Geornetry: Modeling of systems with irregular
geometry is always a challenging problem, improvement over the current
treatment of irregular geometry in COMMIX can be made by using the
boundary-fitted coordinate system or some kind of hybrid system combining i

finite-element and finite-volume approaches.

* Automatic Time-Step Selection Logic and Implementation into COAfMLb1C:
Another important addition is the development of an automatic time-step

'
selection logic and implementation into the COMMIX-lC code. The automatic
time-step selection logic will provide a maximum time-step size to shorten
the computer running time. At present, the user must specify the time-step
size, which is not known a priori.

* Imp!!cti 1Yeatment of Graotty Terrn in the z-rnornenturn Equation: When
buoyancy is important, such as natural circulation in a postulated accident in a
pressurtred water reactor (pWR), it may be helpful to treat the density
implicitly in the z-momentum equation. This is accomplished by integrating
the gravity term over the momentum control volume in the following manner:

f pg, dxdydz = p Vo g,, (11.1)

where V is the characteristic volume of the staggered met.h deflued by Eq.o

4.47, and p is an average density given by

p , Mo Po + Mn Po - (11.21
Mo + Mo

To express p implicitly in the z-momentum equation, we assume
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E

inv (W - W|),E = p" 4 ()1.3)o
o

where the superscript n refers to the old time value and n+1 refers to the new
time value, which is omitted for convenience (as we have done throughtout
tiils report). The tenn containing the new time value Wo in Eq. 4.54 can be
absorbed in the left side of the general finite-volume equation,1:q. 4.38. We
must still evaluate (DF /DW), which in given by

'O c)
'

hF ,. A4 '000 Mo P (gg,4).

Mo (inVo) ,Mo (BWo, MoDWo Mo 4 4

in view of Eq. 4.53. (DFo/hWo) and (DFo/DWo) can be expressed approximately
by

UPo , 'g ' bho ), (l1.5)
DWo (Dhso(DWo)

0.0L . Y E (l1.0)
DW (Dh,o sinV ,o o

At present, both (Dho/DWo) and (Dha/dWo) are evaluated as follows:

Wo 2 0 hE = 0; ~ ^b(ho - ho).8 = (!!'7)
(u$)enV DWo o

!L = 0.
( )o(ho- ho);Wo < 0 --

(33,g)

11ased on the numerical results obtained thus far with the implicit treatment as
proposed here, it appears that convergence rate for the analyses of imtural
circulation has been improved in some cases. Additional work in this area is
needed to ensure further improvement of convergence rate for all buoyancy-
driven flows.

nee-Surface Doundaril Condtlion: CurTently, COMMIX-lO does not have ae

free-surface boundary condition option. With implementation of this
additional capability, one could apply the COMMlX computer code to the
mmlysis of free-surface problems, e.g., pool-type reactors.

* 'lYansient Three-Dimensional Heat Conduction Equation for Solid Structures:
At present in COMMIX-lC, we solve the one-dimensional transient heat
conduction equation to account for therrnalinertia of submerged solid
structures. We therefore assume that heat conduction in an axial direction is
negligible, in most analyses, this is a valid assumption.13ut to extend the
range of applicability, one must implement an option that will pennit use of a
three-dtmensional heat conduction equation for structures where axial heat
conduction is not negligible,
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+ Vector (zin0 for Supercomputers: Recently there has been a significant
development in the area of vectorizing and parallel processing. These
developments have increased the speed of computing by several orders of
magnitude. Vectortzing COMMIX for adaptation to recent supercomputers will
enhance the speed of COMMIX simulations.

+ Input / Output Processing: COMMIX is a very large computer code with a wide
range of generalities and applicabilities Consequently, input preparation and ,

output processing often become very tedious. Further developments and
efforts are needed to make COMMIX a more user-friendly computer program, j

11.3.2 Two-Phase and Multiphase Development

Concurrent with the development of the COMMIX-lO code, efforts have been inade to
develop a two-phase or multiphase code, using a two-fluid or multifluid model to analyre
two-phase or multiphase flows. In developing the two-phase or multiphase fluid model, we
will place emphasis on

* Developing a stable solution algorithm for the whole range of applications.

* Developing an effielent numerical scheme and taking full advantage of current
computer architecture.

* Minim 17.ing the requiretnents of computer storage.

+ Validating physical models with appropriate experimental data.
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The COMMIX-lC computer program, an extended version of previous single-phase COMMIX codes,
is designed to analyze steady-state / transient, single-phase thret-dimensional fluid flow with heat
transfer in reactor components and multicomponent systems. The ecncepts of volume porosity,
directional surface porcstty, distributed resistance, and distributed heat source or sink is used to
inodel a flow domain with stationary structures. The new porous-medium formulation pennits a
simulation of either a single component or a multicomponent engineering system. The conservation
equations of mass, momentum, and energy based on the new porous-medium fonnulation are solved
as a boundary-value problern in space and an initial-value problem in time.

Volume 1 of this report, entitled Equations and Nurnerics, describes in detall the basic equations,
formulations, solution procedures, flow-modulated skew-upwind discretization scheme, models to
describe the auxiliary phenomena, etc. Volume 11, entitled User's Guide and Afanual, contains the
flow charts, available options, input instructions, sample problems, etc.
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