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Three-Dimensional Transient Singie~-Phase
Program for Thermal-Hydraulic Analysis o! Single
and Multicomponent Engineering Systems
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for a given proulem. These three matrix solvers greatly increase the flexibility
and efficiency of aumerical computation for COMMIX-1C compared to previous
COMMIX codes.

Geometrical Package; A special geometrical package has been developed and
implemeni d to permit modeling of any complex geometry in the most
storage-efficient way.

Skew-Upwind Discretization Scheme: A new flow-modulated skew-upwiid
discretization schieme has been developed and implemented to reduce the
numerical diffusion observed in simulations of flow inclined to grid lines. The
scheme also eliminates temperature over/undershoots that occur when
simulations are performed with other skew-upwind differencing schemes.

Volume | (Equations and Numerics) of this report describes in detall the basic equations,
formulations, solution procedures, and models for auxillary phenomena. Volume Il (User's
fuide and Manual) contains the input instruction, sample problems, flow charts, and

description of available options and boundary conditions.
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The COMMIX (Component Midng) codes are designed for analyzing heat transfer and
fluid flow. The COMMIX-1C computer program-—an extendeu version of previous COMMIX
codes—1is designed 'o analyze steady-state/transient, single-phase, three-dimensional flow
with heat transfer in a reactor component/multicomponent system

The four major improvements that have been implemented in previous COMMIX codes
(including COMMIX-1B) to develop COMMIX-1C are

¢ New finite-volume formulation for the mass, momentum, and energy equations
to extend application to subsonic compressible flows. The new momentum
formulation employs the concept of a volume-averaged velocity. It makes the
numerical calculation more robust than in previous COMMIX versions. It also
makes the location of pressure change coincide with that of density change for
one-dimensional flows. In addition, the new discretized momentum equations
also satisly the one-dimensional Bernoulli equation,

¢ Addition of a new flow-modulated skew-upwind discretization scheme in the
energy equation to reduce numerical diffusion. This new scheme s con-
sidered better than the previous volume-flow-weighted skew-upwind
dilference scheme tn COMMIX- 1B because it not only reduces numerical
diffusion but also has a theoretical basis for not producing overshoots and
undershoots that are physically unrealistic

¢ Addition of two matrix solvers, the Yale Sparse Matrix Package and the
preconditioned conjugate gradient method, for the solution of discretized
equations. These two new matrix solvers, plus ‘he existing solver using the
successive overrelaxation method, greatly enhance the flexibility and efficiency
of COMMIX-1C In dealing with various engineering problems.

* An improved k-¢ two-equation turbulence model that is more robust and
better validated than that in previous COMMIX codes,

In addition to these major improvements, there are numerous minor modifications that
significantly improve the overall operation.

One of the major unique features of COMMIX s Its porous-medium formulation, which
has been rigorously derived through local volume averaging. In the new formulation, we use
velume porosity, directional surface porosity (directional because surface porosity is an
anisotropic vector quantity), distributed resistance, and distributed heat source or sink.
The concept of adding the parameter ¢f directional surface porosity is relatively new. In
the conventional porous-medium formulation, only the volume porosity, distributed
resistance, and distributed heat source are used. Volume porosity 18 the ratio vl the volume
occupied by fluld in a control volume to the total control volume. Suriace porosily is
similarly defined as the ratio of fluid flow area through a control surface to the total control
surface area. The porous-medium formulation has the capability of modeling both the
anisotropic flow domain and trregular geometry.






* k-¢ two-equation turbulence model,

In Volume II (User's Guide and Manual), we provide flow charts, descriplions of
subroutines, geometry modeling, initialization procedures, input descriptions, etc. Two
sample problems are also included so that readers who plan to use COMMIX-1C can
become familiar with the input/output structures of the code.

1__Introduction !

COMMIX (for Component Mixing) is a computer code for heat transfer and fluid Now |
analysis. Since the development of COMMIX-1 in 1976, many features have been added and
refllned to augment the code's capablity and applicability. Consequently, COMMIX has
become a very general-purpose co 1p ter code with a very wide iange of applications,
Although developed for nuclear reactor appications, with no or minimal modifications
COMMIX can be used to analyze varfous processes in engineering systems.

Many industries and organizations In' “lved In the design or analysis of nuclear reactors
are already using COMMLX. However, due to the code's generality of formulation and its
wide range of applications, people from other disciplines have also found COMMIX a very
useful tool. We therefore expect the number of COMMIX users to increase in the future,
Preapective users of COMMIX can benefit from a comprehensive description of the code.
The purpose of the present report Is to meet this need.

In describing COMMIX-1C, we have two distinct aims, One 18 to convey to the reader
the capabllities of COMMIX, the equations thut are solved, and how they are solved; that is
the subject of this volume (Volume || Equations and Numerics!. The second a:m 1s to
present a step-by-step procedure on the use of COMMIX, To achleve this, we must
describe the procedure in suflicient detall that a reader has little or no difficulty in
beginning to use COMMIX. This complex task is the subject of the second volume (Volume
II: User's Guide and Manual).

This volume (1) describes the basic equations, formulations of discretization equations,
auxiliary models, solution procedures, etc. Volume 1l describes all the informztion needed
by the user, e.g., Input description, flow chart, sample problems, and user options.

1.1 Overview of COMMIX-1C

The COMMIX-1C code 1s a generalized computer code for heat transfer and fluid flow
analysis. Although designed specifically for reactor component/multicomponent applica:
tions, it has bcen developed in a way that makes it applicable to many other complex
engineering system. Its capability includes steady-state/transient, three-dimensional, and
single-phase analysis of nuclear reactor systems under normal and off-normal operating
conditions.

In general, a computer code developed for numerical simulation of an engineering
process can be classified as either a system code or a component code.
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Major Features of COMMIX-1C

Porous-M i Formulatien
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1.2.3 Three Matrix Solvers
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1.2.4 Flow-Modulated Skew-Upwind Discretization (FMSUD! Scheme

in engineering apphications, Irequently the local velocily is not paralel to the grid
lines. This may Introduce the so-called numerical diffusion, which is nonphysical and thus
reduces the accuracy of the numerical results. In COMMIX-1C, a flow-modulated skew
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In quasicontir uurn domain4%

) apy = 9), Alyypve)  a(y,pwe)
5 (Yvp0) + ine ~ T -
Unsteady Convection

A(v.r.%f) A(Yﬂ.%) A(v.r.g)
- % + + %S, (2.1b)
AX Ay Az .
Diffusion

Here, u, v, and w are the ve' oitles In the x, y, aud z directions, respectively; ¥ is the
volume porosity (fract'.a of the volume occupled by the fluid) and yx, ¥y, and ¥, are the
directional surfr_¢ porosities (fraction of the surface area that is unobstructed to fluid flow)
in the x, y, «ad z directions, respectively. The convective and diffusive terms A(g)/Ax; in
Eq. 2 1b are defined as

Alg) _Olx +ax,/2) - o(x, - Ax,/2)
Ax, Ax, |

(2.2)

1 uch x; stands for the x, y, or z coordinate. The diffusion coefficient I'y and * .e source
term S are specific to euch meaning of 4. The sources for all conservation equations are
given in Tal.es 1 and 2.

The conservation equations in the cylindrical coordinate system also iave \he same
generai form (Eq. 2.1) when we place the centri ugal and Corfolis force te. = . (n the source
term 8. We can, U erefore, arys  all formulations for the Zartesian coordinai s to
cylindrical coordin tes with the simple transformaticns shown in Table 3,

Equation 2..b can be considered very general, because it reduces to the conservation
equation for a continuum (Eq. 2.1a) when we make volume porosities and dir cuonal
surface porosities = 1 (yy = yx =y = ¥z = 1.0), distributed resistances Ry = Ry = R; = 0 (or
Ry = Rg = Ry = 0 In a cylindrical coordinate system), and heat source Q,, = 0.

For turbulent flow, all quantities in Eq, 2.1 are considered time-averaged values, and
the diffusion coefficient I Is interpretea as the effective (laminar and turbulent) diffusion
coefliclent, i.e.,

Fo ® Ty taminar * Fo.urbutent (2.3)

We can also express the effective diffusion coefficient in terms of the corresponding
turbulent Prandtl numbe, lLe,,

Ty ® Biampay + Z0SIDL (2.4)
¢

Here, o4 is the turbulent F.andtl number based on the diffusivity of variable ¢.
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Equation

Vari

Contnuity

Momentum
(1)

(1)
(1)

Energy Scalar

Balance of the viscous diffusion terms
Distributed resistances due to solid
controi volume

Rate of heal liberated [rom

Rate of internal heat gene

Dissipation function

Table 2. Source

Diflusion

Coellicient
Ejquation Variable (¢) Direction

(Ie)

Continuity !

Momentum
(1)

(i1)
(i)

Energy Scalar

Centrilugal force tern

ikl

Coriolis lorce tem

il

Balance of the viscous d

Distributed resistances di
cnntrol volume

Rate ¢! heal Uberated [rom soli
Rate of ‘nternal heat generation
Dissipation function
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W v,
lhe transport equations of turbulence parameters k and ¢ for comg iion ac tne
urbulent diffusion coellicient also have the same general form as Eq. 2.1; however, {o;
clarity ol prescntation, they are included in Sec. 6
-
3 Control Volume
3.1 Construction of a Cumputational Cell
he computational cells around a grid point can be defined in a number of ways. In

OMMIX-1C, the computational cell is delined by the locations of cell volume faces, ar

grid point is placed In the geometrical center of each cell volume. Cell sizes can be

rY {

nonuniform. This type of construction is shown in Fig. 1. The convention used in

\
COMMIX-1C for delining the nelghboring cells and cell faces is given in Table 4

3.2 Control Volume for Field Variables

in COMMIX, we use the staggered grid system, in which all dependent fleld variables
t
L ]

\pressure, temperature, density, enthalpy, turbulent kinetic energy, physical properties
{ 4 i \

etc.) are caleuiated at a cell center and all flow variables (velocity components) are

calculated at the surfaces of a cell

a lield variable, we consider the control volume to be as shown in Fig. 2. It is
constructed around a grid point 0, wh has grid points 1 (I-1), and 2 (i+1) as {ts west and
east neighbors; grid point 3 1) and 4 (j+1) as its bottom and top neighbors; and grid

points 5 (k-1) and 6 (k+1) as its south and north neighbors. We integrate each term of the

ey

nservation equation, step by step, over the control volume to derive the finite-volume
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Table 4. Convention used (n COMMIX~1C to define
neighboring-cell control volumes

Subscript X y z X y z
0 TR k
1 1. J.  k -1/2 j, k
2 1+1, J, k +1/2, §. k
3 L 3=, k i, J=1/2, k
4 1, j+1, k 1, J*1/2  k
5 Rl k-1 1 Js k-1/2
6 b k+1 | J. k+1/2
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3.3 Control Volume for Flow Variables

Although most dependent varfables are calculated for a grid point, the velocity
components u, v, and w are exceptions. They are calculated for displaced or “staggered”
locations, not at the grid point. The displaced locations of the velseity components are
such that they are placed on the faces of a control volume, Thus, the ~direction velocity w
is calculated at the faces normal to the k direction.

Figure 3 shows the locations of u and w by short arrows on a two-dimensional grid; the
three-dtmensional counterpart can be easily imagined. With respect to a grid point, the u
location is displaced only in the i direction, the w location only in the k direction, and so
on. The location for w thus lies in the k direction link, joining two adjacent grid points. It
is the pressure difference between these grid points that will be used to drive the velocity
w located between them. This Is the main consequence of the staggered grid.

A direct consequence of the staggered grid is that the control volumes to be used for
the conservation of momentuin must also be staggered. The control volumes shown In
Figs. 1 and 2 will nc . be veferred to as the main control volumes. The control volumes for
momentum will be staggered in the direction of the momenrtum such that the faces normal
to that direction pass through the grid poln... (see Fig. 4). Thus, the pressures at these grid
points can be directly used for calculating the pressure force on the momentum control
volume. Table § shows the convention used for the subscripts, and Fig. 4 shc s the
momentum control velumes for the x and z directions.
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Table 5. Convention used (n COMMIX-1C to define neighburing
control volumes for z-direction momentum equations

Momentum Control Momentum Control
~Yolume Centers -
Subscript x y z x y z
0 1, J. k+1/2
1 =1, . k+1/2 =1/2, |§. k+1/2
2 i+1, J. k+1/2 +1/2, |, k+1/2
3 {, -1, k+l/2 i, J=1/2, Kk+1/2
4 1, J+1 k+1/2 i, J¢#1/2  k+1/2
5 | J k-1/2 i ], k
6 | i k+3/2 { 5 k+1

4 Finite-Volume Formulation

Although the finite-volume formuiation is applied to a grid in both the Cartesian and
cylindrical coordinate systems, only a Carteslan coordinate grid system s used here to
demonstrate the formulation of the finite-volume equations. Similarly, we have used only
the z-momentum eguation to {llustrate the formulation of the momentum equation.
Extension of the derivation to the x and y momentum equations s straightiorward. It
should be noted that the main control volume is applicable to both the energy and the
continuity equations, and the momentum control volume is applicable to the momentum
equations.

The finite-volume equations are derived by integrating the governing equation (Eq. 2.1)
over a control volume, We Integrate each term separately.

4.1 Convection Term

4.1.1 Main Control Volume

The integration of the convection terms over the control volume gives

aly,pue) Aly,pve) Ay,pwe)
| + v

dxdyd
o e xdydz

- *’2(°): : Vx(‘); + F,.(o)‘: ’ Fa("); + Fe(‘)i J Fs(°); : (4.1)
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Table 6. Convective fluxes for main control volume
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4.1.2 Mot amium Control Volume

Figure 6 shows the staggered mesh for the 2z~

momentum control volume. The various
mass flows vthown in the figure are as foliows

Ja Ay f (4.8a
(4.8Db)

\ AR
a8z ‘a2 2 12,00




Fg. 6. Convective fluxes and average velocities Jor z-momentum
control volume

Fes = (P): A Wy (4.8d)
Fao = (Plgg A We (4.8¢)
Fo = (PloAn v, (4.80)
Fea = (0); Axa g (4.84)
Fror = (pg Asei Ve (4.8h)
Faar = (P)ag Axea Uiz (4.81)

where the velocities w and u are defined at the cell faces as shown in Fig. 3. The mass {low
rates on the north and south faces of the staggered mesh (F,s and F) are not directly
avallable. In COMMIX-1C, it Is assuined that
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FIS . (F:o + FID)/2 (4.8)
Fm = (Fpy + Pl&)/z ' (4. 8k)

In previous COMMIX versions, the velocity, w, is assumed to be transported by the
convective fluxes. In COMMIX-1C, however, we assume that the transported quantity is a
momentum per unil mass assoclated with a certain volume Instead of the factal velocity w.
Referring to Fig. 6, the z momentum (M,) associated with the lower hall of the staggered
mesh s

M)y, 2 = Yopwilxdydz | (4.9a)

b

If & volume-averaged velocity W, i defined as

Vi ve st
Po’zﬂwoo - (Mz)v,/z ; W
then
W = 2MM, v QIVQIJY'QWdXdydz (4.9¢)
0o - v ' . :
VoPo Po Vo
or
2 Y.,pw)dxdyidz
We -fu.uUn( ) ] ) 4.94d|)

g P Vs

The int. gra! inside the bracket of Eq. 4.9d Is the mass flow rate through any cross-
sectional area Az inside the volume Vp/2. In COMMIX-1C, this m~ss flow rate is assumed to
be equal to Fzo and Eq. 4.9d becomes

. Az, F.
W o dealedl {4.9¢)
a Po Vo

W, ~“presents the momentum per unit mass of the fluid in the volume Vo/2 and is the
quantity assumed to be transported. W,, has the dimension of veloctty and can also he
considered as a volume-averaged velocity delined by Eq. 4 9¢.

Similarly, a volume-averaged velocity can be defined for the upper hall of the ¢laggered
mesh in Fig. 6

Y .
~29-p.,w(,a = (My)y, )3 = jwy,pwdxdydz (4.90
aud
" Azy F,
W s N0 (4.9¢)
- Pa Ve ‘

The volume-averaged velocities (w*) assoclated with their respective volumes are also
shown in Fig, € and are delined by the following equations:
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The third conv ~tive term (pwv) in Eq. 2.1b can be wril

f
adding all three convective terms and by using Eqgs. 4.8 and 4,10 e obtaln the finite

‘ 1
volume expression for z momentum control volume 1% the {Vilowing form Y
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L ¥ ax o\
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where the coeflicients are defined by the {ollowing equations &
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convection. The varous convective fluxes for the z-momen.um control volume are listed in
lable 7
Stmilar finite-volume expressions can be derived for the x and y momentum contro
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Table 7. Convective fluxes for z-momentum control volume

F, = %(F,, +Fp) = -;-[(p):Azo W + (p)) Ay W
Fuo = 5(Fus + ) = 2[(0)8 Azy wo + (9)% Az wo
Fio = (P (A2 W), = (p)g AZo W,

Fu = (P ik, (A2 W)y = ()} A2, W,

Faa = (P)iiinni (A2 W), = (P)as AZy W,

Fas = (0)) 1h01 (AZ W) = (0)hy Agg W

Fuo = (0)loien (AZ W), L o = (p)h AZey W,

Fes = (o) (Az W), . = (o) Azy W,

Fio = (P)hea (A2 W)y 05 = (0)as AZe We

Feg = (p)l, (AX 1), = (p)s A, u,

Fa = (o) (Ax u)_,,, = (p)y AX, u,
Fea = (Pinier (A% 2),ays = (0)ag Ay gy

Fuer = (Pl n (AX 1), o = (Ple' Axg, U,

Fya = (P)) (AY ¥),,.0 = (0); Ay vs

Fys = (p)] ' (AY V), ;0 = (P) AYs Vs

Fea = (P)f.ul..n:n("}' V)M/a.m " (P):. AYe4 Vs

Fyes = (P)f:,.:ﬂ(AY )ik =(p)s AYasVes
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a¥d. - a¥0, -aT0, -8 at ¢, -8 8l o, 14
Here again, we have employed the general variable ¢ hich can represent cither u, v, or W
because we are dealing with momentum control volur Also, we have introduced a curly
bar over the dependent variable ¢. As delined In Eq. 4 $ represents a combination of old

and new time values

o demonstrate that the pressure drop occurs al the same location where the density
change occurs, we consider a steady-stale one dimensional flow with constant liow area

Assuming that convection is dominating, Eq. 2.1b for the z direction becomes

ALY, PWW '} (4 18
! S P R
¥

Integrating over the z momentum controi voiume (Fig. 6) and assuming that w 13 posiuve

we obtain from Eq. 4.11a

' : 4.1¢
F..w F. W ' P, ) Az
it L) |
where Az is the [low area | tht direction Substit N u(s 1.8 and 4.10 into | ] 4.10

For one-dimensional flow with constant {low area
Az AZg AZq Az
F, D, Az, W pAzW
i Pe Az, W, pAzW
Fop = Pg AZg W, Az W
and Eq. 4.17 reduces to
\P¥) | = N kg " ¢ (4.18
(0 »‘
which indicates that the pressure drop occurs at the same location where the density
change occurs. In a similar manner, it can be demon trated that the same relation holds U

W is negative

4.2 Diffusion Term

4.2.1 Main Contro! Volume

The {ntegration of diffusion terms over a main controi v nume (Fig, 7) glves
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(Y-ro 3 J (7 Ty g%) A(‘hro g’)
- K e s dxdydez

- Dﬂ(‘? e 60) T Dl(éo l) * D‘ ‘o) D»(‘o "3) * Dg( . 60) - Ds{éo - 65).

- DI‘I + Daé’z * Daé:\ + D‘é. + Ubbb + Deés
~(Dy + Dy + Dy + Dy + Dy + D) b . (4.19)

Here, D (= effective diffusivity x flow area/distance between the centers of two control
volumes) 18 the diffusion strength across the surface of the control volume, ¢ (Bq. 4.7),
represents the sum of the contributions of old and new time values, and Iy is the effective
diffusivity for the variable ¢.

To determine the value of D at a surface, we assume the diffusivity, I, varies
continuously from one main control volume to the next and use the following average
diffusion strength, e.g.,

Dy = (AX),,.,s(To + I,)/ (A%, + AX,) (4.20)
The values of diffusion strength for main control volume are listed in Table 8,

4.2.2 Momentum Control Volume

The integration of the diffusion terms over z-momentum control volume (Fig. 8) also
results in an expression simiiar to Eq. 4.19:

feoad) dong) e,
Y

‘Elél + 262 + -D_aéa + 545¢ + ﬁaé’s +556,,
"(5|+ﬁ2*ﬁ;\*‘ﬁ‘ "'65‘*.55)60- (421)

The only difference is that we now use the momentum control volume diffusion strength D,
instead of the main control volume diffusion strength D, e g.,

D -:.-[(A: ﬁ(u)k ]\AJ (4.22)

The values of the diffusion strengths D for the z momentum control volume are listed in
Tauie 9.
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4.3 Unsteady Term

4.3.1 Main Control
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n
0 Az [(p)oj (Az + &2 )
A A A 0 0 6
¢ 'o(").iA’:O* LT P, (4.25b)

In Eq. 4.25b, we have again employed the closure relations (Eq. 4.10) described (n Section
4.1.2

Note that Eq. 4.25b has two polential limitations: (a) if there is a large density change
in the control volume, the approximation may be less accurate; (b) if the volume porosity is
substantially different than the surface porosity in the momentum control volume, this may
also lead to less accuracy. An alternative formuiation of the unsteady term as shov - in Eq.
4.23 s provided as a user's option (n which both volume-welighted average porosity and
volume-weighted average density are used.

4.4 Source Term

The finite-difference representation of the source term $ in Lq. 2.1 is expressed as
So = Seg* S 00 . (4.26)

where Scg. Spg. and oo are assumed o prevail over the control volume surrounding point 0.
This “linearization” of the source term Is an effective device for stability and convergence.
The exact expressions for . source term coellicients Seq and Spe depend on the actual
form of the source 8¢ " ae coellicient Spy Is always less than or equal to zero; otherwise
instabiliiy, divergence, or physically unrealistic solutlons would result.
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;!”('L‘\Y;l‘]&h al the source Lterm over

where

Vs 18 the characteristic voh

later why we have employed Eq
z momentum control volume

4.5 Genera! Finite-Voiume Equation for Main Control Volume

Having looked at each term ol
terms ol Eqs. 4.6, 4,19

{inite-volume equation

We now rearrange Eq

equation, noting that

Alter some
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Table 10. General finite-volume equation for main contrel volume
(Egs. 4.33 and 4.34) and its coefficients
B . o \ [ v " L
a,0 QA +eevet Bu0s] ¢+ Dl + DY b3
kl
-.n‘ 10} D d 0 }‘ D
R ~
d 4 “’i\ + L) kl‘ ) }‘ '1)‘
t .
a 10 F, D a, 10,~Fal + D,
o ) 1 0, ! ¢, 4,1 0,1 o,
bl |- a)lae Aob, + A40y + B 0, + Agdy + Agd,
v ¥
b2 | = a)llO,~F;|+ 10 Fgl) + (D # vva + Dy pe Yo ¢
"
2 ) ©
b3 ' + 8 |
Al
Al
] ‘\
B y
agll) = 22 4 (|0, ~1 +10,Fg|) + (D, + D s+ Dg)= 5,4V
At g ‘ ’
L4
(1st form)
« < L ] M '
a,ld ala \ a, v “'N \ | L)L E Fg +Fq~F¢ +1 i
A1
{(2nd form
Continuilty Equation in the Discretized Form
PoV !
ali0,~F,|+ + 10, Fal )= QIO F\| + soee 4 10, ~F;
Al )
| = a){iOF +10,=Ful) + (2= a){]O,~F vren 10, Fy { (4.36
Please note that the f{irst density term in the continuity equation (Eq. 4.36) ls at the
new time, while the second density term (s at the old time, The subtraction of Eq. 4.36
{
from apl(l), after some algebra, results in the second form, ap(2)
| 1 \ t e ’ » 1 4 " .
PRV, anll) ontinuity Equation 4.36
al{ D ¥ S \\\‘. ¢ IOF. | « + 10, ~F,
&)
¥
a0, Il 4 10,~F, | = a)(10,~I . 0.Fgl|) + =
.\l'
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Table 11. Extreme semi implicit (a = 0) finite-volume
equation for main control volume
{Egs. 4.33 and 4.34) and s coefficients
als, = (b1%+ b2y + b3})

b1} = (.f.:‘ +a3e; +ajes +ajel + ater + l:‘:)
bz; = -[('O‘—F‘I'O' e b p‘F‘DQ (Dl L ILLE 4 Do)" SNVO]
n.n
b3} = (RZ‘:"S“J Vo
(4]

ad(l) = 2’3’1

(1st form)
n
ﬂz‘z) = {eAp{ + S"}vo + (Fl - Fz + Fs" F‘ +* Fb" Fo)

(2nd form)

.bie 12. Fully tmplicit (a = 1) finite-volume equation for main
control volume (Eqs. 4.33 and 4.34) and its coefficients
ﬂ(.)‘o = {a:‘. st 8:09"‘ ba:))

al = (0.F|+D)) ay = (10.-Fy|+ D,)
aj = (I0.F5| + D) ag = (lo.~Ff + D)
a = (0. Fg| + Dg) ag = (|0.~Fg| + Dg)

n,n
b3g = LO_*SQ) Vo
At A
aj(l) = 296-\1-,9-+[(]0.—F,|+....+|0.Fe|)+(D, + Dy +1s0+ D)= S0 Vo)
(1st form)
n
83(2): (a:i'a;-#u..n;).g[%%-s”]vo

/
(2nd form)
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- o Rl D) e Ry« D+ | B a5, v

+ (1= @)[(j0.F,| = j0.~F\) 4 ++1 4 (J0.- Fo| - 0. Fy)]

n
= a(lf*n;+|§+a:~l:+a:)*[§9{-uS,,)Vb

+(l-—n)(Fl—F’¢F,-F.*F.-F.) (4.37)

because

j0.F)| - 0.-F\| = F,

[0.-Fy| = j0.Fy| = - F; .

Finally, it should be noted that the general variable ¢ for the main control volume can
represent any transported variable such as enthalpy, turbulence kinetic energy, or rate of
dissipation of the turbulence kinetic energy.

4.6 General Finite-Volume Equation for z-Momentum Control Volume

We can derive the finite-volume equation for z momentum by following the same
procedure &s for the finite-volume equation of the main control volume, with one
exception. We see that the pressure gradient termn appears in the momentum equation, but
the pressure field is neither known beforehand nor directly obtainable frem some sort of
‘conservation equation for pressure.” Therefore, we consider pressure as unknown and
determine it indirectly from the constraint that the velocity field satisfies the continuity
equation. For this reason, we disr lay the pressure-containing term in the finite-volume
form of the momentum equati.n separately and do not include it in the source term.

From these considerations, the discretized equation for the z-momentum control
volume shown In Fig. 6 is written as

AgWo =al W, +aywWo+aywy+ayw,+ay vg+agwg+b) -d,(P-P) (4.38)

where
d, = vo/[';'(dzo*&a).i- (4.39)
Jd

and V, is the characteristic volume for the momentum control volume defined by Eq. 4.29
The reason that Eq. 4.39 is employed here i1s that we want the discretized momentum
equation to satisfy the one-dimensional steady-state Bernoulll's equation (with constant
density and neglecting gravity effect), which can be written as (Fig 6)

p(W3 - W3)/2 = ~(Py - By), (4.40)
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Equation 4.47 is identicai to Eq. 4.29. Thus, the characteristic volume V, employed in E
4.39 is the proper volume for integration over the z-momentum control volume, and
resulting finite-volume equation satisfies the one-dimensional Bernoulll equation.

The coeflicients a;-8; andb} = b1} + b2} + b3} are assembled from Egs. 4.12, 4.21,
4.25, and 4.28. The resulting equation has the same form as Eq. 4 33, except that the
contributions of the source that enter a; and b} do not contain the pressure gradient. The
effect of the pressure gradient Is expressed by the lait term in Eq. 4.38. The coefficients
for the z-momentum control volume are presented in Tables 13-15. We have again
replaced the velocity w by the general variable ¢ In Tables 13-15. This s only to indicate
that the x- and y-momentum equations can be derived tn a sim'lar manner as the z-
momentum equation. In Tables 13-15, we have provided two dilerent forms of the coel-
ficient &}. The first form, a}(1), is obtained from the rmomentum equation only and is
relerred to as the conservative form because conservation of momentum is satisfied over
the control volume. The second form, a}(2), s derived by employing both the momentum
and the continuity equations even though the latter may not be satisfied during an iteration.
Experience Indicates that using the continuity equation often h=lps to speed up the conver-
gence during fterations. The second form of the coeflictent is referred to as the trunsport
form of the momentum equation and is implemented in COMMIX-1C. To derive the
transport form of the z-momentum equation, we begin with the discretized continuity
equation for cell O and cell 6, which can be written as

(Po - 08)Vo/At +Foo- Fas +Fyg~Fyy +Fy ~Fyy = 0 (4.48)
tor cell O, and
(Pe - PS)VG/A‘ + Fyg = Fyo *+ Fyga = Fug) + Fyoq -~ Fygy = 0 (4.49)

for cell 6. The transport form of the z-tmomentum equation is obtained as follows:

transport conservative form  * W _

form of z- = of z-momentum - —X xEq. 448 - —2£xEq. 4.49. (4.50)
momentum cquation B 2

equation

It can be observed that Eqs. 4.48 and 4 49 contain only the time-dependent terms and the
convective fluxes. The diffusion terms and the source terms remain the same (n the
transport form as compared to conservative form of the z-momentum equation. Thus, all
the coefficients are the same in the conservative and tra:.sport forms of the z-momentum
equation, with the exception of the coeflicient a}. Equation 4.50 can be reduced to

ab(2) = ad(l) - -“-’292 x Eq. 4.48 - !"-wa Eq. 4.49. (4.51)

Alter some manipulation and rearrangement, the final forms of a'(2) (urn out to be
identical to those given in Tables 13-15.
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Table 14. Coefficients of extreme semi-tmplicit (@ = 0) finite-volume

equation for z-momentum control volumne
006, = b1} + b2} + b3}

bly = afel +aje; + -+ afeq

b2} g-[ (lo p“|._°(_92ﬂ.£‘.".. '0 -Fy |__i_;s.ﬁ’_‘.}

M

-f'Of | \p) '0 F I.—'EZ.—HJ‘ B -S”vo]‘a‘

b3} = Azo[(p)e ]"(Azo + 82)00 / 26t + S Vg
ad(l) = Azo(p)g (A2, + Azg)/ 24t

e 58]
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Table 15. Coefficients of fully tmplicit (a = 1) finite-volume
equation for z-momentum contro! volume

80, = (‘.n‘a 4 8l0, + b3’)

ot = WA (0 8 1aa, /0¥, +10Fye 820 /9uiVer) B
aj = @%ﬁ(|o.-r‘,,|uo /P3Va + [0.-F 3| A2 / pgaVea) + D,
a3 = S"—):!,‘,—“\-’-i(lo.x»',..,]Az‘,/pav, +10.Fy 43| Azg / pgs Vea | + Dy

$ = M(}o.-r,.wo/p‘v. +10.~Fyes| 26 / PosVes ) + B
a} = 0.Fy| Zolblo Az o(p) Azs oy
8 = [0.-Fq| ZeiPlon A6 P’ A% B,

b3} = Azo[(o)ﬁj (Azo + Azg)8} /201 + 8,7,

ad(l)= Azg(p)g (A2, + Azg)/ 24t
, (ple Azotz { 4
p,Vo e (|o Fie| + -p Fraa| + | ~Feo| + 510Fy| + .2_|0._Fy83')
(9) AzyAz,
PoVo

S JENE N )

ad(2) = M[(g%)ao +[9-3-)A251

P :
(|o ~Fig|+ |o‘!-‘,,.+ 5]0.-5“|+%|0.F,‘]+%’o.-r',3])

24t

6 -
(p)g AzoAZ
*"J‘Tev%‘l(lo F:ol*"") Fiaal + 3 'OFxml* IO ul*'lo w|*on]
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5 Pressure Equation

The pressure appearing in the momentum eguation (Eq. 4.38) {8 unknown and must be
determined from the conservation-ol-mass equation. In this section, we present the
derivation of the pressure equation.

The conservation-of-mass equation for the cell around point O (Fig. 9) can be derived
from Eq. 4.32 by substituting ¢ = 1, diffusion strength D = 0, and $ = 0.

Vo (%?)‘ (Agu) 3/2(9):) +(A, U)M/:(p)g
- (Ay¥), 00 + (A Y), o 00N
- (A W)y ,,,(P)g + (A, w)t.|/z<"): =8 . (5.1)

Here, Vo = wAxAyAz is the fluid volume of the main control volume, & is the mass residual
of the continulity equation, <p> is the upwind density, u, v, and w are the normal velocities
at the surface of the control volume, and A is the flow area. We define the flow area as the

product of surface area and surface porosity.

When mass is precisely conserved, the right side of Eq. 5.1 vanishes, f.e., § = 0,
However, because Eq. 5.1 is solved by an iterative-solution procedure, the mass residual §,
in general, may not be zero.

To convert the indirect specification of pressure in the continuity equation to an
explicit form, we write the momentum Eq. 4.38 as

¢ = ¢-d* A(8P) (¢ = u,v,w), (5.2a)
where

8P - Pn'l - P"‘ (szb)

6
aY afeo, + bl + b2¢ + b3} - d* AP"

6 n =izl . i (52C)
ag

The reason that 8P (instead of P) is used in Eq. 5.2a is to speed the convergence. This is
particularly helpful when the change in pressure is small compared to the absolute pressure
of the system.

For example, the z-direction velocity w at the north surface of the main control volume
is expressed as

wg = We - d¥ (8P - 8P,) . (5.3a)

where
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\Z, Az,
V V

Here, the subscripts 1 6 for velocities refer to the surfaces of the main control volume

Substitution of Eqs. 5.3 and 5.4 inte Eq. 5.1 yields

¢ {
a:, 8F ‘\_(‘, 8P, - b; 0
i
§ The coelliclents of Eq. 5.7 are listed in Table 16. These coelficients form a s i
matrix
Equation 5.7 is the required pressure equation. It can be solved by ng any one ol the
matrix solvers described in Sec. 10.4
6 Turbulence Modeling
6.1 Background of Turbulence Modeling
Ihe subject of turbulence has attracted cour researchers for more than 80 )
895, Reynolds proposed that a fluid particle in turbulent flow is in randomly unstea
motion. He averaged the Navier-Stokes equation over a nat is long re

- it L & 4 it " oo N vl A , 5 11 r } ) 4 1 y 1 "IPdar ' T »
the turbulent time scale and derived the equations that describe the mean turbuler
¢ ! ™i b 3 1 {rm » : | » » » v 3 . i N ' | 3 » »
motion. In spite of the long time span and large research effort since then, the problen
v ) T » r ’ a Y | 2 ) » » ' 3 Ve }
turbulence has not been resolved completely, lor the reasons discusse DEIWOW
1 ’ v » P | frm 1 1 ) !
['he ippearance ol the time d\t‘fugf'd correlations, such as put i ! Y
o o fivere riee the « ~allesd ure” nroblam (maore 110kt o M ¥ -
juation BIVES TSC 10 iNE SO~Calicd Ciosure proopieim (more unknowns tnan ation
L7 . 13 ITS1 8 ’ i 1 ' e "y : > N . 4 3! | r by 4 - 1
wvallable for the solution of unknowns), Here, p denotes fluld density, u' and
'y P st iv o1 it —— mnente (s t) rrliy in Alrant r — el the
LIUCT H..‘g‘\t..k.q COIMPONCHLS 1IN the Cocrainaie direClions x andc y, anc
¢ Ao te \ > f £ walati - kn g 12 oy
% denotes the time averaging. The correlations u'v' are known as Reynolds s
Anothe~ dilliculty is that the constituents of the turbulence phenomenon n ,
s :
a3 place in scales ol mnrtion that are of very smalil orders of magnitude in size, whi W
Low domain may extend over meters or ever Important detalls turt
ire small-scale in character (although it Is no but the time eraged
) 7 * r 3 eyl v ' » "
juences that are ol interest In practical applicatios AS a resul { , |
¢ red res ¢ SN Q le moti 8 turbhulence wi re re | i l
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We must note here that the turbulent viscesity pur 18 a property of the local state of
turbulence and not a physical property of the fluid. The turbulence model in this category
is therefore generally referred to as a viscosity model.

u? 4y _ﬁy (6.1)

%p(u 45'—-*\”

The very early and still popular model among these viscosity models is the Prandtl's
mixing length hypothesis. 87 Prandtl's mixing length model is the simplest turbulence
model since it does not require solution of any transport equation of turbulence parameters,
In his mixing length hypothesis, Prandtl assumes that

ol

ay

where ¢ is the mixing length that represents the length scale of the turbulent flow. It is
known that ¢ can have different forms for dillerent type of flows. For example, in the
boundary layer of a single wall,

Kigr =P (6.2)

¢ = Ky, (6.3)

where K is the von Kannan constant (0.42) and y is the distance from the wall, For some
free turbulent flows, such as jets or mixing layers,

{ = ch, (6.4)

where 8 is the jet half-width, and ¢ is an empirical constant. Even though the mixing
length hypothesis is easy to use and gave falrly good results for some simple flows, it has the
following disadvantages:

¢ It cannot predict successiuily more complicated flows in practical applica-
tions, such as recirculating flows that occur frequently in engineering systems.

e It tmplies that the effective viscosity and the effective thermal conductivity
vanish where the velocity gradient Is zero. This is generally not true and can
lead to erroneocus results.

Finally, it should be noted that the mixing length hypothesis does not take into account the
eflects of convection and diffusion on turbulence, and we shall see that it is a special case of
the more general k-¢ two-equation turbulence model.

In 1945, Prandt] suggested a more general approach than the mixing-length hypo-
thesis. 58 His new approach is generally referred to as a one-equation turbulence model. In
this model, the turbulent viscosity is assumed to be a function of the square root of the
turbulence kinetic energy k:

Wee =LK' (6.5,
To determine the value of k, Prandtl suggested that a transport equation of k b~ solved,

thus taking into account the influence of neighboring regions on the local turbulence
energy. As shown in Eq. 6.5, the turbulent viscosity is related to the turbulent kinetic
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Finally, we have retained the constant diffusivity model In COMMIX-1C  Strictly
speaking, the constant diffusivity model is not a turbulence model. We find 1t useful
sometimes in performing scoping calculations since it does not require the solution of
additional transport equations.

6.2 Constant Tutoulent Diffusivity Model

This is a very simplified turbulence model in which the turbulent viscosity and the
turbulent conductivity are assumed to be constant. The value of turbulent viscosity Is a
user-prescribed single tnput constant,

It is preferable to prescribe values of turbulent viscosity and turbulent conductivity
obtained from experimental data. 1f the experimental information s not available, then
turbulent viscosity can be estimated with the following equation suggested by Sha and
Launder: 88

Mir = 0.007¢,pU e £ (6.6)
where

¢, =01 for Re .« » 2000,

o = 0.1(0.001Re - 1) for 1000 € Reyy, < 2000,
and

¢, =0 for Re . <1000, (6.7)
Here,

Umax = Max(u,v,w) and (6.8)

Remax = Max(Rey, Rey, Rey) | (6.9)
the mixing length scale

t=C,D,, (6.10)

the coefficient

Cp=0.4, (6.11)

and Dy, is the hydraulic diameter.

If information about turbulent conductivity Ay 18 not available and not prescribed, we
can approximate it with the following relation:

Awe™ Spbue
O
Cp Bur

v s (6.12)
0.8[1- exp(-6 x 10" RePr'”*)|
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We can see that Eq. 6.15 has a closure problem. Using the standard closure relations,
Eq. 6.15 reduces to

ok dak o0 lu dk 6.16
D....+pu,...-;.P\.*O.-pc+__j.[(.::£+m.m},_j], ( )
Here,
du,(du,  ou
o SM Tl & amnd 17
P u‘“'[&:t,(&x,+ax. ]} ean

is the source due to mean shear, and

o My O 9T
Gi poh n(ax, g)} (618)

is the source due to thermal buoyancy, where oy, is the turbulent Prandtl number for the
energy equation and has a recommended value of 0.9. The term containing ok in Eq. 6.16
represents the diffusion of k. ok is called the turbulent Prandtl number for k. Launder et
al 83 have recommended the value 1.0 for ok.

6.3.2 Transport Equation for ¢

The exact form of the transport equation for ¢ is obtained by taking the derivative of
Eq. 6.1 with respect to x;, and multiplying it by

du, du
ol 281 4 |, (6.19)
Y{"”‘J 3 ‘”‘\‘J
The resulting equation is discussed in detail by Daly and Harlow,6¢ = julic and Launder 62

nd Lirmley and Khajeh-Nourt,70 The only feasible approach toward devising an ¢ equation
is to apply both intuition and intelligent dimensional analysis. The ¢ equation contains
several empirical coefficients that requirc adjusting to account for different behaviors of
different shear flows. The equation proposed by Jones and Launder® and by Daly and
Harlow’° Is

o e € ¢*
P'a‘t" p Ujja'x'; - CI'E(Pk +Gy)- ngr

0| M L3
+$;{[ o +u“m)ax]} : (6.20)

Here, the source terms Pk and Ck have the same form as Eq. 6.17 and Eq. 6.18,
respectively; the second term on the right is the dissipation term; and the last term
represents diffusion. The variable g Is the turbulent Prandtl number for ¢; the
recommended value®® is 1.3. The coefficient of the production term C) Is normally chosen
by reference to near-wall turbulence, whereas the coefficient Cg is determined from the
decay of grid turbulence. The values of C) and Cp recommanded by Launder et al.7! are 1.44
and 1.92, respectively,
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6.3.3 k-t Two-Equation Turbulence Model

In the k-¢ two-equation turbulence model, we first solve the transport equation for
turbulence kinetic energy k (Eq. 6.16) and the dissipation rate of turbulence kinetic enegy
¢ (Eq. 6.20). After obtaining the values of k and ¢, we compute the turbulent viscosity -
using the relation

-
Mot ® (M'LJ . (6.21)

£

Here, Cp Is a constant having the recommended value 0.09. After computing turbulent
viscosity, we compute the thermal conductivity using the relation

Ay = b (6.22)

Oy

For turbulent flow, the diffusivity in the governing conservation squation (2.1) is
considered as a time-averaged value. Therefore, the viscosity u and thermal conductivity A
in the momentum and energy equations are replaced by the effective transport coefficients
of momentum and energy, respectively. Thus,

B o= Ueff = Hlam *+ Hiur (6.23)
and

A= Aeff = Alam * Atur. (6.24)

Here, the subscripts lar and tur stand for laminar (molecular) and turbulent properties,

In Sec. 6.1, we remarked that the Prandtl's mixing length hypothesis is a special case
of the k-¢ two-equation turbulence model. We shall now proceed to demonstrate this. For
steady-state, one-dimensional flow near a wall, the effects of convection and diffusion are
usually negligible: turbulence production is balanced by dissipation. Equation 6.16 reduces
to

‘au\ 2
lv‘tm('é;}] = pe. (6.25)

Multiplying Eq. 6.21 by Eq. 6.25,
2
u?_[i‘i) = Coptk?, (6.26)

Since

T = um%, (6.27)

Equation 6.26 can be written as



which expresses the result that the turbulent shear stress is directly proportional to the
@ turbulence kinetic energy in local equilibrium turbulence. This important relationship 1s
supported by experiments on flows near walls
From dimensional considerations, ®/ the dissipation rate ¢ can be expressed as
¢ Co K { (0.4%
Substituting Egqs. 6.21 and 6.29 t 6.25 and alter further rearrangement

] t ninat "’\_),,.v‘\..A [ 18. 6.28 and ¢ glve
1 { ot (6.31
hy
Equation 6.31 can be recognized as equivalen' | the Pi s mixing-length hypothesis
expressed by K. 0.4 F'hus, the mixing-length hypothesis can be deduced from the
transport equation for the turbulen kinetic energy by neglecting the contributions from
convection and dilfusior s application is limited to local equilibrium turbulent flows that
usually occur near walls. Consequently, as we shall see, the results of local equillbrium
turbulence model play an important role in the wall function development to be described
in Hec. 0.0
6.4 Boundary Conditions for Turbulent Transport Equations
ere are three types ol b laries 1) a line or surface (plane) of symmetry, (2) inlet
and outlet boundaries, and (3) a solid wall. The [irst two boundaries are discussed here
and a solid wall boundary is discussed in Sec. 6.5
6.4.1 Symmetry Boundary
he simplest t rv is the line or plai i symmetry; at symmetry line, the |
velocity is zero. The gradients of scalar i1 ¢s k and £ normal to the symmetry line are
QiSO 21
6.4.2 Inlet and Qutlet Boundaries
Al the tlet plane (iree t ! ry), the gr nt of turbulence gquantities is assumed t¢
13T o1 ™ e t the at 1 " é
v




de/dz = 0, (6.30)
where z represents flow direction at the outlet.

The Inlet plane requires special treatment, Both the Inlet turbulence kinetic energy
kin and the inlet dissipation rate gy, should be obtained from measurements if available. 1If
m_asurements are not avallable at the inlet plane, the following procedure may be used to
estimate ki, and ¢y, If the inlet velocity Is uniform and equal to uy,

Ky, = 0.001u? (6.31)

and
8 » Cokd® /4, (6.32)

where ¢, 1s @ length scale at the inlet. ¢y, is usually assumed to be equal to the smaller of
0.42 y or 0.1 &, where y denotes the distance to the nearest wall and & is the width of the
shear layer. If the prolile of the mean velocity at the inlet plane is known, then ki, can be
estimated from

ki = 383 [(%ﬂf . (ﬁ"&m)a}. (6.33)

where uj, is the mean veloeity component in the main flow (x) direction. The inlet
dissipation rate g, Is again estimated by using Eq. 6.32.

It should be noted that ki, and ey, are user-specified input parameters for COMMIX-
1C. If the user does not specily ki, and g,, COMMIX-1C assumes that the inlet k and ¢ are
negligibly small (k = 10-16 and ¢ = 10-10),

6.5 Wall Function Treatment

In the immediate vicinity of a solid wall, there is a large variation in the values of
turbuience properties. Therefore, to predict the correct vaiues of momentum flux, energy
flux, and the gradients of k and ¢, we apply a special treatment called the wall-function
treatment. In this procedure, we implicitl,; account for steep variation near a wall and avoid
the need for a fine mesh. This approach fits well with COMMIX since, in most engineering
applications, one rarely has the luxury of resolving the fine detalis in a boundary layer due
primarily to the high cost of computation in using a fine meskh system.

In the literature, there are several different treatments of wall function. 72 It appears
that at the present time, no single wall function treatment can claim superiority in both
generality and accuracy for a variety of turbulent flows. In view of this, we have developed
the wall-furction model in COMMIX-1C based on the following guidelines:

1. Simplicity.

2. Minimizing numeda~al d'deultles.



3. Wide range of applicability.

The first two gutdelines are straightforward. The third guideline will become clear later.

There are basically two approaches in treating the cells adjacent to the walls. The first
one is that both the k and ¢ are calculated algebraically for the cells next to the walls.
Therelore, transport equations for k and ¢ are not solved for wall-adjacent cells. The
second approach is to calculate € algebraically and solve the transport equation for k for
cells adjacent to walls, In COMMIX-1C, we have adopted the first approach, Le., both k and
¢ are solved algebraically, because of its simplicity (guideline 1).

There are also twe types of wall function models; a two-layer model and a three-layer
model. Again, we have choien the simpler two-layer wall function model and modified it
slightly to meet the gullelines described previously.

6.5.1 A Two-Layer Wall Function Mode!

In a general purpose code such as COMMIX, one may frequently have tu deal simul-
taneously with laminar and tvcbulent flows at dilferent locations of a system. Also, during a
transient simulation, Ciavnt flow regimes may occur at the same location but at different
times. Provisiin must be made in the code to handle these situations even though the
accuracy ol t'ie results may deteriorate in a certain range of the relevant parameters (such
as Reynolds number). Thus, in COMMIX-1C, we have made provision to calculate flows with
Reynolds nut 1bers ranging from very small (laminar) to very large (highly turbulent). This
is what we mean by a wide range of applicability in guideline 3.

Figures 10 and 11 show the two-layer wall function model used in COMMIX-IC, where
P is the node adjucen! to the wall, yp Is the distance from P to the wall, and y, is the
thickness of the viscous sublayer. The distance yp Is fixed when the user {inishes modeling
the geometry (and mesh system). The thickness of the viscous sublayer y,, however, Is not
a constant and often cannot be easily determined beforehand. This ts why we have made
provision in COMMIX-1C to accommodate both situations shown in Figs. 10 and 11. The
distributions of k and ¢ are assumed Lo be the same in both figures.

When Yp > Yy, the first node is in the fully turbulent zone (Fig. 10). The velocity at
node P is given by the law of the wall (n the fully turbulent region

up = (u,/K)n(Ey;), (6.34)
where

ug = (tw/p)t/2 (6.35)

Ve yu/v. (6.36)

E is a constant equal to 9.0, K is the von Karman constant (K = 0.42), and v is the kinematic
viscosity. Equation 6.34 can be written as
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u, = Ku /n(E y;). (6.34a)

The turbulence kinetic energy k at node P can be calculated by using Eq. 6.28, which s
rewritten as

kS = ui/Cy". (6.37)

The turbulence disc  ‘ion rate £ at node P 1s calculated by using an equation stmilar to Eq.
6.29

£p = ce' kg/a /(Kyp)

= ul/(Kysp). (6.38)

When Yp < Yy, the node P is in the laminar sublayer (Fig. 11). The velocity at node P is
given by the law of the wall in the laminar sublayer

Up = U, ¥p, (6.39)

which can be rewritten as

ue = (vup /yp)™. (6.39a)
‘fhe turbulence kinetic energy at node P is calculated by
kp = K(yp /%) (6.40)

where k, 1s the turbulence kinetic energy at y = y,. We assume that Eq. 6.28 for local
equilibrium turbulence applies at the edge of the laminar sublayer (y = ) and Eq. 6.40
becomes

ke = ul(yp/y)) 1CH? (6.40a)

It should be noted that the assumption of local equilibrium at the edge of the laminar
sublayer may not be strictly valid. It is known®8 that local equilibrium applies when 30 < y*
< 50. We adopt it here to simplify the calculation. It should also be noted that we assume
that the turbulence kinetic energy k is constant outside the laminar sublayer (Fig. 10). This
assumption greatly stmplifies the numerical calculation (guideline 1) since no extrapolation
i1s needed.

The turbulence dissipation rate ¢ at node P is caleilated by using Eq. 6.38 and assuming
that the dissipation rate in the laminar sublayer is vunstant and equal to that at y = y,.

€p =ul/ky, (6.41)

The assumption of constant ¢ in the laminar sublayer is in agreement with most wall
finction models in the literature. The assumption of ep equal to € at y = y is different from
those In the literature. The reason for making the last assumption Is to make ¢ continuous
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¢0 that numerical difficulties assoclated with discontinuous functions can be avoided
(guideline 2).

6.0.2 Evaluating k and ¢ for Cells Adjacent 1o Walls

In the computer code, the following paths are followed to determine the proper values
of k and ¢ for cells adjacent walls. The key s to determine whether the node adjacent to a
wall is in the laminar sublayer or in the turbulent zone. The relevant scaling parameter is
the frictional velocity uy, which appears in the equations for k, ¢, and the velocity
distribution given by the law of the wall in Sec. 6.5.1.

The preliminary step is to evaluate the dimensionless thickness of the laminar sublayer
W . This is accomplished by matching the velocity at the edge of the viscous sublayer (y =
y¢) to that from the law of the wall,

vi = Len(Eyi), (6.42)
where

Yi =Y /Y. (6.43)

K= 042 and E = 9. It should be noted that ' depends only on the constants K and E.
The value of Y turns out to be 10.624. Then we proceed to calculate ky and €p as follows:

Step 1 - Calculate y based on a guessed value of ug

The value of u; can be estimated by either the laminar sublayer relationship (Eq. 6.39a), or
the local equilibrium turbulence relationship (Eq. 6 37). In the code, we take the larger of
the two as the guessed value of uq,

/ \
Yiug
U? = max’k—y—PL.C})”kPJ. (6.44)

Then, y is calculated by

Y™ ')’: / Uy,
where ;' is calculy. *d previously and has a value of 10,924,
Step 2 - Compute kp and ep by comparing yp with y,

Uurs w

This indicates the node P is in the turbulent zone, and we recompute the frictional velocity
ug iteratively by using the law of wall (n the turbulent zone

u, = Kup /tn(Eysu, /v). (6.45)

Then, compute kp and ep according to Eqs. 6.37 ar.d 6.38
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kp = Uz /Cg’
gy = uy /Ky,
Uurs w
This indicates that the node P is in the laminar sublayer, and we recompute u;by using Eq.
6.39a,

uy = (vup /ye)"

Then, compute kp and ep according to Egqs. 6.40a and 6.41
kp = u?(y,./ydz /Cy?

gp = Ui /Ky,

The algebraically computed kp and ep of wall adjacent cells are then uscd In the solution of
the transport equations of k and ¢ for other cells, If the results do not satisfy the
convergence criteria, Steps 1 and 2 are repeated until convergence is reached.

6.6 Solution Procedure for Calculating Turbulent Flows

The procedure for calculating turbulent flows is stmilar to that described in Chapter
10, except that there are two additional transport equations (k and ¢) to be solved. These
two equations are solved after the pressure equation and before the energy equation, Table
17 summarizes a solution procedure for calculating turbulent flows.

6.7 Discussion

There are a total of e'ght constants employed in the k-¢ two-equation turbulence
model. Table 18 prov.des a summary of these constants. The va'aes listed in this table are
the default values used in COMMIX-1C, These values may or may not be slightly different |
from those used {n other k-¢ two-equation turbulence models. If users wish to use values |
other than those listed in Table 18, they may input these parameters (input preparation is
described (n Volume II).

The wall function model described In Sec. 6.5 is different from and simpler than most
other models in the literature. We have thoroughly tested this model against the data for
fully developed pipe flow and for two-dimensional single-sudden-expansion (backward-
facing step).73 The results indicate that the current k-¢ two-equation turbulence model
compares favorably with the data of fully developed pipe flow at high Reynolds numbers,
while the agreement Is iess favorable for the backward-facing-step problem, particularly
near the reattachment zone. These observations are in agreement with assessment of otner
two-equation turbulence models 74

We have also tested the k-¢ two-equation turbulence model against data of a circular
buoyant jet.73 Both the calculated centerline velocity and centerline temperature
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Table 17. Fully tmplicit (SIMPLEST-ANL) solution sequence (a = 1)
Jor turbulent flows

1. Calculate velocity-pressure relation coefficients from the previous iterate values of u, v,
w, and perr

6d*i(o=uv.w).
2. Calculate pressure equation coeficients using ¢, d*
ad.al, b} .
3. Solve pressure equation for new-time, new-iterate pressure 8p:
ag 8P, = Laj 8P, + by .
4. Calculate new-time, new iterate velocities u, v, w from velocity-pressure relations:
0=0-d*A8Pi(0=uv,w).
5. Calculate coefficients for k and ¢ equations using new-time new-iterate velocities:
a,al, b} : al, af, by
6. Solve k and ¢ equations for new-time, new-iterate k and e:
afko = Tafk, + bl : abes = Tale, + bl
7. Calculate new-time, new-iterate perr and Aefr:
B = Copk: /& Ay = Cplyy /0y
Her = Koam *Hiurs Aot = Heam +Kour
8. Calculate energy equation coefficients using new-time, new-iterate velocities and Aefr
ad.alibt
9. Soluz energy equation for new-time, new-iterate enthalpy h:
atho =Zalh, + b} .

10. Check for convergence of u, v. w, h, k, ¢ {f not converged, return to Step 1.
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discussion manageable, the demonstrations and dertvations that follow are based on the
assumption of unidirectional flow in an arbitrary direction (i.e., there is no velocity gradient
anywhere in the flow domain). However, this assumption will be removed as shown in

Sec. 7.4.3. In fact, the imolementation of FMSUL (n the energy equation is for all Nlow
conditions.

7.2 Pure-Upwind Difference Scheme

7.21  One-Dimensional
Because of its stabilizing eflect, the pure-upwir.d difference scheme Is used extensively

in one-dimensional hydrodynamic computer programs.”7® The basic concept is briefly
discussed here with reference to Fig. 12.

It is easy to difference the model equation
2 (ue) = 0 (7.1)
ox

at node 1, where ¢ 1s some scalar and u is the velocay. Equation 7.1 can be differenced at
center node | as

(uo)..l[a o~ (UQ);.VQ
o~ =0, (7.2)

where the subscript 131/2 refers to ‘he values of (u¢) at the cell edges. In a staggered
mesh system, ¢ and u are not known at the same points. If it is assumed that ¢ is
continuous, Eq. 7.2 can be approximated as

(W)n.uz - (ud), o Miaza® U006,
- (7.3a)
AX AX
for the case ui /2 > 0, and

~ U,,ﬂ@.u - un-l/!‘l l73b)
Ax
b Y 4 Visie %4
° s © b .
=1 i i+
i=1/2 i+1/2

Fig. 12. One-dimensional upwind or donor cell
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(i,]#1)
.

'vi,iW?

.
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X

Fig. 13. Two-dimensional upwind or donor celi

for ug)/2 < 0. That s, the values of ¢ are considered “donated” (or upwinded) to the cell

edge. depending on the signs of ug ;2.

7.2.2 Two-Dimensional

Now consider the two-dimensional situation shown in Fig. 13, The application of t*
one-dimensional pure-upwind difference scheme to the two-dimensional n.nde' cquation

produces

and

%(uo)*%(w) <0

alud) . (“°)m/a.1' (u")'-l/y

ax

o iunn/m%,) = (Uu-ua)%n,;)

Ax

dlve) 3 (v‘)t,pl/z T (w)l.}-l/'z

ay

- (VL)“”OH)' (VL)-I/Q 91.}-1) .

ay

(7.4)

(7.5)

(7.6)

assuming u and v are both positive. This extcnsion assumes that the velocities are locally

one-dimensional, i.e., each cell face Is associated with only cne velocity component, as

shown in Fig. 13. Extension to other combinations of signs of u and v, as well as to three

dimensions, are stralghtforward.
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Fig. 16, Isotherms ¢f two-dimensional flow with my = my
(exact solution)

inherent in the plotting package of COMMIX. The tmportant thing to keep in mind is that

the results of an acceptable numerical scheme should approach that of the exact solution
shown in Fig. 15,

Figure 16 shows the calculated isotherms by using the pure upwind-difference scheme,

Again, the horizontal mass flow rate my s set equal to the vertical mass flow rate my and
the mesh size is identical to that shown n Fig. 15. 1t is obvious that the isotherms are no
longer concentrated near the diagonal in the llow direction and are spread over a wide
region. Moreover, the isotherms shown in Fig. 16 are no longer parallel. Thus, one can
conclude that significant numerical diffusion occurred by using the upwind difference
scheme to caiculate the flow inclined at an angle to the grid lines.

Figure 17 shows the plot of the isotherms calculated by using Raithby's SUD scheme.
Again, the flow Is Inclined at an angle of 45° with respect to the horizontal axis, and other
conditions are identical to that shown in Fig. 15, It is evident that the Raithby SUD scheme
is able to eliminate numerical diffusion completely for this particular case (l.e., a two-
dimensional unidirectional flow inclined at an angle of 45° to the grid lines) because the
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Fig. 17. Isotherms of two-dimensional flow with my = my
{Raithby skew-upwind d([ference)

Mare recently, Hassan et al.7? propose1 a mass-flow-weighted SUD scheme for
calculating two-dimensional flows. This scheme is an improvement over the Raithby SUD
scheme because it can eltminate the overshoot/undershoot observed in the Raithby SUD
scheme while retaining the exact 45° solution. We shali describe in more detall the two-
dimensional mass-flow-weighted SUD scheme of Hassan et al. in Sec. 7.4 because It forms
the basis of the flow-modulated SUD scheme. Here, we present only the calculated results
of the same problem shown in Figs. 18 and 19 by using Hassan's SUD scheme.

Figure 20 shows that the overshoot (or undershoot) is indeed absent when the mass-
flow-weighted SUD scheme is used. Also, It can be observed, by comparing Fig. 20 to Fig.
18, that Hassan's SUD scheme is able to reduce numerical diffusion caused by the pure
upwind difference scheme, although some numerical diffusion is still present.



Three-Dimensional Skew-Upwind Dilference Schemes
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Fg. 19 Isotherms of two-dimensional flow with my = 2 my
(Raithby skew-upwind d{fference)

mathematical detalls of these numerical schemes: instead, we present below a numerical
example and comment brieflly on the major features of each of these schemes.

Figure 21 shows the isotherms ol a three-dimensional flow with uniform velocity (my =
my = my) calculated by using the exact solution. The horizontal axis can be considered as
flow entering in the y direction at a uniform temperature of 0°C and the vertical axis can be
considered as flow entering the x direction, also at a uniform temperature of 0°C. Figure 21
represents the first plane (k=1) in the z direction and therefore can be considered as ne
bottom (lowest elevation) of the flow channel. The flow entering from the bottom s at a
uniform temperature of 100°C. Thermal ddfusivity is assumed to be negligible. It can be
cbserved that the isotherms are concentrated near the entrances and are parallel to either
the x or the y axis except near the three corners where the edge effect mentioned
previously is present. Figure 22 shows the isotherms calculated by the exact solution at a
kigher elevation (k = 4). As expected, the isotherms remain concentrated in a narrow

band, and the width of the band s proportional to the mesh size used in the compulation,
The hot and cold regions are clearly defined.
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Fg. 20. Isotherms of two-dimensional flow with my = 2 my
[mass-fiow-weighted skew-upwind difference of

Hassan et al,)

Figures 23 and 24 show the isotherms of the same problem calculated by using the
pure upwind difference scheme. It can be observed that numerical diffusion is present
even at the lowest elevation (Fig. 23). At a higher elevation, the effect of numerical diffusion
has propagated through the entire plane and a hot/cold interface no longer exists (Fig. 24).

Figures 25 and 26 show the isotherms of the three-dimensional flow calculated by
using the extended Raithby SUD scheme. Although the three-dimensiona! Raithby SUD
scheme s able to reduce numerical diffusion, significant undershoot/overshoot occurred
(Fig. 26). The result is similar to that of the two-dimensional problem described in Sec.
7.3.1. The undershoot/overshoot is not realistic and is thevefore not acceptable from the

physical standpoint.

The velume-weighted SUD scheme implemented in COMMIX-1B {s an improvement
o.¢r the extended Raithby SUD ccheme. The volume-weighted SUD scheme needs no
artificial cutoffs and therefore is less restrictive than the Raithby SUD scheme as far as
undershoots and overshoots are concerned. Even though the volume-weighted SUD



scheme was able to duce numernrics fusion nd was successiul in simulating steady

state therma! mixing lines, stability (no undershoots an
wershoots) cannct be

he three-dimensional mass- .low \gnted ] cheme s an extension ol the two
iimensional mass-ilow-welghted SLUL As described in Sec. 7.3.1, the two
iimensional mass-flow-weighted SUI to reduce numerical diffusion and

prevent overshoots and undershoots. The three nenstonal mass-flow-welghted SUD

U i

LI § 1

scheme propesed and implemented by Hassan® as been demonstrated (o reduce

numerical dilfusion when t ‘ obligue to grid es. However, derivation ol the
discretized equations (nvolve ‘ wsumptions in Hassan's mass-{flow-weighted SUD
heme., Furthermore, closer examination of the discretized equations indicates that it is
possible to have negative coelficien 1at may lead to undershoots and overshoots under
2 My, and my 3 My

mes negative)
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dimensional flow with my = my = my (exact solution)

7.4 Flow-Modulated Skew-Upwind Discretization Scheme

The FMSUD scheme s implemented only in the energy equation of COMMIX-1C. Our
objective 1s to develop a scheme that is relatively simple to implement, permits the uce of
coarser mesh for given accuracy, has acceptable numerical diffusion, and perhaps most
important, prevents the occurrence of physically unrealistic results {undershoots and
overshoots) in the entire computation domain. Our primary Interest is the three-dimen-
slonal FMSUD scheme because COMMIX is a three-dimensional code. However, we will
begin by describing the two-dimensional FMSUD scheme, which is relatively simple and
easy to understand and sets the stage for the development of the three-dimensional
FMSUD scheme. For relative simplicity, as in previous discussions, only arbitrary
unidirectional situations will be considered and demonstrated. As mentioned before, the
assumption of unidirectional flow wiil be removed as shown in Sec. 7.4.3.






7.4.1 Two-Dimensional FMSUD Scheme

the t
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Fig. 25. Isotherms at lowest elevation (k = 1) of a three-
dimensional flow with my = my = m, (extended
Raithby skew-upwind d{fference)

considered (the main control volume referred to in Chapter 4). Since the flow is uniform
everywhere, the mass flow rate in a given direction does not change and both my and my
are positive. This is shown In Fig. 27, where my and my denote the mass flow rate in x and
y direction, respectively. The center cell is denoted by the subscript o, while the
neighboring cells due west, east, south, and north are denoted by the subscripts 1, 2, 3,
and 4, respectively. The corner cells are represented by 13, 24, etc., as shown in Fig. 27,
The enthalpy h at the four faces surrounding the center cell o is represented by the symbol
< » at their corresponding locations. We express the cell facial quantities in terms of the
cell center quantities by the following equations:

<h>; = Pxy h) + Sgy hy3 (7.13a)
<h>3 = Pyy ho + Sxy h3 (7.18b)
<h>g = Pyx hg + Syx hya (7.13¢)
<h>y = Pyx ho + Syx h) | (7.18d)
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It is interesting lo note the differences among the Raithby,”® Hassan,7® anc the present
flow-modulated two-dimensional SUD schemes. The main difference is in the weighting
factor 8. The welghting factors employed by the three SUD schemes are

SLB

Raithby SUD: §,, = mm[t%

. 84 = min| &4 X
Hassan SUD: 8§, mm[a.zm.)

FMSUD: §,, = lmm(x.-'-'l].
2 "/
If my = my (flow is oblique at an angle of 45° to the grid lines), Sxy = ; for all three
schemes. This 18 the reason why the Raithby SUD scheme was able to reproduce the resull
of the exact solution shown in Fig. 17, If my = 2 my, then

Raithby SUD: Syy = 1
Hassan SUD: Syy = &

‘ |
msUD S[y = :.

The results of the Hassan SUD schem : ane' the present FMSUD scheme are the same, but
the Raithby SUD scheme gives a welg! ting factor twice as large as that of the other two
schemes. As explained previously, the present FMSUD scheme is based on the criterion of
maximum contribution from the corner cell without the possibility of obtaining physically
unrealistic solutions. The Raithby SUD scheme apparently violated this basic criterion and
the result is shown in Fig. 19, where overshoots and undershoots occurred. The Hassan
SUD (and the present FMSUD) scheme was able to eliminate those undershoots and over-
shoots, as shown in Fig. 20. However, as described earlier, Hassan's results were based on
ad hoc assumptions and there was no explicit derivation for the weighting factors.

7.4.2 Three-Dimensional FMSUD Scheme

The three-dimensional FMSUD scheme 1s & straijghtforward extension of the two-
dimension FMSUD scheme. However, the algebra becomes much more involved. The user
need not be too ceacerned about the algebra as long as he or she understands the basic
principle and limitations of the scheme.

Figure 28 shows the mesh system of a three-dimensional uniform flow inclined at an
angle to the grid lines, We assume ihat all the mass flow components are either zero or
positive,

My, My, Mg 2 (i
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ajg = my Syyz ¢ My Sy my Cany (7.46)
aise= My lu,om.&.,-m, c". (7.47)
ags = my ”utlﬂ;ﬂw;'mg Cm (7.48)
Q15 = Iny Cg” + my Cm + My Cny (7.49)

There are a total of eight coeflicients for the three-dimensional Now, as compared to a total
of four coeflicients for the two-dimensional flow. Eliminating the welghting factors in Eqs.
7.42-7 45 by utllizing Eqs. 7 46-7 49, we obtain the following equations that express the
primary coefficients (coefficients with a single-digit number) in ten s of the side coeffl-
clents (coeflicients with a doubie-digit number), and the corner o :fficients (coeflicients
with a triple-digit number):

Qo= My + My +My-a1a-a15-a3s-2013820 (7.50)
dp=mx-aja-a5-a19520 (7.51)
ay=my-a1a-ass-ajasz0 (7.52)
ag=m; -2 5-ags~aja520 (7.53)

and recalling Rule 1 that all the coefficients must be greater than or equal 1o zero. After
closer examination of Bgs. 7 50-7 53, the upper and lower limits can be established for the
following coefficients:

05 2195 £ min (my, my, my) (7.54a)
O a3 min (myg, my) - a)as (7.54b)
Ogas € min (my, my) - ajas (7.54¢)
0 5 ass £ min (my, my) - ajas (7.54d)

The coeflicients given by Eq. 7.54 are not unique. This should not present any problem
since most discretized equations are not unigue in the first place. We choose to maximilze
the influence of the cormer and side cells. Thus, by adopting the upper limits tn Eq. 7 54,
we obtain

a)95 = min (my, my, m,) (7.65)

a1 = min (my, my) - min (my, my, my)
= max [0, min (my, my) - m,) (7.56)

215 = min (my, my) - min (my, my, my)
= max [0, min (my. m,) - my| (7.57)

ag = min (my, mg) - min (my, my, my)
= max [0, min (my, my) - my| (7.58)

Comparing Eq. 7.55 to Eq. 7.49 gives

My Cxyz + My Cyxz + My Coyy = min (my, iny, my) . (7.59)

Stmilarly, by comparing Eqs. 7.46-7.48 to Eqs. 7.56-7.58, we obtain

My Sxyg + My Syn = My ngy = min (my, myl = min (my, My, Ng)
= max [0, min (my, my) - my,) (7.60)
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R—
Xy 8X1g iy Xl $X1 g Xig
( Cxye!
Cxyz Sxzy) xye - s %
136 16 146
w20
T 8X14 PX1 8X1g SX1a X1 8Xlg
( ] (Sxyz)
Syye Xy s > .
18 1 14
€X1y SX1g Xig X1y 8X g Xig
Cxyz (8xzy) Cxyz!
a6 5 45
138 16 145

Fig. 29, Cells i fluencing enthalpy <h>) f w1724k > 0 (eft and {f w172,k < g
0 (right). Notation in parentheses corresponds to that of Sec. 7.4.2

In the case of uy.)/24.k » 0 of the nine celis of the leflt block, only a maximum of four
contribute to <h>;. They depend on the sign of w) = w1 2k and vy = v; j /g k according
to the following scheme:

1. Hvi>»0 wy»0 cells 13, 1, 135, 15 (quadrant bottom left)
2. Uvy <0, wy >0 cells 14, 1, 145, 15 (quadrant bottom right)
3 Hvy»0 w; <0 cells 136, 1, 13, 16 (quadrant top left)

4 Uvy <0 w) <0 cells 16, 146, 14, ] (quadrant top right).

For all cases corresponding to u; » 0, we can write:
<h>) = hi.j/a4k = CX1) hige + SX1g hie + CXlg hiee
+ 8X14 hja + PX1 hy + 8Xlg hy4

+CX17hjgs + 8Xlg hys + CXlg hy4s . (7.74)
The values of coeflicients assoclated with Eq. 7.74 are as follows:

wi»0 wi»0 w <0 w;<0
vi»0 vi<0 vi>0O v <0

CX1) = {1 Hi~w) Hlv) 0 0 f 0
8X1z = 2 H{-w) 0 0 2 2
CXlg = {3 H{-w) H(~v) 0 (¥} 0 K
§X14 = {4 Hv) f4 0 4 0
PX1l = (B {5 1§ 5 5
§$X1g = 6 H(-v) 0 6 0 6

CX1l7 = [7 Hlw) H(v) {7 0 (4} 0



S§X1y = I8 Hiw) 8 8 0 0
CXlg = 19 Hiw) H(-v) 0 {4 0 0 (7.75)

where both velocities w and v are computed at location (1-1/2,.k). fg. = 1.2..9are
welghting factors satisfy the condition

#;, .1, (7.76)

The values of the welghting factor (g, (¢ = 1,2,..9) can be calculated as shown In Sec. 7.4.2.
Expressions similar to Eq. 7.75 hold for the coeflicients CX2y, 8§X24, and PX2.

Similarly, for u; < 0, one has

<h>) = hi.i/25k = CX1) hae + 8X1g he + CX13 hag
+ 8X14 ha + PX1 hg + 8X1g hg
+ CX17 has + 8X1g hg + CX1g hys . (7.77)

Equations 7.74 and 7.77 can be combined in a single formula that holds for both u 1»0and
uyp <O

<h>; = hij/2)k = [0.u)] (CX1) *hjae+ SX120 hjg+ CXla e hjge
+8Xlgehjg+PXleh;+8Xlgehg
+CX17¢h1as + SX1g o hys + CX1g * hygs)
“10,~ui) (CX1) * hag + §X13 ¢ hg+ CX1g ¢ hge
+8X1g*hy+PX1eho+8Xlgehy
+ CX179hgs + SX1g ¢ hg + CXlg ¢ hys), (7.78)

For the enthalpy on the opposite face, it holds
<h>2 = hisj/2 5k = (0.ug] (CX2) ¢ hyg + SX27 ¢ hg + CX24 ¢ hae
+ 8X24 *hg + PX2 e hg + 8X24 ¢ hy
+ CX27 ¢ hgs + SX24 ¢ hg + CX2g ¢ hys)
“[0,~ug] (CX2) » haap + SX27 * hgg + CX23 * hyge
+ 8XZ40hga+ P72 e hg + 8X26 ¢ hyy
+ CX27 ¢ haas + 8X2g ¢ hgs + CX2¢ » hgys). (7.79)

Similarly, <h>3 and <h>4 can be expressed as follows:

<h»g = hyj1/2k = [0,va] (CY3) ¢ hygg + SY35 ¢ hag + CY33 ¢ haas
+8Y340hja+ PY3 e hy+ 8Y3g 0 hyg
+ CY37 2 hyas + SY3g ¢ hgs + CY3g ¢ hags)
“l0.~va) (CY3| * hyg + SY33 ¢ hg + CY33 ¢ hge
+8Y34eh; + PY3eho+ 8Y3ge hy
+ CY37 ¢ h 5+ 8Y3g ¢ hs + CY3g » has). (7.80)



<h>g = higer/ak = 10.vg) (CY4) o hyg+ SY4g ¢ he + CYdg ¢ hae
e SYdaoh  + PYd o hp+ SY4p e g
+ CY4r o hy s+ SYdg ¢ hs + CYdg » hys)
|0, vg) (CY4) » hyge + SY42 * hge + CY43 * hyge
+8Y4gohjg+PYd e hy+ SYdge hyy
+ CY47 v hgs + SY4g » hys + CYdg * hggsn)
The values of the coeflicients are given by

wy>0 wyg>»0 wygel wyeO
ug >0 ug <0 ua>»0 ua«0

CY3, = {1 Hl-w) Hlu} 0 0 f 0
§Y33 = 12 Hi-w) 0 0 Il 2
CY33 = 13 Hi-w) H(-u) o! 0 0 3
8Y34 = 4 H(u) f4 0 f4 0
PY3 =[5 5 5 s 5
§Y3¢ = 16 H(-u) 0 6 0 6
CY37 = {7 Hiw) H(u) 7 0 0 0
SY34 = (B Hiw) 8 8 0 0
CY3p = @ Hiw) Hi-u) 0 9 0 0

Similar expressions hold for the coeflicients CY4;, SY4,, and PY4,
Finally, <h>g and <h»g are expressed as follows:

<h>g = hyjk-172 = (0.ws] (C25) ¢ higs + 8253 ¢ has + CZ53 * haas
+ 5254 ¢ hyg + PZS » hg + 8254 ¢ hos
+ CZ57 ¢ hyas + SZ6g * hag + CZBg ¢ haas)
[0, -wg) (CZ5) ¢ hjq + SZ63 » hy + CZ53 * hyy
+ 8254 2 h) + PZ5 ¢ ho + 8254 * hy
4+ CZ57 o hyg+ SZ5g * hg + CZ5¢ * hag).

<h>g = hijke1/72 = [0,wg] (CZ6) ¢ hyg + 8263 ¢ hy + CZ63 * hyy
+ 8264 * h) + PZ6 * ho + 826 * Iy
+ CZ67 * hya + SZ6g » hy + CZ6Bg * haa)
<10.~wegl (CZ6) * hjqe + $Z67 * h4e + CZBa * hoee
+ 8264 * h)g + PZ6 » hg + 8266 * hge

+ CZ67 * hiae + SZ6g » hag + CZ6g *» haaa).

The values of the coeflicients are given by

v >0 vi»0 vge<0 wvg<O

ug > 0 us<0 usg»0 wug<0
CZ5, = f1 H(-v) Hlu) 0 0 fl 0
8263 = 2 H(-v) 0 0 12 f2
C2563 = 13 H(-v) H(~u) 0 0 0 3

(7.81)

(7.82)

(7.83)

(7.84)
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Veritication of the Generalized Equations tor Special Flow Conditic

Upwind Finite Volume Formuiation. If the primary coeflic.ents

and PZ6 are equal to one, the side and comer coefficients must

general equation, Eq. 7.89, reduces to

ao (upwind) =

which correspond exactly to the upwind finite
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Fig. 31. Isotherms at higher elevation (k = 4) of a three-dimensional flow
with my = ny, = m; (FMSUD)

8 Supplementary Physical Models

To broaden the scope of COMMIX-1C applications and to more accurately account for
phenomena that affect thermal-hydraulic simulation, a number of supplementary physical
models have been incorporated into COMMIX-1C.

8.1 Rigorous Fluid Property Routines

There are [our fluid property packages In COMMIX-1C, i.e,, water liquid, water vapor,
sodium liquid, and sodium vapor. All four property packages are developed and formulated
in a modular fashlon to accommodate replacement by any other fluld property package.
The Input description on use of these fluid packages is given in Volume Il of this report,
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8.2 Simplified Fluid Property Option

Besides the rigorous fluid property packages, another option is available to the user.
This option is known as a simplified property option. This option applier ‘o both fluid and
solid materfals. Enthalpy, density, thermal conductivity, and viscoslity are assumed to have
the following functional form:

Be Co v O T4 G T4 8P,
p= Cou+C\T+CyP/(T+273.185),
ks Co +C;uT+Cqy T2,

and

U= Co +C T+Cy /(T+273.185), (8.1)

where T Is temperature in degrees C, P (s pressure in Pascals, and Co, C), Cg, and Cy are
constant coefficients to be specified by the user. The default values for these constants are
zero. We found the simplified property option quite useful in many applications because it
takes very little time in preparing and inputting the coefficients in Eq. 8.1, It should be
noted that for liquids and solid materials, the pressure dependence of the property does
not apply. and the corresponding coelliclents should be set to zero. A detailed description
of inputting the simplified property option (s given in Volume 11 of this report.

8.3 Heat-Transfer Correlations

To calculate the heat transfer between {luid and solid surfaces (either the solid
bouvndaries of a flow domain or the surfaces of internal structures), a heat-transfer
coefficient model is required in the code. In the model implemented in COMMIX, all heat
transfer coeflficient correlztions are assumed to have the following form:

Nu = C, + C3Re® Prs (8.2)

Here Nu (s the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, and
Cy, Ca. Ca, and Cy4 are the constant coeflicients for a given carrelation number NH. The user
can prescribe several correlations by inputting different values of coeflicients C, Cg, Ca, and
C4. The Nusselt number and Reynolds number are based on the characteristic lengths of
the system under consideration. These characteristic lengths are {nput and must be
prescribed by the user.

8.4 Structure/Fluid Momentum Interaction

As described before, the solid structures in a flow domain interact with fluid and
influence the momentum distribution. In the porous-media formulation employed In
COMMIX, these interactions are modeled with the use of distributed resistances that
appear in the source term of the momentum equations (Table 1), This section describes
how the calculation of distributed resistance. also known as force structure, is carried out,
and how a wide range ol generality and flexibility is provided in COMMIX,
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8.4.1  Force Structure Modeling

In COMMIX-1C, the pressure drop due to stadonary solid structures is expressed in
the following general form:

Ap = c.%pv‘f. (8.3)

The distributed resistance R, which represents pressure drop per unit length, has the form

vivi
= weemef | A
R=cqp ) f (8.4)
Here, L{Ax, Ay, or Azj is the length of the cell, D 18 the hydraulic diameter, and ¢) is the
coeflicient, depending on the form of the equation desired. The values of ¢; and D depend
on the geometry and type of structure and must be provided by the user.

There may be more than one structure in a flow domain of interest. Submnerged
structures usually have dilferent geometries and so require diflerent values for the
parameters ¢) and D. In COMMIX, we have provided this fexibility; details are given in
Volume 11

The friction factor f in Eq. 8.4 is a function of the Reynolds number and is assumed to
be of the form

[ = QumRe®™ +¢ (8.5)
for RegReyr and
f = ag Re®™ +¢,, (8.6)

for Re> Rey,. Here, Re is the Reynolds number, and a, b, and ¢ are constants The
subscripts fam, tur, and tr stand for laminar, turbulent, and transition. COMMIX has the
flexibility of permitting as many correlations as the user desires. Each correlation requires
seven (nput nuwi.bers: agam. Deam. CLam. &tur, Diur, Crur. and Rey,.

To simpiify the specification of which fluid cells interact wit). v ich structure, a
specific input arrangement has been implemented in COMMIX, deia's ars nresented In
Volume 11 of this report.

A report8! has been prepared that provides a convenient collection ¢. resistance
correlations that are most commonly needed by COMMIX users. This collection of
resistance correlations s included as an appendix in Volume Il

8.4.2 Friction-Factor Library

Occaslonally, the COMMIX-1C user may find that the destred correlation is not of a
form directly sultable for input as described in Sec. 8.4.1. The user is then faced with two
cholces:
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Table 19. Friction factor library

REYLEN
{lengt.. used
CLENTH to compute
Correlation (hydraulic Revnolds
Number Description Correlation diameter, m} number)
90 CRBR fuel f=3;—;; 1-g+;9§,'; x 325 x 10-3 3.25 x 10-3
x =0: Re < 400
x = [Re - 400)/4600; 400 < Re < 5000
x = 1: Re > 5000
a1 CRBRblanket £ = %.9;"" + f;f,,ﬁ 3.39 x 10-4 3.39 x 10-4
assembly
x=0: Re < 400
x = (Re — 400}/4600; 400 < Re < 5000
x = 1: Re > 5000
92 Direct reactor £ = E—‘-‘T 0.1055 0.1055
heat exchanger -
A =0.171 + 0.012 (P/D} - 0.07e50P/D-1)
P/D = 1.84
93 CRBR - :_“\[1”.;4957‘;3 0.127 0.127
e e
chimneys

x=0: Re < 1200
x = (Re - 1200)/2600:; 1200 < Re < 4000
x = 1: Re > 4000

96
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FFTF pin

CRBR control

Mixed convection

through vertical
rod bundies

2
£=1.075¢ |1+ o.lna( 1000) +0.074
Re R

1 o 2.51
7{ 0.8626 log m{]
£ = 6(::84—1—.—1-" 0.48 Jl-

Reﬂh

x =0;. Re < 400
x = (Re - 400)/4600; 400 < Re < 5000
x = 0; Re > 5000

If Gr/Re < 2000

=1

If Gr/Re > 15000

f=2fp

if 15,000 > Gr/Re > 2000

f=15917 x 10° (Gr/Re)? - 2.367 x 105 (Gr/Re)

+ 10231 x1,
where
24.7
£ = R

_pvDe
-

Re

Gr = —Z prrenet
I

| e
RI8

395 x 16-3

348 x 103

4 x Flow Area

Wetted Perimerter

395 x 103

348 x 103

L6
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Finite~Difference Formulation

Figure 37 shows the cross section of a typical structure element under consideration.
Each element Is divided into a number of material reglons and each material region is
subdivided into a number of partitions. Let Ar be the partition size and let L be the total
number of partition cells.

Consider the energy balance of cell ¢, as shown tn Fig. 38. The integrated energy
equation for the structure in the control volume of cell ¢ gives

¢,V
D_AL(—!_(TI = Tl") = = (A Qe = Al + 4™ V, . (8.8)

Here, V¢ is the cell volume. The heat flux q can be expressed in terms of temperature
difference:

q = UI(TI-I =Te) = (T = T)/Fe . (8.9)

Here, Uy is the overall heat tranzfer coefficient (conductance) and Ry is the overall thermal
resistance between Ty and Ty-:

1 1

U= — =2 for conduction between two
R, (ﬂ'):-n . (ﬁ)c solid cells of similar material, (8.10)
1 1

U= o= = coreee for conduction and convection between
R, §+(8), a fluid cell and a solid cell, .14

and
U= = : f duction between t (8.12)
PRl altl o or conduction een two '

R, (ﬁ)m * Wl; A (%)t solid cells with different materials

Here, A is the thermal conductivity, h is the convection heat transfer coefficient, and hgap is
the gap conductance between the two materials,

Substituting Eq. 8.9 into 8.8 and rearranging, we obtain

(8, 4By + by )Ty = BTy, + by Ty, +d, (8.13)
where
a= pe,V/8t, (8.14)
b= AU = A/R, (8.15)
and
d= ¢*V+aT". (8.186)

Here, T and T are the temperctures at time t and (t + 8t), respectively.
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¢ Inside Surface Cell (£ = L)
(@, + by + b )T, =BTy + by Tean, + ¢
if the Inside surface Is nonadiabatic, and
(A, + b )Ty = b T, +d,
if the inside surface is adiabatic,
Equation 8,23 can be transformed to

C\T =byT, + A, (¢=1)
Cy Ty = by Ty + Ay (t=2:L~1)
C. T, = by, Ten, + AL {¢ = L; nonadlabatic)
= I (¢ = L; adiabatic),
Here,
A, = d, +(ﬁb,A‘,_l/C',-|) (€ = 8}
and

C, = a, ¢b,+bm-(b?/c;_‘) (= 2:L)
The first set of coefficlents is

Ay =d; + b Teg,
and

C;‘ih*b)‘fba.

(8.23¢)

(8.23d)

(8.24a)

(8.24b)
(8.24¢)

(8.24d)

(8.25a)

(8.25b)

(8.25¢)

(8.25d)

The inside-surface cell temperature Is first calculated from Eq. 8.24¢ or 8.24d. Then the

rest of the temperatures are computed using Eqs. 8.24a and 8.24b.

Heat Transfor 10 Adjacent Fluid

Once the temperature distribution in a structure element is computed, the heat

transfer rate to the adjacent fluid is computed from
A
q= ‘,’il'('rl -T)
|

= U, A(T, = Ty) for outside surfuce (T; = Tey, )

and

(8.26)
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where T is the temperature for cell 1 and T¢) is the coolant temperature adjacent 1
1. At the new time n+l
Q AT i
U AT 1 1 | |
4
C q
a' + U A 1\t hg )/
. rl '
where Cp) 18 the specific heat of the fluld adjacent to the thermal structure In Eq. 8
pl
the variable q,, T}, Tc1. and hp represent the new time value and we have omitted the
) 4 fesllemarin
superscript n+1 for these variables. From Eq. 8.34, we can obtain the {ollowing
approximate expression lor (dq/dh

Y 9 1] i {
!
Y ' r
ol ! h Cy ’
From t q 8.24a
g1 1 dl A
b sl .
JT, { d1 Il
From Eq. 8.25¢
JA
soaetdh b
d1 -
Substituting Eqs. 8.36 and 8.37 into Eq. 8.3
4¢ \ A b “‘. ‘. :
|
oh | B ( o1 (
Ta/dTe1) car be calculated In terms of the following two recurrence equations
dT, 1 \ T, dA
2 - - >
1 C 3 dl
y
i
af ¢ ‘t, '1"\;
JgT 1
I ¢
which are obtained from Eqs. 8.24¢ and 8.25a. From Eq. 8.24C, we have
fl l \
41 “ 1
| ( |
g \
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In summary, (39, /dhg) can be calculated analytically by using Eqs. 8.37-8.41 when the
outside surface of the thermal structure is in contact with the fluid.

If only the inside surface of the thermal structure is in contact with the fluid, an
equation similar to Eq. 8 35 can be derived:

N
. TR T IR Y [35» 1). (8.42)
ohy h,-hy Cm \ 9T

(dTL/dTc2) can be calculated by using Eq. 8.24¢:

%‘ - %‘lﬂ (8.43)
where C s given by Eq. 8.25b (£ = L)

CL = a, +b + by, -(bR/CL,). (8.25b)
The recurrence formula, Eq. 8.25b, can also be used to evaluate C,_,:

Cy = a4 b+ by, = (bF/C,y) (€= 2000L-1), (8.25b)
because C, is known from Eq. 8254

C,=a,+b+b,. (8.25d)
Thus, Il only the inside surface ol the thermal structure s in contact with the fluid,

(dq, /dhg) can be calculated analytically by using Eqs. 8.42, 8 43, 8.25b, and 8.25d.

8 Initial and Boundary Conditions

9.1 Initial Conditions

Generally, before the solution sequence can begin, all values of variables must be
assigned. In COMMIX, we can accomplish this by either

* Contlnuing a previous run via the restart capablility (recommended for all but
the first run), or

* Specifying the Initial distribution throughout the interior points and boundary
of the space under consideration.

When the Initlalization Is not a restart, we must specify initial pressure, temperature,
velocity, and turbulence parameters distributions. The deiermination of these distributions
and their subsequent input into the code are generally tedious. In COMMIX, we have
provided several simplified input procedures, which make the initialization of velocity,
pressure, temperature, and turbulence parameters falrly simple. These procedures are
described in Volume 11 of this report.



9.2 Boundary Conditions

m, and energy
ns have already been

respect (o the local

d Velocity Boundary Conditions
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Table 20. Fluid velacity boundary options
Option
Boundary/Sultable Option No. Remarks
Solid Impervious Surface
Constant velocity 1 Specify normal velocity vy = 0
Inlet
Constant velocity 1 Specify inlet velocity
Translent velocity 2 Specify inlet velocity and
appropriate transient function
Symmetry
Free Slip 3 Axis through origin in
cylindrical coordinate is a
symmetrical surface
Outlet
Continuative mass flow 4 General outlet condition
Continuative momentum 5 Sultable when areas are equal
Continuative velocity 6 Sultable when areas and
densities are equal
Uniform velocity 7 Suitable when outlet is finely

divided (Fig. 42)

*  Continuative Mass Flow Outlet

This option 1s for an outlet surface as {llustrated in Fig. 42. Here, £ and m are
the outlet boundary cells and ¢+1 and m-1 are the neighboring cells. The
continuative mass flow outlet implies that normal surface veiccity at the outlet

must be such as to balance the mass flow, Le.,

v = ———LLu "
( n)(.u: (p‘h)‘_”2 te1/2

(v +1/%
oo PA)maiza

The sign difference between Eqs. 9.3a and 9.3b is due to the COMMIX
conventlon that surface-normal is directed into the flow domain.

(9.3a)

(9.3b)



112

Outlet Outlet
Boundary Boundary
W \
i s N L0 -1 kst Wi

|

1 {

Inlet

Fig. 42, Near-boundary cells

¢ Continuative Momentum OQutlet

When an outlet area is the same as the neighboring surface area, Eq. 9.3a
simplifies to

pu),.. .
(Va)ersa = : h'ué' (9.4)
Pe-1/2
We call this option continuative momentum because it appears that we are
ey  'ng neighboring and outlet momentum fluxes.
* Continuative Velocity Outlet
If we have a constant area and equal densities, Eq. 9.3a simplifies to
(Ya)eerza = (Weaza - (9.5)

We call this option continuative velocity because it appears that we are
equating neighboring and outlet velocities.

¢ Uniform Velocity Outlet

The untform velocity outlet boundary condition option sets the normal velocity
for all surface elements of a surface to the same value. This value is computed
so that the total mass flow through a surface is the same as that obtained from
the continuative mass flow outlet boundary condition. Mathematically,



I(pAu),,,,
= ". 2 . .
") L(PA),. s i

Here, the summation Is taken over all surface elements of a surface. This
option is sultable when an outlet is very finely divided, as shown in Fig. 43.

9.2.2 Temperature Boundary Conditions

The five temperature-boundary-condition options avallable in COMMIX-1C are briefly
described here and summartzed in Table 21,

* Constant Temperature

This option Is for a constant surface temperature, The temperature assoclated
with each surface element, as shown in Fig. 44, 1s set initlally and remains
unchanged throughout the calculation. While the temperature remains fixed,
the surface element heat flux is caleulated with the relation

q = UA(T, - T,). 9.7)
Here

1
Us - 9.8)
Kol y
where h Is the heat transfer coefficient, A is the conductivity of the wall
material, and AL s the wall thickness. Ths subscripts w and f refer to the
surface element and boundary fluid cell, respectively. For calculation of the
overall heat transfer coefficient U, we must provide wall thickness, suitable
correlation for b, and material properties for A,

Il the wall is very thin, as shown in Fig. 45, we need not specify wall thickness
and material properties. The overall heat transfer U is then equal to h.

Il a constant temperature is assoclated with, say an inlet surface as shown (n
Fig. 46, we need not specify even the heat transfer correlation. The surface
heat flux Is then calculated from the Fourter relation

('] = W (9.9)
5

Here, Aofr I8 the cffective thermal conductivity of the fluid in the adjacent

internal cell, Axy is the distance between the surface and the boundary cell

center, and the subscripts w and { stand for wall (surface element) and
adjacent internal cell, respectively,
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Outlet Boundary

g

Fig. 43. Model suitable for un{form velocity outlet option

Table 21. Suitable temperature boundary options

Option
Boundary/Option No. Remarks
Solid Surface
Constant temperature | Tw = constant
Transient temperature 2 Tw = flt)
Constant heat flux 3 qw = constant
Transient heat flux 4 qw = It
Adiabatic 5 qw = 0
Inlet
Constant temperature 1 Tw = constant
Transient temperature 2 Tw = flt)
Outlet
Adiabatic 5 Qw =0
Symmetry
Adiabatic 5 (qw = 0

R T C—

At b | & A e VR i .
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Thin Surface at
Constant Temperatuce Tw

Fig. 45. Thin-wall constant-temperature boundary
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Because o can have values greater than 1.0, 1t is termed overrelaxation. The optimum value
of the relaxatio « parameter is generally geometry- and problem-dependent; usually, it is
between 1.4 and 1 8

10.4.2 VYale Sparse Matrix Package

The YSMP is a collection of routines for solving the n x n system ¢f .inear algebraic
equations®? when the coeflicient matrix s larg» and sparse. The package uses direct
methods based on Gaussian elimination without pivoting. The coefficient matrix can be
symmetric or nonsymmetric. The routines of YSMP decompose the coeflicient matrix into
triangular factors and then successively solve the triungular systems. Since the coellicient
matrix Is sparse, most entries of the coelficient matrix and the triangular factors are zero,
and the routines take advantage of this by forming the decomposition and solving the
trigngular systems without storing or operating on zero entries. The advantage of YSMP is
that 1t 18 a direct solver and no iteration is involved. It can solve symmetric and
nonsymmetric matrices. However, as the number of computation cells Is increased, both
the sterage and the work increase rapidly and other methods (SOR and PCG) become more
economical and efficient.

10.4.3 Preconditioned Conjugate Gradient Method

The PCG s an iterative procedure that computes a sequence of approximate solutions
to a system of linear algebraic equations. A number of preconditioned conjugate-gradient-
like methods have been reported in the literature 83 The conjugate gradient methad
employed in COMMIX-1C is an iterative procedure for solving symmetric, positive-delinite
systems; it requires no estimates of scalar parameters and s relatively inexpensive per step.
These properties make the conjugate gradient method more robust, easier to implement,
and more rapidly convergent than other iterative methods for solving symmetric, positive:
definite problems, The convergence ol the conjugate gradient method can be improved by
preconditioning techniques 83 Consider a linear system of the form

Mx = b, (10.5)
where M is the coeflicient matrix, and x, b are column vectors whose components are x;, by
(1=1,2, , n. Roughly speaking, preconditioning consists of solving a problem

0’1 Mx.gml b. ‘106’

where Q I8 an approximation of M so that Eq. 10.6 is in some sense easier (o solve than
Eq. 10.5. The preconditioning technigue employed in COMMIX-1C is the incomplete
factorization of M. More detailed descriptions of the conjugate gradient methods and the
preconditioning ‘echniques can be found in Refl. 83,

10.4.4 Discussion

As described previously, the user has the flexibility of choosing any one or a
combination of the three matrix solvers to solve the pressure equations and the scalar
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11.1 Major Features of COMMIX-1C
All important features of COMMIX-1C are brielly mentioned or described in detatil in
the text. Several {eatures are unigue and distinct from other computer codes. These
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Five ol these features are discussed here
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11.1.3 Turbulence Modeling

1.4 Options for Reducing Numerical Diffusion




provide a more realistie and accurate solution, we have implemented an additional

the flow-modulated skew-upwind sation (FMSUD) scheme in COMMIX

FMSUD scheme has been demonstrated to reduce numerical diffusion when the

ugut L ';!')t lines and It does n oe [,‘\\'\!: .'V”\ unrealstic overshoots and

Matrix Solvers

essive overrelaxation (SOR)

Sparse Matrix Package (YSMP), and
ned conjugate gradient (PCG) method
! ndivid juations (pressure and

hese matrix solvers are used to solve the Individual discretized equat
scalar transport equations) in the inner iteration loog
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the PCG Thus, the S(
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method is limited to the pressure equation only. Both the SOR and the PCG methods are
iterative, while the YSMP Is a direct solver and no iteration s involved. In general, if the
number of computational cells is less than 1,000, YSMP should be used. On the other hard,
if the number of computationa] cells is greater than 2.000. the SOR or PCG method should

be selected.

The three matrix solvers significantly increase the flexibility and efficiency of
COMMIX-1C for the numerical computation of a wide class of engineering problems.

11.2 Code Application and Validation

The COMMIX series of codes has been tested and applied to a variety of problems.
Detalled descriptions and numerical results of problems that we have analyzed are provided
in published ANL technical reports and in papers in technica! journals 4-3% We have also
compared numerical results with avallable experimental measurements. Major applications
in the nuclear power area Include analyses and simulations of fuel assemblies, reactor upper
plenum, reactor downcomer and lower plenum, cold-leg high-temperature injection
system and downcomer, and reactor vessel. Applications of COMMIX-1C are mainly in the
area of natural circulation in pressurized water reactor 4041 A number of simulations were
performed to investigate the natural circulation phenomena during a postulated transient of
both the Zion (four-loop) plant and the Surry (three-loop) plant. The numerical results are
in general agreement with experimental observations 404!

Validation of the k-¢ two-equation turbulence model in COMMIX-1C were carried out
by comparing the calculated results with expertmental data on three relatively simple
geometrical systems, i.e. (1) fully developed pipe flow, (2) two-dimensional single sudden
expansion, and (3) axisymmetric buoyant jet. The results indicate that COMMIX-1C s
capable of predicting these simple turbulent flows in general agreement with experimental
data.”?

it should be noted that validation and assessment is an Integral part of the code
development process. More validation and assessment will be added to the present
collection of problems as time goes on. User feedback s welcome and will enhance the
code development process,

11.3 Future Developments
Numerical simulation programming Is a very active and developing field. New physical
models and better solution procedures are expected to emerge. COMMIX will, therefore,

continue to evolve. Listed below are possible developments that, if incorporated, will
further augment the capabilities of COMMIX.

11.3.1 Single-Phase Development

New single-phase capabilities that are desirable for future implementation are:









Two-Phase and
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