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ABSTRACT

The RELAPS5/MO01 computer code was used to calculate the system
response of a Westingnhouse RESAR-3S plant to a limiting smal) cold leg
break. Best estimate assumptions were used in the calculation for the
purpose of verifying and quantifying the conservatisms inherent within the
analytical methodology required by 10 CFR 50.46 and Appendix K to
10 CFR 50. Results of the analysis of the best estimate small break
calculation indicate a continuous primary system depressurization with only
brief periods of dryout of the top third of the core, and with peak
cladding temperatures remaining less than steady state full power cladding
temperatures. Comparisons of the RELAPS results with results obtained from
a Westinghouse evaluation model calculation for the limiting small break in
a RESAR=3S plant snow that the requirements for evaluation mode! small
break calculations specified by 10 CFR 50.46 and Appendix K to 10 CFR 50
result in significant conservatisms in calculated system respunse relative
to best estimate calculations.

FIN No. A6468--RESAR-3S "Most Probable" Best-Estimate LOCA
Analyses n Support of FSAR Reviews

ii




SUUMMARY

The RELAPS/MOD]1 systems thermal-hydraulic code was used to calculate
the response of a Westinghouse RESAR-3S pressurized water reactor (PWR) to
a small cold leg break. The Westinghouse RESAR-3S system is a large,

3411 MW thermal, 4-loop PWR. The system was modeled with the RELAPS
computer program with three intact loops combined into a cingle loop, and
with the fourth Toop containing a break which represented a 0.08727 ftz
crack in the primary system piping where the accumulator line connects with
the cold Teg piping. The chosen break size is the limiting small break
size, as documented in the Westinghouse RESAR-3S Final Safety Analysis
Report. Best estimate assumptions were used in the RELAPS calculation for
the purpose of providing a basis for verifying and quantifying the
conservatisms inherent in the Westinghouse evaluation model (EM) RESAR-3S
calculations as required by 10 CFR 50.4€ and Appendix K to 10 CFR 50.

Analysis of the results of the RELAPS calculation indicate that the
system response to the small cold leg break is characterized by a
continuous primary side depressurization, with only brief periods of dryout
of the top third of the core. The periods of dryout occur just prior to
blowout of the loop seal, and again after initiation of accumuiator
injection. However, fuel rod cladding temperature increases are |imited,
and peak cladding temperatures during periods of dryout are substantially
less than the steady state full power cladding temperature.

The comparisons of results from the RELAPS best estimate calculation
with the results fror the Westinghouse 2valuation model caiculation
fl1lustrates the conuervatisms inherent in the evaluation model analytical
methodology. In particular, the EM calculation shows a relatively
prolonged period when the upper hal!€ of the core is uncovered, and during
which cladding temperatures increased to a maximum of about 1760°F. This
compares to the best estimate calculation which shows only brief periods
when the top of the core is uncovered and maximum fuel rod cladding
temperature increases during these periods of only about 30°F.
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FOREWORD

The RESAR-3S "Most Probable" Best Estimate LOCA Analyses in support of
FSAR Reviews project was conducted under the direction of NRC's Division of
Systems Integration, Roger Mattson, Director; Themis Speis, Assistant
Director for Reactor Safety; Brian Sheron, Branch Chief for Reactor
Systems; Norm Lauben, RSB Section Leader; and Jack Guttmann, Project
Manager/Technical Monitor. EG&G Idaho personnel involved in the project
were Tom Charlton, Branch Manager, Reactor Simulation and Analysis Branch;
Or. Andy Peterson, Supervisor, PWR Systems Analysis; Tom Laats, Supervisor,
Fuels Analysis and Data Bank; James Cozzuol, Jeb Blakeley, and Don Fletcher,
Engineers; Joan Mosher, Glada Gatenby, and Brenda Hendrickson, Word
Processing; Erma Jenkins and Sindi Crowton, Data Technicians. This project
was completed in September 1982 under FIN Number A6468 and NRC B&R Number
20 19 40 42 3.
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BEST ESTIMATE ANALYSIS OF A SMALL BREAK LCCA IN A
RESAR-3S PRESSURIZED WATER REACTOR

1. INTROCUCTION

Current requirements for determining the acceptability of emergency
core cooling (ECC) systems in light water reactors during postulated
loss-of-coolant accidents (LOCA) incorporate conservatisms developed to
bound the uncertainties in the analysis of the phenomena that occur. These
conservatisms are codified in 10 CFR 50.46 and Appendix K to 10 CFR 50.
Calculations have been performed with sophisticated analytical computer
programs as part of an effort to verify and quantify the conservatisms
inherent in the requirements of 10 CFR 50.

This report documents the results of a postulated 4 inch cold leg
break LOCA analysis of a Westinghouse pressurized water reactor (PWR)
assuming most probable operating parameters and utilizing the best
available analytical methodology. The PWR design selected was the
westinghouze RESAR=3S nuclear steam supply system (NSSS). Orawings and
plant data sugplied by Westinghouse were used to construct a computer model
representing the system geometry and operating conditions. The computer
code selected for the analysis was the RELAPS5/MOD]1 computer code1
developed at the [daho National Engineering Laboratory for small break
LOCAs.

Section 2 of this report contains a description of the plant and the
smal]l break LOCA calculation that was performed. Details of the
RELAPS5/MOD]1 nodalization used to represent the RESAR-3S system are given in
Section 3 along with the code options selected for the calculation.

Section 4 highlights the differences in the assumptions used for the RELAPS
most probable best estimate calculation and those used in the Westinghouse
evaluation model (EM) calculation. Section 5 compares the boundary and
initial conditions used in the RELAPS calculation to those used in the
Westinghouse EM calculation. The results of the RELAPS calculation are



presented in Section 6. Qualitative and quantitative comparisons to the ‘
EM analysis performed by Westinghouse under the guidelines of 10 CFR S0 are

alsc presented in Section 6. Section 7 details the conclusions reached

concerning the RELAPS analysis and the comparisons made to the licensing

analysis.



‘ Z. PLANT AND POSTULATED ACCIDENT DESCRIPTION

The RESAR-3S NSSS is a Westinghouse pressurized water reactor
consisting of a pressure vessel and 4 separate coolant loops. The vessel
contains 193 nuclear fuel assemblies, each containing 264 fuel rods in a
17 x 17 array. There are 61 full length control rods for reactor control.
Each coolant loop consists of a vertical, single-stage, centrifugal pump; a
Type F steam generator with Inconel tubes; auxiliary feedwater systems; a
steam dump system; ECC systems; and the connecting piping. A pressurizer
and associated surge line is attached to one loop.

The postulated accident is a 4 inch break at the location where the
accumulator line is welded to the cold leg in a loop without the
pressurizer. This corresponds to the most limiting small break in terms of
highest peak cladding temperature, as presented in the RESAR-3S Reference
Safety Analysis Report.z Depressurization of the primary system causes

a reactor trip, steam dump actuation, auxiliary feedwater flow, and ECC

system actua“ion. Loss of primary coolant through the break eventually
‘ caused approximately 75% voiding of the system, but no significant or

prolonged heatup was calculated in the core. The calculation was

terminated at 1870 s after 110 s of RHR injection during which system mass

inventory increased rapidly.



3. COMPUTER CODE AND MODEL DESCRIPTION

The computer code chosen for the small break calculation was
RELAPS/MCC]1 Cyc’e 18 with updates. RELAPS/MOD]1 is an advanced best
estimate computer code developed at INEL for smalil break calculations. The
code has the capability for modeling all systems in an NSSS required for
small break calcuiaticns s well as an extensive control system package.

Features unique to RELAPS include subcooled and two=-phase
nonequilibrium and nonhomogeneous choked flow models, horizontal stratified
flow and stratified choked flow models, noncondersibles in the vapor phase,
3 ReLars
calculations have been compared to other code caICulauons4 and to

and a two-phase mechanistic abrupt area change model.

experimental data.d-7 Conclusions of these assessment efforts show that
RELAPS is an appropriate computer code for calculating the trends of the
phenomena occurring in small break transients.

The model used in this calculation consists of 150 volumes,
159 junctions, and 181 heat structures. Figure 1 shows a nodalization
diagram of the model. Three of the four loops were lumped together as the
intact Toop and the broken loop was modeled separately. The length of
corresponding components in each loop was the same, wit’ “e intact loop
components having three times the volume and flow area of tne oroken loop
components. The pressurizer surge line connects into the intact loop hot
leg. Charging pumps, safety injection pumps, accumulators, and residual
heat removal (RHR) pumps were modeled in each loop. The charging flow was
injected directly into the cold leg. The safety injection and RHR flows
were injected into the accumulator line which was connected to the cold leg
upstream of the charging line connection. The break was located in the
single Toop at the same location as the accumulator 'ine connection with
the intent of modeling a crack in the weld of the accumulator line to cold
leg connection. The flow area of the break was 0.08727 ftz; the
equivalent of a 4 inch diameter circular hole.
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The steam generator primary and secondary sides were modeled inciuding
internals metal mass and heat transfer area, main and auxiliary feedwater
systems, steamiine, relief valves, turbine stop valves, main steam
isolation valves, and steam dump system. Since the RELAPS separator
component is an ideal separator (it allows only dry steam out the top) the
steam separators and driers were lumped into one component. The steam dump
system had the capability of relieving 40% of full load steam line flow.
The atmospheric dump system and one of the spring loaded safety re'ief
valves was modeled. More r lief valves would have been added had they been
needed for the calculation. The relief valves flow areas were sized to
give the correct flow at the valve actuation pressure.

The reactor coolant pumps were modeled using PUMP components.
Homeologous curves, two-phase difference curves, and two-phase multipliier
tables for head ard torque for Westinghouse PWR pumps were used for al}
fnput requirements except the two-phase difference curves for the energy
dissipation region of the head and torgque curves. Semiscale two-phase
difference data was the only information available to use for this input.

The pressurizer tank and surge line were modeled with PIPE
components. Eight nodes were used in the pressurizer tank so the draining
could be followed. The heaters and cooling spray were not modeled since
they were not needed to reach steady state and would not be utilized in the
transient. The power operated relief valve was not modeled since it would
not be chailenged in this transient.

The vessel mode! includes a downcomer, lower pienum, core region, core
bypass, upper plenum, and upper head with an "inverted top hat." The mode!
included the leakage path from the vessel inlet nozzles to the upper
plenum, and the upper head spray nozzle flow path. The core region had six
velumes so the liguid level could be tracked and the hydraulic conditions

ould be accurately calculated.

Heat structures were used to model the stored energy and heat transfer
surfaces of the primary system loop piping; steam generator walls,



internals, and tubes; and vessel walls, internals, and fuel pins. One fuel
pin was modeiad as a hot pin, but there was no separate fluid volume for
that pin. Heat losses to the ambient were not modeled. Heat transfer
coefficients were ~<iculated by the code for all heat structures except one
in the vesse! tnat was used to simulate gamma heating. This heat structure
was modeled as a thin piece of steel with a large surface area and a high
heat transfer coefficient so all the energy generated within it would be
immediately transferred to the fluid in the vessel.

Other user :zalected code options include the foliowing. Nitrogen was
the noncondensible gas in the accumu'ator. Wall friction and unequal
temperature options were implemented for all primary and secondary volumes
except pumps and the steamline beyond the main steam isolation valves
(MSIV). These options are not allowed for pumps. The main steamlines
beyond the MISVs were not regions critical to the calculation so the
options were chosen to minimize protiems in achieving steady state
conditions. With a few exceptions to be discussed later, the following
modeling criteria were applied at the junctions. As recommended by the
RELAPS development group, choking was allowed at all junctions except at
the separators; the geometry determined whether a junction had a smooth or
abrupt area change; and the full inertia treatment option was selected for
all junctions. Liquid and vapor could have unequal velocities except at
the separator inlets and the accumulator line to ccld leg connections.
These selections gave more realistic void distributions in the steam
generators and prevented problems that could occur by injecting cold water
into a two phase system.

At 1522.2 s, a restart was performed which changed two upper nead
bypass flow junctions to mitigate a mass error problem. As suggested by
the RELAPS code development group, the junctions from the downcomer to the
upper head and from the upper head to the guide tubes were given increased
flow areas and loss coefficients. These changes wculd provide the same
steady state flow through the junctions, but allow the code to calculate
two-phase flow with less mass error. The choking and two velocity options
were turned off for these junctions at this time. If this techrnique had
been used for the entire calculation, the system mass error would have been



smaller but tne system depressurization and core thermal hydraulics would

not have been significantly altered.

Another restart was performed at 1722.2 s. The flow from a time
dependent volume to the volume that feeds the pumped ECC trains was choking
when RKR pumps came on. Since the area of this junction was arbitrarily
chosen, it was increased to prevent the unrealistic choking problem. With
these changes, the calculation ran smoothly to completion at 1870 s.

The updates used in this calculation include the following. One
update fixes an error so tha: all restart variables are defined. Two
updates cause the velocity term and mass terms in the momentum flux
equation to be donored. Another update allowed mass error and total system
mass to be used as minor edit and plot variables. At the 1722.2 s restart,
an update was added to reduce the mass error, All updates were recommended
Dy the code develcopment group and are listed in Appendix A.



4. ASSUMPTIONS FOR BEST ESTIMATE AND EM CALCULATIONS

The assumptions for the initial and boundary conditions in the RELAPS
calculation are the result of getting best estimate conditions of a plant
at typical operating conditions. Table 1 compares the assumptions used in
the RELAPS calculation to the assumptions used in the EM calculation. The
conservatisms in the EM calculation are apparent in the lower ECC and
auxiliary feedwater flow rates, longer delay times, higher water

temperatures, and higher core power.



TABLE 1. COMPARISON OF ASSUMPTIONS USED IN THE RELAPS BEST ESTIMATE
CALCULATION AND THE EVALUATION MODEL CALCULATION
RELAPS EM
ECC

All trains working (2 safety
injection pumps, 2 charging
pumps, 2 RHR pumps)

4 accumulators injecting into the
primary system

Pumped ECC is pased on design
head/flow curve with 10% of
design head added uniformly over
curve

A1l ECC water at 90°F

Safety injection delay = 10 s

Steam Generator Secondary Side

Steam dump system cctuated at
reactor trip

2 motor driven auxiliary feed-
water pumps, 500 gpm each,
30 s delay, 90°F water

1 turbine driven auxiliary feed-
water pump, 1000 gpm, 60 s
delay, 90°F water

Core Power Decay

76% of ANS + 20% power decay
curve

2.2 s rod drop time
Total core power of 3411 Mw
Total peaking factor of 1.678

Reactor Coolant Pumps

Tripped at 1300 psia

One train working (one safety
injection pump, one charging pump)

3 accumulators injecting into the
primary system

Pumped ECC flow degraded 5% from
design head

Accumulator water at 120°F
Pumped ECC water at 100°F

taf=ty injection delay = 25 s

No steam dump system

1 motor driven auxiliary feedwater
pump, 470 gpm, 60 s delay,
120° water

No turbine driven auxiliary feed-

water pump

ANS + 20% power decay curve

3.4 s rod drop time
Total core power of 3206.88 Mw

Total peaking factor of 2.32

Tripped at 0 s

10




5. INITIAL AND BOUNDARY CONDITIONS

This section compares RELAPS initial conditions to the desired initial
conditions for a RESAR-3S plant. Differences between the boundary
conditions of the RELAPS best estimate calculation and the Westinghouse EM
calculation are discussed.

5.1 Initial Conditions

When the model was assembled and quality assured (see Appendix B) the
process of arriving at a steady state condition was initiated. The sum of
the elevation changes of all flow loops was checked tc ensure that all
loops close. Estimates were made of initial fluid conditions throughout
the system and these were applied to each volume. Estimates of mass flows
were input for each junction. Power was applied to the core, the pumps
were turned on to rated conditions, a time dependent volume was connected
to the top of the pressurizer to force a constant pressure boundary
condition on the primary side, main steam valves were opened, and feedwater
was pumped intoc the steam generators. Feedwater flow was set equal to
steam flow to maintain the desired secondary side inventory. A pump speed
controller adjusted the pump speed to get the desired mass flow rate
through the core. A steam valve controller adjusted the steam flow rate to
get the correct cold leg temperature. The secondary side pressure had to
be lowered by 61 psi below specified conditions and the recirculation flow
ratio lTowered to 3.1 from 3.7 to obtain a high enough heat removal from the
primary to get the desired cold leg temperature.

Pressure drops around the system were compared with desired values and
loss coefficients were changed to obtain desired pressure drops. Loss
coefficients in the vessel bypass paths were adjusted to give correct flows
in these areas.

11



The maximum stored energy in the fuel was determined from FRAPCON=-2 ‘
runs (Appendix C) and a radial temperature profile was generated for the

average and hot fuel pins. The radial temperature profile in the RELAPS
fuel pins was forced to match the FRAPCON-2 temperature profile. This
procedure gave the correct stored energy in the fuel since the fue
properties and the fuel geometry were the same for both codes. The
temperature profile in the RELAPS model was changed by changing the gap
conductance and fuel pellet radial power profile in an interative procedure
with constant fluid condiilions. Figure 2 compares the initial temperature
profile used in RELAPS to the desired (FRAPCON-2) temperature profile for
the hot pin and average pins.

Steady state was reached when it was determined that selected
pressures, temperatures, and flow rates were at their desired values and
were not changing in time. Table 2 shows important system parameters at
steady state conditions compared to des’red conditions. After steady state
was reached, the pump speed and stesm valve position controllers were
removed and those parameters were h:ld constant until conditions of the

system during the transient dictated a change.

TABLE 2. INITIAL CONDITIONS

RELAPS RESAR-3S
Parameter Value Value
Ccld leg temperature (°F) 557.7 557.6
Hot leg temperature (°F) 617.7 617.8
Pressurizer pressure (psia) 2255. 2250.
Primary coolant flow (1bm/s) 39091. 39111.
Total core power (MW) 3411. 3411.
Secondary side pressure (psia) 935. 1000.
Feedwater temperature (°F) 440. 440.
Steam mass flow rate (1bm/s) 1047. 1051.
Vessel AP (psi) 45 48 45 .4}
Steam generator AP (psi) 31.4 33.2

12
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5.2 Boundary Conditions

This section discusses the boundary conditions applied in the RELAPS
calculation, including fuel rod power, ECC injection parameters, and steam
generator secondary side control. The setpoints and delays for the
application of the boundary conditions are presented in Table 3. These
boundary conditions are compared to the EM calculation boundary conditions
where appropriate.

Heat losses to the environment were not modeled since they would be a
negligibly small fraction of the system power during this calculation. The
containment pressure was held constant at 14.7 psia throughout the
calculation. The subcooled and two phase break flow multipliers were each
set to 0.84 as recommended by the code development group and the LOFT
program code users.

In both the RELAPS and EM calculations, after the pressurizer pressure
had dropped to 1860 psia there was a 2.0 s signal processing delay before a
reactor trip signal was generated. From the time of the trip signal until
the control rods were fully inserted was 2.2 s in the RELAPS calculation
and 3.4 s in the EM calculation. Reactor power did not begin to decay
until the rods were fully inserted. A plot of the normalized power decay
curve for both calculations is shown in Figure 3.

The reactor trip signal initiated the closing of the turbine stoo
valves which had a 0.5 s closing time. A steam dump system that directs up
to 40% of the full power steamline flow directly tu the condenser was
enabled after the reactor trip signal was generated. The flow rate of the
steam dump system was based on an average temperature that had been
processed in a lead-lag controller. The lead time constant was 10 s and
the lag time constant was 5 s. The EM calculation did not model a steam
dump system.

14
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TABLE 3. COMPARISON OF BOUNDARY CCNDITION SETPOINTS FOR RELAPS AND EM

CALCULATIONS
RELAPS Setpoint‘ EM Setpoint
Event (Time Delay) (Time Delay)
Open break time = 0.0 s time = 0.0 s
Pressurizer low pressure p = 1860 psia p = 1860 psia
Close turbine stop valves p = 1860 psia p = 1860 psia
(2.0 s) (2.0 s)
Begin power decay p = 1860 psia p = 1860 psia
(4.2 s) (5.4 s)
Pressurizer low-low pressure p = 1760 psia p = 1760 psiab
Safety injection ("S") p = 1760 psia p = 1760 psia®
signal (2.0 s) (2.0 s)
Charging flow initiated "S" signal "S" signal
(25.0 s)
Close feedwater valve "S" signal "S" signal
(2.0 s)
Safety injection flow "$" signal "S" signal
initiated (10.0 s) (25.0 s)
Motor driven auxiliary "s" signal "S" signal
feedwater flow started (30.0 s) (60.0 s)
Turbine driven auxiliary "S" signal N/A
feedwater flow started (50.0 s)
Reactor coolant pumps p = 1300. psia time = 0.0 s
tripped off
Accumulator pressure 600 psia 600 psia
RHR flow initiated p = 215 psia N/A

a. Time delay after setpoint is shown in parenthesis below the setpoint

parameter.

b. Values obtained from Westinghouse data package for RESAR-3S plants.
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A safety injection ("S") signal was generated 2.0 s after the
pressurizer pressure reached 1760 psia. The main feedwater valves started
closing 2.0 s after the "S" signal. In the RELAPS calcu'ation, the motor
driven auxiliary feedwater pumps came on 30.0 s after the "S" signal, and
the turbine driven auxiliary feedwater pumps came on 50.0 s after the "S"
signal. In the EM calculation, the motor driven pump came on 60.0 s after
the "S" signal. The auxiliary feedwater pumps were controlled to cover the
steam generator tubes and keep them covered throughout the calculation
without completely filling the generators.

In the RELAPS calculation, the "S" signal initiated the pumped ECC
injection with no delay for charging pump injection and a 10 s delay for
safety injection pump actuation. In the EM calculation, no pumped ECC was
injected until 25 s after the "S" signal. The accumulators were initiated
at 600 psfa and the flow rate was controlled by system pressure at the
injection point for both calculations. RHR was ramped on from 200 to
215 psia in the RELAPS calculation and was not considered in the EM
calculation. Plots of pumped ECC flow rates vs. time are shown in Figure 4.

In the RELAPS calculatiun, the reactor coolant oumps were tripped off
at 1300 psia and allowed to coastdown. Reverse rotation was not allowed,
but they were allowed to spin in a turbine mode. Reactor coolant pump
speed is compared in Figure 5 for the RELAPS and EM calculations. In the
EM calculation, the pumps were tripped off at the initiation of the
accident. Rated pump parameters used in the RELAPS calculation are shown
in Table 4.

TABLE 4. RATED PUMP PARAMETERS FOR RESAR-3S PUMPS

Speed (rpm) 1186.
Flow (gpm) 94400,
Head (ft) 304,
Torque (1bf-ft) 28015.
Moment of inertia (1b-ft2) 95000.

Density (1bm/ft>) 47.18
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6. ANALYSIS RESULTS

The following two sections present the results of the analysis of the
RELAPS small break (i.e., 4 inch cold leg break) calculation for a RESAR-3S
plant. The first section describes the general system behavior as
calculated by the RELAPS5/MOD1 program, and includes a detailed analysis of
the factors which influenced the response. A brief summary of how the
RELAPS results compare with experimental data is also included in this
section. The second section presents comparisons of results obtained from
the RELAPS calculation with the results obtained from the limiting small
break calculation performed by Westinghouse for the RESAR-3S document.
Comparisons are included in this section for each of the graphical outputs
presented in the RESAR-3S document. These comparisons quantify the
influence of the conservatisms imposed by 10 CFR 50.46 and Appendix K to
10 CFR 50 on the Westinghouse RESAR-3S calculation.

6.1 RELAPS Calculation=--General System Behavior

Table 5 presents a sequence of events highlighting important
operations and thermal-hydraulic events which occur during a 4 inch cold
leg break LOCA, as calculated by the RELAP5/MOD1 program. The system
response to the small cold leg break is characterized by a continuous
primary side depressurization, with only brief periods of dryout of the top
third of the core. The periods of dryout occur just prior to blowout of
the loop seal, and again after the initiation of accumulator flow.

Following the initiation of the transient, voiding of the primary
systam progresses from the upper elevations downward. The continued loss
of fluid from the system via the break, in conjunction with the formation
of l1iquid seals in the pump suction piping, causes a gradual depression of
the nixture Teve! in the vessel below the top of the core. The
carresponding dryout of the upper portion of the fuel rods results in a
limited rad temperature increase (temperatures remain less than steady
state full power temperaturas) However, blowout of the loop seal shortly
after the core begins to uncover leads to a recovering of the core, and the
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TABLE 5.

SEQUENCE OF EVENTS FOR RELAPS SMALL BREAK CALCULATION

Event

Blowdown initiated

Pressurizer low pressure trip setpoint
(1860 psia) reached

Intact/broken loop turbine stop valves
begin to clcse

Steam dump system actuated
Core power decay initiated

Pressurizer safety injection signal
setpoint (1760 psia) reached

Charging pump flow initiated

Intact/broken loop main feedwater
valves begin to close

High pressure injection pump flow
initiated

Intact/broken loop pump coastdown
initiated

Pressurizer emptied

Upper plenum/hot leg fluid saturates
Auxiliary feedwater 7low initiated
Upper head begins to drain

Broken loop pump suction legs clear
and break uncovers

Intact/broken loop accumulator injec-
tion initiated

RHR pumped injection initiated

Calculation terminated

Time

Ls)
0.0
15.2

15.3

15.3
19.5
20.4

22.5
24.5

2.9

34.9

40
38-42

52.6
200
520

858

1755
1870
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mixture level remains above the top of the core until after accumulator
injection begins. The accumulation of ligquid in the pump suction pipirg
after accumulater injection starts, results in two futher periods (again of
brief duration) in which the mixture level in the vessel is depressed below
the top of the core. Again, however, rod temperature increases are
limited, and peak cladding surface temperatures remain well below the full
power steady state temperatures. Once injection from the low head residual
heat removal pumps begins, the rate of liquid addition to the primary
system (via all active components of the ECC system) is sufficient to cause
a rapid increase of the primary system liquid inventory, thus assuring
adequate and continued cooling of the core.

The system thermal-hydraulic response is discussed in more detail in
the following paragraphs, and the factors that influence the system
behavior as the transient progresses are identified. System pressure
response, system mass inventory/distribution, core thermal-hydraulic
response, and break flow behavior (including the influence of ECC injection
and break flow) are the primary phenomena of interest.

6.1.1 System Pressure Response

The vessel upper plenum pressure for the small break transient is
shown in Figure 6. The timing of events which influence the
depressurization rate are also indicated in the figure. Immediately
following rupture, the primary system fluid (exclusive of the pressurizer
fluid) is subcooled and the depressurization is rapid. By between 38
and 42 seconds, the system depressurizes to the saturation point of the
fluid occupying the volume between the vessel upper plenum and the inlet
plena of the steam generators, as indicated in Figures 7 and 8 which
compare the vessel upper plenum and intact loop steam generator inlet
plenum volume equilibrium temperatures with their corresponding volume
saturation temperatures. Bulk boiling of the hot fluid at this point
(beginning near the inlet of the steam generator and working its way back
to the vessel upper plenum) is sufficient to siow the depressurization rate
(Figure 6) as steam generation tends to offset the effect of coolant volume
loss at the break. The system then continues to depressurize at a
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gradually increasing rate until between 530 and 590 saconds when the steam ‘
generator secundaries become a source of heat to the primary system. After

this point, the system continues to depressurize but at a gradually
decreasing rate of depressurization. Ouring the accumulator injection
period, the system depressurization exhibits a stepped response that is due
to the combined effects of the accumulator injection, break flow, and loop
hydraulic response. The mechanism for the stepped pressure response is
discussed in more detail in Section 6.1.4. By 1755 seconds the system is
depressurized to the point that allows ECC injection from the residual i.eat
removal pumps to begin. The system continues to depressurize further
through the termination of the calculation at 1870 seconds.

6.1.2 System Mass Inventory/Distribution

The primary system transient mass inventory for the small break
calculation is snown in Figure 9. During the first 500 seconds (or prior
to clearing of the lcop seal), depletion of the primary system liquid
inventory is juite rapid, as the system pressure is high and conditions in
the break volume are primarily single phase liquid. Blowout of the loop

seal at 520 seconds causes the fluid conditions in the break volume to

change from single phase liquid to a relatively high void fraction

Tiquid/steam mixture, which when combined with the steadily falling primary

system pressure, results in a considerably reducea break fiow rate and a

leveling off of the system mass inventory. Accumulator injection

(beginning at 858 seconds) initially results in a minor increase in system

mass inventory, although a significant recovery of inventcry is prevented

because of the on/off nature of the accumulator flow and because of an

increase in the break flow rate when subcooled ECC is present in the break

volume (see Section 6.1.4). However, as the transient progresses, further

reductions of the primary system mass inventory occur (between 1160 and 3
1325 seconds, and again between 1450 and 1750 seconds), even with the

accumulators continuing to inject. These reductions in mass inventory

occur as a result of the accumulation of liquid in the broken loop pump

suction leg piping which leads to a significant increase in the subcooling

of the liquid present in the break volume and a corresponaing increase in

the break flow rate. The loop hydraulics during these periods of increased ‘
system mass loss are discussed in more detail below. Initiation of liquid
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injection from the residual heat removal pumps at 1755 seconds leads to a .
relatively rapid increase in the primary system mass as the combined ECC

injection rate (from all components) becomes significantly greater than the

break flow rate. The increase in mass inventory then continues through the

termination of the calculation.

The primary system mass distribution for the smail break calculation
fs characterized by the voiding of the upper elevations of the system, with
Tiquid collecting in the Tower elevstions. Immediately following rupture,
liquid Tost out the break is made up by the liquid draining from the
pressurizer, and the primary system remains essentially liquid solid. When
the pressurizer has nearly emptied (i.e., at about 39 seconds), flashing of
the hotter fluid in the primary system begins. Voiding of the primary
system fluid occurs first on the upflow side of the intact loop steam
generator (as fluid in the intact loop hot leg is at a slightly higher
temperature than in the broken loop hot leg due to mixing with the hot
pressurizer fluid), and then progresses through the remainder of the upper
portions of the system as the transient continues. Figure 10 and 11 show

the coliapsed Tiquid levels in the upflow and downflow legs of the intact
and broken loop steam generators, respectively. As indicated in Figure 10,
voiding of the intact Toop steam generator begins at about 40 seconds, and
the upflow and downflow sides are essentially empty by about 450 and

350 seconds, respectively. Voiding of the broken loop steam generator
(Figure 11) begins somewhat later (at about 60 seconds) and the upflow and
downflow legs are emptied by abou: 440 and 300 seconds, respectively.
Figure 12 shows the collapsed liquic level in the upper plenum portion of
the vessel (covering the distance from the top of the core to the hot leg
centerline), while Figures 13 and 14 show the void fraction in the intact
and broken loop hot legs near the vessel. Again, each figure indicates a
gradual depleticn of liguid inventory beginning at about 60 seconds.

Figure 15 compares the collapsed liquid levels in the downcomer and across
the core, covering the region between the hot/cold leg centeriine and the
bottom of the core barrel. The downcomer remains essentially full until
about 350 seconds. However, depletion of the core liquid begins at about
60 seconds and continues at a relatively constant rite until about

225 seconds. At this point a reversal of the core flow causes a sudden ‘
decrease in the core level, although the flow reversal also allows liquid
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in the upper portions of the system to begin to drain back into the

vessel. Thus between 225 and 400 seconds, the rate of decrease of the core
level is reduced as liquid from the upflow sides of the steam generators
and from the upper head and guide tube volumes drains back into the upper
plenum and core regions.

As the upper portions of the system empty, liquid in the pump suction
piping forms seals which impede the flow of steam from the core region
around the loops to the break. The resulting higher pressure in the
core/upper plenum region, relative to the break location, causes a
depression of the liquid levels in the downflow legs of both the intact and
oroken lcop pump suction piping and in the core. Figures 16 and 17 compare
the collapsed liguid levels in the upflow and downflow legs of the intact
¢nd broken loop pump suction, respectively, and show the decrease in the
downflow leg ligquid level pelow that of the upflow leg in both loops after
about 400 seconds. Referring again to Figure 15, a further depression of
the core liquid Tevel occurs after 2dcut 410 seconds (i.e., once liquid
stops draining back into the vessel from the high points of the system).
The depression of the core liguid level at this time leads to an
intermittent uncovering of the top of the core between about 450 and
520 seconds (see Section 6.1.3). However, by 520 seconds the liquid level
in the broken loop pump suction downflow leg reaches the bottom of the
suction piping, and a rapid clearing (biowout) of the liquid in the upflow
leg then begins (see Figure 17). The resulting flow path through the
broken loop from the vessel to the break allows equalization of the upper
pienum/break region pressure, and a rapid increase in the c.re liquid level
occurs (see Figure 15).

Between the blowout of the loop seal and about 1150 seconds, the core
level remains relatively constant and the downcomer level exhibits a
gradual increase as the combined ECC injection rate from all sources during
this period is somewhat greater than the break flow rate. However,
between 1160 and 1325 seconds and again between 1450 and 1750 seconds, the
core level exhibits a significant decrease as indicated in Figure 18 which
compares the long term downcomer and core levels. The core level
depression during these periods is a result of the reformation of the loop
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seal. Figure 19 compares the collapsed liquid levels in the upflow and
downflow 'egs of the broken loop pump suction piping and illustrates the
presence of the seal during the periods of level depression in the core.
The depression of the core 1iquid level during these periods again results
in an intermittent dryout of the top of the core, although temperature
increases are limited. Referring again to Figure 18, a rapid increase in
toth the downcomer and core levels occurs once injection from the low head
residual heat removal pumps begins at about 1755 seconds.

6.1.3 Core Thermal /Hydraulic Responses

The vessel liquid inventory for the small break calculation remains
sufficiently nhigh that the rod cladding temperatures stay below the steady
state full power cladding temperatures throughout the transient, although
as indicated previously, there are brief periods when dryout of the upper
portion of the core leads to minor cladding temperature increases.

Figures 20 and 21 show the rod cladding temperatures at the 10 to 12 and

8 to 10 foot elevations above the bottom of the core, respectively, for an
average power rod, while Figures 22 and 23 show the cladding temperatures
at the same elevations for the hot pin. Except for the period between

320 and 520 seconds and again between 1200 and 1250 seconds, and 1670 and
1740 seconds when intermittent dryout of the top third of the core gives
rise to cladding temperature increases of a maximum of about 30 degrees
Farennheit, the cladding temperatures generally remain a few degrees above
the fluid saturation temperature. Figure 24 shows the cladding temperature
on the hot pin at the 6 to 8 foot level above the bottom of the core, and
does not indicate any rod dryout at this elevation.

The factors which influenced the hydraulic response of the core are
indicated on Figure 25 which shows the collapsed liquid level in the core
covering the active fuel region. As the system depressurizes following
rupture, beiling of fluid in the core causes the initial decrease in core
Tiquid inventory shown in Figure 25. Figure 26 compares the vapor void
fraction at different elevations in the core, and indicates the onset of
boiling starting at about 60 seconds at the top of the core and progressing
to the bottom of the core by about 229 seconds. B8y 225 seconds, the
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effective head of the primary coolant pumps is reduced sufficiently (pump
coastdown begins at 35 seconds) to allow reversal of core flow. At this
point, fluid in the upper parts of the system (i.e., in the upflow sides of
the steam generators and in the hot legs) begins to drain back into the
vessel upper plenum and core regions. In addition, fluid in the vessel
upper head becomes saturated at about 210 seconds, and also begins to drain
into the upper plenum region. Figure 27 which compares the flow rate at
the inlet to the core with the core collapsed liquid level, indicates an
increase in level shortly after the core flow reversal occurs, followed by
a period (lasting until about 430 seconds) when the liquid depletion rate
is greatly reduced. By 430 seconds, most of the liquid in the upper parts
of the system is depleted, and the core inventory once again begins to
decrease as boiloff, combined with the presence of the loop seals
(discussed earlier) causes a depression of the vessel/core liquid level.
Figure 28, which compares the cladding temperature of the hot pin at the
top of the core (10 to 12 foot elevation) with the vapor void fraction of
the adjacent volume, shows the effect of the resulting dryout on the
cladding temperature as the mixture level is depressed below the top of the
core. The oscillatory nature of the core level at this point, however,
causes the cladding to rewet shortly after each drycut, thus limiting the
magnitude of the temperature increase. This period of dryout is terminated
at 520 seconds by blowout of the loop seal, which leads to a rapid increase
of the core liquid level (Figure 25) as liquid in the pump suction and cold
leg piping is redistributed to the vessel.

As indicated previously, the period of dryout between 1200 and
1250 seconds i1s a result of the gradual accumulation of liguid ii the
broken Toop pump sucticn piping which leads to a depression of the mixture
Tevel Delow the top of the core. Figure 29 compares the collapsed liguid
Tevels in the upflow leg of the intact and broken loop pump suction piping
and include the collapsed liquid level in the core. As shown in the
rfigure, the liquid level in the broken loop pump suction begins to increase
at about 1150 seconds (due to liguid draining back into the sucticn piping
through the pump). As the level continues to increase, the flow path
between the vessel upper plenum and the break (through the broken loop)

becomes blocked and a reduction of the core level occurs. (Note that the
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intact loop pump suction has remained blocked with liquid since the
peginning of the transient.) The reduction in core level is terminated at
about 1240 seconds when liquid in the intact loop pump suction begins to
clear. Figure 30 compares the rod cladding temperature of the hot pin at
the 10 to 12 foot elevation above the bottom of the core with the void
fraction of the adjacent fluid volume, and illustrates the cladding
temperature increase which occurs as the volume becomes voided. Again, the
cladding temperature increase is limited by rewet resulting from the
oscillatory nature of the core liquid level.

The period of dryout between 1670 and 1740 seconds is once more a
result of accumulation of liquid in the oroken loop pump suction, but the
dryout is not caused by a blockage of the steam flow paths around the loops
as occurred earlier. Figure 31 compares the collapsecd liguid levels in the
upflow legs of the intact and broken loop pump suction piping, and again
includes the core collapsed 1iquid level. As indicated in the figure, the
liquid level in the broken loop suction upflow leg begins to increase at
about 1450 seconds, and the leg is full by 1465 seconds. However, the
intact Toop suction leg begins to clear shortly after the broken loop leg
begins to fill. (The intact loop suction leg piping refilled previously at
about 1340 seconds--see Figure 29.) Thus a path for steam flow from the
vessel to the break is maintained and the depression of the core level is
miminal. The effect of blockage of the broken loop pump suction piping,
however, is to cause an increase in flow rate from the vessel toward the
oreak, which in turn causes a considerable increase in the degree of fluid
subcooling in the break volume as cool ECC )liquid is carried toward the
break. As a result, a corresponding increase in the break flow rate occurs
which Teads to the further gradual depletion of the vessel inventory shown
in Figure 31, and the intermittent dryout of the top third of the core
between 1670 and 1740 seconds. Figure 32 compares the cladding temperature
of the hot pin at the top of the core with the void fraction of the
adjacent volume, and again illustrates the effect of the dryout. The
reduction in core lTevel is terminated once RHR pumped injection begins at
about 1760 seconds, and a further rapid increase in the core level occurs
at about 1790 seconds as the broken loop pump suction piping clears for a

final time.
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6.1.4 Break Flow Response

The break flow response for the small break calculation is shown in
Figure 33. Following rupture, conditions in the break volume are single
phase liquid, and the break flow decreases from its maximum just after
rupture with decreasing primary system pressure. The slowdown in the
primary system depressurization rate once flashing begins in the hot
portions of the system (i.e., at about 40 seconds), causes the break flow
to level off and remain fairly constant until about 190 seconds. By
190 seconds, the rate at which liquid ‘s being supplied to the break volume
by the broken loop pump falls below the break flow rate, and a flow
reversal occurs in the piping between the break volume and the vessel. The

low reversal at this point is indicated in Figure 34 which shows the
junction mass flow rate on the vessel side of the break volume. The effect
of the flow reversal is co carry cool ECC liquid back into the break
volume, thus supplying the break with relatively low enthalpy fluid which
causes a corresponding increase in the break flow rate. Figure 35 compares
the break flow rate with the break volume equilibrium fluid temperature,
and shows the increase in break flow rate as the temperature decreases.
The break flow rate remains relatively high (under the influence of the ECC
liquid being injected into the cold leg piping) until blowout of the loop
seal Legins around 500 seconds. At this time, conditions in the break
volume change from primarily single phase liquid to a relatively high void
fraction mixture as the liquid is swept away from the break into the
vessel. The change to high void fraction conditions in the break volume
causes a corresponding reduction in the break flow rate as shown in
Figure 36 which compares the break volume void fraction with the treak flow
rate. The break flow then remains relatively low until the initiation of
accumulator injection (at about 858 seconds). The injection of accumulator
Tiquid into the cold leg piping once again provides low enthalpy fluid to
the break volume giving rise to an increase in break flow. Figure 37
compares the break flow rate with the break volume fluid equilibrium
temperature (for a period after accumulator injection begins), and again
illustrates the increase in break flow rate with a corresponding decrease
in fluid temperature, and vice versa. The cyclic nature of the break flow
response during the accumulator injection period is due to the oscillatory
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flow in the piping between the vessel and the rreak volume. Figure 38
compares the break flow rate with the flcw ~ate ¢n the vesse! side of the
break volume. The figure shows that when flow is back into the break
volume (i.e., negative Toop flow), the break flow tends to be high as cool
ECC liguid is being carried toward the break. Likewise when flow is out of
the break volume toward the vessel (i.e., positive loop flow), the break
flow tends to be low since the cool ECC liquid is then being carried away
from the break.

Referring again to Figure 33, the break flow rate increases
considerably during the periods between 1160 and 1325 seconds, and between
1450 seconds and the terminatior of the calculation. As discussed earlier,
the broken loop pump suction piping during these periods is blocked by
liquid (Figure 19), and the flow direction in the broken loop culd leg
piping is directed primarily from the vessel toward the break. Figure 39
shows the mass flow rate on the vessel side of the break volume and
indicates the relatively strong flow back into the break voiume from the
vessel. The net effect of the flow into the break voiume is to supply the
break with fluid that is as much as 100 degrees subcooled, as shown in
Figure 40 which compares the break volume fluid temperature with the
corresponding volume saturation temperature. This large degree of
subcooling in the break volume gives rise to the high break flow rates
indicated in Figure 33. The break flow rate decreases from these high
values only after blowout of the broken loop pump suction piping once again
allows the cold ECC fluid to be carried away from the break (i.e., toward
the vessel).

6.1.5 Similarity of RELAPS Calculation to Experimental Results

The 2xperimental basis for evaluating how representative the RELAPS
small break calculation results are relative to "expected system behavior"
includes many small break experiments conducted in the LOFT and Semiscale
test facilities. Particular experiments which were similar in nature to
the RELAPS smai)l break transient discussed herein include (but are not
necessarily limited to) LOFT Test L3-58 and Semiscale Tests S-SB-Z9 and
s-uT-4. 20
pipe in the cold leg of a PWR, although boundary conditions (such as ECC

Each of these experiments simulated the rupture of a 4=inch

49



Mass flow (!Ym/s)

Moss flow (Ibm/s)

2300 T ‘ T T 4000
H —— BREAK FLOW '
\ gg =~ BREAK VOLUME FLOW
2000 - A ! ~ 2000
e | e
i oy b e} AN
; et ng B Nein e A i Apiteg M " v Al
1300 F“‘,. F ‘; ; h ;l i “:‘. I o Wit -3
| A | ' v Phad | |
| ] | | i 1
: AL
1000 ~ 1 =-2000
{ q |
— |
N
50C - A ,'A\ il \."‘» \‘\ ,’q, \ | T=4000
. ‘ } ftv\ ‘ L ,"i[,,),l\
f‘J\"ﬂfJ N \‘ﬁf'\‘“ \'v "‘ I Y VYWY
o ! . . -6000
860 880 1900 3920 340 960 98C '00G 020 104C 1060 ‘080
Time (s)
Flgure 38. Comparison of the breck ‘low to the flow an ‘he vesse:
side of the breck volume from *he RELAPS calcuigtion
(880 +o 108C 9).
1000 —r - ,_
800 ~§ | " | 4
H | ! |
500 ‘;' ' : | 4
I ' {
400 4 M, 1 4
| |
'} ) i | |
200 4] 1 T | J
] ! ' 3 |
0 - ! YA |
TR o |
1 | 'i | |
-200 y ’ i | 4‘
-400 ' ’f R ‘ <
-80C ~ | _, | s f | -
-a00 ~ (' b | 1] | -
| | | |
-1000 | —
100¢ 1200 140C 1600 2000
Time (s)
Figure 9. Jass flew on the vessel side of the breck volums

‘rom the RELAPS caicuiation (1000 te 1900 s).

Mass flow rate {!bm/sec)



Fluid temperalure (F)

- FLUID TEMPERATURE
~~ SATURATICN TIMPERATURE

™
B

7(‘, I !‘ )

i ] S B N L o
. ¥ v A
t A it h / b
) Al i |
00 - I 1 *31
o
Al
200 ~ -
‘00
800 1090 1200 1400 '8CO ‘800
Time (3)
Figure 40. Comparison of *he areax volume fluiad *emoeratura to

‘he zorresponcirg scturaticn terrperature ‘rom ‘re
ELAPS catcularion [3C0 to 'S0 ).

51



injection rates and core decay power) were not necessarily the same as
those assumed for the RELAPS calculation.

Based on the similarities in overal] system response between the small
Dreak tests conducted in the LOFT and Semiscaie systems (and in particular
the three tests mentioned above), and the RELAPS calculated system
response, the RELAPS results are considered to be representative of the
system behavior that will occur in a small break LOCA. Generally, the
system response in the experiments (including trends in data as well as
particular phenomena which occurred during the transients) was similar to
the ~esponse obtained in the RELAPS calculation for the RESAR-3S plant.
Voiding of the system progressed from the upper eievations downward with
the gradual formation and then blowout of the loop seal. Depletion of
Tiouid from the primary system via the break was not sufficient to cause a
sustained uncovering of the core either prior to or following blowout of
the loop seal, and no heatup of the fuel/heater rods was observed. The ECC
injection rates from the accumulators were very low (because of the small
differential pressure between the accumulators and primary system), and in
some instances the accumlators exhibited an on/off benavior similar to that
shown in the RELAPS calculation. Differences in the timing of events which
occurred in the experiments, relative to the timing of the same event in
the RELAPS calculation, do occur. However, these differences in timing are
attributable to scaling influences, as well as to the differences in
boundary conditions assumed for the individual tests. The particular
effect of cold ECC fluid on increasing the break flow rate (as occurs in
the RELAPS calculation) was not readily evident in the experiments.
However, the ECC injection 1ycaticns in the experiments were located wel)
away from the break location (as compared to at the break in the RELAPS
calculation), and the injection rates were considerably less than that
assumed for the RELAPS calculation. Both of these factors would tend to
reduce the amount of fluid subcooling at the break, thus reducing the
magnitude of any possible increase in break flow that may occur.

6.2 RELAPS/Westinghouse Calculation Comparisons

In this section, comparisons of results from the RELAPS small break
calculation and from a Westinghouse evaluation modei calculation for a
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RESAR-3S plant are presented. These comparisons quantify conservatisms in
the Westinghouse analysis required by 10 CFR 50.46 and Appendix K to
10 CFR 50.

The assumptions used in the RELAPS best estimate calculation and in
the Westinghouse evaluation model calculation are discussed in Section 4 of
this report. The assumptions which provide the most significant degree of
conservatism in the Westinghouse EM calculation relative to the RELAPS
calculation are as follows. First, the EM calculation assumes a
significantly reduced FCC injection capability, both with respect to
injection rates, and with respect to ECC fluid conditions. Second, the
EM calculation assumes a high core decay power. The net effect of the
first assumption is to reduce the likelihood that the core will remain
covered during the transient (and, as shown bDelow, the core is uncovered
for a period of about 500 seconds in the EM calculation). The net effects
of the second assumption are to cause a higher rate of conversion of core
coolant to steam (thus maintaining a higher transient system pressure, as
well as assuring a faster depletion of the available primary system liquid
inventory), and to increase the rate of fuel rod heatup and the magnitude
of the peak cladding temperatures once the core becomes uncovered. Other
assumptions listed in Table 1 of Section 4 add to the conservative nature
of the Westinghouse calculation, but to a lesser degree. The comparisons
presented in the remaining paragraphs of this section illustrate the
conservative nature of the Westinghouse calculation. especially with
respect to peak cladding temperatures obtained during the transient.

The primary system pressure response (pressurizer pressure) for the
RELAPS and Westinghouse calculations is compared in Figure 41. The
considerably faster overall depressurization in the RELAPS calculation is
attributed to the lower core transient decay power (see Figure 3), as well
as to the higher ECC injection relative to the Westinghouse calculation.
These two factors, when combined, result in a generally more rapid cooling
of the primary system fluid in the RELAPS calculation, along with a
corresponding faster reduction of the primary system pressure (saturation
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pressure). (Figure 42 compares the total transient ECC mass® injected

into the system for both calculations, and fllustrate the much greater
amount injected for the RELAPS transient.) Although the primary system
depressurizes to the accumuiator setpcint pressure by about 800 seconds in
the Westinghouse calculation (as compared to 858 seconds in the RELAPS
calculatior), depressurization continues at a considerably faster rate in
the RELAPS calculation after this point. Thus, RHR pumped injection begins
oy 1760 seconds in the RELAPS calculation, whereas the RHR setpoint
pressure is not reached by the termination of the Westinghouse calculation
at about 2500 seconds (although primary system mass inventory is increasing

without RHR pumped injection).

The break flow rates for the RELAPS and Westinghouse calculations are
compared in Figure 43. The difference in flow rates up to about
200 seconds is due to the difference in transient system pressure
(Figure 41), with the higher break flow rate in the EM calculation
corresponding to the higher transient system pressure during this pericd.
The increase in break flow at about 200 seconds in the RELAPS calculation
(as discussed in Section 6.1.4) is a result of the increase in subcooling
in the break volume due to the reversal of flow in the broken loop cold
leg. However, the increase in break flow in the Westinghouse calculation
beginning at about 150 seconds is a result of increasing system pressure.
Both calculations show a rapid reduction in break flow as blowout of the
loop seal (at 400 seconds in the Westinghouse calculation and 520 seconds
in the RELAPS calculation) clears liquid from the break region. The high
break flow in the RELAPS calculation after accumulator injection begins is
again a result of the increased subcooling in the break volume. The
westinghouse calculation does not show a corresponding increase in break
flow rate when accumulator flow begins because the broken loop accumulator
fs assumed to discharge directly to containment without interacting with
primary system fluid.

a. ECC flow rates from all active components are first added. then
fntegrated, to obtain the results presented in the figure.
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The primary system transient mass inventcries for the two calculations
are compared in Figure 44, Considerably faster mass dcpletion occurs in
the westinghouse caiculation following rupture because of the higher break
flow rate and because of the Tower ECC injection rates. The magnitude of
the system mass inventory bDetween about 340 and 850 seconas is sufficiently
low in the Westinghouse calculation that the core becomes uncovered (see
below), and a temperature excursion in the upper half of the core occurs.
The temperature excursion is terminated once accumulator injection begins,
as the gradual increase in the primary system mass inventory causes the
vessel mixtuyre leve! to rise above the top of the core. [n the RELAPS
calculation, the system mass inventory remains well above that in the
Westinghouse calculation until after accumulator injection begins, and as
discussed earlier the core uncovers only briefly during this period (i.e.,
just prior to loop seal blowout). The primary system mass inventory in the
RELAPS calculation drops below that in the Westinghouse calculation after
accumulator injection begins as a result of the much higher break flow rate
discussed above. However, because of differences in primary system mass
distribution, only brief periods of uncovering of the core occur during the
accumuiator injection period in the RELAPS calculation, even though the
total primary system mass inventory is less than the minimum inventory that
caused uncovering of the core in the Westinghouse calculation. Both
calculations show an increasing primary system mass fnventory prior to the
termination of the transient.

Figure 45 compares the mixture level in the core for the two
calculations. RELAPS does not calculate a mixture level. The mixture
level presented in the figure for the RELAPS calculation is derived from
core fuel pin temperatures. The heat structure representing the fuel pin
fs assumed to De uncovered when a temperature increase occurs, and is
assumed to be covered when temperatures follow the volume fluid
temperatures. Again, the mixture level in the RELAPS calculation drops
below the top of the core only briefly during the transient, and only the
top third of the core is uncovered during these periods. However, the
wWestinghouse calculation shows a relatively prnlonged period, starting at
about 340 seconds, when the mixture level drops wel)l below the top of the
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-

core with the minimum mixture level being at about 5 ft above the bottom of

the core. The mixture level remains below the top of the core until about
850 seconds when accumulator injection causes the rapid level increase
shown in the figure. Figure 46 compares the cladding temperatures on the
top 2 feet of the hot pin for the two calculations, and illustrates the
differences in temperature response corresponding to the differences in
core mixture levels. The peak cladding temperature in the EM calculation
reaches about 1760°F, as compared to a peak cladding temperature in the
RELAPS calculation of considerably less than the full power steady state
temperature of about 670°F. Figure 47 presents similar results to

Figure 46, but for the 8 to 10 foot elevation above the bottom of the
core. The hot pin heat transfer coefficients for the top 2 feet of the
core are compared in Figure 48, and Figure 49 compares the hot spot fluid
temperatures for the two calculations. The differences in response due to

core mixture level differences are again evident.
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7. CONCLUSIONS

The analysis of the RELAPS results from the RESAR-3S small break ‘
calculation, and the comparison of the RELAPS results with the results from
a Westinghouse evaluation model calculation for a RESAR-3S plant have led
to the following conclusions:

1. Based on the similarity of the RELAPS results with available
small break experimenta! data, the RELAPS results are considered
representative of the response expected for the limiting small
break transient with "best estimate" assumptions.

System response to the small break is characterized by a
continuous primary side depressurization with only brief periods
of dryout of the top third of the core. Maximum cladding
temperature increases during the periods of dryout are limited to
less than 30°F, and cladding temperatures remain less than the
full power steady state temperatures throughout the transient.

2. The requirements for evaluation model small break calculation ‘
specified oy 10 CFR 50.46 and Appendix K to 10 CFR 50 result in
significant conservatisms in calculated system response relative
to "best estimate" calculations.

Comparisons of the EM and best estimate calculations show a
considerably slower overall system depressurization rate in the
EM calculation, and a prolonged period during which the top half
of the core is uncovered. Peak cladding temperatures during the
period of core dryout in the EM calculation reach about 1760°F,
again as compared to peak cladding temperatures in the best
estimate calculation of less than the initial temperature of
about 670°F. The differences in system reponse between the two
calculations are attributed primarily to the significantly
reduced ECC injection capability and to the higher core decay
power assumed in the EM calculation.
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APPENDIX A
RELAPS UPDATES

Table A-]1 contains the upcates to RELAPS5/MOD1 that were used up to
1522 s. Table A-2 contains the updates used from 1522 s to the end of the
calculation. Comments in the update files explain the purpose of each

update.
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APPENDIX B
QUALITY ASSURANCE PROCEDURE FOR DEVELOPMENT OF THE
RELAPS RESAR-3S SMALL BREAK MODEL

The following is a quality assurance procedure that was developed, and
followed, to assure the accuracy of the RELAPS RESAR-3S small break model.

"~

System Nodalization Diagram--Based on FSAR information and
knowledge of the transient to De run, a complete system
nodalization diagram is constructed. All components and
subsystems required for the calculation are included in the
nodalization diagram. This process allows a straightforward
determination of the type of data/information required to compile
a plant data base (Step 2).

Plant Data Base--A plant data base is compiled to include all the
data/information required to develop the plant model. The
contents of the data base are of the form of actual plant
drawings, technical specifications, operating manuals, FSARs,
etc. (or copies of the same), and are limited to first hand
sources (if possible). This step allows checking of all
data/information back to an original source, rather than relying
on second hand information. The data base also includes a table
of contents that uniquely specifies all material contained
therein. The table of contents lists all drawings by drawing
number and revision number (if any), and all other sources of
data/information by title, date, and revision number (if any).
The table of contents is sufficiently detailed to allow
duplication of the plant data base by an independent party if
required.

Calculation Worksheets--A set of worksheets, which completely
document all the calculations required to develop ' e input
model, is compiled. Data used in a calcu ation are referenced to
a drawing or other source of data listed in the plant data base
(Step 2). Each calculation is written out in sufficient detail

B-2



to allow easy checking, and any assumption requirad in the
calculation or any "special method" required to derive a given
gquantity are clearly indicated. If a calcu’arion is a revision
of a previous calculation, it is so stated on the worksheet, and
the reason for the change is included. Bcth the initial
calculation worksheet and the revised ca'culation worksheet are
kept as part of the worksheet paciage.

4. Input Deck--The input deck is deveis=ed cirectly from the
worksheets compiled in Step 3

Once the above steps have been compieted. the checkout of the system
mode] proceeds as follows:

1. A1l data used in the calculation worksheets are checked and
varified against the references in the p'ant data base.

&s A1l calculations are checked for accuracy and completeness.
8 Input deck values are checked against the values developed in the
worksheets,

Notification that the calculation worksheets has been checked for
accuracy is included on each worksheet by affixing the reviewers name and
date (i.e., CHECKED BY , DATE ). The "checked" status
on the worksheet means both the calculations ard initial data have been
checked. Notification that the input deck has beer checked for accuracy is
included at the start of the input deck, along with the warning that no
changes are to be made which would alter the plant model portion of the
input, without first providing the appropriate calculation worksheet and
input from revisions, and going through the checkout procedure (1isted
above) for each revision. By following this procedure, the continued
accuracy of the input deck is assured.

B-3
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APPENDIX C
FUEL STORED ENERGY CALCULATION

The FRAPCON-2 steady state fuel rod behavior code® was used to
estimate the initial conditions of the RESAR-3S fuel rods prior to the LOCA
events analyzed in this study. First, the hot rod was modeled to operate
at constant full power (29.9 kW/m peak power on the hot rod) to determine
when during the rod lifetime that maximum centerline temperature and stored
energy occurred. That time was found to be 10 days after initial startup,
when fuel centerline temperature was about 25 K higher than at beginning of
life. Then, the radial temperature profiie and stored energy were
determined for a typical hot bundle rod, a core average rod, and a rod
operating at 90% of core average power.

Presented in this Appendix are a brief description of the FRAPCON-2
code, the input to the FRAPCON-2 code used for this analysis, and the
results obtained.

1. FRAPCON-2 DESCRIPTION

The FRAPCON-2 code1 caiculates steady state thermal and mechanical
behavior of light water reactor fuel rods under long-term irradiation
conditions. FRAPCON-2 is a modular code containing isolated subcodes that
model fuel temperatures, considering fuel cracking and relocation; fuel ard
cladding deformation, including elastic and plastic cladding deformation

and creep; and rod internal pressure, including fission gas release effects.

Fuel, cladding, and internal gas properties are modeled by a materials
properties subcode, MATPRO-II.2 FRAPCON-2 also ‘ncludes the FRAIL-5
subcode that determines the probability of fuel rod failure.

Input to FRAPCON-2 includes axial nodalization and fuel rod design
parameters, which are to be supplied by the user. The rod operating

a. Idaho National Engineering Laboratory Configuration Control
No. H0198828.




history, which specifies the system coolant conditions, axial power
distributicns, and time dependent rod average power, must also be given.

A detailed description of FRAPCON-2 is available in References C-1 and
C=2.

2. FRAPCON-2 INPUT

The FRAPCON-2 input deck for the hot rod (with westinghouse
proprietary information deleted) is listed on Table C-1. The required
irput to model the rod and coolant channel geometry represent the RESAR-3S
17 x 17 rod and bundle configurations. The FRAPCON-2 model options
selected were the PELET deformation model and the FASTGRASS fission gas
release model. These selections are based on the recommendations in
References C-3 and C-4.

The corewide power distributions used in this study represented values
reported in the RESAR-3S Safety Analysis Report. The rod axial power
distribution attained a peak-to-average ratio of 1.19 and a corewide radia)
peak-to-average ratio of 1.41. Thus, the peaking factor at the hot
location of the core hot rod was 1.41 x 1.19, or 1.678. For the average
rod in the core hot assembly, the radial peak-to-average ratio was assumed
to be 1.20, rather than 1.41 as used for the rot rod. The radial power
distribution within the fuel pellets was calculated within the FRAPCON-2
code. That power distribution is illustrated in Figure C-1.

To determine the time during operation when maximum stored energy
occurred, the power history of the hot rod was divided into two parts.
First, the rod was ramped to full power (9.13 kW/ft or 29.9 kW/m at the
peak power elevation) at the rate of 3 kW/hr. Then, constant full power
operation was maintained for 1000 hrs. It was noted from this calculation
that maximum stored energy of the hot rud occurred at 10 days after
startup. Then, the three other calculations were performed to represent an
average rod in the hot assembly, a core average rod, and a rod operating at
90% of core average power. (These three calculations were needed as input
to subsequent thermal-hydraulic calculations.) Each of the three
calculations was also subjected to the 3 kW/hr startup ramp and subsequent
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constant power operation to 10 days. The radial temperature distribution
noted at the end of the 10 day irradiation, was subsequently used to
initialize the thermal-hydraulic calculations.

3. RESULTS

The resulss of the four FRAPCON-2 calculations (hot rod, hot assembly,
core average, 90% of core average) are summarized in Figure C~2. Shown are
four curves representing the radial temperature profile for each case, at
the rod hot spot. These profiles were obtained at 10 days after startup.
The fuel centerline temperature of each curve shown in Figure C-2, is

plotted in Figure C-3 against local power.

Since maximum stored energy occurred at 10 days, no significant
effects of long term irradiation were noted, such as fission gas release,
cladding creepdown, and fuel densification. Thus, the boundary conditions
and general state of the fuel rods, as subsequently modeled by the
thermal~hydraulic codes, reflect fresh fuel rods. The only exception is
decay heat, which was assumed to be 91% of the heat generated if the ANS 73
mode] was used.
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Maximum fuel centerline temperature (K)
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