May 10, 1994

Docket No. 50-289

Mr. T. Gary Broughton, Vice President and Director - TMI-1 GPU Nuclear Corporation Post Office Box 480 Middletown, Pennsylvania 17057

Distribution: * w/o enclosures: Docket Files NRC & Local PDRs PDI-4 Plant MEvans RBlough, RI* SNorris* SVarga* JCalvo* RHernan OGC EJordan* ACRS(10) JStolz*

Dear Mr. Broughton:

SUBJECT: THREE MILE ISLAND UNIT 1 - REQUEST FOR PEER REVIEW OF PRELIMINARY ASP ANALYSIS

Enclosed is a copy of the preliminary Accident Sequence Precursor (ASP) Program analysis (Enclosure 1) of an operational condition that was discovered at the Three Mile Island, Unit 1 (TMI-1) plant on January 29, 1993. The event resulted from simultaneous bypass of cooling water to both decay heat removal (DHR) coolers and was the subject of TMI-1 Licensee Event Report No. 93-002 (Enclosure 3). The preliminary results of our ASP contractor. Oak Ridge National Laboratory, indicate that this event may be a precursor event for 1993. The purpose of this letter is to request that GPU Nuclear Corporation review the preliminary report for technical accuracy and adequacy and to provide any relevant comments that result from your review to the NRC. We request your comments within 30 days of this letter.

To facilitate your review, I have also enclosed specific guidelines for the peer review including criteria for giving credit for mitigative/recovery actions (Enclosure 2) and excerpts from the 1992 ASP Annual Report (Enclosures 4 and 5).

This requirement affects one respondent and, therefore, is not subject to Office of Management and Budget review under P.L. 96-511.

Sincerely.

940511 PDR	30394 940510 ADOCK 050002 PD	89 R	Ronald W. Hern Project Direct Division of Re Office of Nucl	o by: an, Sr. Project orate 1-4 actor Projects ear Reactor Reg	Manager - I/II ulation	
Enclosu As stat Distrib Docket PDI-4 F RBlough SVarga* RHernar EJordar JStolz*	re: ed Files NR(Plant ME , RI* SNG , RI* SNG JCG M OGG * ACI	enclosures: 2 & Local PDRs vans prris* alvo* 25(10)				
O'FICE	LA:PDI-4	PM:PDI-4	D:RDI74 /			
New 7	SNOFTIS	RHernan: bp Kø	Prostant M			
DATE	5/10/94	5/10/94	5/10/94	11	11	17
OFFICIA Documer	AL RECORD COPY It Name: G:\HI 10	ERNAN\TMILTR.AS	P	VIRC FILE CI	enter o	ØPÝ

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

May 10, 1994

Docket No. 50-289

Mr. T. Gary Broughton, Vice President and Director - TMI-1 GPU Nuclear Corporation Post Office Box 480 Middletown, Pennsylvania 17057

Dear Mr. Broughton:

SUBJECT: THREE MILE ISLAND UNIT 1 - REQUEST FOR PEER REVIEW OF PRELIMINARY ASP ANALYSIS

Enclosed is a copy of the preliminary Accident Sequence Precursor (ASP) Program analysis (Enclosure 1) of an operational condition that was discovered at the Three Mile Island, Unit 1 (TMI-1) plant on January 29, 1993. The event resulted from simultaneous bypass of cooling water to both decay heat removal (DHR) coolers and was the subject of TMI-1 Licensee Event Report No. 93-002 (Enclosure 3). The preliminary results of our ASP contractor, Oak Ridge National Laboratory, indicate that this event may be a precursor event for 1993. The purpose of this letter is to request that GPU Nuclear Corporation review the preliminary report for technical accuracy and adequacy and to provide any relevant comments that result from your review to the NRC. We request your comments within 30 days of this letter.

To facilitate your review, I have also enclosed specific guidelines for the peer review including criteria for giving credit for mitigative/recovery actions (Enclosure 2) and excerpts from the 1992 ASP Annual Report (Enclosures 4 and 5).

This requirement affects one respondent and, therefore, is not subject to Office of Management and Budget review under P.L. 96-511.

Sincerely,

W. Hernan

Ronald W. Hernan, Sr. Project Manager Project Directorate 1-4 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Enclosures: As stated

cc w/enclosure: See next page Mr. T. Gary Broughton GPU Nuclear Corporation Three Mile Island Nuclear Station, Unit No. 1

cc:

Michael Ross O&M Director, TMI-1 GPU Nuclear Corporation Post Office Box 480 Middletown, Pennsylvania 17057

John C. Fornicola Director, Licensing and Regulatory Affairs GPU Nuclear Corporation 100 Interpace Parkway Parsippany, New Jersey 07054

Jack S. Wetmore TMI Licensing Manager GPU Muclear Corporation Post Office Box 480 Middletown, Pennsylvania 17057

Ernest L. Blake, Jr., Esquire Shaw, Pittman, Potts & Trowbridge 2300 N Street, NW. Washington, DC 20037

Chairman Board of County Commissioners of Dauphin County Dauphin County Courthouse Harrisburg, Pennsylvania 17120

Chairman Board of Supervisors of Londonderry Township R.D. #1, Geyers Church Road Middletown, Pennsylvania 17057 Michele G. Evans Senior Resident Inspector (TMI-1) U.S. Nuclear Regulatory Commission Post Office Box 311 Middletown, Pennsylvania 17057

Regional Administrator, Region I U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, Pennsylvania 19406

Robert B. Borsum B&W Nuclear Technologies Suite 525 1700 Rockville Pike Rockville, Maryland 20852

William Dornsife, Acting Director Bureau of Radiation Protection Pennsylvania Department of Environmental Resources Post Office Box 2063 Harrisburg, Pennsylvania 17120 ENCLOSURE 1

0.1 LER Number 289/93-002

Event Description: Both RHR heat exchangers unavailable

Date of Event: January 29, 1993

Plant: Three Mile Island 1

0.1.1 Summary

Three Mile Island 1 (TMI-1) was operating at 100% power on January 29, 1993, when an operator aligned river water system valves to bypass both decay heat service (DHS) coolers. The coolers remained mavailable for about 3 hours. With the DHS coolers unavailable, it would not have been possible to remove heat from several safety-related systems had they been demanded. The conditional core-damage probability estimated for this event is 3.1×10^{-6} .

0.1.2 Event Description

During execution of a surveillance instruction involving operation of decay heat river water (DHRW) pumps, an auxiliary operator simultaneously bypassed DHS coolers DC-C-2A and DC-C-2B. The DHS coolers serve as the heat sink for the decay heat closed cooling water (DCCW) system. Loads on the DCCW system include decay heat removal (DHR) coolers, DHR pump motor and bearing coolers, DCCW pump bearing coolers, reactor building spray (BS) pump motor and bearing coolers, and two of three makeup (charging/high pressure injection) pump motor, bearing, and gear reducer coolers.

After approximately 2.5 h, a control room operator discovered the error while evaluating the steps taken for the surveillance instruction. The DHS coolers were returned to service approximately 0.5 h later.

The licensee discussed in the LER the potential plant response to a large-break loss of coolant accident (LOCA) with the DHS coolers isolated. They concluded that core and containment response would be unaffected prior to sump recirculation. Following initiation of sump recirculation, decay heat removal would be provided by the reactor building emergency cooling fan coolers in conjunction with the recirculation flow from the low-pressure injection and reactor building spray pumps. They also concluded, based on the licensee engineering judgement, that at least 30 min were available to restore cooling to the low-pressure injection (LPI) and spray pumps. The impact of the isolated DHS coolers on sump recirculation following a small-break LOCA was not discussed in the LER.

0.1.3 Modeling Assumptions

In the sump-recirculation phase following a small-break LOCA, flow from the discharge of the DHR coolers is directed to the suction of the makeup high-pressure injection (HPI) pumps to provide adequate net positive suction head for HPI pump operation. This water must be cooled to prevent damaging the makeup pumps

PRELIMINARY

LER NO: 289/93-002

1

(the TMI-1 FSAR indicates the design temperature of the makeup pumps is 200°F). With the DHS coolers isolated, makeup pump water temperature would exceed the pump design temperature during sump recirculation following a small-break LOCA, resulting in failure of high-pressure recirculation (HPR).

The event was modeled as a 3-h unavailability of HPR. Because of the limited time expected to be available before makeup pump damage, recovery of the isolated DHS coolers (through operation of the two 18-in, manual valves in each train) was assumed not to be possible.

0.1.4 Analysis Results

The conditional core damage probability estimated for this event is 3.1×10^{-6} . The dominant sequence, highlighted on the event tree in Fig. 1 involves a postulated small-break LOCA, success of reactor trip, auxiliary feedwater, and high-pressure injection functions followed by failure of high-pressure recirculation.

3

		CONDITIONAL CORE DAMAGE PROBABI	LITY CALCULATIO	WS	
ŧ	vent Identifier:	289/93-002			
ε	vent Description:	Both RHR heat exchangers imavailable			
E	vent Date:	January 29, 1993			
p	lant:	Three Nile Island 1			
1					
0	NAVAILABILITY, DU	RATION= 3			
N	ONRECOVERABLE INIT	TATING EVENT PROBABILITIES			
Т	RANS		06-04		
L	OOP	동안 같은 것 같은 것 같은 것 같은 것이 같았다.	AF-05		
L	OCA	, 방법 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	1.1E-06		
- 51	CHENCE CONSTITUNE				
	End State/Init	IL PROBABILITY SUMS			
	LING GLOUE/1111	p	robability		
CD	the the sub-				
	TRAMS		.9E-08		
	LOOP		.7E-08		
	LOCA	3	.18-06		
	Total				
	IOLAL	3	.1E-06		
AT	WS				
	TRANS	0	0E+00		
	LOOP	0	.0E+00		
	LOCA	0.	.0E+00		
	Total	0.	.06+00		
SEC	NENCE CONDITIONAL				
	CONTRACT STATES I TOWNE	Serverse			
		sequence	End State	Prob	N Rec*
71	loca -rt -afw	-hpi HPR/-HPI	CD	7 15 04	
16	trans -rt afw	mfw -hpi(f/b) HPR/-HPI	CD	3.16-00	4.32-0
lights	loop -rt/loop	-emerg.power afw -hpi(f/b) KPR/-HPI	CD	1.55-08	1 45-0
31	trans -rt -afw	porv.or.srv.chall porv.pr.srv.reseat -hpi MPR	/ CD	3.4E-09	1.16-0
73	-NFI	and the second			
51	LOCA -FT ATM	"mtw "hpi HPR/-HPI	CD	1.7E-09	1.1E-0
-	seal.loca .eo.	emerg.power -atw/emerg.power -porv.or.srv.chall	CD	1.1E-09	4.2E-0
41	loop -rt/loop	"emerg.power afy pory or ary chall pory or ary	-		
	reseat -hpi HI	PR/-HPI	. w	2.3E-10	5.8E-03
76	loca -rt afw	mfw -hpi HPR/-HPI	co	1 25-10	7 180.0
46	loop -rt/loop	emerg.power -afw/emerg.power porv.or.srv.chall	- 00	9.1E-11	4 25-04
	porv.or.srv.res	seat/emerg.power seal.loca -ep.rec(sl) -hpi HPR	/		** 6.6. ° U
	-HPI				* : * T
15	UPP/-HOI	-mtw porv.or.srv.chall porv.or.srv.reseat -hpi	CD	1.9E-12	2.7E-03
45	loop stilloon	AMATA POWER WELL MAILE			a series and
42	loop -rt/loop -	energipower and npi(T/D)	CD	0.0E+00	0.0E+00
	reseat hpi	stponet and port of sty chall port of sty	. CD	0.0E+00	0.0E+00
47	loop -rt/loop	emerg.power -afw/emerg.power porv.or.srv.chall		0.00.00	
Ever	nt Identifier: 289	/93-002		0.02+00	0.0E+00

PRELIMINARY

.

and source		A CALL AND A	CARGO AND	All Allers and all all all all all all all all all al
	porv.or.srv.reseat/emerg.power seal.loca -ep.rec(sl) hpi		A NEW CONTRACTOR OF CONTRA	
48	loop -rt/loop emerg.power -afw/emerg.power porv.or.srv.chall -	CD	0.05+00	0.05+00
	porv.or.srv.reseat/emerg.power seal.loca ep.rec(si)			0.0000
49	loop -rt/loop emerg.power -afw/emerg.power porv.or.srv.chall -	CD	0.0E+00	0.05+00
	porv.or.srv.reseat/emerg.power -seal.loca ep.rec			0100-00
50	loop -rt/loop emerg.power -afw/emerg.power porv.or.srv.chall	CD	0.0E+00	0.0E+00
	porv.or.srv.reseat/emerg.power			
52	loop -rt/loop emerg.power -afw/emerg.power -porv.or.srv.chall	CD	0.0E+00	0.0E+00
	seal.loca -ep.rec(sl) hpi			
53	loop -rt/loop emerg.power -afw/emerg.power -porv.or.srv.chall	CD	0.0E+00	0.05+00
	seal.loca ep.rec(sl)			0.00700
54	loop -rt/loop emerg.power .afw/emerg.power -porv.or.srv.chall -	CD	0.06+00	0.05+00
	seal.loca ep.rec			0.00100
55	loop -rt/loop emerg.power afw/emerg.power	CD	0.0E+00	0.05+00
12	trans -rt -afw porv.or.srv.chall porv.or.srv.reseat hpi	CD	0.02+00	0.0E+00
72	loca -rt -afw hpi	CD	0.0E+00	0.05+00
17	trans -rt afw mfw hpi(f/b)	CD	0.05+00	0.05+00
74	loca -rt afw -mfw hpi	CD	0.0E+00	0.05+00
14	trans -rt afw -mfw porv.or.srv.chall porv.or.srv.reseat hpi	CD	0.05+00	0.05+00
77	loca -rt afw mfw hpi	CD	0.05+00	0.05+00
18	trans rt	ATWS	0.05+00	0.05+00
40	loop rt/loop	ATWS	0 0E+00	0.05+00
78	loca rt	ATWS	0.05+00	0.05+00
** (N	phrecovery credit for edited case		0.00.00	0.00400
SEQUE	NCE CONDITIONAL PROBABILITIES (SEQUENCE ORDER)			
	Sequence	Fred State	Penh	N Dectro
11	trans -rt -afw porv.or.srv.chall porv.or.srv.reseat -hpi HPR/	CD	3 45-00	1 15-02
	- MP I		2146-04	1.15-06
12	trans -rt -afw porv.or.srv.chall porv.or.srv.reseat hoi	CD	0 05+00	0.05+00
13	trans -rt afw -mfw porv.or.srv.chall porv.or.srv.reseat -hoi	00	1 05.12	0.05+00
	HPR/-HP1		1.75-12	6.16-03
14	trans -rt afw -mfw porv.or.srv.chall porv.or.srv.reseat hoi	CD	0.05+00	0.05+00
16	trans -rt afw mfw -hpi(f/b) HPR/-HPI	CD	1 55.08	0.00+00
17	trans ort ofw mfw hpi(f/b)	CD CD	0.05+00	0.05-02
18	trans rt	ATUS	0.05+00	0.02+00
41	loop -rt/loop -emerg.power -afw porv.or.srv.chall porv.or.srv.	CD.	2 36-10	0.0E+00
	reseat -hpi HPR/-HPI		c.ac-10	5.06-03
42	loop -rt/loop -emerg.power -afw porv.or.arv.chall porv.or.erv.	CD.	0.05+00	0.00+00
	reseat hpi		0.00400	0.02+00
hele	loop -rt/loop -emerg.power afw -hpi(f/b) MPR/-MPI	(T)	1 55-08-	1 10-04-
45	loop -rt/loop -emerg.power afw hpi(f/b)	00	0.05+00	0.00.00
46	1000 -rt/loop emerg.power -afw/emerg.power porv or ery chall -	00	0.00400	0.0E+00
	DORY.OF.SEV. Fescat/emerg. power seal loca can rar(sl) -hni WDV/		9.15-11	4.2E-01
	-HPI			
47	1000 -rt/1000 emerg. nower -afu/emerg nower norv or ery chall -	~	0.00.001	
	DORV.OF.SEV. PERAt/emerg. nower seel lora sen rectal) hai	60	0.00+00	0.06+00
48	1000 =rt/1000 emerg power stu/emerg power por or stu chell.	cm	0.05.00	0.00.00
	DORV. OF STV. reseat/emerg nower seat inca en recision	w	0.08+00	0.0E+00.
49	1000 -rt/1000 emerg power -stu/emerg power prov or any chall -	00	0.00.00	0.000
	DOLY.OL.SLA. Leseat / emerg rower seat loca an sec	60	0.02+00	0.05+00
50	loop rt/loop energinger satu/merg pour on the	CD	0.00.00	0.00.00
	DOLA DE SEA LEGENT AMART DOLAT DOLAT DOLAT DOLAT SEA CURA	0	0.05+00	U.0E+00
51	loop stt/loop mens power setu/energ power	00	1 17 00	1.00.01
	seal loca -en rer(el) -hoi MP2/-MP1	00	1.1E-09	4.2E-01
52	loop st/loop emerg oner stu/merg onues monu os stu stell	CD	0.00.00	0.00.00
	seal.loca -ep.rec(sl) hoi	00	0.08+00	0.0E+00
Vent	Identifier: 280/03-002			

PRELIMINARY

LER NO: 289/93-002

5

53	<pre>(loop prt/loop emerg.power sfw/emerg.power -porv.or.srv.chall seal vloce mep.rec(sl) m</pre>	CD	0.05+00	0.0E+00
54 -	loop -rt/loon. emerg.power -afw/emerg.power -porv.or.srv.chall - seal.loca ep.rec	CD	0.0E+00	0.0E+00
55	loop =rt/loop emerg.power afw/emerg.power	CD	0.0E+00	0.06+00
40	loop rt/loop	ATWS	0.0E+00	0.0E+00
73	loca -rt -afw -hpi HPR/-HPI	CD	3.16-06	4.3E-01
72	loca -rt -afw hpi	00	U. 0F+00	0.05+00
73	loca -rt afw -mfw -hpi HPR/-HPI	CD.	1 75-00	1 46-01
74	loca -rt afw -mfw hpi	00	0.05+00	0.00.00
76	loca -rt afw mfw -hpi HPR/-HPI	00	0.00-00	0.00+00
77	loca -rt atu mtu hni	00	1,2E-10	5.8E~02
70		CD	0.0E+00	0.06+00
10	loca rt	ATWS	0.0E+00	0.0E+00

** non-recovery credit for edited case

Note: For unavailabilities, conditional probability values are differential values which reflect the added risk due to failures associated with an event. Parenthetical values indicate a reduction in risk compared to a similar period without the existing failures.

SEQUENCE MUDEL:	s:\asp\prog\models\pwrdseal.cmp
BRANCH MODEL:	s:\asp\prog\models\tmi1.sl1
PROBABILITY FILE:	s:\asp\prog\models\pwr bsl1.pro

No Recovery Limit

BRANCH FREQUENCIES/PROBABILITIES

Branch	System	Non-Recov	Opr Fail
trans	1.3E-04	1.0E+00	
loop	1.6E-05	5.3E-01	
loca	2.4E-06	4.3E-01	
rt	2.85-04	1.2E-01	
rt/loop	0.0E+00	1.0E+00	
emerg.power	2.92-03	8.0E-01	
afw	2.3E-03	2.6E-01	
afw/emerg.power	5.0E-02	3.46-01	
mfw	2.0E-01	3.48-01	
porv.or.srv.chell	8.0E-02	1.0E+00	
porv.or.srv.reseat	1.0E-02	1.16-02	
porv.or.srv.reseat/emerg.power	1.0E-02	1.0E+00	
seal.loce	4.6E-02	1.0E+00	
ep.rec(si)	5.7E-01	1.0E+00	
ep.rec	1.68-01	1.0E+00	
hpi	1.0E-03	8.45-01	
hpi(f/b)	1.0E-03	8.4E-01	1.05-02
HPR/-HPI	1.5E-04 > 1.0E+00 **	1.0E+00	1.0E-03
Branch Nodel: 1.0F.2+opr			t s who had .
Train 1 Cond Prob:	1.0E-02		1945.
Train 2 Cond Prob:	1.5E-02		

* branch model file

Event Identifier: 289/93-002

NAME OF TAXABLE AND DESCRIPTION OF TAXABLE AND DESCRIPT

LER NO: 289/93-002

^{**} forced

ENCLOSURE 2

GUIDANCE FOR LICENSEE PEER REVIEW OF PRELIMINARY ASP ANALYSIS

Background

The preliminary precursor analysis of an operational event which occurred at your plant has been provided for your review. This analysis was performed as a part of the NRC's Accident Sequence Precursor (ASP) Program. The ASP Program uses probabilistic risk assessment techniques to provide estimates of operating event significance in terms of the potential for core damage. The types of events evaluated include loss of off-site power (LOOP), Loss-of-Coolant Accident (LOCA), degradation of plant conditions, and safety equipment failures or unavailabilities that could increase the probability of core damage from postulated accident sequences. This preliminary analysis was conducted using the information contained in the plant-specific final safety analysis report (FSAR), individual plant examination (IPE), and the licensee event report (LER) for this event. These sources are identified in the writeup documenting the analysis. The analysis methodology followed the process described in Section 2.1 and Appendix A of Volume 17 of NUREG/CR-4674, copies of which have been provided in this package for your use in this review.

Guidance for Peer Review and Criteria for Recovery Credit

The review of the preliminary analysis should use Section 2.1 and Appendix A of NUREG/CR-4674 for guidance. Comments regarding the analysis should address:

- Characterization of possible plant response,
- Representation of expected plant response used in the analytical models,
- Representation of plant safety equipment configuration and capabilities at the time of the event, and
- Assumptions regarding equipment recovery probabilities.

Any claims for credit for the use of additional systems, equipment, or specific actions in the recovery process must be supported by appropriate documentation in your response. The identified recovery measures must have existed at the time of the event, and should include:

- Normal or emergency operating procedures,
- Piping and instrumentation diagrams (P&IDs),
- Electrical one-line diagrams,
- Results of thermal-hydraulic analysis,
- Operator training (both procedures and simulator), etc.

Also, the documentation should address the impact of the use of the specific recovery measure on:

- The sequence of events,
- The timing of events,
- The probability of operator error in using the system or equipment, and
- Other systems/processes already modeled in the analysis.

For example, Plant A (a PWR) experiences a reactor trip and, during the subsequent recovery, it is discovered that one train of the auxiliary

feedwater (AFW) system is unavailable. Absent any further information regrading this event, the ASP Program would analyze it as a reactor trip with one train of AFW unavailable. The AFW train modeling would be patterned after information gathered either from the plant PSAR or the IPE. However, if information is received about the use of an additional system (such as a standby steam generator feedwater system) in recovering from this event, the transient would be modeled as a reactor trip with one train of AFW unavailable, but this unavailability would be mitigated by the use of the standby feedwater system. The mitigation effect for the standby feedwater system would be credited in the analysis provided that the standby feedwater system characteristics are documented in the FSAR. accounted for in the IPE, procedures for using the system during recovery existed at the time of the event, the plant operators had been trained in the use of the system prior to the event, a clear diagram (one-line diagram or better) of the system is available, previous analyses have indicated that there would be sufficient time available to implement the procedure successfully, and results of an assessment that evaluates the effect that use of the standby feedwater system has on already existing processes of procedures that would normally be used to deal with the event are available.

Materials Provided for Review

The following materials have been provided in the package to facilitate your review of the preliminary analysis of the operational event:

- The specific licensee event report (LER), augmented inspection team AIT) report, or other pertinent reports as appropriate (separate enclosure).
- A calculation summary sheet indicating the dominant sequences and pertinent aspects of the modeling details (contained in the analysis writeup).
- An event tree with the dominant sequence(s) highlighted (contained in the analysis writeup).
- A copy of Section 2.1 and Appendix A of NUREG/CR-4674, Volume 17 (separate enclosures).

ENCLOSURE 3

GPU Nuclear Corporation

Route 441 South P.O. Box 480 Middletown, Pennsylvania 17057-0480 (717) 944-7621 Writer's Direct Dial Number:

(717) 948-8005

March 5, 1993 C311-93-2029

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

Dear Sir:

Three Mile Island Nuclear Station, Unit 1 (TMI-1) Operating Licensing No. DPR-50 Docket No. 50-289 LER 93-002-00

This letter transmits Licensee Event Report (LER) No 93-002-00. The event involves the January 29, 1993 performance of a periodic weekly operation of the Decay Heat River Water Pumps. The purpose of running the pumps weekly is to prevent the buildup of silt at the pump suction. During performance of the procedure on this date, personnel error resulted in a valve lineup which caused cooling water to bypass both Decay Heat Service Coolers. These Emergency Safeguards (ES) coolers are part of an emergency standby system which is not normally operated during power operation. Public health and safety were not affected.

This LER is being submitted pursuant to 10 CFR 50.73. The abstract provides a brief description of the event. For a complete understanding of the event, refer to the text of the report. Additional time for responding was provided by the NRC Region I Staff.

Sincerely,

FBroughton

T. G. Broughton Vice President and Director, TMI-1

MRK

Attachment cc: Region I Administrator TMI-1 Senior Project Manager TMI Senior Resident Inspector 110055 9303110417 930305 PDR ADOCK 05000289 S PDR

IE22 11

GPU Nuclear Corporation is a subsidiary of General Public Utilities Corporation

#ACILITY NAME (1) THREE MILE ISLAND, UNIT 1 DOCKET MUMBER (2) 0 5 0 0 2 1 TITLE 141 BYPASS OF BOTH DECAY HEAT SERVICE COOLERS DUE TO PERSONNEL ERROR EVENT DATE (8) LER MUMBER (6) REFORT DATE (7) OTHER FACILITIES INVOLVED (8) MONTH DAT FEROR DATE (7) OTHER FACILITIES INVOLVED (8) MONTH DAT FEROR DATE (7) OTHER FACILITIES INVOLVED (8) MONTH DAT FEROR DATE (7) OTHER FACILITIES INVOLVED (8) MONTH DAT FEROR DATE (7) OTHER FACILITIES INVOLVED (8) MONTH DAT FEROR DATE (7) OTHER FACILITIES INVOLVED (8) DOCKST NUMBER (7) MONTH DAT FEROR DATE (7) OTHER FACILITIES INVOLVED (7) DOCKST NUMBER (7) 0 15 0	WHAT REAL LOAN D 1 Cr4
MARCE HILE ISLAND, ORITI 0 5 0 0 0 12 18 9 1 TITEE HILE ISLAND, ORITI OPENDINEL ERROR BYPASS OF BOTH DECAY HEAT SERVICE COOLERS DUE TO PERSONNEL ERROR OTHER FACILITIES INVOLVED IN OTHER FACILITIES INVOLVED IN INVOLVED IN OTHER FACILITIES INVOLVED INTER FACILITIES INTER FACILITIES INVOLVED INTER FACI	21 3DA
TITLE 141 BYPASS OF BOTH DECAY HEAT SERVICE COOLERS DUE TO PERSONNEL ERROR EVENT DATE (B) DER NUMBER (B) OPTHER FACILITIES INVOLVED (B) ADNTH DAY YEAR OTHER FACILITIES INVOLVED (B) OPTHER FACILITIES INVOLVED (B) ADNTH DAY YEAR OPTHER FACILITIES INVOLVED (B) OPTHER VEAS Status (B) OPTHER VEAS Status (B) OPTHER FACILITIES PURSUANT TO THE REQUIREMENTE OF 10 C/R §. (Check see & merce of the following) (11) OPTHER FROMMENTED PURSUANT TO THE REQUIREMENTE OF 10 C/R §. (Check see & merce of the following) (11) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) POWER (B) <th>FOIE</th>	FOIE
EVENT DATE (B) LER NUMBER (B) REPORT DATE (7) OTHER FACILITIES INVOLVED (B) MONTH DAT YEAR YEAR YEAR YEAR YEAR DOCKET NUMBER 5: 0 5 0	rethermodes
MONTH DAT YEAR YEAR PRUMBER MONTH DAT YEAR PACILITY NAMES DOCKET NUMBER 0 1 2 9 3 9 3 0 0 5 0	
0 1 2 9 3 9 3 0 0 5 0	
0 1 2 9 3 9 3 0 0 0 5 0	1.1
OPERATING MODE (6) N THIS REPORT IS BUBMITTED PURSUANT TO THE REQUIREMENTE OF 10 CFR § (Check and an meru of the holdewing) (11) POWER LEVEL 20.405(a) 20.405(a) 20.405(a) 20.73(a)(2)(w) 73.71(a) POWER LEVEL 1.00 20.405(a)(1)(b) 20.405(a)(1)(b) 20.25(a)(1) 20.73(a)(2)(w) 73.71(a) 20.405(a)(1)(b) 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 73.71(a) 20.405(a)(1)(b) 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 0.73(a)(2)(w) 20.405(a)(1)(b) 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 0.73(a)(2)(w) 20.405(a)(1)(b) 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 0.73(a)(2)(w) 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 80.73(a)(2)(w) 0.73(a)(2)(w) 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 80.73(a)(2)(w) 30.64.1 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 80.73(a)(2)(w) 30.64.1 20.405(a)(1)(b) 80.73(a)(2)(w) 80.73(a)(2)(w) 80.73(a)(2)(w) 74.73(a)(2)(w)	11
MODE (6) N 20.402(b) 20.405(c) 40.734a)(2)(W) 73.71(b) POWER LEVEL 1 0 0 20.405(c)(110) 60.56(c)(1) 80.734a)(2)(W) 73.71(b) 73.71(b) 20.405(c)(110) 20.405(c)(110) 80.56(c)(10) 80.734a)(2)(W) 80.734a)(2)(W) 73.71(c) 73.71(c) 20.405(c)(110c) 20.405(c)(110c) 80.734a)(2)(W) 80.734a)(2)(W) 80.734a)(2)(W) 73.71(c) 00.74c)(2)(W) 73.71(c) 20.405(c)(110c) 20.405(c)(110c) 80.734a)(2)(W) 80.734a)(2)(W) 80.734a)(2)(W) 73.71(c) 00.74c)(2)(W) 74.71(c) 20.405(c)(110c) 20.405(c)(110c) 80.734a)(2)(W) 80.734a)(2)(W) 80.734a)(2)(W) 74.71(c) 74.71(c) 20.405(c)(110c) 80.734a)(2)(W) 80.734a)(2)(W) <t< td=""><td>and a second second</td></t<>	and a second second
POWER LEVEL 1 0 30 405(a)(1)(1) 10 80 90 405(a)(1)(1) 10 80 73(a)(2)(1)(1) 10 73.73(a) 1 0 0 405(a)(1)(1)(1) 20 405(a)(1)(1)(1) 20 80 73(a)(2)(1)(1) 80 80 73(a)(2)(1)(1) 80 80 73(a)(2)(1)(1)(1) 80 80 73(a)(2)(1)(1)(1) 80 80 73(a)(2)(1)(1)(1) 80 80 73(a)(2)(1)(1)(1) 80 73(a)(2)(1)(1)(1) 80 80 73(a)(2)(1)(1)(1) 80 73(a)(2)(1)(1)(1)(1) 80 73(a)(2)(1)(1)(1)(1)	and the second second second
Mg I O 20.408(a)(1)(0) N N B0.38(a)(2) B0.73(a)(2)(0) B0.73(a)(
20 AB96(a)(11(16)) A 80.73(a)(21(44)(a) 366.4/ 20 4006(a)(11(16)) 80.73(a)(2)(44)(a) 80.73(a)(2)(44)(a) 366.4/ 20 4006(a)(11(16)) 80.73(a)(2)(44) 80.73(a)(2)(44)(6) 80.73(a)(2)(44)(6) 80.73(a)(2)(44)(6) 20 4006(a)(11(16)) 80.73(a)(2)(44)(6) 80.73(a)(2)(44)(6) 80.73(a)(2)(44)(6) 80.73(a)(2)(4)(6) 20 4006(a)(11(16)) 80.73(a)(2)(40) 80.73(a)(2)(4) 80.73(a)(2)(4) 80.73(a)(2)(4) 20 4006(a)(11(16)) 80.73(a)(2)(4) 80.73(a)(2)(4) 80.73(a)(2)(4) 80.73(a)(2)(4) 20 4006(a)(11(16)) 10.20(16)(16) 80.73(a)(2)(16) 80.73(a)(2)(16) 80.73(a)(2)(16) 20 40.73	Ac Form
M. R. Knight, TMI-1 Licensing Engineer M. R. Knight, TMI-1 Licensing Engineer COMPLETE ONE LINE FOR EACH COMPONERT FAILURE DEBCRIBED IN THIS REPORT (13)	
M. R. Knight, TMI-1 Licensing Engineer COMPLETE ONE LINE FOR EACH COMPONERT FAILURE DEBCRIBED IN THIS REPORT (12) COMPLETE ONE LINE FOR EACH COMPONERT FAILURE DEBCRIBED IN THIS REPORT (12)	
M. R. Knight, TMI-1 Licensing Engineer M. R. Knight, TMI-1 Licensing Engineer COMPLETE ONE LINE FOR EACH COMPONENT FAILURE DESCRIBED IN THIS REPORT (12)	-
M. R. Knight, TMI-1 Licensing Engineer 7117948-8	Alternation in the state of
M. K. Knight, TMI-1 Licensing Engineer 7117948-8	
COMPLETE ONE LINE FOR EACH COMPONENT FAILURE DEBCRIBED IN THIS REPORT (12)	5.5.4
	and residention and
CAUSE SYSTEM COMPONENT MANUFAC REPORTABLE TO NPROS CAUSE SYSTEM COMPONENT MANUFAC REPORTABLE TO NPROS	
	a tabés ananan mana
	article to waith or they did
SUPPLEMENTAL REPORT SUPECTED INA	NA3Y
YES III YH, COMMIND EXPECTED SUBMISSION DATE!	

BYPASS OF BOTH DECAY HEAT SERVICE COOLERS DUE TO PERSONNEL ERROR

TMI-1 was operating at 100% power. On January 29, 1993 during the performance of a weekly procedure, not required by Technical Specifications (TS), the Auxiliary Operator (AO) failed to follow established operator work practices and established a valve lineup which caused river water to bypass both Decay Heat Service Coolers (DC-C-2A/B) simultaneously. When discovered, the proper alignment was immediately restored. The root cause of this event was personnel error.

TS 3.3.1.1.d requires two Decay Heat Removal Coolers (DH-C-1A/B) and their cooling water supplies, including coolers DC-C-2A/B, during plant operation. With both coolers bypassed, TS 3.0.1 was applicable. This condition is reportable under 50.73.a.2.i.B and also under 50.73.a.2.vii.

Bypassing both coolers simultaneously had no immediate safety significance during the event because the equipment was not called upon to be in operation. In the event of a worst case Loss of Coolant Accident, the safety systems would have fulfilled their intended function.

Management has reviewed this event with the affected crew. Procedures will be upgraded. Each Operating crew will review the event.

HAC FORM 386A (6-89) - 2 -	U.E. HUCLEAR REGULATORY COMMITTEEION LICENSEE EVENT REPORT (LER) TEXT CONTINUATION			ON APPROVED OME NO. 3150-0104 EXPERES: 4/30/92 ESTIMATED BURDEN PER RESPONSE TO COMPLY WTH INFORMATION COLLECTION REQUEST 500 HRS. FORM COMMENTS REGARDING BURDEN ESTIMATE TO THE REC AND REPORTS MANAGEMENT BANCH (# 630) U.S. NUCL REGULATORY COMMISSION, WASHINGTON, DC 20555, AN THE PAPERWORK REDUCTION PROJECT (3150-0104), OF DF MANAGEMENT AND BUDGET, WASHINGTON, DC 20503					TH THIS RWARD ECORDS JCLEAR AND TO OFFICE 03
FACILITY MAME (1)		DOCKET WURSBER (2)		LER NUR	MBER (8)		-	PAGE	3)
			YEAN	SEGU	ENTIAL MECH	NUMBER			
THREE MILE	ISLAND, UNIT 1	0 5 0 0 0 2 8 9	9 3	0	0 2 -	- 010	01	2 OF	0 6
TEXT (# midne skale in i	BYPASS OF BOTH DECAY HEAT	SERVICE COOLERS DUE	TO P	FRSON	IFI FR	20p			
Ι.	Plant Operating Conditions	before Event:	10.5	LINGOIN	the ty he fy	NON			
	TMI-1 was operating at 10	0% rated power.							
II.	Status of Structures, Compo Start of the Event and tha	onents, or Systems th t Contributed to the	hat w Even	ere In t:	lopera	ble at	the)	
	None								
III.	Event Description:								
	Operations Surveillance Of weekly non-Tech Spec surve shift between 11:00 pm and to assure that each Decay at least one hour per week pump suction. During the shutdown and core decay he guidance for bypassing a f [BI/CLR] if there was a co on the Decay Heat Removal Water (DCCW) System. The OPS-S227 has not been need shutdown.	PS-S227, "DR-P-1A/B I eillance normally per d 7:00 am. The purpo Heat River Water (DF k to avoid the potent early 1980s, when the eat levels were extre Decay Heat Service Co oncern for a thermal (DHR) System or the option to bypass coo led since restart in	Perio rform ose o R) Put tial he fa emely oler tran Deca olers 1985	dic Op ed by f this mp [BI for si cility low, (DC-C sient y Heat in ac after	verati the o surv /P] o lt bu was OPS-S -2A o (extr Clos corda the	on," i perati eillan perate ildup in ext 227 pr r DC-C eme co ed Coo nce wi six ye	s a ng ice i s fc at t ende ovid -2B) olin ling th ar	is the id led	
	During the performance of OPS-S227 on January 29, 1993, the non-licensed Auxiliary Operator (AO) failed to follow established operator work practices and bypassed both DC-C-2A and DC-C-2B simultaneously at about 0100 hours. The DR System was not required to be in operation, so neither DR Pump was operating.								
	Control Room personnel wer about 0330 hours when a li this condition while attem for performing OPS-S227. stated that after bypassin Control Room so the survei personnel do not remember that the DR valves (DR-V3A required position, he imme directed the crew to resto Engineered Safeguards (ES)	re unaware that both censed Control Room pting to determine to During a later critic og both coolers he re llance could proceed receiving the report A/B, and DR-V5A/B) [Be diately informed the re and independently valve alignment. F	coold Operi ine st ique o porto i. Ho Sl/V] Sl/V] ver Realid	ers we ator (tatus of the ed the owever hen th were ft Sup ify th gnment	re by CRO) of pro even cund , Con e CRO not i ervis e req of t	passed discov eparat t, the ition trol R disco n the or who uired he coo	unt ered ions AO to t vere	he d	

NRC FORM,360.A (6.89)	LICENSEE EVENT REPORT I TEXT CONTINUATION	NUCLEAR REGULATORY COMMISSION	APPORVED SVORGA EXAMPLE SANGES STALES	0-0104 TO COMPLY WTH THIS 50.0 HRS FORWARO ARTE TO THE RECORDS (P630) U.S. NUCLEAR TON. DC 20555. AND TO TI 3150-0141. OFFICE NGTON. DC 20503.
FACILITY NAME (1)		DOCKET NUMBER (3)	LER NUMBER (6)	PAGE (3)
			YEAR SEQUENTIAL REVISION NUMBER NUMBER	
THREE MILE	ISLAND, UNIT 1	0 5 0 0 0 2 8 9	9 3 - 0 0 2 - 0 0	0 3 OF 0 6
ТЕХТ И моге аралог и на	and independent verification	on were completed b	v approximately 0355	hours.
	DCCW is a closed loop cool water (ultimate heat sink) (DC-C-2A/B). DCCW cools the [BP/CLR] and the following	ing water system wh through the Decay I he Decay Heat Remov safety related pum	ich rejects heat to r Heat Service Coolers al System (DHR) Coole ps:	iver rs
	 DCCW Pumps bearings [Cl DHR Pumps motor and bearings Reactor Building Spray (TS 3.3.1.3.a), and Makeup Pumps (MU-P1A and bearings (TS 3.3.1.1.b)) 	C/P] (TS 3.3.1.4.c) arings [BP/P] (TS 3 (BS) Pumps motor and nd C) motor [CB/MO]). ¹	.3.1.1.c), nd bearings [BE/MO] , gear reducer [CB/RG	R], and
	Technical Specification (T (DH-C-1A/B) [BP/CLR] and the Decay Heat Service Coolers is allowed to be removed for coolers inoperable (bypasse (comparable to STS 3.0.3) with under 50.73.a.2.i.B as an en- Technical Specifications, a single cause or condition of inoperable in a single syst the consequences of an access	5) 3.3.1.1.d require heir cooling water s (DC-C-2A/B), during rom service for up i ed), TS 3.3.1.1.d wa was applicable. The event or condition p and also under 50.7 caused two independent tem designed to remaindent.	es two DHR Coolers supplies, which inclus g plant operation. On to 72 hours. With bo as not met. TS 3.0.1 is condition was repor prohibited by the Plan 3.a.2.vii as an event ent trains to become ove residual heat or n	des the ne train th rtable nt's where a mitigate
	The root cause of this even coolers at the same time in practices. The AO failed to Administrative Procedure (A have required authorization CRO prior to manipulating to trains of ESAS components w Further evaluation will det preparation, and work contra event.	nt was personnel ern n violation of estab to operate the equip AP) 1029, "Conduct of n from the Shift Sup the valves. Addition was in violation of termine to what extern rol by the shift per	ror. The AO bypassed blished operator work oment in accordance w of Operations," which pervisor, Shift Forem onally, operation of I operator work practic ent communications, wo rsonnel contributed to	both ith would an, or both ces. ork o this
	To a lesser extent, clarity The instructions in OPS-S22 thermal transient would occ time should be bypassed and of service and started a TS OPS-S227 that contributed to	of the procedural did not provide of cur, did not specify that bypassing a d time clock. However to this event could	guidance also contril guidance for determin y that only one cooler cooler rendered the to ver, the instructions have been eliminated	buted. ing if a r at a rain out in
(NSCCW)	Makeup Pump MU-P1B is cool) and was unaffected by this	ed by Nuclear Servi event.	ces Closed Cooling Wa	iter

MRC PORM See	L NUCLEAR REGULATORY COMMISSION	APPROVED DMS NO. 3150-0104
LICENSEE EVENT REPORT TEXT CONTINUATION	(LER)	EXPIRES: 4/30/92 ESTIMATED BURDEN PER RESPONSE TO COMPLY WTH THIS INFORMATION COLLECTION REQUEST SOC HAS. FORWARD COMMENTS REGARDING SUPDEN ESTIMATE TO THE RECORDS AND REPORTS MANAGEMENT BRANCH (PA30), U.S. NUCLEAR REGULATORY COMMISSION, WASHINGTON, DC 2055, AND TO THE PAPERWYAK REDUCTION PROJECT (3)80.0101) DFFICE OF MANAGEL INT AND BUDGET, WASHINGTON, DC 20503.
FACILITY MADE (1)	DOCKET NUMBER (2)	LER NURABER (6) PAGE (3)
		VSAR SEQUENTIAL HEVEN
THREE MILE ISLAND, UNIT 1	0 15 10 10 10 2 8 9	9 B -0 10 12 -0 10 0 14 OF 0 6
TEXT (# more asses is required, use additional NRC Form 3864's) (17)	ni kana sa kana kana sa kana sa kana sa kana sa kana sa	hand and and and and and and and and and
entirely since they are not guidance had been contained exposure to the biennial re enhanced presentation to c entirely.	t applicable to an o d in the appropriate eview process could larify the use of th	perating station. If the Operating Procedure, have resulted in either is option or removed it
IV. Component Failure Data:		
None.		
V. Automatic or Manually Initiat	ed Safety System Re	sponses:
No safety system responses	were involved in th	is event.
VI. Assessment of the Safety Cons	equences and implic	ations of the Event:
Bypassing both coolers had event since neither train w	no immediate safety was called upon to b	significance during the e in operation.
GPU Nuclear has completed of pressure versus time for th Coolant Accident (LBLOCA) we performed using single train assumptions regarding ambie Building (RB) initial condi- calculations were performed temperature at 120°F, as we the event (70°F). The assu- a time for switchover from minutes following an acciden- to switchover would be about	calculations which p ne containment durin with DR not available in availability and ent conditions, core sions and equipment i with Borated Water all as at the actual amption of single tr the BWST to sump re ent. Assuming all p at 30 minutes (minim	redict the temperature and g a Large Break Loss Of e. The analysis was other standard FSAR decay heat, Reactor operability. The Storage Tank (BWST) temperature at the time of ain availability results in circulation of about 72.5 umps are operable, the time um time).
GPU Nuclear has concluded to isolated, the core and cont sump recirculation. Follow containment cooling would be Suction Head (NPSH) would be and BS pumps and the Reactor [BK/FCU] would remove decay Room alarm on Main Annuncia immediately after starting Cooler, DCCW outlet tempera	that if a worst case ainment response wo ving sump recirculat be continued since s be available to the or Building Emergenc, heat from containment tor Panel C-2-8 [IB RB sump recirculation ture of 100°F.	LOCA were to occur with DR uld be unaffected prior to ion, the core and ufficient Net Positive Low Pressure Injection (LPI) y Cooling (RBEC) fan coolers ent. The automatic Control /TA] actuates almost on at a Decay Heat Service
The remaining concern is to term LPI and BS pump compon	provide continuous ent cooling. The e	DCCW cooling to assure long xact time period over which

NRC FORM 366A (6-89) 3	an a	y Mana ber Samana dara kanang mangari kanang manang kanang kanang kanang kanang kanang kanang kanang kanang kan	U.S. NUCLEAR REQULATORY COMMISE	LICH	APPROV	ED OM8 NO. 315	0-0104	na Contractor de Calenda		
•		LICENSEE EVENT REF TEXT CONTINUA	PORT (LER) TION	EST IM INFOR COMM AND REGU THE I OF MA	ATED BURDEN PE MATION COLLECT ENTS REGARDING REPORTS MANAGE LATORY COMMISSI AFERWORK REDU NAGEMENT AND B	P RESPONSE T ION REQUEST BURDEN ESTIM MENT BRANCH ION WASHINGT ICTION PROJEC UDGET, WASHI	TO COMPLY I SOC HRS / LATE TO THE IP-530). US ON DC 20531 T 13150-0104 NGTON DC 2	WTH THIS ORWARD RECORDS NUCLEAR S. AND TO 1. OFFICE 2503		
FACILITY NAME (1)	FACILITY NAME (1)		DOCKET NUMBER (2)	eren and the second second	LER NUMBER (6)			PAGE (3)		
				YEAH	SEQUENTIAL	MEVISION	1	T		
THREE MIL	E ISI	AND, UNIT 1	0 15 10 10 10 12 18	9 913	- 01012	- 010	01 5 0	F 016		
TEXT IN more space o	required,	usar adulttionial NAC Form 3064'a) (17)	en en en en de ser en de ser de s	- Lord - Sa		1		1 - 1 -		
	th co en av re st su	ese components would olers has not been of gineering judgement ailable for operator ceiving the alarm in art of the event). could be shown that stained longer, perf	d continue to operate determined by quantita indicates that at lea r action to restore th n the Control Room (i. If the conservatism o t the safety function haps indefinitely.	without tive ca st 30 m e DR va e., at f this of DCCW	DR flow lculation inutes wo lve align least one evaluatio componen	through s. GPU uld be ment aff hour af n was re ts could	the Nuclea ter fter th emoved, i be	e		
	On in Wi Nu op su	receiving the alarm vestigate reduced DF th the installed ala dividual high bearin clear concludes that erator action to rec ccessfully reestabli	n in the Control Room, R system flow and veri arm actuated on DCCW h ng temperature alarms t, in accordance with open the isolation val- ish full DCCW cooling p	the op fy the igh tem on thes procedu ves wou prior t	erators a DR System perature e compone re instru 1d be take o compone	re direc valve 1 followec nts, GPU ctions, en promp nt degra	cted to lineup. i by th J otly to adation	e		
	Ba mi he we	sed on the above, GP tigating the consequ at, would have been re bypassed.	PU Nuclear concludes th ences of an accident a achieved if a LBLOCA H	hat the and of had occ	safety fi removing urred whi	unction core dec le the c	of ay coolers			
VII.	Prev	vious Events of a Si	milar Nature:							
	Nor	ne.								
VIII.	Corr	ective Actions Take	n:							
	The to sig	e Operations Directo ensure that they re mificance.	r has reviewed this in cognize the errors tha	icident it were	with the committed	crew in i and th	volved eir			
IX.	Corr	ective Actions Plan	ned:							
	1.	Administrative Pro the Operations Sur component outside Procedure.	cedure (AP) 1016 will veillance Program task the envelope of the ap	be rev s which proved	ised to ex operate system Op	clude f a syste perating	rom m or			
	2.	Operations Surveil revised to ensure that can potential placed in approved program has identi-	lance Procedures simil that detailed procedur ly affect safe plant o Operating Procedures. fied three surveillanc	ar to (al guid peratio Initi es that	DPS-S227 w lance for ons are re lal review care simi	vill be evoluti emoved a v of the lar to	ons nd			

та С. с. Лама дорал (6. ф7) - 3 -	LICENSEE EVENT REPORT TEXT CONTINUATION	N APPROVED OMA NO. 3150-0104 EXFIRES 4/30/82 ESTIMATED BURDEN PER RESPONSE TO COMPLY WITH TH INFORMATION COLLECTION REQUEST 50.0 HRS. FORWAT COMMENTS REGARDING BURDEN ESTIMATE TO THE RECOR AND REPORTS MANAGEMENT BRANCH (PASJ). U.S. NUCLEJ REGULATORY COMMISSION WASHINGTON, DC 2055, AND THE PAPERWORK REDUCTION PROJECT (3150-0104). OFFI OF MANAGEMENT AND BUDGET, WASHINGTON, DC 2050J					
ACILITY HASES (1)		DOCKET NUMBER (2)	LER NURABER (8)	PAQE (3)			
			YEAR SEQUENTIAL REVISION NUMBER NUMBER				
THREE MILE IS	LAND, UNIT 1	0 15 10 10 10 12 18 19	913 - 01012 - 010	016 OF 016			
EXT IN many space is required.	uae additional ARC Form 30034 (17)	alternetherede and arouter or deveration of a sec	denne kanne konserie oonse konserie kanne kan valas oo den ma	dan			
	OPS-S227. A comprehen that only a small numb Operations Surveillanc Procedures for proper activities receive a p review process.	sive review is in p er of procedures wi e Procedures will re guidance. This will eriodic review throu	rogress and it is exp 11 be affected. Thes eference approved Ope 1 assure that such ugh the biennial proce	ected e rating edure			
3.	Each operating crew wi understanding of the e errors can be avoided. guidance on verbal com will be emphasized.	11 review this event rrors that were comm Conformance to the munications, work pr	t to ensure their mitted and how simila e Administrative Proc reparation, and work o	r edure control			
4.	A more comprehensive r in this event will be communications, and wh are indicated.	eview of the human p conducted to include at improvements in w	performance aspects in the roll of supervision work practices and con	nvolved sion, ntrols			
Th	ese actions will be comp	leted by May 1993.					
* The E and Compo *[SI/CFI]	nergy Industry Identifica nent Function Identificat ", where applicable, as n	ation System (EIIS), tion (CFI) Codes are required by 10 CFR 5	System Identification included in brackets 0.73(b)(2)(ii)(F).	on (SI) s,			

ENCLOSURE 4

2.0 ACCIDENT SEQUENCE PRECURSOR IDENTIFICATION AND QUANTIFICATION

2.1 Accident Sequence Precursor Identification

The ASP Program is concerned with the identification and documentation of operational events that have involved portions of core damage sequences, and with the estimation of frequencies and probabilities associated with them.

Identification of precursors requires the review of operational events for instances in which plant functions that provide protection against core damage have been challenged or compromised. For core damage to occur, fuel temperature must increase. Such an increase requires the heat generation rate in the core to exceed the heat removal rate. This can result from either a loss of core cooling or excessive core power. The following functions are provided at all plants to protect against these two conditions:

- Reactor subcriticality. The reactor must be placed in a subcritical condition, normally by inserting control rods into the core to terminate the chain reaction.
- Reactor coolant inventory makeup. Sufficient water must be provided to the reactor coolant system (RCS) to prevent core uncovery.
- RCS integrity. Loss of RCS integrity requires the addition of a significant quantity of water to prevent core uncovery.
- Decay heat removal (DHR). Heat generated in the core by fission product decay must be removed.
- Containment integrity. Containment integrity (containment heat removal, isolation, and hydrogen control) is not addressed in the precursor analyses unless core DHR capability is impacted.

System-based event trees were developed to model potential sequences to core damage. The event trees are specific to eight plant classes so as to reflect differences in design among plants in the U.S. LWR population. Three initiators are addressed in the event trees: trip [which includes loss of main feedwater (LOFW) within its sequences] loss of offsite power (LOOP), and small-break loss-of-coolant accident (LOCA). These three initiators are primarily associated with loss of core cooling. [Excessive core power associated with anticipated transient without scram (ATWS) is represented by a failure-to-trip sequence but is not developed.] Based on previous experience with reactor plant operational events, it is known that most operational events can be directly or indirectly associated with these initiators. Detailed descriptions of the plant classification scheme and the event tree models are included in Appendix A. Operational events that cannot be associated with one of these initiators are accommodated by unique modeling.

Armed with a knowledge of the primary core damage initiator types plus the systems that provide protection against core damage (based on the event tree models), ASP Program staff members examine LERs to determine the impact of operational events on potential core damage sequences. While the sequences detailed on the event tree models do not describe all possible paths to core damage, they form a primary basis for selecting an operational event as a precursor. Operational events are also reviewed in a more general sense for their impact on the protective functions described above.

Identification of precursors within a set of LERs involved a two-step process. First, each LER was reviewed by two experienced engineers to determine if the reported event should be examined in detail. This initial review was a bounding review, meant to capture events that in any way appeared to deserve detailed review and to eliminate events that were clearly unimportant. This was done by eliminating events that satisfied pre-defined criteria for rejection and accepting all others as potentially significant and requiring analysis. In some cases, events are impractical to analyze due to lack of information or inability to reasonably model within a probabilistic risk assessment (PRA) framework, considering the level of detail typically available in PRA models. Events also were eliminated from further review if they had little impact on core damage sequences or provided little new information on the risk impacts of plant operc*ion. Such events included single failures in redundant systems and uncomplicated reactor trips and LOFWs. Any event with an impact that can be mapped onto the ASP core damage models can, in principle, be assessed.

LERs were eliminated from further consideration as precursors if they involved at most one of the following:

- a component failure with no loss of redundancy,
- a loss of redundancy in only one system,
- a seismic design or qualification error,
- an environmental design or qualification error,
- a structural degradation,
- an event that occurred prior to initial criticality (since the core is not considered vulnerable to core damage at this time and since distinguishing initial testing failures from operational failures is difficult),
- a design error discovered by reanalysis,
- an event impact bounded by a reactor trip or LOFW,
- an event with no appreciable impact on safety systems, or
- an event involving only post-core damage impacts (selected containment-related events are documented).

Events identified for further consideration typically included

- unexpected core damage initiators (LOOP and small-break LOCA);
- all events in which reactor trip was demanded and a safety-related component failed;
- all support system failures, including failures in cooling water systems, instrument air, instrumentation and control, and electric power systems;
- any event where two or more failures occurred;
- any event or operating condition that was not predicted or that proceeded differently from the plant design basis; and
- any event that, based on the reviewers' experience, could have resulted in or significantly
 affected a chain of events leading to potential severe core damage.

Operational events that were not eliminated in the first review received a more extensive analysis to identify those events considered to be precursors to potential severe core damage accidents either because of an initiating event or because of failures that could have affected the course of postulated off-normal events or accidents. These detailed reviews were not limited to the LERs; they also used final safety analysis reports (FSARs), their amendments, and other information available at the Nuclear Operations Analysis Center.

The detailed review of each event considered (1) the immediate impact of an initiating event or (2) the potential impact of the equipment failures or operator errors on readiness of systems in the plant for mitigation of off-normal and accident conditions.

In the review of each selected event, three general scenarios (involving both the actual event and postulated additional failures) were considered:

- 1. If the event or failure was immediately detectable and occurred while the plant was at power, then the event was evaluated according to the likelihood that it and the ensuing plant response could lead to severe core damage.
- 2. If the event or failure had no immediate effect on plant operation (i.e., if no initiating event occurred), then the review considered whether the plant would require the failed items for mitigation of potential severe core damage sequences should a postulated initiating event occur during the failure period.
- 3. If the event or failure occurred while the plant was not at power, then the event was first evaluated according to whether it could have occurred while at power or at hot shutdown immediately following power operation. If the event could only occur at cold shutdown, then its impact on continued DHR was assessed.

For each actual occurrence or postulated initiating event associated with an operational event reported in an LER, the sequence of operation of various mitigating systems required to prevent core damage was considered. Events were selected and documented as precursors to potential severe core damage accidents (accident sequence precursors) if they included one of the following attributes that impacted core damage sequences and if the conditional probability of subsequent core damage (described later) was at least 1.0×10^{-6}

- an unexpected core damage initiator (such as a LOOP, steam-line break (SLB), or small-break LOCA);
- a failure of a system (all trains of a multiple train system) required, to mitigate the consequences of a core damage initiator,
- concurrent degradation in more than one system required to mitigate the consequences of a core damage initiator, or
- a transient or LOFW with a degraded mitigating system.

Events of low significance are thus excluded, allowing the reader to concentrate on the more important events. This approach is consistent with the approach used to define 1987-1991 precursors, but is different from that of earlier ASP reports, which addressed all events meeting the precursor selection criteria, regardless of conditional core damage probability.

Events that occurred in 1992 were reviewed for precursors only if they satisfied an initial significance screening. This approach, which was similar to that used in the review of 1988-1991 events, eliminated many insignificant events from review and permitted some increase in the amount of documentation provided for precursors. Two approaches were used to select events to be reviewed for precursors.

First, events were reviewed for precursors if they were identified as significant by the Nuclear Regulatory Commission's (NRCs) Office for Analysis and Evaluation of Operational Data (AEOD). AEOD's screening process identifies operating occurrences involving, in part,

- violation of a safety limit;
- an alert or higher emergency classification;
- an on-demand failure of a safety system (except surveillance failures);
- events involving unexpected system or component performance with serious safety significance or generic implications;
- events where improper operation, maintenance, or design causes a common-mode/commoncause failure of a safety system or component, with safety significance or generic implications;
- safety-significant system interactions;
- events involving cognitive human errors with safety significance or generic implications;
- safety-significant events involving earthquakes, tornadoes, floods, and fires;
- a scram, transient, or engineered safety features (ESF) actuation with failure or inoperability of required equipment;
- on-site work-related or nuclear-incident-related death, serious injury, or exposure that exceeds
 administrative limits;
- unplanned or unmonitored releases of radioactivity, or planned releases that exceed Technical Specification limits; and
- infrequent or moderate frequency events.

AEOD-designated significant events also involve operating conditions, where a failure or accident has not occurred but where the potential for such an event is identified.

Second, LERs were also reviewed if they were identified through a computerized search using the sequence coding and search system (SCSS) data base of LERs. This computerized search identified LERs potentially involving (1) failures in plant systems that provided the protective functions described earlier and (2) initiating events addressed in the ASP models. Based on a review of the 1984-87 precursor evaluations, this computerized search successfully identifies almost all precursors within a subset of approximately one-third of all LERs.

While review of LERs identified by AEOD and through the use of SCSS is expected to identify almost all precursors, it is possible that a few precursors exist within the set of unreviewed LERs. Some potential precursors that would have been found if all 1992 LERs had been reviewed may not have been identified. Because of this (plus modeling changes that impact precursor probability somewhat), it should not be assumed that the set of 1988-92 precursors is consistent with precursors identified in 1984-87.

Following AEOD and SCSS computerized screening, 1022 LERs from 1992 were reviewed for precursors. Twenty-seven operational events with conditional probabilities of subsequent severe core damage greater than 1.0×10^{-6} were identified as accident sequence precursors.

Individual failures of boiling-water reactor (BWR) high-pressure coolant injection (HPCI), high-pressure core spray (HPCS), and reactor core isolation cooling (RCIC) systems (all single-train systems), and trips and LOFWs without additional mitigating system failures were not selected as precursors. The impact of such events was determined on a plant-class basis. The results of these evaluations are provided in Appendix A.

In addition to accident sequence precursors, events involving loss of containment functions — containment cooling, containment spray, containment isolation (direct paths to the environment only), and hydrogen control — were identified in the review of 1992 LERs. Other events that were not selected as precursors but that provided insight into unusual failure modes with the potential to compromise continued core cooling are also identified. Events identified as precursors are documented in Appendix B, the

containment-related events are documented in Appendix C, events considered "interesting" are documented in Appendix D, and events that were determined to be impractical to analyze are documented in Appendix E.

2.2 Estimation of Precursor Significance

Quantification of ASP significance involves determination of a conditional probability of subsequent severe core damage given the failures observed during an operational event. This is estimated by mapping failures observed during the event onto the ASP event trees, which depict potential paths to severe core damage, and calculating a conditional probability of core damage through the use of event tree branch probabilities modified to reflect the event. The effect of a precursor on event tree branches is assessed by reviewing the operational event specifics against system design information and translating the results of the review into a revised conditional probability of system failure given the operational event.

In the precursor quantification process, it is assumed that the failure probabilities for systems observed to have failed during an event are equal to the likelihood of not recovering from the failure or fault that actually occurred. Failure probabilities for systems observed to have been degraded during an operational event are assumed equal to the conditional probability that the system would fail (given that it was observed degraded) and the probability that it would not be recovered within the required time period. The failure probabilities associated with observed successes and with systems unchallenged during the actual occurrence are assumed equal to a failure probability estimated from either system failure data (when available) or by the use of system success criteria and typical train and common-mode failure probabilities, with consideration of the potential for recovery. The conditional probability estimated for each precursor is useful in ranking because it provides an estimate of the measure of protection against core damage that remains once the observed failures have occurred.

The frequencies and failure probabilities used in the calculations are derived in part from data obtained across the LWR population, even though they are applied to sequences that are plant-class specific in nature. Because of this, the conditional probabilities determined for each precursor cannot be rigorously associated with the probability of severe core damage resulting from the actual event at the specific reactor plant at which it occurred.

The evaluation of precursor events in this report consider and, where appropriate, give credit for additional equipment or recovery procedures the plants have recently added. Accordingly, the evaluations this year may not be directly comparable to the results of prior years. Examples of additional equipment and recovery procedures addressed in the 1992 analyses, when information was available, include use of supplemental diesel generators (DGs) for station blackout mitigation, alternate systems for steam generator (SG) and RCS makeup, and depressurization of the primary with low pressure injection (LPI) in lieu of high pressure injection (HPI).

The ASP calculational process is described in detail in Appendix A. This appendix documents the event trees used in the 1988-1992 precursor analyses, changes to these trees from prior years, the approach used to estimate event tree branch and sequence probabilities, and sample calculations; it also provides probability values used in the calculations. The overall precursor selection process is illustrated in Fig. 1.

Fig. 1. ASP analysis process.

9

2.3 Documentation of Events Selected as Accident Sequence Precursors

Each 1992 precursor is docume in Appendix B. A description of the operational event is provided along with additional information relevant to the assessment of the event, the ASP modeling assumptions and approach used in the analysis, and analysis results. Two figures are also provided that (1) visually describe the dominant core damage sequence postulated for the event and (2) present a graph of the relative significance of the event compared with other potential events at the plant. The other potential events at the same plant are briefly described below:

PWR & BWR	
Trip	 Trip with equipment operable.
LOOP	 Loss of offsite power. Includes plant-centered, grid-centered, severe weather and extreme severe weather-related initiators.
360h EP	 360 h without emergency power sources (normally on-site emergency diesel generators).
PWR	
LOFW + 1MTR AFW	 Transient with loss of main feedwater and one motor driven AFW (or EFW pump failed (turbine driven pump substituted if plant does not have any motor driven pumps).
360h w/o AFW	 360 hours with all AFW (or EFW) pumps failed.
BVVR	
360 h w/o HPCI and RCIC	 360 hours with HPCI and RCIC failed (not applicable for Type A BWRs).
LOFW and HPCI	 Transient with loss of main feedwater and HPCI (loss of main FW and loss of Isolation Condensor is run instead for Type A BWRs).

An additional item, the conditional core damage calculation, documents the calculations performed to estimate the conditional core damage probability associated with the precursor and includes probability summaries for end states, the conditional probability for the more important sequences, and the branch probabilities used. Copies of the LERs and AIT Reports relevant to the event are also provided in Appendix F, listed in docket number order.

Appendices C, D and E include similar documentation for other events selected in the ASP Program (containment-related, other, and impractical events). No probabilistic analysis was performed on these events.

2.4 Tabulation of Selected Events

The 1992 events selected as precursors are listed in Table 1. The precursors have been arranged in numerical order by event identifier and the following information is included:

- 1. docket/LER number associated with the event (Event Identifier);
- 2. name of plant where the event occurred (Plant);
- a brief description of the event (Description);
- 4. date of the event (Event Date);
- 5. conditional probability of potential severe core damage associated with the event (Cp Probability);
- 6. initiator associated with the event or unavailability if no initiator was involved (TRANS).
- 7. abbreviations for the primary system and component involved in the event (System, Component);
- 8. plant operating status at the time of the event (O);
- 9. discovery method associated with the event (operational or testing) (D);
- 10. whether the event involved human error (E);
- 11. plant power rating, type, vendor, architect-engineer, and licensee (MWE, T, V, AE, Operator);

The information in Table 1 has been sorted in several ways to provide additional perspectives.

Sorted by

- Table 2 Plant name and LER number
- Table 3 Event date
- Table 4 Initiator or unavailability
- Table 5 System
- Table 6 Component
- Table 7 Plant operating status
- Table 8 Discovery method
- Table 9 Conditional core damage probability
- Table 10 Plant type and vendor

Abbreviations used in Tables 1-10 are defined in Tables 11a-11f.

2.5 Potentially Significant Events That Could Not Be Analyzed

A number of LERs identified as potentially significant were considered impractical to analyze. Examples of such events include component degradations where the extent of degradation could not be determined (for example, biological fouling of room coolers) or where a realistic estimate of plant response could not be made (for example, high energy line break concerns). Other events of this type include cable routing not in accordance with Appendix R requirements for fire protection, and inoperability of flood barriers. For both of these situations, detailed plant design information, and preferably an existing fire or flood PRA analysis, are required to reasonably estimate the significance of the event.

For many events classified as impractical to analyze, an assumption that the impacted component or function was unavailable over a 1-year period (as would be done using a bounding analysis) would result in a conclusion that a very significant condition existed. This conclusion was not supported by the specifics of the event as reported in the LER or by the limited engineering evaluation performed in the ASP Program. A reasonable estimate of significance for such events requires far more analysis resources than can be applied in the ASP Program.

Brief descriptions of events considered impractical to analyze are provided in Appendix E.

2.6 Potential Sources of Error

As with any analytic procedure, the availability of information and modeling assumptions can bias results. In this section, several of these potential sources of error are addressed.

- Evaluation of only a subset of 1992 LERs. For 1969-81 and 1984-87, all LERs reported during the year were evaluated for precursors. For 1988-92, only a subset of LERs were evaluated in the ASP Program following a computerized search of the SCSS data base and screening by NRC personnel. While this subset is believed to include most serious operational events, it is possible that some events that would normally be selected as precursors were missed because they were not included in the subset that was screened.
- 2. Inherent biases in the selection process. Although the criteria for identification of an operational event as a precursor are fairly well defined, the selection of an LER for initial review can be somewhat judgmental. Events selected in the study were more serious than most, so the majority of the LERs selected for detailed review would probably have been selected by other reviewers with experience in LWR systems and their operation. However, some differences would be expected to exist; thus, the selected set of precursors should not be considered unique.
- 3. Lack of appropriate information in the LER. The accuracy and completeness of the LERs in reflecting pertinent operational information is questionable in some cases. Requirements associated with LER reporting (i.e., 10 CFR 50.73), plus the approach to event reporting practiced at particular plants, can result in variation in the extent of events reported and report details among plants. Although the LER rule of 1984 has reduced the variation in reported details, some variation still exists. In addition, only details of the sequence (or partial sequences for failures discovered during testing) that actually occurred are usually provided; details concerning potential alternate sequences of interest in this study must often be inferred.
- 4. Accuracy of the ASP models and probability data. The event trees used in the analysis are plantclass specific and reflect differences between plants in the eight plant classes that have been defined. While major differences between plants are represented in this way, the plant models utilized in the analysis may not adequately reflect all important differences. Known problems concern the representation of HPI for some pressurized-water reactors (PWRs), long-term DHR for BWRs, and ac power recovery following a LOOP and battery depletion (station blackout issues). Modeling improvements that address these problems are being pursued in the ASP Program.

Because of the sparseness of system failure events, data from many plants must be combined to estimate the failure probability of a multitrain system or the frequency of low- and moderate-frequency events (such as LOOPs and small-break LOCAs). Because of this, the modeled response for each event will tend toward an average response for the plant class. If systems at the plant at which the event occurred are better or worse than average (this is difficult to ascertain without extensive operating experience), the actual conditional probability for an event could be higher or lower than that calculated in the analysis.

Known plant-specific equipment and procedures that can provide additional protection against core damage beyond the plant-class features included in the ASP event tree models were addressed in the 1992 precursor analysis. This information was not uniformly available – much of it was provided in licensee comments on preliminary analyses and in Individual Plant Examination (IPE).

documentation available at the time this report was prepared. As a result, consideration of additional features may not be consistent in precursor analyses of events at different plants. However, analyses of multiple events that occurred at an individual plant or at similar units at the same site were uniformly developed.

5. Difficulty in determining the potential for recovery of failed equipment. Assignment of recovery credit for an event can have a significant impact on the assessment of the event. The approach used to assign recovery credit is described in detail in Appendix A. The actual likelihood of failing to recover from an event at a particular plant is difficult to assess and may vary substantially from the values currently used in the ASP analyses. This difficulty is demonstrated in the genuine differences in opinion among analysts, operations and maintenance personnel, etc., concerning the likelihood of recovering from specific failures (typically observed during testing) within a time period that would prevent core damage following an actual initiating event.

Programmatic constraints have prevented substantial efforts in estimating actual recovery class distributions. The values currently used are based on a review of recovery actions during historic events and also include consideration of human error during recovery. These values have been reviewed both within and outside the ASP Program. While it is acknowledged that substantial uncertainty exists in them, they are believed adequate for ranking purposes, which is the primary goal of the current precursor calculations. This assessment is supported by the sensitivity and uncertainty calculations documented in the 1980-81 report.¹ These calculations demonstrated only a small impact on the relative ranking of events from changes in the numeric values used for each recovery class.

6. Assumption of a 1-month test interval. The core damage probability for precursors involving unavailabilities is calculated on the basis of the exposure time associated with the event. For failures discovered during testing, the time period is related to the test interval. A test interval of 1 month was assumed unless another interval was specified in the LER.

If the test interval is longer than this, on the average, for a particular system, then the calculated probability will be lower than that calculated using the actual test interval. Examples of longer test intervals would be situations in which (1) system valves are operated monthly but a system pump is started only quarterly or (2) valves are partially stroked monthly but fully operated only during refueling. Conversely, more frequent testing will result in a higher calculated failure probability than that calculated using the actual, shorter test interval. Test interval assumptions can also impact system failure probabilities estimated from precursor events, as described in Ref. 1.

2.7 Reference

 W. B. Cottrell, J. W. Minarick, P. N. Austin, E. W. Hagen, and J. D. Harris, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., and Science Applications International Corp., *Precursors to Potential Severe Core Damage Accidents: 1980-81, A Status Report*, USNRC Report NUREG/CR-3591, Vols. 1 and 2 (ORNL/NSIC-217/V1 and V2), July 1984."

[&]quot;Available for purchase from National Technical Information Service, Springfield, Virginia 22161.

ENCLOSURE 5

APPENDIX A. ASP MODELS

This appendix provides information concerning the methods and models used to estimate event significance in the ASP Program. The basic models used in the analysis of 1992 precursors are the same as those used for 1989-91 precursors. However, the analysis of 1992 precursors considered the potential use of alternate equipment and procedures, beyond that addressed in the basic models, that recently have been added by the licensees to provide additional protection against core damage, if information regarding this equipment was available. This equipment is described in Sect. A.3.

A.1 Precursor Significance Estimation

Quantification of accident sequence precursor significance involves determination of a conditional probability of subsequent severe core damage given the failures observed during an operational event. This is estimated by mapping failures observed during the event onto event trees depicting potential paths to severe core damage and calculating a conditional probability of core damage through the use of event tree branch probabilities modified to reflect the event. In the quantification processes, it is assumed that the event tree branch failure probabilities for systems observed failed during an event are equal to the likelihood of not recovering from the failure or fault that actually occurred. Event tree branch failure probabilities for systems observed degraded during an operational event are assumed equal to the conditional probability that the system would fail (given that it was observed degraded) and the probability that it would not be recovered within the required time period. Event tree branch failure probabilities used for systems observed to be successful and systems unchallenged during the actual occurrence are assumed equal to a failure probability estimated from either system failure data (when available) or by the use of system success criteria and typical train and common-mode failure probabilities. The conditional probability estimated for each precursor is useful in ranking because it provides an estimate of the measure of protection against core damage remaining once the observed failures have occurred.

A.1.1 ASP Event Tree Models

Models used to rank precursors as to significance consist of plant-class specific event trees that are linked to simplified plant-specific system models. These models describe mitigation sequences for three initiating events: a nonspecific reactor trip [which includes LOFW within the model], LOOP, and small-break LOCA. The event tree models are system-based and include a model applicable to each of eight plant classes: three for BWRs and five for PWRs.

Plant classes are defined based on the use of similar systems in providing protective functions in response to transients, LOOPs, and small-break LOCAs. System designs and specific nomenclature may differ among plants included in a particular class; but functionally, they are similar in response. Plants where certain mitigating systems do not exist, but which are largely analogous in their initiator response, are grouped into the appropriate plant class. In modeling events at such plants, the event tree branch probabilities are modified to reflect the actual systems available at the plant. For operational events that cannot be described using the plant-class specific event trees, unique models are developed to describe the potential sequences to severe core damage. Each event tree includes two undesired end states. The undesired end states are designated as (1) core damage (CD), in which inadequate core cooling is believed to exist; and (2) ATWS, for the failure-to-scram sequence. The end states are distinct; sequences associated with ATWS are not subsets of core damage sequences. The ATWS sequence, if fully developed, would consist of a mumber of sequences ending in either success or core damage. Successful operation is designated "OK" in the event trees included in this appendix.

A.1.2 Precursor Impact on Event Tree Branches

The effect of a precursor on event tree branches is assessed by reviewing the operational event specifics against system design information and translating the results of the review into a revised conditional probability of system failure given the operational event. This translation process is simplified in many cases through the use of train-based models that represent an event tree branch. If a train-based model exists, then the impact of the operational event need only be determined at the train level, and not at the system level.

Once the impact of an operational event on systems included in the ASP event tree models has been determined, branch probability values are modified to reflect the event, and the event trees are then used to estimate a conditional probability of subsequent core damage, given the precursor.

A.1.3 Estimation of Initiating Event Frequencies and Branch Failure Probabilities Used with the Event Tree Models

A set of initiating event frequencies and system failure probabilities was developed for use in the quantification of the event tree models associated with the precursors. The approach used to develop frequency and probability estimates employs failure or initiator data in the precursors themselves when sufficient data exists. When precursor data are available for a system, its failure probability is estimated by counting the effective number of nonrecoverable failures in the observation period, making appropriate demand assumptions, and then calculating the effective number of failures per demand. The number of demands is calculated based on the estimated number of tests per reactor year plus any additional demands to which a system would be expected to respond. This estimate is then multiplied by the number of applicable reactor years in the observation period to determine the total number of demands. A similar approach is employed to estimate initiator frequencies per reactor year from observed initiating events.

The potential for recovery is addressed by assigning a recovery action to each system failure and initiating event. Four classes are currently used to describe the different types of recovery that could be involved:
 Recovery class	Likelihood of nonrecovery	Recovery characteristic
R1	1.00	The failure did not appear to be recoverable in the required period, either from the control room or at the failed equipment.
R2	0.34	The failure appeared recoverable in the required period at the failed equipment, and the equipment was accessible; recovery from the control room did not appear possible.
R3	0.12	The failure appeared recoverable in the required period from the control room, but recovery was not routine or involved substantial operator burden.
R4	0.04	The failure appeared recoverable in the required period from the control room and was considered routine and procedurally based.

The assignment of an event to a recovery class is based on engineering judgment, which considers the specifics of each operational event and the likelihood of not recovering from the observed failure in a moderate to bigh-stress situation following an initiating event. For analysis purposes, consistent probabilities of failing to recover an observed failure are assigned to each event in a particular recovery class. It must be noted that the actual likelihood of failing to recover from an event at a particular plant is difficult to assess and may vary substantially from the values listed. This difficulty is demonstrated in the genuine differences in opinion among analysts, operations and maintenance personnel, etc., concerning the likelihood of recovering specific failures (typically observed during testing) within a time period that would prevent core damage following an actual initiating event.

The branch probability estimation process is illustrated in Table A.1. Table A.1 lists two operational events that occurred in 1984-86 involving failure of SG isolation. For each event, the likelihood of failing to recover from the failure is listed (Column 3). The effective number of nonrecoverable events (1.04 in this case) is then divided by an estimate of the total number of demands in the 1984-86 observation period (1968) to calculate a failure on demand probability of 5.3×10^{-4} .

The likelihood of system failure as a result of hardware faults is combined with the likelihood that the system could not be recovered, if failed, and with an estimate of the likelihood of the operator failing to initiate the system, if manual initiation were required, to estimate the overall failure probability for an event-tree branch. Calculated failure probabilities are then used to tailor the probabilities associated with train-based system models. Such an approach results in system failure probability estimates that reflect, to a certain extent, the degree of redundancy actually available and permits easy revision of these probabilities based on train failures and unavailabilities observed during an operational event.

Programmatic constraints have prevented substantial efforts in estimating actual recovery class distributions. The values currently used were developed based on a review of events with the potential for short-term recovery, in addition to consideration of human error during recovery. These values have been reviewed both within and outside the ASP Program. While it is acknowledged that substantial uncertainty exists in them, they are believed adequate for ranking purposes, which is the primary goal of the current precursor calculations. This assessment is supported by the sensitivity and uncertainty calculations documented in the 1980-81 report. These calculations demonstrated little impact on the relative ranking of events from variance in recovery class values.

A.1.4 Conditional Probability Associated with Each Precursor

The calculation process for each procursor involves a determination of initiators that must be modeled and their probability, plus any modifications to system probabilities necessitated by failures observed in an operational event. Once the branch probabilities that reflect the conditions of the precursor are established, the sequences leading to the modeled end states (core damage and ATWS) are calculated and summed to produce an estimate of the conditional probability of each end state for the precursor. So that only the additional contribution to risk (incremental risk) associated with a precursor is calculated, conditional probabilities for precursors associated with equipment unavailabilities (during which no initiating event occurred) are calculated a second time using the same initiating event probability but with all branches assigned normal failure probabilities (no failed or degraded states) and subtracted from the initially calculated values. This eliminates the contribution for sequences unimpacted by the precursor, plus the normal risk contribution for impacted sequences during the unavailability. This calculational process is summarized in Table A.2.

The frequencies and failure probabilities used in the calculations are derived in part from data obtained across the LWR population, even though they are applied to sequences that are plant-class specific in nature. Because of this, the conditional probabilities determined for each precursor cannot be rigorously associated with the probability of severe core damage resulting from the actual event at the specific reactor plant at which it occurred. The probabilities calculated in the ASP study are homogenized probabilities considered representative of probabilities resulting from the occurrence of the selected events at plants representative of the plant class.

A.1.5 Sample Calculations

Three hypothetical events are used to illustrate the calculational process.

1. The first event assumes a trip and LOFW but no other observed failures during mitigation. An event tree for this event is shown in Fig. A.1. On the event tree, successful operation is indicated by the upper branch and failure by the lower branch. With the exception of relief valve lift, failure probabilities for branches are indicated. For HPI, the lowest branch includes operator action to initiate feed and bleed. Success probabilities are 1 - p(failure). The likelihood of not recovering the initiator (trip) is assumed to be 1.0, and the likelihood of not recovering MFW is assumed to be 0.34 in this example. Systems assumed available were assigned failure probabilities currently triad in the ASP Program. The estimated conditional probabilities for undesirable end states assumed with the event are then:

$$p(cd) = p[seq. 11] \quad [1.0 \times (1 - 3.0 \times 10^{-3}) \times (1 - 9.9 \times 10^{-5}) \times 4.0 \times 10^{-2} \times 3.3 \times 10^{-4} \times (1 - 8.4 \times 10^{-5}) \times 1.1 \times 10^{-3}]$$

+ p[seq. 12] $[1.0 \times (1 - 3.0 \times 10^{-5}) \times (1 - 9.9 \times 10^{-5}) \times 4.0 \times 10^{-2} \times 3.3 \times 10^{-4} \times 8.4 \times 10^{-4}]$

+ p[seq. 13] $[1.0 \times (1 - 3.0 \times 10^{-5}) \times 9.9 \times 10^{-5} \times (1 - 0.34) \times 4.0 \times 10^{-2} \times 3.3 \times 10^{-4} \times (1.0 - 8.4 \times 10^{-4}) \times 1.1 \times 10^{-5}]$

 $= 7.7 \times 10^{-7}$

p(ATWS) = p[seq. 18]

- $= 3.0 \times 10^{-5}$
- The second example event involves failures that would prevent HPI if required to mitigate a small-2. break LOCA or if required for feed and bleed. Assume such failures were discovered during testing. This event impacts mitigation of a small-break LOCA initiator and potentially impacts mitigation of a trip and LOOP, should a transient-induced LOCA occur or should feed and bleed be required upon loss of AFW and MFW. The event tree for a postulated small-break LOCA associated with this example precursor is shown in Fig. A.2. The failure probability associated with the precursor event (unavailability of HPI) is assigned based on the likelihood of not recovering from the failure in a 20-30 min time frame (assumed to be 1.0 in this case). No initiating event occurred with the example precursor; however, a failure duration of 360 h was estimated based on one-half of a monthly test interval. The estimated small-break LOCA frequency (assumed to be 1.0 \times 10⁻⁶/h in this example), combined with this failure duration, results in an estimated initiating event probability of 3.6×10^{-4} during the unavailability. The probabilities for small-LOCA sequences involving undesirable end states (employing the same calculational method as above and subtracting the nominal risk during the time interval) are 3.6×10^{-4} for core damage and 0.0 for ATWS. Note that the impact of the postulated failure on the ATWS sequence is zero because HPI success or failure does not impact that sequence as modeled.

For most unavailabilities, similar calculations would be required using the trip and LOOP event trees, since these postulated initiators could also occur. In this example, neither of these two initiators contributes substantially to the core damage probability associated with the event.

3. The third example event involves a trip with unavailability of one of two trains of service water (SW). Assumed unavailability of the SW train results in unavailability of one train of HPI, high pressure recirculation (HPR), and AFW, all because of unavailability of cooling to the respective pumps. In this example, SW cooling of two motor-driven AFW pumps is assumed. An additional turbine-driven pump is assumed to be self-cooled. Since SW is not explicitly addressed in the ASP event trees, the probabilities of front-line systems impacted by the loss of SW are instead modified.

Figure A.3 shows a transient event tree with branch failure probabilities modified to reflect unavailability of one train of service water. The likelihoods of not recovering failed front line systems are assumed to be unchanged, since the failure mechanisms for (observed) non-faulted trains are expected to be consistent with historically observed failures. The conditional probability of core damage given the trip and one service water train unavailable is 1.1×10^{-6} . If the second train of service water were to fail, HPI and HPR (and hence feed and bleed) would be rendered unavailable; however, the turbine-driven AFW pump would still be operable. In this case, the likelihood of not recovering HPI and HPR is assumed to be 1.0 until service water is recovered. Sequences associated with loss of both service water trains increase the core damage probability associated with the event. The extent of this increase is dependent in PWRs on the likelihood of a reactor coolant pump seal failure following the loss of service water (since seal injection and seal cooling would be typically lost). Assuming that the conditional probability of loss of the second service water

A-8

train is 0.01, that the likelihood of not recovering SW is 0.34, and that the failure probability of the turbine-driven AFW pump is 0.05, the increase in core damage probability is 1.7×10^{-4} if no RCP seal failure occurs, and 3.4×10^{-3} if the likelihood of seal failure is 1.0.

A.1.6 Event Tree Changes Made to 1988-1991 Event Models

Two changes were made to the event trees used in the 1988-91 precursor assessments: core vulnerability sequences on trees used for 1984-87 assessments were reassigned as success or core damage sequences, and the likelihood of PWR RCP seal LOCA following station blackout was explicitly modeled.

In the prior models, the core vulnerability end state was assigned to sequences in which core protection was expected to be provided but for which no specific analytic basis was generally available or which involved non-proceduralized operator actions. Core vulnerability sequences were assigned to either success or core damage end states in the current models, as follows:

Core vulnerability sequence type	Revised end state
Stuck-open secondary-side relief valve with a failure of HPI in a PWR	Success
Steam generator (SG) depressurization and use of condensate system following failure of AFW, MFW, and feed and bleed in a PWR	Core damage (except for PWR Class H)
Use of containment venting as an alternate core cooling method in a BWR	Core damage

The net effect of this change is a significant reduction in the complexity of the event trees, with little impact on the relative significance estimated for each precursor. The impact of this modeling change on conditional probability estimates for 1987 precursors is described in Sect. 3.6 of Ref. 1. (Alternate calculations using models with the above changes were performed on 1987 events.) As illustrated in Ref. 1, modest differences existed between the core damage, core damage plus core vulnerability, and revised core damage model conditional probability estimates for most of the more significant events. Where differences did exist, the sum of probabilities of core damage and core vulnerability (all non-ATWS undesirable end states in the earlier models) was closer to the core damage probability estimated with the revised models.

Three 1987 events had substantially higher "sum" probabilities—these events involved trips with single safety-related train unavailabilities, for which the dominant core vulnerability sequence was a stuck-open secondary-side relief valve with HPI failure (assigned to success in the revised models).

The second modeling change was the inclusion of PWR RCP seal LOCA in blackout sequences. The impact of such a seal LOCA on the core damage probability estimated for an event had previously been bounded by the use of a conservative value for failure to recover ac power prior to battery depletion following a LOOP and loss of emergency power.

The PWR event trees have been revised to address potential seal LOCA during station blackout through the use of seal LOCA and electric power recovery branches, as shown below:

Two time periods are represented in the sequences in the above figure. Auxiliary feedwater, poweroperated relief valve/safety relief valve (PORV/SRV) challenge, and PORV/SRV reseat are shot-term responses following loss of the diesel generators. If turbine-driven AFW is unavailable, or if an open PORV/SRV fails to close, then core damage is assumed to occur, since no high-pressure injection is available as an alternate means of core cooling or for RCS makeup. SEAL LOCA, EP REC LONG, and HPI are branches applicable in the long term. SEAL LOCA represents the likelihood of a seal LOCA prior to restoration of ac power. EP REC LONG represents the likelihood of not restoring ac power prior to core uncovery (if a seal LOCA exists) or prior to battery depletion (in the case of no seal LOCA). Once the batteries are depleted, core damage is assumed to occur, since control of turbinedriven pumps and the ability to monitor core and RCS conditions are lost. HPI represents the likelihood of failing to provide HPI following a seal LOCA to prevent core damage. The ASP models have been simplified somewhat by assuming that HPI is always adequate to make up for flow from a failed seal or seals.

The three seal LOCA-related sequences are illustrated in sequences 1, 2, and 3. In sequence 1, a seal LOCA occurs prior to restoration of ac power, ac power is successfully restored prior to core uncovery, but HPI fails to provide makeup flow. In sequence 2, a seal LOCA also occurs, and ac power is not restored prior to core uncovery. In sequence 3, no seal LOCA occurs, but ac power is not recovered prior to battery depletion. The likelihood of seal LOCA prior to ac power restoration and the likelihood of ac power recovery are time-dependent, and this time-dependency is accounted for in the analysis. A

more detailed description of the changes associated with explicitly modeling RCP seal LOCA is included in Ref. 2.

In addition to elimination of core vulnerability sequences, two other changes were made to simplify the previously complex BWR event trees:

- Failure to trip with soluble boron injection success was previously developed in detail and involved a large number of low probability sequences. All failure to trip sequences are now assigned to the ATWS end state.
- The condensate system was previously modeled as an alternate source of low-pressure injection water. This use of the condensate system is now considered a recovery action. this reduces the number of sequences on the event trees without substantially impacting the core damage probability estimates developed using the trees. Systems addressed on the event trees for low-pressure injection include LPCS, LPCI, and RHRSW.

A.2 Plant Categorization

Both the 1969-79 and 1980-81 precursor reports (Refs. 1 and 2) used simplified, functionally based event trees to model potential event sequences. One set or event trees was used to model for PWR initiating events: LOFW, LOOP, small-break LOCA, and steam line break. A separate set of event trees was used to model BWR response to the same initiators. Operational events that could not be modeled using these "standardized" event trees were addressed using models specifically developed for the event.

It was recognized during the review of the 1969-79 precursor report that plant designs were sufficiently different that multiple models would be required to more correctly describe the impact of an operational event in different plants. In 1985, substantial effort was expended to develop a categorization scheme for all U.S. LWRs that would permit grouping of plants with similar response to a transient or accident at the system or functional level, and to subsequently develop eight sets of plant-class specific event tree models. Much of the categorization and "arly event sequence work was done at the University of Maryland (Refs. 3 and 4). The ASP Progum has generally employed these categorizations; however, some modifications have been required to reflect more closely the specific needs of the precursor evaluations.

In developing the plant categorizations, each reactor plant was examined to determine the systems used to perform the following plant functions required in response to reactor trip, LOOP, and small-break LOCA initiators to prevent core damage: reactor subcriticality, RCS integrity, reactor coolant inventory, short-term core heat removal, and long-term core heat removal.

Functions related to containment integrity (containment overpressure protection and containment heat removal) and post-accident reactivity removal are not included on the present ASP event trees (which only concern core damage sequences) and are not addressed in the categorization scheme.

For each plant, systems utilized to perform each function were identified. Plants were grouped based on the use of nominally identical systems to perform each function; that is, systems of the same type and function without accounting for the differences in the design of those systems. Three BWR plant classes were defined. BWR Class A consists of the older plants, which are characterized by isolation condensers (ICs) and feedwater coolant injection (FWCI) systems that employ the MFW pumps. BWR Class B consists of plants that have ICs but a separate HPCI system instead of FWCI. BWR Class C includes the modern plants that have neither ICs nor FWCI. However, they have a RCIC system that Classes A and B lack. The Class C plants could be separated into two subgroups, those plants with turbine-driven HPCI systems and those with motor-driven HPCS systems. This difference is addressed instead in the probabilities assigned to branches impacted by the use of these different system designs.

PWRs are separated into five classes. One class represents most Babcock & Wilcox Company plants (Class D). These plants have the capability of performing feed and bleed without the need to open the PORV. Combustion Engineering plants are separated into two classes, those that provide feed and bleed capability (Class G) and those that provide for secondary-side depressurization and the use of the condensate system as an alternate core cooling method, and for which no feed and bleed is available (Class H).""

The remaining two classes address Westinghouse plants – Class A is associated with plants that require the use of spray systems for core heat removal following a LOCA, and Class B is associated with plants that can utilize low-to-high pressure recirculation for core heat removal.

Plants in which initiator response cannot be described using plant-class models are addressed using unique models, for example, the now deactivated LaCrosse BWR.

Table A.17 lists the class associated with each plant.

A.3 Event Tree Models

The plant class event trees describe core damage sequences for three initiating events: a nonspecific reactor trip, a LOOP, and a small-break LOCA. The event trees constructed are system-based and include an event tree applicable to each plant class defined.

System designs and specific nomenclature may differ among plants included in a particular class; but functionally, they are similar. Plants where certain mitigating systems do not exist, but which are largely analogous in their transient response, were grouped into the plant classes accordingly. In modeling events at such plants, the event tree branch probabilities were modified to reflect the systems available at the plant. Certain events (such as a postulated steam line break) could not be described using the plant-class event trees presented in this appendix. In these cases, unique event trees were developed to describe the sequences of interest.

³⁶⁸Maine Yankee Atomic Power Plant was built by Combustion Engineering but has a response to initiating events more akin to the Westinghouse Electric Corporation design, so it is grouped in a class with other Westinghouse plants. Davis-Besse Nuclear Power Station was also placed in a Westinghouse plant class because its HPI system design requires the operator to open the PORV for feed and bleed, as in most Westinghouse plants. The requirement to open the PORV for feed and bleed is a primary difference between event trees for Westinghouse and Babcock and Wilcox plants. Plant response differences resulting from the use of different SG designs are not addressed in the models.

This section (1) describes the potential plant response to the three initiating events described above, (2) identifies the combinations of systems required for the successful mitigation of each initiator, and (3) briefly describes the criteria for success of each system-based function. The sequences are considered first for PWRs and then separately for BWRs. PWR Class B event trees are described first, along with those for Class D, which are similar. (The major difference between Class B and Class D plants is that PORV operability is not required for feed and bleed on Class D plants.) The event trees for the combined group apply to the greatest number of operating PWRs. Therefore, these are discussed first, followed by those for PWR Classes G, H, and then A. For the BWR event trees, the plant Class C models are described first, because these are applicable to the majority of the BWRs, followed by discussions for the A and B BWR classes, respectively. The event trees are constructed with branch (event or system) success as the upper branch and failure as the lower branch. Each sequence path is read from left to right, beginning with the initiator followed by subsequent systems required to preclude or mitigate core damage.

The event trees can be found following the discussion sections and are grouped according to plant classes, beginning with the PWR classes and followed by the BWR classes. The abbreviations used in the event tree models are defined in Table A.16 preceding the event trees. Sequence numbers are provided on the event trees for undesirable end states (core damage and ATWS). Because of the similarities among PWR sequences for different plant classes, common sequence numbers have been assigned when possible. PWR Class B sequences were used as a basis for this. Sequence numbers beyond those for Class B are used for uncommon sequences on other plant classes. This approach facilitates comparison of sequences among plant classes. This approach could not be used for BWRs because of the significant difference in systems used on plants in the three plant classes. For BWRs, sequences are numbered in increasing order moving down each event tree. The following sequence number groups are employed for all event trees: transient with reactor trip success, 11-39; LOOP with reactor trip success, 40-69; small-break LOCA with reactor trip success, 71-79; ATWS sequences, 91-99.

The trees are presented in the following order:

Figure No.	Event tree
A.4	PWR Class A nonspecific reactor trip
A.5	PWR Class A loss of offsite power
A.6	PWR Class A small-break loss-of-coolant accident
A.7	PWR Classes B and D nonspecific reactor trip
A.8	PWR Classes B and D loss of offsite power
A.9	PWR Classes B and D small-break loss-of-coolant accident
A.10	PWR Class G nonspecific reactor trip
A.11	PWR Class G loss of offsite power
A.12	PWR Class G small-break loss-of-coolant accident
A.13	PWR Class H nonspecific reactor trip
A.14	PWR Class H loss of offsite power
A.15	PWR Class H small-break loss-of-coolant accident
A.16	BWR Class A nonspecific reactor trip
A.17	BWR Class A loss of offsite power
A.18	BWP. Class A small-break loss-of-coolant accident
A.19	BWR Class B nonspecific reactor trip
A.20	BWR Class B loss of offsite power
A.21	BWR Class B small-break loss-of-coolant accident
A.22	BWR Class C nonspecific reactor trip

A-13

A.23 BWR Class C loss of offsite power

A.24 BWR Class C small-break loss-of-coolant accident

A.3.1 PWR Event Sequence Models

The PWR event trees describe the impact of the availability and unavailability of front-line systems in each plant class on core protection following three initiating events: reactor trip, LOOP, and small-break LOCA. The systems modeled in the event trees are those associated with the generic functions required in response to an initiating event, as described in Sect. A.2. The systems that are assumed capable of providing these functions are:

Function	System
Reactor subcriticality:	Reactor trip
Reactor coolant system integrity:	Addressed in small-break LOCA models plus trip and LOOP sequences involving failure of primary relief valves to close
Reactor coolant inventory:	High-pressure injection (assumed required only following a LOCA)
Short-term core heat removal:	Auxiliary feedwater
	Main feedwater
	High-pressure injection and PORV (feed and bleed, PWR Classes A, B, D, and G)
	Secondary-side depressurization and use of condensate system (PWR Class H)
Long-term core heat removal:	Auxiliary feedwater
	Main feedwater
	High-pressure recirculation (PWR Classes B and D) (also required to support RCS inventory for all classes)
	Secondary-side depressurization and use of condensate system (PWR Class H)
	Containment spray recirculation (PWR Classes A and G)

PWR Nonspecific Reactor Trip

The PWR nonspecific reactor trip event tree constructed for plant Classes B and D is shown in Fig. A.7. The event-tree branches and the sequences leading to severe core damage and ATWS follow.

- 1. Initiating event (transient). The initiating event for the tree is a transient or upset event that requires or is followed by a rapid shutdown of the plant. LOOP and small-break LOCA initiators are modeled in separate event trees. Large-break LOCA or large SLB initiators are not addressed in the models described here.
- Reactor trip. To achieve reactor subcriticality and thus halt the fission process, the reactor protection system (RPS) is required to insert control rods into the core. If the automatically initiated RPS fails, a reactor trip may be initiated manually. Failure to trip was considered to lead to the end state ATWS and was not developed further.
- 3. Auxiliary feedwater. AFW must be provided following trip to remove the decay heat still being generated in the reactor core via the SGs. Successful AFW operation requires flow from one or more AFW pumps to one or more SGs over a period of time ranging from 12 to 24 h (typically, one pump to one SG is adequate).
- 4. Main feedwater. In lieu of AFW, MFW can be utilized to remove the post shutdown decay heat. Depending on the individual plant design, either main or AFW may be used as the primary source of secondary-side heat removal.
- 5. PORV or SRV challenged. For sequences in which both reactor trip and steam generator feedwater flow (MFW or AFW) have been successful, the pressurizer PORV may or may not lift, depending on the peak pressurizer pressure following the transient. (In most transients, these valves do not lift.) The upper branch indicates that the valve or valves were challenged and opened. Because of the multiplicity of relief and safety valves, it was assumed that a sufficient number would open if the demand from a pressure transient exists.

The lower branch indicates that the pressurizer pressure was not sufficiently high to cause opening of a relief valve. For the sequence in which both AFW and MFW fail following a reactor trip, at least one PORV or SRV was assumed to open for overpressure protection.

- 6. PORV or SRV reseats. Success for this branch requires the closure of any open relief valve once pressurizer pressure has decreased below the relief valve set point. If a PORV sticks open, most plants are equipped with an isolation valve that allows for manual termination of the blowdown. Failure of a primary-side relief valve to close results in a transient-induced LOCA that is modeled as part of this event tree.
- High-pressure injection. In the case of a transient-induced LOCA, HPI is required to provide RCS makeup to keep the core covered. Success for this branch requires introduction of sufficient borated water to keep the core covered, considering core decay heat. (Typically, one HPI train is sufficient for this purpose.)
- 8. HPI and PORV open. If normal methods of achieving decay heat removal via the SGs (MFW and AFW) are unavailable, core cooling can be accomplished on most plants by establishing a feed and bleed operation. This operation (1) allows heat removal via discharge of reactor coolant to the containment through the PORVs and (2) RCS makeup via injection of borated water from the HPI system. Except at Class D plants, successful feed and bleed requires the operator to open the PORV manually. At Class D plants, the HPI discharge pressure is high enough to lift the primary-side safety valves, and feed and bleed can be accomplished without the operator manually opening the PORVs. HPI success is dependent on plant design but requires the introduction of sufficient

amounts of borated water into the RCS to remove decay heat and provide sufficient reactor coolant makeup to prevent core damage.

9. High-pressure recirculation. Following a transient-induced LOCA (a PORV or SRV fails to reseat), or failure of secondary-side cooling (AFW and MFW) and initiation of feed and bleed, continued core cooling and makeup are required. This requirement can be satisfied by using HPI in the recirculation mode. In this mode the HPI pumps recirculate reactor coolant collected in the containment sump and pass it through heat exchangers for heat removal. When MFW or AFW is available, heat removal is only required for HPI pump cooling; if AFW or MFW is not available, HPR is required to remove decay heat as well. Typically, at Class B and D plants, the LPI pumps are utilized in the HPR mode, taking suction from the containment sump, passing the pumped water through heat exchangers, and providing net positive suction head to the HPI pumps.

The event tree applicable to a PWR Class G nonspecific reactor trip is shown in Fig. A.10. Many of the event tree branches and the sequences leading to successful transient mitigation and core damage are similar to those following a nonspecific reactor trip transient for plant Class B. At Class G plants, however, the HPR system performs both the high- and low-pressure recirculation (LPR), function, taking suction directly from the containment sump without the aid of the low-pressure pumps. DHR is accomplished during recirculation by the containment spray recirculation (CSR) system. The event-tree branches and sequences are discussed further.

- 1. Initiating event (transient). The initiating event is a nonspecific reactor trip, similar to that described for PWR Classes B and D. The following branches have functions and success requirements similar to those following a transient at PWR Class B.
- 2. Reactor trip.
- 3. Auxiliary feedwater or main feedwater.
- 4. PORV or SRV challenged reseats.
- 5. High-pressure injection.
- 6. HPI and PORV open (feed and bleed). Success requirements for feed and bleed are similar to those following the plant Class B transient. Feed and bleed with operator opening of the PORV is required in the event that both AFW and MFW are unavailable for secondary-side cooling. In addition, DHR was assumed required to prevent potential core damage. This is provided by the CSR system.
- 7. High-pressure recirculation. In the event of a transient-induced LOCA, continued HPI via sump recirculation is needed to provide makeup to the break to prevent potential core damage. In addition, HPR is required when both AFW and MFW are unavailable following a transient, to recirculate coolant during the feed and bleed procedure. If HPR fails and normal secondary-side cooling is also failed, core damage will occur. In Class G plants, initiation of HPR realigns the HPI pumps to the containment sump. The use of LPI pumps for suction-pressure boosting is not required.

8. Containment spray recirculation. When feed and bleed (HPI, HPR, and PORV open) is required, the CSR system operates to remove decay heat from the reactor coolant being recirculated. Without the CSR system, the feed and bleed operation could not remove decay heat. Successful operation of feed and bleed and CSR was assumed to result in successful mitigation of core damage.

The event tree for PWR Class H non-specific reactor trip is shown in Fig. A.13. This class of plants is different than other PWR classes in that PORVs are not included in the plant design and feed and bleed cannot be used to remove decay heat in the event of main and AFW unavailability. If main or AFW cannot be recovered, the atmospheric dump valves can be used to depressurize the SGs to below the shutoff head of the condensate pumps, and these can be used, if available, for RCS cooling. Because of the need for secondary-side cooling for all success sequences, a requirement for CC to prevent core damage has not been modeled.

- 1. Initiating event (transient). The initiating event is a non-specific reactor trip, similar to that described for the previous PWR classes. The following branches have functions and success requirements similar to those following a transient at PWRs associated with previously described PWR classes.
- 2. Reactor trip.
- 3. Auxiliary feedwater.
- 4. Main feedwater.
- 5. SRV challenged. The upper branch indicates that at least one safety valve has lifted as a result of the transient. In most transients in which reactor trip has been successful and main or AFW is available, these valves do not lift. In the case where both main and AFW are unavailable, at least one SRV is assumed to lift. The lower branch indicates that the pressurizer pressure was not sufficiently high to cause the opening of a relief valve.
- SRV reseat. Success for this branch requires the closure of any open safety valve once pressurizer
 pressure has been reduced below the safety valve set point.
- High-pressure injection. In the case of a transient-induced LOCA, HPI is required to provide RCS makeup to keep the core covered.
- 8. High-pressure recirculation. The requirement for continued core cooling during mitigation of a transient-induced LOCA and following depletion of the refueling water tank can be satisfied by using HPI in the recirculation mode. In Class H plants, initiation of HPR realigns the HPI pumps to the containment sump. The use of LPI pumps for suction-pressure boosting is not required.
- 9. Steam generator depressurization. In the event that main and AFW are unavailable, the atmospheric dump valves (or turbine bypass valves if the main steam isolation valves are open) may be used on Class H plants to depressurize the SGs to the point that the condensate pumps can be used for SG cooling. In the event of main and AFW unavailability, failure to depressurize one SG to the operating pressure of the condensate system is assumed to result in core damage.
- 10. Condensate pumps. As described above, use of the condensate pumps on Class H plants along with secondary-side depressurization can provide adequate core cooling. Flow from one condensate

pump to one SG is assumed adequate. Unavailability of the condensate pumps in the event of failure to recover main and AFW is assumed to result in core damage.

The event tree applicable to PWR plant Class A nonspecific reactor trip is shown in Fig. A.4. Many of the event-tree branches and the sequences leading to successful transient mitigation and severe core damage are similar to those following a nonspecific reactor trip transient for plant Classes B and G.

Like the Class G plants, the Class A plants have a CSR system that provides DHR during HPR. Use of CSR for DHR was assumed to be required if AFW and MFW were unavailable. LPI pumps are required to provide suction to the HPI pumps during recirculation. The event-tree branches and sequences are discussed further below.

- 1. Initiating event (transient). The initiating event is a nonspecific reactor trip, similar to that described for the other PWR plant classes. The following branches have functions and success requirements similar to those following a transient at PWRs associated with plant Classes B, D, and G.
- 2. Reactor trip.
- 3. Auxiliary feedwater
- 4. Main feedwater.
- 5. PORV or SRV challenged.
- 6. PORV/SRV reseats.
- High-pressure injection.
- 8. High-pressure recirculation. In the event of a transient-induced LOCA, HPR can provide sufficient makeup to the break to terminate the transient. The LPI pumps provide suction to the high-pressure pumps in the recirculation mode. In the event that feed and bleed is required (following a transient in which both AFW and MFW are unavailable), HPR success is required.
- 9. Containment spray recirculation. The CSR system provides DHR during HPR when AFW and MFW are not available. In transient-induced LOCA sequences, HPI and HPR success is required to mitigate the event. In the event that secondary-side cooling via AFW or MFW is unavailable, feed and bleed with CSR, for DHR is considered sufficient to prevent core damage.
- 10. PORV open. The PORV must be opened by the operator below its set point to establish feed and bleed operation in the event that secondary-side cooling via AFW or MFW is unavailable.

Sequences resulting in core damage or ATWS following a PWR transient, shown on event trees applicable to each plant class, are described in Table A.4.

Many of the sequences are the same for different plant classes, the primary differences being the use of CSR on Class G and Class A, and the use of SG depressurization and condensate pumps for RCS cooling in lieu of feed and bleed on Class H. Because of this similarity, consistent sequence numbers have been used for like sequences in different PWR plant classes. All sequences, required branch success and failure states, and the applicability of each sequence to each plant class are summarized in Table A.5

PWR Lc : of Offsite Power

The event trees constructed define representative plant responses to a LOOP. A LOOP (without turbine runback on plants with this feature) will result in reactor trip due to unavailability of power to the control rod drive (CRD) mechanisms and a loss of MFW because of the unavailability of power to components in the condensate and condenser cooling systems.

The PWR LOOP tree constructed for plant Classes B and D is shown in Fig. A.8. The event-tree branches and the sequences leading to core damage follow.

- 1. Initiating event (LOOP). The initiating event for the tree is a grid or switchyard disturbance to the extent that the generator must be separated from the grid and all offsite power sources are unavailable to plant equipment. The capability of a runback of the unit generator from full power to supply house loads exists at some plants but is not considered in the event tree. Only LOOPs that challenge the emergency power system (EPS) are addressed in the ASP Program.
- 2. Reactor trip given LOOP. Unavailability of power to the CRD mechanisms is expected to result in a reactor trip and rapid shutdown of the plant. If the reactor trip does not occur, the transient was considered to proceed to ATWS and was not developed further.
- 3. Emergency power. Given a LOOP and a reactor trip, electric power would be lost to all loads not backed by battery power. When power is lost, DGs are automatically started to provide power to the plant safety-related loads. Emergency power success requires the starting and loading of a sufficient number of DGs to support safety-related loads in systems required to mitigate the transient and maintain the plant in a safe shutdown condition.
- 4. Auxiliary feedwater. The AFW system functions to remove decay heat via the SG secondary side. Success requirements for this branch are equivalent to those following a nonspecific reactor trip and unavailability of MFW. Both MFW and condensate pumps would be unavailable following a LOOP. Therefore, with emergency power and AFW failed, no core cooling would be available, and core damage would be expected to occur. Because, specific AFW systems may contain different combinations of turbine-driven and motor-driven AFW pumps, the capability of the system to meet its success requirements will depend on the state of the EPS and the number of turbine-driven AFW pumps that are available.
- 5. PORV or SRV challenged. The upper and lower states for this branch are similar to those following a nonspecific reactor trip. The PORV or SRV may or may not lift, depending on the peak pressure following the transient.
- 6. PORV or SRV reseats. The success requirements for this branch are similar to those following a nonspecific reactor trip. However, for the sequence in which emergency power is failed and the PORV fails to reseat, the HPI/HPR system would be without power to mitigate potential core damage.
- 7. Seal LOCA. In the event of a loss of emergency power following LOOP, both SW and component cooling water (CCW) are faulted. This results in unavailability of RCP seal cooling and seal injection (since the charging pumps are also without power and cooling water). Unavailability of seal cooling and injection may result in seal failure after a period of time, depending on the seal

design (for some seal designs, seal failure can be prevented by isolating the seal return isolation valve).

The upper event tree branch represents the situation in which seal failure occurs prior to restoration of ac power. The lower branch represents the situation in which a seal LOCA does not occur.

- 8. Electric power recovered (long term). For sequences in which a seal LOCA has occurred, success requirements are the restoration of ac power [either through recovery of offsite power or recovery of a DG] prior to core uncovery. For sequences in which a seal LOCA does not occur, success requires the recovery of ac power prior to battery depletion, typically 2 to 4 h.
- 9. High-pressure injection and recirculation. The success requirements for this branch are similar to those following a nonspecific reactor trip. Because all HPI/HPR systems use motor-driven pumps, the capability of the HPI or HPR system to meet its success requirements depends on the success of the EPS.
- 10. PORV open (for feed and bleed). The success requirements for this branch are similar to those following a nonspecific reactor trip. The PORV is opened in conjunction with feed and bleed operations when secondary-side heat removal is unavailable. For Class D plants, the PORV does not have to be manually opened to establish feed and bleed because the HPI pump discharge pressure is high enougn to lift the PORV or primary relief valve.

The event tree constructed for the PWR Class G LOOP is shown in Fig. A.11. Most of the event-tree branches and the sequences leading to successful mitigation and core damage are similar to those following a LOOP at Class B plants. However, at Class G plants, DHR during recirculation is provided by the CSR system, not the HPR system. The event-tree branches and sequences are discussed further below.

- 1. Initiating event (LOOP). The initiating event is a LOOP similar to that described for PWR plant Classes B and D. The following branches have functions and success requirements similar to those following a LOOP at PWRs associated with all of the plant classes defined.
- 2. Reactor trip given LOOP.
- 3. Emergency power.
- 4. Auxiliary feedwater.
- 5. PORV or SRV challenged.
- 6. PORV/SRV valve reseats.
- 7. Seal LOCA.
- 8. Electric power recovered (long term).
- 9. High-pressure injection and recirculation.
- 10. PORV open (for feed and bleed).

11. Containment spray recirculation. The success requirements for this branch are similar to those following a nonspecific reactor trip. The CSR system provides DHR for sequences in which secondary-side cooling is unavailable.

The event tree constructed for a PWR Class H LOOP is shown in Fig. A.14. Many of the event tree branches and sequences leading to successful mitigation and core damage are similar to those following a LOOP at Class B plants. However, Class H plants do not have feed and bleed capability and rely instead on secondary-side depressurization and the condensate system as an alternate DHR method. The condensate system is assumed unavailable following a LOOP, which limits the diversity of DHR methods on this plant class following this initiator. The event branches and sequences are discussed further below.

- 1. Initiating event (LOOP). The initiating event is a LOOP similar to that described for BWR Classes B and D. The following branches have functions and success requirements similar to those following a LOOP at PWRs associated with all of the plant classes defined.
- 2. Reactor trip given LOOP.
- 3. Emergency power.
- 4. Auxiliary feedwater.
- 5. SRV challenged. The function of this branch is similar to that described under the PWR Class H transient.
- SRV reseat. Success requirements for this branch are similar to those described under the PWR Class H transient.
- 7. Seal LOCA.
- 8. Electric power recovered (long-term).
- 9. High pressure injection and recirculation.

The event tree constructed for the plant Class A LOOP is shown in Fig. A.5. All of the event-tree branches and the sequences leading to successful transient mitigation, potential core vulnerability, and severe core damage are analogous to those following a LOOP at Class B plants with the addition of the CSR branch, which is required for successful feed and bleed. At Class A plants, DHR during HPR is accomplished by the CSR system; whereas at Class B and D plants, DHR is an integral part of the HPR system. Additional information on the use of the CSR system is provided in the discussion of the PWR Class A nonspecific reactor trip event tree.

Sequences resulting in core damage and ATWS following a PWR LOOP, shown on event trees applicable to each plant class, are described in Table A.6.

Many of the sequences are the same for different plant classes, the primary differences being the use of CSR on Class G and Class A, and the unavailability of feed and bleed on Class H. As with the PWR transient sequences, this similarity permits consistent numbering of a large number of sequences. All sequences, required branch success and failure states, and the applicability of each sequence to each plant class are summarized in Table A.7.

PWR Small-Break Loss-of-Coolant Accident

Event trees were constructed to define the responses of PWRs to a small-break LOCA. The LOCA chosen for consideration is one that would require a reactor trip and continued HPI for core protection. Because of the limited amount of borated water available, the mitigation sequence also includes the requirement to recirculate borated water from the containment sump.

The LOCA event tree constructed for PWR plant Classes B and D is shown in Fig. A.9. The event-tree branches and the sequences leading to core damage follow.

- 1. Initiating event (small-break LOCA). The initiating event for the tree is a small-break LOCA that requires reactor trip and continued HPI for core protection.
- 2. Reactor trip. Reactor trip success is defined as the rapid insertion of sufficient control rods to place the core in a subcritical condition. Failure to trip was considered to lead to the end state ATWS.
- 3. Auxiliary feedwater or main feedwater. Use of AFW or MFW was assumed necessary for some small breaks to reduce RCS pressure to the point where HPI is effective. At Class D plants, the HPI pumps operate at a much higher discharge pressure and hence can function without secondaryside cooling from the AFW or MFW systems.
- 4. High-pressure injection. Adequate injection of borated water from the HPI system is required to prevent excessive core temperatures and consequent core damage.
- 5. High-pressure recirculation. Following a small-break LOCA, continued high pressure injection is required. This is typically accomplished with the residual heat removal (RHR) system, which takes suction from the containment sump and returns the lost reactor coolant to the core via the HPI pumps. The RHR system includes heat exchangers that remove decay heat prior to recirculating the sump water to the RCS.
- 6. PORV open. In the event AFW and MFW are unavailable following a small break LOCA, opening the PORV can result in core cooling using the feed and bleed mode. Depending on the size of the small break, opening the PORV may not be required for success. PORV open is not required for success for Class D.

The event tree constructed for a small-break LOCA at Class G plants is shown in Fig. A.12. The LOCA event tree for Class G plants is similar to that for Class B and D plants except that long-term cooling is provided by the CSR system rather than by the HPR system. The event-tree branches and sequences are discussed further below.

- Initiating event (small-break LOCA). The initiating event is a LOCA similar to that described for PWR plant Classes B and D. The following branches have functions and success requirements similar to those following a small-break LOCA at PWRs associated with all of the plant classes defined.
- 2. Reactor trip.
- 3. Auxiliary feedwater and main feedwater

- 4. High-pressure injection.
- 5. High-pressure recirculation.
- 6. PORV open.
- Containment spray recirculation. In the event that normal secondary-side cooling (AFW or MFW) is unavailable following a small LOCA, cooling via the CSR system during HPR is required to mitigate the transient.

The event tree constructed for a small-break LOCA at PWR Class H plants is shown in Fig. A.15. The event tree has been developed assuming that SG depressurization and condensate pumps can provide adequate RCS pressure reduction in the event of an unavailability of AFW and MFW to permit HPI and HPR to function in these plants. The event tree branches and secuences are discussed further below.

- 1. Initiating event (small-break LOCA). The initiating event similar to that described above for PWR Classes B, D, and G. The following branches have functions and success requirements similar to those discussed previously.
- 2. Reactor trip.
- 3. Auxiliary and main feedwater.
- 4. High-pressure injection.
- 5. High-pressure recirculation.
- 6. SG depressurization. In the event that AFW and MFW are unavailable following a small-break LOCA, SG depressurization combined with the use of the condensate pumps can provide for RCS depressurization such that adequate HPI and HPR can be achieved. Success requirements are the same as those following a transient with unavailability of AFW and MFW.
- Constant pumps. Use of one condensate pump provided flow to at least one SG as required in conjunction with SG depressurization to provide for RCS depressurization and cooling.

The event tree constructed for a small LOCA at Class A plants is shown in Fig. A.6. The LOCA event tree for Class A plants is similar to that for Classes B and D except that the CSR system is required in conjunction with HPR in some sequences where secondary cooling is not provided. The sequences that follow combined AFW and MFW failure with HPR and CSR success are identical to those that follow HPR success at Class B and D plants; and sequences that follow HPR or CSR failure at Class A plants are identical to those that follow HPR failure.

Sequences resulting in core damage or ATWS following a PWR small-break LOCA, shown on event trees applicable to each plant class, are described in Table A.8.

As with the PWR transient and LOOP sequences, differences between plant classes are driven by the use of CSR on plant classes A and G, and by the use of secondary-side depressurization and condensate pumps in lieu of feed and bleed on PWR Class H. All small-break LOCA sequences, required branch success and failure states, and the applicability of each sequence to each plant class are summarized in Table A.9.

Alternate Recovery Actions

The PWR event trees have been developed on the basis that proceduralized recovery actions will be attempted if primary systems that provide protection from core damage are unavailable. In the event AFW and MFW are unavailable and cannot be recovered in the short term, the use of feed and bleed cooling is modeled on all plants except for Class H, where SG depressurization and use of the condensate pumps is modeled instead. In addition, the potential for short-term recovery of a faulted system is also included in appropriate branch models (AFW, MFW, and HPI, for example).

Alternate equipment and procedures, beyond the systems and functions included in the event trees, may be successful in mitigating the effects of an initiating event, provided the appropriate equipment or procedure is available at a particular plant. This may include:

- The use of supplemental DGs, beyond the normal safety-related units, to power equipment required for continued core cooling and reactor plant instrumentation. A number of plants have added such equipment, often for fire protection.
- Depressurization following a small-break LOCA to the initiation pressure of the LPI systems to provide RCS makeup in the event that HPI fails. Procedures to support this action are known to exist on some plants.
- Depressurization following a small-break LOCA to the initiation pressure of the DHR system, and then proceeding to cold shutdown. While plant procedures specify the use of sump recirculation following a small LOCA or feed and bleed, sufficient RWST inventory exists to delay this action until many hours into the event, during which recovery of faulted systems may be affected. It is likely that operators will delay sump recirculation as long as possible while trying to place the plant in a stable condition through recovery of secondary-side cooling and the use of RHR.

The potential use of these alternate recovery actions was addressed in the analysis of the 1992 precursors when information concerning their plant specific applicability was available.

A.3.2 BWR Event Sequence Models

The BWR event trees describe the impact of the availability and unavailability of front-line systems in each plant class on core protection following the same three initiating events addressed for PWRs: trip, LOOP, and small-break LOCA. The systems modeled in the event trees are those associated with the generic functions required in response to any initiating event, as described in Sect. A.2. The systems that are assumed capable of providing these functions are:

Function	anc	System				
Reactor subcriticality:	Reactor scram					
Reactor coolant system integrity:	Addressed in sm sequences involv	all-break LOCA models and in trip and LOOP ing failure of primary relief valves to reseat				
Reactor coolant inventory:	High-pressure in LOCA situations	jection systems [HPCI or HPCS, RCIC (non-), CRD (non-LOCA situations), FWCI]				
	Main feedwater					
	Low-pressure in (BWR Classes B	jection systems following blowdown [LPCI and C), LPCS, RHRSW or equivalent]				
Short-term core heat removal:	Power conversion	n system				
	High-pressure in (BWR Class A)]	jection systems [HPCI, RCIC, CRD, FWCI				
	Isolation condens	er (BWR Classes A and B)				
	Main feedwater					
	Low-pressure in (BWR Classes B	ection systems following blowdown [LPCI and C), LPCS]				
	Note: Short-term cases where powe the RHR system	core heat removal to the suppression pool (all r conversion system is faulted) requires use of for containment heat removal in the long term.				
Long-term core heat removal:	Power conversion	system				
	Isolation condense	er (BWR Class A)				
	Residual heat rer cooling modes (B	noval [shutdown cooling or suppression pool WR Class C)]				
	Shutdown cooling	(BWR Classes A and B)				
	Containment cool	ing (BWR Class A)				
	Low-pressure coo	lant injection [CC mode (BWR Class B)]				

A-24

BWR Nonspecific Reactor Trip

The nonspecific reactor trip event tree constructed for BWR plant Class C is shown in Fig. A.22. The event tree branches and the sequences leading to potential severe core damage follow. The Class C plants are discussed first because all but a few of the BWRs fit into the Class C category.

1. Initiating event (transient). The initiating event is a transient or upset event that results in a rapid shutdown of the plant. Transients that are initiated by a LOOP or a small-break LOCA are modeled

in separate event trees. Transients initiated by a large-break LOCA or large SLB are not addressed in the event trees described here; trees applicable to such initiators are developed separately if required.

- 2. Reactor shutdown. To achieve reactor subcriticality and thus halt the fission process, the RPS commands rapid insertion of the control rods into the core. Successful scram requires rapid insertion of control rods with no more than two adjacent control rods failing to insert.
- 3. Power conversion system (PCS). Upon successful reactor scram, continued operation of the PCS would allow continued heat removal via the main condenser. This is considered successful mitigation of the transient. Continued operation of the PCS requires the MSIVs to remain open and the operation of the condenser, the turbine bypass system (TBS), the condensate pumps, the condensate booster pumps, and the feedwater pumps.
- 4. SRV challet ged. Depending on the transient, one or more SRVs may open. The upper branch on the event tree indicates that the valves were challenged and opened. If the transient is followed by continued PCS operation and successful scram, the SRVs are not expected to be challenged. If the PCS is unavailable, at least some of the SRVs are assumed to be challenged and to open.
- SRV close. Success for this branch requires the reseating of any open relief valves once the reactor pressure vessel (RPV) pressure decreases below the relief valve set point. If an SRV sticks open, a transient-induced LOCA is initiated.
- 6. Feedwater. Given unavailability of the PCS, continued delivery of feedwater to the RPV will keep the core from becoming uncovered. This, in combination with successful long-term DHR, will mitigate the transient, preventing core damage. For plants with turbine-driven feed pumps, the PCS failure with subsequent feedwater success cannot involve MSIV closure, or loss of condenser vacuum, because this would disable the feed pumps.
- 7. HPCI or HPCS. The primary function of the HPCI or HPCS system is to provide makeup following small-break LOCAs while the reactor is at high-pressure (not depressurized). The system is also used for DHR following transients involving a loss of feedwater. Some later Class C plants are equipped with HPCS systems, but the majority are equipped with HPCI systems. HPCI or HPCS can provide the required makeup and short-term DHR when DHR is unavailable from the condenser and the feedwater system cannot provide makeup.
- 8. RCIC. The RCIC system is designed to provide high-pressure coolant makeup for transients that result in LOFW. Both RCIC and HPCI (or HPCS) initiate when the reactor coolant inventory drops to the low-low level set point, taking suction from the condensate storage tank or the suppression pool. HPCI is normally secured after HPCI/RCIC initiation when pressure and water level are restored, to prevent tripping of HPCI and RCIC pumps on high water level. RCIC must then be operated until the RHR system can be placed in service. Following a transient, scram, and unavailability of the PCS, reactor pressure may increase, causing the relief valves to open and close periodically to maintain reactor pressure control.
- CRD pumps. In transient-induced sequences where heat removal and minimal core makeup are required (i.e., not transient-induced LOCA sequences), the CRD pumps can deliver high-pressure coolant to the RPV.

- 10. Depressurization via SRV or the automatic depressurization system (ADS). In the event that short-term DHR and core makeup are required and high-pressure systems have failed to provide adequate flow, the RPV can be depressurized to allow use of the low-pressure, high-capacity injection systems. If depressurization fails in this event, core damage is expected to occur. The ADS will automatically initiate on high drywell pressure and low-low reactor water level, and the availability of one train of the LPCI or LPCS systems, following a time delay. The SRVs can be opened by the operators to speed the depressurization process or to initiate it if ADS fails and if additional, operable valves are available.
- 11. LPCS. LPI can be provided by the LPCS system if required. The LPCS system performs the same functions as the LPCI system (described below) except that the coolant, which is drawn from the SP or the condensate storage tank (CST), is sprayed over the core.
- 12. LPCI. The LPCI system can provide short-term heat removal and cooling water makeup if the reactor has been depressurized to the operating range of the low-head RHR pumps. At Class C plants, LPCI is a mode of the RHR system; thus, the RHR pumps operate during LPCI. LPCI takes suction from the suppression pool (SP) or the CST and discharges into the recirculation loops or directly into the reactor versel. If LPCI is successful in delivering sufficient flow to the reactor, long-term heat removal success is styll required to mitigate core damage.
- 13. Residual heat removal shutdown cooling (SDC) mode. In this mode, the RHR system provides normal long-term DHR. Coolant is circulated from the reactor by the RHR pumps through the RHR heat exchangers and back to the reactor vessel. Long-term core cooling success requires that heat transfer to the environment commence within 24 h of the transient. RHR SDC success following successful reactor scram and high- or low-pressure injection of water to the RPV will prevent core damage.
- 14. RHR SP cooling mode. If RHR SDC is unavailable, the RHR pumps and heat exchangers can be aligned to take water from the SP, cool it via the RHR heat exchangers, and return it to the SP. This alignment can provide long-term cooling for transient mitigation.
- 15. RHR service water or other. This is a backup measure for providing water to the reactor to reflood the core and maintain core cooling if LPCI and LPCS are unavailable. Typically, the high-pressure SW pumps are aligned to the shell side of the RHR heat exchangers for delivery of water to one of the recirculation loops.

The event tree constructed for a BWR plant Class A nonspecific reactor trip is shown in Fig. A.16. The event tree is similar to that constructed for BWR Class C plants with the following exceptions: Class A plants are equipped with ICs and FWCI systems instead of RCIC and HPCI (or HPCS) systems. The isolation condensers can provide long-term core cooling. Class A plants do not have LPCI systems, although they are equipped with LPCS; SP cooling is provided by a system independent of the SDC system. The event tree branches and sequences are discussed further below.

- 1. Initiating event (transient). The initiating event is a nonspecific reactor trip similar to that described for BWR Class C plants. The following branches have functions and success requirements similar to those following a transient at BWRs associated with Class C.
- 2. Reactor shutdown.

- 3. Power conversion system.
- 4. SRV challenged and closed.
- 5. Isolation condensers and isolation condenser makeup. If PCS is not available and significant inventory has not been lost via the SRVs, then the IC system can provide for DHR and mitigate the transient. The IC system is an essentially passive system that condenses steam produced by the core, rejecting the heat to cooling water and returning the condensate to the reactor. Makeup is provided to the cooling water as needed. The system does not provide makeup to the reactor vessel.
- 6. FW or FWCI. Either FW or FWCI can provide short-term transient mitigation. When feedwater or FWCI is required and is successful, long-term DHR is required for complete transient mitigation. (PCS unavailability is assumed prior to feedwater or FWCI demand.) FWCI or feedwater is required for makeup in transient-induced LOCA sequences and for heat removal in sequences when the IC system would have mitigated the transient but was not available. FWCI is initiated automatically on low reactor level and uses the normal feedwater trains to deliver water to the reactor vessel.
- 7. CRD pumps.
- 8. Depressurization via SRV or ADS.
- 9. LPCS.
- 10. Fire water or other. Fire water or other raw water systems can provide a capability similar to that provided by the SW/RHR connection on Class C BWRs. As a backup source, if all normal core cooling is unavailable, fire water can be aligned to the LPCS injection line to provide water to the reactor vessel.
- 11. SDC. Like the RHR system at Class C plants, the SDC system is a closed-loop system that performs the long-term DHR function by circulating primary coolant from the reactor through the system's heat exchangers and back to the reactor vessel. Success requires the operation of at least one SDC loop. Long-term DHR is required to terminate transients in which high- or low-pressure injection is required to mitigate the transient.
- 12. Containment cooling. If the SDC system fails to provide long-term DHR, the CC system can remove decay heat. The system utilizes dedicated CC pumps, drawing suction from the SP, passing it through heat exchangers where heat is rejected to the SW system and then either returning it directly to the SP or spraying it into the dry well.

The event tree constructed for a BWR plant Class B nonspecific reactor trip is shown in Fig. A.19. The event tree is most similar to that constructed for BWR Class A plants. In fact, the branches and sequences are the same except that Class B plants are equipped with HPCI systems instead of FWCI systems, and they are equipped with a LPCI system that represents an additional capability for providing LPCI. Also, at Class B BWRs, the CC system considered in the event tree utilizes the LPCI pumps rather than having its own dedicated pumps.

Sequences resulting in core damage following a BWR transient, shown on event trees applicable to each plant class, are described in Table A.10. Because of differences in the mitigation systems used in the three BWR classes, it is not possible to associate most sequences among different plant classes. Because of this, similar sequence numbers used for sequences in different plant classes do not imply similarity among the sequences. (Because of the lack of similarity among sequences for the three BWR classes, no sequence summary table has been provided.)

BWR Loss of Offsite Power

The event cores constructed define responses of BWRs to a LOOP in terms of sequences representing success and failure of plant systems. A LOOP condition will result in a generator load rejection that would trip the turbine control valves and initiate a reactor scram.

The event tree constructed for a LOOP at BWR Class C plants is shown in Fig. A.23. The event-tree branches and the sequences leading to core damage follow.

- 1. Initiating event (LOOP). The initiating event for a LOOP corresponds to any situation in which power from both the auxiliary and startup transformers is lost. This situation could result from grid disturbances or onsite faults.
- 2. Emergency power. Emergency power is provided by DGs at almost all plants. The DGs receive an initiation signal when an undervoltage condition is detected. Emergency power success requires the starting and loading of a sufficient number of DGs to support safety-related loads in systems required to mitigate the transient and maintain the plant in a safe shutdown condition.
- Reactor shutdown. Given a load rejection, a scram signal is generated. Successful scram is the same as for the transient trees: a rapid insertion of control rods with no more than two adjacent control rods failing to insert. The scram can be automatically or manually initiated.
- 4. LOOP recovery (long-term). Success for this branch requires recovery of offsite power or dieselbacked ac power before the station batteries are depleted, typically 2 to 4 h.
- 5. SRV challenged and closed. If one or more SRV is challenged and fails to close, a transientinduced LOCA is initiated.
- 6. HPCI (or HPCS) or RCIC. Success requirements for these branches are identical to those following a transient at Class C BWRs. Either RCIC or HPCI (or HPCS) can provide the makeup and shortterm core cooling required following most transients, including failure of the EPS. HPCI and RCIC only require dc power and sufficient steam to operate the pump turbines. HPCS systems utilize a motor-driven pump but are diesel-backed and utilize dedicated SW cooling.
- 7. CRD pumps. Given emergency power success, CRD pump success requirements following a LOOP are identical to those following a transient. The CRD pumps can provide sufficient makeup to remove decay heat but not enough makeup to mitigate a transient-induced LOCA. Manual restart of the CRD pumps is required following the LOOP.
- 8. Depressurization via SRV or the ADS.
- 9. LPCS, LPCI, or RHR service water.

ぞ

10. RHR SDC mode or RHR SP cooling mode. For emergency power success sequences, the success requirements for these branches are similar to those following a nonspecific reactor trip transient at Class C BWRs. Success for any one of these three branches can provide the long-term DHR required for transient mitigation. If emergency power fails, it must be recovered to power long-term DHR cquipment. However, long-term DHR is not required until several hours (up to 24 h) into the transient.

The event tree constructed for a LOOP at BWR Class A plants is shown in Fig. A.17. The event tree is similar to that constructed for BWR Class C plants with the major exception that Class A plants are equipped with ICs and FWCI systems instead of RCIC and HPCI (or HPCS) systems. However, given a LOOP, FWCI would be unavailable, because it is not backed by emergency power. Also, additional long-term core cooling is not required with IC success, as long as no transient-induced LOCA is initiated. In the emergency power failure sequences, the IC system is the only system that can provide core cooling because FWCI would be without power. The event-tree branches and sequences are further discussed below.

- Initiating event (LOOP). The initiating event is a LOOP similar to that described for Class C BWRs. The following branches have functions and success requirements similar to those fcilowing a LOOP at BWRs associated with previously described BWR classes.
- 2. Emergency power.
- 3. Reactor shutdown.
- LOOP recovery (long-term).
- 5. SRV challenged and closed.
- 6. IC. Following successful reactor scram, the IC system can provide enough DHR, in both the short and long term, to mitigate the transient if a transient-induced LOCA has not been initiated. The IC system cannot provide coolant makeup, which would be required in a transient-induced LOCA. The IC system is an essentially passive system that does not require ac power for success.
- FWCI. The FWCI system can provide short-term core cooling and makeup for transient mitigation. However, FWCI success requires normal power supplies and cannot be powered by emergency power following a LOOP.
- 8. CRD pumps.
- 9. Depressurization via SRV or ADS.
- LPCS, fire water, or other water source. Success requirements for these branches are similar to those following a nonspecific reactor trip at Class A BWRs. With interim high-pressure cooling unavailable, either LPCS or, as a last resort, fire water or another water source can be used to provide low-pressure water for core makeup and cooling.
- 11. SDC and containment cooling. The success requirements for these branches are similar to those following a nonspecific reactor trip transient at Class A BWRs.

The event tree constructed for a BWR plant Class B LOOP is shown in Fig. A.20. The event tree is most similar to that constructed for BWR Class A plants. In fact, the branches and sequences are the same, except that Class B plants are equipped with HPCI systems instead of FWCI systems and are equipped with a LPCI system, which represents an additional capability for providing LPCI. At Class B BWRs the CC system utilizes the LPCI pumps rather than having its own dedicated pumps. In emergency power failure sequences, either the IC or HPCI system can provide the required core cooling for short-term transient mitigation. However, if an SRV sticks open (transient-induced LOCA), the ICs cannot provide the makeup needed, and HPCI is required. The ICs can also provide long-term cooling, but when only HPCI is operable, recovery of emergency power is necessary to power SDC-related loads.

Sequences resulting in core damage following a BWR LOOP, as shown on each plant-class event tree, are described in Table A.11. As in the case of BWR transients, similar sequence numbers do not imply similarity among the sequences. (Because of the lack of similarity among sequences for the three BWR classes, no sequence summary table has been provided.)

BWR Loss-of-Coolant Accident

The event trees constructed define the response of BWRs to a small LOCA in terms of sequences representing success and failure of plant systems. The LOCA chosen for consideration is a small LOCA, one that would require a reactor scram and continued operation of HPI systems. A large LOCA would require operation of the high-volume/low-pressure systems and is not addressed in the models.

The LOCA event tree constructed for BWR Class C plants is shown in Fig. A.24. The event-tree branches and sequences leading to core damage and core vulnerability follow.

- Initiating event (small LOCA). Any breach in the RCS on the reactor side of the MSIVs that
 results in coolant loss in excess of the capacity of the CRD pumps is considered a LOCA. A small
 LOCA is considered to be one in which losses are not great enough to reduce the system pressure
 to the operating range of the LPI systems.
- 2. Reactor shutdown. Successful scram is defined as the rapid insertion of sufficient control rods to place the core in a subcritical condition.
- HPCI or HPCS. HPCI (or HPCS, depending on the plant) can provide the required inventory makeup.
- Depressurization via SRV or ADS. The success requirements for this branch are similar to those following a nonspecific reactor trip transient. SRV/ADS success allows the use of low-pressure systems to provide short-term core cooling and makeup.
- LPCS, LPCI, or RHR service water. The success requirements for these branches are similar to those following a nonspecific reactor trip transient. Any one of these branches can provide shortterm core cooling and makeup if SRV/ADS is successful.

RHR (SDC mode) or RHR (SP cooling mode). Success requirements for these branches are similar to those following a nonspecific reactor trip transient, except that heat rejection to the environment may be required sooner than 24 h into the transient, depending on the break size. These methods each have the capability of providing long-term DHR. Long-term DHR is required in all sequences for LOCA mitigation.

The LOCA event tree constructed for BWR Class A plants is shown in Fig. A.18. The event tree is similar to the LOCA tree constructed for BWR Class C plants except that Class A plants have FWCI instead of HPCI or HPCS systems and are, in general, not equipped with LPCI systems (only LPCS systems). In addition, SP and CC systems are independent of the SDC system. The event tree branches and sequences leading to core damage follow.

- Initiating event (small LOCA). The initiating event is a small LOCA similar to that described for 1. BWR Class C plants. The following branches have functions and success requirements similar to those following a small LOCA at BWRs associated with the previously described BWR classes.
- 2 Reactor shutdown.
- 3. FWCI. The FWCI system has the capability to keep the core covered and provide interim core cooling. FWCI initiates automatically on low reactor water level.
- Depressurization via SRV or ADS. 4
- 5. LPCS or fire water (or other water source). The success requirements for these branches are similar to those following a nonspecific reactor trip transient at Class A BWRs. Either of these systems (branches) can provide LPI for makeup and short-term core cooling if high-pressure systems are unavailable.
- 6. SDC or containment cooling. The success requirements for these branches are similar to those following a nonspecific reactor trip transient at Class A BWRs, except that heat rejection to the environment may be required sooner than 24 h into the transient, depending on the size of the break. Either of these methods can provide the long-term DHR required to mitigate a small LOCA.

The LOCA event tree constructed for BWR Class B plants is shown in Fig. A.21. The event tree is most similar to that constructed for BWR Class A plants. In fact, the branches and sequences are the same, except that some Class B plants are equipped with HPCI systems instead of FWCI systems and Class B BWRs have a LPCI system, which provides an additional capability for LPCI. At Class B BWRs the CC system uses the LPCI pumps rather than having its own dedicated pumps.

Sequences resulting in core damage following a BWR small-break LOCA, as shown on each plant-class event tree, are described in Table A.12. As in the case of BWR transients, similar sequence numbers do not imply similarity among the sequences. (Because of the lack of similarity among sequences for the three BWR classes, no sequence summary table has been provided.)

Alternate Recovery Actions

The BWR event trees have been developed on the basis that proceduralized recovery actions will be attempted if primary systems that provide protection against core damage are unavailable. If feedwater, HPCI, and RCIC are unavailable (FWCI and ICs on BWR Classes A and B) and cannot be recovered in

6.

the short term, the use of the CRD pumps (provided no LOCA exists) and the use of ADS (to depressurize below the operating pressure of low-pressure systems) are modeled. In addition, the potential for short-term recovery of a faulted system is also included in the appropriate branch model.

Alternate equipment and procedures, beyond the systems and functions included in the event tree, may be successful in mitigating the effects of an initiating event, provided the appropriate equipment or procedure is available at a particular plant. This may include:

- The use of supplemental diesel generators, beyond the normal safety-related units, to power equipment required for continued core cooling and reactor plant instrumentation. A number of plants have added such equipment, often for fire protection.
- The use of RCIC to provide RPV makeup for a single stuck-open relief valve. Thermal-hydraulic analyses performed to support a number of BW1: probabilistic risk assessments have demonstrated the viability of RCIC for this purpose.
- The use of the condensate system for LPI. This recovery action requires that the condensate system be available (even though PCS and f.edwater are unavailable) and that the plant has been depressurized.
- The use of containment venting for long-term DHR, provided an injection source is available. This
 core cooling method has been addressed in some FRAs.

The potential use of these alternate recovery actions was addressed in the analysis of the 1992 precursors when information concerning their plant specific applicability was available.

A.4 Branch Probability Estimates

Branch probability estimates used in the 1988-1992 precursor calculations were developed using information in the 1984-86 precursors when possible. Probability values developed from precursor information are shown in Table A.13. The process used to estimate branch probability values used in the precursor calculations is described in detail in Appendix C to Ref. 5 and in Ref. 6.

In addition to system failures caused by equipment failures, the likelihood of failing to actuate manually actuated systems was also included in the models. Examples of such systems are the DHR system in BWRs and feed and bleed in PWRs. For actions in the control room, revised failure to initiate probabilities consistent with those utilized for 1987 precursor calculations were also used for 1988-1992 calculations. These revised values typically assume a failure probability of 0.001 for an unburdened action and 0.01 for a burdened action. The failure probability for subsequent actions is assumed to be higher. Operator action failure probabilities used in the 1988-1992 calculations are shown in Table A.14.

A.5 Reference Event Calculations

Conditional core damage probability estimates were also calculated for nonspecific reactor trip, LOFW, and unavailabilities in certain single-train BWR systems (HPCI, HPCS, RCIC, and CRD cooling). These calculations indicate the relative importance of these events, which are too numerous to warrant individual calculation. The results of these calculations, performed without consideration of alternate recovery actions that were addressed in certain 1992 precursor assessments, are listed in Table A.15.

Table A.15 shows that nonspecific reactor trips without additional observed failures have conditional core damage probabilities below 5×10^6 per trip, depending on plant class. The likelihood of LOFW in conjunction with a trip is included in these calculations. LOFW conditional core damage probabilities are less than 4×10^5 per LOFW event, again depending on plant class, except for BWR Class A plants (1.7×10^6) . The conditional core damage probabilities associated with unavailabilities of HPCI and HPCS (single-train BWR systems) are also above 10^5 , assuming a one-half month unavailability.

A.6 References

- J. W. Minarick and C. A. Kukielka, Union Carbide Corp. Nuclear Div., Oak Ridge Natl. Lab., and Science Applications, Inc., Precursors to Potential Severe Core Damage Accidents: 1969-1979, A Status Report, USNRC Report NUREG/CR-2497 (ORNL/NOAC-232, Vol. 1 and 2),1982."
- W. B. Cottrell, J. W. Minarick, P. N. Austin, E. W. Hagen, and J. D. Haltis, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., and Science Applications International Corp., Precursors to Potential Severe Core Damage Accidents: 1980-81, A Status Report, USNRC Report NUREG/CR-359 1, Vols. 1 and 2 (ORNL/NSIC-217/VI and V2), July 1984.
- M. Modarres, E. Lois, and P. Amico, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., LER Categorization Report, University of Maryland, College Park, MD, Nov. 13, 1984."
- 4. E. Lois, A Class-Specific Approach to Nuclear Power Plant Safety Studies with Applications, PhD Dissertation, University of Maryland, College Park, MD, 1985."
- J. W. Minarick et al., Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., and Science Applications International Corp., Precursors to Potensial Severe Core Damage Accidents; 1986, A Status Report, USNRC Report NUREG/CR-4674 (ORNL/NOAC-232, Vols. 5 and 6), May 1988.
- J. W. Minarick, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab.; Science Applications International Corp., Revised LOOP Recovery and PWR Seal LOCA Models, Technical Letter Report ORNL/NRC/LTR-89/11, August 1989."

[&]quot;Available for purchase from National Technical Information Service, Springfield, Virginia 22161.

Branch failure	Observed operational event	Non- recovery likelihood for event	Effective number of non- recoverable events	Observation period	Probability estimate
Steam generator isolation	Steam line pressure transmitters (9 of 12) were found in faulty alignment, which would have prevented automatic steam line isolation on demand at Maine Yankee (LER 309/85-009, 8/7/85)	0.04	1.04	12 demands per reactor year due to testing in 164 PWR reactor years (1984 – 86 observation period) results in 1968 demands	5.3 x 104
	All MSIVs failed to close prior to entering refueling at Point Beach 2 (LER 301/86-004, 9/28/86)	1.0			

Table A.1 Bran h probability estimation process

Table A.2 Rules for calculating precursor significance

1. Event sequences requiring calculation.

If an initiating event occurs as part of a precursor (i.e., the precursor consists of an initiating event plus possible additional failures), then use the event tree associated with that initiator; otherwise, use all event trees impacted by the observed unavailability.

2. Initiating event probability.

If an initiating event occurs as part of a precursor, then the initiator probability used in the calculation is the probability of failing to recover from the observed initiating event (i.e., the numeric value of the recovery class for the event).

If an initiating event does not occur as part of a precursor, then the probability used for the initiating event is developed using the initiating event frequency and event duration. Event durations (the period of time during which the failure existed) are based on information included in the event report, if provided. If the event is discovered during testing, then one-half of the test period (15 days for a typical 30-day test interval) is assumed, unless a specific failure duration is identified.

3. Branch probability estimation.

For event tree branches for which no failed or degraded condition is observed, a probability equal to the estimated branch failure probability is assigned.

For event tree branches associated with a failed system, a probability equal to the numeric value associated with the recovery class is assigned.

For event tree branches that include a degraded system (i.e., a system that still meets minimum operability requirements but with reduced or no redundancy), the estimated failure probability is modified to reflect the loss of redundancy.

4. Support system unavailabilities.

Systems or trains rendered unavailable as a result of support system failures are modeled recognizing that, as long as the affected support system remains failed, all impacted systems (or trains) are unavailable; but if the support system is recovered, all the affected systems are recovered. This can be modeled through multiple calculations that address support system failure and success. Calculated core damage probabilities for each case are normalized based on the likelihood of recovering the support system. (Support systems, except emergency power, are not directly modeled in the current ASP models.)

Plant neme	Plant class	Plent neme	Plant class
ANO-Unit I	PWR Class D	Millatone 3	PWR Class A
ANO-Unit	PWR Class G	Monticello	BWR Class C
Bosver Valley 1	PWR Class A	Nine Mile Point 1	BWE Class A
Boaver Valley 2	PWR Class A	Nine Mile Point 2	BWR Class C
Big Rock Point	BWR Class A	North Anne 1	PWR Class A
Browns Ferry 1	BWR Class C	North Anna 2	PWR Class A
Browns Ferry 2	BWR Class C	Oconee 1	PW/R Class D
Browne Ferry 3	BWR Class C	Occase 2	PWR Clean D
Braidwood 1	PWR Class B	Oconee 3	PWR Class D
Braidwood 2	PWR Blass B	Oyster Creek	RWR Class A
Brunswick 1	BWR Class C	Paliesdee	PWR Class G
Brunswick 2	BWR Class C	Palo Verde 1	PWR Class H
Byron 1	PWR Class B LIN	Palo Verde 2010	PWR Class H
Byron 2	PWR CLASS B STATION	Palo Verde 3 ano	PWR Class H
Callaway	PWR Class B	Peach Bottom 2	BWR Class C
Calvert CLiffs 1	PWR Class G	Peach Bottorff 3	BWR Class C
Calvert Cliffs 2	PWR Class G	Perry 1 Sure C	BWR Class C
Catawina 1	PWR Class B	Pilgrim 1	BWR Class C
Catawba 2	PWR Class B	Point Beach 1	PWR Class B
Clinton 1	BWR Class C	Point Beach 2	PWR Class B
Comanche Peak 1	PWR Class B	Prairie Island 1	PWR Class B
Comanche Peak 2	PWR Class B	Prairie Island 2	PWR Class B
Cook 1	PWR CLass B	Quad Citics	BWR Class C
Cook 2	PWR Class B	Quad Citizes 2	BWR Class C
Cooper Station	BWR Class C	Rancho Seco	PWR Class D
Crystal River 3	PWR Class D	River Bend 1	BWR Class C
Davis-Bose	PWR Class B	Robinson 2	PWR Class R
Diablo Canyon I	PWR Class B	Salem 1	PWR Class B
Diablo Canyon 2	PWR Class B	Salson 2	PWR Class B
Dresden 2	BWR Class B	San Onofre 1	Unique
Dreaden 3	BWR Cless B	San Opofre 2	PWR Cises H
Duana Amold	BWR Class C	San Onofre 3	PWR Class H
Farley 1	PWR Class B	Seebrook 1	PWR Class B
Farkey 2	PWR Class B	SHUEE Seguoyah 1	PWR Class B
Fermi 2	BWR Class C	erv re Sequevah 2	PWR Class R
Fitzpatrick	BWR Class C	South Texas 1	PWR Class B
Fort Calhoun	PWR Class O	South Texas 2	PWR Clean R
Ginne	PWR Class B	et at st Lucie 1	PWR Class G
Grand Gulf 1	BWR Class C	St. Lucis 2	PWR Class G
Haddam Neck	PWR Class B	Summer 1	PWR Class B
Harris 1	PWR Class B	Surry 1	PWR Class A
Heich i	BWR Class C	Surry 2	PWR Class A
Hatch 2	BWR Class C	Supposed and	BWR Class C
Hope Creek 1	BWR Class C	Sunqueberges 2	BWR Class C
indian Point 2	PWR Class B	Three Mike Island 1	PWR Class D
ndian Point 3	PWA Class B	Trojan	PWR Class B
Karawaaaaaaa	PWR Class B	Turkey Point 3	PWR Class B
eCrosss	Unique	Turkey Point 4	PWR Class 8
aSalle 1	BWR Class C	Vermont Yankee	BWR Class C
aSelle 2	BWR Class C	Vogtle 1	PWR Class B
TRUMBALBOY 1	BWR Class C	Vogtle 2	PWR Class B
imerick 2	BWR Class C	WNPSS 2	BWR Class C
Maine Yankoe	PWR Class B	Waterford 3	PWR Class H
AcOnire 1	PWR Class B	Wolf Creek 1	PWR Class B
AcQuire 2	PWR Class B	Yankee Rowe	PWR Class B
Aillatone 1	BWR Class A	Zion 1	PWR Class B
Aillatorae 2	PWR Class G	Zion 2	PWR Class B

Table A.3 ASP reactor plant classes

A-36

TWS

		- 2	- 2	
- 94	2			
		- 2		

Table A.4 PWR transient core damage and ATWS sequences

Sequence No.	End state	Description
11	Core damage	Unavailability of HPR following successful trip and AFW initiation, primary relief valve lift and failure to reseat, and successful HPI. (PWR Classes A, B, D, G, and H)
12	Core damage	Unavailability of HPI following successful trip and AFW initiation, primary relief valve lift, and primary relief valve failure to reseat. (PWR Classes A, B, D, G, and H)
13	Core damage	Similar to sequence 11, but MFW provides SG cooling in lieu of AFW. (PWR Classes A, B, D, G, and H)
14	Core damage	Similar to sequence 12, but MFW provides SG cooling in lieu of AFW. (PWR Classes A, B, D, G, and H)
15	Core damage	Unavailability of AFW and MFW following successful trip. Feed and bleed is initiated, but the PORV fails to open. (PWR Classes A, B, and G)
16	Core damage	Unavailability of AFW and MFW following successful trip. Feed and bleed is initiated, but fails in the recirculation phase. (PWR Classes A, B, D, and G)
17	Core damage	Unavailability of AFW and MFW following successful trip. Feed and bleed fails in the injection phase. (PWR Classes A, B, D, and G)
18	ATWS	Failure to trip following a transient requiring trip. ATWS sequences are not further developed in the ASP models. (PWR Classes A, B, D, G, and H)
19	Core damage	Unavailability of AFW and MFW following successful trip. Feed and bleed is successful but CSR is unavailable. (PWR Class G)
20	Core damage	Unavailability of CSR following successful trip and AFW initiation, primary relief valve lift and failure to reseat, and successful HPI and HPR. (PWR Class A)
21	Core damage	Similar to sequence 11, but MFW provides SG cooling in lieu of AFW. (PWR Class A)
22	Core damage	Unavailability of AFW and MFW following successful trip. Feed and bleed is successful, but CSR is unavailable for containment heat removal. This sequence is distinguished from sequence 19 because of differences in the function of CSR on Class A and G plants. (PWR Class A)

Sequence No.	End state	Description
23	Core damage	Unavailability of AFW and MFW following successful trip. The SGs are successfully depressurized, but the condensate pumps fail to provide SG cooling. (PWR Class H)
24	Core damage	Unavailability of AFW and MFW following successful trip, plus failure to depressurize the SGs to allow for the use of the condensate pumps for SG cooling. (PWR Class H)
25	Core damage	Unavailability of AFW and MFW following successful trip. At least one open SRV fails to reseat, but HPI and HPI, are successful. SG depressurization is successful, but the condensate pumps fail to provide SG cooling. (PWR Class H)
26	Core damage	Similar to seq ence 25 except that SG depressurization fails. (PWR Class H)
27	Core damage	Unavailability of AFW and MFW following successful trip. At least one SRV fails to reseat. HPI is initiated but HPR fails. (PWR Class H)
28	Core damage	Unavailability of AFW and MFW following successful trip. At least one SRV fails to reseat and HPI fails. (PWR Class H)

Table A.4 PWR transient core damage and ATWS sequences

Seq. No.	End State	RT	AFW	MFW	RV	RV	HPI	HPR	PORV	CSR	SG	Condensate		PW	R CI	853	
					C-610022	UCSCRI			Open		Dep	Pumps	A	В	D	G	н
11	CD	S	S		s*	F	S	F					×	x	x	×	x
12	CD	S	S		S*	F	F						х	x	x	x	x
13	CD	S	F	S	s*	F	S	F					x	x	x	x	
14	CD	S	F	S	s*	F	F						x	x	x		-
15	CD	S	F	F			S	S	F							Ŷ	
16	CD	S	F	F			S	F					-	-		*	
17	CD	s	F	F			F								÷.	Ĵ.	
18	ATWS	F											,	<u>,</u>	÷.		
19	CD	s	F	F			S	S	S	F			1	<u> </u>	Ŷ.	<u></u>	*
20	CD	S	S		s*	F	S	S		F							
21	CD	S	F	s	5*	F	S	S		F			ĵ.				
22	CD	s	F	F			S	S	s	F			, î				
23	CD	s	F	F		s	18 H				e		X				
24	CD	S	F	F		s					5	r					X
25	CD	s	F	F		E	c	c			r .						x
26	CD	6	E	E		r F	5	3			S	r					X
20	CD	0	r 	r		r	5	3			F						π
21	CD	3	P	r		F	S	F									x
28	CD	S	F	F	train the state of the state of the state	Ç.	F	1.5.2									x

Table A.5 PWR transient sequences summary

Note: CD - Core damage.

S - Required and successfully performs its function.

F - Required and fails to perform its function.

S" - Relief valve challenged during the transient (assumed for all losses of both AFW and MFW).

A-39

25.	-		
-		 	

Table A.6 PWR LOOP core damage and ATWS sequences

Sequence No.	End state	Description
40	ATWS	Failure to trip following a LOOP. (PWR Classes A, B, D, G, and H)
41	Core damage	Unavailability of HPR following a LOOP with successful trip, emergency power, and AFW; primary relief valve lift and failure to reseat; and successful HPI. (PWR Classes A, B, D, G, and H)
42	Core damage	Unavailability of HPI following LOOP with successful trip, emergency power, and AFW; primary relief value lift and failure to reseat. (PWR Classes A, B, D, G, and H)
43	Core damage	Failure of the PORV to open for feed and bleed cooling following successful trip and emergency power, and AFW failure. (PWR Classes A, B, and G)
44	Core damage	Failure of HPR for recirculation cooling following feed and bleed initiation. Trip and emergency power are successful, but AFW fails. (PWR Classes A, B, D, and G)
45	Core damage	Unavailability of HPI for feed and bleed cooling following successful trip and emergency power and AFW failure. (PWR Classes A, B, D, and G)
46	Core damage	Unavailability of HPR following HPI success for RCP seal LOCA mitigation. AC power is recovered following successful trip, emergency power failure, turbine-driven AFW train(s) success, primary relief valve lift and reseat, and a subsequent seal LOCA. (PWR Classes A, B, D, G, and H)
47	Core damage	This sequence is similar to sequence 46 except that HPI fails for RCP seal LOCA mitigation. (PWR Classes A, B, D, G, and H)
48	Core damage	Failure to recover AC power following an RCP seal LOCA. The seal LOCA occurs following successful trip, failure of emergency power, turbine-driven AFW train(s) success, and primary relief valve lift and closure. (PWR Classes A, B, D, G, and H)
49	Core damage	Failure to recover AC power following successful trip and emergency power system failure, AFW turbine train(s) success, and primary relief valve lift and reseat. No RCP seal LOCA occurs in the sequence. (PWR Classes A, B, D, G, and H)
50	Core damage	Failure of a primary relief valve to reseat following lift subsequent to a successful trip, emergency power system failure, and AFW turbine trains(s) success. (PWR Classes A, B, D, G, and H)
Sequence No.	End state	Description
--------------	-------------	--
51	Core damage	This sequence is similar to sequence 46 except that the primary relief valves are not challenged. (PWR Classes A, B, D, G, and H)
52	Core damage	This sequence is similar to sequence 47 except that the primary relief values are not challenged. (PWR Classes A, B, D, G, and H)
53	Core damage	This sequence is similar to sequence 48 except that the primary relief values are not challenged. (PWR Classes A, B, D, G, and H)
54	Core damage	This sequence is similar to sequence 49 except that the primary relief valves are not challenged. (PWR Classes A, B, D, G, and H)
55	Core damage	Failure of AFW following successful trip and emergency power system failure (PWR Classes A, B, D, G, and H)
56	Core damage	Failure of CSR in conjunction with successful feed and bleed following trip, emergency power system success, and AFW failure (PWR Class G)
57	Core damage	Failure of CSR following LOOP with successful trip, emergency power and AFW, primary relief valve challenge and failure to reseat, and successful HPI and HPR. (PWR Class A)
58	Core damage	Failure of CSR in conjunction with successful feed and bleed following LOOP with successful trip and emergency power initiation, and AFW failure. (PWR Class A)
59	Core damage	Failure of CSR following successful HPI and HPR required to mitigate a seal LOCA. This sequence involves a LOOP with successful trip, emergency power system failure, primary relief valve challenge and reseat, and a subsequent seal LOCA with AC power recovery prior to core uncovery. (PWR Class A)
60	Core damage	This sequence is similar to sequence 59 except that the primary relief valves are not challenged. (PWR Class A)
61	Core damage	Failure of AFW following a LOOP with successful trip and emergency power. (PWR Class H)

Table A.6 PWR LOOP core damage and ATWS sequences

Table A.7 PWR LOOP sequences summary

Seq. No.	End State	RT/ LOOP	EP	AFW	RV Chall	RV Reseat	Seal LOCA	EP	HPI	HPR	PORV	CSR		PV	VR CI	8.55	
40	ATWS	E									Open		A	В	D	G	Н
40	A1 #3	r			1.27								x	×	x	x	X
41	CD	3	S	S	S*	F			S	F			x	x	x	x	X
42	CD	S	S	S	S*	F			F				x	×	x	×	*
43	CD	S	S	F					S	S	F						~
44	CD	S	S	F					S	F				-		î	
45	CD	S	S	F					F						Å	Å	
46	CD	S	F	S	s*	S	s*	ç	e	E			X	X	X	X	
47	CD	s	F	S	s*	s	s*	e	5	5			X	X	x	X	x
48	CD	s	F	s	e.º	e		3	P				X	X	X	х	R
49	CD	\$	E		3 8 ⁰	3	3	E.					π	x	X	×	х
50	CD		r 	3	3	S		F					X	X	x	x	x
50	CD CD	5	r	5	S	F							X	x	X	x	x
51	CD	S	F	S			s*	S	S	F			x	X	x	x	x
52	CD	S	F	\$			s*	S	F				x	x	x	x	
53	CD	5	F	S			S*	F					x	x	x		
54	CD	S	F	S				F								2	
55	CD	S	F	F											A	×	x
56	CD	S	s	ų					s	c			X	X	X	X	X
57	CD	s	S	s	s*	F			5	3	3	r				X	
58	CD	s	s	F					3	S		F	x				
50	CD	6	5						S	S	S	F	x				
60	co		r	3	5	2	S	S	S	S		F	X				
00	co	2	F	S			S*	S	S	S		F	x				
61	CD	S	S	F													

CD - Core damage.

Note

5 Required and successfully performs its function.

F Required and fails to perform as function.

5 . Relief valve challenged during the transient (assumed for all losses of both AFW and MFW).

- 4	ε.		4		٤.
- 24	ъ.	-	a	. 18	ε.
x	ъ	-	÷	-27	к.

Table A.8 PWR small-break LOCA core damage and ATWS sequences

Sequence No.	End state	Description
71	Core damage	Unavailability of HPR following a small-break LOCA with trip, AFW and HPI success. (PWR Classes A, B, D, G, and H)
72	Core damage	Unavailability of HPI following a small-break LOCA with trip and AFW success. (PWR Classes A, B, D, G, and H)
73	Core damage	This sequence is s filar to sequence 71 except that MFW is utilized for SG cooling is AFW is unavailable. (PWR Classes A, B, D, G, and H)
74	Core damage	This sequence is similar to sequence 72 except that MFW is utilized for SG cooling is AFW is unavailable. (PWR Classes A, B, D, G, and H)
75	Core damage	Unavailability of AFW and MFW following a small-break LOCA and successful trip. The PORV is unavailable to depressurize the RCS to the HPI pump discharge pressure. (PWR Classes A, B, and G)
76	Core damage	Unavailability of AFW and MFW following a small-break LOCA with trip success. HPI is successful but HPR fails. (PWR Classes A, B, D, G, and H)
77	Core damage	Unavailability of AFW and MFW following trip success. HPI fails to provide RCS makeup. (PWR Classes A, B, D, G, and H)
78	ATWS	Failure of reactor trip following a small-break LOCA. (PWR Classes A, B, D, G, and H)
79	Core damage	Unavariability of CSR for containment heat removal following a small-break LOCA with trip success, AFW and MFW failure, and feed and bleed success. (PWR Class G)
80	Core damage	Unavailability of CSR following a small-break LOCA with trip, AFW, HPI and HPR success. (PWR Class A)
81	Core damage	This sequence is similar to sequence 80 except that MFW is used for SG cooling in the event AFW is unavailable. (PWR Class A)
82	Core damage	Unavailability of CSR for containment heat removal following a small-break LOCA with trip success, AFW and MFW unavailability, and feed and bleed success. (PWR Class A)
83	Core damage	Unavailability of the condensate pumps for SG cooling following a small-break LOCA with trip success, unavailability of AFW and MFW, and successful SG depressurization. (PWR Class H)
84	Core damage	This sequence is similar to sequence 83 except that SG depressurization is unavailable. (PWR Class H)

Seq. No.	End State	RT	AFW	MFW	HPI	HPR	PORV	CSR	SG	Condensate		PV	VR CI	8.55	
	CD 4 -		Oper			Pumps	A	B	D	G	H				
71	CD	S	S		S	F					X	x	x	*	
72	CD	S	S		F										Ĵ
73	CD	S	F	S	S	F					-	ĵ.	÷.		2
74	CD	S	F	S	F							*	A	X	R
75	CD	S	F	F	s	S	F				X	X	X	X	X
76	CD	5	F	P	s	F					X	X		X	
77	CD	s	F	F	F						x	X	X	X	×
78	ATWS	F		1.2.1							×	X	X	X	x
79	CD	\$	F	F	e			11.1			X	X	X	X	X
80	CD	e		10.13	3	3	5	F						X	
00	CD	3	3		5	S		F			X				
81	CD	S	F	S	S	S		F			x				
82	CD	S	F	F	S	S	S	F			x				
83	CD	S	F	F	S	S			S	F					
84	CD	S	F	F	S	s			F						^

Table A.9 PWR small-break LOCA sequences summary

CD - Core damage.

12

S - Required and successfully performs its function.
F - Required and fails to perform its function.
S - Relief valve challenged during the transient (assumed for all losses of both AFW and MFW).

		- 10-	
_	 	-	
 ~~		_	
		-	

Sequence No.	End state	Description
		BWR Class A sequences
11	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following successful scram and failure of continued power conversion system operation, safety relief valve challenge and successful reseat, failure of isolation condenser, and successful main feedwater.
12	Core damage	Similar to Sequence 11 except failure of main feedwater and successful feedwater coolant injection.
13	Core damage	Similar to Sequence 11 except failure of main feedwater and feedwater coolant injection, followed by successful control rod drive cooling.
14	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following successful scram and failure of continued power conversion system operation; safety relief valve challenge and successful reseat; failure of isolation condenser; failure of main feedwater, feedwater coolant injection and control rod drive cooling; followed by successful vessel depressurization and low-pressure core spray.
15	Core damage	Unavailability of fire water or other equivalent water source for vessel makeup following successful scram and failure of continued power conversion system operation; safety relief valve challenge and success of isolation condenser, main feedwater, feedwater coolant injection, and control rod drive cooling. Successful vessel depressurization and failure of low-pressure core spray.
16	Core damage	Similar to Sequence 15 except the shutdown cooling system fails followed by successful containment cooling.
17	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following successful scram and failure of continued power conversion system operation; safety relief valve challenge and successful reseat; failure of isolation condenser, main feedwater, feedwater coolant injection, and control rod drive cooling systems; followed by successful vessel depressurization and failure of low-pressure core spray.
18	Core damage	Unavailability of vessel depressurization following successful scram and failure of continued power conversion system operation, and safety relief valve challenge and successful reseat. Failure of the isolation condenser, main feedwater, feedwater coolant injection, and control rod drive cooling.

Sequence No.	End state	Description						
19	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and successful main feedwater.						
20	Core damage	Similar to Sequence 19 except unsuccessful main feedwater followed by successful feedwater coolant injection.						
21	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following successful scr2m and failure of continued power conversion system op-ion, safety relief challinge and unsuccessful reseat, un cessful main feedwater and followed by successful vessel depressurization and low-pressure core spray.						
22	Core damage	Unavailability of fire water or other equivalent water source for vessel makeup following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and failure of main feedwater and feedwater coolant injection. Successful vessel depressurization and failure of low-pressure core spray.						
23	Core damage	Similar to Sequence 22 except failure of the shutdown cooling system and successful containment spray.						
24	Core damage	Unavailab. ity of long-term core cooling (failure of shutdown cooling system and containment cooling) following successful scram and re of continued power conversion system operation, sal. relief valve challenge and unsuccessful reseat, unsuccessful m in feedwater and feedwater coolant injection, successful vessel depressurization, and unsuccessful low-pressure core spray.						
25	Core damage	Unavailability of vessel depressurization following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and failure of the main feedwater and feedwater coolant injection.						
26	Core damage	Similar to Sequence 11 except the safety relief valves are not challenged.						
27	Core damage	Similar to Sequence 12 except the safety relief valves are not challenged.						
28	Core damage	Similar to Sequence 13 except the safety relief valves are not challenged.						
29	Core damage	Similar to Sequence 14 except the safety relief valves are not challenged.						

i.

Sequence No.	End state	Description						
30	Core damage	Similar to Sequence 15 except the safety relief valves are not challenged.						
31	Core damage	Similar to Sequence 16 except the safety relief valves are not challenged.						
32	Core damage	Similar to Sequence 17 except the safety relief valves are not challenged.						
33	Core damage	Similar to Sequence 18 except the safety relief valves are not challenged.						
99	ATWS	Failure to trip following a transient requiring trip. ATWS sequences are not further developed in the ASP models.						
		BWR Class B sequences						
11	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following successful scram and failure of continued power conversion system operation, safety relief valve challenge and successful reseat, and failure of isolation condenser and successful main feedwater.						
12	Core damage	Similar to Sequence 11 except failure of main feedwater followed by successful high-pressure coolant injection.						
13	Core damage	Similar to Sequence 11 except failure of main feedwater and high- pressure coolant injection systems, followed by successful control rod drive cooling						
14	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following successful scram and failure of continued power or reversion system operation; safety relief valve challenge and successful reseat; failure of isolation condenser; failure of main feedwater, high-pressure coolant injection, and control rod drive cooling systems; followed by successful vessel depressurization and low-pressure core spray.						
15	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following successful scram and failure of continued power conversion system operation; safety relief valve challenge and successful reseat; failure of isolation condenser; failure of main feedwater, high-pressure coolant injection, and control rod drive cooling systems; followed by successful vessed depressurization, and failure of low-pressure core spray and successful low-pressure coolant injection.						

Sequence No?	End state	Description
16	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following successful scram and failure of continued power conversion system operation; safety relief valve challenge and successful reseat; and failure of isolation condenser, main feedwater, high-pressure coolant injectics, and control rod drive cooling systems. Successful vessel depressurization, failure of low-pressure core spray and low-pressure coolant injection, and successful shutdown cooling system.
17	Core damage	Similar to Sequence 16 except the shutdown cooling system fails followed by successful containment cooling mode of the low- pressure coolant injection system.
18	Core damage	Similar to Sequence 15 except low-pressure coolant injection system fails.
19	Core damage	Unavailability of vessel depressurization following successful scram and failure of continued power conversion system operation, and safety relief valve challenge and successful reseat. Failure of the isolation condenser, main feedwater, high-pressure coolant injection, and control rod drive cooling.
20	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure injection) following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and successful main feedwater.
21	Core damage	Similar to Sequence 20 except unsuccessful main feedwater followed by successful high-pressure coolant injection.
22	Core damage	Similar to Sequence 20 except unsuccessful main feedwater and high-pressure coolant injection, followed by successful vessel depressurization and low-pressure core spray.
23	Core damage	Similar to Sequence 20 except failure of main feedwater and high- pressure coolant injection, followed by successful vessel depressurization, failure of low-pressure core spray, and successful low-pressure coolant injection.
24	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and failure of main feedwater and high-pressure coolant injection. Successful vessel depressurization, failure of low-pressure core spray and low- pressure coolant injection, and successful shutdown cooling.

Sequence No.	End state	Description
25	Core damage	Similar to Sequence 24 except failure of the shutdown cooling system and successful containment spray mode of low-pressure core injection.
26	Core damage	Similar to Sequence 23 except unsuccessful low-pressure coolant injection.
27	Core damage	Unavailability of vessel depressurization following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and failure of the main feedwater and high-pressure coolant injection.
28	Core damage	Similar to Sequence 11 except the safety relief valves are not challenged.
29	Core damage	Similar to Sequence 12 except the safety relief valves are not challenged.
30	Core damage	Similar to Sequence 13 except the safety relief valves are not challenged.
31	Core damage	Similar to Sequence 14 except the safety relief valves are not challenged.
32	Core damage	Similar to Sequence 15 except the safety relief valves are not challenged.
33	Core damage	Similar to Sequence 16 except the safety relief valves are not challenged.
34	Core damage	Similar to Sequence 17 except the safety relief valves are not challenged.
35	Core damage	Similar to Sequence 18 except the safety relief valves are not challenged.
36	Core damage	Similar to Sequence 19 except the safety relief valves are not challenged.
99	ATWS	Failure to trip following a transient requiring trip. ATWS sequences are not further developed in the ASP models.
		BWR Class C sequences
11	Core damage	Unavailability of long-term core cooling (residual heat removal shutdown cooling and suppression pool cooling modes fail) following successful scram and failure of continued power conversion system operation, safety relief valve challenge and successful reseat, and successful main feedwater.

Table A.10 BWR transient core damage and ATWS sequences

				-	
	-			-	
ε.			а.	- 24	
				-	
ь.					
	-	e			

A

Sequence No. End state 12 Core damage		Description				
		Similar to Sequence 11 except failure of main feedwater with successful high-pressure coolant injection.				
13	Core damage	Similar to Sequence 11 except failure of main feedwater and high pressure coolant injection systems, with successful reactor core isolation cooling.				
14	Core damage	Similar to Sequence 11 except failure of main feedwater, high pressure coolant injection, and reactor core isolation cooling, with successful control rod drive cooling.				
15	Core damage	Unavailability of long-term core cooling (residual heat removal shutdown cooling and suppression pool cooling modes fail) following successful scram and failure of continued power conversion system operation, safety relief valve challenge and successful reseat, failure of main feedwater, high-pressure coolant injection, reactor core isolation cooling, and control rod drive cooling, with successful vessel depressurization and low-pressure core spray.				
16	Core damage	Similar to Sequence 15 except failure of low-pressure core spray and successful low-pressure coolant injection.				
17	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following successful scram and failure of continued power conversion system operation; safety relief valve challenge and successful reseat; failure of main feedwater, high- pressure coolant injection, reactor core isolation cooling, and control rod drive cooling systems. Successful vessel depressurization, failure of low-pressure core spray and low- pressure coolant injection, and successful residual heat removal system in shutdown cooling mode.				
18	Core damage	Similar to Sequence 17 except the residual heat removal system fails in the shutdown cooling mode and succeeds in the suppression pool cooling mode.				
19	Core damage	Similar to Sequence 16 except failure of low-pressure coolant injection.				
20	Core damage	Unavailability of vessel depressurization following successful scram and failure of continued power conversion system operation, safety relief valve challenge and successful resear. Failure of the main feedwater, high-pressure coolant injection, reactor core isolation cooling, and control rod drive cooling.				

	- 82	
38	. – – –	
- C -	- 3	-
		_

Sequence No. End state Description							
21	Core damage	Unavailability of long-term core cooling (residual heat remova shutdown and suppression pool cooling modes fail) followin successful scram and failure of continued power conversion system operation, safety relief valve challenge with unsuccessful resear and successful main feedwater.					
22	Core damage	Similar to Sequence 21 except unsuccessful main feedwater with successful high-pressure coolant injection.					
23	Core damage	Unavailability of long-term core cooling (residual heat removal shutdown and suppression pool cooling modes fail) following successful scram and failure of continued power conversion system operation, safety relief valve challenge with unsuccessful reseat, unsuccessful main feedwater and high-pressure coolant injection, followed by successful vessel depressurization and low-pressure core spray					
24	Core damage	Similar to Sequence 23 except failure of low-pressure core spray and successful low-pressure coolant injection.					
25	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and failure of main feedwater and high-pressure coolant injection. Successful vessel depressurization, failure of low-pressure core spray and low- pressure coolant injection, and successful residual heat removal in shutdown cooling mode.					
26	Core damage	Similar to Sequence 25 except the residual heat removal system fails in the shutdown cooling mode and succeeds in the suppression pool cooling mode.					
27	Core damage	Similar to Sequence 24 except failure of low-pressure coolant injection.					
28	Core damage	Unavailability of vessel depressurization following successful scram and failure of continued power conversion system operation, safety relief valve challenge and unsuccessful reseat, and failure of the main feedwater and high-pressure coolant injection systems.					
29	Core damage	Similar to Sequence 11 except the safety relief valves are not challenged.					
30	Core damage	Similar to Sequence 12 except the safety relief valves are not challenged.					
31	Core damage	Similar to Sequence 13 except the safety relief valves are not					

Sequence No.	End state	Description
32	Core damage	Similar to Sequence 14 except the safety relief valves are not challenged.
33	Core damage	Similar to Sequence 15 except the safety relief valves are not challenged.
34	Core damage	Similar to Sequence 16 except the safety relief valves are not challenged.
35	Core damage	Similar to Sequence 17 except the safety relief valves are not challenged.
36	Core damage	Similar to Sequence 18 except the safety relief valves are not challenged.
37	Core damage	Similar to Sequence 19 except the safety relief valves are not challenged.
38	Core damage	Similar to Sequence 20 except the safety relief valves are not challenged.
99	ATWS	Failure to trip following a transient requiring trip. ATWS sequences are not further developed in the ASP models.

Table A.10 BWR transient core damage and ATWS sequences

Sequence No.	End state	Description
		BWR Class A sequences
41	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following a loss of offsite power with successful emergency power, reactor scram, safety relief valve challenge and reseat. Failure of isolation condenser and successful feedwater coolant injection.
42	Core damage	Similar to Sequence 41 except failure of the feedwater coolant injection and successful control rod drive cooling.
43	Core damage	Unavailability of long-term cooling (failure of shutdown cooling system and containment cooling) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challenge and reseat. Failure of isolation condenser, failure of the feedwater coolant injection and control rod drive cooling systems, with successful vessel depressurization and low-pressure core spray.
44	Core damage	Unavailability of fire water or other equivalent water source for vessel makeup following a loss of offsite power with successful emergency power, scram, and safety relief valve challenge and successful reseat. Failure of isolation condenser, feedwater coolant injection, and control rod drive cooling. Successful vessel depressurization and failure of low-pressure core spray.
45	Core damage	Similar to Sequence 44 except failure of the shutdown cooling system and successful containment spray.
46	Core damage	Unavailability of long-term cooling (failure of shutdown cooling system and containment cooling) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challenge and reseat. Failure of isolation condenser, failure of feedwater coolant injection and control rod drive cooling, with successful vessel depressurization and failure of the low-pressure core spray.
47	Core damage	Unavailability of vessel depressurization following a loss of offsite power with successful emergency power and reactor scram. Challenge of the safety relief valves and successful reseat with unsuccessful isolation condenser, feedwater coolant injection, and control rod drive cooling.
48	Core damage	Unavailability of long-term cooling (failure of shutdown cooling system and containment cooling) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challenge and unsuccessful reseat, and successful feedwater coolant injection.

Table A.11 BWR LOOP core damage and ATWS sequences

I MORE ALL DWA LOOF COTE GAMAGE AND A I WS SEQUENC	Die A.II BWK LOOP core dam	age and ATWS sequence
--	----------------------------	-----------------------

Sequence No.	End state	Description					
49	Core damage	Similar to Sequence 48 except failure of feedwater coolant injection followed by successful vessel depressurization and low-pressure core spray.					
50	Core damage	Unavailability of fire water or other equivalent water source for vessel makeup following a loss of offsite power, successful emergency power and scram, safety relief valve challenge and unsuccessful reseat, and failure of feedwater coolant injection. Successful vessel depressurization, failure of low-pressure core spray, and successful shutdown cooling system.					
51	Core damage	Similar to Sequence 50 except failure of shutdown cooling system and successful containment cooling.					
52	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following a loss of offsite power with successful emergency power, reactor scram, and safery relief valve challenge and unsuccessful reseat. Failure of feedwater coolant injection, successful vessel depressurization, and failure of low-pressure core spray.					
53	Core damage	Unavailability of vessel depressurization following a loss of offsite power with successful emergency power and reactor scram. Safety relief valve challenge and unsuccessful reseat, and failure of the feedwater coolant injection system.					
54	Core damage	Similar to Sequence 41 except the safety relief valves are not challenged.					
55	Core damage	Similar to Sequence 42 except the safety relief valves are not challenged.					
56	Core damage	Similar to Sequence 43 except the safety relief valves are not challenged.					
57	Core damage	Similar to Sequence 44 except the safety relief valves are not challenged.					
58	Core damage	Similar to Sequence 45 except the safety relief valves are not challenged.					
59	Core damage	Similar to Sequence 46 except the safety relief valves are not challenged					
60	Core damage	Similar to Sequence 47 except the safety relief valves are not challenged					
61	Core damage	Unavailability of the isolation condenser following a loss of offsite power, failure of emergency power, successful scram, and safety relief valve challenge and successful reseat					

Sequence No. End state 62 Core damage		Description Failure of an SRV to reseat following challenge after a loss of offsite power with failure of emergency power and successful reactor scram.				
64	Core damage	Failure of recovery of electric power in the long-term following a loss of offsite power, failure of emergency power, and successful reactor scram.				
97	ATWS	ATWS following a loss of offsite power and unavailability of emergency power. ATWS sequences are not further developed in the ASP models.				
98	ATWS	ATWS following a loss of offsite power, successful emergency power, and failure to scram the reactor. ATWS sequences are not further developed in the ASP models.				
		BWR Class B sequences				
41	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challenge and reseat. Failure of isolation condenser and successful high- pressure coolant injection.				
42	Core damage	Similar to Sequence 41 except failure of high-pressure coolant injection and successful control rod drive cooling.				
43	Core damage	Similar to Sequence 41 except failure of the high-pressure cool injection and control rod drive cooling, with successful ver depressurization and low-pressure core spray.				
44	Core damage	Unavailability of long-term core cooling (failure of shutdow cooling system and containment cooling mode of low-pressur coolant injection) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challeng and reseat. Failure of isolation condenser, failure of the high pressure coolant injection and control rod drive cooling system with successful vessel depressurization, failure of low-pressur core spray, and successful low-pressure coolant injection.				

Sequence No	. End state	Description
45	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following a loss of offsite power with successful emergency power, scram, and safety relief valve challenge and successful reseat. Failure of isolation condenser, high-pressure coolant injection, and control rod drive cooling. Successful vessel depressurization, failure of low-pressure core spray, and low-pressure coolant injection with successful shutdown cooling.
46	Core damage	Similar to Sequence 45 except failure of the shutdown cooling system and successful containment spray mode low-pressure coolant injection.
47	Core damage	Similar to Sequence 44 except failure of low-pressure coolant injection.
48	Core damage	Unavailability of vessel depressurization following a loss of offsite power with successful emergency power and reactor scram, challenge of the safety relief valves and successful reseat with unsuccessful isolation condenser, high-pressure coolant injection, and control rod drive cooling.
49	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challenge and unsuccessful reseat, and successful high-pressure coolant injection.
50	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power with successful emergency power, reactor scram, safety relief valve challenge and unsuccessful reseat, and failure of high-pressure coolant injection followed by successful vessel depressurization and low-pressure core spray.
51	Core damage	Similar to Sequence 50 except failure of low-pressure core spray and successful low-pressure coolant injection.
52	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following a loss of offsite power, successful emergency power and scram, safety relief valve challenge and unsuccessful reseat, and failure of high-pressure coolant injection. Successful vessel depressurization, failure of low-pressure core spray and low-pressure core injection, and successful shutdown cooling system.

Table A.11 BWR LOOP core damage and ATWS sequences

Sequence No.	End state	Description					
53	Core damage	Similar to Sequence 52 except failure shutdown cooling system and successful containment cooling main of low-pressure coolant injection.					
54	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power with successful emergency power, reactor scram, and safety relief valve challenge and unsuccessful reseat. Failure of high-pressure coolant injection, successful vessel depressurization and failure of low- pressure core spray and low-pressure coolant injection.					
55	Core damage	Unavailability of vessel depressurization following a loss of offsite power with successful emergency power and reactor scram. Safety relief valve challenge and unsuccessful reseat, and failure of the high-pressure coolant injection system.					
56	Core damage	Similar to Sequence 41 except the safety relief valves are not challenged.					
57	Core damage	Similar to Sequence 42 except the safety relief valves are not challenged.					
58	Core damage	Similar to Sequence 43 except the safety relief valves are not challenged.					
59	Core damage	Similar to Sequence 44 except the safety relief valves are not challenged.					
60	Core damage	Similar to Sequence 45 except the safety relief valves are not challenged.					
61	Core damage	Similar to Sequence 46 except the safety relief valves are not challenged.					
62	Core damage	Similar to Sequence 47 except the safety relief valves are not challenged.					
63	Core damage	Similar to Sequence 48 except the safety relief valves are not challenged.					
64	Core damage	Unavailability of long-term cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power, failure of emergency power, successful reactor scram, successful long-term recovery of electric power, safety relief valve challenge and reseat, failed isolation condenser, and successful high-pressure coolant injection.					
65	Core damage	Unavailability of high-pressure core injection following a loss of offsite power, failure of emergency power, successful reactor scram, safety relief valve challenge and reseat, and failed isolation condenser and high-pressure coolant injection systems.					

. 1	Table A.11	BWR	LOOP	core	damage	and	ATWS	secuence
					the second se			and the second sec

Sequence 1	No. End state	Description				
66 Core damage		Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power, failure of emergency power, successful reactor scram, successful long-term recovery of electric power, safety relief valve challenge and failure to reseat, and successful high-pressure coolant injection				
67	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss of offsite power, failure of emergency power, successful reactor scram, successful long-term recovery of electric power, safety relief valve challenge and failure to reseat, and failure of high-pressure coolant injection.				
68	Core damage	Similar to Sequence 64 except the safety relief valves are not challenged.				
69	Core damage	Similar to Sequence 65 except the safety relief valves are not challenged.				
84	Core damage	Failure of long-term recovery of electric power following a loss of offsite power, with failure of emergency power and successful reactor scram.				
97	ATWS	ATWS following a loss of offsite power and unavailability of emergency power. ATWS sequences are not further developed in the ASP models.				
98	ATWS	ATWS following a loss of offsite power, successful emergency power, and failure to scram the reactor. ATWS sequences are not further developed in the ASP models.				
		BWR Class C sequences				
40	Core damage	Unavailability of long-term core cooling (failure of residual heat removal in shutdown and suppression cooling modes) following a loss of offsite power with successful emergency power, reactor scram, safety relief valve challenge and reseat, and successful high-pressure coolant injection.				
41	Core damage	Similar to Sequence 40 except failure of the high-pressure coolant injection system and successful reactor core isolation cooling.				
42	Core damage	Similar to Sequence 40 except failure of the high-pressure coolant injection and reactor core isolation cooling systems with successful control rod drive cooling.				

			-		
- 1			-	 	
		-	-		
æ	-				
-	-				

Sequence No.	E.ad state	Description
43	Core damage	Unavailability of long-term core cooling (failure of residual heat removal in shutdown and suppression cooling modes) following a loss of offsite power with successful emergency power, reactor scram, safety relief valve challenge and reseat; failure of the high- pressure coolant injection, reactor core isolation cooling and control rod drive cooling systems, with successful vessel depressurization and low-pressure core spray.
44	Core damage	Similar to Sequence 43 except failure of low-pressure core spray and successful low-pressure coolant injection.
45	Core damage	Unavailability of fire water or other equivalent water source for reactor makeup following a loss of offsite power with successful emergency power, scram, and safety relief valve challenge and successful reseat. Failure of high-pressure coolant injection, reactor core isolation cooling, and control rod drive cooling systems. Successful vessel depressurization, and failure of low- pressure core spray and low-pressure coolant injection with successful residual heat removal in shutdown cooling mode.
46	Core damage	Similar to Sequence 45 except failure of the residual heat removal system in shutdown cooling mode and success in suppression pool cooling mode.
47	Core damage	Similar to Sequence 44 except failure of low-pressure coolant injection.
48	Core damage	Unavailability of vessel depressurization following a loss of offsite power with successful emergency power and reactor scram. Challenge of the safety relief valves and successful reseat with high-pressure coolant injection, reactor core isolation cooling, and control rod drive cooling.
49	Core damage	Unavailability of long-term core cooling (failure of residual heat removal system in shutdown and suppression pool cooling modes) following a loss of offsite power with successful emergency power, reactor scram, safety relief valve challenge and unsuccessful reseat, and successful high-pressure coolant injection.
50	Core damage	Unavailability of long-term core cooling (failure of residual heat removal system in shutdown and suppression pool cooling modes) following a loss of offsite power with successful emergency power, reactor scram, safety relief valve challenge and unsuccessful reseat, and failure of high-pressure coolant injection followed by successful vessel depressurization and low-pressure core spray
51	Core damage	Similar to Sequence 50 except failure of low-pressure core spray and successful low-pressure coolant injection.

l

TRATE ATT ATT ATT AND AND UNITARE BIRL ATTYS SECUED	Table A.11	BWR	LOOP	COTE	damage	and	ATWS	sequen
---	------------	-----	------	------	--------	-----	------	--------

Sequence No.	End state	Description
52	Core damage	Unavailability of fire water or other equivalent water source following a loss of offsite power, successful emergency power and scram, safety relief valve challenge and unsuccessful reseat, and failure of high-pressure coolant injection. Successful vessel depressurization, failure of low-pressure core spray and low- pressure coolant injection, and successful residual heat removal in shutdown cooling mode.
53	Core damage	Similar to Sequence 52 except failure of the residual heat removal system in shutdown cooling mode and success in suppression pool cooling mode.
54	Core damage	Similar to Sequence 51 except failure of low-pressure coolant injection.
55	Core damage	Unavailability of vessel depressurization following a loss of offsite power with successful emergency power and reactor scram. Safety relief valve challenge and unsuccessful reseat, and failure of the high-pressure coolant injection system.
56	Core damage	Similar to Sequence 40 except the safety relief valves are not challenged.
57	Core damage	Similar to Sequence 41 except the safety relief valves are not challenged.
58	Core damage	Similar to Sequence 42 except the safety relief valves are not challenged.
59	Core damage	Similar to Sequence 43 except the safety relief valves are not challenged.
60	Core damage	Similar to Sequence 44 except the safety relief valves are not challenged.
61	Core camage	Similar to Sequence 45 except the safety relief valves are not challenged.
62	Core damage	Similar to Sequence 46 except the safety relief valves are not challenged.
63	Core damage	Similar to Sequence 47 except the safety relief valves are not challenged.
64	Core damage	Similar to Sequence 48 except the safety relief valves are not challenged.

Sequence No.	End state	Description		
65	Core damage	Unavailability of long-term core cooling (failure of the residual heat removal system in shutdown and suppression pool cooling modes) following a loss of offsite power, failure of emergency power, successful reactor scram, successful long-term recovery of electric power, safety relief valve challenge and reseat, and successful high-pressure coolant injection.		
66	Core damage	Similar to Sequence 65 except high-pressure coolant injection fails with successful reactor core isolation cooling.		
67	Core damage	Unavailability of long-term core cooling (failure of the residual heat removal system in shutdown and suppression pool cooling modes) following a loss of offsite power, failure of emergency power, successful reactor scram, successful long-term recovery of electric power, safety relief valve challenge and reseat, with failures of high-pressure coolant injection and reactor core isolation cooling.		
68	Core damage	Similar to Sequence 65 except the safety relief valves fail to reseat.		
69	Core damage	Failure of high-pressure coolant injection following a loss o offsite power, with emergency power failure, successful reacto scram, safety relief valve challenge, and unsuccessful reseat.		
80	Core damage	Unavailability of long-term core cooling (failure of residual heat removal system in shutdown and suppression cooling modes) following a loss of offsite power, failure of emergency power, successful reactor scram, and long-term recovery of electric power. The safety relief valves are not challenged, and high- pressure coolant injection is successful.		
81	Core damage	Similar to Sequence 66 except the safety relief valves are not challenged.		
82	Core damage	Similar to Sequence 67 except the safety relief valves are not challenged.		
83	Core damage	Unable to recover long-term electric power following a loss of offsite power, failure of emergency power, and successful reactor scram.		
97	ATWS	ATWS following a loss of offsite power and unavailability of emergency power. ATWS sequences are not further developed in the ASP models.		
98	ATWS	ATWS following a loss of offsite power, successful emergency power, and failure to scram the reactor. ATWS sequences are not further developed in the ASP models.		

Sequence No.	End state	Description
		BWR Class A sequences
71	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following a loss-of- coolant accident, successful scram, and successful feedwater coolant injection.
72	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling) following a loss-of- coolant accident, successful scram, failure of feedwater coolant injection system, and successful vessel depressurization and low- pressure core spray.
23	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following a loss-of-coolant accident, successful reactor scram, and failure of feedwater coolant injection. Successful vessel depressurization and failure of low- pressure core spray, and successful shutdown cooling system.
74	Core damage	Similar to Sequence 73 except failure of the shutdown cooling system and successful containment cooling.
75	Core damage	Similar to Sequence 72 except failure of the low-pressure core spray.
76	Core damage	Unavailability of vessel depressurization following a loss-of- coolant accident, successful reactor scram, and failure of the feedwater coolant injection system.
96	ATWS	ATWS following a loss-of-coolant accident. ATWS sequences are not further developed in the ASP models.
		BWR Class B sequences
71	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss-of-coolant accident, successful scram, and successful high-pressure coolant injection.
72	Core damage	Unavailability of long-term core cooling (failure of shutdown cooling system and containment cooling mode of low-pressure coolant injection) following a loss-of-coolant accident, successful scram, failure of high-pressure coolant injection, and successful vessel depressurization and low-pressure core spray.
73	Core damage	Similar to Sequence 72 except failure of low-pressure core spray and successful low-pressure coolant injection.
74	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following a loss-of-coolant accident, successful reactor scram, and failure of the high-pressure coolant injection system. Successful vessel depressurization, failure of low-pressure core spray and low-pressure coolant injection, and successful shutdown cooling system.

Table A.12 BWR small-break LOCA core damage and ATWS sequences

Table A.12 BWR small-break LOCA core damage and ATWS sequences

Sequence No.	End state	Description		
75	Core damage	Similar to Sequence 74 except failure of the shutdown cooling system and successful containment cooling mode of low-pressure coolant injection.		
76	Core damage	Similar to Sequence 73 except failure of low-pressure coolant injection.		
77	Core damage	Unavailability of vessel depressurization following a loss-of- coolant accident, successful reactor scram, and failure of the high-pressure coolant injection.		
96	ATWS	ATWS following a loss-of-coolant accident. ATWS sequences are not further developed in the ASP models.		
		BWR Class C sequences		
71	Core damage	Unavailability of long-term core cooling (failure of residual heat removal system in shutdown and suppression pool cooling modes) following a loss-of-coolant accident, successful scram, and successful high-pressure coolant injection.		
72	Core damage	Unavailability of long-term core cooling (failure of residual heat removal system in shutdown and suppression pool cooling modes) following a loss-of-coolant accident, successful scram, failure of the high-pressure coolant injection system, and successful vessel depressurization and low-pressure core spray.		
73	Core damage	Similar to Sequence 72 except failure of low-pressure core spray and successful low-pressure coolant injection.		
74	Core damage	Unavailability of fire water or other equivalent water source for reactor vessel makeup following a loss-of-coolant accident successful reactor scram, and failure of the high-pressure coolan injection system. Successful vessel depressurization, failure of low-pressure core spray and low-pressure coolant injection, and successful residual heat removal system in shutdown cooling mode.		
75	Core damage	Similar to Sequence 74 except failure of the residual heat removal system in the shutdown cooling mode and success in the suppression pool cooling mode.		
76	Core damage	Similar to Sequence 73 except failure of low-pressure coolant injection.		
77	Core damage	Unavailability of vessel depressurization following a loss-of- coolant accident, successful reactor scram, and failure of the high-pressure coolant injection system.		
96	ATWS	ATWS following a loss-of-coolant accident. ATWS sequences are not further developed in the ASP models.		

Initiator/branch	Initial estimate (no recovery attempted)	Nonrecovery estimate	Total
	PWRs	en ne zan an de la sen a chennen ne nevel an e chennen de la sen chennen de la sen chennen de la sen chennen de	na na ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'
LOOP	4.1×10^{-2} /year	0.39	$1.6 \times 10^{-2}/\text{year}^\circ$
Small-break LOCA	1.5×10^{-2} /year	0.43	6.4×10^{-3} /year
Auxiliary feedwater	3.8×10^{-4}	0.26	9.9 × 10 ⁻⁵
High-pressure injection	6.1 × 10 ⁻⁴	0.84	5.1 × 10 ⁻⁴
Long-term core cooling (high-pressure recirculation)	1.5 × 10 ⁻⁴	1.00	_1.5 × 10-4
Emergency power	6.4 × 10 ⁻⁴	0.78	5.0 × 10 ⁻⁴
SG isolation (MSIVs)	8.3 × 10 ⁻⁴ BWRs	0.64	5.3 × 10-4
LOOP	$1.0 \times 10^{-1}/\text{year}$	0.32	$3.3 \times 10^{-2}/\text{year}^{\circ}$
Small-break LOCA	2.0×10^{-2} /year	0.50	1.0×10^{-7} /year
HPCI/RCIC	1.7 ×10 ⁻³	0.49	8.4 × 10 ⁴
RV isolation	1.7 ×10-3	1.00	1.7×10^{-3}
LPCI	1.0 ×10 ⁻³	0.71	7.4 × 10 ⁻⁴
Emergency power	1.0 ×10-4	0.85	8.9×10^{-5}
Automatic depressurization	3.7 ×10 ⁻³	0.71	2.6×10^{-3}

Table A.13 Average initiating event frequency and branch failure probability estimates developed from 1984-1986 precursors.

*Precureor calculations utilize plant specific LOOP frequency estimates developed from information in P.W. Bazanowsky, Evaluation of Station Blackout Accidents at Nuclear Power Plants, NUREG-1032, June 1988.

2 - a

Operation action	Failure probability
BWRs	
Condensate/feedwater recovery	0.001
Containment venting	0.01
Control rod drive water use	0.01
Initiation of RHR service water, fire water	0.01
Shutdown cooling	0.001
Standby liquid control initiation	0.01
PWRs	
Condensate/MFW recovery	0.01
Containment spray recirculation	0.001
Emergency core cooling recirculation	0.001
Fail to block stuck-open PORVs	0.001
Open PORVs for feed and bleed	0.0004
SG depressurization	0.001
Use feed and bleed to cool core	0.01

Table A.14 Operator action failure probabilities

Postulated operational event	Conditional core damage probability
BWR Class A nonspecific reactor trip	2.8×10^{-6}
BWR Class A LOFW	1.7 × 10-4
BWR Class B nonspecific reactor trip	7.7 × 10-1
BWR Class B LOFW	43 × 10-6
BWR Class C (turbine-driven feed pumps) nonspecific reactor trip	12 × 10-6
BWR Class C (turbine-driven feed pumps) LOFW	15 4 10-5
PWR Class A nonspecific reactor trip	1.8 × 10-7
PWR Class A LOFW	24 ~ 10-6
PWR Class B nonspecific reactor trip	18 - 10-7
PWR Class B LOFW	2 2 × 10-6
PWR Class D nonspecific reactor trip	47 × 10-7
PWR Class D LOFW	68 × 10-0
PWR Class G nonspecific reader trip	1.8 × 10-7
PWR Class G LOFW	2.0 × 10
PWR Class H nonspecific reactor trip	4.9 × 10-6
PWR Class H LOFW	4.9 × 10-1
BWR Class C HPCI unavailability (turbine-driven feed numer	3.9 × 10-2
360-h unavailability)*	1.0×10^{-5}
BWR Class C HPCS unavailability (turbing-driven feed number	1.4
360-b unavailability)"	1.4×10^{-3}
BWR Class C RCIC unavailability (turbine-driven feed pumps,	3.8×10^{-8}
BWR Class C CPD cooling and the thing	
pumps, 50-h unavailability)"	6.2×10^{-8}

Table A.15	Reference	event	conditional	prohability value	
------------	-----------	-------	-------------	-------------------	--

"The probability of a transient, LOOP, or small-break LOCA during the 360-h unevailability was estimated as described in Sect. A.1.

Abbreviation	Description		
	PWR event trees		
AFW	auxiliary feedwater fails		
ATWS	anticipated transient without scram end state		
COND	condensate system fails		
CD	core damage end state		
CSR	containment spray recirculation fails		
EP	emergency power fails		
EP REC (LONG)	long-term recovery from LOOP or emergency power failure fail		
HPI	high-pressure injection fails		
HPR	high-pressure recirculation fails		
LOCA	small-break loss-of-coolant accident		
LOOP	loss of offsite power		
MFW	main feedwater fails		
PORV OPEN	power-operated relief valve fails to open for feed and bleed cooling		
PORV/SRV CHALL	power-operated relief valve or safety relief valves challenged (challenge rate)		
PORV/SRV RESEAT	power-operated relief valve and/or safety relief valve fails to reseat		
RT	reactor trip fails		
RT/LOOP	reactor trip fails given a loss of offsite power		
SEAL LOCA	RCP seal LOCA occurs		
SEC SIDE DEP	secondary-side depressurization fails		
SEQ NO	sequence number		
SRV CHALL	safety relief valves challenged		
SRV RESEAT	safety relief valve fails to reseat		
TRANS	nonspecific reactor-trip transient		

Table A.16 Abbreviations used in event trees

Abbreviation	Description
	BWR Evens Trees
cc	containment cooling fails
CRD	control-rod-drive cooling fails
EP	emergency power fails
FIREWTR or OTHER	fire water or other equivalent water source fails
FW	unavailability of main feedwater
FWCI	failure of feedwater coolant injection system
HPCI OR HPCS	high-pressure coolant injection or high-pressure core spray fails
IC/IP MUP	isolation condenser or isolation condenser makeup fails
LOCA	small-break loss-of-coolant accident
LOOP	loss of offsite power
LOOP REC (LONG)	long-term recovery from LOOP or emergency power failure fails
LPCI	low-pressure coolant injection fails
LPCI (CC MODE)	containment cooling mode of low-pressure coolant injection system fails
LPCI (RHR)	residual heat removal mode of low-pressure coolant injection
LPCS	OW-pressure core spray faile
PCS	failure of continued nower conversion system operation
RCIC	reactor cone isolation cooling fails
RHR (SDC MODE)	residual-heat-removal shutdown cooling mode faile
RHR (SP COOLING MODE)	residual-heat-nemoval suppression mode cooling mode fails
RHR SW or OTHER	residual-heat-removal service water or other water course fails
RX SHUTDOWN	reactor fails to scram
SDC	shutdown cooling system fails
SRVs/ADS	safety relief valve(s) fail to open for depressurization or automatic depressurization system fails
SRV CHAL	safety relief valve(s) challenged (challenge exca)
SRV-C	safety relief valve fails to close
TRANSIENT	nonspecific reactor-trip transient

Table A.16 Abbreviations used in event trees

. .

4

. .

. 1

1.1

-

PORV/ SRV CHAL PORV/ SRV RESEAT SEQ PORV END TRANS RT AFW MEW 1421 HPR OPEN NO STATE OK. OK 11 CD 12 CD OK OK OK 13 0 14 CD OK OK 15 CD (1) 16 CD 17 CD 18 ATWS (1) OK for Class D

Fig. A.7. PWR class B and D nonspecific reactor trip

PORV LOCA RT AFW. MEW HPI HPAR SEQ END NO STATE OK 71 CD 72 CD OK 73 CD 74 CD OK 75 CD (1) 76 CD 77 CD 78 ATWS (1) OK for Class D PWR class B and D small-break loss-of-coolant accident Fig. A.9.

. 1

A-77

PORV/ SRV CHAL PORV/ SRV RESEAT RT/ LOOP SEAL EP REC LOCA (LONG) PORV EP AFW MPI HPR LOOP CSR SEQ END 0K OK 41 CD 42 CD OK OK CD 56 43 CD 44 CD 45 CD OK 46 00 47 CD 48 CD OK 49 00 50 00 OK 51 CD 52 00 53 00 OK 54 00 55 CD 40 ATWS PWR class G loss of offsite power Fig. A.11.

+ 1

4

. 1

RX EP SHL/T REC DOWN (LONG) FREW/R SRV CHAL SRV-C K MUP SRV&/ EP CRD SEQ NO END LOOP FWCI LPCS SDC cc OK. OK OK co 41 OK OK 42 CD CHK. OK CD 43 **O**X 00 44 OK 45 CD 46 CD 47 CO OK OK 48 CD OK OK 00 49 OK 50 CD OPC 51 00 52 53 00 00 OK OK CD CD 54 OK OK 00 55 OK OK CD 56 OR CD 57 OK 00 58 59 00 60 00 ATHE 99 CHK. 61 CD 62 00 OK 63 00 64 CD 97 ATURS

Fig. A.17. BWR class A loss of offsite power

R× SHUT DOWN SMALL SRVs/ ADS FIREWTR FWCI SEQ LPCS END SDC CC OTHER NO STATE 0K OK 71 CD OK OK 72 CD OK 73 CD OK 74 CD 75 CD 76 CD 96 ATWS Fig. A.18. BWR class A small-break loss-of-coolant accident

1

A

Fig. A.23. BWR class C loss of offsite power

A-91

Ø

-

P

a.