not to exceed 7 days in any 30 day period if a startup transformer is out of service. None of the engineered safety feature equipment fed by the remaining transformer may be out of service.

2. The reactor may remain in operation for a period not to exceed 7 days if 125 VDC Motor Control Center DC-2 is out of service, provided the requirements of Specification 3.8 are met.

C. Standby Diesel Generators

- The reactor shall not be made critical unless both diesel generators are operable and capable of feeding their design/sted 4160 volt buses.
- 2. If one diesel generator becomes inoperable during power operation, repairs shall be initiated immediately and the other diesel shall be operated at least one hour every 24 hours at greater than 20% rated power until repairs are completed. The reactor may remain in operation for a period not to exceed 7 days in any 30-day period if a diesel generator is out of service. During the repair period none of the engineered safety features normally fed by the operational diesel generator may be out of service or the reactor shall be placed in the cold shutdown condition.
- If both divsel generators become inoperable during power operation, the reactor shall be placed in the cold shutdown condition.
- 4. For the diesal generators to be considered operable:
 - A) There shall be a minimum of 14,000 gallons of diesel fuel in the standby diesel generator fuel tank,

OR

- B) To facilitate inspection, repair, or replacement of equipment which would require full or partial draining of the standby diesel generator fuel tank, the following conditions must be met:
 - There shall be a minimum of 14,000 gallons of fuel oil contained in temporary tanker trucks, connected and aligned to the diesel generator fill station.

OYSTER CREEK

2) The reactor cavity shall be flooded above elevation 117 feet with the spent fuel pool gates removed, or all reactor fuel shall be contained in the spent fuel pool with spent fuel pool gates installed.

AND

3) The plant shall be placed in a configuration in which the core spray system is not required to be operable.

Bases:

The general objective is to assure an adequate supply of power with at least one active and one standby source of power available for operation of equipment required for a safe plant shutdown, to maintain the plant in a safe shutdown condition and to operate the required engineered safety feature equipment following an accident.

AC power for sautdown and operation of engineered safety feature equipment can be provided by any of four active (two 230 KV and two 34.5 KV lines) and either of two standby (two diesel generators) sources of power. Normally all six sources are available. However, to provide for maintenance and repair of equipment and still have redundancy of power sources the requirement of one active and one standby source of power was established. The plant's main generator is not given credit as a source since it is not available during shutdown.

The plant 125V DC system consists of three batteries and associated distribution system. Batteries B and C are designated as the safety related subsystems while battery A is designated as a non-safety related subsystem. Safety related loads are supplied by batteries B and C, each with two associated full capacity chargers. One charger on each battery is in service at all times with the second charger available in the event of charger failure. These chargers are active sources and supply the normal 125V DC requirements with the batteries and standby sources. (1)

In applying the minimum requirement of one active and one standby source of AC power, since both 230 KV lines are on the same set of towers, either one or both 230 KV lines are considered as a single active source.

The probability analysis in Appendix "L" of the FDSAR was based on one diesel and shows that even with only one diesel the probability of requiring engineered safety features at the same time as the second diesel fails is quite small. The analysis used information on peaking diesels when synchronization was required which is not the case for Oyster Creek. Also the daily test of the second diesel when one is temporarily out of service tends to improve the reliability as does the fact that synchronization is not required.

.3 indicated in Amendment 18 to the Licensing Application, there are numerous sources of diesel fuel which can be obtained within 5 to 12 hours and the heating boiler fuel in a 75,000 gallon tank on the site could also be used. As indicated in Amendment 32 of the Licensing Application and including the Security System loads, the load requirement for the loss of offsite power would require 12,410 gallons for a three day supply. For the case of loss of offsite power plus loss-of-coolant plus bus failure 9790 gallons would be required for a three day supply.

In the case of loss of offsite power plus loss-of-coolant with both diesel generators starting the load requirements (all equipment operating) shown there would not be three days' supply. Howev, not all of this load is required for three days and, after evaluation of the conditions, loads not required on the diesel will be curtailed. It is reasonable to expect that within 8 hours conditions can be evaluated and the following loads curtailed:

- 1. One Core Spray Pump
- 2. One Core Spray Booster Pump
- 3. One Control Rod Drive Pump
- 4. One Containment Spray Pump
- 5. One Emergency Service Water Pump

With these pieces of equipment taken off at 8 hours after the incident it would require a total consumption of 12,840 gallons for a three day supply. Therefore, a minimum technical specification requirement of 14,000 gallons of diesel fuel in the standby diesel generator fuel tank will exceed the engineered safety features operational requirement after an accident by approximately 9%.

During plant cold shutdown or refueling, it may be necessary to inspect, repair and replace the 15,000 gallon standby diesel generator fur storage tank. This would require tank partial or full drain down. An alternate fuel supply configuration may be established which consists of temporary tanker trucks capable of containing 14,000 gallons. This configuration is capable of supporting continuous operation of both diesels for at least 3 days.

The temporary configuration is acceptable since a minimal power load would be required during and following a design basis condition of a loss of offsite power while the plant is in cold shutdown or refueling. Analysis shows that in the event of a tornado or seismic event which may cause a loss of offsite power and a temporary loss of the temporary EDG fuel oil supply, power can be restored before the consequences of previously analyzed conditions are exceeded.

References:

(1) Letter, Ivan R. Finfrock, Jr. to the Director of Nuclear Reactor Regulation dated April 14, 1978.