

October 19, 1982 #3F-1082-09 File: 3-0-3-a-3 3-E-3

Mr. John F. Stolz, Chief Operating Reactors Branch #4 Division of Licensing U.S. Nuclear Regulatory Commission Washington, DC 20555

Subject: Crystal River Unit 3 Dock at No. 50-302 Operating License No. DPR-72 Adequacy of Station Electric Distribution System Voltage

Dear Mr. Stolz:

8210260436 821019 PDR ADDCK 05000302

PDR

By letter dated February 19, 1982, Florida Power Corporation submitted calculated and measured bus voltages to demonstrate the adequacy of the Crystal River Unit 3 Electrical Distribution System. The calculated voltages used several assumptions that did not adequately model the measured conditions. During subsequent telephone conversations, Florida Power Corporation agreed to revise our calculations to more accurately model our system. The following attachments are included:

- 1. Comparative Voltage Table,
- 2. Explanation of Difference Between Original Calculation and Present Calculations, and
- 3. Engineered Safeguards Buses Voltage Calculations

The first calculations were made on the basis of the 4160/480 volt (V) transformers being on the nominal tap. The revised calculations were made for a tap setting to give a 25% voltage boost; this results in the 480V switches and motor control center voltages being increased by approximately 25%. This assumption should satisfy the NRC concern that the measured voltages were too high and provide assurance that we will not exceed the voltage limits. The starting voltage for the calculations was the same as that for measured voltages, i.e., 244.8 kV.

If the starting voltage were 240kV-1% = 236.4kV (lowest 240kV system voltage), then the calculated voltages would be obtained to a very close approximation by multiplying the calculated voltages in the attached table by .965686.

General Office 3201 Thirty-fourth Street South . P.O. Box 14042, St. Petersburg, Florida 33733 . 813-866-5151

Mr. John Stolz #3F-1082-09 Page 2

The discrepancy between calculated and measured voltages is most probably due to the as-measured bus loads being appreciably lower than bus loads used in the calculation.

The calculated load on the 4160V winding of the Startup Transformer[®] was approximately 31 Mega volt amps (MVA); the forced-oil-and-air-at-65°C rating of this winding is 28 MVA. It is improbable that the measurements were made with a load as great as 28 MVA. The calculated load on Engineered Safeguards Auxiliary Transformer 3A was approximately 1.15 MVA, the oil-air rating of the transformer being 1 MVA.

Calculated loads in many cases were taken as rated loads of equipment. Also, the condition used in the calculations was that of maximum plant bus loading including maximum Engineered Safeguard loads. Previous calculations were approximate and are superseded by the present calculations from which the Comparative Voltage Table is compiled; therefore, relay settings should be based on the present calculations.

The review of these calculations and the assessment of effects on the system that could be caused by changes in the relay settings has involved considerable engineering effort. Fitting this work into the schedule of preparing for our next outage has caused considerable delay in submitting the results of these revised calculations.

Florida Power Corporation will install the protection relays during the Spring 1983 Refueling Outage. The proposed trip setpoint is 3780V with a maximum value of 3866V and minimum value of 3763V. This will allow a 4.2% drop between the 4160V buses and 480V motor control center.

Florida Power Corporation plans to perform additional calculations at raised tap settings to improve the voltage drop to 2%. We plan to monitor the performance of these relays and to make additional voltage caiculations before finalizing the Technical Specification Change Request. Florida Power Corporation will submit the schedule for final calculations, voltage measurement checks, and technical specification submittal upon development and approval of that schedule.

Very truly yours,

Jatery y. Baymand

Dr. Patsy Y. Baynard Assistant to Vice President Nuclear Operations

WRK/myf

Attachment 1

COMPARATIVE VOLTAGE TABLE

CR-3 START-UP TRANSFORMER

BUS	CALCULATED VOLTAGES	MEASURED VALUES PLANT AT FULL LOAD-STEADY STATE CONDITIONS					
	Original Value (2/19/82)	Present Value (10/6/82)	Numerical Value				
230 kV GRID	243.6 kV	244.8 kV	244.8 kV				
4160 V SWGR							
ES BUS 3A ES BUS 3B	4276 V 4276 V	4108 V 4108 V	4183 V 4179 V				
480 V SWGR							
ES BUS 3A ES BUS 3B	489 V 489 V	458 V 460 V	472 V 475 V				
MCC 480 V							
ES 3A1 3A2 3AB ES 3B1 3B2	489 V 489 V 489 V 489 V 489 V 489 V	456 V 455 V 454 V 457 V 458 V	469 V 468 V 468 V 472 V 471 V				

EXPLANATION OF DIFFERENCE BETWEEN ORIGINAL CALCULATIONS AND PRESENT CALCULATIONS

Errors in Original Calculations

- 1. The H-Y Impedance of the Startup Transformer was taken as 7.96% from our early nameplate drawing instead of the later value of 8.6%.
- 2. Cable impedances were neglected.
 - The above errors would result in the calculated voltage drop being smaller than would actually be the case.

Difference In Methods of Calculation

Original Method

Loads were expressed in terms of current rather than impedance. Voltage drops were calculated by multiplying currents by impedances, and then subtracted from the voltage on the high side of the impedance through which the load current passed.

Loads were expressed in terms of the transformer output voltage vector, yet when calculating this voltage, the input voltage vector was taken as the reference vector.

 V_{μ} = High side voltage vector

 $V_T = Low side voltage vector$

This is the pf angle which should have been used.

p.f. angle of load

The correct pf angle being greater than the load pf angle, would result in a greater voltage drop. This occurs in two cases,

- a. for the Startup Transformer
- b. for the 4160/480V transformers

so that when calculating the voltage drop through the two transformers, a double error is incurred.

Present Method

This is the voltage divider method and avoids the error caused by using too small a pf. angle. Loads are expressed as impedances. The principle is as follows:

Bus Voltage = $\frac{Z_L}{Z_L + Z_T}$ x Voltage on high side of transformer.

Attachment 3

.

Engineered Safeguards Busses Voltage Calculations

	Gilbert Associates, Inc.	SUBJECT	ENGINEERED VOLTAGE CA	SAFEGUARDS LCULATIONS	cisid 04-	5011-113	PAGE 2
-	Reading, Pennsylvania	REV.	0	1	2	3	40 PAGES
	CALCULATION	ORIGINATOR	7/8/82				-

Purpose: To compare Engineered Safeguards Bus Voltages with those measured by Florida Power Corporation.

Sources of Information: These are identifed at the appropriate part of the calculations.

Computer Calculation: Not applicable

Assumptions: These are identified at the appropriate part of the calculations.

Indetification of End Results: The comparison of calculated and measured voltages is shown in the Table at the end of the calculations.

The actual one line diagram used (except for impedance values) is given on page 37 of Calculations 11/20/79 in "Adequacy of Station Electric Distribution Voltages - Crystal River 3".

4.16 KV LOADS

Rated KVA taken from "Crystal River Unit 3 - Auxiliary Loading pages 3 and 4.

Number of motors running taken from those in "Adequacy of Station Electric Distribution voltages" pages 4, 5 of Calculations 10/21/80. KVA calculated from latest current information shown on the motor data sheets.

Power factors were also taken from motor data sheets; the power factor of the Auxiliary Building Exhaust Fans, since they were running at just over 50% load was estimated from the full load power factor.

As the impedance of an induction motor will vary as the voltage applied to the terminals, the terminal voltage was estimated at .99 of 4.16 KV (base voltage) from preliminary calcuations.

Cillion According to	BUSES VOLTAGE CALCULATIONS 04-5011-113									
Barting Branchates, Inc	REV.	0	1	T	2		TI		OF	
CALCIU ATION	MICROF	ILMED		-	F		F		PAGESA	
CALCULATION	ORIGINA	TORAC WE	m							
	DATE	7/8/82					1			
The impedence of an ind	luction	motor when	n runni	ng is g	iven b	у				
Zbase = Zrated x (Actual	Terminal V ase Voltage	/oltage e)*						
In calculating the impe	edance	from rated	KVA, in	n terms	of th	e base	MVA, m	otor K	VA has	
been multiplied by (Base tual Ter	e Voltage rminal Volt)2 tage	, since the i	impen nverse	dance i of the	KVA.	ortion	ed to	
fotor impedance is ther	Base Motor	MVA r MVA								
and MUA has been taken	throw	about as 10	0				-			
ase myA has been taker	i throug	gnout as It					Conver	ted to		
	1	KVA				Motor	4.16K	Base		
Unit Bus 34	Rated	Running	of	KW	KVAR	Volte	MW	MVAR	MVA	
	NG C C G	Num rug	p.	i.u	NT/III	iores				
. CW Pump 3A	1700	1700	.822	1397	968	.99				
. CW Pump 3C	1700	1700	.822	1397	968	.99				
. Sec. Service Closed	317	317	.875	277	153	.99				
Cycle Pp. 3A										
Feedwater Boster	21 3	2110	.91	1920	875	.99				
Po	~~									
Condensate Pp. 24	1750	1750	0	1575	763	00				
Normal New Owner	220	220	.9	277	176					
Geo Water D	528	328	.045	211	1/0	. 99				
Sea Water Pp. 3										
. Aux. Bldg. Exh.	180	100	.85	85	53	.99			1.1	
				6928	3956		7.069	4.036	8.14	
									1 1	
Unit Bus 3B										
. CW Pump 3B	1700	1700	.822	1397	968	.99				
). CW Pump 3D	1700	1700	.822	1397	968	.99				
. Sec Service	317	317	.875	277	153	.99				
Cloud Cucla										

	SUBJE	ENGINE	ERED SA	AFEGUARI	DS	CISID	-5011-	112	PAGE
Gilbert Associates, Inc.	REV.			1	2	1 04	3	115	0F 40
CALCULATION	ORIGIN	ATOR LOA					+		PAGES
	DATE	7/8/82							-
		KYA				Motor	Conver 4.16K	ted to V Base	
Unit Bus 3B	Rated	Running	pf	KW	KVAR	Volts	MW	MVAR	MVA
12. Feedwater Booster	2110	2100	.91	1920	875	.99			
13. Condensate Pp. 3B	1750	1750	. 9	1575	763	.99			
14. Norm. Nuc. Serv. CCC Pp. 3	227	227	.843	277	176	.99			
15. Aux. Bldg. Exh.	180	100	.85	85	53	.99			
16. Fan 3B				6851	3888		6.99	3.967	8.0372
2			ð			R +	jX		
Unit Bus 3A 12.	285	29.	.720		10	.669 +	j 6.09	04	
Unit Bus 3B 12.	442	29.	.580		1	0.82 +	j 6.14	2	
							Conver	ted to	
	F	VA				Motor	4.16K	/ Base	
ES Bus 3A	Rated	Running	pf	KW	KVAR	Volts	MW	MVAR	MVA
Make UP Pump 3A	588	588	.926	545	222	.99			
Reactor Bldg. Spray Pump 3A	215	215	.925	199	82	.99			
Decay Heat Pump	3.29	339	.921	312	132	.99			
Emerg. N. S. Sea Water Pump 3A	643	643	.87	559	317	.99			
Emerg. N. S. CCC Pump 3A	620	620	.89	552	283	.99			
Decay Heat Serv. Sea Water Pp.	285	285	.827	236	160	.99			
				2403	1196		2.452	1.22	2.7387

Gilbert Asso	ciates, In	C. BUSES	VOLTAGE CAL	CULATIONS	04-	5011-113	1
Reading, Pennsylve	mia	REV.		2	-	3	4
CALCULAT	NOI	ORIGINATOR	C. 12.0 m.				PAGES
		DATE 7	/8/82				
		z	ø		R + j	x	
ES Bus 3A	36	.513	26.45	32	.691 + j	16.264	
ES Bus 3B	36	.513	26.45	32	.691 + j	16.264	
5.9 KV LOADS							
Only the Reacto	or Coola	nt Pumps.					
Volts = 6.6 KV	FLC = 6	85 amp. 1250	rmp. synchro	nous			
KVA Input = ✓	3 x 6.6	x 685 = 7330				-	
$n_{0000} = 9000$							
ub 2000							
kW Output = 900	00 x .74	6 = 6714					
kW Output = 900	00 x .74	6 = 6714					
kW Output = 900	$x \cdot .74$ $y = \frac{6714}{7830}$	6 = 6714					
kW Output = 900	$x \cdot .74$ $y = \frac{6714}{7830}$	6 = 6714					
kW Output = 900 pf x efficiency Efficiency must	$x \cdot .74$ $y = \frac{6714}{7830}$ t be les	6 = 6714 = .8575 s than unity,	so that pf	must be grea	ter than	.8575.	
kW Output = 900 pf x efficiency Efficiency must	$x \cdot .74$ $y = \frac{6714}{7830}$ t be les	6 = 6714 = .8575 s than unity,	so that pf	must be grea	ter than	.8575.	
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo	$y = \frac{6714}{7830}$ t be les	6 = 6714 = .8575 s than unity,	so that pf	must be grea	ter than	.8575.	
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo	$y = \frac{6714}{7830}$ t be les	6 = 6714 = .8575 s than unity,	so that pf	must be grea	ter than	.8575.	
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp	$y = \frac{6714}{7830}$ t be les otors	<pre>6 = 6714 = .8575 s than unity, efficency</pre>	so that pf	must be grea	ter than	.8575.	
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 1	$y = \frac{6714}{7830}$ t be les otors rpm 1200	<pre>6 = 6714 = .8575 s than unity, efficency .946</pre>	so that pf pf . 9	must be grea	ter than	.8575.	
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 1 1750	$x \cdot .74$ $y = \frac{6714}{7830}$ t be les otors rpm 1200 257	<pre>6 = 6714 = .8575 s than unity, efficency .946 .934</pre>	so that pf . 9 .822	must be grea low speed	ter than , not fa	.8575. ir comparis	on
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 1 1750 400 1	$y = \frac{6714}{7830}$ t be les otors rpm 1200 257 1800	6 = 6714 = .8575 s than unity, efficency .946 .934 .938	so that pf . 9 .822 .921	must be grea low speed	ter than , not fa	.8575. ir comparis	on
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 1 1750 400 1 800 1	$y = \frac{6714}{7830}$ t be les otors rpm 1200 257 1800 1800	6 = 6714 = .8575 s than unity, efficency .946 .934 .938 .936	so that pf . 9 .822 .921 . 89	must be grea low speed	ter than , not fa:	.8575. ir comparis	on
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 1 1750 400 1 800 1 2500 1	00 x .74 y = $\frac{6714}{7830}$ t be les otors rpm 1200 257 1800 1800 1800	6 = 6714 = .8575 s than unity, efficency .946 .934 .938 .936 .948	so that pf . 9 .822 .921 . 89 . 91	must be grea low speed	ter than	.8575. ir comparis	on
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 11750 400 1800 12500 1000 1170 11750	00 x .74 y = $\frac{6714}{7830}$ t be les otors rpm 1200 257 1800 1800 1800 1800	6 = 6714 = .8575 s than unity, efficency .946 .934 .938 .936 .948 .951	so that pf . 9 .822 .921 . 89 . 91 .926	must be grea low speed	ter than	.8575. ir comparis	on
kW Output = 900 pf x efficiency Efficiency must Examine 4 KV Mo hp 2000 1750 400 1800 12500 700	00 x .74 y = $\frac{6714}{7830}$ t be les otors rpm 1200 257 1800 1800 1800 1800 1800 1800	6 = 6714 = .8575 s than unity, efficency .946 .934 .938 .936 .948 .951 .933	so that pf . 9 .822 .921 . 89 . 91 .926 . 87	must be grea low speed	ter than	.8575.	on

	Gilbert Associates, Inc.	SUBJECT ENGINEERED SAFEGUARDS CISID BUSES VOLTAGE CALCULATIONS 04-5011-113						
1	Reading, Paunaylvania	REV.	FILMED	Ŀ	2	3	40 PAGES	
	CALCULATION		ATOR I WIL	ron				
1.1.1.1		DATE	7/8/82					

Suggest use .9 pf for reactor coolant pump motor.

Running Load = 4 x 7020 KVA = 28.08 MVA at 6.6KV. Impedance at rated volts on 100 MVA base = $\frac{100}{28.08}$ = 3.56125 pu. Preliminary calculations showed that volts at motor terminals was approximately 1.033 pu of base voltage, 6.9 KV Impedance at 6.9 KV = 3.56125 x 1.033² = 3.8007 c j 25.84

= 3.42021 + j 1.65634

80 V LOADS

Loads directly connected to the 480 V Switchgear Buses are taken from "Adequacy of Station Electric Distribution Voltages" - Calculations 10/21/80 pp. 5 thru 7. Pf taken from motor data sheets. Motor KVA Loads are based on 460 volts. See "Crystal River 3 - Auxiliary Loading."

Loads on Motor Control Centers are taken from "Adequacy of Station Electric Distribution Voltage" - Calculations 11/20/79. For the ES Buses the case is Load at End of Block Loading Sequence Including Manually Applied Loads. The loads have been calculated on 480 volts so the motor loads must first be expressed in terms of the 460 volt rating - See "Crystal River 3 - Auxiliary Loading". From examination of motor data sheets it was apparent that an average pf of 0.85 would be a suitable value.

Non motor loads were expressed at 480 volts, so as these are constant impedance loads there is no need to convert to a rated 460 volts.

In order to simulate cable impedances to loads, the load impedances were increased by 2%.

Motor Terminal "oltages on the Unit Buses were estimated to be 94% of base voltage and 93% of base voltage on ES Buses. These figures were obtained from preliminary calculations.

	SUBJECT ENGIN BUSES VOLT	NEERED SAFEG	UARDS	CISID	04-501	PAGE 7
Gilbert Associates, Inc.	REV. 0	1	L	2	3	-115 40
CALCULATION	MICROFILMED			_		PAGES
And the second states of the second	DATE 7/8/8	-m	+			
	0416 77070					
480 V	LOADS CONNECTED	DIRECTLY TO	O SWITCH	HGEAR	BUSES	
	KV	A 460. V		Ru	nning	KVA 480 V
	Connected	Running	pf	KW	KVAR	
Condr. Vac. Pump 3A	137	137	. 92	126	54	
Station Service Air	91	50	.905	45	21	
Compressor 3A						
React Bldg. Ind. Cooler	73	50	.835	42	28	
Pump 3A						
Cond. Injection Pump 3A	134	50	.915	46	20	
				259	123	
Resistive						315
480V React Aux Bus 3A						
Inst. Air Compressor 3	JA	50	.905	45	21	
Resistive						345
480V Intake Bus SA						
Screen Wash Pump		70	. 85	60	37	
480V Heating Bus 3						
Heaters						827
						<u></u>
480V Turbine Bus 3B						
Motors - As Bus 3A				259	123	
Heaters						195
						<u></u>
480V Reactor Aux. Bus 3B						
Motors - As Bus 3A		50	.905	45	21	
Heaters						20

	SUBJECT	ENCINE	CERED S	SAFEG	UARDS		CISID	04-501	1-112	PAGE 8
Gilbert Associates, Inc. Reading, Pennsylvania	REV.			1	11085	2	-	04-501	1-115	PAGES 40
CALCULATION	ORIGINATOR DATE	7/8/82	m			Ŧ		-+-		-
		KVA	460.	v			Ru	ning	KVA 48	30 V
	Conne	cted	Runn	ing	pf		KW	KVAR		
480V Intake Bus 3B										
Screen Wash Pump 3B			1.1	70	. 8	5	60	37		
Screen Wash Pump 3C			1	70	. 8	5	60	37		
						1	20	74		
480V ES Bus 3A										
Decay Heat CCC Pump 3A	14. C - 1		9	96	. 8	6	83	49		
Cont. Comp. Wat.			21	3		9 1	92	93		
Chiller 3A										
						2	75	142		
480V ES Bus 3B										
As Bus 3A						2	75	142		
480V Plant Aux. Bus 3										
Resistive									733	

21 - A. 15 M. 18

														112	
	KVA 480V	4.16K	KVAR	Motor Volts	3B 480V Conver 480V KW	LOAD I ted to Base KVAR	MPEDANCE	<u>s</u> (Cont'	d) _Ø	1.022	<u>R + j x</u>	-	CALCULATION	Rreding, Pennsylvania	Gilbert Associates, Inc.
Reactor MCC 3B2 Motors Resistive	83.5 147	68	42	.94	77	48						DATE	ORIGINATO	MICROFILM	BUS
					224	48	.22909	436.52	12.09	445.25	435.37+j93.26	8/1	3	e •	ES VC
Press Heater 3B	847				847		847	118.06	0	120.43	120.63+j0	1/82	Wilm		LTAGE
<u>Intake xfr 3B</u> Intake Bus 3B Motors		120	74	.94	136	84	.15985	625.59	317	638.1	542.9+j335.3	-	er.	Ŀ	CALCULATIONS
WTMCC 3C Motors	134 1	.09	68	.94	123	77	.14511	689.11	32.05	702.9	595.77+j373			N	
														-	04-5011-113
														PAGES	PAGE 14

.

			4.16K	V UNIT	BUS 3A	480V LC	DAD IMPEI	DANCES					5	Readon	Gilbe
	KVA 480V	KW 46	KVAR 50V	Motor Volts	Convert 480V KW	ted to Base KVAR	MVA	Z	_Ø	1.022	<u>R+jx</u>		LCU" VTION	g. Pennsylvania	ort Associates, Inc
ES Aux xfr 3A ES Bus 3A Motors		275	142	.93	318	164	.3578	279.49	27.28	285.08	253.37+j130.66	DATE	ORIGINATOR	MICROFILMED	SUBJECT BUSES
ES MCC 3A1 Motors Resistive	97.1 213	80	49	.93	92 213 305	57	.31028	322 - 29	10.59	328.73	323.13+j60.41	7/8/82	chilon	0	ENGINEERED S.
ES MCC 3A2 Motors Resistive	240.1 88	196	122	.93	227	141								-	AFEGUARDS
ES MCC 3AB	110 4	08	60	02	315	141	.34512	289.76	24.11	295.55	269.77+j120.73			1	CISID 04-50
Resistive	39	90	80	.93	<u> </u>	69	.16693	599.06	24.42	611.04	556.38+j252.62			Ľ)11-113
														40 PAGES	PAGE 15

.

			4 168	U INTT	BIIC 3B	4800 10		ANCES						
	KVA 480V	KW 46	KVAR	Motor Volts	Convert 480V KW	ted to Base KVAR	MVA	<u></u>	_Ø	1.022	<u>R + j x</u>		eding, Pennsylvania CALCULATION	Ibert Associates, Inc.
Motors		275	142	.93	318	163	.3578	279.49	27.28	285.08	253, 37+ 1130, 66	DAT	MICH	sue
										2007100	199191919190100	E INAT	OFIL	BU
ES MCC 3B1												CH J	MED	SES
Motors	260.9	213	132	.93	246	153						1/8/1	- 6	VOI
Resistive	96				96							182	5	TAC
					342	153	.37466	266.91	24.1	272.25	248.52+j111.16	1 PA		E C
ES MCC 382				-								H	Ŀ	ALCUI
Motors	70.95	58	35	.93	67	40								ATI
Resistive	236				236									ONS
					303	40	.30563	327.19	7.52	333.74	330.87+j43.68	H	N	1
ES MCC 3AB		98	60	.93	113	69								CISID
	39				39									04-
					152	69	.16693	599.06	24.42	611.04	556.38+j252.62	H	-	5011
Plant Aux xfr 3	733						.733	136.43	0	139.15	139.15+j0			-113
TE: As ES MCC 3AB	can be su ed to be s	pplie uppli	d fro ed fr	m eithe om ES H	er ES Bu Bus 3A.	s 3A or	ES Bus	3B, for	the pur	pose of	the calculation		PAGES 40	PAGE 16

*

T .	Gilbert Associates, Inc.	SUBJECT	ENG SES VOI	INEERED LTAGE CA	SAFEGUA LCULAT	ARDS LONS	CISID 04-5011-113	PAGE 17
Ę	Reading, Pennsylvania	REV.	MED		1	2	3	40 PAGES
	CALCULATION	ORIGINAT	ORAL	Wilson				
	a second a second second	DATE	7/8	/82				1

CABLE IMPEDANCES

4.16 and 6.9 KV cable impedances were ignored. Previous experience has shown that for voltage drop calculations, these impedances are so small as to be justifiably disregarded.

Although cable impedances from 480 volt switchgear to Motor Control Centers are of little significance, they were taken into account by using actual lengths; the resistance and reactance for 1000 yards were taken from typical 600 V cable information.

REACTORS

The per unit values of reactance were taken from "Adequacy of Station Electric Distribution Voltages - Crystal River 3" - Calculations dated 11/20/79.

110 **480V SYSTEM CABLE IMPEDANCES** Gilbert Reading, Penn CALCULATION Associates Size Cables/ R/ X/ Length R х R Xpu Xpu From To MCM Phase 1000 1000 Ω Ω Feet pu Xpu Reactor Total Inc Heating Aux Machine Shops MCC 500 2 .0294 .0257 190 .0028 .00244 1.215 1.059 1.059 xfr. 3 REV. ORIGINATOR Turb. Aux Turbine MCC 3A CROFILME 500 2 .0294 .0257 .00331 .00289 1.437 225 1.254 1.997 3.251 WT MCC 3A 2 500 .0294 .0257 437 .00643 .00561 2.791 2.435 1.997 4.432 BUSES CT Vent MCC 3A 350 2 .0406 .0264 312 .00633 .00412 2.747 1.788 1.997 3.785 ENGINEERED SAFEGUARDS Reactor Aux Reactor MCC 3A1 .0294 .0257 2.999 0 500 2 538 .00791 .00691 3.433 2.999 /8/82 xfr 3A Press. Htr. MCC 3A 3 750 . 021 . 025 313 .00219 .00261 .9505 1.1328 2.1701 3.3029 5 Reactor MCC 3A2 350 2 .0406 .0264 309 .00627 .00408 2.721 1.771 3.768 1.997 Intake Aux Intake MCC 3A 350 1 .0406 .0264 .00122 .00158 .686 60 .53 .686 xfr 3A -Turbine Aux Turbine MCC 3B 500 2 .0294 .0257 .00524 .00457 2.274 356 1.984 1.997 3.981 xfr 3B WT MCC 3B 500 2 .0294 .0257 416 .00612 .00535 1.997 4.319 2.656 2.322 Vent MCC 3B 500 2 1.755 .0294 .0257 318 .00468 .00409 2.118 1.997 3.752 Reactor Aux Reactor MCC 3B1 500 2 .0294 .0257 530 .00779 .00681 3.381 2.956 2.956 N xfr 3B Press. Htr. MCC 3B 750 3 . 021 .025 326 .00228 .9896 .00272 1.181 2.1701 3.3511 Reactor MCC 3B2 500 2 .0294 .0257 347 .0051 .00446 2.214 1.936 1.936 04-Intake Aux WT MCC 3C 500 2 .0294 .0257 .00926 .0081 4.019 630 3.516 3.516 xfr 3B 5011w ES Aux ES MCC 3A1 350 2 .0406 .0264 120 .00244 .00158 1.059 .686 .686 xfr 3A ES MCC 3A2 350 2 .898 .898 .0406 .0264 157 .00319 .00207 1.385 w ES MCC 3AB 500 1 .0294 .0257 265 .00779 .00681 3.381 2.956 2.956 ES Aux ES MCC 3B1 500 2 .0294 .0257 198 .00291 .00254 1.263 1.102 1.102 -D AGES 4 xfr 3B ES MCC 3B2 500 2 AGE .0294 .0257 226 .00332 .0029 1.259 1.441 1.259 ES MCC 3AB 500 1 .0294 .0257 295 .00867 .00758 3.763 3.29 3.29 OF 18 õ

	Gilbert Associates, Inc.	SUBJECT ENGINEERED SAFEGUARDS BUSES VOLTAGE CALCULATIONS			RDS ONS	04-5011-113	PAGE 19
	Reading, Pennsylvania CALCULATION	REV.	0	-	2	3	PAGES 40
		ORIGINATOR	alou	m			
1.1.1		DATE	7/8/82				

TRANSFORMER IMPEDANCES

The Start Up Transformer equivalent circuit impedance was developed from test data supplied by telephone 6/15/82 from Florida Power Corporation.

The 4160/480 volt transformer impedances were obtained from Test Reports in Correspondence File EE (letter dated 7/8/1971.) As it was not known which serial number applied to individual transformers an average value was "aken for each KVA rating. Individual values were so close that any variation would be insignificant.

The tap setting for the Start Up Transformer was 224 250 volts which was the setting when voltage measurements were taken.

As FPC did not know the taps on which the 4160/480 volt transformer were set, calculations were performed with those transformers on nominal taps. (Telephone conversation with FPC 6/17/82).

START-UP TRANSFORMER IMPEDANCES

Resistance Load Loss H-X = 31.9 KW at 18 MVA Load Loss H-Y = 62.5 KW at 15 MVA Load Loss X-Y = 77.65 KW at 15 MVA

Rpu $H-X = \frac{31.9}{18000} = .001772$ at 18 MVA = .009844 at 100 MVA $H-Y = \frac{62.5}{15000} = .004167$ at 15 MVA = .02778 at 100 MVA $X-Y = \frac{77.65}{15000} = .005177$ at 15 MVA = .034513 at 100 MVA

Gilbert Associates, Inc.	SUBJECT ENGIN BUSES VOLT	PAGE 20			
Reading, Pennsylvania	REV. 0 MICROFILMED	1	2	3	40 PAGES
	DATE 7/8/8	2			-
$HO = \frac{HX+HY-XY}{2} = .0098444$	+.02778034513 2	= .001556 pu			
$OX = \frac{HX + XY - HY}{2} = \frac{.0098444}{.0098444}$	+.03451302778 2	= .008289 pu			
$OY = \frac{XY + HY - HX}{2} = \frac{.034513 + 0.034513}{.034513}$	+.02778009844 2	= .026225 pu			-
Zpu H-X = .0585 pu at 1 H-Y = .086 pu at 15 X-Y = .1158 pu at 1	18 MVA = .325 pu 5 MVA = .57333 pr 15 MVA = .772 pu	at 100 MVA u at 100 MVA at 100 MVA			
$HO = \frac{.325 + .57333772}{2} =$.063165				
$OX = \frac{.325 + .77257333}{2} =$.261835				
$OY = \frac{.772 + .57333325}{2} =$.510165				
$\bar{x}_{pu} = Z_{pu}^2 - R^2_{pu}$ 1/2					1.203
	но =	.0631652 -	.0015562 1/	2 = .063146	1.25
	OX =	.2618352	.0082892 1/	· = .281704	2. 1. 22
	0Y =	.5101652	0262252	= .509491	

Citta		SUB	BUSES	NGINEERED	SAFEGUARD	S CISID	011-113	PAGE 21
Silber	Passociates	REV	. 0	T	1	2	3	OF
CAL	CULATION	MICF	OFILMED	-	-	F		PAGES 40
CAL	COLATION	ORIG	INATORIC	Wilson				
		DAT	е 7,	/8/82	1		_	
4160/480	VOLT TRANSP	ORMER I	PEDANCE	<u>s</u>				
	LOAD						PER	UNIT
KVA	LOSS KW	R%	Z%	X%	DARE	SERIAL NO.	IMPED	ANCE ON
500	3.816	.7632	4.85	4.7896	1.29.71	48-20329-C1	100 M	VA, BASE
500	3.831	.7662	4.99	4.9315	1.29.71	48-20329-D1	R	x
Average		.7647		4.8606			1.5294	9.7212
1000	11.973	1.1973	5.35	5.2143	1.26.71	20329-B1		
	11.871	1.1871	5.32	5.1859		20329-B2	Sec.	
	11.858	1.1858	5.28	5.1451		20329-B3		
Average	11.9007	1.1907		5.1818			1.1907	5.1818
1500	13.887	.9258	5.36	5.2794	2.10.71	20329-A3	.6172	3.5196
2000	18.705	.9533	5.97	5.8934	5.14.71	48-20329-E01		
	18.775	.93875	5.96	5.8856	5.14.71	48-20329-E02		
	19.034	.9517	5.95	5.8734	5.15.71	48-20329-E03		
	18.39	.9195	5.63	5.5544	5.15.71	48-20329-E04		
Average		.9408		5.8017			.4704	2.90085

-	SUBJECT	ENGINEERED SAFEGUARDS				
Gilbert Associat	tes, Inc. BUSES	VOLTAGE CAL	CULATIONS	04	-5011-113	OF
Reading, Pennsylvania	HICROFIL HED	<u> </u>	- L	2	3	40
CALCULATION	ORIGINATOR	2120.00				PAGES
	DATE	7/8/82				-
					1	
10.82+j6.142						
	-					
286.514+j187	.081					
	-				-	
82.648+j10.9	01	1				
	-				+	
67.122+j28.7	96	8.	274+j4.122			
		F		-		
-winn-	-					

h ditta .

a de la construcción de la constru

Gilbert Associates, Inc.	SUBJECT	ENGINER SES VOLTAG	ERED SAT A	RDS CISH ONS	04-5011-113	PAGE 33
Reading, Pennsylvania	REV.	MED	•	2	3	40 PAGES
CALCULATION	ORIGINAT	OR CW.	inon			
	DATE	7/8/82		in the second		

Voltage at 0 = .9815 x 1.091639 = 1.07144 p.u.

Voltage at Y = $\frac{2.902+j1.405}{.026225+j.506.9+2.902+j1.405} \times 1.07144 \text{ p.u.}$

= .92159 x 1.07144 = .98743 p.m. = .98743 x 4.16 = 4.108 kv

This is voltage at 4.16 kv bus.

1

We used .99% base voltage at 4 kv motor terminals to determine the motor inpedance, which is very close to .98743 so that no readjustment of motor impedance is necessary

Voltage at $X = \frac{3.42021 + j1.65634}{.008289 + j.261835 + 3.4202 + j1.65634} \times 1.07144 \text{ p.u.}$

= .967305x1.07144 = 1.0364 p.u. which is sufficiently close to the value of 1.033 p.u. assumed for motor voltage so that no readjustment of motor inpedance is necessary.

	SUBJECT E	NGINEERED	SAFEGUARI	DS CISIC)	PAGE	
Gilbert Associates Inc.	BUSES VOLTAGE CALCULATIONS			VS	04-5011-113	36	
Bardes Bardesia	REV.	0	11	2	3	OF	
Heading, Penneyivania	MICROFILMED	-	P	P	1-1	PAGES	
CALCULATION	ORIGINATOR	2 Julm					
	DATE 7	/8/82				-	
VOLTAGE AT ESMCC3AB							
From page 29							
rrom page 29							
	ES480V	Bus 3A Volt	s .95342	p.u.			
	1	바라는 나쁜 글 4					
	5 3	.381+j2.95	6				
	3						
	1	F	CMCC 3AR				
1.1.1.2.2.5.46.5.5.5		5.	SHECSAB				
	2 5	56.38+j282	.62				
	1						
	o sa ta s						
	55	201:252	6.2				
voltage at ESMCC3AB =	3.381+12.0	956+1556.30	8+1252.62	x .95342			
	51501. j		0.] 2. 2 2. 0 2				
	.99301 x	.95342 = .9	94676 p.u	1967			
	.94676 x 4	480 = 454.4	4 volts				

.

	Gilbert Associates Inc.	SUBJECT BUSE	ENGINEERED ES VOLTACE CA	SAFEGUAR	DS CIS	04-5011-113	PAGE 39
	Reading, Fannaylvania CALCULATION	REV.	ED	1	2	3	AGES 40
		ORIGINATO	R Julan	1			
		DATE	7/8/82				

Impedance of Load on Y winding of Start Up Transformers = 2.902+j1.405 = 3.224 pu which corresponds to a load of $\frac{100}{3.224} = 31.015$ MVA at .9 pf.

FOA 65C rating of Y winding = 28 MVA.

Impedance of load on ES Aux Transformers 3A = 81.176+j32.19 = 87.325 pu. which corresponds to a load of $\frac{100}{87.325} = 1.145$ MVA

OA rating of transformers = 1 MVA

Impedance of load on ES Aux Transformer 3B = 93.375 + j34.797 = 99.648 pu which corresponds to a load of $\frac{100}{99.648} = 1.004$ MVA

OA rating of Transformer = 1 MVA

No load volts of Start Up Transformer Y winding = $\frac{244.8}{224.25}$ X 4160 = 4541 volts

Measured volts on ES 4.16 KV Bus 3A = 4183 volts Drop through Y winding = 4541-4183 = 358 volts

Calculated volts on ES 4.16 KV Bus 3A = 4108Calculated drop through Y winding = 4541-4108 = 433

i.e. calculated drop is $(\frac{433}{358} - 1) \times 100 = 20.95\%$ greater than measured volt drop.

Measured no load volts on ES Aux Transformer 3A = 4179 x $\frac{480}{4160}$ = 482 assuming on nominal tap.

Gilbert Associates Inc.	SUBJECT ENGINEERED SAFECUARDS BUSES VOLTAGE CALCULATIONS				04-5011-1	13 PAGE 38
Barding Branchaster	REV.	0	1	2	3	OF
Heading, Pennsylvania	MICROFILM	ED	F	P	P	PAGES 40
CALCULATION	ORIGINATO	R. Church	2.			
	DATE	7/8/82	1			
Bus		Calcula Value	ted	P Ste	Measured Val lant At Full ady State Cor	ues Load ndition
230kv Grid 4160V Switchgear		244.8k	v		244.8kv	
ES Bus 3A		4108V			4183V	
ES Bus 3B		4108V			4179V	
480V Switchgear						
ES Bus 3A		458V			472V	
ES Bus 3B		460V			475V	
MCC480V						
ES 3A1		456V			469V	
ES 3A2		455V			468V	
ES 3AB		454V			468V	
ES 3B1		457V			472V	100 100 100
ES 3B2		458V			471V	

. .

The calculations were made on the basis of the 4160/480 volt transformers being on the nominal tap. If, however the tap was such as to give a 2-1/2% voltage boost then the 480V switchgear and MCC voltages would be increased by approximately 2-1/2%.

If the voltage on the high voltage side of the startup transformer were $240 - 1\frac{1}{2^3} = 236.4$ kv, the calculated voltages would be obtained as a very close approximation by multiplying the calculated voltages in the above table by .965686.

10	Gilbert Associates, Inc.	SUBJECT BUS	ENGINER ES VOLTAC	ERED SAFEGUA E CALCULATI	RDS CIS	04-5011-113	PAGE 40
	Reading, Pennayluania CALCULATION	REV.	O	1	2	3	PAGES
		ORIGINATO	Re D	lin			
		DATE	7/8/82	· · ·			

Measured volts on ES 480 V Bus 3A = 472Measured Volt drop through ES Aux Transformer 3A = 482-472 = 10

Calculated no load volts on ES Aux. Transformer 3A = 4108 x $\frac{480}{4160}$ = 474

Calculated voltage on 480 V swgr. bus = 458 Calculated volt drop through ES Aux. Transformer 3A = 474-458 = 16

The discrepancy between calculated and measured voltages is most probably due to loads as measured being appreciably lower than loads used in the calculation.

The calculated load on the 4.16 KV winding of the Start Up Transformer was approximately 31 MVA; the FOA 65 C rating of this winding is 28 MVA. It is improbable that the measurements would be made with a load as great as 28 MVA.

The calculated load on ES Auxiliary Transformer 3A was approximately 1.15 MVA, the OA rating of the transformer being 1 MVA.

Calculated loads in many cases were taken as rated loads of equipment also the condition used in the calculations was that of Maximum Plant Loading including Maximum Engineered Safeguard Loads.

Previous calculations were approximate and are superseded by the present calculations from which the comparative voltage table is compiled, so that elay settings should be based on the above table.