```
Florida
Power
    October 19, }198
    #3F-1082-09
    File: 3-0-3-a-3
        3-E-3
```

Mr. John F. Stolz, Chief
Operating Reactors Branch \#4
Division of Licensing
U.S. Nuclear Regulatory Commission

Washington, DC 20555

Subject: Crystal River Unit 3
Dock .t No. 50-302
Operating License No. DPR-72
Adequacy of Station Electric Distribution System Voltage
Dear Mr. Stolz:
By letter dated February 19, 1982, Florida Power Corporation submitted calculated and measured bus voltages to demonstrate the adequacy of the Crystal River Unit 3 Electrical Distribution System. The calculated voltages used several assumptions that did not adequately model the measured conditions. During subsequent telephone conversations, Florida Power Corporation agreed to revise our calculations to more accurately model our system. The following attachments are included:

1. Comparative Voltage Table,
2. Explanation of Difference Between Original Calcuiation and Present Calculations, and
3. Engineered Safeguards Buses Voltage Calculations

The first calculations were made on the hasis of the $4160 / 480$ volt (V) transformers being on the nominal tap. The revised calculations were made for a tap setting to give a $21 / 2 \%$ voltage boost; this results in the 480 V switches and motor control center voltages being increased by approximately $21 / 2 \%$. This assumption should satisfy the NRC concern that the measured voltages were too high and provicie assurance that we will not exceed the voltage limits. The starting voltage for the calculations was the same as that for measured voltages, i.e., 244.8 kV .

If the starting voltage were $240 \mathrm{kV}-11 / 2 \%=236.4 \mathrm{kV}$ (lowest 240 kV system voltage), then the calculated voltages would be obtained to a very close approximation by multiplying the calculated voltages in the attached table by .965686 .

The discrepancy between calculated and measured voltages is most probably due to the as-measured bus loads being appreciably lower than bus loads used in the calculation.

The calculated load on the 4160 V winding of the Startup Transformer was approximately 31 Mega volt amps (MVA); the forced-oil-and-air-at- $65^{\circ} \mathrm{C}$ rating of this winding is 28 MVA. It is improbable that the measurements were made with a load as great as 28 MVA. The calculated load on Engineered Safeguards Auxiliary Transformer 3A was approximately 1.15 MVA, the oil-air rating of the transformer being 1 MVA.

Calculated loads in many c. ses were taken as rated loads of equipment. Also, the condition used in the calculations was that of maximum plant bus loading including maximum Engineered Safeguard loads. Previous calculations were approximate and are superseded by the present calculations from which the Comparative Voltage Table is compiled; therefore, relay settings should be based on the present calculations.

The review of these calculations and the assessment of effects on the system that could be caused by changes in the relay settings has involved considerable engineering effort. Fitting this work into the schedule of preparing for our next outage has caused considerable delay in submitting the results of these revised calculations.

Florida Power Corporation will install the protection relays during the Spring 1983 Refueling Outage. The proposed trip setpoint is 3780 V with a maximum value of 3866 V and minimum valuc of 3763 V . This will allow a 4.2% drop between the 4160 V buses and 480 V motor control center.

Florida Power Corporation plans to perform additional calculations at raised tap settings to improve the voltage drop to 2%. We plan to monitor the performance of these relays and to make additional voltage caiculations before finalizing the Technical Specification Change Request. Florida Power Corporation will submit the schedule for final calculations, voltage measurement checks, and technical specification submittal upon development and approval of that schedule.

Very truly yours,

Assistant to Vice President Nuclear Operations

[^0]
Attachment 1

COMPARATIVE VOLTAGE TABLE

CR-3 START-UP TRANSFORMER

BUS
CALCULATED VOLTAGES
PLANT AT FULL LOAD-STEADY STATE CONDITIONS

Original Value

Present Value Numerical Value (2/19/82) (10/6/82)
230 kV GRID

ES BUS 3A	4276 V	4108 V
ES BUS 3B	4276 V	4108 V

$480 \vee$ SWGR

ES BUS 3A	489 V	458 V	472 V
ES BUS 3B	489 V	460 V	475 V
MCC 480 V			
ES 3A1	489 V	456 V	469 V
$3 A 2$	489 V	455 V	468 V
3AB	489 V	454 V	468 V
ES 3B1	489 V	457 V	472 V
3B2	489 V	458 V	471 V

EXPLANATION OF DIFFERENCE BETWEEN ORIGINAL CALCULATIONS AND.PRESENT CALCULATIONS

Errors in Original Calculations

1. The $\mathrm{H}-\mathrm{Y}$ Impedance of the Startup Transformer was taken as 7.96% from our early nameplate drawing instead of the later value of 8.6%.
2. Cable impedances were neglected.

The above errors would result in the calculated voltage drop being smaller than would actually be the case. Difference In Methods of Calculation

Original Method

Loads were expressed in terms of current rather than impedance, Voltage drops were calculated by multiplying currents by impedances, and then iabtracted from the voltage on the high side of the impedance through which the inad current passed.

Loads were expressed in terms of the transformer output voltage vector, yet when calculating this voltage, the input voltage vector was taken as the reference vector.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{H}}=\text { High side voltage vector } \\
& \mathrm{V}_{\mathrm{L}}=\text { Low side voltage vector }
\end{aligned}
$$

The correct pf angle being greater than the load pf angle, would result in a greater voltage drop. This occurs in two cases,
a. for the Startup Transformer
b. for the $4160 / 480 \mathrm{~V}$ transformers
so that when calculating the voltage drop through the two transformers, a double error is incurred.

Present Method

This is the voltage divider method and avoids the error caused by using too small a pf. angle. Loads are expressed as impedances. The principle is as follows:
$Z_{L}=$ Impedance of load
$\mathrm{Z}_{\mathrm{T}}=$ Impedance of transformer
Impedances expressed vectorially

Bus Voltage $=\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{T}}} \times$ Voltage on high side of transformer.

Attachment 3

Engineered Safeguards

Busses Voltage Calculations

Purpose: To compare Engineered Safeguards Bus Voltages with those measured by Florida Power Corporation.

Sources of Information: These are identifed at the appropriate part of the calculations.

Computer Calculation: Not applicable

Assumptions: These are identified at the approfriate part of the calculations.

Indetification of End Results: The comparison of calculated and measured voltages is shown in the Table at the end of the calculations.

The actual one line diagram used (except for impedance values) is given on page 37 of Calculations $11 / 20 / 79$ in "Adequacy of Station Electric Distribution Voltages Crystal River $3^{\prime \prime}$.

4.16 KV LOADS

Rated KVA taken from "Crystal River Unit 3 - Auxiliary Loading pages 3 and 4.

Number of motors running taken from those in "Adequacy of Station Electric Distribution voltages" pages 4,5 of Calculations $10 / 21 / 80$. KVA calculated from latest current information shown on the motor data sheets.

Power factors were also taken from motor data sheets; the power factor of the Auxiliary Building Exhaust Fans, since they were running at just over 50% load was estimated from the full load power factor.

As the impedance of an induction motor will vary as the voltage applied to the terminals, the terminal voltage was estimated at .99 of 4.16 KV (base voltage) from preliminary calcuations.

The impedence of an induction motor when running is given by

$$
\mathrm{z}_{\text {base }}=\mathrm{Z}_{\text {rated }} \times \frac{(\text { Actual Terminal Voltage })^{2}}{\text { Base Voltage }}
$$

In calculating the impedance from rated KVA, in terms of the base IVA, motor KVA has been multiplied by $\left(\frac{\text { Base Voltage }}{\text { Actual Terminal Voltage }}\right)^{2}$, since impendance is proportioned to Motor impedancs is then $\frac{\text { Base MVA }}{\text { Motor MVA }}$

Base MVA has been taken throughout as 100 .

KVA
Unit Bus 3A Rated Running
pf KW KVAR
Motor Motor 4.16 KV Base

Unit Bus 3B

9. CW Pump 3B	1700	1700	.822	1397	968	.99
10. CW Pump 3D	1700	1700	.822	1397	968	.99
11. Sec Service	317	317	.875	277	153	.99

Closed Cycle
Pp. 3B

6.9 KV LOADS

Only the Reactor Coolant Pumps.
Volts $=6.6 \mathrm{KV}$ FLC $=685 \mathrm{amp} .1250 \mathrm{rmp}$. synchronous
KVA Input $=\downarrow 3 \times 6.6 \times 685=7330$
$\mathrm{hp}=9000$
kW Output $=9000 \times .746=6714$
pf \times efficiency $=\frac{6714}{7830}=.8575$

Efficiency must be less than unity, so that pf must be greater than .8575 .

Examine 4 KV Motors

$h p$	rpm	efficency	pf	
2000	1200	.946	.9	
1750	257	.934	.822	low speed, not fair coraparison
400	1800	.938	.921	
800	1800	.936	.89	
2500	1800	.948	.91	
700	1800	.951	.926	
700	900	.933	.87	
700	1200	.933	.89	

Lowest efficiency $=.933$ If we use this, pf wouldg be $\frac{.8575}{}=.919$ 7ighest pf in above table $=.926$, but his is at 1800 rpm.

Suggest use . 9 pf for reactor coolant pump motor.

Running Load $=4 \times 7020 \mathrm{KVA}=28.08 \mathrm{MVA}$ at 6.6 KV .
Impedance at rated volts on 100 MVA base $=\frac{100}{28.08}=3.56125 \mathrm{pu}$.
Preliminary calculations showed that volts at motor terminals was
approximately 1.033 pu of base voltage, 6.9 KV
Impedance at $6.9 \mathrm{KV}=3.56125 \times 1.033^{2}=3.8007 \varepsilon j 25.84$
$=3.42021+$ j 1.65634

80 V LOADS

Loads directly connected to the 480 V Switchgear Buses are taken from "Adequacy of Station Electric Distribution Voltages" - Calculations $10 / 21 / 80$ pp. 5 thru 7. Pf taken from motor data sheets. Motor KVA Loads are based on 460 volts. See "Crystal River 3 - Auxiliary Loading,"

Loads on Motor Control Centers are taken from "Adequacy of Station Electric Distribution Voltage" - Calculations $11 / 20 / 79$. For the ES Buses the case is Load at End of Block Loading Sequence Including Manually Applied Loads. The loads have been calculated on 480 volts so the motor loads must first be expressed in terms of the 460 volt rating - See "Crystal River 3 - Auxiliary Loading". From examination of motor data sheets it was apparent that an average pf of 0.85 would be a suitable value.

Non motor loads were expressed at 480 volts, so as the se are constant impedance loads there is no need to convert to a rated 460 volts.

In order to simulate cable impedances to loads, the load impedances were increased by 2%.

Motor Terminal voltages on the Unit Buses were estimated to be 94% of base voltage and 93% of base voltage on ES Buses. These figures were obtained from preliminary calculations.

4. 16 KV UNIT BUS 3A 480 V LOAD IMPEDaNCES (Cont ${ }^{\prime} \mathrm{d}$)

Vent MCC 3A

deaters	284	231	143	. 94	261	162					
	125				12.5						
					273.5	162	. 31788	314.59	30.64	320.88	$276.08+j 163.53$

Reactor Aux. xfr 3A

Reator Bus 3A

Motors		45	21	. 94	51	24					
Heaters	345				345						
					396	24	.39673	252.06	3.47	257.1	$256.63+j 15.56$

Reactor MCC 3A1
Motors
$52.2 \quad 43-26 \quad .94$

49	29
124.3	
173.3	29

Press. Heater MCC 3A 726
726
$.726 \quad 137.74$
140.5
$493.64+j 82.61$
9.5
500.5
$140.5+j 0$

4.16 KV UNIT BUS 3A 480 V LOAD IMPEDANCES (Cont ${ }^{1} \mathrm{~d}$)

Reactor MCC 3A2
Motors

92.6	75	47	.94	85	53
114.4				114.4	

.20632
$484.68 \quad 14.88$
$494.37 \quad 477.79+j 126.95$

Intake $x f r$. 3A
Intake Bus 3A
Motors
Heaters
Intake MCC 3A
Motors
Heaters

54.2	44	28	.94

50	32				
60					
110	32	.11456	872.9	16.22	890.36

4. 16 KV UNIT BUS 3B 480 V LOAD IMPEDANCES

Turbine Aux xfr. 3B
Turbine Bus 3B
Motors
Resistive
$259 \quad 123 \quad .94$

293	139
195	
488	139

$\begin{array}{lllll}.50741 & 197.08 & 15.9 & 201.02 & 193.33+j 55.07\end{array}$

Turbine MCC 3B
Motors
Resistive

206.9	169	104	.94	191	118
132				132	

$\begin{array}{lllll}.34388 & 290.8 & 20.07 & 296.62 & 278.61+j 101.79\end{array}$

WT MCC 3B
Motors
$\begin{array}{llll}150.5 & 123 & 76 & .94\end{array}$

139	86
96	
235	86

$.25024 \quad 399.61 \quad 20.1 \quad 407.61$
$382.78+j 140.08$


```
Converted to
KVA KW KVAR Motor 480V Base
```


ES Aux xfr 3A

ES Bus 3A
Motors

ES MCC 3A1

Motors

Resistive
$97.1 \quad 80 \quad 49 \quad .93$

92	57
213	
305	57

ES MCC 3A2
Motors
Resistive
$227 \quad 141$
\qquad 141 $.34512 \quad 289.76 \quad 24.11 \quad 295.55$

```
269.77+j120.73
```

ES MCC 3 AB
Motors
Resistive
$119.4 \quad 98 \quad 60 \quad .93$

113	69
39	
152	69

CABLE IMPEDANCES
4.16 and 6.9 KV cable impedances were ignored. Previous experience has shown that for voltage drop calculations, these impedances are so small as to be justifiably disregarded.

Although cable impedances from 480 volt switchgear to Motor Control Centers are of little significance, they were taken into account by using actual lengths; the resistance and reactance for 1000 yards were taken from typical 600 V cable information.

REACTORS

The per unit values of reactance were taken from "Adequacy of Station Electric Distribution Voltages - Crystal River $3^{\prime \prime}$ - Calculations dated 11/20/79.

Gilbert Associates, Inc.
Reading, Pennsylvanis
CALCULATION

TRANSFORMER LMPEDANCES

The Start Up Transformer equivalent circuit impedance was devoloped from test data supplied by telephone $6 / 15 / 82$ from Florida Power Corporation.

The $4160 / 480$ volt transformer impedances were obtained from Test Reports in Correspondence File EE (letter dated $7 / 8 / 1971$.) As it was not known which serial number applied to individual transformers an average value was aken for each KVA rating. Individual values were so close that any variation would be insignificant.

The tap setting for the Start Up Transformer was 224250 volts which was the setting when voltage measurements were taken.

As FPC did not know the taps on which the $4160 / 480$ volt transformer were set, calculations were performed with those transformers on nominal taps. (Telephone conversation with FPC 6/17/82).

START-UP TRANSFORMER IMPEDANCES

Resistance

Load Loss $\mathrm{H}-\mathrm{X}=31.9 \mathrm{KW}$ at 18 MVA
Load Loss $\mathrm{H}-\mathrm{Y}=62.5 \mathrm{KW}$ at 15 MVA
Load Loss $X-Y=77.65 \mathrm{KW}$ at 15 MVA

Rpu $\mathrm{H}-\mathrm{X}=\frac{31.9}{18000}=.001772$ at $18 \mathrm{MVA}=.009844$ at 100 MVA
$\mathrm{H}-\mathrm{Y}=\frac{62.5}{15000}=.004167$ at $15 \mathrm{MVA}=.02778$ at 100 MVA
$X-Y=\frac{77.65}{15000}=.005177$ at $15 \mathrm{MVA}=.034513$ at 100 MVA

Gilbert Associates，Inc． Reading，Penwaylvanie CALCULATION	SUBJECT ENGINEERED SAFEGUARDSBUSES VOI．TAGE CAICULATIONS				CISID		PAGE 27
	REV．	\bigcirc	1	2	3		
	MICRO						pages
	origin	1					
	OATE	$7 /$					

4． 16 KV Unit Bus 3B
$10.82+j 6.142$
M～m
$286.514+j 187.081$.
$82.648+j 10.901$
～Mn～～ \qquad
$67.122+\mathrm{j} 28.796$
ーいいいいい

Gilbert Associates, Inc. Dessing. Pennsylvenie CALCULATION	SUBJECT ENGINEERED SAFEGUARDS buSES VOLTAGE CALCULATIONS				04-501	$\text { PAGE } 30$
	micRofilmed		1	2	3	
						Pages ${ }^{40}$
	ORIGINATORTCliden					
	date	7/8/82				

Voles at $0=\frac{Z_{2}}{Z_{1}+Z_{2}^{2}}=.9815$ of Volts at H
Measured voltage at $\mathrm{H}=244.8 \mathrm{kv}$
Tap $=224.25 \mathrm{kv}$
Equivalent No load volts at $H=244.8 / 224.25=1.091639$ p.u.

Voltage at $0=.9815 \times 1.091639=1.07144$ p.u.

Voltage at $Y=\frac{2.902+j 1.405}{.026225+j .50} \cdot \frac{9+2.902+j 1.405}{x} 1.07144$ p.u.

$$
=.92159 \times 1.07144=.98743 \mathrm{p} . \mathrm{m} .=.98743 \times 4.16=4.108 \mathrm{kv}
$$

This is voltage at 4.16 kv bus.
We used $.99 \%$ base voltage at 4 kv motor terminals to determine the motor inpedance, which is very close to .98743 so that no readjustment of motor impedance is necessary

Voltage at $X \equiv \frac{3.42021+j 1.65634}{.008289+j .261835+3.4202+j 1.65634} \times 1.07144$ p.u.
$=.967305 \times 1.07144=1.0364$ p.u. which is sufficiently close to the value of 1.033 p.u. assumed for motor voltage so that no readjustment of motor inpedance is necessary.

VOLTAGE AT ES 480V BUS 3A

From page 30
E.S. 4.16 kv Bus 3A Volts .98743 p.u.

Voltage at 480 V Bus $=\frac{81.176+j 32.19}{1.1907+j 5.1618+81.176+j 32.19} \times .98743$ p.u.
$=.96556 x .98743=.95342$ p.u.
$=.95342480=457.6$

VOLTAGE AT ES 480 V BUS 3B

From page 30

$$
\text { ES4. } 16 \mathrm{kv} \text { Bus } 3 \text { B Volts }=.98743 \text { p.u. }
$$

$\{1.1907+\mathrm{j} 5.1618$

$$
\text { ES } 480 \mathrm{~V} \text { Bus 3B }
$$

$$
93.375+\mathrm{j} 34.797
$$

Voltage at 480 V Bus $=\frac{93.375+j 34.797}{1.1907+j 5.1618+93.375+j 34.797} \times .98743$
$=.97065 \times .98743 \quad .95845$ p.u.
$=.95845 \times 480=460 \mathrm{~V}$

vOLTAGE AT ESMCC 3 AB
from page 29

Voltage at ESMCC $3 A B=\frac{556.38+j 252.62}{3.381+j 2.956+j 556.38+j 252.62} \times .95342$
$=.99301 \times .95342=.94676$ p.u.
$=.94676 \times 480=454.4$ volts

Peading. Pennsytuania
CALCULATION

VOLTAGE AT ESMCC 3 A1

From page 29

```
                                    ES480VBus3A Volts . }95342\mathrm{ p.u.
                            {\mp@code{1.059+j.686}}{\begin{array}{l}{{\begin{array}{l}{{}\\{{23.13+j60.41}\end{array}]}
Voltage at MCC }3\textrm{Al}=\frac{323.13+j60.41}{1.059+j.686+323.13+j60.41}\times.9534
    =.99646x.95342 =..95004 p.u.
    =.95004\times480=456volts
```

VOLTAGE AT ES MCC 3A2

From page 29

$$
\begin{aligned}
\text { Voltage at MCC 3A2 } & =\frac{269.77+j 120.73}{1.385+j .898+269.77+j 120.73} \times .95342 \mathrm{p} . \mathrm{u} . \\
& =.99451 \times .95347=.94819 \mathrm{p} . \mathrm{u} . \\
& =.94819 \times 480=455.1 \text { volts }
\end{aligned}
$$

Gilbert Associates, Inc.

VOLTAGE AT ESMCC 3B1
From page 29
ES480VBus3B Volts . 95845 p.u.

Voltage at $M C C 3 B 1=\frac{248.52+j 111.16}{1.263+j 1.102+248.52+j 111.16} \times .95845$ p.u.
$=.99415 \times .95845=.9528$ p.u.
$=.9528 \times 480=457.3$ volts

VOLTAGE AT ES MCC 3B2
From page 29

$$
\begin{aligned}
\text { Vo1 } \quad \text { MCC } 3 B 2 & =\frac{330.87+j 43.68}{1.441+j 1.259+330.87+j 43.68} \times .95845 \text { p.u. } \\
& =.99524 \times .95845=.95389 \text { p.u. } \\
& =.95389 \times 480=457.9 \text { volts }
\end{aligned}
$$

 Reading. Fannsylvania

CAL' ILATION

Impedance of Load on Y winding of Start Up Transformers $=2.902+j 1.405=3.224 \mathrm{pu}$ which corresponds to a load of $\frac{100}{3.224}=31.015 \mathrm{MVA}$ at .9 pf .

FOA 65 C rating of Y winding $=28$ MVA.

Impedance of load on ES Aux Transformers $3 A=81.176+j 32.19=87.325$ pu. which corresponds to a load of $\frac{100}{87.325}=1.145 \mathrm{MVA}$

OA rating of transformers $=1$ MVA

Impedance of load on ES Aux Transformer $3 B=93.375+j 34.797=99.648$ pu which corresponds to a load of $\frac{100}{99.648}=1.004 \mathrm{MVA}$

OA rating of Transformer $=1 \mathrm{MVA}$

No load
volts of Start Up Transformer Y winding $=\frac{244.8}{224.25} \times 4160=4541$ volts

Measured volts on ES 4.16 KV Bus $3 \mathrm{~A}=4183$ volts
Drop through Y winding $=4541-4183=358$ volts

Calculated volts on ES 4.16 KV Bus $3 \mathrm{~A}=4108$
Calculated drop through Y winding $=4541-4108=433$
i.e. calculated drop is $\left(\frac{433}{358}-1\right) \times 100=20.95 \%$ greacer than measured volt drop.

Measured no load volts on ES Aux Transformer 3A
$=4179 \times \frac{480}{4160}=482$ assuming on nominal tap.

The calculations were made on the basis of the $4160 / 480$ volt transformers being on the nominal tap. If, however the tap was such as to give a $2-1 / 2 \%$ voltage boost then the 480 V switchgear and MCC voltages would be increased by approximately 2-1/2\%.

If the voltage on the high voltage side of the startup transformer were $240-1 \frac{1}{2}$: $=$ 236.4 kv , the calculated voltages would be obtained as a very close approximation by multiplying the calculated voltages in the above table by .965686.

Gilbert Associates, Inc.
Peading. Penneylvania
CALCULATION

Measured volts on ES 480 V Bus $3 \mathrm{~A}=472$
Measured Volt drop through ES Aux Transformer $3 \mathrm{~A}=482-472=10$

Calculated no load volts on ES Aux. Transformer 3A
$=4108 \times \frac{480}{4160}=474$

Calculated voltage on 480 V swgr, bus $=458$
Calculated volt drop through ES Aux. Transformer $3 \mathrm{~A}=474-458=16$

The discrepancy between calculated and measured voltages is most probably due to loads as measured being appreciably lower than loads used in the calculation.

The calculated load on the 4.16 KV winding of the Start Up Transformer was approximately 31 MVA; the FOA 65 C rating of this winding is 28 MVA. It is improbable that the measurements would be made with a load as great as 28 MVA.

The calculated load on ES Auxiliary Transformer 3 A was approximately 1.15 MVA , the OA rating of the transformer being 1 MVA.

Calculated loads in many cases were taken as rated loads of equipment also the condition used in the calculations was that of Maximum Plant Loading including Maximum Engineered Safeguard Loads .

Previous calculations were approximate and are superseded by the present calculations from which the comparative voltage table is compiled, so that elay settinga should be based on the above table.

[^0]: WRK/myf

