

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

GPU NUCLEAR CORPORATION

AND

JERSEY CENTRAL POWER & LIGHT COMPANY

DOCKET NO. 50-219

OYSTER CREEK NUCLEAR GENERATING STATION

AMENDMENT TO AMENDED PROVISIONAL OPERATING LICENSE

Amendment No. 63 License No. DPR-16

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by GPU Nuclear Corporation and Jersey Central Power and Light Company (the licensees) dated March 4, 1981 complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and Paragraph 2.C(2) of Provisional Operating License No. DPR-16 is hereby amended to read as follows:
 - (2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 63, are hereby incorporated in the license. GPU Nuclear Corporation shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of the date of its issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

mus M. Cnotch M. Crutchfield, Chi

Operating Reactors Branch #5 Division of Licensing

Attachment: Changes to the Technical Specifications

Date of Issuance: October 15, 1982

ATTACHMENT TO LICENSE AMENDMENT NO. 63

1

PROVISIONAL OPERATING LICENSE NO. DPR-16

DOCKET NO. 50-219

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by the captioned amendment number and contain vertical lines indicating the area of change.

Pages 3.1-7 3.1-11 3.1-14 4.1-6* 4.1-6a 4.2-1a

^{*}There are no changes to the provisions contained thereon; Items 19 - 22 have been moved to page 4.1-6a.

TABLE 3.1.1 PROTECTIVE INSTRUMENTATION. REQUIREMENTS

	Function Trip Setting		Reactor Modes in which Function Must Be Operable			Min. No. of Operable or Operating (Tripped)Trip	Operable Instrument Channels Per Operable			
			Shutdown	Refuel	Startup	Run	Systems	Trip Systems	Action Required*	
۸.	Scr	am								Insert control
	1.	Manual Scram		x	х	х	x	2	1	
	2.	High Reactor Pressure	**		X(s)	x	x	2	. 2	
	3.	High Drywell Pressure	< 2 psig		X(u)	X(u)	x	2	2	
	4.	Low Reactor Water Level	**	•	X	x	X	2	2	
	5,	High Water Level in Scram Dis- charge Volume	<u><</u> 37 gal.		X(a)	X (z)	X (z)	2	2	. 1
	6.	Low Condenser Vacuum	<u>> 23" llg</u>		X(b)	X(b)	x, •	2	2	
	7.	High Radiation in Hain Steam- line Tunnel	<pre></pre>	back-	X (s)	x	X .	2	2	
	8.	Average Power Range Monitor (APRM)	**	•	X(c,s)	X(c)	X(c)	2	. 3	
	9.	Intermediate Range Monitor (183)	**		X(d)	X(d)		2	3 .	

Amendment No. 20, 9 63

3.1-7

Function	Trip Setting Shut	React in Which Must be (down Refuel	tor Modes Function Operable Startup Ru	Min.No. of Operable or Operating (Tripped) Tr Systems	Min.No.of Operable Instrument Channels Per rip Operable Trip Systems	Action Required*
Rod Block						No control rod
1. SRM Upscale	5 x 10 ⁵ cp5	x	X(1)	1	3(y)	withdrawals permitted
2. SRM Downscale	100 cp ^{5(f)}	x	X(1)	1	3(y)	
3. IRM Downscale	5/125 fullscale(g)	x	x	2	3	
4. APRM Upscale		X(s)	x x	. 2	3(c)	
5. APRM Downscale	2/150 fullscale		x	2	3(c)	
6. IRM Upscale	108/125 fuliscale	x	x	2	3	
 Scram Discharge Volume a) Water level high 	18 gallons	X (z)	X (z) X	(z) l	1	
Condenser Vacuum Pump Isolation						Insert control rods
1. High Radiation in Main 10 x Normal Steam Tunnel Background		Durin run w pump	g Startup a hen vacuum 1 operating	nd 2	2	
Diesel Generator Loud Sequence Timers	Time delay after energiz. of relay					
1. Containment Spray Pump	40 acc + 15%	X X	x	2(=)	1(n)	Consider containment spray loop inoperable and comply with spec. 3.4.C (see Note

TABLE 3.1.1 PROTECTIVE INSTRUMENTATION REQUIREMENTS (CONTD)

TABLE 3.1.1 (Cont'd)

v. These functions not required to be operable when the ADS is not required to be operable.

w. These functions must be operable only when irradiated fuel is in the fuel pool or reactor vesses and secondary containment integrity is required per specification 3.5.B.

y. The number of operable channels may be reduced to 2 per Specification 3.9-E and F.

The bypass function to permit scram reset in the shutdown or refuel mode with control rod block must be operable in this mode.

as. Pump circuit breakers will be tripped in 10 seconds 2 15% during a LOCA by relays SK7A and SK8A.

bb. Pump circuit breakers will trip instantaneously during a LOCA.

Amendment No. 44, 68, 63

TABLE 4.1.1 (cont'd)

4.1-6

	Instrument Channel	Check	Calibrate	Test	Remarks (applies to Test & Calibration)	
14	High Radiation in Reactor Building					
	Operating Floor Ventilation Exhaust	1/s 1/s	1/3 mo 1/3 mo	1/wk 1/wk	Using gamma source for calibration Using gamma source for calibration	
15.	High Radiation on Air Ejector Off-Gas	1/s	1/3 mo	1/wk	Using built-in calibration equipment	
16.	IRM Level	N A	each shutdown	N A	During approach to shutdown only	
	IRM Scram	*	*	*	Using built-in calibration equipment	
17.	IRM Blocks	N A	Prior to startup and shutdown	Prior to startup & shutdown	Upscale and downscale	
18.	Condenser Low Vacuum	N A	Each refuel- ing outage	Each refueling outage		

*Calibrate prior to startup and normal shutdown and thereafter check 1/s and test 1/wk until no longer required. Legend:

NA = Not applicable; 1/s = Once per shift; 1/d = Once per day; 1/3d = Once per 3 days; 1/wk = Once per week; 1/3 mo = Once every 3 months.

Amendment No. 63

.

4.1-6a

	Instrument Channel	Check	Calibrate	Test	Remarks (Applies to Test & Calibration)
19.	Manual Scram Buttons	NA	NA	1/3 mo	(((((((((((((((((((
20.	High Temperature Main Steamline Tunnel	N A	Each refuel- ing outage	Each refuel- ing outage	Using heat source box
21.	SRM	· ·	•	•	Using built-in calibration equipment
22.	Isolation Condenser High Flow&P (Steam and Water)	ΝΑ	1/3 mo	1/3 mo	By application of test pressure
23.	Turbine Trip Scram	N A		Every 3 months	
24.	Generator Load Rejection Scram	NA	Every 3 months	Every 3 months	
25.	Recirculation Loop Flow	NA	Each Refuel- ing Outage	NA	By application of test pressure
26.	Low Reactor Pressure Core Spray Valve Permissive	NA	Every 3 months	Every 3 months	By application of test pressure
27.	Scram Discharge Volume (Rod Block)				
	a) Water level high	N A	Each Refuel- ing Outage	Every 3 months	By varying level in switch column.
	b) Scram trip bypass	NA	* N A	Each refuel- ing outage	

*Calibrate prior to startup and normal shutdown and thereafter check 1/s and test 1/wk until no longer required.

1

Change No. 8, 7, Amendment No. 63

- F. At specific power operation conditions, the actual control rod configuration will be compared with the expected configuration based upon appropriately corrected past data. This comparison shall be made every equivalent full power month. The initial rod inventory measurement performed when equilibrium conditions are established after a refueling or major core alteration will be used as base data for reactivity monitoring during subsequent power operation throughout the fuel cycle.
- G. At power operating conditions, the actual control rod density will be compared with the 3.5 percent control rod density included in Specification 3.2.B.6. This comparison shall be made every equivalent full power month.
- H. The scram discharge volume drain and vent valves shall be verified open at least once per 31 days, except in shutdown mode*, and shall be cycled at least one complete cycle of full travel at least quarterly.
- I. All withdrawn control rods shall be determined OPERABLE by demonstrating the scram discharge volume drain and vent valves OPERABLE. This will be done at least once per refueling cycle by placing the mode switch in shutdown and by verifying that:
 - The drain and vent valves close within 60 seconds after receipt of a signal for control rods to scram, and
 - b. The scram signal can be reset and the drain and vent valves open when the scram discharge volume trip is bypassed.
- Basis: The core reactivity limitation (Specification 3.2.A) requires that core reactivity be limited such that the core could be made subcritical at any time during the operating cycle, with the strongest operable control rod fully withdrawn and all other operable rods fully inserted. Compliance with this requirement can be demonstrated conveniently only at the time of refueling. Therefore, the demonstration must be such that it will apply to the entire subsequent fuel cycle. The demonstration is performed with the reactor core in the cold, xenon-free condition and will show that the reactor is sub-critical at that time by at least R+0.25%∆K with the highest worth operable control rod fully withdrawn.

These valves may be closed intermittently for testing under administrative control.

Change No. 25, Amendment No. 63