Carolina Power \& Light
Health Physics \& Chemistry Section

Dosimetry Technical Report: 90-05
Brunswick TIP Incident Dose Calculations
November 30,1990

Prepared By: Satimure

Approved By:

Brunswick TIP Incident Dose Calculations

Introduction

on July 5, 1990, Mr. Larry Dew was involved in a radiological incident which resulted in an unplanned exposure to his left hand while working on a job to install new transient in-core probes (TIPs) at the Brunswick Nuclear Fiant. E\&RC Experience Report Number 90-004 contains a complete description of the occurrence, its cause, and corrective actions. Since no monitoring devices were worn on the hand, it was necessary to calculate the dose based on the best information available, primarily obtained from interviews, records, and drawings. originally, a tos al exposure to the hand of 10.6 rem was estimated by CP\&L. Huwever, Mr. Dew disagreed with the assumptions used and refused to sign the final Personnel Exposure Investigation report containing this dose. Subsequently, Mr. Dew filed a complaint with the Department of Labor which quastionec the validity of the dose. As a result of the DOL allegations, the NRC requested additional information supporting the dose assignment. In response, CP\&L reexamined the assumptions and methodology used in the dose calculations and concluded that the original exposure estimate was valid. This report summarizes the methodology and results of dose calculations.

General Assumptions

The shallow dose to the hand ($7 \mathrm{mg} / \mathrm{cm}^{2}$ tissue depth) represents the most limiting exposure case for the TIP incident. Since the exposed worker wore two pairs of rubber gloves, the dose was determined for both beta and gamma radiation at a depth of 99 $\mathrm{mg} / \mathrm{cm}^{2}$, which is the sum of the density thickness of the gloves and skin (See Attachment 1).

The dose calculation: are based on two principal nuclides, $\mathrm{Mn}-56$ and Al-28, which represented 95.6% of the total activity in the detector and 98.6% of the activity in the cable (see Attachment 2). The dose contribution other nuclides is small and is more than offset by conservative assumptions employed in the dose calculation.

The dose from the incident is calculated separately for exposure from the detector versus the drive cable because of differences in geometries, activities, and exposure times.

Many assumptions were made in performing the dose calculations, but the most critical ones concerned the length of time the TIP was in the core and the length of time different parts were touched. These times were determined based on interviews with participants in the incident and on reenactments, all of which are described more completely in Attachment 10. Because the actual times are
unknown, upper and lower bound doses were calculated, in addition to a best estimate dose, in order to give an indication of the degree of uncertainty. The table below summarizes the time assumptions used in the dose calculations.

	Lower Bound	Best Estimate	Upper Bolnd
Time in core	120 sec	180 sec	300 sec
Time Touching TIP	0	0	.5 sec
Time Tuching Cable	3 sec	4 sec	4 sec

In addition to the above assumptions, the primary data used in the dose caloulations were design information for the TIP (detector and cable materials and dimensions) and neutron activation analyses for various irradiation and decay times, both provided by ReuterStokes, Inc., the TIP manufacturer. Attachment 3 contains drawings and diagrams representing the detector and cable and Attachment 4 contains the results of neutron activation calculations.

Gama Dose Calculations

The gamma dose was calculated using the computer code Microshield, a program for analyzing gamma radiation shielding (Ref. 4). The program input includes: geometry, source nuclides and activities, source and shield materials, dimensions of source and shields, and position at which dose rate is to be determined. The output is the dose rate at the specified point.

The basic geometry selected to model both the detector and the cable was a cylindrical source (side view) surrounded by cylindrical shields. For this geometry, Microshield calculates the exposure rate at a speci:iied point using a point-kernel numerical integration technique. Three integration parameters determine how finely the source volume is divided for the numerical integration: radial, horizontal angle, and vertical angle. A value of 11 was selected, thus dividing the source into 11^{3} differential volumes.

The dose for complex geometries can be approximated by breaking them into several simple geometries for which the dose can be calculated separately and then summed. In this case, the total gamma dose is the sum of three separate geometry and nuclide comoinations.

1. Cable containing $\mathrm{Mn}-56$

The gamma dose from the cable was calculated only for Mn56, since the activity of Al-28 was negligible. the activity was assumed to be uniformly distributed in a solid, cylindrical volume of iron, 18 inches :ong, Because of the small distance between the hand ana the cable, the percent contribution to the dose from parts of the cable greater than 9 inches away is negligible. Attachment 5 shows the Microshield results.
2. TIP Insulators containing A1-28

The $\mathrm{Al}-28$ is contained in alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ insulators inside the outer detector shell. The activity was assumed to be uniformly distributed in a solid, cylindrical volume representing the alumina surrounded by an iron shield representing the detector shell. Attachment 6 shows the Microshield results.
3. TIP Detector Shell containing Mn-56

The Mn-56 is contained primarily in the stainless steel detector shell. The activity was assumed to be uniformly distributed in a hollow cylindrical volume representing the stainless steel shell. The dose from a hollow cylinder was obtained by calculating the dose from two solid cylinders of different diameters and subtracting the smaller from the larger. In this case, the aiameters used were the inside and outside diameters of the detector shell. Attachment 7 shows the Microshield results.

The calculations for 120 second TIP irradiation times were done with Microshield and were adjusted using a spreadsheet program for different irradiation and exposure times. Attachment 8 contains a summary of the gamma dose calculations for each of the above three cases based on upper bound, lower bound and best estimate assumptions.

Beta Dose Calculations

The beta dose was calculated using equations which integrate the experimentally derived beta particle point source dose distribution function for several simple geometries (Ref. 2). The total beta dose is the sum of the beta dose for three different geometries and nuclide combinations:

1. Infinite, Plane Slab of Infinite Thickness

This geometry was assumed for the beta dose from Mn-56 in the cable. This is considered to be a reasonable, probably conservative, approximation for a hand wrapped around a long, cylindrical source (the cable) whose
radius exceeds the maximum beta particle range.
The dose at a depth x outside an infinite, plane slab of infinite thickness is given by the following equation (Ref 2, p.722, Eq. 24):
$D_{\infty}(x)=, 5 D_{0} \alpha\left(C^{2}\left[3-e^{(1-\nu x / c)}-v x / C(2+\ln (c / \nu x))\right]+e^{(1-v x)}\right)$, rad

$$
[] \equiv 0 \text { for } x \geq 0 / v
$$

Where: $\quad D_{B}=2.23 E_{0} T, \mathrm{rad} / \mathrm{hr}$

$$
E_{0}=\text { Average beta energy }, \mathrm{MeV}
$$

$$
T=\text { Activity concentration, } \mu \mathrm{Ci} / \mathrm{g}
$$

$$
\alpha=\left[\begin{array}{ll}
\left.3 c^{2}-\left(c^{2}-1\right) e\right]^{-1} \\
2 & 0.17<E_{0}
\end{array}\right.
$$

$$
c=1.5 \quad 0.1<E_{0}<1.5
$$

$$
c=1.5 \quad 0.5 \leq E_{0}<1.5
$$

$$
1 \quad 1.5 \leq E_{0}<3
$$

$$
v=18.6 /\left(E_{0} .036\right)^{1.37}, \mathrm{~cm}^{2} / \mathrm{g}
$$

$$
E_{0}=\text { Maximum beta energy, } \mathrm{MeV}
$$

$$
\mathrm{x}=\text { Depth in absorber outside slab, } \mathrm{g} / \mathrm{cm}^{2}
$$

2. Infinite, Plane Slab of Finite Thickness

This geometry was assumed for calculating the beta dose from Mn-56 in the outer detector shell of the TIP. It was chosen because the thickness of the detector shell is less than the maximum beta particle range. The dose at a point outside a infinite, plane slab of finite thickness is given by the following equation (Ref 2, p.725, Eq. 27):

$$
D(x, h)=D(x, \infty)-D(x+h, \infty)
$$

The terms on the right are given by equation 24 .
3. Sphere Containing Uniformly Distributed Activity This geometry was assumed for A1-28 beta dose calculation from the alumina insulators inside the outer shell of the detectors. The dose at a distance x from the center of a sphere of radius b is given by the following equation (Ref. 2, p. 736, Eq. 38):

$$
D_{s p h}(x, b)=.5 \alpha D_{s}\left[(\nu b+1) e^{-\nu b}+(\nu b-1) e^{\nu b}\right] e^{(1-\nu x)} / \nu x
$$

For: $\quad x \geq c / v+b$
Attachment 9 contains a summary of the heta dose calculations for each of the three geometries based on upper bound, lower bound and best estimate assumptions.

The dose contribution from bremsstrahlung radiation was considered negligible. The ratio, r, of energy loss from bremsstrahlung to that from collisions can be est,mated by the following equation (Ref. 6, p. 175):
$r \approx(T 2 / 700)$
Where: $T=$ beta particle energy

$$
z=\text { atomic number of absorber }
$$

Assuming T equals the average energy of $\mathrm{Mn}-56(.86 \mathrm{MeV})$ and Z equals the atomic number of iron (26), then r equals 3.1%. Since the bremsstrahlung radiation will deposit its energy over a range of absorber thickness, the dose contribution at the skin depth will be only a very small fraction of the 3.1\%.

Total Dose

The total shallow dose to the hand from the TIP incident is simply the sull of the beta and gamma doses as summarized in the following table.

	Beta Dose (rad)	Gamma Dose (rem)	Total Dose (rem)
Lower Bound	4.623	0.698	5.321
Best Estimate	$\mathbf{9 . 2 2 8}$	1.392	10.620
Upper Bound	36.385	7.687	44.072

Conservatisms

A number of conservative assumptions and approximations were used in performing the dose calculations. Several of those are discussed below, including estimates of the magnitude of the effect on iose calculations for some.

Neutron Flux

Reuter-Stokes used a flux of $5.0 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2} / \mathrm{sec}$ in the neutron activation calculations. It was later determined that the average neutron flux in the channel traversed by the TIP during the incident was $4.394 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2} / \mathrm{sec}$. This difference translates directly into a 14% conservatism in the calculated dose.

Skin Depth

NRC regulations require that the dose to the extremities be reported at a depth of $7 \mathrm{mg} / \mathrm{cm}^{2}$, but the average epidermal thickness on palms of the hands is about $40 \mathrm{mg} / \mathrm{cm}^{2}$ (Ref. 5 , p. 50). The beta dose at $40 \mathrm{mg} / \mathrm{cm}^{2}$ is 18% less than at 7 $\mathrm{mg} / \mathrm{cm}^{2}$.

Geometry
In most cases the geometry was selected in a conservative manner. For example, the use of an infinite, plane slab for beta dose calculations will slightly over estimate the beta dose compared to a cylindrical geometry.

Electronic Equilibrium

For all gamma dose calculations electronic equilibrium was assumed to exist at the $7 \mathrm{mg} / \mathrm{cm}^{2}$ depth. For high energy photons equilibrium will not be established at this depth, which will result in an over estimate of the gamma dose.

Decay Time

The decay time is the amount of time required to crank the TIP from the core to the TIP box. After leaving the core, the TIP must travel approximately 60 feet to reach the TIP box. At a normal speed of 1 foot per second, this would take about 60 seconds, however, during the incident the crank was difficult to turn and the speed was probably slower. Nevertheless, a decay time of only 30 seconds was assumed in the dose calculations, so that the activity assumed for the dose calculations is probably conservatively high. The effect is small for Mn-56 which has a half-life of 2.6 hours, but is significant for Al-28 which has a half-life of 2.24 minutes.

Independent Evaluation of Dose Calculations

Mr. Robert E. Alexander, a health physics consultant, was engaged by CP\&L to perform an independent evaluation of the dose calculations for this incident. His report, reproduced in Attachment 11, confirms the validity and conservatism of the CP\&L dose calculations. The beta dose, which is the largest component, was recalculated using a Monte carlo simulation code by Dr. Thomas R. Mackie of the University of Wisconsin. The results are in excellent agreenent (within 7 percent) with the CP\&L dose calculation performed using equations publishad by Hine and Brownell in Radiation Dosimetry.

Conclusion

The original estimate of the dose to the left hand of Mr. Larry Dew was 10.6 rem. After a thorough reexamination of all assumptions and calculation methods, this is still considered to be a valid and probably conservative estimate of the dose received during the TIP incident. Therefore, no changes are recommended to the previously assigned dose to Mr. Dew.

References

1. Radiation Health Handbook, U.S. Department of Health, Education, and Welfare, Public Health Service, January 1970.
2. Radiation Dosimetry, G. J. Hine and G. L. Brownell, Eds., Academic Press, New York, 1956, Chapter 16.
3. Principles of Radiation Protection, K. A. Morgan and J. E. Turner, Eds., John Wiley \& Sons, New York, 1967, Chapter 8.
4. Microshield 3 Manual, Grove Engineering, Inc., Washington Grove, MD, 1988.
5. ICRP Publication 23: Report of the Task Group on Reference Man, Committee 2 of the ICRP, Pergamon Press, New York, 1975.
6. Radiation Dosimetry. and Edition, Volume I: Fundamentals, F. H. Attix and W. C. Roesch, Eds., Academic Press, New York, 1968.

Attaciment 1

Depth at Which Dose calculated

The dose was calculated at a depth equivalent to the thickness of two pairs of rubber gloves plus the thickness of skin. The glove thickness was determined by weighing a sample of glove material of known area.

```
Glove sample area = 25 cm
Glove sample weight = 1.15 g
Single glove thickness = .046 g/\mp@subsup{cm}{}{2}
Double glove thickness = .092 g/\mp@subsup{cm}{}{2}
Skin thickness = .007 g/cm
Total depth = . 092 +..007 = .099 g/\mp@subsup{\textrm{cm}}{}{2}
```

Principal Nuclide Decay and Emission Data

Attachment 3

TIP Drawings

DATE: 23 OAT 90
PAGE: 1 of \qquad

CLASSIFICATION:
intrormen on
Action
\qquad
\qquad
\qquad
\qquad

FROM: \qquad GEE REUTER-STOKES
SENT BY: \qquad
SUBJECT: NTERNA COMPONENTS IN GAMMA TIP SENSOR

MESSAGE: \qquad
STEVE,
I MOPE THERE IS SUFFICIENT DETAIL ON THESE DRAWINGS TO HELP YOU WITH YOUR CALCULATIONS. PART 10 IS THE DETECTOR HOUSINE, 1.980" LONG AND . $211^{\prime \prime}$ OD., $1704^{\prime \prime}$ ID., $304 \mathrm{SS}$.
PIECES 8, 11 , AND 15 ARE THE ALUMINUM OXIDE INSULATORS INSIDE THE DETECTOR.

10 TE

Attachment 4

Neutron Activation Calculations

CABLE (9^{\prime})

GAMMA TIP

A 1

$19-\mathrm{Ju} 1-90$ 09:05 AM
OnLine
Num
k17: 60

Attachment 5
Microshield Results for Cable Containing Mn-56

Miturnmihainad 3.27

(Carolina power \& Ligit - \#059)

Page	C
File :	CABLE120.MSH
Run date:	November 27, 1990
Run time:	8:45 a.m.

File Ref:
Date:
By:
checked:

CASE: Cable - Manganese 56 - 120 sec Irradiation
GEOVATRY 7: Cylindrical source from side - cylindrical shields

Source Volume: 14.9462 cubic centimeters
MATERIAL DENSITIES $(\mathrm{g} / \mathrm{CC})$:
Material Source Shield 2 Air gap
Air
A! uminum
carbon
concrete Hydrogen Tren 7.860

Lead Lithium Nickel Tin Titanium Tungsten Urania Uranium
Water $\quad 1.0$

Zirconium

BUILDUP FACTOR: based on TAYLOR method. ising the characteristics of the materials in shield 1.

INTEGRATION PARAMETERS:

Number of lateral angle segments (Ntheta) $\ldots \ldots$. \quad. 11
Number of azimuthal angle segments (Npsi) $\ldots .$. .
Number of radial segments (Nradius)........

SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	curies	Nuclide	Curies
A1-28	0.0000 e+00	cr-51	$0.0000 e+00$	Mg-27	$0.0000 \mathrm{e}+00$
Mn-56	$5.8360 \mathrm{e}-01$				

RESULTS:

Group	$\begin{aligned} & \text { Energy } \\ & (\mathrm{MeV}) \end{aligned}$	Activity (photons/sec)	Dose point flux $\mathrm{MeV} /(\mathrm{sq} \mathrm{cm}) / \mathrm{sec}$	$\begin{aligned} & \text { Dose rate } \\ & (\mathrm{mr} / \mathrm{hr}) \end{aligned}$
1	3.3672	$3.629 \mathrm{e}+07$	$1.521 \mathrm{e}+06$	$2.073 \mathrm{e}+03$
2	2.9609	$6.618 \mathrm{e}+07$	$2.440 \mathrm{e}+06$	$3.505 \mathrm{e}+03$
3	2. 6641	$1.409 \mathrm{e}+08$	$4.688 \mathrm{e}+06$	$6.971 e+03$
4	2.5234	$2.135 e+08$	$6.732 \mathrm{e}+06$	$1.020 \mathrm{e}+04$
5	2.1172	$3.096 \mathrm{e}+09$	$8.226 \mathrm{e}+07$	1.312e+05
6	1.8047	$5.871 \mathrm{e}+29$	1.332e+08	$2.244 \mathrm{e}+05$
7	1.3516	$3.512 e+07$	$5.977 e+05$	$1.076 \mathrm{e}+03$
8	. 8516	$2.135 e+10$	$2.301 \mathrm{e}+08$	$4.578 \mathrm{e}+05$
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
	TALS :	$3.081 \mathrm{e}+10$	$4.616 \mathrm{e}+08$	$8.371 e+05$

Attachment 6
 Microshield Results for Insulators in TIP Containing Al-28

Micrrosthieid 3n-3
 (Carolima Powet \& Ligtr - \#059)

BUILDUP FACTOR: based on TAYLOR method. Using the characteristics of the materials in shield 3.

INTEGRATION PARAMETERS:

Number of lateral angle segments (Ntheta) $\ldots \ldots$. $\quad 11$
Number of azimuthal angle segments (Npsi)
Number of radial segments (Nradius) $. \ldots$.

SOURCE NUCLIDES:

$$
\text { A1-28: } 7,7700 e-01 \text { curies }
$$

RESULTS:

Group $\#$	Energy (MeV)	Activity (photons/sec)	Dose point flux $\mathrm{MeV} /(\mathrm{sq} \mathrm{cm})$, sec	Dose rate
$(\mathrm{mr} / \mathrm{hr})$				

Attachment 7
Microshield Results for TIP Outer Shell containing Mn-56
(Carolime Power \& Light - \#059)

BUILDUP FACTOR: based on TAYLOR method. Using th? characteristics of the materials in shield 1.

IITEGRATION PARAMETERS:
Number of lateral angle segments (Ntheta) $\ldots \ldots$. $\quad 11$
Number of azimuthal angle segments (Npsi) $\ldots \ldots$.
Number of radial segments (Nradius) \ldots.

SOURCE NUCLIDES:

$$
\text { Mn-56: } \quad 3.2400 e-01 \text { curies }
$$

RESULTS:

Group \#	Energy (MeV)	Activity (plotons/sec)	Dose point flux $\mathrm{MeV} /(\mathrm{sq}-\mathrm{m}) / \mathrm{sec}$	Dose rate (mr/hr)
1	3.3672	2.015e+07	$8.455 e+06$	$1.152 \mathrm{e}+04$
2	2.9609	$3.674 \mathrm{e}+07$	1.356e+07	$1.948 \mathrm{e}+04$
3	2.6641	$7.823 e+07$	$2.605 \mathrm{e}+07$	$3.875 e+04$
4	2.5234	$1.185 e+08$	$3.742 \mathrm{e}+07$	$5.670 \mathrm{e}+04$
5	2.1172	$1.719 \mathrm{e}+09$	$4.571 \mathrm{e}+08$	$7.290 \mathrm{e}+05$
6	1.8047	$3.259 \mathrm{e}+09$	$7.407 e+08$	1.247e+06
7	1.3516	$1.950 e+07$	$3.3 \div 5 \mathrm{e}+06$	$5.988 \mathrm{e}+03$
8	. 8516	$1.185 \mathrm{e}+10$	-. 285 e+09	$2.556 \mathrm{e}+06$
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

TOTALS:

$1.710 \mathrm{e}+10$

$2.571 e+09$
$4.664 \mathrm{e}+06$

BUILDUP FACTOR: based on TAYLOR method. Using the characteristics of the materials in shield 1.

INTEGRATION PARAMETERS:

```
Number of lateral angle segments (Ntheta)..... }1
Number of azimuthal angle segments (Npsi)..... . }1
Number of radial segments (Nradius). . . . . . . . . . . }1
```

SOURCE NUCLIDES:

$$
\text { Mn-56: } \quad 2.1200 e-02 \text { curies }
$$

RESULTS:

sroup	$\begin{aligned} & \text { reergy } \\ & \text { (I.N) } \end{aligned}$	Activity (photons/sec)	Dose point flux $\mathrm{MeV} /(\mathrm{sq} \mathrm{cm}) / \mathrm{sec}$	$\begin{gathered} \text { Dose rate } \\ (\mathrm{mr} / \mathrm{hr}) \end{gathered}$
1	3.3672	1.312e+07	5.378 e+06	7.328e+03
2	2.9609	2. $393 \mathrm{e}+07$	8. $627 \mathrm{e}+06$	$1.239 e+04$
3	2,6641	$5.094 \mathrm{e}+07$	1.657e+07	2.464e+04
5	2. 5234	$7.719 e+07$	$2.379 \mathrm{e}+07$	$3.605 \mathrm{e}+54$
5	2. 1172	$1.119 \mathrm{e}+09$	$2.905 e+08$	$4.633 \mathrm{e}+05$
6	1.8047	2.123e+09	$4.706 \mathrm{e}+08$	$7.925 \mathrm{e}+05$
7	1.3516	1. $270 \mathrm{e}+07$	$2.115 \mathrm{e}+06$	$3.805 e+03$
8	. 8516	$7.719 \mathrm{e}+09$	$8.164 \mathrm{e}+08$	1.62\%e06
9				
10				
11				
12				
13				
14				
15				
$\begin{array}{r}16 \\ \hline 7\end{array}$				
19				
20				
	Tni土:	$1.114 \mathrm{e}+10$	$1.634 \mathrm{e}+09$	$2.964 \mathrm{e}+06$

Attachment 8
Gamma Dose Summary for TIP Incident

Gamma Dose Summary for the TIP Incident
(All calculations performed using Microshield, Rev. 3.21)

Object	Nuclides	$\begin{aligned} & \text { Irr } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	Activity (Ci)	$\begin{array}{r} \text { Dose } \\ \text { Rate } \\ (m R / h) \end{array}$	$\begin{aligned} & \text { Dose } \\ & \text { Rate } \\ & (R / s) \end{aligned}$	$\begin{aligned} & \text { Exp. } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{aligned} & \text { Dose } \\ & (R) \end{aligned}$
Cable	Mn-56	180	0.874	1252925	0.348	4.0	1.392
TIP	Mn-56	180	0.169	2572389	0.715	0.0	0.000
TIP	Al-28	180	1.017	26308494	7.308	0.0	0.000
						otal:	1.392

Object	Nuclides	$\begin{aligned} & \text { Irr, } \\ & \text { Time } \\ & (\sec) \end{aligned}$	Activity (ci)	$\begin{gathered} \text { Dose } \\ \text { Rate } \\ (m R / h) \end{gathered}$	$\begin{aligned} & \text { Dose } \\ & \text { Rate } \\ & (R / s) \end{aligned}$	$\begin{aligned} & \text { Exp. } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{aligned} & \text { Dose } \\ & \text { (R) } \end{aligned}$
cable	Mn-56	300	1.449	2078406	0.577	4.0	2.309
TIP	Mn-56	300	0.280	4261947	1.184	0.5	0.592
TTO	Al-28	300	1.332	34457143	9.571	0.5	4.786
						otal:	7.687

Attachment 9
Beta Dose Summary for TIP Incident

Beta Dose Summary for TIP Incident

object	Nuclide	$\begin{aligned} & \text { Irr, } \\ & \text { Time } \\ & \text { (sec) } \end{aligned}$	$\begin{aligned} & \text { Exp, } \\ & \text { Time } \\ & \text { (sec) } \end{aligned}$	$\begin{array}{r} \text { Dose } \\ \text { Rate } \\ (\mathrm{rad} / \mathrm{s}) \end{array}$	$\begin{aligned} & \text { Dose } \\ & \text { (rad) } \end{aligned}$
Cable	$M n-56$	120	3	1.542	4.623
TIP	$\mathrm{Mn}=56$	120	0	2.406	
TIP	A1-28	120	0	21.109	0
				Total:	4.623

Object	Nuclide	$\begin{gathered} \text { Try, } \\ \text { Time } \\ (\mathrm{sec}) \end{gathered}$	$\begin{aligned} & \text { Exp, } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{array}{r} \text { Dose } \\ B \text { te } \\ (r a n-5) \end{array}$	$\begin{aligned} & \text { Dose } \\ & \text { (rad) } \end{aligned}$
cable	Mn-56	180	4	2.307	9.228
TIP	Mn-56	180	0	2.406	. 0
TIP	A $1-28$	180	0	21.109	0

Object	Nuclide	$\begin{aligned} & \text { Irr, } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{aligned} & \text { Exp. } \\ & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{array}{r} \text { Dose } \\ \text { Rate } \\ (\mathrm{rad} / \mathrm{s}) \end{array}$	$\begin{aligned} & \text { Dose } \\ & \text { (rad) } \end{aligned}$
Cable	Mn-56	300	4	3.827	15.308
TIP	Mn-56	300	0.5	5.968	2.984
TIP	Al-28	300	0.5	36.286	18.093
				Total:	36.385

As a result of the Department of Labor proceeding brought by Mr , Larry Dew against CP\&L and CDI Corporation, CP\&L conducted an investigation into the allegations. Part of this investigation centered around the radiation dose assigned to Mr . Dew.

The investigation of the dose assignment was divided into two parts: 1) the assumptions, and 2) the dose calculation methodology. The investigation regarding the assumptions was conducted by Mr. Mike McGarry and Mr. Don Meindertsma, counsel from the law firm of Winston and Strawn, Washington, DC, and, assisting ac their direction, Mr. B. H. Webster, Manager of Corporate Health Physics for CPGL. The second part of the investigation that looked at the methodology for the dose calculation was conducted at the direction of legal counsel by Mr. Steve Browne and Mr. Jay Terry, technical representatives of CP\&L, with assistance from an outside consultant, Mr , Robert Alexander.

In looking at the assumptions the investigation team sought the answers to four questions:
2. How long was the TIP in the core?
2. How far back from the detector did Mr. Dew grak the cable?
3. Did Mr. Dew actually + puch the TIP detector?
4. How long was Mc. Dew's hand in contact with the TIP cable/detector?

In order to obtain answers to these fuestions, everyone involved or who might have knowledge of the incident was questioned, except Mr. Dew, who was not available. In all this included about 26 people, some of whom were ruestioned nore than one time. In answering these questions, the investigation team determined the most probable scenario and also determined the upper and lower bounds for the assumptions as summarized in the table below.

SUMMARY OF ASSUMPTIONS			
	Lower Bouna	Most Probable	Upper Bound
Time detector in core	2 min .	3 min .	5 min .
Distance from hand to detector	7 inches	7 inches	7 inches
Hand contact with detector	0 sec.	0 sec .	0.5 sec .
Hand in contact with cable	3 sec .	4 sec .	4 sec .

The findings of the investigation team with respect to the four questions and the conclusions regarding the assumptions used it the dose calculations are discussed below.

1. How Long was the TIP in the core?

People who were involved in the work associated with this incident and others who were familiar with this type of work were questioned. Those people most familiar with the TIP operation stated that the TIP could not have been in the core more than two to three minutes. Only one person indicated that it could have been in the core as much as five minutes.

Also, the dose recorded on the whole body badge substantiates the assumption that the TIP was not in the core for a much longer period. If the TIP had been in the core for eight to twelve minutes as alleged by Mr. Dew, our calculations show his whole body badge would have shown between 1,000 and $1,200 \mathrm{mrem}$. In fact, tra whole body badge registered 405, which is consistent with the TIP being in the core for two to three minutes. For these reasons the investigation team believes that the best estimate of the time the detector was in the core was three minutes, with a range of two to five minutes.
2. How far back from the detoctor did Mr Dew grab the cable?

Following the incident, witnesses recalled that Mr. Dew repeatedly stated that he grabbed the cable about $12^{\prime \prime}$ from the detector and re-inserted it in the tube. However, in reenactment of the incident, Mr . Dew grabbed the cable as close as $7^{\prime \prime}$ from the detector. Consequently, for all cases, it was assumed that Mr. Dew's hand was on the cable $7^{\prime \prime}$ from the detector.
3. Did Mr. Few actually touch the TIP detector?

Witnesses reported that in conversations with Mr . Dew immediately after the incident and during the next five days, Mr. Dew always stated that he did not touch the detector, even when specifically asked. Also, during every reenactment of the incident, he grabbed the cable, never touching the detector. The technician who was working with Mr. Dew during the incident stated that he did not see Mr . Dew touch the detector. He stated that he saw Mr. Dew re-insert the TIP and did not observe him touching the detector. However, this technician said that althuugh he did not see Mr . Dew touch the detector, he could not absolutely state that he did not.

About five days later, Tuesday, July $10,1990, \mathrm{Mr}$. Dew stated to one of the members of the origitial investigation team that he was now not sure that he did not touch the detector. At this time he told the investigator that he could have touched the detector, but if 'ie did, he just brushed it before grabbing the cable. He demonstrated how this was possible and the investigator timed him. During this reenactment, the time that Mr. Dew's hand was in contact with the detector was about 0.4 seconds.

People familiar with this job and who had performed the job numerous times thought that it would not have been possible to grab the detector, release it, and then grab the cable. The cable is on a reel that is spring-loaded and would have been pulling on the cable. They all indicated that if you released the detector it would have retracted to the point of completely winding up on the take-up reel. This is further evidence that Mr. Dew did not touch the detector. The investigation team feels very confident that based on the evidence, Mr. Dew did not touch the detector and that was the assumption used in calculating the most probable dose to his hand. However, in calculating the upper bound of the dose, it was assumed that his hand was in contact. with the detector for 0.5 seconds.
4. How long was Mr, Dew's hand in contact with the cable/detector?

Immediately following the incident, Mr. Dew repeatedly stated to management and HP personnel and demonstrated that his hand was in contact with the cable three seconds. Several times he demonstrated how he ciabbed the cable and re-inserted it in the time required to count "1, 2, 3." During timed reenactments of the incident Mr. Dew always took three seconds or less to re-insert the TIP. However, later Mr. Dew indicated to one of the investigators that he, on his own, had attempted reenactment and he thought that it

Tight have taken longer than three seconds, maybe about four seconds. Based on this last statement and to be conservative, the investigation team recommends using four seconds for the most probable time and three seconds for the lower bound. For the upper bound the four seconds in contact with the cable should be used; but as previously stated, it is also assumed that his hand was in contact with the detector for 0.5 seconds.

Attachment 11
Independent Evaluation of Dose Calculations

R.E. ALEXANDER

President

```
Stephen A. Browne
Principal Specialist - Health Physics
Carolina Power and Light Company
P.O. BOX 1551
Raleigh, NC 27602
```

Dear Mr. Srowne:
At the request of Billy Webster, CP\&L, I have reviewed your calculations of the dose received by the left hand of a CPGL employee on July 5, 1990. Details regarding this incident and the calculations appear in the document "Brunswick TIP Incident Dose Calculations* that you recently sent to me.

Regarding the gamma dose, which is only a small percentage of the total, I obtained and examined the Grove Engineering computer program MicroShield that was used for this calculation. The program is tecnnically sound and is widely used in the nuclear power industry. The manner in which the program was used is correct. The best-estimate gamma dose at a tissue depth of 0.007 cm (about 1.4 rem) may be considerzbly overestimated since no correction for lack of electronic equilibrium at this depth was included in Microshield. I discussed this problem with Dr. Daniel Reece, Texas AdM University, He is sending information to me regarding work on corrections of this type that has been completed: at Battelle Northwest Laboratories. It may be feasible to make the correction if you so desire.

During my visit with you at Brunswick we carefully reviewed your calculation of the beta dose, which resulted in a best estimate of about 9.2 rems. Your use of equation 24 from Radiation Dosimetry. Hine and Brownell, appeared to me to be technically sound. The only reservation I had was about the manner in which the correction for self absorption by the source (cable in this case) is made by this equation. In a subsequent meeting that I attended with you, Mr. John Potter of the NRC requested a verification of your result; and at the request of CP\&L I have conducted a rather thorough study.

My inrst contact was wath Sydney porter who has developed a computer program for performing beta dose calculations. This program is based on tables published by W. G. Cross, chalk River Laboratories ("Tables of Beta Ray Dose Distribution in Water, Air and Other Media", AECL-7617, :982). Unfortunately, the capabality of Forter's program is 2 imited to infinitely thin plane source terms for which the question of beta absorption by the source Itself does not arıse. However, you had indicated to me that the correction provided by the Hine and Brownell equation was 0.5; thus the results of Portar's equation, multiplied by 0.5 , would provide in estimate that could be compared with yours.

Using the Mn-56 total cable activity of of 5.241 C that you provided, the exterior cable circumference C of 0.785 inches, a length L of 9 feet, and a chickness t of 0.125 inches for the abble, and an infinite thickness τ of 2 mm for $2.85-\mathrm{MeV}$ betas in ircn, I estimated an infinately thin source term of $6000 \mu \mathrm{Ci} / \mathrm{cm}$ as the necessary input for Porter's program. The following equation was used:

$$
0=\frac{g}{L C} \times \frac{\tau}{t}
$$

The ratio τ / t eliminates $M n-56$ that does nc* contribute to the surface dose rate. An activity distribution e cor was of necessity introduced in the conversion of the actual hollow cylinder to a rectangular plane. However, I believe the dose to the maximally exposed square centimeter of skin would be approximately the same from either geometry

Using the previously mentioned input the following results, multiplied by 0.5 as in the case of the Hine and Brownell equation, were obtained:

Depth ($\mathrm{mg} / \mathrm{cm}^{2}$)	Dose Rate (rads/sec)
7	6.7
20	5.0
99	2.3
112	2.2

Regarding the depths, a density of $1 \mathrm{~g} / \mathrm{cm}^{3}$ was used for the rubber gloves worn by the exposed person ($92 \mathrm{mg} / \mathrm{cm}^{*}$) and for tissue (7 $\mathrm{mg} / \mathrm{cm}^{\circ}$). For an exposure of 4 seconds at $99 \mathrm{mg} / \mathrm{cm}^{2}$, as used for your calculation, the estimate would be 9.2 rads. This result is
the same as obtained from the Hine and Brownell equetion. It atuas confidence in your result but does not investigate the accuracy of the Hine and Brownell self-absorption correction.

To investigate the self-absorption phenomenon I contacted Dr. F. H. Attix, who recommended a Monte Cardo simulation using a code written at the University of Wisconsin under the supervision of Dr. Thomas R. Mackie. Dr. Mackie agreed to perform the calculation, using input data that I provided in a letter approved by you and dated october 24, 1990, Attachment 1. His results were sent to me on November 12,1990 , Attachment 2. At $100 \mathrm{mg} / \mathrm{cm}^{2}$ the dose rate is shown to be 131.5 rads $/ \mathrm{sec}$ per Ci of $\mathrm{Mn}-56$ per gram of iron, with a standard deviation of $9.3 \mathrm{rads} / \mathrm{sec}$. The dose rate associated with a specific activity of $0.0189 \mathrm{Ci} / \mathrm{gm}$ is $2.485 \mathrm{rads} / \mathrm{sec}$. For a 4 -second exposure the dose would be approximately 9.9 rads.

The Hine and Brownell equation was developed before current Monte Carlo methods were computerized and does not account for self absorption with the accuracy of the Monte Carlo simulation. For this reason I recommend acceptance, for purposes of compliance demonstration, of the $9.9-\mathrm{rad}$ beta dose estimate at a tissue depth of $7 \mathrm{mg} / \mathrm{cm}^{2}$, the depth required by 10 CFR Part 20 . For purposes of the CP\&L medical record, I recommend recording also the dose at a tissue depth is $40 \mathrm{mg} / \mathrm{cm}^{2}$, the depth at which the cells at risk (the basal cell larer) are lakely to be located (ICRP Report 23). At a total depth of $120 \mathrm{mg} / \mathrm{cm}^{\text {. }}$. Dr. Mackie reports a dose rate of $110.1 \mathrm{rads} / \mathrm{sec}$ per $\mathrm{Ci} / \mathrm{gm}$, which would be 2.08 rads/sec from the cable. Thus the recorded beta dose would be 8.3 rads. If the actual depth to the basal cell layer is desired, it may be possible to obtain it through examination by a dermatologist. Recomputation of the dose might then be in order.

Please note that $m y$ analysis did not include eview of assumptions such as the neutron irradiation t'ae for che cable in the reactor core, the activation determinatic, A, or details of the exposure such the location of the hand on th's source and the time of exposure.

Please call on me if I can b : of further assistance.

Sincerely,

Robert E. Alexander

Enclosures:

Attachment 1, letter to Mackie Attachment 2, response from Mackie
cc: J. Michael McGarry Winston and Strawn

R.E. ALEXANDER

President

October 24, 1990

10/24/90

Dr. Thomas R. Mackie
Department of Medical Physics
University of Wisconsin
1300 University Avenue
Room 1530
Madison, Wisconsin 53706
Dear Dr. Hackie:
In connection with our recent discussion about a beta radiation skin dose calculation that you expressed willingness to perform, z am pleased to say that my client hos authorized the work. To expedite the administrative aspects, the work will be performed for my corporation; and your invoice should be directed to me at the address shown on the letterhead.

```
The information that you will need is provided below:
```

1. The radionuclide is $\mathrm{Mn}-56$.
2. The quantity to be used is 1 Cd .
3. The radionuclide is an activated impurity uniformly distributed in an Fe slab of infinite area and of thickness greater than the range of the maximum $\mathrm{Mn}-56$ beta (2.85 MeV).
4. The beta dose rate is to be calculated in units of rad/sec.
5. Exposure configuration: the palm of the hand is pressed against a flat Fe slab.
6. The beta dose rate is to be provided at the absorber depths listed below, assuming for each depth an absorber density of $1 \mathrm{~g} / \mathrm{cm}^{3}$:
$0 \mathrm{mg} / \mathrm{cm}^{2}$
7
99
114
129

I will be expected to provide a report to my client in sufficient detail to satisfy any reçulatory and legal needs that may arise. For this reason I would appreciate receiving from you a brief description of the computer program you will use. The target audience for this description would be health physics
personnel employed by the Nuciear Regulatory Commission (NRC), A copy of your CV would olso be beneficisi for this file.

In accordance with our telephone conversation, I have informed roy client (1) that the calculations will be performed by you or under your direct supervision and that the results will be authenticated by your signature, (2) that the fee will be based on a rate of $\$ 200$ per hour, or $\$ 500$ per day if the time requirement is more extensive, and (3) that I day might be a good estimate for the calculation as I described it over the telephone.

I am very happy to have this opportunity to work with you. My friend Frank attix has spoken very highly of your capability and standing in the beta dosimetry field; it $i s$ very fortunate that you are in the position to heip us at this time. The NRC has reguested a dose report from my cilent within 2 weeks, and it is my understanding from you that this schedule is compatible with the amount of time you are likely to need.

Please call me if additional details regarding the exposure are needed for your calculationit.

Robert E. Alexander

Nov. 12, 1990

Robert E. Alexander
The Alexander Corporation
13131 Maltese Lane

Fairfax, Virginia 22033

Dear Dr. Alexander,
Find enclosed the results of a Monte Cario simulation involving an exposure from β^{+}particles emitted from ${ }^{56} \mathrm{Mn}$. I apologize for the delay of the weekend, but we wanted to do some additional tests of the simulation to verify that the simulation was free of any systematic ertors.
The Monte Carlo code used was EGS4 (Electron Gamma Shower Version 4) originally written by Ralph Nelson and colleagues at the Stanford Linear Accelerator Center and modified and benchmarked for low energy transport by David Rogers and colleagues at the National Research Council of Canada. The specific user code is called XYZDOS was written by Drvid Rogers and Alex Bielajew and modified, under my supervision, by Mark Holmes to model radioactive sources. Collaboration was also provided by two other students: Tim Holmes and Douglas Simpkin. As agreed during our telephone conversation additional documentation describing this code can be supplied by us, however, EGS4 is widely described in the literature (eg. Nucl. Inst. and Methods, Medical Physics, Phys. Med. Biol.)

- addition to the specific details of the simulation we conducted several tests of the code to ensure its correctness. Specifically we:
- tested that energy was being conserved for different numbers of histories (simulated particles)
- tested that for conditions of charged particle equilibrium that the simulated dose rate in homogeneous water and Fe phantoms agreed with the equation:

$$
\left(\frac{d D}{d t}\right)_{B}=\frac{A}{M} \Sigma_{i}\left(\Delta_{\theta-}\right)_{i}
$$

where $\left(\frac{d D}{d t}\right)_{A}$ is the dose rate, $\frac{A}{M}$ is the activity per unit mass and $\left(\Delta_{B-}\right)_{i}$ is the equilibrium dose rate constants for bins describing the beta spectrum for ${ }^{56} \mathrm{Mn}$, the sum of which is the mean energy of beta particles per decay $\left(0.832 \mathrm{MeV}\right.$ or $4.91 \times 10^{2} \mathrm{~g} \cdot \mathrm{rad} /(\mathrm{Ci} \cdot \mathrm{s})$.

- ensured that the β^{-}were being emitted uniformly in the source region and isotropically distributed in direction.

According to your specifications of the problem cutlined in your FAX of October 24 and in our telephone conversations we simulated the geometry described by the accompanying diagram. Briefly, it consists of a $12 \mathrm{~cm} \times 12 \mathrm{~cm}$ slab of iron (density $=7.86 \mathrm{~g} / \mathrm{cm}^{2}$) that contains a uniform isotropically emitting source of ${ }^{56} \mathrm{Mn}$. The thickness of the slab is 0.5 cm which is greater than the range of the betas in iron. The scoring region consisted of 20 slabs $8 \mathrm{~cm} \times$ 8 cm by 0.01 cm thick centered beneath the Fe slab. The scoring region was surrounded by 2 cm of water to the sides and 1.8 cm of water below to ensure scatter equilibrium to the scoring region. Only the dose from beta particles was simulated (the dose from gamma or internal bremsstrahlung is not to be included).

The tabulation of Browne and Firestone (enclosed) was felt to be too coarse so the beta spectrum of ${ }^{56} \mathrm{Mn}$ was obtained from Douglas Simpkin using a code described in the literature (Simpkin and Mackie, Med. Phys., 1990). It consisted of 49 spectral bins and a plot of the spectrum is enclosed including a comparison with Browne and Firestone. The simulation consisted of running 1000 simulated decays for each of the 49 bins for a total of 49,000 histories. The probability of emission from each of the bins (as expressed in numbers of histories per 10,000 decays) was used to weight histories starting from each of the bins. The simulation was run on a Sun Sparestion-1 computer.
The dose rate per $\mathrm{Ci} / \mathrm{g}{ }_{(\mathrm{A} / \mathrm{M})}^{\mathrm{dD} / \mathrm{dt}}$ for any of the scoring region slabs was obtained from the following equation:

$$
\frac{d D / d t}{(A / M)}[\mathrm{rad} \cdot g /(C i \cdot s)]=3.7 \times 10^{10} \mathrm{~Bq} / \mathrm{Ci} \cdot \frac{100 \mathrm{rad}}{G y} \cdot M_{\text {source }}(g] \cdot \frac{D_{\text {seare }}[(\mathrm{C} y]}{N_{\text {decay }}}
$$

where $D_{\text {score }}[G y]$ is the dose in Grays scored in a water slab, $M_{\text {source }}(g)$ is the mass of the source region in grams which was 565.9 g , and $N_{\text {decay }}$ is the number of sinulated decays in the source region.

For the particular geometry used the following equation is more convenient:

$$
\left.\frac{d D / d t}{(A / M)} \cdot \mathrm{rad} \cdot g /(C i \cdot s)\right)=2.09 \times 10^{25}\left[\frac{\mathrm{rad} \cdot g^{\prime}(\mathrm{Ci} \cdot \mathrm{~s})}{G y / \text { decay }}\right) \cdot \frac{D_{\text {ecore }}}{N_{\text {decay }}}\{G y / \text { decay }\}
$$

The tabulated and graphed resulte are enclosed. The dose rate in $\mathrm{rad} / \mathrm{s}$ per Ci / g from beta particle emission in the first scoring region past the interface (the interface is located at 0.5 (m) is $2.49 \times 10^{2} \mathrm{~g} \cdot \mathrm{rad} /(\mathrm{Ci} \cdot \mathrm{s})$ and rapidly falls to values between about 1.2 to 0.6×10^{2} $\mathrm{g} \cdot \mathrm{rad} /(\mathrm{Ci}$ - s) at 0.1 cm to 0.2 cm past the interface, respectively. The percent statistical uncertainty ($100 \times$ standard deviation/value) is typically less than 5%.
The value near the boundary is within 2% of what one would expect from the simple dosimetric approximation of assuming an equilibrium spectrum of betas from a semi-mfinite slab source (i.e. half the equilibrium dose rate or $\frac{491}{2} \times 10^{2} \mathrm{~g} \cdot \mathrm{rad} /(\mathrm{Ci} \cdot \mathrm{s})$. This is fortuitous for twe reasons. The accuracy of the simulation is not within 2%. The simple analytic estimation is very crude. Including the ratio of mass collision stopping powers between water and iron would have increased the crude estimate by about 30 to 40% and including the lack of an equilibrium scatter would tend to decrease the result by a similar amount. Of course the Monte Carlo simulation takes both of these effects into account implicitly.

This report is being sent by FAX, but will be followed up with a ietter that will include a longer run with less uncertainty. At that time, I will also include the raw output from the Monte Carlo simulation which lists some of the details of the particle transport and a reprint of the Simpkin and Mackie paper. I hope tha: you find these results useful and please iet me know if you have any other questions or concerns.
Accompanying the letter will be an invoice from the UW Medical Physics Department for $\$ 2,000$. It will fund for travel expenses for graduate students working in our radistion dosimetry research group.

Besu regards. Yours sincerely,
ELNuEix
T.R. Mackie

Assistant Professor
(608) 262-7358
cc. Mark Holmes, Tim Holmes, Douglas Simpkin

Table of Radioactive Isotopes

Edgardo Browne and Richard B. Firestone

Virginia S. fhirley, Editor

Lawrence Berkeley Laboratory
University of California

A Wiley-Interscience Publication
JOHN WILEY \& SONS

$$
\begin{aligned}
& { }_{26}^{56} \text { F ole) } \\
& 26 \\
& \text { s: var. } 1 / \mathrm{seV} \\
& \text { \%: } 91.72 .30 \\
& { }_{27}^{56} \mathrm{Co}(77.7 .5 \mathrm{~d}) \\
& \text { Mode: , } \\
& \text { د. } 56038.025 \mathrm{keV} \\
& \text { SpA: } 3.001 \times 10^{4} \mathrm{Ci} / \mathrm{s} \\
& \text { Prod: }{ }^{56} \mathrm{Fe}(\mathrm{p}, \mathrm{n}){ }^{55} \mathrm{Mn}(\alpha, 3 \mathrm{n}) \text {; } \\
& \text { daughter }{ }^{36} \mathrm{Ni} ;{ }^{36} \mathrm{Fe}(\mathrm{~d} .2 \mathrm{n}) \text {; } \\
& { }^{58} \mathrm{Ni}(\mathrm{~d}, \mathrm{a})
\end{aligned}
$$

Atomic Electrons (${ }^{56} \mathrm{C} 0$)
(comosesk ail

$e_{\text {bin }}(\mathrm{keV})$	(e) (tav)	eral
1237-1271	0.00855	$0.000691 / 4$
1328 - 1360	0.0054	0.000401
$14.36=146 ?$	A 900290	2.018×10
1633 - 1640	6.8×10^{3}	41526×10^{4}
1764 - 1810	0.0156	0.00089
1957 . 2034	0.0100	$0.000496{ }^{2 \prime}$
2106-2112	0.600309	$147+\times 10^{2}$
2206 - 2275	0.000405	$1.82 .10 \times 10^{3}$
2366 - 2373	3.9×10^{5}	1.7×10^{4}
$2516-2598$	0.0123	$0.004 * ?$
2650.2657 ~ 051	1.15×10^{-3} 0.00066	4.3429×10^{4} 2312×10^{-4}
2953-3009	0.00069	2.3121×10^{2}
$3195 \cdot 3273$ 3161	0.9078 0.00057	0.000241 a $65 \text { it } \times 10^{-1}$
3163 . 3451	0.00057	16510×10^{-1}
3541 . 3611	0.000117	1.31×10^{4}

Continuous Radia ion (${ }^{56} \mathrm{C} 0$)
$(B+)=120 \mathrm{keV}:(11)=0.44 \mathrm{keV}$

$E_{\text {bin }}(\mathrm{keV})$		() (keV)	(\%)
$0 \cdot 10$	E. ${ }_{\text {B }}$	$\begin{aligned} & +9 \\ & 19 \\ & 0.0016 \end{aligned}$	0.00100
$10 \cdot 20$	8.	0.0030	0.0081
	[8]	000 I1	0.036
20.40	E.	C6t is	$0005!$
	[B	0.0019	0.034
$40 \cdot 100$	f.	0.311^{*}	(.44
	IB	0.028	(23
$100 \cdot 300$	8.	68	3.4
	IB	0.086	0.0 .7
$300 \cdot 600$	6.	28.6	6.3
	1B	0.120	0.028
$600 \cdot 1300$	8.	83	9.7
	IB	0.143	0.017
$1300 \cdot 2481$	8.	1.70	0.127
	IB	0.046	${ }_{20}^{0.0028}$
	IS\%		20

${ }_{28}^{56} \mathrm{Ni}(6.10 \quad 2 \mathrm{~d})$
Mode:
A: $.53902 / 1 \mathrm{keV}$
SpA: $3.822 \times 10^{5} \mathrm{Ci} / \mathrm{g}$
Prod: ${ }^{54} \mathrm{Fe}(\alpha, 2 \mathrm{n}) ;{ }^{56} \mathrm{Fe}\left({ }^{3} \mathrm{He}, 3 \mathrm{n}\right)$

Photons (${ }^{56} \mathrm{Ni}$)
$(y)=172120 \mathrm{keV}$

$\gamma_{\text {mode }}$	$y(\mathrm{keV})$	$\gamma(\%)^{\dagger}$
Cot,	0.678	0.04211
Col,	0.693	0.027 ?
CoL.	0.776	0.4411
CoL,	0.799	0.344
CoK c	6.915	10.15
CoK ${ }_{\text {a }}$	6.930	19.810
CoKn ${ }^{\text {a }}$	7.649	3.60 t
+ M1+0.03 ${ }^{\text {a }}$ E2	158,391.	
$\bigcirc \mathrm{MI}$	269.512 H 480452 F	36.51 36.54
- E2	4804527 749.96219	49.512
+ $\mathrm{Ml}(+0.08 \% \mathrm{E} 2)$	811.86)	86.011
, E2	1561.811	14.06

Stout of f11e: min $5 \mathrm{spec} . \mathrm{dat}$, with present directory $=$

Distribution of Dose About a point ${ }^{56} \mu_{m}$ Source in writer with Inverse-Squore ignored and the x-axis sealed to units of X_{90}
(Used for a test only)
${ }^{56} \mathrm{Mn}$

$$
x_{90}=6.32 \mathrm{~mm}
$$

0
0
0
0
0
0.8
0.7
0.6
0.5 .
0.3

The Phantom Geometry

Note: All Dimensions in centimeters.

二H2nar
1,000 vecuy/bin

10,000 decays $/$ bin $x 49$ bing $=490,000$ histoien

GEOMETRY IS A RECTILINEAR VOLUME, ORIGIN Ii, BOTTOM LEFT, X-Y PLANE ON THE RAGE AND Z AXIS INTO THE PAGE

INPUT BOUNDARIES IN THE Y DIRECTION
SMALL BOUNDARY FOR REGION (1$)+\quad 0.000$
SMALL BOUNDARY FOR REGION $(2)+\infty \quad 2.000$
SMALL BOUNDARY FOR REGION (3) + 10.000
OUTER BOUNDARY FOR REGION(3) + 12.000
INPUT BOUNDARIES IN THE 2 DIRECTIOn:
INITIAL BOUNDARY: + 0.000
$\begin{array}{lllllll}\text { WIDTH IN THIS GROUP, NO, OF REGIONS IN GROUP: }+ & 0.100 & 4 \\ \text { WIDTH IN THIS GROUP, NO, OF REGIONS IN GROUP: }+ & 0.010 & 30 \\ \text { WIDTH IN THIS GROUP, NO, OF REGIONS IN GROUP: }+ & 0.100 & 18\end{array}$ BOUNDARIES

0.000	0.100	0.200	0.300	0.400	0.410
0.420	0.430	0.440	0.450	0.460	0.470
0.480	0.490	0.500	0.510	0.520	0.530
0.540	0.550	0.560	0.570	0.580	0.590
0.600	0.610	0.620	0.630	0.640	0.650
0.660	0.670	0.680	0.690	0.700	0.800
0.900	1.000	1.100	1.200	1.300	1.400
1.500	1.600	1.700	1.800	1.900	2.000
2.100	2.200	2.300	2.400	2.500	

OTOTAL \# REGIONS INCLUDING EXTERIOR $=469$
OINPUT GROUPS OF REGIONS FOR WHICH DENSITY AND MEDIUM ARE NOT DE C CULTS

Things have been forced to comply with the following geometry $\mathrm{I}=1 \ldots 3, \mathrm{~J}=1 \ldots 3, \mathrm{~K}=1 \ldots 14 \quad \mathrm{rho}=7.86 \mathrm{med}=1$ (Fe) $I=1,3, J=1 \ldots 3, K=15 \ldots 52 \quad r h o m=1.00 \mathrm{med}=2 \quad(\mathrm{H} 2 \mathrm{O})$
 Things have been forced to comply with the following geometry $\mathrm{I}=1 \ldots 3, \mathrm{~J}=1 \ldots 3, \mathrm{~K}=1 \ldots .24 \quad \mathrm{rho}=7.86 \mathrm{med}=1$ (Fe) -
$I=1 \ldots 3, J=1 \ldots 3, K=15 \ldots 52 \quad \mathrm{rho}=1.00 \mathrm{med}=2 \quad(\mathrm{H} 2 \mathrm{O})$)
LOWER, UPPER I, J, K, MEDIUM, DENSITYOINPUT GROUPS OF REGIONS FOR WHICH ECUT AN LOWER, UPPER I, J, K, ECUT, PCUTOENTER 3 PAIRS DEFINING LOWER, UPPER X, Y, z INDIC FOR WHICH RESULTS ARE TO BE OUTPUT- IZSCAN NON-ZERO FOR Z-SCAN/PAGE
ONE SET OE 6 PER LINE, END WITH ALL ZEROS

MEDIUM
$\begin{array}{rr}\mathrm{AE} & \mathrm{AP} \\ 0.521 & 0.010 \\ 0.521 & 0.010\end{array}$

7	0.000	12.000	0.000	12.000	0.000	0.500	1.00	7
8	D. 0.00	122-000	D. 0 nop	22. nno	D,	1.	1.00	
9	D. DDD	12.000	D. DOD	22.000	D. 000	D. 5 50	1.00	9
10	0.000	12.000	0.000	12.000	0.000	0.500	1.00	10
11	0.000	12.000	0,000	12.000	0.000	0.500	1.00	11
12	0.000	12. 00	0.000	12.000	0.000	0.500	1.00	12
13	0.000	12.000	0.000	12.000	0.000	0.500	1.00	13
14	0.000	12.000	0.000	12.000	0.000	0.500	1.00	14
15	0.000	12.000	0.000	12.000	0.000	0.500	1.00	15
16	0.000	12.000	0.000	12.000	0.000	0.500	1. 1.00	16
17	0.000	12.000	0.000	12.000	0.000	0.500	1.00	17
18	0.000	12.000	0.000	12.000	0.000	0.500	1.00	18
19	0,000	12.000	0.000	22.000	0.000	9.500	1.00	19
20	0.000	12.000	0.000	12.000	0.000	0.500	1.00	20
21	0.000	12.000	0.000	12.000	0.000	0.500	1.00	21
22	0.000	12.000	0.000	12.000	0.000	0.500	1.00	22
23	0.000	12.000	0.000	12.000	0.000	0.500	1. 1.00	23
24	0.000	12.000	0.000	12.000	0.000	0.500	1.00	24
25	0.000	12.000	0.000	12.000	0.000	0.500	1.00	25
26	0.000	12.000	0.000	12.000	0.000	0.500	1.00	26
27	0.000	12.000	0.000	12.000	0.000	0.500	1. 00	27
28	0.000	12.000	0.000	12.000	0.000	0.500	1.00	28
29	0.000	12.000	0.000	12.000	0.000	0.500	1.00	29
30	0.000	12.000	0.000	12.000	0.000	0.500	1.00	30
31	0.000	12.000	0.000	12.000	0.000	0.500	1.00	31
32	0.000	12.000	0.000	12.000	0.000	0.500	1.00	32
33	0.000	12.000	0.000	12.000	0.000	0.500	1.00	33
34	0.000	12.000	0.000	12.000	0.000	0.500	1.00	34
35	0.000	12.000	0.000	12.000	0.000	0.500	1.00	35
36	0.000	12.000	0.000	12.000	0.000	0.500	1.00	36
37	0.000	12.000	0.000	12.000	0.000	0.500	1.00	37
38	0.000	12.000	0.000	12.000	0.000	0.500	1. 00	38
39	0.000	12.000	0.000	12.000	0.000	0.500	1.00	39
40	0.000	12.000	0.000	12.000	0.000	0.500	1.00	40
41	0.000	12.000	0.000	12.000	0,000	0.500	1.00	41
42	0.000	12.000	0.000	12.000	0.000	0.500	1.00	42
43 44	0.000	12.000	0.000	12.000	0.000	0.500	1.00	43
44	0.000	12.000	0.000	12.000	0.000	0.500	1.00	44
45 46	0.000	12.000	0.000	12.000	0.000	0.500	1.00	45
46 47	0.000 0.000	12.000	0.000	12.000	0.000	0.500	1.00	46
47 48	0.000 0.000	12.000	0.000	12.000	0.000	0.500	1.00	47
48	0.000	12.000	0.000	12.000	0.000	0.500	1.00	48
49	0.000	12.000	0.000	12.000	0.000	0.500	1.00	49

End of the Source data

Rea: CPUTIME	$\begin{aligned} & 1 \text { Bnds }(X Y Z)=\left(\begin{array}{r} 0.000 \\ \text { SO FAR }= \end{array} \quad 8.380 \mathrm{~s}\right. \end{aligned}$	12.000)(0.000	12.000)(0.000	0.500)
Reg: CPUTIME		12.000) (0.000	$12.000)($	0.000	$0.500)$
Reg: CPUTIME	$\begin{aligned} & 3 \text { Bnds }(X Y Z)=\left(\begin{array}{r} 0.000 \\ \text { SO EAR }= \end{array} 79.640 \mathrm{~s}\right. \end{aligned}$	12.000)(0.000	12.0001	0.000	$0.500)$
Reg: CPUTIME	$\begin{aligned} & 4 \mathrm{Bnds}(X Y Z)=(\quad 0.000 \\ & \text { SO EAR }= \end{aligned}$	$12.000)($	0.000	$12.000)($	0.000	$0.500)$
Reg: CPUTIME	$\begin{aligned} & 5 \mathrm{Bnds}(X Y Z)=1 \quad 0.000 \\ & S O \mathrm{EAR}= \\ & 214.040 \mathrm{~s} \end{aligned}$	$12.000)($	0.000	12.000)(0.000	$0.500)$
Reg: CPUTIME	$\begin{aligned} & 6 \mathrm{Bnds}(X Y Z)=1 \quad 0.000 \\ & \text { SO FAR }=\quad 296.770 \mathrm{~s} \end{aligned}$	$12.000)($	0.000	$12.000)($	0.000	0.5001
Reg: CPUTIME	$\begin{aligned} & 7 \mathrm{Bnds}(\mathrm{XYZ})=1 \quad 0.000 \\ & \mathrm{SO} \mathrm{EAR}=\quad 388.450 \mathrm{~s} \end{aligned}$	12.000)(0.000	$12.000)($	0.000	0.500)

Reg: $\quad 30$ Bnds $(X Y Z)=(\quad 0.000$ CPUTLME SO FAROM 4275,650 a

Reg: 31 Ends $(X Y Z)=1 \quad 0.000$ CPUTIME SO FAR $=\quad 5000.520$ S

Reg: 32 Ends $(X Y Z)=(\quad 0.000$ CPUTIME SO $E A R=\quad 5284.130 \mathrm{~s}$

Req: $\quad 33$ Bnds $(\mathrm{XYZ})=(\quad 0.000$ CPUTIME SO FAR $=\quad 5573.400 \mathrm{~s}$

Reg: 34 Bnds $(X Y Z)=1 \quad 0.000$ CPUTIME SO EAR $=\quad 5873.300 \mathrm{~s}$

Req: $\quad 35$ Ends $(X Y Z)=(0.000$ CPUTIME SO FAR= $\quad 6178.250 \mathrm{~s}$

Reg: $\quad 36$ Bnds $(X Y Z)=(\quad 0.000$ CPUTIME SO $\mathrm{FAR}=\quad 6486.600 \mathrm{~s}$

Reg: $\quad 37$ Bnds $(X Y Z)=(0.000$ CPUTIME SO EAR $=\quad 5800.400 \mathrm{~s}$

Req: $\quad 38$ Bnds $(X Y Z)=1 \quad 0.000$ CPUTIME SO EAR $=\quad 7130.080 \mathrm{~s}$

Reg: 39 Bnds $(X Y Z)=(0.000$ CPUTIME SO $\mathrm{FAR}=7458.410 \mathrm{~s}$

Reg: 40 Ends $(X Y Z)=1 \quad 2.000$ CPUTIME SO FAR = $\quad 7798.110$ s

Reg: 41 Bnds $(X Y Z)=1 \quad 0.000$ CPUTIME SO FAR $=8144.020$ s

Reg: 42 Bnds $(X Y Z)=(0.000$ CPUTIME SO FAR $=8499.689 \mathrm{~s}$

Reg: 43 Bnds $(X Y Z)=10.000$ CPUTIME SO FAR $=\quad 8859.131 \mathrm{~s}$

Reg: 44 Bnds $(\mathrm{XYZ})=(\quad 0.000$
CPUTIME SO $\mathrm{EAR}=\quad 9228.939 \mathrm{~s}$
Reg: $\quad 45$ Bnds $(X Y Z)=1 \quad 0.000$ CPUTIME SO FAR $=\quad 9598.320 \mathrm{~s}$

Reg: 46 Bnds $(X Y Z)=(0.000$ CPUTIME: SO FAR= 9967.270 s

Reg: 47 Bnds $(X Y Z)=(\quad 0.000$ CPUTIME SO EAR $=10352.180 \mathrm{~s}$

Reg: 48 Ends $(X Y Z)=\{0.000$ CPUTIME SO EAR $=10743.280 \mathrm{~s}$

Reg: 49 Bnds $(X Y Z)=(0.000$ CPUTIME SO $\mathrm{FAR}=11136.439 \mathrm{~s}$ OTOTAI CPUTIME FOR SIMULATIONS=

12.000) (0.000	$12.000)($	D.ODD	D. 5000 d
12.000) (0.000	$12.000)($	0.000	$0.500)$
$12.000)($	0.000	$12.000)($	0.000	0.500)
$12.000)($	0.000	12.000)(0.000	$0.500)$
$12.000)($	0.000	12.0001	0.000	0.5001
$12.000)($	0.000	22.0001	0.000	$0.500)$
$12.000)($	0.000	12.000) (0.000	$0.500)$
12.000)(0.000	$12.0001($	0.000	0.5001
$12.000)($	0.000	$22.000)($	0.000	0.500)
12.000) $($	0.000	$12.000)($	0.000	0.5001
12.000)	0.000	$12.000)($	0.000	$0.500)$
12.000) $($	0.000	$22.000)($	0.000	0.5001
12.000) (0.000	$12.000)($	0.000	0.5001
12.000) (0.000	$12.000)($	0.000	0.5001
12.000) (0.000	$12.000)($	0.000	$0.500)$
12.000) (0.000	22.0001	0.000	0.5031
12.000) (0.000	12.000) (0.000	$0.500)$
12.00011	0.000	22.000)(0.000	0.500)
12.000)(0.000	12.000)(0.000	0.5001
12.000) 1	0.000	$12.000)($	0.000	$0.500)$

TOTAL ENERGY DEPOSITED IN VOLUME per DECAY $=0.8073 E+00$

```
FOR X= 2.000 TO 10.000 I= 2
OYBOUNDS: 
    ZBOUNDS (% ( 
= }\begin{array}{rlrl}{0.420}&{6}&{2.336E-13-3.9%}\\{0.430}&{7}&{2.207E-13-2.4%}\\{0.440}&{8}&{2.262E-13-4.6%}\\{0.450}&{9}&{2.181E-13-3.5%}\\{0.45%}
    0.470 11 2.179E-13-4.4%
    0.480 12 2.005E-13-3.68
    0.490 13 1.842E-13-3.58
```



```
    0.520 16 1.119E-13-7.18
    0.530 17 1.017E-13-5.6%
    0.540 18 9.545E-14-5.4 
    0.550 19 8.945E-14-5.6%
    0.560 20 8.297E-14-7.78
},010}\begin{array}{l}{0.570}\\{0.580}\\{0.21}\end{array}\mp@code{22
    0.620 26 5.750E-14-7.2%
    0.630 27 5.258E-14-8.38
    0.640 28 5.470E-14-7.38
    0.650 29 4.939E-14-7.6f
    0.660 30 4.703E-14-8.28
    0.670 31 4.712E-14-7.79
    0.680 32 4.263E-14-8.79
    0.690 33 4.217E-14-7.3%
    0.700 34 4.114E-14=-5.98
    1.833E-14-9.78
    1.000 37 9.706E-1.5-15.3%
    1.100 38 4.820E-15-12.0%
    1.200 39 1..730E-15-22.78
    1.300 40 7.569E-16-26.0%
    1.400 41 4.322E-16-30.5%
    1.500 42 1.410E-16-40.1%
    1.600 43 6.851E-17-64.28
    1.700 44 4.368E-17-81.8%
    1.800 45 8.024E-17-58.8%
    1.900 46 1.786E-1 -57.1%
    2.000 47 7.528E-17-73.6%
```

```
2.100
48 3.085E-16-56.0
2.200 49 2.4759-16-63.28
2.30D 5D 2.DD-9E-16-96.47
2.400 51 1.452E-16-85.08
2.500 52 1.463E-17-99.98
```


MONTE CARLO AND CONVOLUTION DOSIMETRY FOR STEREOT ICTIC RADIOSU RGERY

Shrikant S. Kubsad. M.S.. T. Roci well Mackie. Ph.D.. Mark A. Gehrine. B.S., David J. Misisco. M.S.. Bhudatt R. Paliwal. Ph.D.. Minesh P. Mehta. M.). and Timothy J. Kinsella. M.D.
Depanments of Human Oncology and Medical Physics. University of Wisconsin Medical School. Madison. WI 53792 USA

Abstract

The dosimetry of smalt photon beams used for sterevincric radiosurgery was investigated using Monte Cario simuiation. convoiution calculations. and measurements. A Moate ©ario code was used to simulate radiation transport through a linear accelerator to produce and score energy spectrum and ancuiar distribution of 6 MV bremsstrahlung photons exiting from the accelerator treatment head. These photgis were th in transported through a stereotactic collimator system and into a water phantom placed at isocenter. The energy spectrum was also used as input for the convolution method of photon dose calculation. Monte Carlo and convolution results were compared with the measured data obtained using an ionization chamber, a diode, and film.

Monte Carlo, Convolution. Smail beam photon dosimetry, Stereotactic radiosurgery.

INTRODUCTION

Stereotactic external beam radiosurgery was initiated by Leksell in Sweden in 1951 (15,16). Since then. radiosurgery has been performed with X rays. protons. heavy charged particles, and gamma rays. The method involves delivery of a high radiation dose in a single fraction to a small intracranial target. Leksell's work led to the development of the commercially available Gamma Knife unit which consists of $201{ }^{60} \mathrm{Co} \gamma$-ray sources. The Gamma Knife has been widely used to treat arteriovenous malformations and brain neoplasms. Using a proton beam. Kjellberg et al, have treated and followed several patients with arteriovenous malformations and have analyzed the post-treatment cure and complications (11, 12). They also established a correlation between dose and beam diameter to predict post-treatment complications.

Recent developments have led to the conversion of linear accelerators into stereotactic tools. The use of a linear accelerator for radiosurgery is gaining popularity over the Gamma Knife mainly because linear accelerators are available in most medical centers practicing conventional
radiation therapy and are cost-effective. The use of a linear acceierator for stereotactic radiosurgery and its advantages over other approaches have been discussed elsewhere (3 . 8,9,10,17,26,31). Since stereotactic radiosurgery delivers high doses of radiation in a single fraction to a small target volume (the radiation field sizes are typically from 0.5 cm to 4.0 cm in diameter), accurate dosimetry and tres:ment planning are critical to the adaption or a linear accelerator for radiosurgery

There are two principal concerns in the dosimetry of smail beams: the presence of lateral electronic disequilibnum and steep dose profiles. Ion chambers cannot predict with sufficient resolution the dose in the penumbra which. for the smailest field sizes, extends to the central axis of the field. Radiographic film and diode an provide better spatial resolution but the film has a resp onse which varies with photon energy more than that o an ion chamber and a weil shieided diode. The energy ir sponse effect could be significant in broad beam photor dosimetry because of the variation in the photon ene gy from the central axis to the edge of the field. This variation in the photon energy across the field is caused by the flattening filter

[^0][^1]which hardens the photon beam more in the central part of the beam than in the peripheral region (22). However. in a small beam the photon energy vartation across the beam diameter can be negligible.

The Monte Carlo and convolution methods can be used to produce relative dose distributions free of energy response artifacts and equivaient to the resolution of diodes and film isodensitometers (1 to 2 mm), but in order to do this. information such as the energy and angular spectrum of the incident photon beam is required. The Monte Carlo method is used to produce such information and to verify the accuracy of the film and diode measurements.

METHODS AND MATERIALS

Wonte Carto method

We used the Electron Gamma Shower Version 4 (EGS4) (23) Monte Cario code system to characterize the photon beam emerging from the accelerator treatment head. The energy spectrum of photons was used to produce a dose kernei for the stereotactic beam from monoenergetic photon beam kernels generated in water (19). The EGS4 Monte Carlo code is a general purpose coupled charged-particle-photon transport simulation system that can transport these particles in the energy range of a few keV to GeV in heterogeneous media of arbitrary 3 -dimensional complex geometry (23). Many authors have demonstrated that very complex and sopinsticated sim. ulations can be done using Monte Cario methods code $(5,8,13,14,22,24,25,27,29,30)$)

We developed the user main program and geometry packages to simulate the linear accelerator* treatment head (LATH), the stereotactic collimating system (SCS) and a semiintinite water phantom placed at the isocenter (source-to-isocenter distance was 100 cm). The user main program drives the geometry package and the EGS4 Monte Carlo code to simulate particle transport using interaction probability distribution data generated by PEGS4 (Preprocessor for EGS4) (23). The user code sets in motion photon histories (simulated photons) and transports them until they are absorbed or scattered. The energy and direction of charged particles set in motion and scattered photons are determined by the EGS4 code system and subsequently transported as well. Chazed particles are transported in discrete steps during which the particle is assumed to travel a straight line: however. the energy loss is scaled to account for increased pathlength caused by scattering. The user code handles the scoring (tabulation of results for a history) of one or any combination of type of particie, energy, position, and direction cosines for photons and charged particles each time a particle in'eraction or boundary crossing occurs. Scoring also occurs following each charged particle step.

The code follows each particie and its proweny umil in escapes or its energy falls below a cut-off energy set by the user to terminate the transport of that particle and deposit its remaining energy on the spot.

The schematics of a typical LATH geometry are shown in Figure Ia, whereas Figure Ib illustrates the simulated LATH geometry used in Monte Carlo method. The dimensions and distances of the LATH were obtained from the vendor and were venfied during a major servicing of the machine. The primary, secondary, and stereotactic collimators and moving jaws were aimulated using concentric cylindrical slabs. The thickness and radius of each slab were carefully chosen to have the same surface area as the actual LATH and to reproduce the divergence of the radiation beam. The simulation used a series of cylindrical slabs stacked on one another to match closely the profile of the flattening filter. We simulated both the upper and lower moving jaws at the same level. The stereotactic collimators were lead-filled cylinders of 15 cm in height with diverging circular holes of 0.5 cm to 4.0 cm in diameter. and were attached to the linear accelerator head.

The SCS and stereotactic base frame that mounts on the accelerator couch base plate and other quality control accessones ${ }^{\dagger}$ were buit to specifications for our tinear accelerator.* We also ciesigned and built a stereotactic

Fig. 1. (a) Schematics of the linear acceierator treatment head. (b) Simuiated linear acceierator treatment head geometry used in Monte Cario calculations

[^2]ECUT $=0.521 \mathrm{MeV}$
ff

> PCUT $=0.010 \mathrm{MeV}$ ESTEPE $=18$ of the electron energy at the beginning of a sted

SMAX $=$ Smallest dimension
of ROI
VCASES ~ 2 $\times 10^{0}$ Simulation
if (STM) air ion chamber which was monitor the radiation output. This sed to verify the dose delivery to the lation was carried out in two parts. mulated the accelerator head from im of the moving jaws to score the waracteristres cenergy spectrum and (1) a plane perpendicular to the cencharacteristics were stored for later part of the simulation starts from he moving paws, through the SCS, antom at the isocenter. nulation of the LITH As depicted tic electrons with a kinetic energy the vacuum window of the acungsten target producing bremsbeam passes through the backing and gold alloy for fast heat dis-
sipation. The beam is collimated by a primary diverging collimator made of tungsten. The flattening filter is comprised of an alloy containing steel and other elements. In addition to making the fluence distribution more uniform. the flattening filter also produces low energy electrons and photons. The beam passes through a transmission monitor chamber and is subsequently shaped by secondary lead collimators and moving tungsten jaws.
We scored the energy spectrum and angular distribution of 6 MV bremsstrahlung photons in annular distribution 1.2,3, and 4 cm in radius in a plane perpendicular to the central axis at 50 cm from the targerpendicular to energy bin width of 0.25 MeV the target. The photon energy spectrum. For each MeV was chosen to score the photon mean planar fluence, energy, the fluence weigh, the mean fluence, the mean weighted mean energy, and, and the energy-fluence incidence on the scoring plane photon mean angle of axis, were calculated in each with respect to the central Simulation parl? each energy bin. phantom. The stored spectrum was the SCS and water initial energy and direction of photons used to choose the the bottom of the moving jaws through transported from cylindrical water phantom paws through the SCS and in a source-to-surface distance of the at the isocenter (the The moving jaws were included in the second 100 cm). simulation to account for potentia the second part of the tom of the jaws and also potential scatter from the bottween the two parts of the simaintain the continuity begions, the mean energy depositiontion. In each of the reence, the photon mean energy, the photon miean fluincident angle with respect culated. The maximum dimension central axis were calwas 0.2 cm in any direction the scoring region especially for beam profiles in a water better resolution.

spectrum of 6 MV photons from the linear accelerator at 50 cm from the target.

Fig. 3. (a) Central axis depth dose in water for 0.5 cm beam diameter. (b) Central axis depth dose in water for 2 em beam diameter. (c) Central axis depth dose in water for 2 cm beam diameter. (d) Central axis depth dose in water for 3 cm beam diameter.

EGS4 iransport and calculation parameters. The results of Monte Carlo simulations are very sensitive to transport parameters such as the maximum relative energy lost in an electron step (called ESTEPE in EGS4), the maximum electron step length (SMAX), the eler": un cutoff energy (ECUT), and the photon cutoff energy (PCUT) ($4,5,14$. 27. 28, 29). Additionally, the total number of histories transported per simulation (NCASES) dictates the accuracy of the final results. Moreover, the random sampling of incident particle's energy, position and direction cosines at the beginning of simulation directly affect the final outcome. The secondary ciectron production energy threshold (AE) of 0.521 MeV and secondary photon production energy threshold (AP) of 0.01 MeV were used by the PEGS4 to generate the interaction probability distribution data for electron and photon transport. The EGS4 used the data produced by the PEGS4 and also used the transport parameters shown in Table I to carry out the simulations.

The particles were terminated when their energy fell below the cut-off energy or escaped the simulation geometry. When particle termination occurred, the residual kinetic energy of the particle was deposited locally.

Each simulation of 2 million histories was divided into 10 batches for statistical analysis. The standard error in each scored quantity was determined from a calculation of one standard deviation from the 10 batches.

Convolution method

A number of authors have shown that the convoiution of a primary intensity function and a spatially invariant kernel models the dose distribution well in a homogeneous phantom (1, 2, 7, 18, 19, 20, 21). The primary intensity function models the primary photon transport up to and
inside the phantom and the kernel accounts for secondary particle transport in the phantom.

The dose distribution $D(\vec{r})$ in a homogeneous phantom can be given by the equation:

$$
\begin{equation*}
D(\vec{r})=\int_{\rho} \frac{\mu}{\rho}(\vec{r}) \Psi(\vec{r}) A(\vec{r}-\vec{r}) d^{3} r^{\prime} \tag{1}
\end{equation*}
$$

where $(\mu / \rho)(\overrightarrow{\mathrm{r}})$ is the appropriate mass attenuation coefficient distribution. $\Psi(\vec{r})$ is the energy fluence distribution, and $A(r-r)$ is the convolution kernel.

The details of the convolution/superposition sottware have been described elsewhere (20). The superposition method involves modifying the convoiution kernel to take into account transport through heterogeneous phantoms: however, this capability was not required in this study because the phantom was homogeneous. The voxels were solid rectangles (i.e., the voxel dimensions may vary in each direction). The voxel thickness was 0.25 cm in all of the calculations and the voxel areas were $0.1 \times 0.1 \mathrm{~cm}^{2}$ for the 0.5 cm and 1.0 cm collimators and $0.2 \times 0.2 \mathrm{~cm}^{2}$ for the larger collimators.

Most of the convolution/superposition software is concerned with modelling the primary ene - fluence distribution. The software is capable of modelung the "horns" in the incident energy fluence distribution, spectral hardening in the depth direction, and "softening" in the lateral direction mainly because of a reduced thickness of primary rays that have travelled through the field flattening filter. The beam is first modelled as diverging from a point source and exiting through a perfect circular aperture with constant energy fluence across the field. The energy flu-

(b)

4. (a) Beam profile of 0.5 cm beam diameter at 5 cm depth in water, (b) Beam profie of 2 cm beam diameter
cm depth in water. (c) Beam protile of 2 cm heam dater 3 cm 3 diameter at 5 cm depth in water. 2 cm heam diameter at 5 cm depth in water. (d) Beam pronle of 3 cm
med to decrease exponentially (with distance ie phantom and with an inverse-square fall. surface.
in by the following equation:

$$
\begin{equation*}
\Psi=\Psi_{0} e^{-\operatorname{ven} d}\left(\frac{S S D}{S S D+d}\right)^{2} \tag{2}
\end{equation*}
$$

e surface energy fluence. $\mu_{\text {en }}$ is the effective efficient, and SSD is the source-to-surface
attenuation coefficient was obtained from icoefficients weighted with respect to the of the spectrum. We used the spectrum is work (illustrated in Fig. 2) and a pubifrom Mohan ef al. (22). The effective n coefficient at the surface of the phantom / g and $0.0481 \mathrm{~cm}^{2} / \mathrm{g}$ for those spectra.
I model of energy fluence was modified r for primary energy fluence outside the le beam boundary. The primary fluence consists of several components: transhe collimators, photons scattered outside the accelerator structure, and the collical penumbra due to a finite source size. imary" energy fluence shouid be qualiphoton energy fluence which has not the phantom regardless of its ongi: in pical values of the primary fluence out-
side a field in routine external beam radiotherapy are from 3 to 5% from the first two of the above components. How. ever, it was found that the secondary stereotactic collimators effectively reduced this component of the fluence to zero $(\pm 0.1 \%)$. The geometrical penumbra can be accounted for using a modification of a procedure proposed by Boyer (6). It involves specifying an effective source size (seff, taken to be 0.2 cm) and the source-to-collimator dis-
tance (SCD) of 77. tance (SCD) of 77 cm , which is the distance from the assumes that a tinite source size collimator. The model convolution of the energy fluence with a $2-\mathrm{D}$ Giled as a distribution with a width (FWHM) at a 2-D Gaussian distance (SPD) equal to the following: a source-to-point

$$
\begin{equation*}
F W H M=S_{\text {eef }} \frac{S P D}{S C D} \tag{3}
\end{equation*}
$$

The finite voxel size introduces a blurring artifact (analogous to the finite size of a detector) that mimics a finite source size in its effects. Therefore, FWHM is reduced by an amount equal to the lateral voxel dimension (i.e., either 0.1 cm or 0.2 cm).

Measurements

We used a small diode and a small ionizat.on chamber* with a three-dimensional scanner in a water phantom to acquire depth doses and beam profiles. ${ }^{\dagger}$ Film dosimetric measurements were carried out by exposing radiographic verification films' in a Solid Water Phatom.' The films

[^3]
Abstract

were processed using a rapid processor. ${ }^{\text {an }}$ A firm scarmmg densnometer." driven by a stepper-motor comtrolier board ${ }^{17}$ in a PC^{98} and controlled by sc tware written using a data acquisition package, ${ }^{* *}$ u \quad s used to scan the processed films to acquire depth doses and beam profiles. The diameter of the isodensitometer light spot was 10 $\pm 0.2 \mathrm{~mm}$.

RESULTS

Energy spectrum and anguiar distribution

The energy spectrum of 6 MV bremsstrathlung photons from the linear accelerator is shown in Figure 2. At 50 cm from the target, the fluence and energy-fluence weighted photon energies at the central axis (within radial range between 0101 cm) were 1.92 ± 0.04 and 2.76 ± 0.07 MeV . respectively. The fluence and energy-fluence weighted photon mean incident angles with respect to the central axis were 1.61 ± 0.08 and 1.21 ± 0.05 degrees. respectively

Ceniral avas reiantre depulh doses in water
The relative percent depth doses in water for beam diameters of $0.5,1,2,3$, and 4 cm were computed using direct Monte Carlo simulation and convolution calculathons using photon spectrum from the present work and a published spectrum (22). Comparisons with the measured data for beam diameters of $0.5,2$. and 3 cm are shown in Figure 3. There is excellent agreement between the results of Monte Cario, convolution calculations. and diode measurements beyond the depth of peak dose. Within the build up region for 2 and 3 cm beam diameters. the results of Monte Carlo and convolution catculations agree wit' the diode measurements within 2% and 5%. respectively. The depth doses for beam diameters of 0.5 104 cm . derived by Monte Carlo and convolution methods. are in excellent agreement beyond the depth of peak dose, but in the build up region a disagreement of 2 to 10% is observed. This may be because the low energy scattered photons and electrons arising from the SCS are not accounted for in the convolution calculations. The depth doses denved by convolution method using the photon spectrum produced in this work and the published spectrum from Mohan et al. (22) agree within 3%. The measured depth dose by diode and depth ionization by ion chamber measurements are in good agreement for large beam diameter $(\nexists 3 \mathrm{~cm})$ as shown in Figure 3d. whereas increased disagreement is observed as the beam diameter is decreased. This could be because of the larger size of the ion chamber in a small radiation beam. The depth of peak dose for 0.5 to 4 cm beam diameters ranged
from 1.38101 .75 cm . The decrease in the depth of peak dose for smaller field sizes is caused toy deverend themen scatter contribution to the depth dose.

Relative beam profiles in water

The relative beam profiles at a depth of 5 cm in water for beam diameters of $0.5,1,2.3$, and 4 cm were computed using direct Monte Carlo and convolution calculations using photon spectrum from the present work and the published spectrum (22). Comparisons of the calculated and measured data for beam diameters of $0.5,2$. and 3 cm are shown Figure 4. Again, there is excellent agreement between the profiles obtained by Monte Carlo and convolution calculations, and film dosimetry. The disagreement between Monte Cario and convolution results in the beam boundary region can be reduced if the size of the sconing regions are further decreased below 0.2 cm in the radial direction in calculational methods but at the expense of increased computing time for Monte Carlo calculation. There is excelient agreement vutside the primary beam because appropriate penumbral corrections have been employed in the convolution calculations. Note that the uncertainty has decreased radially outward because the volume of scoring regions (volume $=\pi r^{2} h$) increases as a function of radius to the power two, thereby resulting in a larger number of histories in those regions.

Compuation sumes

We used a workstation* ($\simeq 5$ times faster than a mini computer') 10 perform simulations. Monte Carlo calculation used 120 CPU hours to transport 2 million initial electron histories through the linear accelerator head to obtain the photon energy spectrum and other characteristics, whereas the same number of initial photon spectral histories transported in water to obtain depth doses and beam protiles required an average of 80 CPU hr per beam diameter. The average computing time for the convolution calculations was 0.06 CPU hr per simulation on the same system.

DISCUSSION

We have shown that the Monte Carlo method can be used to characterize the 6 MV bremsstrahlung photon beam produced by the linear accelerator and to obtain the dosimetric for small radiation fields used in stereotactic radiosurgery. We found that the simulation of exact dimensions of target, backing material. and flattening filter and appropriate Monte Carlo transport parameters were

[^4][^5]important in acturrme accurate photon energy spectra amd ampular distributions. Our user-wnitten proptews carn be generalized to simulate other treatment machines to obtain beam and dosimetric data. Similarly, we have shown that the convolution techniques using Monte Carlo-produced photon energy spectra can calculate dosimetnic data used for stereotacic radiosurgery. The results of Monte Carlo and convolution methods are in excellent ugreement with the measured data. The spatial resolution of Monte Cario and convolution methods were adequate and comparable to film and diodes for use in small beam dosimetry.

We have deveioned in-house a stereotactic treatrem planning system which uses the dosirnetric datatneerexerated by the convolution method. The simulation of the accelerator treatment head by the Monte Carlo method was required to obtain the energy spectra used for the convolution method and to provide a clarification of its dose predictions independent of measurements. In summary, we have demonstrated that the Monte Cario and convolution methods are powerful and practical tools to generate accurate dosimetric data. These methods can become the basis for dose computation in the routine clinical treatment planning algonthms using fast computers.

REFERENCES

1. Ahnesio. A. Collapsed cone convoiution of radiant energy for photon dose calculation in heterogeneous media. Med Phvs. 16.577-592: 1989
2. Ahnesio. A.: Andreo. P. Bechme. A. Calculation and appication of point spread functions for treatment planning with high energy photon beams. Acta Oncol 26.49-57 10875
3 Bett, O. O: Munan. C: Rosier, R. Stereotactic radiosurgery with the linear acceierator: treatment of artenovenous maiformations. Neurosurgery 24:311-321. 1989
I Bielajew A. F: Rogers. D W O. PRESTA - The Parameter Reduced Electron-Step Transport Algorithm for electron Monte Cario transport. Nuct. Instr. Meth. B18:165-181: 1987.
3. Bielajew. A. F. Rogers. D. W O. Nahum. A. E The Mon' Cario simulation of ion chamber respons- $10^{60} \mathrm{Co}-$ resolution of anomalies associated with interfaces. Phys. Med. Biol. 30:419-427. 1985.
4. Boyer. A. Fourier convolution technigues. Proceedings of the Regina Workshop on Convolution. Regina. Canada. October 16-17. 1986.
7 Bover, A. Mok. E. A photon dose distribution model employing convolution catculations. Med. Phys. 12:169-177; 1985.
5. Colombo. F. Benedetti. A. Pozza. F : Avanzo. R. C. Marchettic. C.: Chierego, G.: Zanardo. A. External stereotactic irradiation by linear acceierator. Neurosurgery 16 154-159: 1985.
6. Colombo. F.. Benedetti. A. Pozza. F.. Zanardo, A.: Avanzo. R. C.. Chierego, G.. Marchetti. C. Stereotactic radiosurgery utilizing a linear accelerator. Appl. Neurophysiol. 48:133145. 1985.
7. Hartmann. G. H.: Schlegel, W.:Strum. V.. Kober, B.: Pastyr. O.: Lorenz. W. J. Cerebral radiation surgery using moving field irradiation at a finear accelerator facility. Int. J. Radiat. Oncol. Biol. Phys. 11:1185-1192: 1985
8. Kjellberg. R. N.: Davis. K. R.: Lyson. S.; Butier, W.; Adams. R. D. Bragg peak proton therapy for arteriovenous malformations of the brain. Clin. Neurosurgery 31:248-290; 1984
9. Kjellberg. R. N. Hanamura. T.: Davis. K. R.: Lyson. S.: Adams. R. D. Bragg peak proton therapy for arteriovenous malformations of the brain N. Engl. J. Med. 309:269-274. 1983.
10. Kubsad. S. S. Mackie. T. R.: Paliwal. B R.: Attix, F. H. Monte Carlo calculation of electron and secondary photon spectra from a Varian Clinac-2500. Med. Phys. 16:49: 1989 (Abstr).
11. Kubsad. S. S.: Paliwal, B. R.: Sibata. C. H. : Attix. F. H. Ion chamber eiectron fluence corrections for electron beams (Abstr). Med. Phys. 13:605: 1986
12. Lekseli. L. Stereotaxis method and radiosurgery of the brain. Acta Chir. Scand. 102:316-319: 1951
13. Lekseil. L. Stereotactic radiosurgery. J. Neurol. Neurosurg. Phvsial. 46:797-803: 1983.
14. Lutz. W. Winston, K. R.: Maleki. N. A system for stereotactic radiosurgery with a linear acceierator. Int. J. Radiat. Oncol. Biol. Phys. 14:373-381: 1988
15. Mackic. T. R:: Ahnesjo, A.: Dickof, P.: Snider. A Development of convolution/superposition method for photon beams. Proceedings of IX ${ }^{\text {th }}$ ICCR. International Conference on Computers in Radiation Therapy, Den Haag. The Netherlands. 1987:107-110.
16. Mackie. T. R.: Bielajew, A. F.: Rogers. D. W. O.: Battista. J. J. Generation of energy deposition kernels using the EGS Monte Cario code. Phys. Med. Biol. 33:1-20; 1988.
17. Mackie. T. R.: Scrimger. I. W. Battista. J. 1. A convolution method of calculating dose for $15 \mathrm{MV} x$-rays. Med. Phys. 12:188-196: 1985
18. Mohan, R.: Chui. C.: Lidofsky, L. Differential pencil beam dose computation model for photons. Med. Phys. 13:6473:1986.
19. Mohan. R.: Chui. C. Lidofsky, L. Energy and angular distributions from medical linear acceierators. Med. Phys. 12: 592-597: 1985
20. Nelson. W. R.: Hirayama. H.: Rogers. D. W. O. The EGS4 Code System. Stanford Linear Accelerator Report SLAC. 265: 1985
21. Petti. P. L. Goodman. M. S., Gabrel. T. A.: Mohan. R. Investigation of build up dose from eiectron contamination of clinical photon beams. Med. Phys. 10:18-24: 1983.
22. Petti. P. L. Goodman. M. S.: Sisterson, J. M. : Biggs, P. J.: Gabriel. T. A. Mohan. R. Source of electron contamination for the Clinac-35 25 MV photon beam. Med. Phys. 10:856861: 1983.
23. Rice. R. K.: Hansen. J. L.: Svensson, G. K. Siddon, R. L. Measurements of dose distributions in 5Γ all beams of 6 MV x-rays. Phys. Med. Biol. 32:1087-10c9: 1987.
24. Rogers. D. W. O. Low energy electron try nsport with EGS. Nucl. Instr. Meth. A227:535-548: 1984
25. Rogers. D. W. O. More realistic Mont Carlo calculations of photon detector response functior.s. Nucl. Instr. Meth. 199:531-548: 1982
26. Rogers, D. W O.: Ewart G. M.: Bielajew, A. F. Calculation of contamination of the ${ }^{00} \mathrm{Co}$ beam from an AECL therapy source. National Research Council of Canada Report No. PXNR-2710. 1985.
27. Udale. M. A Monte Carlo investigation of surface doses for broad electron beams. Phys. Med. Biol. 33:939-954; 1988.
28. Winston. K. R.: Lutz. W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 22 : 454-464: 1988.

[^0]: Presented at the 31st Annual ASTRO Meeting, 5 October 1989. San Francisco. CA

 Reprint requests to: Shrikant S. Kubsad. M.S.. Department of Human Oncology, K4/B100 Clinical Science Center. 600 Highland Ave., Madison. WI 53792 USA
 Acknowledgements-The authors wish to thank Terry Cummings of Varian Associates for providing the design specifications of the Clinac-2500 linear accelerator treatment head. Paul

[^1]: Reckwerdt for his help in computations. Wonho Sohn for his
 assistance in measurements, and Drs. David W. O. Rogers and Alex F. Bielajew for their valuable discussions on If ate Carlo
 methods. The first author is also grateful to Drs. Claudio H. Alex F. Bielajew for their valuable discussions on \& sate Carlo
 methods. The first author is also grateful to Drs. Claudio H. Sibata and Paul M. DeLuca, Jr., who introduced him to the
 Monte Carlo methods. This work was partially supported by Sibata and Paul M. DeLuca, Jr., who introduced him to the
 Monte Cario methods. This work was partially supported by NCI grani R29 CA48902.

 Accepted for publication 26 April 1990 assistance in measurements and Drs. David W.O. Rogers and

[^2]: - Clinac-2500, Varian , ssociates, Palo Alto, CA
 'Physical Science Labc atory, University of Wisconsin. Madison. WI.

[^3]: ${ }^{1}$ Kodak X-Omat V, Eastman Kodek Company, Ronn NY.
 ${ }^{4}$ Radiation Measurements Inc., Madison WI.

[^4]: * Kodak RP-X Omat rapid processor, Eastman Kodak Company, Rochester, NY.
 " Artronix. St. L.ouis, MO
 ${ }^{1 /}$ METRABYTE, Metrabyte Corporation. Taunton. MA.
 * Leading Edge PC. Leading Edge Products Inc., Needham Heights. MA.

[^5]: ** ASYST. Asyst Software Technologies Inc.. Rochester, NY.
 *Sun 4/110, Sun Microsystems Inc., Mountain View, CA.
 ' VAX 11/780, Digital Equipment Corporation, Maryland. MA.

