File No. 13011L

Carolina Power & Light Health Physics & Chemistry Section

Dosimetry Technical Report: 90-05 Brunswick TIP Incident Dose Calculations

November 30, 1990

Prepared By: S. K. Clubste

9012130027 901207 PDR ADOCK 05000324 PDC

Brunswick TIP Incident Dose Calculations

Introduction

On July 5, 1990, Mr. Larry Dew was involved in a radiological incident which resulted in an unplanned exposure to his left hand while working on a job to install new transient in-core probes (TIPs) at the Brunswick Nuclear Flant. E&RC Experience Report Number 90-004 contains a complete description of the occurrence, its cause, and corrective actions. Since no monitoring devices were worn on the hand, it was necessary to calculate the dose based on the best information available, primarily obtained from interviews, records, and drawings. Originally, a total exposure to the hand of 10.6 rem was estimated by CP&L. However, Mr. Dew disagreed with the assumptions used and refused to sign the final Personnel Exposure Investigation report containing this dose. Subsequently, Mr. Dew filed a complaint with the Department of Labor which guestioned the validity of the dose. As a result of the DOL allegations, the NRC requested additional information supporting the dose assignment. In response, CP&L reexamined the assumptions and methodology used in the dose calculations and concluded that the original exposure estimate was valid. This report summarizes the methodology and results of dose calculations.

General Assumptions

The shallow dose to the hand (7 mg/cm^2 tissue depth) represents the most limiting exposure case for the TIP incident. Since the exposed worker wore two pairs of rubber gloves, the dose was determined for both beta and gamma radiation at a depth of 99 mg/cm^2 , which is the sum of the density thickness of the gloves and skin (See Attachment 1).

The dose calculations are based on two principal nuclides, Mn-56 and Al-28, which represented 95.6% of the total activity in the detector and 98.6% of the activity in the cable (see Attachment 2). The dose contribution other nuclides is small and is more than offset by conservative assumptions employed in the dose calculation.

The dose from the incident is calculated separately for exposure from the detector versus the drive cable because of differences in geometries, activities, and exposure times.

Many assumptions were made in performing the dose calculations, but the most critical ones concerned the length of time the TIP was in the core and the length of time different parts were touched. These times were determined based on interviews with participants in the incident and on reenactments, all of which are described more completely in Attachment 10. Because the actual times are unknown, upper and lower bound doses were calculated, in addition to a best estimate dose, in order to give an indication of the degree of uncertainty. The table below summarizes the time assumptions used in the dose calculations.

	Lower Bound	Best Estimate	Upper Bound
Time in Core	120 sec	180 sec	300 sec
Time Touching TIP	0	0	.5 sec
Time Touching Cable	3 sec	4 sec	4 sec

In addition to the above assumptions, the primary data used in the dose calculations were design information for the TIP (detector and cable materials and dimensions) and neutron activation analyses for various irradiation and decay times, both provided by Reuter-Stokes, Inc., the TIP manufacturer. Attachment 3 contains drawings and diagrams representing the detector and cable and Attachment 4 contains the results of neutron activation calculations.

Gamma Dose Calculations

The gamma dose was calculated using the computer code Microshield, a program for analyzing gamma radiation shielding (Ref. 4). The program input includes: geometry, source nuclides and activities, source and shield materials, dimensions of source and shields, and position at which dose rate is to be determined. The output is the dose rate at the specified point.

The basic geometry selected to model both the detector and the cable was a cylindrical source (side view) surrounded by cylindrical shields. For this geometry, Microshield calculates the exposure rate at a specified point using a point-kernel numerical integration technique. Three integration parameters determine how finely the source volume is divided for the numerical integration: radial, horizontal angle, and vertical angle. A value of 11 was selected, thus dividing the source into 11³ differential volumes.

The dose for complex geometries can be approximated by breaking them into several simple geometries for which the dose can be calculated separately and then summed. In this case, the total gamma dose is the sum of three separate geometry and nuclide compinations.

1. Cable Containing Mn-56

The gamma dose from the cable was calculated only for Mn-56, since the activity of Al-28 was negligible. the activity was assumed to be uniformly distributed in a solid, cylindrical volume of iron, 18 inches long. Because of the small distance between the hand and the cable, the percent contribution to the dose from parts of the cable greater than 9 inches away is negligible. Attachment 5 shows the Microshield results.

2. TIP Insulators Containing Al-28

The Al-28 is contained in alumina (Al_2O_3) insulators inside the outer detector shell. The activity was assumed to be uniformly distributed in a solid, cylindrical volume representing the alumina surrounded by an iron shield representing the detector shell. Attachment 6 shows the Microshield results.

3. TIP Detector Shell Containing Mn-56

The Mn-56 is contained primarily in the stainless steel detector shell. The activity was assumed to be uniformly distributed in a hollow cylindrical volume representing the stainless steel shell. The dose from a hollow cylinder was obtained by calculating the dose from two solid cylinders of different diameters and subtracting the smaller from the larger. In this case, the diameters used were the inside and outside diameters of the detector shell. Attachment 7 shows the Microshield results.

The calculations for 120 second TIP irradiation times were done with Microshield and were adjusted using a spreadsheet program for different irradiation and exposure times. Attachment 8 contains a summary of the gamma dose calculations for each of the above three cases based on upper bound, lower bound and best estimate assumptions.

Beta Dose Calculations

The beta dose was calculated using equations which integrate the experimentally derived beta particle point source dose distribution function for several simple geometries (Ref. 2). The total beta dose is the sum of the beta dose for three different geometries and nuclide combinations:

1. Infinite, Plane Slab of Infinite Thickness

This geometry was assumed for the beta dose from Mn-56 in the cable. This is considered to be a reasonable, probably conservative, approximation for a hand wrapped around a long, cylindrical source (the cable) whose

radius exceeds the maximum beta particle range. The dose at a depth x outside an infinite, plane slab of infinite thickness is given by the following equation (Ref 2, p.722, Eq. 24):

 $D_{\alpha}(x) = .5D_{\alpha}\alpha \{c^{2}[3-e^{(1-\nu x/c)}+\nu x/c(2+\ln(c/\nu x))] + e^{(1-\nu x)}\}, \text{ rad}$

 $[] \equiv 0 \text{ for } x \ge c/v$

Where:

 $D_B = 2.13E_B\tau$, rad/hr $E_n = Average beta energy, MeV$ $\tau = Activity concentration, \mu Ci/g$ $\alpha = [3c^2 - (c^2 - 1)e]^{-1}$ 2 0.17<E0<0.5 0.5≤E_<1.5 c = 1.5 1 1.5≤E₀<3 $v = 18.6/(E_0^{\circ}.036)^{1.37}, \ cm^2/g$ $E_0 = Maximum$ beta energy, MeV x = Depth in absorber outside slab, g/cm²

Infinite, Plane Slab of Finite Thickness 2.

This geometry was assumed for calculating the beta dose from Mn-56 in the outer detector shell of the TIP. It was chosen because the thickness of the detector shell is less than the maximum beta particle range. The dose at a point outside a infinite, plane slab of finite thickness is given by the following equation (Ref 2, p.725, Eq. 27):

$$D(x,h) = D(x,\infty) - D(x+h,\infty)$$

The terms on the right are given by equation 24.

Sphere Containing Uniformly Distributed Activity 3. This geometry was assumed for A1-28 beta dose calculation from the alumina insulators inside the outer shell of the detectors. The dose at a distance x from the center of a sphere of radius b is given by the following equation (Ref. 2, p.736, Eq. 38):

 $D_{abh}(x,b) = .5\alpha D_{0}[(vb+1)e^{-vb}+(vb-1)e^{vb}]e^{(1-vx)}/vx$

For: $x \ge c/v+b$

Attachment 9 contains a summary of the heta dose calculations for each of the three geometries based on upper bound, lower bound and best estimate assumptions.

The dose contribution from bremsstrahlung radiation was considered negligible. The ratio, r, of energy loss from bremsstrahlung to that from collisions can be estimated by the following equation (Ref. 6, p. 175):

 $r \approx (TZ/700)$

Where: T = beta particle energy Z = atomic number of absorber

Assuming T equals the average energy of Mn-56 (.86 MeV) and Z equals the atomic number of iron (26), then r equals 3.1%. Since the bremsstrahlung radiation will deposit its energy over a range of absorber thickness, the dose contribution at the skin depth will be only a very small fraction of the 3.1%.

Total Dose

The total shallow dose to the hand from the TIP incident is simply the sum of the beta and gamma doses as summarized in the following table.

	Beta Dose (rad)	Gamma Dose (rem)	Total Dose (rem)
Lower Bound	4.623	0.698	5.321
Best Estimate	9.228	1.392	10.620
Upper Bound	36.385	7.687	44.072

Conservatisms

A number of conservative assumptions and approximations were used in performing the dose calculations. Several of those are discussed below, including estimates of the magnitude of the effect on close calculations for some.

Neutron Flux

Reuter-Stokes used a flux of 5.0 x 10^{13} n/cm²/sec in the neutron activation calculations. It was later determined that the average neutron flux in the channel traversed by the TIP during the incident was 4.394 x 10^{13} n/cm²/sec. This difference translates directly into a 14% conservatism in the calculated dose.

Skin Depth

NRC regulations require that the dose to the extremities be reported at a depth of 7 mg/cm², but the average epidermal thickness on palms of the hands is about 40 mg/cm² (Ref. 5, p.50). The beta dose at 40 mg/cm² is 18% less than at 7 mg/cm².

Geometry

In most cases the geometry was selected in a conservative manner. For example, the use of an infinite, plane slab for beta dose calculations will slightly over estimate the beta dose compared to a cylindrical geometry.

Electronic Equilibrium

For all gamma dose calculations electronic equilibrium was assumed to exist at the 7 mg/cm^2 depth. For high energy photons equilibrium will not be established at this depth, which will result in an over estimate of the gamma dose.

Decay Time

The decay time is the amount of time required to crank the TIP from the core to the TIP box. After leaving the core, the TIP must travel approximately 60 feet to reach the TIP box. At a normal speed of 1 foot per second, this would take about 60 seconds, however, during the incident the crank was difficult to turn and the speed was probably slower. Nevertheless, a decay time of only 30 seconds was assumed in the dose calculations, so that the activity assumed for the dose calculations is probably conservatively high. The effect is small for Mn-56 which has a half-life of 2.6 hours, but is significant for Al-28 which has a half-life of 2.24 minutes.

Independent Evaluation of Dose Calculations

Mr. Robert E. Alexander, a health physics consultant, was engaged by CP&L to perform an independent evaluation of the dose calculations for this incident. His report, reproduced in Attachment 11, confirms the validity and conservatism of the CP&L dose calculations. The beta dose, which is the largest component, was recalculated using a Monte Carlo simulation code by Dr. Thomas R. Mackie of the University of Wisconsin. The results are in excellent agreement (within 7 percent) with the CP&L dose calculation performed using equations published by Hine and Brownell in Radiation Dosimetry.

Conclusion

The original estimate of the dose to the left hand of Mr. Larry Dew was 10.6 rem. After a thorough reexamination of all assumptions and calculation methods, this is still considered to be a valid and probably conservative estimate of the dose received during the TIP incident. Therefore, no changes are recommended to the previously assigned dose to Mr. Dew.

References

- 1. <u>Radiation Health Handbook</u>, U.S. Department of Health, Education, and Welfare, Public Health Service, January 1970.
- 2. <u>Radiation Dosimetry</u>, G. J. Hine and G. L. Brownell, Eds., Academic Press, New York, 1956, Chapter 16.
- Principles of Radiation Protection, K. A. Morgan and J. E. Turner, Eds., John Wiley & Sons, New York, 1967, Chapter 8.
- Microshield 3 Manual, Grove Engineering, Inc., Washington Grove, MD, 1988.
- 5. ICRP Publication 23: Report of the Task Group on Reference Man, Committee 2 of the ICRP, Pergamon Press, New York, 1975.
- <u>Radiation Dosimetry, 2nd Edition, Volume I: Fundamentals</u>, F. H. Attix and W. C. Roesch, Eds., Academic Press, New York, 1968.

Attaciment 1

Depth at Which Dose Calculated

The dose was calculated at a depth equivalent to the thickness of two pairs of rubber gloves plus the thickness of skin. The glove thickness was determined by weighing a sample of glove material of known area.

> Glove sample area = 25 cm² Glove sample weight = 1.15 g Single glove thickness = .046 g/cm² Double glove thickness = .092 g/cm² Skin thickness = .007 g/cm² Total depth = .092 + .007 = .099 g/cm²

Principal Nuclide Decay and Emission Data

A1-26

Atomic number Atomic weight Half life	: 13 : 28 : 2.24 minutes
second Beta	AS: mennesses
probability per decay	maximum average (MEV) (MEV)
1 1.000000	2.864200 1.242300
====== Gammas &	X-rays: ======
probability per decay	energy (MEV)
1 1.000000	1.778900

Mn-56

At At Ha	omic number omic weight lf life	: 25 : 56 : 2.5785	hours
1.57 227		atas: ====	1951 1951 1951 1951 1951 1951
	probability per decay	maximum (MEV)	average (MEV)
12345	.011600 .146000 .278000 .562000 .001189	.325630 .735530 1.037900 2.848600 .987800	.099100 .255200 .381900 1.216700 .373140
a 222 222	Gammas	& X-rays:	(13) 555 A.S. 191 (52) 551 651
	probability per decay	energy (MEV)	
12345678	.988700 .271890 .143360 .009887 .006525 .003065 .001681 .001626	.846750 1.810700 2.113100 2.522900 2.657500 2.959800 3.369600 1.351400	

TIP Drawings

FACSIM	E TROUTES		-Sentemationano.den. Alainessa Anani, Antoniniaanoondienoo "Twinnineny, Oot antoin 216 425-3765 Fax 216 425-4041
	SIFICATION: Information Action		DISTRIBUTION
	FROM:	TIM G.E.	KNISS REUTER-STOKES
-	SENT BY:	MA TI	A SENSOR
	FACSTINE CLAS	FACSIMILE TRANSMITTIAL CLASSIFICATION: Information Action FROM: SENT BY: ADONENTS IN GAM	FACSTMENTE TRANSMITTAL CLASSIFICATION: CLASSIFICATION: Action FROM: TIM G.E. SENT BY:

STEVE,

I HOPE THERE IS SUFFICIENT DETAIL ON THESE DRAWINGS TO HELP YOU WITH YOUR CALCULATIONS. PART 10 IS THE DETECTOR HOUSING, 1.980" LONG AND .211" O.D., .1704" I.D., 304L SS. PIECES 8, 11, AND IS ARE THE ALUMINUM OXIDE INSULATORS IN SIDE THE DETECTOR.

200.3009

14

Neutron Activation Calculations

page 10

SH

H17: 30

4

CABLE (9')

00 Ni Cu Mo Ta		0000	Cr51 Mn54 Mn56	DEC	0.003 0.000 5.241 TOTAL:	ACTI	M699 4c1G1 Fe182 IVITY	0.000	Cooling (Time: Mode:	Down 30
N U U U U U U U U U U U U U U U U U U U		0000	Mn54		0.000 5.241 TOTAL:		Mo99 4c101 1e182	0.000 0.000 0.000 0.000 5.312	Cooling (Time: Mode:	Down 30
OF J O MON	0,0 0,0 0,0	000	Cr51 Mn54 Mn56		0.000 5.241	N T	Mo99 4c101 1a182	0.000	Cooling (Time:	Down 30
14 14 10	0.0	0 1	Cr51 Mn54		0.000	2	M099 40101	0.000	Cooling (Down
44	0.0	0 1	Cr51		0.003		M099	0.000		
1 Mar 1997	0.0	20	1121		W & W 1 W			0.000		
1		5			0.000		Moss	0 000	Factors	0.8
5 -	261.0	0	T145		1.000	1.	Cu66	0.000	Fest Flux	(
Mar.	9.0	Q mi	9048		0 000	3	CUGA	0.000	the second second	
12.00	0.0	A I	5047		1.000		N165	0.000	(Dea C):	285
AI	0.0	h 1	5.46		1.000		N157	0.000	Moderator	Temp
Mg	5.1	6 E	1123		0.007	1	0060	0.000		
N B	0.00	-	1024		0.040		CoSR	0.000	Time:	190
*** * *			1.24		0.000		5269	0.000	FT ux :	5.02+13
71 69 FT 5	N # # !	k in	Laotape				01980 			******
PAREN	IT.		54:	JGHIB	8		ACTIVITY		TANDITI	SNE
	*****				******				1004514	TION
PLE N	AMET		SAMMA TI	P 64	BLE				0	9115 AM
		1	NEUTRON	8671	VATION	24	LIULATION	ч	0	7/17/90
	P = E = N = N = N = N = N = N = N = N = N	A C C C C C C C C C C C C C C C C C C C	A CONTRACT PARENT MAG 5.17 A1 0.00 T1 0.00	B C NEUTRON PLE NAME: SAMMA TI PARENT DA MB 0.00 NB24 Mg 5.17 Mg27 A1 0.00 A123 Ti 0.00 Se46 Cr 8.50 Se47 Mn 3.09 Se48 Fe 261.00 Ti45	NEUTRON ACTI PLE NAME: SAMMA TIP CA PARENT DAUGHTE NB 0.00 AI 0.00 SE46 Cr 8.60 SE48 FB 261.00	NEUTRON ACTIVATION PLE NAME: SAMMA TIP CABLE PARENT DAUGHFER MBSS SOCAPP NB 0.00 NG 5.17 MG 5.17 NG 5.00 AI 0.00 Se46 0.000 Se48 0.000 Fe 261.00 TIEN 0.000	NEUTRON ACTIVATION DA PLE NAME: SAMMA TIP CABLE PARENT DAUGHTER ment Mass Na 0.00 Ng 5.17 Mg 5.17 NG 5.17 Mg 5.17 Mg 5.17 Mg 5.17 Mg 0.000 Al 0.000 Se46 0.000 Mn 3.09 Se48 0.000 Fe 261.00 Tist 0.000	NEUTRON ACTIVATION CACOULATION PLE NAME: GAMMA TIP CABLE PARENT DAUGHTER ACTIVITY MBSS GOLDANG F459 NB 0.00 Na24 0.000 NB 0.00 Na24 0.000 NB 0.00 Na24 0.000 NB 0.00 A123 0.007 A1 0.00 A123 0.007 C0 Se46 0.000 N157 Cr 8.60 Se48 0.000 N165 Mn 3.09 Se48 0.000 Cu64 Fa 261.00 T145 0.000 Cu66	NEUTRON ACTIVATION CACTULATION PLE NAME: SAMMA TIP CABLE PARENT DAUGHTER ACTIVITY MBSS ISOLOPP ITOLOPP ITOLOPP NB 0.001 NB24 0.000 F+59 0.000 Mg 5.17 Mg27 0.040 Co58 0.000 A1 0.00 A125 0.007 Co60 0.000 T1 0.00 Se46 0.000 N165 0.000 Mn 3.09 Se48 0.000 Cu64 0.000 Fe 261.00 T145 1.000 M093 0.000	NEUTRON ACTIVATION DACIDLATION O PLE NAME: SAMMA TIP CABLE O PARENT DAUGHTER ACTIVITY IRRADIA Nent Mess lisotape Juries Fotope Juries CONDITI Na 0.00 Na24 0.000 F459 0.000 F1uxi Na 0.00 Na24 0.000 F459 0.000 F1uxi Na 0.00 Na24 0.000 F459 0.000 F1uxi Na 0.00 Na24 0.007 Co60 0.000 F1uxi Na 0.00 A125 0.007 Co60 0.000 Mocerator A1 0.00 A125 0.007 Co60 0.000 Mocerator T1 0.00 Se46 0.000 N157 0.000 Mocerator Mn 3.09 Se48 0.000 N165 0.000 Decol Fa 261.00 T145 0.000 Cu66 0.000 Factert

K17: 60

			NEUTRON	ACTIVATION	CALCULATI	ON	07/17/90 09:19 AM
	SAMPLE N	AME:	GAMMA	IP CADLE			
	PAREN		04	UGRTER	ACTIVIT	ry .	IRRADIATION
	Element	Mass	lisotope	Curies	isotope	Çuries	CONDITIONS
			+ + + + + + + + + + + + + + + + + + +	0.000	· Fafq	0.000	:Flux: 5.0E+13
	Na	0.00	I Mazz	0.058	0058	0.000	Time: 180
	Mg	0.00	A128	0.006	C060	0.000	
~	A 1	0.00	5046	0.000	N157	0.000	Moderator Temp
	C -	8.60	5047	0.000	NIEB	0.000	:(Deg c): 285
2	Mo	3.08	Sc48	0.000	Cu64	0.000	
• ?	Fe	261.00	TI45	0.000	CU66	0.000	Fast clux
4	Co	0.05	T151	0.000	M093	0.000	Fector: 0.8
5	Ni	0.00	: Cr51	0.003	1 Mo99	0.000	
6	Cu	0.00	Mn54	0.000	Mo101	0.000	Cooling Down
7	Mo	0.00	1 Mn56	5.229	T4182	0.000	Time: 60
18	Та	0.00	1	TOTAL :		5.297	Mode: c
9			****	**********		******	
20				DECAY OF	ACTIVITY	A REAL PROPERTY OF THE PROPERTY OF	and the second se
	100	00.10 4	M	OnLin	0	A CONTRACTOR OF THE OWNER OWN	CapsNum-

S

page 4

SE

GAMMA TIP

A1:

.

	anna B-anna C-anna			* * 1	and the second s
	131	TRON ACTIVATIO	N CALCULATIN	# P4	07/17/20
SAMPLE NA	ME:				09:03 AM
PARENT	한 것 같은 말 같이.	DAUGHTER	ACTIVIC	Y .	IRRADIATION
Eloment	M855 : 31	stope Curies	isctope	Curtes	CONCITIONS
	** * ********		********	* * * * * * * * * * *	** * * * * * * * * * * * * * * *
Na	0.00	Na24 J.200	re59	0.000 F	lux: 5.0£+13
Ma	0.01 1	Md27 J.000	C o 5 3	0.000 ;*	ime: 180
AI	0.44	120 1.017	060	0.000	
-	0.65	3046 0.000	N157	0.000 M	oberator Temp
Cr.	0.93	3c47 0.000	N165	0.001 (Deg C): 281
Mn	0.10	5048 0.000	Cu64	0.001	
E.e.	3.51	145 0.000	Cub6	0.038 :F	ast Flux
10	0.05	T161 0.015	M093	0.000 F	actor: # 0.1
4 6 N 4	0 47	CrR1 0.000	Mogg	0.000	
	2.02	Ma64 0.000	Mo101	0.000 'C	soling Down
	0.00	Mn66 0.169	Ta182	0.000 T	ime: 31
Ta	0.00	TOTAL		(1.241)M	ode: c

		DECAY OF	ACTIVITY		
	South and the second		ACCOUNTS AND SAVE		No. of Contract of Contract of Contract

17-Ju1-90 09:05 AM

Num

5

1.2

K17: 60

	A		A			· F -				
1	A	0	N	EUTRON	ACTIVATION		CALCULATI	ON	(7/17/90
2	SAMPLE NA	ME								19:06 AM
3			***							
4	PARENT		1	DAL	JGHTER		ACTIVIT	rγ	IRRADIA	NOITA
5	Element	Mass	; 1	8000pe	Curies	1	Isotope	Curies	CONDITI	IONS
6						• ••			********	
7	Na	0.00	1	Na24	0.000	÷.,	Fe59	0.000	Flux:	5.0E+13
8	Ma	0.01	1	Ng27	0.000	1	Co58	0.000	Time:	180
a	AI	0. 44	1	A128	0.876	1	0060	0.000	1	
10	Ti	0.68	÷.	5046	0.000	1	N157	0.000	Moderstor	r Temp
11	Cr	0.93	1	Sc47	0.000	1	N165	0.001	:(Deg C):	2.85
1.5	MA	0.10	1	Sc48	0.000	1	Cu64	0.001	11 - 17 UARS	
16	En	3 51	1	TIAS	0.000	1	CUEE	0.035	Fast Flu	x
1.0		0.08	1	7151	0.014	ιŝ.	Mo93	0.000	[Fector:	0.8
14	CO.	0.00	1	C=51	0.000	1	Mogg	0.000		
15	I N	0.00	1	MAEA	0.000	1	Mo101	0.000	Cooling	Down
16	C U	0.06	1	Mass	0.169	-	74182	0.000	Time:	60
12	MO	0.00	1	MNDO	TOTAL	. *	19194	1 006	W. to:	~ ~ ~
18	Tø	0.00	5		IVIAL:			1.050	(1.0.001	
19	计算数数据数计算数	An 197 197 197 195 195 1	B 85 4	1. AL 10. 35 35 30 40 10						-64.8.1
20					DECAY OF	n Ç	IIVIIY		and an other statements of the statement	Est
Lawrent	THE REAL PROPERTY OF THE PARTY		Set	CANNER STREET	Charles History Construction	ALC NO.	anna an	deservation and a second of the second	In opening a state of the state	Margan
17-	·Ju1-90 09	:06 A!	4		OnLin	6				NUM

.

.

Microshield Results for Cable Containing Mn-56

Mirzanhiald 3.13

Phone march 1	Same.	"Thomas on wheth	T. T. maderate	10501
01101	1712	Cont Therein I	a Li Lui II.	* 0 0 0 1

Page :	1	File Ref:	
File :	CABLE120.MSH	Date:	
Run date:	November 27, 1990	By:	
Run time:	8:45 a.m.	Checked:	

CASE: Cable - Manganese 56 - 120 sec Irradiation

GEOMETRY 7: Cylindrical source from side - cylindrical shields

Distance to detector X	0.422	cm.
Source length L	45.720	11
Dose point height from base Y	22.860	
Source cylinder radius T1	0.323	11
Thickness of second shield T2	0.099	
Microshield inserted air gap air	0.	

Source Volume: 14.9462 cubic centimeters

MATERIAL DENSITIES (g/cc):

Material	Source	Shield 2	Air gap
Air		AU	.001220
Aluminum Carbon Concrete Hydrogen			
Tron Lead Lithium Nickel Tin	7.860		
Titanium Tungsten Urania Uranium			
Water Zirconium		1.0	

Page 2

Film: CARLEL20.7888

TASE: India - Mangamene 55 - 120 sec Trradiation

BUILDUP FACTOR: based on TAYLOR method. Ising the characteristics of the materials in shield 1.

INTEGRATION PARAMETERS:

Number	of	lateral angle	segments (Ntheta)	11
Number	of	azimuthal angl	e segments (Npsi)	11
Number	of	radial segment	s (Nradius)	11

SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies	Nuclide	Curies
A1-28	0.0000e+00	Cr-51	0.0000e+00	Mg-27	0.0000e+00
Mn=56	5.8360e*01				

RESULTS:

Group #	Energy (MeV)	Activity (photons/sec)	Dose point flux MeV/(sq cm)/sec	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	3.3672 2.9609 2.6641 2.5234 2.1172 1.8047 1.3516 .8516	3.629e+07 6.618e+07 1.409e+08 2.135e+08 3.096e+09 5.871e+39 3.512e+07 2.135e+10	1.521e+06 2.440e+06 4.688e+06 6.732e+06 8.226e+07 1.332e+08 5.977e+05 2.301e+08	2.073e+03 3.505e+03 6.971e+03 1.020e+04 1.312e+05 2.244e+05 1.076e+03 4.578e+05
20	TOTALS :	3.081e+10	4.616e+08	8.371e+05

Microshield Results for Insulators in TIP Containing Al-28

Miconshiald 3.11

Page : 1 File : 7 Run date: N Run time: 8	(T IPAL120.MSH ovember 27 :47 a.m.	Carolina Pow 1 1990	ver & Light	- #059) 1	File Ref: Date: By: Checked:	7
CAS	E: Holding	TIP - Alumi	num-28 - 12	o sec. In	rradiation	
GEOMETH	Y 7: Cylind	iri' l sourc	e from side	- cylind	irical shield	s
Distance to Source leng Dose point Source cyli Thickness o Thickness o Microshield	detector. th height fro nder radius f second sh f third sh inserted a	base hield hield hir gap	· · · · · · · · · · · · · · · · · · ·	. X . L . Y . T1 . T2 . T3 . air	0.367 2.540 1.270 0.216 0.052 0.099 0.	Cm. " " " "
	Source	Volume: .37	3706 cubic	centimete	ers	
		MATERIAL DE	NSITIES (g/	cc):		
Material Air Aluminum Carbon Concrete Hydrogen	Source	Shield 2	Shield 3	Air gan .0012:	20	
Iron Lead Lithium Nickel Tin Titanium Tungsten Urania Uranium		7.860				
Water Zirconium Alo			1.0			
Alumina	3.970					

Page 2

14

CASE: Holding TIP - Alminum-28 - 120 sec. Irradiation

BUILDUP FACTOR: based on TAYLOR method. Using the characteristics of the materials in shield 3.

INTEGRATION PARAMETERS:

Number	of	lateral angle	segments (Ntheta)	11
Number	of	azimuthal ang.	le segments (Npsi)	11
Number	of	radial segment	ts (Nradius)	11

SOURCE NUCLIDES:

Al-28: 7.7700e-01 curies

RESULTS:

Group #	Energy (MeV)	Activity (photons/sec)	Dose point flux MeV/(sq cm),'sec	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10	1.7734	2.875e+10	1.188e+10	2.010e+07
11 12 13 14 15 16 17 18 19 20				
	TOTALS:	2.875e+10	1.188e+10	2.010e+07

. .

Microshield Results for TIP Outer Shell Containing Mn-56

Microshiels 3.11

Par mar 7	Same 1	There are an and	A* .	TY & and	and a	4 MEM	4
Uarp1	1716	PLWEI	24	LIUT	TL .	 #009	0

Page : File :	1 FIPOUTMN.MSH		File Ref: Date:	
Run date:	November 27,	1990	By:	
Run time:	8:54 a.m.		Checked:	 The second contract devices and second s
				succession of the second

CASE: TIP - Outer Cylinder - Manganese 56 - 120 sec. Irradiation

GEOMETRY 7: Cylindrical source from side - cylindrical shields

Distance to detector X	0.367	Cm.
Source length L	5.080	
Dose point haight from base Y	2.540	
Source cylin or radius T1	0.268	
Thickness of second shield T2	0.099	11
Microshield inserted air gap air	0.	н

Source Volume: 1.146 cubic centimeters

MATERIAL DENSITIES (g/cc):

Source	Shield 2	Air gap
		.001220
7.860		
	1.0	
	Source 7.860	Source Shield 2 7.860 1.0

Page 2 DASE: TIP - Duter Dylinder - Mengamente 56 - 120 sec. Interiation

> BUILDUP FACTOR: based on TAYLOR method. Using the characteristics of the materials in shield 1.

INTEGRATION PARAMETERS:

Number	of	lateral angle	egments (Ntheta).	 11
Number	of	azimuthal angl	segments (Npsi).	 11
Number	of	radial segment	(Nradius)	 11

SOURCE NUCLIDES:

Mn-56: 3.2400e-01 curies

RESULTS:

Group #	Energy (MeV)	Activity (protons/sec)	Dose point flux MeV/(sq _m)/sec	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 6 7 7 8 9 0 11 2 3 4 5 7 8 9 0 11 2 3 4 5 7 8 9 0 11 2 3 4 5 7 8 9 0 11 2 3 4 5 1 12 3 12 12 1 12 1 2 1 12 1 12 1 12	3.3672 2.9609 2.6641 2.5234 2.1172 1.8047 1.3516 .8516	2.015e+07 3.674e+07 7.823e+07 1.185e+08 1.719e+09 3.259e+09 1.950e+07 1.185e+10	8.455e+06 1.356e+07 2.605e+07 3.742e+07 4.571e+08 7.407e+08 3.325e+06 1.285e+09	1.152e+04 1.948e+04 3.875e+04 5.670e+04 7.290e+05 1.247e+06 5.988e+03 2.556e+06
	TOTALS	1.7100+10	2.5710+09	4.6640+06

Microshield 3_13

Page : File : Run date: Run time:	1 TIPINMN.MSH November 27, 1990 9:01 a.m.	Power & Light -	#059) File Ref: Date: By: Checked:	
Run time:	9:01 a.m.		Checked:	

CASE: TIP - Inner Cylinder - Manganese 56 - 120 sec. Irradiation

GEOMETRY 7: Cylindrical source from side - cylindrical shields

Distance to detector	Х	0.367	cm.
Source length	L	5.080	н
Dose point height from base	Y	2.540	11
Source cylinder radius	Tl	0.216	н
Thickness of second shield	T2	0.099	11
Microshield inserted air gap	air	0.052	**

Source Volume: .747412 cubic centimeters

MATERIAL DENSITIES (g/cc):

! terial	Source	Shield 2	Air gap	
Air			.001220	
Carbon				
Concrete				
Iron	7.860			
Lead				
Nickel				
Tin Titanium				
Tungsten				
Uranium				
Water Zirconium		1.0		

File: TTPINNN STER

Page 2 TAME: TIP - INDAR Cylinder - Mangamene 56 - 120 ser. Intadiation

> BUILDUP FACTOR: based on TAYLOR method. Using the characteristics of the materials in shield 1.

INTEGRATION PARAMETERS:

Number	of	lateral angle seg	ments (Ntheta)	11
Number	of	azimuthal angle s	egments (Npsi)	11
Number	of	radial segments (Nradius)	11

SOURCE NUCLIDES:

Mn-56: 2.1100e-01 curies

RESULTS:

Group	(1. V)	Activity (photons/sec)	Dose point flux MeV/(sg cm)/sec	Dose rate (mr/hr)
12345678901234567890	3.3672 2.9609 2.6641 2.5234 2.1172 1.8047 1.3516 .8516	1.312e+07 2.393e+07 5.094e+07 7.719e+07 1.119e+09 2.123e+09 1.270e+07 7.719e+09	5.378e+06 8.627e+06 1.657e+07 2.379e+07 2.905e+08 4.706e+08 2.115e+06 8.164e+08	7.328e+03 1.239e+04 2.464e+04 3.605e+54 4.633e+05 7.925e+05 3.805e+03 1.624e>06
20		[일이 [19] [19] [19] [19] [19] [19] [19] [19]		
	mamsia	1 1140410	1 6240+00	2 0640+06
	IULMAL !	1.1140+10	7.0346403	2. TO46400

Gamma Dose Summary for TIP Incident

Object	Nuclides	Irr. Time (sec)	Activity (Ci)	Dose Rate (mR/h)	Dose Rate (R/s)	Exp. Time (sec)	Dose (R)
Cable TIP TIP	Mn-56 Mn-56 Al-28	120 120 120	0.584 0.113 0.777	837100 1720000 20100000	0.233 0.478 5.583	3.0	0.698 0.000 0.000
						Total:	0.698

Gamma Dose Summary for the TIP Incident (All calculations performed using Microshield, Rev. 3.11)

Object	Nuclides	Irr. Time (sec)	Activity (Ci)	Dose Rate (mR/h)	Dose Rate (R/s)	Exp. Time (sec)	Dose (R)
Cable TIP TIP	Mn-56 Mn-56 Al-28	180 180 180	0.874 0.169 1.017	1252925 2572389 26308494	0.348 0.715 7.308	4.0 0.0 0.0	1.392 0.000 0.000
						Total:	1,392

Object	Nuclides	Irr. Time (sec)	Activity (Ci)	Dose Rate (mR/h)	Dose Rate (R/s)	Exp. Time (sec)	Dose (R)
Cable TIP TIP	Mn-56 Mn~56 A1-28	300 300 300	1.449 0.280 1.332	2078406 4261947 34457143	0.577 1.184 9.571	4.0 0.5 0.5	2.309 0.592 4.786
						Total:	7.687

Beta Dose Summary for TIP Incident

Beta Dose Summary for	TIP Incident
-----------------------	--------------

Dose (rad)	Dose Rate (rad/s)	Exp. Time (sec)	Irr. Time (sec)	Nuclide	Object
4.623	1.541 2.406 21.109	3 0 0	120 120 120	Mn-56 Mn-56 Al-28	Cable TIP TIP
4.623	Total:				
Dose (rad)	Dose R te (rat, t)	Exp. Time (sec)	Irr. Time (sec)	Nuclide	Object
9.228 0 9.228 9.228	2.307 2.406 21.109 Total:	4 0 0	180 180 180	Mn-56 Mn-56 Al-28	Cable TIP TIP
Dose (rad)	Dose Rate (rad/s)	Exp. Time (sec)	Irr. Time (sec)	Nuclide	Object
15.308 2.984 18.093	3.827 5.968 36.186	4 0.5 0.5	300 300 300	Mn-56 Mn-56 Al-28	Cable TIP TIP
36.385	Total:				

As a result of the Department of Labor proceeding brought by Mr. Larry Dew against CP&L and CDI Corporation, CP&L conducted an investigation into the allegations. Part of this investigation centered around the radiation dose assigned to Mr. Dew.

The investigation of the dose assignment was divided into two parts: 1) the assumptions, and 2) the dose calculation methodology. The investigation regarding the assumptions was conducted by Mr. Mike McGarry and Mr. Don Meindertsma, counsel from the law firm of Winston and Strawn, Washington, DC, and, assisting at their direction, Mr. B. H. Webster, Manager of Corporate Health Physics for CP&L. The second part of the investigation that looked at the methodology for the dose calculation was conducted at the direction of legal counsel by Mr. Steve Browne and Mr. Jay Terry, technical representatives of CP&L, with assistance from an outside consultant, Mr. Robert Alexander.

In looking at the assumptions the investigation team sought the answers to four questions:

- 1. How long was the TIP in the core?
- How far back from the detector did Mr. Dew grab the cable?
- 3. Did Mr. Dew actually 'such the TIP detector?
- How long was Mr. Dew's hand in contact with the TIP cable/detector?

In order to obtain answers to these questions, everyone involved or who might have knowledge of the incident was questioned, except Mr. Dew, who was not available. In all this included about 26 people, some of whom were questioned more than one time. In answering these questions, the investigation team determined the most probable scenario and also determined the upper and lower bounds for the assumptions as summarized in the table below.

SUMMARY OF ASSUMPTIONS							
	Lower Bouna	Most Probable	Upper Bound				
Time detector in core	2 min.	3 min.	5 min.				
Distance from hand to detector	7 inches	7 inches	7 inches				
Hand contact with detector	0 sec.	0 sec.	0.5 sec.				
Hand in contact with cable	3 sec.	4 sec.	4 sec.				

The findings of the investigation team with respect to the four questions and the conclusions regarding the assumptions used in the dose calculations are discussed below.

1. How Long was the TIP in the core?

People who were involved in the work associated with this incident and others who were familiar with this type of work were questioned. Those people most familiar with the TIP operation stated that the TIP could not have been in the core more than two to three minutes. Only one person indicated that it could have been in the core as much as five minutes.

Also, the dose recorded on the whole body badge substantiates the assumption that the TIP was not in the core for a much longer period. If the TIP had been in the core for eight to twelve minutes as alleged by Mr. Dew, our calculations show his whole body badge would have shown between 1,000 and 1,200 mrem. In fact, the whole body badge registered 405, which is consistent with the TIP being in the core for two to three minutes. For these reasons the investigation team believes that the best estimate of the time the detector was in the core was three minutes, with a range of two to five minutes.

2. How far back from the detector did Mr. Dew grab the cable?

Following the incident, witnesses recalled that Mr. Dew repeatedly stated that he grabbed the cable about 12" from the detector and re-inserted it in the tube. However, in reenactment of the incident, Mr. Dew grabbed the cable as close as 7" from the detector. Consequently, for all cases, it was assumed that Mr. Dew's hand was on the cable 7" from the detector.

3. Did Mr. Sew actually touch the TIP detector?

Witnesses reported that in conversations with Mr. Dew immediately after the incident and during the next five days, Mr. Dew always stated that he did not touch the detector, even when specifically asked. Also, during every reenactment of the incident, he grabbed the cable, never touching the detector. The technician who was working with Mr. Dew during the incident stated that he did not see Mr. Dew touch the detector. He stated that he saw Mr. Dew re-insert the TIP and did not observe him touching the detector. However, this technician said that although he did not see Mr. Dew touch the detector, he could not absolutely state that he did not.

About five days later, Tuesday, July 10, 1990, Mr. Dew stated to one of the members of the original investigation team that he was now not sure that he did not touch the detector. At this time he told the investigator that he could have touched the detector, but if 'he did, he just brushed it before grabbing the cable. He demonstrated how this was possible and the investigator timed him. During this reenactment, the time that Mr. Dew's hand was in contact with the detector was about 0.4 seconds.

People familiar with this job and who had performed the job numerous times thought that it would not have been possible to grab the detector, release it, and then grab the cable. The cable is on a reel that is spring-loaded and would have been pulling on the cable. They all indicated that if you released the detector it would have retracted to the point of completely winding up on the take-up reel. This is further evidence that Mr. Dew did not touch the detector. The investigation team feels very confident that based on the evidence, Mr. Dew did not touch the detector and that was the assumption used in calculating the most probable dose to his hand. However, in calculating the upper bound of the dose, it was assumed that his hand was in contact with the detector for 0.5 seconds.

How long was Mr. Dew's hand in contact with the cable/detector?

Immediately following the incident, Mr. Dew repeatedly stated to management and HP personnel and demonstrated that his hand was in contact with the cable three seconds. Several times he demonstrated how he glabbed the cable and re-inserted it in the time required to count "1, 2, 3." During timed reenactments of the incident Mr. Dew always took three seconds or less to re-insert the TIP. However, later Mr. Dew indicated to one of the investigators that he, on his own, had attempted reenactment and he thought that it
might have taken longer than three seconds, maybe about four seconds. Based on this last statement and to be conservative, the investigation team recommends using four seconds for the most probable time and three seconds for the lower bound. For the upper bound the four seconds in contact with the cable should be used; but as previously stated, it is also assumed that his hand was in contact with the detector for 0.5 seconds.

3. H. Ulabeta 11/30/20

Attachment 11

Independent Evaluation of Dose Calculations

R.E. ALEXANDER

in the second

November 19,1990

Stephen A. Browne Principal Specialist - Health Physics Carolina Power and Light Company P.O. Box 1551 Raleigh, NC 27602

Dear Mr. Browne:

At the request of Billy Webster, CP&L, I have reviewed your calculations of the dose received by the left hand of a CP&L employee on July 5, 1990. Details regarding this incident and the calculations appear in the document "Brunswick TIP Incident Dose Calculations" that you recently sent to me.

Regarding the gamma dose, which is only a small percentage of the total, I obtained and examined the Grove Engineering computer program MicroShield that was used for this calculation. The program is technically sound and is widely used in the nuclear power industry. The manner in which the program was used is correct. The best-estimate gamma dose at a tissue depth of 0.007 cm (about 1.4 rem) may be considerably overestimated since no correction for lack of electronic equilibrium at this depth was included in MicroShield. I discussed this problem with Dr. Daniel Reece, Texas A&M University. He is sending information to me regarding work on corrections of this type that has been completed at Battelle Northwest Laboratories. It may be feasible to make the correction if you so desire.

During my visit with you at Brunswick we carefully reviewed your calculation of the beta dose, which resulted in a best estimate of about 9.2 rems. Your use of equation 24 from <u>Radiation Dosimetry</u>. Hine and Brownell, appeared to me to be technically sound. The only reservation I had was about the manner in which the correction for self absorption by the source (cable in this case) is made by this equation. In a subsequent meeting that I attended with you, Mr. John Potter of the NRC requested a verification of your result; and at the request of CP&L I have conducted a rather thorough study. My first contact was with Sydney Porter who has developed a computer program for performing beta dose calculations. This program is based on tables published by W. G. Cross, Chalk River Laboratories ("Tables of Beta Ray Dose Distribution in Water, Air and Other Media", AECL-7617, 1982). Unfortunately, the capability of Porter's program is limited to infinitely thin plane source terms for which the question of beta absorption by the source itself does not arise. However, you had indicated to me that the correction provided by the Hine and Brownell equation was 0.5; thus the results of Porter's equation, multiplied by 0.5, would provide an estimate that could be compared with yours.

Using the Mn-56 total cable activity \mathbf{q} of 5.241 Ci that you provided, the exterior cable circumference \mathbf{C} of 0.785 inches, a length \mathbf{L} of 9 feet, and a thickness \mathbf{t} of 0.125 inches for the cable, and an infinite thickness \mathbf{t} of 2 mm for 2.85-MeV betas in iron, I estimated an infinitely thin source term of 6000 μ Ci/cm² as the necessary input for Porter's program. The following equation was used:

$$\sigma = \frac{q}{LC} \times \frac{\tau}{t}$$

The ratio t/t eliminates Mn-56 that does nc* contribute to the surface dose rate. An activity distribution e for was of necessity introduced in the conversion of the actual hollow cylinder to a rectangular plane. However, I believe the dose to the maximally exposed square centimeter of skin would be approximately the same from either geometry.

Using the previously mentioned input the following results, multiplied by 0.5 as in the case of the Hine and Brownell equation, were obtained:

Depth (mg/cm ²)	Dose Rate (rads/sec)
7	6.7
20	5.0
99	2.3
112	2.2

Regarding the depths, a density of 1 g/cm² was used for the rubber gloves worn by the exposed person (92 mg/cm²) and for tissue (7 mg/cm²). For an exposure of 4 seconds at 99 mg/cm², as used for your calculation, the estimate would be 9.2 rads. This result is

the same as obtained from the Hine and Brownell equation. It access confidence in your result but does not investigate the accuracy of the Hine and Brownell self-absorption correction.

To investigate the self-absorption phenomenon I contacted Dr. F. H. Attix, who recommended a Monte Carlo simulation using a code written at the University of Wisconsin under the supervision of Dr. Thomas R. Mackie. Dr. Mackie agreed to perform the calculation, using input data that I provided in a letter approved by you and dated October 24, 1990, Attachment 1. His results were sent to me on November 12, 1990, Attachment 2. At 100 mg/cm² the dose rate is shown to be 131.5 rads/sec per Ci of Mn-56 per gram of iron, with a standard deviation of 9.3 rads/sec. The dose rate associated with a specific activity of 0.0189 Ci/gm is 2.485 rads/sec. For a 4-second exposure the dose would be approximately 9.9 rads.

The Hine and Brownell equation was developed before current Monte Carlo methods were computerized and does not account for self absorption with the accuracy of the Monte Carlo simulation. For this reason I recommend acceptance, for purposes of compliance demonstration, of the 9.9-rad beta dose estimate at a tissue depth of 7 mg/cm², the depth required by 10 CFR Part 20. For purposes of the CP&L medical record, I recommend recording also the dose at a tissue depth of 40 mg/cm², the depth at which the cells at risk (the basal cell layer) are likely to be located (ICRP Report 23). At a total depth of 150 mg/cm², Dr. Mackie reports a dose rate of 110.1 rads/sec per Ci/gm, which would be 2.08 rads/sec from the cable. Thus the recorded beta dose would be 8.3 rads. If the actual depth to the basal cell layer is desired, it may be possible to obtain it through examination by a dermatologist. Recomputation of the dose might then be in order.

Please note that my analysis did not include eview of assumptions such as the neutron irradiation time for the cable in the reactor core, the activation determination, or details of the exposure such the location of the hand on the source and the time of exposure.

Please call on me if I can be of further assistance.

Sincerely,

Robert E. Alexander

Enclosures: Attachment 1, letter to Mackie Attachment 2, response from Mackie

cc: J. Michael McGarry Winston and Strawn

OCT-24-90 WED 11:15

R.E. ALEXANDER President

Bob.

P.02.

Dr. Thomas R. Mackie Department of Medical Physics University of Wisconsin 1300 University Avenue Room 1530 Madison, Wisconsin 53706

October 24, 1990 10/24/90

This looks good - Please proceed. I am also sending you 2 pages from ICRP 23. Steve Drowne

Dear Dr. Mackie:

In connection with our recent discussion about a beta radiation skin dose calculation that you expressed willingness to perform, I am pleased to say that my client has authorized the work. To expedite the administrative aspects, the work will be performed for my corporation; and your invoice should be directed to me at the address shown on the letterhead.

The information that you will need is provided below:

- 1. The radionuclide is Mn-56.
- 2. The quantity to be used is 1 Ci.
- 3. The radionuclide is an activated impurity uniformly distributed in an Fe slab of infinite area and of thickness greater than the range of the maximum Mn-56 beta (2.85 MeV).
- The beta dose rate is to be calculated in units of rad/sec. 4. 5. Exposure configuration: the palm of the hand is pressed
- against a flat Fe slab.
- 6. The beta dose rate is to be provided at the absorber depths listed below, assuming for each depth an absorber density of $1 \, \mathrm{g/cm^3}$:

	07	mg	/ #	cm
9	9		ŧ	
1	4		ŋ	
2	9		n	

I will be expected to provide a report to my client in sufficient detail to satisfy any regulatory and legal needs that may arise. For this reason I would appreciate receiving from you a brief description of the computer program you will use. The target audience for this description would be health physics

13131 Maltese Lane • Fairfax, Virginia 22033

personnel employed by the Nuclear Regulatory Commission (NRC). A copy of your CV would also be beneficial for this file.

In accordance with our telephone conversation, I have informed my client (1) that the calculations will be performed by you or under your direct supervision and that the results will be authenticated by your signature, (2) that the fee will be based on a rate of \$100 per hour, or \$500 per day if the time requirement is more extensive, and (3) that 1 day might be a good estimate for the calculation as I described it over the telephone.

I am very happy to have this opportunity to work with you. My friend Frank Attix has spoken very highly of your capability and standing in the beta dosimetry field; it is very fortunate that you are in the position to help us at this time. The NRC has requested a dose report from my client within 2 weeks, and it is my understanding from you that this schedule is compatible with the amount of time you are likely to need.

Please call me if additional details regarding the exposure are needed for your calculation.

Sincerely,

Robert E. Alexander

P.08

UNIVERSITY OF WISCONSIN-MADISON MEDICAL SCHOOL

Nov. 12, 1990

Robert E. Alexander The Alexander Corporation 13131 Maltese Lane Fairfax, Virginia 22033

Dear Dr. Alexander,

Find enclosed the results of a Monte Carlo simulation involving an exposure from β^- particles emitted from ⁵⁶Mn. I apologize for the delay of the weekend, but we wanted to do some additional tests of the simulation to verify that the simulation was free of any systematic errors.

The Monte Carlo code used was EGS4 (Electron Gamma Shower Version 4) originally written by Ralph Nelson and colleagues at the Stanford Linear Accelerator Center and modified and benchmarked for low energy transport by David Rogers and colleagues at the National Research Council of Canada. The specific user code is called XYZDOS was written by David Rogers and Alex Bielajew and modified, under my supervision, by Mark Holmes to model radioactive sources. Collaboration was also provided by two other students: Tim Holmes and Douglas Simpkin. As agreed during our telephone conversation additional documentation describing this code can be supplied by us, however, EGS4 is widely described in the literature (eg. Nucl. Inst. and Methods, Medical Physics, Phys. Med. Biol.)

' addition to the specific details of the simulation we conducted several tests of the code to ensure its correctness. Specifically we:

- tested that energy was being conserved for different numbers of histories (simulated particles)
- tested that for conditions of charged particle equilibrium that the simulated dose rate in homogeneous water and Fe phantoms agreed with the equation:

$$\left(\frac{dD}{dt}\right)_{\beta} = \frac{A}{M} \Sigma_i (\Delta_{\beta} -)_i$$

Department of Medical Physics

where $\left(\frac{dD}{dt}\right)_{\beta}$ is the dose rate, $\frac{A}{M}$ is the activity per unit mass and $(\Delta_{\beta})_i$ is the equilibrium dose rate constants for bins describing the beta spectrum for ⁵⁶ Mn, the sum of which is the mean energy of beta particles per decay (0.832 MeV or 4.91 × 10² g · rad/(Ci · s).

 ensured that the β⁻ were being emitted uniformly in the source region and isotropically distributed in direction.

According to your specifications of the problem outlined in your FAX of October 24 and in our telephone conversations we simulated the geometry described by the accompanying diagram. Briefly, it consists of a 12 cm \times 12 cm slab of iron (density = 7.86 g/cm³) that contains a uniform isotropically emitting source of ⁵⁶Mn. The thickness of the slab is 0.5 cm which is greater than the range of the betas in iron. The scoring region consisted of 20 slabs 8 cm \times 8 cm by 0.01 cm thick centered beneath the Fe slab. The scoring region was surrounded by 2 cm of water to the sides and 1.8 cm of water below to ensure scatter equilibrium to the scoring region. Only the dose from beta particles was simulated (the dose from gamma or internal bremsstrahlung is not to be included).

The tabulation of Browne and Firestone (enclosed) was felt to be too coarse so the beta spectrum of ⁵⁶Mn was obtained from Douglas Simpkin using a code described in the literature (Simpkin and Mackie, Med. Phys., 1990). It consisted of 49 spectral bins and a plot of the spectrum is enclosed including a comparison with Browne and Firestone. The simulation consisted of running 1000 simulated decays for each of the 49 bins for a total of 49,000 histories. The probability of emission from each of the bins (as expressed in numbers of histories per 10,000 decays) was used to weight histories starting from each of the bins. The simulation was run on a Sun Sparcetion-1 computer.

The dose rate per Ci/g $\frac{dD/dt}{(A/M)}$ for any of the scoring region slabs was obtained from the following equation:

$$\frac{dD/dt}{(A/M)}[rad \cdot g/(Ci \cdot s)] = 3.7 \times 10^{10} Bq/Ci \cdot \frac{100rad}{Gy} \cdot M_{source}[g] \cdot \frac{D_{score}[Gy]}{N_{decay}}$$

where $D_{score}[Gy]$ is the dose in Grays scored in a water slab, $M_{source}[g]$ is the mass of the source region in grams which was 565.9 g, and N_{decay} is the number of simulated decays in the source region.

For the particular geometry used the following equation is more convenient:

$$\frac{dD/dt}{(A/M)}[rad \cdot g/(Ci \cdot s)] = 2.09 \times 10^{16} [\frac{rad \cdot g/(Ci \cdot s)}{Gy/decay}] \cdot \frac{D_{score}}{N_{decay}} [Gy/decay]$$

The tabulated and graphed results are enclosed. The dose rate in rad/s per Ci/g from beta particle emission in the first scoring region past the interface (the interface is located at 0.5 cm) is 2.49×10^2 g · rad / (Ci · s) and rapidly falls to values between about 1.2 to 0.5×10^2 g · rad / (Ci · s) at 0.1 cm to 0.2 cm past the interface, respectively. The percent statistical uncertainty (100 × standard deviation/value) is typically less than 5%.

The value near the boundary is within 2 % of what one would expect from the simple dosimetric approximation of assuming an equilibrium spectrum of betas from a semi-infinite slab source (i.e. half the equilibrium dose rate or $\frac{4.91}{2} \times 10^2$ g · rad/(Ci · s). This is fortuitous for two reasons. The accuracy of the simulation is not within 2%. The simple analytic estimation is very crude. Including the ratio of mass collision stopping powers between water and iron would have increased the crude estimate by about 30 to 40% and including the lack of an equilibrium scatter would tend to decrease the result by a similar amount. Of course the Monte Carlo simulation takes both of these effects into account implicitly.

This report is being sent by FAX, but will be followed up with a letter that will include a longer run with less uncertainty. At that time, I will also include the raw output from the Monte Carlo simulation which lists some of the details of the particle transport and a reprint of the Simpkin and Mackie paper. I hope that you find these results useful and please let me know if you have any other questions or concerns.

Accompanying the letter will be an invoice from the UW Medical Physics Department for \$2,000. It will fund for travel expenses for graduate students working in our radiation dosinetry research group.

Best regards. Yours sincerely,

2 FMabil

T.R. Mackie Assistant Professor (608) 262-7358

cc: Mark Holmes, Tim Holmes, Douglas Simpkin

Table of Radioactive Isotopes

Edgardo Browne and Richard B. Firestone

Virginia S. Shirley, Editor

Lawrence Berkeley Laboratory University of California

A Wiley-Interscience Publication JOHN WILEY & SONS New York • Chicheste • Brisbane • Toronto • Singapore

56 Mn(2.5	785	6b)

Mode: β-Δ: -56908.4 is keV SpA: 2.1702×10⁷ Ci/g Prod: ³⁵Mn(n,γ)

Photons (56Mn)

(m)=1692 23 keV

™mode	$\gamma(\text{keV})$	$\gamma(96)^{1}$
(M1+E2) + E2 + M1+E2) + E2 + M1+E2) + M1+3.5%E2 + E2 + M1+4.0%E2 + E2 + M1+E2 + M1+E2 + M1+E2 + E2 + E2 + E2 + E2 + E2	787.80 + 846.812.30 1037.879 /9 1238.317.21 1360.29 J 1810.80 + 2113.19 + 2276.7 J 2522.55 + 2598.57 J 2657.58 + 29.59 96 + 3369.72 9	0.00034 + 98.9 J 0.040 J 0.099 H0 0.0048 S 27.2 f 14.3 + 0.00034 + 0.99 J 0.0188 ze 0.653 ze 0.306 H0 0.170 P

Continuous Radiation (56 Min) (R.)=830 keV:(1B)=1.9 keV

	-	in contraction	
E _{bin} (keV)		()(keV)	(%)
0 - 10	B.	0.0344	0.69
1.	18	0.031	
10 - 20	B.	0.104	0.70
	IB	0.030	0.21
70 - 40	B.	0.431	1.43
	IB	0.059	0.20
40 - 100	8-	3.29	4.66
	IB	0.164	0.25
100 - 300	8.	35.0	17.4
100 . 466	18	0.44	0.25
100 - 600	8-	101	23.0
244 - 644	TB	0.45	0.106
600 - 1100	8.	247	27.0
000 - 1500	1B	0.54	0.063
1300. 2300	8.	429	24.5
1.0000 1.0000	IB	0.17	0.0108
11001-1840	8.	14.3	0.55
2360 . 2043	IB	0.00036	1.42×10^{-3}

⁵⁶₂₇Co(77.7 5 d)

Mode: e Δ: -56038.0.25 keV SpA: 3.001×10⁴ Ci/g Prod: ⁵⁶Fe(p,n); ⁵⁵Mn(a.3n); daughter ⁵⁶Ni; ⁵⁶Fe(d,2n); ⁵⁸Ni(d,α)

Photons (⁵⁶ Co)				
(γ)=3378 32 keV				
Ϋ́ moxie	γ(ke¥)	$\gamma(9b)^{\dagger}$		
e L.	0.615	0.031 #		
e L.	0.628	0.0211		
e 1.	0.705	0.29 1		
e L.	0.726	0.22 #		
e K	6.391	7.5 4		
e K	6.404	14.41		
e K	2.058	2.58 11		
INT PERI	263.461	0.021 /		
MITER	311.23 1	0.025 /		
MIL+E2	486.86 10	0.050 /0		
MIL+E2	674 69 4	0.030 16		
MITTER 1	733.64 4	0.192 #		
641+52	787.80 4	0.307 /		
E.S.	846.812.20	9.90		
M1+F2	896.63 #	0.075 10		
M1+E2	977.48 4	1.40 /		
M1+E2	997.10 4	0.14 3		
M1+E2	1037.879 14	14.1.7		
M1+E2	1089.11#	0.050 20		
M1+E2	1140.46 #	0.126 /3		
E21	1160.09 #	0.091 10		
M1+E2	1175.151	2.26 #		
M1+E2	1199.031	0.043 11		
Y E2	1238.317 23	67.0 11		
7 [M1+E2]	1272.08 10	0.0200 /0		
 Control (1991) 	1335.59 #	0.1209 24		
[M1 E2]	1360.291	4.298		
Y M + 12	1442.801	0.073 -		
Y L2	1404.481	0.043 /		
7 E2	1040.234	15.5.3		
7 MI+12	1711.214	0.650 m		
Y M1+3.2752.4	106108+	0.702 //		
7 M1+E4	2015 34 4	3.03 4		
Y M1+521	1 30 54 06	7 77 14		
- MILLA OME?	2113.19#	0.376 #		
~ (M1+F7)	2213.00 /	0.376 #		
~ (F2)	2275.171	0.120 /#		
7 (80.00)	2373.44 4	0.061 #		
~ M1+E2	2522.95 #	0.054 6		
7 M1+E2	2598.571	16.71		
v [E2]	2657.58 4	0.0156 7		
7 E2	2959.96 4	0.0080 /		
y M1+E2	3009.78 4	1.03 \$		
7 M1+E2	3202.25 #	3.02.21		
7 M1+E2	3253.60 ×	1.4.1		
7 E2	3273.23 +	1.7317		
7 E2	3369.72 /	0.00943		
7 E.2	3451.274	0.894		
7 M1+E2	3548.21	0.17317		
7	3600.86 23	0.0150 %		
N	3611.707	0.0016 10		

+<0.1% uncert(syst)

Atomic Electrons (56Co)

(e)=3.63 keV

	1.1.1	a second a supplementation in a second
e _{bin} (keV)	(e)(keV)	e(%)
15	0.47	657 3.17 434
256 - 263 404 - 411	0.00041 0.00018	~0.00016 4.5 /9 × 10 ⁻¹
480 - 486 668 - 674 777 - 733	0.00026 9.0 × 10 ⁻³ 0.00051	1.3 1 × 10 ⁻³ 7.0 13 × 10 ⁻³
781 - 787 840	0.00073	9.3 ts × 10" 0.0268 t 0.00259 t
970 - 996 1031 - 1037	0.0027 0.0234	0.00028 / 0.00227 25
1082 - 1088 1133 - 1174 1192 - 1198 1231	7.8 ×10 ⁻³ 0.0036 6.1 ×10 ⁻¹ 0.0891	0.00031 J 5.1 J × 10 0.00724 #

Atomic Electrons (²⁰ Co) (conscioned di				
e _{bin} (keV)	(e)(keV)	रत्यां		
1237 - 1271 1328 - 1360 1436 - 1462 1633 - 640 1764 - 1810 1957 - 2034 2106 - 2112 2206 - 2275 2366 - 2373 2516 - 2598 2650 - 2657 2953 - 3009 3195 - 3273 3363 - 3451	$\begin{array}{c} 0.00855\\ 0.0054\\ 0.000290\\ 6.8 \times 10^{-5}\\ 0.0100\\ 0.000309\\ 0.000405\\ 3.9 \times 10^{-5}\\ 0.0123\\ 1.15 \times 10^{-5}\\ 0.00069\\ 0.00069\\ 0.0078\\ 0.00057 \end{array}$	$\begin{array}{c} 0.000691 \ is\\ 0.00040 \ i\\ 2.01 \ is \times 10^{-3}\\ 4.15 \ is \times 10^{-6}\\ 0.00089 \ s\\ 0.000496 \ si\\ 1.47 \ s \times 10^{-5}\\ 1.82 \ is \times 10^{-5}\\ 1.7 \ s \times 10^{-6}\\ 0.00647 \ s\\ 2.31 \ s \times 10^{-3}\\ 2.31 \ s \times 10^{-3}\\ 0.000241 \ si\\ 1.65 \ is \times 10^{-3}\\ 1.65 \ is \times 10^{-3}\\ \end{array}$		
3541+3611	0.000117	3.3.1 × 10-		

Continuous Radia ion (56Co)

(B+)=120 keV:([1])=0.44 keV

and the second second second	-	ACCOUNTS INCOME.	
E _{bin} (keV)		()(keV)	(%)
0 + 10	£+	7.9 1101	0.00100
	B	0.00 16	
10 - 20	B+	0.00 30	0.0081
	18	0.00 11	0.036
20 - 40	8+	0.01 (3	0.051
	18	0.00 /9	0.034
40 - 100	6+	0.331	1.446
	18	0.028	0 943
100 - 300	8+	6.8	3.4
100 - 500	IB	0.086	0.0.7
100 - 600	8+	28.6	6.3
then they	18	0.120	0.028
600 - 1300	8+	83	9.7
000 - 1200	18	0.143	0.017
1300 - 2481	8+	1.70	0.127
1000 - 2101	IB	0.046	0.0028
	5.8.4		20

⁵⁶₂₈Ni(6.10 2 d)

Mode:	. 6	
Δ:	-53902 11 ke	V
SpA:	3.822×10°	Ci/g
Prod:	⁵⁴ Fe(α,2n);	⁵⁶ Fe(³ He.3n)

Photons (⁵⁶Ni)

(y)=1721 20 keV

$\gamma(keV)$	$\gamma(\%)^{\dagger}$
0.678	0.042 //
0.693	0.027 /
0.776	0.44 11
0.799	0.34 #
6.915	10.13
6.930	19.8 10
7.649	3.60 18
158.391	98.8
269.512 /7	36.51
480.452 17	36.58
749.962 19	49.5 12
811.86 J	86.0 17
1561.81 /	(4.0 #
	γ(keV) 0.678 0.693 0.776 0.799 6.915 6.930 7.649 (58.39 J 269.512 I ⁷ 480.452 I ⁷ 749.962 I ⁹ 811.86 J 1561.81 J

+ 2.0% uncert(syst)

56-2

and the second of the second s	
and the second se	
What all a lot the same service the fact the	

· · · · · · · · · ·	*********	*******
. stout of :	file: mn56s	spec.dat , with present directory =
A (GRAPH (DAT)	L	-1000 # 11:49:57
ate or prin	FOUL: TO	*******
0.0284860	405	경찰 방법 이 전에서 걸려 올랐다. 그는 것에서 가지 않는 것이 가지 않는 것이 없다.
0.0854580	454	1 10 Recours
0.1424300	486	you to accarra
0.1994020	502	0
0.2563740	504	
0.3133460	497	
0.3703180	482	
0.4272900	456	832 MAW
0.4842620	423	Calciel are Benny
0.5412340	384	
0.5982060	343	(US SEA Med from Kocher)
0.6551730	305	
0.7121500	273	성장 같은 것 같은
0.7691220	249	A = 17/2 avechalist
0.8260940	228	0 = 1,700 yr / 100 m
0.8830660	200	
0.9400380	125	(VS 1. ++ green / uli-hr from Kocken)
0.9970100	100	
1.0005020	196	
1.1109009	104	
1.10/9200	100	
1.2240200	105	The same as a second seco
1.2010/00	182	1 1 1 1
1 2050120	180	This data used for
1 4527860	176	
1 5097580	172	
1.5667299	166	the beta spectrum
1.6237019	160	
1.6806740	154	
1,7376460	146	
1.7946179	138	
1.8515899	130	
1,9085619	121	
1.9655340	112	
2.0225058	102	
2.0794780	93	
2.1364498	83	
2.1934218	73	
2.2503939	64	
2.3073659	54	
2.3643379	45	
2.4213099	37	
2.4782820	29	
2.5352540	21	
2.5922258	15	
2.6491978	9	
2.7061698	5	
2.7631419	2	
2.8201139	0	
K	4	
1	L H A-	- started for 10° decrus.
Part States	- P	Started b
narry of		사람이 많은 사람이 가지 않는 것 같아. 그 것은 것이 같아. 것 같아. 이 것 같아. 이 것 같아. 이 것 같아. 이 것
in (wiew)		
DIN (MEX)		

19790 13:36 SLHM

Distribution of Dose About a Point SE Ma Source in water with 1.8 Inverse - Square Removed 1.7 and the X-axis scaled 1.6 to units of Xno 1.5 (Used for a test only) 1.4 L_ 1.3 ⁵⁶Mn .1.2 1.1 0026 0.9 $X_{90} = 6.32 \text{ mm}$ 2001ed 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1.5 0.5 0.0 1.0 2.0 r/X90

1.8

The Phantom Geometry

Note: All Dimensions in centimeters.

.

2 Amadon

1,000 decays /bin

Region	Dose/Dis	Dose/Dis St. Dev	Bin	Dose Rate	Dose Rale St. Dev	1000 decays
Bound			Center			bin
(100.)	(Gy/Dis)	()		g 180	g ran	
				Ci s	Ci s	
0.234123456789 12344244456789 1234444445555555555555555666666789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789	2.089 2.329 2.292 2.397 2.292 2.336 2.207 2.262 2.181 2.13 2.179 2.005 1.842 1.417 1.19 1.119 1.017 0.9545 0.8945 0.8945 0.8297 0.7429 0.6767 0.6458 0.5662 0.575 0.5258 0.547 0.4939 0.4703 0.4712 0.4263 0.4217 0.4263 0.4217 0.4263 0.4217 0.4263 0.4217 0.4263 0.07569 0.007569 0.00141 0.000685 0.000437 0.000437 0.00141 0.000802 0.001758 0.0000437 0.000053 0.00000000000000000000000000000000000	1.4 2.2 3.9 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 5.3 6.1 6.6 7.2 4.9 1.9 2.3 7.5 6.6 7.2 4.9 1.9 2.3 7.5 6.2 7.5 6.5 7.3 6.5 7.3 6.5 7.5 6.5 7.5 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	00000000000000000000000000000000000000	437.4 487.6 479.9 501.9 479.9 489.1 462.1 473.6 456.2 419.8 385.7 296.7 249.1 234.3 212.9 199.8 187.3 173.5 141.7 135.5 141.7 135.5 141.5 120.4 110.15 120.4 110.15 120.4 103.4 98.6 89.2 88.3 86.17 386.3 10.00 3.65 1.59 .31.5 10.00 3.65 .23.00 3.65 .23.00 .3.65 .23.00 .3.65 .23.00 .3.65 .23.00 .50 .50 .23.00 .50 .50 .23.00 .50 .50 .23.00 .50 .50 .23.00 .50 .50 .23.00 .50 .00 .50	$\begin{array}{c} 61.2\\ 10.7\\ 8.6\\ 8.5\\ 15.3\\ 19.0\\ 21.7\\ 15.6\\ 205.1\\ 13.5\\ 10.4\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ 13.5\\ 10.4\\ $	

2 K more

10,000 decays / bin x 49 bins = 490,000 histories

2 R market

Upper . Found	Dose/Dis	Dose/Dis St. Dev.	Center	Dose Rate	Dose Rate St. Dev.	10,
	(By/Dis)			g 1.00	g rad	
(cm)	(*10^-13)	()	(cm)	Ci s	Ci s	
0.10 0.20 0.30 0.40 0.41 0.42 0.43 0.44 0.45 0.44 0.45 0.46 0.47 0.48 0.49 0.50	2.090 2.307 2.319 2.326 2.339 2.344 2.331 2.325 2.274 2.230 2.095 2.014 1.794 1.395	0.3 0.5 0.4 0.2 1.2 1.2 1.1 1.5 1.8 1.4 0.8 0.5 1.4 1.6	0.050 0.150 0.250 0.350 0.405 0.415 0.425 0.425 0.425 0.445 0.455 0.465 0.465 0.475 0.485 0.495	437.6 483.1 485.6 487.1 489.8 490.9 488.1 486.9 476.2 467.0 438.7 421.7 375.7 292.1	1.3 2.4 1.9 9.7 5.9 5.9 5.9 5.9 5.4 7.3 8.6 5.5 3.5 2.1 5.3 4.7 Fe	
0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.80 0.90 1.00 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.50	1.182 1.049 0.9684 0.9039 0.8483 0.7894 0.7425 0.7072 0.6642 0.6279 0.5963 0.5963 0.5448 0.5257 0.4889 0.4702 0.4542 0.4236 0.4062 0.3825 0.3636 0.2741 0.1564 0.08974 0.04546 0.02002 0.01070 0.005174 0.003473 0.002705 0.001906 0.001395 0.001507 0.001719 0.000654	$\begin{array}{c} 1.8\\ 1.6\\ 1.2\\ 1.5\\ 2.0\\ 1.3\\ 1.9\\ 2.6\\ 2.7\\ 2.3\\ 2.5\\ 2.8\\ 1.9\\ 2.2\\ 5\\ 2.8\\ 1.9\\ 2.2\\ 5\\ 2.8\\ 1.9\\ 2.2\\ 5\\ 3.8\\ 2.9\\ 4.4\\ 3.1\\ 3.4\\ 3.4\\ 3.4\\ 3.4\\ 3.4\\ 3.4\\ 3.4\\ 3.4$	0.505 0.515 0.525 0.545 0.555 0.565 0.565 0.605 0.605 0.605 0.605 0.6655 0.655 0.655 0.655 0.655 0.6655 0.655 0.655 0.655 0.655 0.6655 0.655 0.655 0.655 0.6655 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.2550 0.25500 0.25500 0.25500 0.255000 0.255000 0.2550000000000	247.5 219.7 202.8 149.3 177.6 165.3 155.5 148.1 139.1 131.5 124.9 114.1 102.4 98.5 95.1 80.1 76.1 57.4 32.8 18.79 9.52 4.19 2.24 1.08 0.73 0.57 0.399 0.45 0.29 0.137 0.360 0.139	4.5 Water 3.5 2.4 2.8 3.6 2.1 3.0 3.9 3.8 3.0 3.1 3.2 2.1 2.3 3.4 3.6 2.1 2.3 3.4 3.6 2.1 2.5 3.4 3.4 1.8 1.1 0.64 0.57 0.26 0.27 0.17 0.16 0.20 0.069 0.15 0.11 0.12 0.063 0.053 0.070 0.12 0.055	

2K marke

000 deceys

bin

NRCC USER CUDE ICDOS (V1.0) USING EGS4 AND PRESTA

Output from the first run

GEOMETRY IS A RECTILINEAR VOLUME, ORIGIN 11 BOTTOM LEFT, X-Y PLANE ON THE PAGE AND Z AXIS INTO THE PAGE

it inis corner

TITLE :	+ The	dose to	w big cube	e of water	o perfused	with a Mg-5	6 source sp	ectrum
NUMBER MEDIUM MEDIUM ECUT, P	OF MEDIA 1: + 2: + CUT, ESTPI	A: + E(1 to 2	2): +	2 FE 2.¢ H20521)	∝ -,≎ 0.515	0.515 0	.020 0.	020
# REGI	ONS IN X	Y,Z DIF	ECTIONS	(IF<0,IMPI	IES # GROU	PS OF REG):	+ 3	3
SMALL SMALL SMALL OUTER	BOUNDARY BOUNDARY BOUNDARY BOUNDARY	INPU FOR REC FOR REC FOR REC	T BOUNDAN SION(1) SION(2) SION(3) SION(3)	RIES IN TH + + + +	E X DIRECT 0. 2. 10. 12.	NOI 000 000 000 000		
SMALL SMALL SMALL OUTER	BOUNDARY BOUNDARY BOUNDARY BOUNDARY	INPU FOR REC FOR REC FOR REC	UT BOUNDAU SION(1) SION(2) SION(3) SION(3)	RIES IN TH + + + + +	IE Y DIRECT 0. 2. 10. 12.	NOI 000 000 000		
INITIA WIDTH WIDTH WIDTH BOUNDA	L BOUNDAI IN THIS (IN THIS (IN THIS (RIES	INPU RY: + GROUP, N GROUP, N GROUP, N	UT BOUNDAL 0.000 10. OF REC 10. OF REC 10. OF REC	RIES IN TH D GIONS IN C GIONS IN C GIONS IN C	IE Z DIRECT GROUP: + GROUP: + GROUP: +	0.100 0.100 0.010 0.100	4 30 18	
OTOTAL	0.000 0.420 0.480 0.540 0.600 0.660 0.900 1.500 2.100	0.10 0.41 0.49 0.55 0.61 1.00 1.60 2.20	00000000000000000000000000000000000000	0.200 0.440 0.500 0.560 0.620 0.680 1.100 1.700 2.300	0.300 0.450 0.510 0.570 0.630 0.690 1.200 1.800 2.400	0.400 0.460 0.520 0.580 0.640 0.700 1.300 1.900 2.500	$\begin{array}{c} 0.410 \\ 0.470 \\ 0.530 \\ 0.590 \\ 0.650 \\ 0.800 \\ 1.400 \\ 2.000 \end{array}$	
DINPUT LOWER, Thing I=1 I=1.	GROUPS OF UPPER I, s have be 3,J=13 3.J=13	F REGION J, K, sen forc ,K=114 ,K=155	MEDIUM, I MEDIUM, I rho=7.1	ICH DENSIT DENSITY+(nply with 86 med=1	Y AND MEDI 1 3) (the follow (Fe)	UM ARE NOT 1 3)(1 ving geometr	DEFAULTS 14) 1 Y	7.860
LOWER, Thing I=1. I=1.	UPPER I, s have b 3,J=13 3,J=13	J, K, sen ford ,K=114 ,K=155	MEDIUM, 1 ted to con t rho=7.0 2 rho=1.0	DENSITY+(nply with 86 med=1 00 med=2	1 3)(the follow (Fe)- (H2O)-	1 3)(1 ving geometr	52) 2 Y	1.000
LOWER, LOWER, FOR WH ONE SE : +	UPPER I, UPPER I, ICH RESU T OF 6 P1 2	J, K, J, K, LTS ARE ER LINE, 2 2	MEDIUM, I ECUT, PCI TO BE OU END WITH 2 2	DENSITYOIN JTOENTER 3 IPUT- IZSC H ALL ZERC 1 52	PUT GROUPS PAIRS DEF CAN NON-ZEP S 1	OF REGIONS INING LOWER O FOR Z-SCA	FOR WHICH ,UPPER X,Y, N/PAGE	ECUT AN Z INDIC
MEDIUM FE H20521		0.	AE 521 (521 (AP 0.010 0.010				

1

1 1

NI ASS + Now fi Numbe: ID# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	JEATLE. 1000 or the Sour Cor the Sour ENERGY 0.028 0.085 0.142 0.199 0.256 0.313 0.370 0.427 0.484 0.541 0.598 0.655 0.712 0.769 0.826 0.883 0.940 0.997 1.054 1.111 1.168 1.225 1.282 1.339 1.396	TINKAX, INSERDI 0 0.99 urce data ces = 49 INTENSITY 405.000 454.000 454.000 502.000 504.000 497.000 497.000 482.000 423.000 384.000 343.000 343.000 249.000 228.000 208.000 193.000 193.000 185.000 186.000 186.000 185.000	CHARGE -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
26 27 28 29 30 31 32 33 34 35 37 38 39 40 41 42 43 445 46 47 48 49 The num SREG# 1	1.453 1.510 1.567 1.624 1.681 1.738 1.795 1.852 1.909 2.023 2.079 2.136 2.023 2.079 2.136 2.023 2.079 2.136 2.023 2.079 2.136 2.023 2.079 2.136 2.023 2.079 2.136 2.023 2.079 2.136 2.592 2.421 2.478 2.592 2.649 2.763 Der of sol X LOW 0.000	176.000 172.000 166.000 166.000 154.000 154.000 138.000 130.000 121.000 122.000 102.000 93.000 83.000 73.000 64.000 54.000 37.000 29.000 21.000 15.000 2.000 UF Y LOW 12.0 0.000	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	
123456	0.000 0.000 0.000 0.000 0.000	12.0 0.000 12.000 0.000 12.000 0.000 12.000 0.000 12.000 0.000 12.000 0.000 12.000 0.000 12.000 0.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

78901123456789012345678901234567890123345678901233456789012334567890123345678901233456789012334567890123444567890f	0.000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000	12.000 12.000			12 12 12 12 12 12 12 12 12 12 12 12 12 1							1.00 1.000 1.00	78901234567890123456789012345678901234567890123456789012345678901234567890123333333333333334444444444444444444444
Reg: CPUTIME	1 Bnds(X SO FAR=	YZ)=(8.	0.000 .380 s	12	.000)	(0.1	000	12.	000)	≕) (0.000	0.500)
Reg: CPUTIME	2 Bnds(X SO FAR=	YZ) = (31.	0.000 940 s	12	.000)	(0.0	000	12.	000)	(0.000	0.500)
Reg: CPUTIME	3 Bnds(X S0 FAR=	YZ)=(79.	0.000 640 s	12	.000)	(0.0	000	12.	000)	(0.000	0.500)
Reg: CPUTIME	4 Bnds(X SO FAR≠	YZ)=(141.	0.000 130 s	12	.000)	(0.0	000	12.	000)	(0.000	0.500)
Reg: CPUTIME	5 Bnds (X S0 FAR=	YZ) = (214.	0.000 040 s	12	.000)	(0.0	000	12.	000)	(0.000	0.500)
Reg: CPUTIME	6 Bnds (X) S0 FAR=	YZ)=(296.	0.000 770 s	12	.000)	(0.0	000	12.	000)	(0.000	0.500)
Reg: CPUTIME	7 Bnds (X) SO FAR=	YZ)=(388.	0.000 450 s	12.	000)	(0.0	00	12.	000)	(0.000	0.500)

Reg: 30 Bnds(XYZ)=(0.000 CPUTIME SO FAR: 4725_650 @	12.000)(0.000	12.000) (0.000	0.500)
Reg: 31 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 5000.520 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 32 Bnds(XYZ) = (0.000 CPUTIME SO FAR= 5284.130 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 33 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 5573.400 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 34 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 5873.300 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 35 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 6178,250 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 36 Bnds(XYZ)=(0.000 CFUTIME SO FAR= 6486.600 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 37 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 5800.400 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 38 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 7130.080 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 39 Ends(XYZ)=(0.000 CPUTIME SO FAR= 7458.410 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 40 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 7798.110 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 41 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 8144.020 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 42 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 8499.689 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 43 Bnds(XYZ)=(0.000 CFUTIME SO FAR= 8859.131 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 44 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 9228.939 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 45 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 9598.320 s	12.000)(0.000	12.000)(0.000	0.503)
Reg: 46 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 9967.270 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 47 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 10352.180 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 48 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 10743.280 s	12.000)(0.000	12.000)(0.000	0.500)
Reg: 49 Bnds(XYZ)=(0.000 CPUTIME SO FAR= 11136.439 s	12.000)(0.000	12.000)(0.000	0.500)
TOTAL CPUTIME FOR SIMULATIONS=	402.7	S #	0.112 hr		

0

TOTAL ENERGY DEPOSITED IN VOLUME PER DECAY = 0.8073E+00 just under To for betas. Not exactly To because some B's corrected the short

The dome to big cube of water perfamed with a My-56 seamon equalities

XYZ(V01) DOSE OUTPUTS Gy/ Disintegration

OYE	BOUNDS :	2	FOR X=	10	2.000	TO	10.000	I= 2
ZI	BOUNDS 0.200 0.300 0.400 0.410	(12345	0,000) 2.089E 2.329E 2.292E 2.397E 2.292E	13-13-13-13-	1.4% 2.2% 1.8% 1.7% 3.2%			
15	$\begin{array}{c} 0.420 \\ 0.430 \\ 0.440 \\ 0.450 \\ 0.460 \end{array}$	6 7 8 9 10	2.336E- 2.207E- 2.262E- 2.181E- 2.130E-	13- 13- 13- 13- 13-	0.4055 0.4055 0.4055			
	0.470 0.480 0.490 0.500 0.510	11 12 13 14 15	2.179E- 2.005E- 1.842E- 1.417E- 1.190E-	13- 13- 13- 13- 13-	4.665		19 × 10 2	givent 1921 :
	0.520 0.530 0.540 0.550 0.550	16 17 18 19 20	1.119E- 1.017E- 9.545E- 8.945E- 8.297E-	13- 13- 14- 14- 14-	7.1% 5.6% 5.4% 5.6% 5.7%			
1201	0.570 0.580 0.590 0.600 0.610	212 23 23 24 5	7.429E- 6.767E- 6.458E- 6.294E- 5.662E-	14- 14- 14- 14- 14-	4.2% 7.4% 6.9% 7.1% 8.9%	1	×10° 3	. red 1/2 -)
	0.620 0.630 0.640 0.650 0.650 0.660	26 27 28 29 30	5.750E- 5.258E- 5.470E- 4.939E- 4.703E-	14- 14- 14- 14- 14-	7.2% 8.3% 7.6% 8.2%			
	0.670 0.680 0.690 0.700 0.800	31 32 33 35	4.712E- 4.263E- 4.217E- (4.114E- 2.998E-	14- 14- 14- 14- 14-	7.7% 8.7% 7.3% 5.9% 5.8%	.6 3	(10' 3 .	ra d. 1166 (3) .
	0.900 1.000 1.100 1.200 1.300	36 37 38 39 40	1.833E- 9.706E- 4.820E- 1.730E- 7.569E-	14- 15-1 15-1 15-1	9.7% 15.3% 12.0% 22.7% 26.0%			
	1.400 1.500 1.600 1.700 1.800	41 42 43 44 45	4.322E- 1.410E- 6.851E- 4.368E- 8.024E-	16-1 16-1 17-6 17-6	30.5% 40.1% 54.2% 81.8% 58.8%			
4	1.900	46 47	1.786E- 7.528E-	1 -5	57.1% 73.6%			

1

2.100	48	3.085E-16-56.08
2.200	49	2.475E-16-51.28
2.300	50	1.0D4E-16-95.48
2.400	51	1.452E-16-85.0%
2.500	52	1.463E-17-99.9%

Ini J. Radiation Oncology 6 or Phys. 5 of 19. pp. 1127-1635 Asymptoteche U.G.A. Alternative approach

• Technical Innovations and Notes

MONTE CARLO AND CONVOLUTION DOSIMETRY FOR STEREOT ACTIC RADIOSURGERY

SHRIKANT S. KUBSAD, M.S., T. ROCI WELL MACKIE, PH.D., MARK A. GEHRINC, B.S., David J. Misisco, M.S., Bhudatt R. Paliwal, Ph.D., Minesh P. Mehta, M.D. and Timothy J. Kinsella, M.D.

Departments of Human Oncology and Medical Physics. University of Wisconsin Medical School, Madison, WI 53792 USA

The dosimetry of small photon beams used for stere-stortic radiosurgery was investigated using Monte Carlo simulation, convolution calculations, and measurements. A Monte Carlo code was used to simulate radiation transport through a linear accelerator to produce and score energy spectrum and angular distribution of 6 MV bremsstrahlung photons exiting from the accelerator treatment head. These photons were then transported through a stereotactic collimator system and into a water phantom placed at isocenter. The energy spectrum was also used as input for the convolution method of photon dose calculation. Monte Carlo and convolution results were compared with the measured data obtained using an ionization chamber, a diode, and film.

Monte Carlo, Convolution, Small beam photon dosimetry, Stereotactic radiosurgery,

INTRODUCTION

Stereotactic external beam radiosurgery was initiated by Leksell in Sweden in 1951 (15, 16). Since then, radiosurgery has been performed with X rays, protons, heavy charged particles, and gamma rays. The method involves delivery of a high radiation dose in a single fraction to a small intracranial target. Leksell's work led to the development of the commercially available Gamma Knife unit which consists of 201 ⁶⁰Co γ -ray sources. The Gamma Knife has been widely used to treat arteriovenous malformations and brain neoplasms. Using a proton beam, Kjellberg *et al.* have treated and followed several patients with arteriovenous malformations and have analyzed the post-treatment cure and complications (11, 12). They also established a correlation between dose and beam diameter to predict post-treatment complications.

Recent developments have led to the conversion of linear accelerators into stereotactic tools. The use of a linear accelerator for radiosurgery is gaining popularity over the Gamma Knife mainly because linear accelerators are available in most medical centers practicing conventional radiation therapy and are cost-effective. The use of a linear accelerator for stereotactic radiosurgery and its advantages over other approaches have been discussed elsewhere (3, 8, 9, 10, 17, 26, 31). Since stereotactic radiosurgery delivers high doses of radiation in a single fraction to a small target volume (the radiation field sizes are typically from 0.5 cm to 4.0 cm in diameter), accurate dosimetry and treatment planning are critical to the adaption of a linear accelerator for radiosurgery.

There are two principal concerns in the dosimetry of small beams: the presence of lateral electronic disequilibrium and steep dose profiles. Ion chambers cannot predict with sufficient resolution the dose in the penumbra which, for the smallest field sizes, extends to the central axis of the field. Radiographic film and diode can provide better spatial resolution but the film has a response which varies with photon energy more than that o an ion chamber and a well shielded diode. The energy r sponse effect could be significant in broad beam photor dosimetry because of the variation in the photon energy from the central axis to the edge of the field. This variation in the photon energy across the field is caused by the flattening filter

Reckwerdt for his help in computations. Wonho Sohn for his assistance in measurements, and Drs. David W. O. Rogers and Alex F. Bielajew for their valuable discussions on Meate Carlo methods. The first author is also grateful to Drs. Claudio H. Sibata and Paul M. DeLuca, Jr., who introduced him to the Monte Carlo methods. This work was partially supported by NCI grant R29 CA48902.

Accepted for publication 26 April 1990.

Presented at the 31st Annual ASTRO Meeting, 5 October 1989, San Francisco, CA.

Reprint requests to: Shrikant S. Kubsad, M.S., Department of Human Oncology, K4/B100 Clinical Science Center, 600 Highland Ave., Madison, WI 53792 USA.

Acknowledgements—The authors wish to thank Terry Cummings of Varian Associates for providing the design specifications of the Clinac-2500 linear accelerator treatment head. Paul

which hardens the **photon** beam more in the central part of the beam than in the peripheral region (22). However, in a small beam the photon energy variation across the beam diameter can be negligible.

The Monte Carlo and convolution methods can be used to produce relative dose distributions free of energy response artifacts and equivalent to the resolution of diodes and film isodensitometers (1 to 2 mm), but in order to do this, information such as the energy and angular spectrum of the incident photon beam is required. The Monte Carlo method is used to produce such information and to verify the accuracy of the film and diode measurements.

METHODS AND MATERIALS

Monte Carlo method

We used the Electron Gamma Shower Version 4 (EGS4) (23) Monte Carlo code system to characterize the photon beam emerging from the accelerator treatment head. The energy spectrum of photons was used to produce a dose kernel for the stereotactic beam from monoenergetic photon beam kernels generated in water (19). The EGS4 Monte Carlo code is a general purpose coupled charged-particle-photon transport simulation system that can transport these particles in the energy range of a few keV to GeV in heterogeneous media of arbitrary 3-dimensional complex geometry (23). Many authors have demonstrated that very complex and sophisticated simulations can be done using Monte Carlo methods code (5, 8, 13, 14, 22, 24, 25, 27, 29, 30).

We developed the user main program and geometry packages to simulate the linear accelerator* treatment head (LATH), the stereotactic collimating system (SCS) and a semiinfinite water phantom placed at the isocenter (source-to-isocenter distance was 100 cm). The user main program drives the geometry package and the EGS4 Monte Carlo code to simulate particle transport using interaction probability distribution data generated by PEGS4 (Preprocessor for EGS4) (23). The user code sets in motion photon histories (simulated photons) and transports them until they are absorbed or scattered. The energy and direction of charged particles set in motion and scattered photons are determined by the EGS4 code system and subsequently transported as well. Charged particles are transported in discrete steps during which the particle is assumed to travel a straight line: however. the energy loss is scaled to account for increased pathlength caused by scattering. The user code handles the scoring (tabulation of results for a history) of one or any combination of type of particle, energy, position, and direction cosines for photons and charged particles each time a particle interaction or boundary crossing occurs. Scoring also occurs following each charged particle step.

' Physical Science Labc atory, University of Wisconsin, Madison, WL

October 1990, Volume 19, Number 4

The code follows each particle and its progeny until it escapes or its energy falls below a cut-off energy set by the user to terminate the transport of that particle and deposit its remaining energy on the spot.

The schematics of a typical LATH geometry are shown in Figure 1a, whereas Figure 1b illustrates the simulated LATH geometry used in Monte Carlo method. The dimensions and distances of the LATH were obtained from the vendor and were verified during a major servicing of the machine. The primary, secondary, and stereotactic collimators and moving jaws were simulated using concentric cylindrical slabs. The thickness and radius of each slab were carefully chosen to have the same surface area as the actual LATH and to reproduce the divergence of the radiation beam. The simulation used a series of cylindrical slabs stacked on one another to match closely the profile of the flattening filter. We simulated both the upper and lower moving jaws at the same level. The stereotactic collimators were lead-filled cylinders of 15 cm in height with diverging circular holes of 0.5 cm to 4.0 om in diameter, and were attached to the linear accelerator head.

The SCS and stereotactic base frame that mounts on the accelerator couch base plate and other quality control accessories' were built to specifications for our linear accelerator.* We also designed and built a stereotactic

Fig. 1. (a) Schematics of the linear accelerator treatment head. (b) Simulated linear accelerator treatment head geometry used in Monte Carlo calculations.

^{*} Clinac-2500, Varian / ssociates, Palo Aito, CA.

Monte Carlo and convolution dosimetry & S. S. KLupper and

	simulations canol by EGM4 in Monne Carlo
X	ECUT = 0.521 MeV
ff	PCUT = 0.010 MeV
	ESTEPE = 1% of the electron energy at the beginning of a step
	SMAX = Smallest dimension
	NCASES = 2 × 10 ⁿ /

r (STM) air ion chamber which was o monitor the radiation output. This sed to verify the dose delivery to the

lation was carried out in two parts. mulated the accelerator head from im of the moving jaws to score the aracteristics (energy spectrum and n a plane perpendicular to the cencharacteristics were stored for later part of the simulation starts from he moving jaws, through the SCS, antom at the isocenter.

indation of the LATH. As depicted tic electrons with a kinetic energy the vacuum window of the acungsten target producing bremsbeam passes through the backing and gold alloy for fast heat dis-

sipation. The beam is collimated by a primary diverging collimator made of tungsten. The flattening filter is comprised of an alloy containing steel and other elements. In addition to making the fluence distribution more uniform. the flattening filter also produces low energy electrons and photons. The beam passes through a transmission monitor chamber and is subsequently shaped by secondary lead collimators and moving tungsten jaws.

We scored the energy spectrum and angular distribution of 6 MV bremsstrahlung photons in annular regions of 1, 2, 3, and 4 cm in radius in a plane perpendicular to the central axis at 50 cm from the target. The photon energy bin width of 0.25 MeV was chosen to score the energy spectrum. For each region of interest (ROI), the photon mean planar fluence, the mean fluence, the mean energy, the fluence weighted, and the energy-fluence weighted mean energy, and the photon mean angle of incidence on the scoring plane with respect to the central axis, were calculated in each energy bin.

Simulation part 2: simulation of the SCS and water phantom. The stored spectrum was used to choose the initial energy and direction of photons transported from the bottom of the moving jaws through the SCS and in a cylindrical water phantom placed at the isocenter (the source-to-surface distance of the phantom was 100 cm). The moving jaws were included in the second part of the simulation to account for potential scatter from the bottom of the jaws and also to maintain the continuity between the two parts of the simulation. In each of the regions, the mean energy deposition, the photon mean fluence, the photon mean energy, and the photon mean incident angle with respect to the central axis were calculated. The maximum dimension of the scoring region was 0.2 cm in any direction to ensure better resolution. especially for beam profiles in a water phantom.

10299

×

Monte Carlo and meneoution documetry . S. S. KUBSAD et al.

EGS4 transport and calculation parameters. The results of Monte Carlo simulations are very sensitive to transport parameters such as the maximum relative energy lost in an electron step (called ESTEPE in EGS4), the maximum electron step length (SMAX), the electron cutoff energy (ECUT), and the photon cutoff energy (PCUT) (4, 5, 14, 27, 28, 29). Additionally, the total number of histories transported per simulation (NCASES) dictates the accuracy of the final results. Moreover, the random sampling of incident particle's energy, position and direction cosines at the beginning of simulation directly affect the final outcome. The secondary electron production energy threshold (AE) of 0.521 MeV and secondary photon production energy threshold (AP) of 0.01 MeV were used by the PEGS4 to generate the interaction probability distribution data for electron and photon transport. The EGS4 used the data produced by the PEGS4 and also used the transport parameters shown in Table 1 to carry out the simulations.

The particles were terminated when their energy fell below the cut-off energy or escaped the simulation geometry. When particle termination occurred, the residual kinetic energy of the particle was deposited locally.

Each simulation of 2 million histories was divided into 10 batches for statistical analysis. The standard error in each scored quantity was determined from a calculation of one standard deviation from the 10 batches.

Convolution method

A number of authors have shown that the convolution of a primary intensity function and a spatially invariant kernel models the dose distribution well in a homogeneous phantom (1, 2, 7, 18, 19, 20, 21). The primary intensity function models the primary photon transport up to and inside the phantom and the kernel accounts for secondary particle transport in the phantom.

The dose distribution $D(\vec{r})$ in a homogeneous phantom can be given by the equation:

$$\mathsf{D}(\vec{\mathbf{r}}) = \int \frac{\mu}{\rho} (\vec{\mathbf{r}}) \Psi(\vec{\mathbf{r}}) \mathsf{A}(\vec{\mathbf{r}} - \vec{\mathbf{r}}) d^3 r' \tag{1}$$

where $(\mu/\rho)(\vec{r})$ is the appropriate mass attenuation coefficient distribution, $\Psi(\vec{r}')$ is the energy fluence distribution, and $A(\vec{r} - \vec{r}')$ is the convolution kernel.

The details of the convolution/superposition software have been described elsewhere (20). The superposition method involves modifying the convolution kernel to take into account transport through heterogeneous phantoms; however, this capability was not required in this study because the phantom was homogeneous. The voxels were solid rectangles (i.e., the voxel dimensions may vary in each direction). The voxel thickness was 0.25 cm in all of the calculations and the voxel areas were 0.1×0.1 cm² for the 0.5 cm and 1.0 cm collimators and 0.2×0.2 cm² for the larger collimators.

Most of the convolution/superposition software is concerned with modelling the primary energy fluence distribution. The software is capable of modeling the "horns" in the incident energy fluence distribution, spectral hardening in the depth direction, and "softening" in the lateral direction mainly because of a reduced thickness of primary rays that have travelled through the field flattening filter. The beam is first modelled as diverging from a point source and exiting through a perfect circular aperture with constant energy fluence across the field. The energy flu-

HAR.

.

4. (a) Beam profile of 0.5 cm beam diameter at 5 cm depth in water. (b) Beam profile of 2 cm beam diameter in diameter at 5 cm depth in water. (c) Beam profile of 2 cm beam diameter at 5 cm depth in water. (d) Beam profile of 3 cm diameter at 5 cm depth in water.

imed to decrease exponentially (with distance te phantom and with an inverse-square fallsurface.

in by the following equation:

$$\Psi = \Psi_0 e^{-\mu_{eff} d} \left(\frac{SSD}{SSD + d} \right)^2$$
(2)

e surface energy fluence. μ_{eff} is the effective efficient, and SSD is the source-to-surface

attenuation coefficient was obtained from coefficients weighted with respect to the of the spectrum. We used the spectrum is work (illustrated in Fig. 2) and a pubfrom Mohan *et al.* (22). The effective n coefficient at the surface of the phantom $\frac{1}{2}$ /g and 0.0481 cm²/g for those spectra.

I model of energy fluence was modified r for primary energy fluence outside the le beam boundary. The primary fluence consists of several components: transhe collimators, photons scattered outside the accelerator structure, and the collical penumbra due to a finite source size, imary" energy fluence should be qualiphoton energy fluence which has not the phantom regardless of its origit, in pical values of the primary fluence out-

allered, Sweden.

seTek OY, Espoo, Finland, driven by HP lett-Packard Co., Fort Collins, CO. side a field in routine external beam radiotherapy are from 3 to 5% from the first two of the above components. However, it was found that the secondary stereotactic collimators effectively reduced this component of the fluence to zero $(\pm 0.1\%)$. The geometrical penumbra can be accounted for using a modification of a procedure proposed by Boyer (6). It involves specifying an effective source size (ser, taken to be 0.2 cm) and the source-to-collimator distance (SCD) of 77 cm, which is the distance from the source to the end of the stereotactic collimator. The model assumes that a finite source size can be modelled as a convolution of the energy fluence with a 2-D Gaussian distribution with a width (FWHM) at a source-to-point distance (SPD) equal to the following:

$$FWHM = s_{eff} \frac{SPD}{SCD}$$
 (3)

The finite voxel size introduces a blurring artifact (analogous to the finite size of a detector) that mimics a finite source size in its effects. Therefore, FWHM is reduced by an amount equal to the lateral voxel dimension (i.e., either 0.1 cm or 0.2 cm).

Measurements

We used a small diode and a small ionization chamber* with a three-dimensional scanner in a water phantom to acquire depth doses and beam profiles.[†] Film dosimetric measurements were carried out by exposing radiographic verification films[‡] in a Solid Water Phatom.[§] The films

⁶ Radiation Measurements Inc., Madison WI.

1033

¹ Kodak X-Omat V, Eastman Kodak Company, Rochester, NY,

were processed using a rapid processor.⁴⁴ A film scanning densitometer.¹⁴ driven by a stepper-motor controller board⁴⁴ in a PC⁶⁸ and controlled by sc 'tware written using a data acquisition package,⁴⁴⁴ w₋₁s used to scan the processed films to acquire depth doses and beam profiles. The diameter of the isodensitometer light spot was 1.0 \pm 0.2 mm.

RESULTS

Energy spectrum and angular distribution

The energy spectrum of 6 MV bremsstrahlung photons from the linear accelerator is shown in Figure 2. At 50 cm from the target, the fluence and energy-fluence weighted photon energies at the central axis (within radial range between 0 to 1 cm) were 1.92 ± 0.04 and 2.76 ± 0.07 MeV, respectively. The fluence and energy-fluence weighted photon mean incident angles with respect to the central axis were 1.61 ± 0.08 and 1.21 ± 0.05 degrees, respectively.

Central axis relative depth doses in water

The relative percent depth doses in water for beam diameters of 0.5, 1, 2, 3, and 4 cm were computed using direct Monte Carlo simulation and convolution calculations using photon spectrum from the present work and a published spectrum (22). Comparisons with the measured data for beam diameters of 0.5, 2, and 3 cm are shown in Figure 3. There is excellent agreement between the results of Monte Carlo, convolution calculations, and diode measurements beyond the depth of peak dose. Within the build up region for 2 and 3 cm beam diameters. the results of Monte Carlo and convolution calculations agree with the diode measurements within 2% and 5%. respectively. The depth doses for beam diameters of 0.5 to 4 cm, derived by Monte Carlo and convolution methods, are in excellent agreement beyond the depth of peak dose, but in the build up region a disagreement of 2 to 10% is observed. This may be because the low energy scattered photons and electrons arising from the SCS are not accounted for in the convolution calculations. The depth doses derived by convolution method using the photon spectrum produced in this work and the published spectrum from Mohan et al. (22) agree within 3%. The measured depth dose by diode and depth ionization by ion chamber measurements are in good agreement for large beam diameter (≥ 3 cm) as shown in Figure 3d. whereas increased disagreement is observed as the beam diameter is decreased. This could be because of the larger size of the ion chamber in a small radiation beam. The depth of peak dose for 0.5 to 4 cm beam diameters ranged

October 1990, Volume 19, Number 4

from 1.38 to 1.75 cm. The decrease in the depth of peak dose for smaller field sizes is caused by decreased document scatter contribution to the depth dose.

Relative beam profiles in water

The relative beam profiles at a depth of 5 cm in water for beam diameters of 0.5, 1, 2, 3, and 4 cm were computed using direct Monte Carlo and convolution calculations using photon spectrum from the present work and the published spectrum (22). Comparisons of the calculated and measured data for beam diameters of 0.5, 2, and 3 cm are shown Figure 4. Again, there is excellent agreement between the profiles obtained by Monte Carlo and convolution calculations, and film dosimetry. The disagreement between Monte Carlo and convolution results in the beam boundary region can be reduced if the size of the scoring regions are further decreased below 0.2 cm in the radial direction in calculational methods but at the expense of increased computing time for Monte Carlo calculation. There is excellent agreement outside the primary beam because appropriate penumbral corrections have been employed in the convolution calculations. Note that the uncertainty has decreased radially outward because the volume of scoring regions (volume = $\pi r^{-}h$ increases as a function of radius to the power two, thereby resulting in a larger number of histories in those regions.

Computation times

We used a workstation* ($\simeq 5$ times faster than a mini computer[†]) to perform simulations. Monte Carlo calculation used 120 CPU hours to transport 2 million initial electron histories through the linear accelerator head to obtain the photon energy spectrum and other characteristics, whereas the same number of initial photon spectral histories transported in water to obtain depth doses and beam profiles required an average of 80 CPU hr per beam diameter. The average computing time for the convolution calculations was 0.06 CPU hr per simulation on the same system.

DISCUSSION

We have shown that the Monte Carlo method can be used to characterize the 6MV bremsstrahlung photon beam produced by the linear accelerator and to obtain the dosimetric for small radiation fields used in stereotactic radiosurgery. We found that the simulation of exact dimensions of target, backing material, and flattening filter and appropriate Monte Carlo transport parameters were

^{**} Kodak RP-X Omat rapid processor, Eastman Kodak Company, Rochester, NY.

[&]quot; Artronix, St. Louis, MO.

¹¹ METRABYTE, Metrabyte Corporation, Taunton, MA.

¹⁶ Leading Edge PC, Leading Edge Products Inc., Needham Heights, MA.

^{***} ASYST, Asyst Software Technologies Inc., Rochester, NY,

^{*} Sun 4/110, Sun Microsystems Inc., Mountain View, CA.

¹ VAX 11/780, Digital Equipment Corporation, Maryland, MA.

important in accurate photon energy spectra and angular distributions. Our user-written programs can be generalized to simulate other treatment machines to obtain beam and dosimetric data. Similarly, we have shown that the convolution techniques using Monte Carlo-produced photon energy spectra can calculate dosimetric data used for stereotacic radiosurgery. The results of Monte Carlo and convolution methods are in excellent agreement with the measured data. The spatial resolution of Monte Carlo and convolution methods were adequate and comparable to film and diodes for use in small beam dosimetry.

- Ahnesjo, A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys. 16:577-592: 1989.
- Ahnesjo, A., Andreo, P., Brchme, A. Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol. 26:49-57: 1987.
- Betti, O. O.: Munari, C.: Rosler, R. Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery 24:311-321: 1985.
- Bielajew, A. F.; Rogers, D. W. O. PRESTA—The Parameter Reduced Electron-Step Transport Algorithm for electron Monte Carlo transport. Nucl. Instr. Meth. B18:165-181; 1987.
- Bielajew, A. F.: Rogers, D. W. O.: Nahum, A. E. The Mont Carlo simulation of ion chamber response to ⁶⁰Co-resolution of anomalies associated with interfaces. Phys. Med. Biol. 30:419-427: 1985.
- Boyer, A. Fourier convolution techniques. Proceedings of the Regina Workshop on Convolution. Regina. Canada, October 16-17, 1986.
- Bover, A., Mok, E. A photon dose distribution model employing convolution calculations. Med. Phys. 12:169+177: 1985.
- Colombo, F.; Benedetti, A.; Pozza, F.; Avanzo, R. C.; Marchettic, C.; Chierego, G.; Zanardo, A. External stereotactic irradiation by linear accelerator. Neurosurgery 16:154–159; 1985.
- Colombo, F.; Benedetti, A.; Pozza, F.; Zanardo, A.; Avanzo, R. C.; Chierego, G.; Marchetti, C. Stereotactic radiosurgery utilizing a linear accelerator. Appl. Neurophysiol. 48:133– 145, 1985.
- Hartmann, G. H.; Schlegel, W.; Strum, V.; Kober, B.; Pastyr, O.; Lorenz, W. J. Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int. J. Radiat. Oncol. Biol. Phys. 11:1185–1192; 1985.
- Kjellberg, R. N.; Davis, K. R.; Lyson, S.; Butler, W.; Adams, R. D. Bragg peak proton therapy for arteriovenous malformations of the brain. Clin. Neurosurgery 31:248–290: 1984.
- Kjellberg, R. N.: Hanamura, T.: Davis, K. R.: Lyson, S.: Adams, R. D. Bragg peak proton therapy for arteriovenous malformations of the brain. N. Engl. J. Med. 309:269-274: 1983.
- Kubsad, S. S.; Mackie, T. R.; Paliwal, B. R.; Attix, F. H. Monte Carlo calculation of electron and secondary photon spectra from a Varian Clinac-2500. Med. Phys. 16:49: 1989 (Abstr).
- Kubsad, S. S.: Paliwal, B. R.: Sibata, C. H.: Attix, F. H. Ion chamber electron fluence corrections for electron beams (Abstr), Med. Phys. 13:605: 1986.

We have developed in-house a stereotactic treatment planning system which uses the dosimetric data to a sererated by the convolution method. The simulation of the accelerator treatment head by the Monte Carlo method was required to obtain the energy spectra used for the convolution method and to provide a clarification of its dose predictions independent of measurements. In summary, we have demonstrated that the Monte Carlo and convolution methods are powerful and practical tools to generate accurate dosimetric data. These methods can become the basis for dose computation in the routine clinical treatment planning algorithms using fast computers.

REFERENCES

- Leksell, L. Stereotaxis method and radiosurgery of the brain. Acta Chir. Scand. 102:316–319: 1951.
- Leksell, L. Stereotactic radiosurgery, J. Neurol. Neurosurg. Physiat. 46:797–803; 1983.
- Lutz, W.; Winston, K. R.; Maleki, N. A system for stereotactic radiosurgery with a linear accelerator. Int. J. Radiat. Oncol. Biol. Phys. 14:373–381; 1988.
- Mackie, T. R.: Ahnesjö, A.: Dickof, P.: Snider, A. Development of convolution/superposition method for photon beams. Proceedings of IXth ICCR, International Conference on Computers in Radiation Therapy, Den Haag, The Netherlands, 1987:107–110.
- Mackie, T. R.; Bielajew, A. F.; Rogers, D. W. O.; Battista, J. J. Generation of energy deposition kernels using the EGS Monte Carlo code. Phys. Med. Biol. 33:1–20; 1988.
- Mackie, T. R.; Scrimger, J. W.; Battista, J. J. A convolution method of calculating dose for 15 MV x-rays. Med. Phys. 12:188-196: 1985.
- Mohan, R.: Chui, C.: Lidofsky, L. Differential pencil beam dose computation model for photons. Med. Phys. 13:64-73: 1986.
- Mohan, R.: Chui, C.: Lidofsky, L. Energy and angular distributions from medical linear accelerators. Med. Phys. 12: 592-597; 1985.
- Nelson, W. R.; Hirayama, H.; Rogers, D. W. O. The EGS4 Code System. Stanford Linear Accelerator Report SLAC-265: 1985.
- Petti, P. L., Goodman, M. S., Gabriel, T. A.; Mohan, R. Investigation of build up dose from electron contamination of clinical photon beams. Med. Phys. 10:18-24; 1983.
- Petti, P. L.: Goodman, M. S.; Sisterson, J. M.; Biggs, P. J.; Gabriel, T. A.; Mohan, R. Source of electron contamination for the Clinac-35 25 MV photon beam. Med. Phys. 10:856– 861; 1983.
- Rice, R. K.: Hansen, J. L.: Svensson, G. K. Siddon, R. L. Measurements of dose distributions in sr.all beams of 6 MV x-rays. Phys. Med. Biol. 32:1087-1059; 1987.
- Rogers, D. W. O. Low energy electron transport with EGS. Nucl. Instr. Meth. A227:535-548: 1984
- Rogers, D. W. O. More realistic Mont. Carlo calculations of photon detector response functions. Nucl. Instr. Meth. 199:531-548: 1982.
- Rogers, D. W. O.: Ewart, G. M.: Blelajew, A. F. Calculation of contamination of the ⁶⁰Co beam from an AECL therapy source. National Research Council of Canada Report No. PXNR-2710; 1985.
- Udale, M. A Monte Carlo investigation of surface doses for broad electron beams. Phys. Med. Biol. 33:939–954; 1988.
- Winston, K. R.; Lutz, W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 22: 454-464; 1988.