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ABSTRACT

DIGES is a computer code that treats the response of structural and foundation systems
due to dynamic loadings. The building foundation configuration and its response is computed
by solving the pertinent equations of motion. A variety of structural and foundation systems are

onsidered which are typical to those encountered in today’'s engineering probiems

I'his report describes the theoretical basis of DIGES. The primary goal of the report 1s
to present pertinent information required to initia’: the process of having individuals from

agencies, and academic inst wsicns as users of the code
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EXECUTIVE SUMMARY

In recent years, more analysts are using direct generation methods in studies of dynamic
response of structures as well as mechanical/electrical systems and components. The use of
direct generation methods seems to be predominant in re-analysis or margin type assessments
of existing structures to updated design criteria. The realization of this trend from a regulatory
perspective, reflected the need for a computational tool that can be used to benchmark the results
obtained through direct generation. This apparent need lead to the development of the DIGES
code.

During the development of DIGES, a systematic effort was made to give a generic
character to the code by restricting the amount of limitations imposed on its theoretical basis.
We believe that we accomplished this objective. This is reflected by the following basic features
of the code:

® DIGES has both deterministic and probabilistic response analysis capabilities.
Accordingly, one can use a single time history representing the dynamic input and
perform a deterministic dynamic analysis using DIGES. The output computed by
DIGES consists of time histories associated with the system response or transformed
forms of it, which are essentially Fourier records or conventional response spectra.
On the other hand, one can use a power spectal density function or a cross-spectal
density matrix representing the dynamic input and perform a probabilistic dynamic
analysis. The output computed by DIGES consists, in this case, by power spectral
density functions or cross-spectal density matrices and associated correlation functions
of the system response. DIGES subsequently converts the response power spectral
densities to corresponding response spectra. A third option of analysis by DIGES
involves simulation, Briefly, in simulation the dynamic input consists of a set of time
histories, each of them deterministically filtered by the system thus producing a set
of response time histories and associated response spectra. Representative responses
can be then computed statistically from the latter set.

® DIGES is capable of performing response calculations for the two fundamental
categories of dynamic input considered in dynamic analysis. Specifically, the user
of DIGES has two options for defining the input for response calculations: a) input
in the form of appliea dynamic loads and b) input in the form of excitation.
Therefore, we did not restrict the code only in the seismic area but we broaden its
computational capabilities to include general types of dynamic loads imposed on the
superstructure. Such capability is required to tackle engineering problems in which
the compatation of the dynamic response is required for cases involving vibration
tests, impact, wind and general type of lateral dynamic loadings.

® DIGES considers both structural as well as soil dynamics in computing responses due
to ground motions or due to dynamic loads applied at the superstructure. This is
done through a detailed soil-structure interaction formulation which allows for such
computations to be carried out. We concentrated on the development of a
comprehensive set of transfer functions relating fundamental system response
parameters to the ground motion or to the applied loads. Tus reflects our belief that
direct generation, essentially a probabilistic dynamic analysis, should include all



system characteristics that are conventionally considered in determimistic response
analysis.

® DIGES is capable of handling alternate ways of defining the seismic input.
Specifically, the latter can be defined by: ground acceleration time histories, ground
response  spectra, Fourier amplitude spectra or power spectral  densities,
Furthermore, the seismic input is defined as either the gxcitation which is directly
applied at the foundation of a structure or the ground motion of a site at a given
point. In ihe latter case, the motion is "transferred” to the foundation through
convolution/deconvolution or generally through kinematic interaction. Consequently,
we believe that DIGES has a broad capability in the area of seismic input definition.

Another point of interest which is worthwhile to briefly discuss here, is that from
published studies on the subject of direct generation it can be seen that the way we define the
design seismic input for earthquake response analysis still remains an issue of concern (Refs. 9,
10). While the convenience of defining the seismic input by design ground response spectra has
been well understood, the difficulties in using response spectra as input for dynamic analysis
continues to be a source of controversies. In simple terms, a response spectrum of an
carthquake acceleration record is what the record looks like after subjected to some level of
filtering by a single degree-of-freedom system. Theoretically, we cannot uniquely recover an
earthquake acceleration record from its response spectrum. One, however, can uniquely recover
an earthquake record through transformations, e.g., from its Fourier transform or perhaps from
other type of transforms. Fourier transforms, however, have not been found yet to be a
convenient v ay for defining a design seismic input. Therefore, when an analyst is given a
response spectrum to perform a dynamic analysis of a given structure, what he/she is asked to
do 15 to compute the response of the structure using as input the response of single degree-of-
freedom systems to "some" earthquake. Although spectrum superposition techniques based on
modal analysis offer some approximate solutions which could be acceptable in certain
applications, a rigorous dynamic analysis (linear or nonlinear) cannot be carried out under these
circumstances. These are known facts to which we are simply reminded of. Consequently, it
seems that the practicality of defining the scismic input for dynamic analysis by design spectra
15 still questionable.

The main procedure followed in existing direct generation studies consists of generating
PSD's compatible with given ground design spectra. This procedure has similar short-comings

to that of generating spectrum compatible times histories. As a result of a recent review of

published studies in the area of direct generation (Refs. 9, 10), NRC was advised to undertake
a systematic effort leading to the development of design seismic inputs for dynamic analysis
using purely probablistic approach. By doing so, the clear advantage is that the resulting design
seismic input would describe the design ground motion alone (not the response of the design
ground motion to single degree-of-freedom systems). The development of generic type PSD's
has also considerable appeal. Such development can be similar to that lead to the Newmark-
Kapur generic spectra. The appealing factors of such PSD can be understood by considering
the following facts: a) time-histories can be readily synthesized with a given PSD and b) reliable
estimates of the statistics of elastic and inelastic nonlinear random seismic response can be
efficiently computed by using well established techniques.

Vi
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The direct link between a stochastic characterization of the ground excitation and the
stochastic in-structure response has received less attention than the time history apprcach.
Through this process, the statistical properties of an anticipated family of earthquakes, expressed
by its power spectrum, are transferred to the structure of deterministically defined dynamic
properties.

1.2 DIGES Profile

The present effort has been undertaken so that an efficient theoretical/computational tool
can be devised such that seismic problems of concern to regulatory agencies can be effectively
treated. In this study, the direcr link between the input excitation and the output response in the
stochastic sense is explored (from which DIGES is deduced). This aspect of the seismic
analysis, along with the earthquake simulation procedures and the deterministic seismic and

dymanic response of the structure, defines the DIGES computational domain.

An overall description of DIGES can been seen in Figure 1.2-1 where its general
capabilities are listed. According to Figure 1.2-1, analyses of both stochastic and deterministic
nature can be undertaken. While in the deterministic analysis the consideration of dynamic
superstructure loads has been implemented (an important element of dynamic analysis) alongside
with the classical treatment of defined ground motion, the stochastic analysis mode incorporates

both the earthquake simulation and the direct transferring of stochastic properties.

The relationships that connect the dynamic input to the system response are schematically
shown in Figures 1.2-2 and 1.2-3 (stochastic and deterministic modes respectively). In both
modes of analysis the link is the transfer function H(w) of the system which identifies the

superstructure/ foundation/soil medium.

The stochastic mode of Figure 1.2-2, which implements both the simulation and the direct
generation, seeks to evaluate the response spectra induced by ground excitations that can be
defined by either target response spectra or cross-spectral densities of the stochastic process

describing the excitation.
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The direct stochastic mode determines the cross-spectral density matrix of the response

$,(w) for a stochastic process with cross-spectral density $4(w). For a stochastic process that
defines the free-field in terms of rarger response spectra a consistent cross-spectral matrix is
formed and eventually transferred to the elevation. The simulation seeks the floor response
spectra by utilizing statistical properties of the responses at the same elevation due to an
ensemble of ground accelerations whose response spectra that march the target spectrum over
some of its statistic properties. As shown in Figure 1.2-2, both simulation procedures are
implemented (one leads to ground motions from a response spectrum through its power spectrum

and the other to ground motions directly from the response spectrum).

Considering that structures are dynamically treated mostly as linear systems, so all of the
above listed aliernative procedures can be utilized, room must be left to explore non-linear
behavior. The direct mode of spectra generation seems to work well for linear systems and for
stationary stochastic processes. However, work needs to be done to generalize its applicability.
This gap can be filled with the help of simulated earthquakes, which as an ensemble can
equivalently represent the stochastic process, by exciting the non-linear system in the time space

rather than frequency.

The deterministic mode of Figure 1.2-3 utilizes the system transfer function H(w) to
evaluate the response spectrum at specified elevations due to a defined ground acceleration. This
process requires that the input ground motion be expressed in terms of the Fourier expansion
of the record. The evaluation of the response of the superstructure as well as the response of
the foundation due to applied dynamic loads is also incorporated. Wind loads, impact loads and
floor dynamic loads due to equipment can be treated by utilizing appropriate system transfer
functions which relate the dynamic superstructure loads to the motion of the building-foundation

system,
1.3 Future Work

While the fundamental steps in evaluating in-structure responses are both theoretically

and computationally implemented in this study and the fundamental objectives have been met,




much work needs to be done in certain areas of the analysis in order to more realistically define
both the ground excitation and the behavior of the system. Specifically:

a.

The definition of the free field excitation and the realistic correlation of the three
components of the motion of the control point, both deterministically and
stochastically, require further attention. Indeed, the restriction of stationarity of the
stochastic processes which are used for earthquake representation in the present
format of the program, must be removed. It will be more appropriate to introduce
stochastic models and methods of analysis which account for the variation of
intensity of the seismic motion versus time. The area of nonstationary random
vibration has become quite mature. This potential aspect of an improved code will
give to users the option of assessing the severity of ground motions as they are

affected by local geological conditions.

The treatment of non-linear aspects in the behavior of the structure and of the
foundation is a critical necessity which should be incorporated into the code in the
immediate future. Currently, techniques like statistical linearization are reliable
tools for incorporating in random vibration analysis both elastic (geometrical or
material), and inelastic behavior of structural systems. This option can be a
desirable feature of the code which can be used to assess the significance of
hysteresis and other nonlinearities in realistic models of combined structural-

foundation systems exposed to stochastic excitation.

Further work must be done to lead to the definition of foundation input motion, as
well as soil medium impedances in a more accessive manner. This can be
accomplished by utilizing more sophisticated computational schemes such as

boundary integral methods.

It is believed that the time has come for reassessing the usefulness of specifying
seismic motion exclusively in terms of design spectra. It is clear that for linear
analysis, design spectra can expedite the response calculation. However, proceeding
to nonlinear analysis introduces difficulties which lead to the necessity of generating

spectrum compatible time histories. Alternatively, a systematic effort can be



undertaken to generate a power response spectrum similar to the Newmark-Kapur
Design Spectruts. The development of a power spectrum of this nature would be
readily applicable for linear analysis of structural-foundation systems. Further, by
adopting readily available techniques of nonlinear random vibration, it can be used
to conduct nonlinear analysis of structures without facing the need of developing
spectrum compatible time histories. Finally, it will make available to the community
versatile techniques like the Monte Carlo simulation method for assessing a variety

of issues involving physicel parameters of the problem.
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2.0 THEORETICAL BASIS

DIGES incorporates all necessary components that allow the determination of the
response (output) to a given dynamical load (input). This determination assumes that the
properties of the system are known in the deterministic sense or that the system properties have
uncertainties associated with them. In the latter case, relevant variations in the system response
can be treated with DIGES through variation-of-parameter studies. This approach represents
standard practice and it is the primary tool for assessing potential impact of system uncertainties.
For each parametric solution the system properties are fixed and the output is accordingly

determined.

This chapter describes the primary ingredients of the theoretical basis of the DIGES and
discusses various aspects related to the particular algorithms implemented into it. In particular,

the following topics are presented:

®  Definition of the overall problem treated by DIGES
¢ Solution procedures

¢  Determination of system transfer functions

* Input definition

*  Response characteristics

¢ Simplifying solutions

[ 3]
Ce—

Definition of Overall Problem

The overall problem considered by DIGES is a dynamical problem in which the structure,
as well as, the associated foundation are modeled together as a multi-degree-of-freedom system.
The superstructure is represented by appropnate stick models idealizing the inertia and flexibility
characteristics of the buildings. All stick models necessary for modeling the substructure must
be founded on the same foundation mat. Implicitly, this reflects the fact that the current version
of DIGES does no perform structure-to-structure interaction. Accordingly, the assumption of
common foundation mat must be maintained in modeling of the superstructure. Energy

chissipation due to structural motion is taken into account through modal damping. This subject

9



will be discussed in detail in the next Sections where, in addition, the similar subject of energy
dissipation due to the foundation motion in terms of geometric or radiation and material damping
is discussed. The parameters considered in modeling the foundation are its mass and its
flexibility. The latter is represented by a generally complex compliance matrix or through its
associated impedance matrix, the elements of which depend on geometric characteristics of the
mat and the underlying medium, as well as, on pertinent soil properties (e.g., shear modulus,

Poisson’s ratio, damping and soil mass densities).

With respect to the types of input handled by DIGES, they can be classified under two

main categories as follows:

* input in the form of ground excitation

¢ input in the form of applied dynamic loads at the superstructure

The former is representative of earthquake engineering applications while the latter is
associated with general structural dynamics applications. Main emphasis is given to descriptions
of relevant information of how DIGES performs solutions to problems of the first of the above
categories which 1s admittedly the more complex. The option of performing dynamic response
analysis of building-foundation systems for dynamic loads imposed on the superstructure has also
significant applications, e.g.,  orcad vibration test verifications, impact and general lateral

dynamic l~adings. Figure 2.1-1 shows the two general categories of dynamic input.

The fundamental approach used by D.GES in computing dynamic responses through
deterministic, simulation or probablistic calcul. tions is based on substructure analysis. The
specific sihstructuring followed is similar to the' in Refs. 1 through 4. Accordingly, the
dynamic equations of motion of the superstructure are - mployed to determine the cotresponding
forces exerted on the foundation. The latter forces toge'ner with those exerted by the soil on
the foundation are then used to balance the inertia forces o the foundation mat. The solution
of the resulting equilibrium equations of the foundation {1nduces the total motion of the
foundation from which all required response parameters can be computed by back substitution,

This concept is shown in Figure 2.1-2.

10



The above approach has, in our opinion, several advantages. Among them

* reasonably follows the mechanics of the problem
¢ handies energy dissipation consistently; structural, foundation geometric and soil
}

damping are treated separately without the need of introducing composite or other

type of damping solutions

o allows for computational efficiency in the implementation process

d provides flexibility for obtaining intermediate results throughout the computaiion

¢ asily amrended to extensions and/or modifications to incorporate new features

resultnr [ron ng nge researct

v performs very well in parametric vanation studies or simulation problem:

[ he primary hmitation of this \pproach 1e thi t 1s not generally suitable for _5;;;\|g>‘;(1.\y1\

near problems. In practi how r, some nonlinear effects are studied by using linear

nd treating the problem through parametric variations in which the primary parameters

fness and damping 'he result f such studies are frequency shifts and amplitude
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2.1.1 Computation of Responses

DIGES considers the structure-foundation configuration as a multidegree-of-freedom
linear system subjecte! to dynamic forces that are either applied at the superstructure or resulting
from the scattering ol the seismic waves by the foundation mat. The applied forces or the
foundation input motion can be described a) deterministically, i.e., forcing function or
acceleration time histories and b) probabilistically, i.e., cross-spectral densities of the force or
excitation. The computation of the relevant response of the structure-foundation system, either
response time histories or cross-spectral densities of the response, is carried out in the frequency

domain. For this purpose a two-step approach is followed:

Step 1: Computation of appropriate system transfer functions H(w) by considering
steady-state analysis.

Step 2. Computation of the response to transient loads using Fourier analysis.

The term transfer function is used in this report as synonymous to the term frequency
response function, It signifies the steady-state response due to harmonic input. The transfer
functions of the system relating the amplitudes of the dynamic input to the response amplitudes
are expressed in terms of frequency-dependent complex matrices H(w). Their evaluation is
based on the equations of motion of the system. Typically, the type of transfer functions which
are evaluated correlate:

¢ the input with the relative structural response with respect to foundation

¢ the input with the total structural response

* the input with the total forces exerted by the superstructure on the foundation

The analytical modeling of the system is adequately flexible so that other transfer

functions of interest can be reasonably implemented.

Having established the system transfer functions, DIGES proceeds with the computation

of the response. Deterministic responses are computed by Fourier analysis (Refs. 5, 6):



F(w) :
y(t)
H{w)

Probabilistic

(Refs. 5, 6):

where
® (w)
P (w)
R.(7)
Hiw)
H*(w)’

i

) - -2-‘; f_ H(w)F (0)e''d

o

Flw) = j'x(t)e Totdy

Fourier transform of input
System response

System transfer function

responses are computed in terms of cross-spectrai densities of the response

Qv(w] ~H(w)¢x(w)H'(w)T
- 2.1.1-2
R (1) —'fH(w)@r(w)l‘l'(w)rt‘“"dw

cross-spectral density of input
cross-spectral density of the response
correlation matrix of the system response
system transfer function

transpose of conjugate



2.1.2 Description of Dynamic Input

On the basis of the fundamental acceptance of the concept that the motion at a point on the
free-field, for any given seismic event, is a complex superposition of motions induced by
different waves impinging on the free surface, the free-field control motion is formulated. Free-
field motion at a given site is of course the response of the undisturbed soil to the incident

seismic wave (prior to the interference induced by the presence of the superstructure).

For any given seismic input, the free-field motion at a reference point can be seen in the

vector form,

Lo ]
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where the three components of the vector are generally dependent both deterministically and

statisticaily.

The problem to be addressed is the transferring of the 3-D motion of Eq. 2.1.2-1 from the
free-field to the structure, given of course the property profile of the soil medium, the propesties
of the foundation and the dynamic properties of the structure. The most fundamental

transferring of such motion can be seen through the relation,

F (@) = H(w)F () 2.1.22

where F (w) represents the Fourier transform of the input, H(w) represents the transfer function

of the system and F (w) represents the Fouricr transform of the response.

This simple but powerful relationship between the input excitation and the response is to
hecome the basis for far more complex analyses in terms of both the input excitation and system

characteristics.

Consider that the free-field excitation is described by earthqueke accelerograms, or by a
stochastic process a(t) which is defined by a cross-spectral density matrix. Each of the above

carry along information pertaining to a single given event or to a family of events. The



transferring of that information provided in any of the above forms constitutes the basic
branching of DIGES.

Four basic approaches make up the generic capability of the program. The level of
branching can be seen in Figure 1.2-2. Specifically, the first option enables the direct
transferring of the free-field motion that is expressed in tzrms of a power density function or
ground response spectra into the structure. The cross-spectra! density matrix of the free-field
is formed and then transferred by utilizing the following relationship which links the output with

the corresponding input:
® (w) = H(0)® ()H (w)" 2.1.2-3

where the asterisk indicates complex conjugate.

Through an interactive scheme consistent spectral densities are calculated to equivalently
represent the stochastic process that is in the form of response spectra. The procedure for this
step is presented in the next section. It shouid be m:ntioned that the above process also renders

the name DIGES (Divect Generation of Spectra) to the program.

The second option utilizes earthquake simulation procedures according to which artificial
earthquake records are generated refiecting the stochastic characteristics of a family of
earthquakes that each one is a member of, Such earthquake family can be equally represented
by a power or a response spectrum. Each generated earthquake, expressed in its Fourier
expansion, is transferred to the structure via the transfer function H(w) of the system. The
response of the structure at any of its degrees-of-freedom is consequently formed on the basis

of the family of the responses associated with each member of the input.

The third option reflects the deterministic solution capability of the DIGES (see
Figure 1.2-3). Specifically, the response of the system to a deterministically defined earthquake
in the free-field is calculated utilizing the system transfer function and the Fourier expansion of
the earthquake accelerogram. It resembles the previous approach except that the input time

history 1s not artificially generated and the response is the result of a single cycle.




The fourth ana last option (see Figure 1.2-3) is the one associated with the response of the
system when subjected to dynamic forces on the superstructure. This is made possible by
incorporating such effects appropriately into the transter function of the system which links the

dynamic load with the motion of the building-foundation system.
2.1.241 Direct Generation of Spectra

The first option of the first level of branching shown in Figure 1.2-2 is discussed in this
Section of the report. This option enables the stochastic evaluation of the response of the
structure which results from a free-field motion also defined stochastically. Given that the

stationary stochastic process g(t) representing the free-field motion satisfies a zero mean
Elg®)] = 0 2.1.2.1-1

its cross-spectral density matrix is defined by:

xx

(O () @ (0) O ()
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On the other hand, the transfer function of the multi-degree-of-freedom system can be expressed

by
[ H (@) Hly(w) H (0) |
H, (w) sz(w) H,(w)

Hw) = | H (w) H,(w) H,(w) 2.1.2.1-3
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|
!
l
|
;
Accordingly, then the cross-spectral density matrix of the response of the system can be

expressed by

18



®(w) - Hw)® (w)H ()" 2.12.14

&, (w) of size 6N x 6N (where 6N is the total number of d.o.f. of the system) cross correlates
the responses of all the d.o.f. in the system. The diagonal terms of this matrix represent the

power-spectral density of the response at the particular degree of freedom.

The completion of the goal which is the generation of response spectra will require to
express the resulted stochastic process in a final form consisting of response spectra. Thes~
spectra should equivalently represent the response process that is now in the form of power
spectra.  An outline of the analytical procedure used to transform the power-spectral density of

the response to a response spectrum is presented below.
Power spectra to Response spectra
For a weakly stationary process g(t) exciting a simple oscillator of natural frequency w, and

damping ratio ¢ the power spectral density of the response @,(w) can be related to the excitation

as follows:
®w) = [Hw) ®w) 2.1.2.1-5

where H(w) and $,(w) are the transfer function of the oscillator and the psd of the excitation

respectively.

With the statistical properties of the excitation process

X

o j ¢ (w)dw
]

A, = fm‘@x(w)dm, RN B B Sl 2.1.2.1-6
0
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the dispersion of the psd function about its center frequency is seen through the shape factor 6

g ai 2
I Al 2.1.2.1-7

§ S

§ =
N A

With a cumulative distribution of the maxima of the response process y(t) given by {Refs. 7, 8)

R S
T I 2.1.2.1-8a
F'v(r)=[v1'e(' el b j; r>0
where 6, = 8'°, a = /o, and
b ke 2
| A2 2.1.2.1-8b

the mean displacement response spectrum which represents the mean of maximum absolute value

of the response process y(t) 1s

RS{wgk) = P9, 2.1.2.1%
where the peak factor p,, is given by
= L R <
Py = TR + 22112 2.1.22.1-9
Vz ’"\"en

and

v, T = max(2.1, 26v,1) , 0<d8 201

v,T = (1.638% - 038)v,T ; 0.1 < 8< 0.69 2.1.2.1-9¢

v I =v,T ; 069 <6 <10

Given the displacement response spectrum, the acceleration spectrum will simply be

5 F 2 . 719
R‘Su“‘)«,nq) w\'lRS(l‘,w()OE) 2.1.2.1-10
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il. Ruiz-Penzien form

\2 4
|+ 48 {:ﬁ (_w.
@ W
S(w,A) = §, S P
( 2 2 2 . \2
el <
l wS}J w!/ P p/
A = [(pwpSulsw,) 2.1.2.1-12
iii.  Superposition form
o]
o |
2 l + 4 2 l 3 e Q.
S(w,A) = §, P, - C;)‘ J
kel ' \2 [ A2
R
| W) | Wy
R jc,.m,‘s,,cg,wz.szg" 2.1.2.1-13

When any of the above expressions is multiplied by the filter

|

1 + aw?

a new form of analytic psd is deduced.

The resulting power spectral density is used to generate a consistent response spectrum
according to the procedure already described above. In that process a duration of the stationary
part of the seismic event has to be assumed since the target response spectrum does not provide
such information. The calculated response spectrum RS, (w,£) and the target response spectrum
RS(w,f) are then compared. This comparison is taking place over a finite number of
frequencies within the range and the criterion of convergence is the minimization of the square

of the difference

. ax R S S R oS O - I oS N R R s an aa = e
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Fy(w) = H(w)F (w) 2.1.2.2-1

where F,(w) and F () are the Fourier expansions of the input and output respectively. The
response of the system can subsequently be expressed in time by means of the Fourier synthesis,

i.e.,

1
27

ro

) - f F (w)e"'dt 2 LIK

When the complete ensemble of generated earthquakes has been transferred to the
struciure, the response of the system at any d.o.f. can be then seen as a single response spectrum

which s deduced from the ensemble of response spectra, i.e.,

2-3

(8]
o
o]

" RS
RS (w,8) = ;‘L—l‘_nM

along with the statistical properties of the ensemble of amplifications at every specified
frequency w, 1.€.. [u+0]*RS(w,). This process will also include a non-exceedence probability

requirement.

Given that the free-field stochastic process can be equally represented by its response or

power spectra, simulation of ground accelerations should be possible from both representations.
2.1.2.2.1 PSD Based Ground Acceleration Simulation

The ground motion during an earthquake event can be characterized as a three-dimensional
process. It is also expected tha' the motion of a control point in any of the directions is not
independent but rather dependent to the other two components. Thus, accepting that such
correlation exists, the most appropriate way io stochastically describe the process is through its
cross-spectral density matrix. The evaluation of the latter matrix is rather difficult and thus the
alternative description of three independent components of ground motion appears to be more

accessible. An outline of these two cases will be presented below.
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3 N
g0 =2 Y ¥ H(wNEacosws + B,w) + &, 5 i=123
m=] [«]|
2.1.2.2.1-8a
where
w, =lAw ; =123
Aw » =t
it ) 2.1.2.2.1-8b

In the above w, represents an upper cut-off frequency beyond which the psd is assumed to vanish
while each column of the 3 x N matrix [¢,,] 18 a vector of independent random phase angles

uniformly distributed in the interval [0,27].

While, by adopting this mathematical model the expected value and the cross-correlation

‘ ! : : : 0
functions of the simulated stochastic process g(t) are those of the target process g, (1)

Hg/(n] = Bg®) = 0

Ry(t) = Ry(v)

the simulated process g(t) is not ergodic. Since, however, the stationary character of the

2.1.2.2.19

simulated process is still in place, a modulating function ¢(t) (e.g., Figure 2.1.2.2-1) is also

utilized in order to provide a more realistic ground motion.

It is suggested, however, not to introduce the non-stationary form of the simulated
earthquakes if direct comparison of the output response spectra (average of spectra from all
simulated earthquakes) is to take place with spectra that are generated by utilizing the direct

method. That is of course due to the fact that the direction generation,
' *Cea)T
¢ (w) - H(w)‘bmp(w)H (w)

is only valid for stationary input and output stochastic process.



As mentioned earlier, the Fourier transform of each simulated earthquake will be
transferred to a given d.o.f. on the structure according to Eq. 2.1.2.2-1. The inverse Fourier
transform of the response F (w) will represent the time history of the response. Subsequently,
with the time history of the system variable (e.g. acceleration) at the d.o.f. and an assumed

percentage of damping the response spectrum is calculated.

Lastly, the ensemble of response spectra (one for each simulated earthquake) will be
statistically processed to obtain a representative single response spectrum at the degree-of-

freedom on the superstructure.
2.1.2.2.2 Simulation Based on Response Spectra

The random process that represents the earthquake ground motions at a particular site could
be also defined in the form of a response spectrum. Simulated earthquakes that belong to the

family of the target response spectrum can assume the form,

(o]
%)
Lo ]
ro

N
g = {0 Y Clwsine,t + ¢,)
n=1

where C (w) is the amplitude of the n-th contributing sinusoid and ¢, is its phase angle. {(t) is

a deterministic envelope function as described in the previous section.

Any choice of the vector ¢ which contains the uniformly distributed in the interval [0,27]

non-correlated phase angles and a set of amplitudes C(w) will define a ground motion.

In order for the generated ground motion to be consistent with the target response
spectrum, the amplitudes C(w) have to be adjusted so that the difference between the target
response spectrum, which claracterizes the random process, and the generated one from Eq.
2.1.2.2.2-1 is minimized cver the control frequencies. This is done iteratively and it consists

of the following steps:
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a. A random vector of phase angles is chosen,

b. An initial set of amplitudes C,_..(w) is chosen. While it is desirable to minimize the
iterations by starting at the best guess for the vector C,,(w), that can be achieved by
assigning the amplitudes of the Fourier expansion the values of the zero-damping
target spectrum, theoretically any choice should work. In DIGES, the entire initial
vector could be set equal to one.

¢.  With the two vectors available, the response spectrum of the generated time history
is calculated for a given duration and damping.

d. The iteration procedure is implemented. For each iteration cycle i the generated
response spectrum is compared to the target spectrum and the initially chosen

amplitudes C, . (w) are adjusted according to the relation

RS (w)

b oo AN 2.1.2.2.2-2
RS rge @)

C . (w) = C(w)

While exact convergence criteria for the above iterative process are not available, it has
seen that agreement of the generated to the target spectrum can be achieved after a few
iterations. The simulated earthquake is of course the time history that results from Eq.

2.1.2.2.2-1 after the response spectra nave been matched

Similarly, the ensemble of ground motions is transferred to the structure by utilizing the
transfer function of the system (Eq. 2.1.2.2-1). Each response, a time history of the variable
of derest at a given d.o.f., will be again represented by its response spectrum and finally an

ensemble spectrum will be deduced.

2.1.2.3  Deterministic Input Analysis

As can be seen from Figure 1.2-3, DIGES has the option of performing deterministic
analysis for cases involving seismic excitation as well as dynamic loads imposed on the
superstructure. In both cases, the response is based on the motion of the building-foundation
system.  This implies that the analysis incorporates SSI effects for both seismic as well as
superstructure loads. We felt that it is important to have DIGES performing deterministic

analysis in addition to its capability of stochastic analysis.
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When DIGES performs deterministic analysis, the seismic excitation a(t) or the dynamic
load imposed on the superstructure P(t) are transformed into the frequency domain by Fourier

transform, 1.e.,

™

F0) = [ a®c 1.1.3.%4
and
Fplw) = fP(:)e e 2.1.2.3-2
respectively
Accordingly, the response of the building-foundation system is computed by
y(1) é—l;: iﬂa(m)Fa(u)e‘wdw 2.1.2.3-3
or
n = :l; f”,.(w)F,(m)e“"‘dw 2.1.2.3-4

for seisinic excitation or dynamic load respectively. In Eqgs. 2.1.2.3-3 and 4 H,(w) and Hy(w)
are the transfer functions of the building-foundation system relating its steady-state response to

a unit excitation or to a unit dynamic load respectively

2.2 Description of System Motion

2.2.1 Equations of Motion of Superstructure

The dynamic characteristics of the superstructure are obtained by DIGES using a three-
dimensional idealization of its inertia and stiffness properties.  This is done through stick model

type of representation of the structure in which lumped masses are interconnected with 3D beam
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elements. Each mass is associated with 6 degrees-of-freedom. Let N be the total number of
lumped masses representing the superstructure. Then the equations of motion for the 6xN

degrees-of-freedom system are:

Mi +Cu + Ku = 0 2.2.1-1
where
=  6Nx6N mass matrix
C = 6Nx6N damping matrix
. = 6Nx6N stiffness matrix
U, = 6N displacement vector representing the total motion of the superstructure
U = 6N displacement vector representing the relative motion of the superstructure

with respect to the foundation.

The relationship between total and relative motions of the system is discussed in the next

section

2.2.1.1 Flexural and Rigid-Body Motion

The total motion of the system consists of two parts: flexural motions due to the
deformation of the superstructure relative to the foundation and rigid body motions with respect
to a fixed system. In the later case, the structure-foundation system behaves as a rigid body.
Based on this, the total displacement vector u, at the superstructure can be decomposed into two
parts: the relative displacement vector u plus a rigid displacement ver or u,. Therefore, we can

write:

8, U *+u 2.2.1.1-1

All vectors in Eq. 2.2.1.1-1 are 6N-vectors. The instantaneous motion of the structure
foundation system acting as a rigid body is completely defined by its velocity of translation plus
an angular velocity. The velocity of the translation is equal to that of some arbitrary pont of
the structure-foundation system while the axis of angular velocity passes through the same point.
Based on principles of rigid body kinematics, the angular velocity of the system is independent

of the choice of the base point in terms of both magnitude and direction. The velocity of

32



} |
o A1
the freedom
2T ' ’
| 19 1
ndatio
) (
th
{ { ] M
(
'
i\ a ) "
. POL
*
{ {

lepend nt hot it base pomnt but it can b ietermined by
in\.’i-];?li' veloet it any othet point on the structure foundation svstem an
\ »lOor charact ng the motion In view of these Kinemati principies
nvenient choices of a base point for referning the rigid body motion of the

ding foundation system. b) center of

the

venient point at the ngid foundation. In general, any

main reason for amplhifying this issue emphasize that

osing a reference point in DIGES must be complemented with consistency
it parameters of tl veten y mpliance or impedance functions of the
y five relat { h { 1 th \Mtering t mi Wi D ?h
1 { iJ dispia nemt TO1 u et ntine the tal ai |‘§! ement at any
tructur i { nd bod not1ot tculated from the total motion at a
the neid ndatior | ler to maintam nsistency throughout th
{ { \ [ 1t De tern ' | ' indation referen l“""r l‘ {u (I 1ot
tal { q \ W hi 1< the tota ! I bt tOundaa n reteren
A
W, \
’ | ) |
u ¢
14 | ¢
‘
1
i
u k (ATan r ana Knowing u.. the nymid body motion
vhicl } ated eith h iperstructuts r at the foundation
|



2.2.1.1-3a
or in terms of their components,

() 1) )
Au Ax Au
U] 0 0}
A,VJ A! A,w
) 0 h

<A“> «A‘ ,<A’~W 2.2.1.1-3b
() 0 0}
85»‘ 61 Ox,r
U} 0] )]
BVJ 6? 0)_,_,
(i (n (i
0., 0, 0,,

(subscripts ¢ and r denote "total" and "rigid" respectively).

The relative motion u" of the i-th node is referred to the foundation reference point, i.¢.,

()
A,
(H ) 29 e P
6,-” Av i ..,l l 3\.
i
A

x

The corresponding rigid body motion u," of the i-th node is computed from the motion of the

foundation reference point as follows

With respect to Figure 2.2.1.1-1 the total ngid displacement of the i-th node of the
superstructure consists of a translationai displacement {equal and parallel to that of the reference

point) plus 4 small rotation about the axis of rotation, i.e.,

dr = 6,-F + 80 x i 2.2.1.1-4

where & is used to signify small motions.

Using the relevant components and by carrying out the cross product, Eq. 2.2.1.1-4 can

be written as:
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]
(n ° ( 0 "o fo . 0
4 Y
Ax,r Ax i " x g
0 o r o 2.2.1.1-¢
Av.rl Av d o2 0 ox y
H 0 o
A A I g
ZJ. z ] "OJ f'o.x 0 4

where r, is the position vector of the i-th node with respect to the reference point Og, i.e. r, =

r,, 1+ 1, j+ .k, and 66 is the angular displacement associated with the rigid body motion

and has components {67 85 07} Accordingly,

(£)
ex.r 01

0} 0 2.2.1.1-6
e‘v.r - ev

(
6n | |6

In view of Egs. 2.2.1.1-5 and 6 the rigid body motion u," of the i-th node of the

superstructure can be written as:

: , 2
u, = APu, 2.2.1.1-8a
where
| |
40 .| 1 R 2.2.1.1-8b
B A A
and
R e e i
RY = | (& ~ %, 0 X~ X, 2.21.1-8¢
\ ‘
\ vl yu (.l‘ “‘n’ 0
. I and O are 3x3 unit and null matrices respectively.
. (x,, ¥, z) and (x,, y,, z,) are rectangular coordinates of the i-th node and the foundation
reference point respectively.
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Substituting Eq. 2.2.1.1-8 into Eq. 2.2.1.1-1 for all nodes of the superstructure we obtain:

U, ~u*+Au, 2.2.1.1-9

'

where A is a 6Nx6 matrix assembled in DIGES by using Eq. 2.2.1.1-8b for all nodes of
the superstructure, while u, and u are 6N vectors representing the total and relative motion of

the superstructure.

In view of Eq. 2.2.1.1-9, the total motion of the superstructure (motion with respect to a
fixed system) is equal to a rigid body motion plus a flexural motion relative to the foundation

reference point.

2.2.1.2  Transfer Functions Between Superstructure Motion
and T ion !

DIGES employs modal decomposition of the superstructure for determining relative
motions of the superstructure with respect to the foundation. The key parameters of the
superstructure which are required for this purpose are its mass and stiffness. The latter are
assembled by direct finite element approach in terms of the 6Nx6N M and K mass and stiffness
matrices respectively. The mass matrix M consists of element mass matrices plus lumped
masses at various nodes as specified by the user. The element stiffness matrix is three
dimensional which allows for 6 DOF’s per node. Finaliy, relevant dissipation due to structural

motion is computed in terms of modal damping using the fixed-base modes of the structure.

Substitution of Eq. 2.2.1.1-9 into Eq. 2.2.1-1 gives equations of motion of the

superstructure in terms of its relative motion u with respection to the foundation:
Mid+Cu + Ku - MAd, 2.2.1.2-1
Since the transfer function between the relative motion of the superstructure and the total

foundation motion is of interest, we are considering steady-state harmonic motion at frequency

w. Accordingly, the displacement vectors u and u, can be described as follows:



u = ult) = Uw)e™

2.2.1.2°2
u, = u,) = Ufw)e'
Substitution of Eq. 2.2.1.2-2 into Eq. 2.2.1.2-1 gives:
(~w’M +iw C + K) U = @’MAU,
from which,
U=HU,
2.2.1.2-3

H = H(w) = o[-0’M + i o C+K]"' M A

where the 6Nx6 frequency dependent matrix H, represents the transfer functions between the
total foundation motion and the relative motion of the superstructure. Considering Egs.
2.2.1.1-1, 2.2.1.1-9, 2.2.1.2-2, and 2.2.1.2-3 we can write:

U, = H,U, |
: 2.2.1.24

H, = Hiw) = H(w) + A

where the 6Nx6 frequency-dependent matrix H, represents the transfer function between the total

foundation motion and the total motion of the superstructure.

In view of Egs. 2.2.1.1-9 and 2.2.1.2-4, the total motion of the superstructure (required
for computing in-structure responses) consists of flexural and rigid body motions and its
amplitudes at frequency w are completely defined by the corresponding amplitudes of the total

foundation motion U, and the transfer function K, given by Eq. 2.2.1.2-4.

From Egs. 2.2.1.2-3 and 4 it is concluded that the computation of the transfer functions,
H,(w) and H.(w) requires the inversion of the 6Nx6N complex frequency-dependent matrix [-w’
M + iw C 4+ K] assuming that M, C, and K are appropriately defined. If the superstructure
itself, considered as a conventional fixed-base system cannot be decomposed into classical
modes, then the computation of the transfer functions H,(w) and H,(w) can be done by numerical
inversion of the matrix [-w* M + i w C + K] at each frequency of interest. If fixed-base modes

exist in the classical sense, then DIGES computes the above transfer functions using the results
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of the modal analysis. In the latter case, DIGES performs modal analysis by the solution of the

following equation:

Mi + Ku = 0 2.2.1.2-5

from which the 6Nx6N modal matrix ® containing the fixed-base modal shapes of the
superstructure is obtained. By employing the modal matrix and the resulting modal equations
DIGES computes H,(w) and H,(w) on the basis of the following formulation.

By employing the fixed-based modal mat=ix &, the amplitudes of the relative motion of the

superstructure can be written as:

U=®nq 2.2.1.2-6

where 7, is the amplitude of the modal displacement of the j-th mode. Accordingly, we can

write;
n/ - H‘?" r‘} Uo 2212-7

& . s .
where H‘f’ is the modal transfer function of the j-th mode given by the relation:

, Qf
H) = - - .
bt e 2.2.1.2-8
Q =
wl
W, = frequency of j-th mode;
¢ = modal damping of j-th mode;
®, = 6N modal shape vector of j-th mode;
¢ M4 -
' = My g modal participation 6-vector of j-th mode:
’/ M ¢/’
U, = 6-vector of amplitudes of the total foundation motion. and:
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i = \ |
DIGES normalizes the modal matrix ¢ with respect to the mass matrix. Therefore,
*'Me =L
“

Substitution of Eqs. 2.2.1.2-7 and 8 in‘o Eq. 2.2 1.2-6 yrelds the relation:

(U=H U
e | 2.2.1.29
H, - H(w) = ®H "

r-A'Mo 2.2.1.2-10

and H, is a diagonal frequency-dependent matrix with elements H given by Eq.
2.2.1.2-8. The corresponding transfer function for the total motion of the superstructure is

obtained by substitution of H, (w) from Eq. 2.2.1.2-9 into Eq. 2.2.1.24, i.e.,
H, = Hw) = H, + A = ouorf v A 2.2.1.2-11

For every frequency w, DIGES computes H (w) using the corresponding modal frequency
w, and damping £, Then, the 6Nx6 transfer matrix H,(w) is calculated from Eq. 2.2.1.2-9 while

the corresponding 6Nx6 transfer matrix Hy(w) is calculated from Eq. 2.2.1.2-4.

2.2.1.3  Transfer Functions Between Superstructure Forces and
Total Foundation Motion

In the previous section, the transfer functions relating the motion of the superstructure and
the total foundation motion were discussed. The associated transfer matrices H, and H, are
employed in this section to compute the forces exerted by the superstructure on the foundatior,
Let H, represent the transfer matrix which at each frequency w relates the amplitude of the total

foundation motion U, to the amplitudes of the forces F,, exerted by the superstructure on the

foundation, Then,
F,=H U, 2.2.1.3-1

where F.,, U, are 6-vectors and H; = H(w) 1s a 6x6 frequency-dependent complex matrix.

The vector F,, is referred to the same point to that of the total foundation motion U, that is, the
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The resultant forces F.°, F.°, and F,° are the sums of the corresponding forces F,", F.",
and F," respectively. The moments M,°, M,°, and M,° are the sums of the corresponding
moments, M,"”, M,", and M,", plus the resulting moments of the forces F,", F., and F," with
respect to the foundation reference point. The summation is over all nodes of the superstructure.
Based on this, the forces exerted on the foundation due to the inertia forces of the i-th node of

the superstructure are:

o {n
FJ F.I’ ]
F! . p‘”’ 2.2.1.3-5a
Fo F'm I
i £
and
) h . ’ [ .0
M M 0 .0 0 F
X x l ro,.: ro.v X
|
: ) "
0 () Y i (0 2.2.1.3-5b
4 (1} “ o I8 <
M, J M+ oz 0 0 | \F,) { 2
i | (H 1] | (D
My MO [Ty Tex o | | B
“ ‘ .~ -

where r," is the position vector of the i-th nod: with respect to the foundation reference

point. Egs. 2.2.1.3-2 through § can be written in the following compact form:

Y FO
Fy n
o ()
F = ,l ’,‘, 0! 1% 2.2.1.3-6a
Mro l 0 11 M‘:”
My“ M:a)
M M
L]
where:
| 0 A(‘:l Z!") (-y[ 'y(r) ;
= | 32
oM =| %%, 0 (x,~%,) ' 2.2.1.3-6b
I : |
| =0y %) 0 |
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By comparing Eqs. 2.2.1.3-6b and 2.2.1.1-8¢, it is concluded that Q" is the transpose of R"
Thus, in view of Bgs. 2.2.1.3-6a and 2.2.1.1-8, b, E” is the transpose of A". This is a

consistent result since in view of Bg. 2.2.1.1-8a, A" is a 6x6 transformation matrix

By carrying out the summation over the N nodes of the superstructure and by taking into
account that each element of F" in Eq. 2.2.1.3-6, is equal to the corresponding row of the mass

matrix M times the vector of the total motion of the superstructure, we obtain:

. w2AT 221.3.7
F,= w'A'MU, 2.2.1.3-7
Substituting U, from Eqgs. 2.2.1.2-11 we can write:
F,=HU,
H, - H(w) - w* A" M H,
' 2.2.1.3-8

- ' ATM(H, + A)

- W' (ATMA + TH, I

2.2.1.4  Summary of Superstructure Transfer Functions

The following is a summary of transfer functions associated with the motion of the

superstructure as computed by DIGES (see Figure 2.2.1.4-1),

A. Between total foundation motion and superstructure relative motion:

U-HU, A
H, - H(w) - ®H I

1

H, = diagonal matrix with j-th element:
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The computational steps required for defining the transfer functions relating:

¢ flexural motions of superstructure
. total motions of superstructure with foundation motion

e forces exerted by superstructure on foundation

are summarized as follows:

e Compute stiffness and mass matrices M and K respectively,

¢  Compute transformation matrix A

e  Perform fixed-base modal analysis. Compute modal shape matrix ® and modal
frequencies w;. Compute participation matrix I' from Eq. 2.2.1.2-10.

e At each frequencies w of the analysis compute:

* diagonal matrix H, using the modal frequency «, and modal damping £, of the j-th

mode.
e compute H (w) from Eq. 2.2.1.2-9
* compute Hy(w) from Eq. 2.2.1.2-11

e compute Hy(w) from Bq. 2.2.1.3-8
*  Repeat these calculations for ali frequencies of interest, thus building up function H,,

H,, and H; in terms of frequency w.

2.2.2 Dynamic Response of Foundation
2.2.2.1 Equations of Motion of Foundation

The motion of the foundation is completely defined by the motion of the foundation reference

point O, that is, the total foundation motion. With reference to Figure 2.2.2.1-1, the latter
consists of three displacements A7, AJ and A; represented by the vector r; and three rotations

#,°, 4. and 8,” represented by the vector 60, i.e..

46

i B = N G S O G T S O G SN S B e o = e



Response Parameters Transfer Total Foundation
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Transfer Functions of Superstructure

Figure 2.2.1.4-1
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The total external forces and moments applied at the foundation are represented by the 6-

vector ¥, i.e.,

3
SR
"
" a

ro

S

o

P

o

Note that F, is defined with respect to the foundation reference point O, in consistency with
the vector U,. The displacement at any point P of the rigid foundation can be found from the

total foundation motion by,

§r - GrF v+ 80 x r 2.2.2.1-3

where ér, and 68 are defined by Eq. 2.2.2.1-1 and r is the position vector of P relative to
the foundation reference point (See Figure 2.2.2.2-1). In particular, the displacement of the

center of gravity of the foundation is,

or 6rF + 80 x r, 2.2.2.1-4

(€]

The equations of motion of the rigid foundation can be obtained by balancing its linear and

angular momenta to the external forces F, as follows:
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the linear momentum of the foundation and H 18 its angular momentum
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ir/dt. By taking the time derivative of Eq. 2.2.2.1-4, substituting the result into Eq

and then taking the time derivative of the linear momentum, Eq 2.1-5a can be
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I Ay ]
Mo = m AZ _l_ l 2221'1“7
m o
is the mass matrix of the foundation, and,
, 0 2 Yo
A(; - i -ZG 0 xG 2221'1](:
‘ Yo % 0
m = mass of the foundation
i =  3x3 unit matrix
I = 3x3 moment of inertia matrix about O XYZ
Xos Yoo g =  coordinates of the center of gravity with respect to OXYZ.

in applying Eq. 2.2.2.1-11, it should be kept in mind that ALL external forces should be
referred to the foundation reference system O.XYZ which is conmon with that of reference of
the mass matrix of the system. If it is decided to use the center of gravity of the foundation as
a reference point (lake G as Og), then again both the mass matrix and the resultant of the

external forces must be referred to the center of gravity.

2.2.2.2 Foundation Forces

The forces associated with the motion of the foundation are due t0:

a. forces exerted by the superstructure on the foundation F,,
b. forces due to interactions between the surrounding soil and the foundation F,
¢. forces due to ground motion that result in from seismic waves impinging on the

foundation F,

The general equations of motion of the foundation expressed by Eqs. 2.2.2.1-11 can be

writien as:
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¢ Transfer function between applied force and structural displacements relative to the soil.

U-HP
1 ] 2.2.2.3-7
H - H{w) = OH,(I‘TH‘ b @7
@®
¢  Transfer function between applied force and total structural displacements,
U, = HP
l ' 2.2.2.3-8
H, - H(w) = 011,{1"11‘ ¢ — o’J + AH,
W

*  Transfer function between applied force and forces exerted on the foundation,
F, = HP

H, - H(w) = @{A’"MA + THY\H, + A" + TH @'

2.2.2.4 Ground Excitation

For the case of seismic excitation, the forces F,, exerted by the superstructure on the
foundation are the inertia forces given by Eq. 2 2.1.3-8. The transfer function between the total
response of the foundation U, and the foundation input motion U can be computed by

substitution of Eq. 2.2.2.1.3-8 into the right side of Eq. 2.2.2.2-5:

U, - H(o)U,

ro
e
.
o

Hc : H4(w) B [Ks ““’2(Mo | ATMA : PHOPT)!.IK‘

According to Bq. 2.2.2.4-1, the solution for the transfer function, H, requires the inversion
of a 6x6 matrix. Note, that this matrix is the same as ir Eq. 2.2.2.3-6. Having computed H,
from Eq. 2.2.2.4-1 the transfer functions for the superstructure are obtained as follows:

. Transfer function between structural displacements relative to the foundation and the

foundation input motion:

U-HU,

H, - H(w) - ®H I'H,
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Total motion of the superstructure with respect to the foundation input motion or with
respect to the soil
Forces exerted by the superstructure on the foundation at the foundation reference

point
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FOUNDATION
INPUT
MOTION

Ug

Ha=lKg - 0P (Mo +A MA+TH TTY1T K

(Eq.2.2.2.4-1)
TOTAL
FOCUNDATION
MOTION
Ug
¢H0rTH4 (®Hp FT+A)H4 w?(ATMA+ 'Hg FT)H4
(Eq. 2.2.2.4-2) (Eq. 2.2.2.4-3) (Eq. 2.2.2.4-4)
RELATIVE TOTAL TOTAL INERTIA
STRUCTURAL STRUCTURAL FORCES EXERTED
MOTION MOTION BY STRUCTURE
U U, ON FOUNDATION
F S5

SUMMARY OF TRANSFER FUNCTIONS
(CASE: GROUND EXCITIATION)

Figure 2.2.3-1
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DYNAMIC FORCES
ACTING ON
BUILDING

Ha=lKg - 02 Mg+ATMA«THTT )T ATa THp @ T)

(Eq.2.2.2.3-6)

—

TOTAL
FOUNDATION
MOTICN

UO=US

1

OHo(TTH4+0-20T)

OHo(TTH4+0-20 T )+AH 4

(Eq 2.2.2.3-7) (Eq 2.2.2.3-8)
RELATIVE TOTAL
STRUCTURAL STRUCTURAL
MOTION MOTION
U Uy

SUMMARY OF TRANSFER FUNCTIONS

w2 (ATMA+THo T T)H 4
+A T, FHOCDT

(Eq 2.2.2.3-9)

TOTAL FORCES
EXERTED BY
STRUCTURE ON
FOUNDATION

FSS

(CASE : SUPERSTRUCTURE DYNAMIC LOADS)

Figure 2.2.3-2
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3.0 DIGES Algorithm

The implementation of the theoretical background, pertaining to the transferring of the free-
field motion onto the superstructure, into a computational tool has been achieved with the
DIGES computer program which utilizes the FORTRAN 77 computer language. The program
itself resides in the a SPARC 1+ Workstation with open window capabilities. The workstation
is part of an ethernet network that allows login from a remote host. This gives it the capability

of window sharing between two remote hosts for on-line communication.

The program itself reflects the capabilities already described in the main text, such as direct
generation of spectra, earthquake simulation, deterministic earthquake solutions and system

response under dynamic superstructure loads.

In the following the main programming features of DIGES will be outlined as well as the
sequence of processes that are incorporated for a complete solution of any of the four major
modules of analysis. Figure 3-1 outlines the basic solution flow chart while Figures 3-2a

through d describe in more detail the operations executed in each solution module.
Main Program

The main program of DIGES plays the role of the driver of the program. It identifies the
module of analysis, the form of free-field input, the frequency content of the input along with
the size of the dynamic problem, the geometric/dynamic properties of the soil/structure system
and the locations where the response is to be evaluated. With this provided information (both
interactively and externally) the program has been designed to allocate memory space exactly
equal to what the solution needs. This is course has the advantage of utilizing all the working
memory the host system may allow instead of confining the computer code to a specified
problem size. Further, the ability of swapping memory space while the program is in execution

allows even further flexibility.

The sequence of operations are dictated by the main subroutine of the program which calls

the following main families of subroutines:

6.




The modal properties of the superstructure are evaluated by successively invoking the
subroutines that (1) identify the nodal locations with the degree of freedom, (2)
calculate the stiffness of the finite element system representing the superstructure (3)
evaluate the bandwidth and the global stiffness and mass matrices and (4) call the
eigensolution subroutine that returns the eigenvalues and the eigenvectors of the

superstructure.

In order for the equivalent mass matrix of the superstructure to be calculated which
implies the transferring of superstructure information on the foundation the system
invokes the subroutines that (1) calculate the rigid displacement matrix (2) the modal
participation matrix (3) mass matrix of the superstructure for displacement about a

reference point on the foundation and (4) the mass matrix of the rigid foundation.

To this point the calculated information is independent of the analysis frequency.
From this point on the evaluation of system properties takes place at every selected
frequency value associated with the specified frequency range of the solution.

The total transfer function H(w) is established for the complete frequency range.
H(w) is the product of (1) a transfer function which transfers the total foundation input
characteristics to any d.o.f. of the superstructure, (2) a transfer function relating the
foundation input motion to the total foundation motion and (3) the scattering matrix
that incorporates the modification of the free-field motion due to the presence of the

massless foundation.

Specifically, the program invokes the modal amplification matrix routine, the
frequency dependent equivalent mass matrix routine and, on the basis of the type of
foundation, the impedance (or compliance) matrices. Finally the scattering matrix is
called and the total transfer matrix of the system (complex) is calculated for every

frequency of the analysis.

For the case of system response due to dynamic loads on the superstructure the first

of the above transfer functions is appropnately modified.
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INPUT DEFINITION

EVALUATION
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EVALUATION OF SYSTEM
TRANSFER FUNCTIONS

SYSTEM RESPONSE

Figure 3-1
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SUPERSTRUCTURE MODELING

'he DIGES formulation idealizes the superstructure with a stick model consisting of flexible

nbers with equivalent stiffness and mass matrices. The finite element representation utilizes

D elastic beam properties which allows for six degrees of freedom in each nodal location

(Refs. 18, 1Y I'he special teature that aliows rigid links between nodal locations in the finite

) neqt wdealization has been incorporated. The presence of such links will allow for a

f course enable the evaluation of the response of
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where:

12E1 12E!
. $ & ke
* GAL? © GA L

Young's modulus

moment of inertia normal to direction i

Shear modulus = e peee

Cross sectional area

shear area normal to direction i

length of clement connecting nodes I and J.
Poisson’s ratio

tortional moment of inertia (= J, if I, = 0,
polar moment of inertia = [, + L

density

= 1 _otherwise)

T'he global solution, however, must be expressed in the global rather than local coordinates

since the superstructure degrees of freedom are expressed in these coordinates. This, in order

to form the final system matrices in the global coordinates, specified as X, Y, and Z on Figure

4-1, a transformation matrix T, is utilized such that,

and similarly,

K

&l

T.K, T,

M Tr ’Mlo( Tr

!

4.4

T, relates the vector of displacements in the element Cartesian coordinates to the Global

Cartesian coordinates through the relation

4-5

s
e



(he formation of the global stiffness and mass matrices K and M will involve the assemblage

of the individual stiffness and mass matrices given by Eqgs. 4-3 and 4 respectively
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Beam Element: Degrees-0f-Freedom

Figure 4-2




5.0 IMPEDANCES AND FOUNDATION INPUT MOTIONS

3.1 Foundation Impedances

The relationship of harmonic generalized external forces and moments exciting a rigid
foundation and the response of such foundation is expressed in terms of the 6 x 6 frequency
dependent impedance matrix K,. In addition, this matrix depends on the geometry of the
foundation as well as the properties of the underlying soil medium. The complexity that
accompanies the exact description of the interaction between the foundation and the soil has
limited the number of generic anaiytic solutions (e.g., Refs. 11, 13). To circumvent this
difficulty studies of parametric nature have been conducted and approximate analytical solutions
have been deduced for simple geometry foundations such as circular and rectangular (Ref. 12).
The problem, even for the simple geometries, gets further complicated for foundations that are

embedded into the sotil,

Several sets of approximate impedance formulae have been implemented into the DIGES
computational process. Each of the elements of K, reflect both the stiffness and the damping
contribution according to the relation K = k + 1a,c are where k and ¢ normalized stiffness and
damping coefficients and a, 15 a dimensionless frequency. (See DIGES User's Manual.) In

addition, DIGES provides the option of user-supplied impedance data
5.2 Foundation Input Motion

According to Equation 2.2.2.4-5, the foundation input motion Uy, is related to the free-field
motion U‘:,- through Hy(w). DIGES distinguishes three general cases relating the free-field

motion with the foundation input motion:
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Case ' Free-field directly applied as input motion

Accord’ng to this case, schematically shown in Figure 5.2-1, the foundation input motion is
equal to the free-field motion (_t’.c., U; = UOG) This case represents early stages of seismic

analyses of building-foundation systems according to which the criteria motion was directly
applied at the bottom of the soil springs. This refiects primarily cases involving surface
foundations. Since the free-field is applied directly as the excitation of the building foundation

system the 6 x 3 matrix Hy(w) takes the form

Hyw) - gg 5.2-1
where I and 0 are 3 X 3 unit and null matrices respectively.
Case 2: Convolution/Deconvolution

In this case the foundation input motion is the free-field motion at some depth, depending on
the embeddment depth of the foundation (Figure 5.2-2). The free-field motion at a given depth
is obtained through convolution or deconvolution depending on whether the criteria motion is
treated as an outcrop motion or as a surface (or near surface for very soft top layers) motic

respectively. In both cases, the transfer matrix H(w) has the following form:

Hw) = 'H(ow)‘j 5.2-2

where 0is a 3 x 3 null matrix and the 3 x 3 frequency dependent submatrix H(w) contains the
transfer functions for convolution/deconvolution. When one dimensional propagation of shear
and dilatational waves is assumed, the H(w) is a diagonal matrix. Otherwise H(w) has off-
diagonal turns representing coupling between horizontal and vertical components of motion, e.g.,
cases involving inclined waves. (See Section 6.3.3.1.) DIGk> has the option that allows the
user to input convolution/deconvolution data from external sources (e.g, CARES, SHAKE). A

set of models is also available which are presented in Section 6.3 of this report.
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(a)

(b)
Simple Model (Case: Dynamic Load On Superstructure)

(a) Overall Configuration
(b) Forces and Kinematics

Figure 6.1-%
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Note that

= u, +hy +x 6.1-1a

u, * x, 6.1-1b

The dynamic force Py(t) is imposed on the structural mass m. The foundation forces due to the
interaction with the soil are p(t) and q(t). For simplicity the coupling between translation and
rocking is assumed to be zero. Accordingly, the force-displacement relation of the foundation

can be written in the time domain as

k 0 014,
P X , ; .[ €y } U, 6.1-2a
q O kv J ‘l’ ! O CV "’
or in frequency domain as
P ] K(w) + iwC (w) 0 U 6.12b
ol | 0 K (w) + iwC () | ¥

where the 2 % 2 matrix in Eq. 6.1-2b is the impedance matrix of the foundation K (w).

Equilibrium of structural mass m yields:

2 P (t :
ay + 28w X1 + wx(n) - »—f”—n(—) 6.1-3

where w,, £, represent the structural frequency and damping respectively. Consideration of the
overall equilibrium of the building-foundation system produces the following two equations in

terms of forces and moments respectively:
mi(t) + my () + p(t) = P(1) 6.1-4
mhi(t) + L) + q(t) = AP (1) 6.1-5

Equations 6.1-3, 4 and S are the equations of motion of the model shown in Figure 6.1-1. The

solution will be formulated in terms of the total foundation motion (i.e., translation u, and




ind the relative structural motion (1.€., X Accordingly, the relative

v

ment can be obtained from Eq. 6.1-3 in the frequency domain as

h‘;"‘ W)
maa-

2band 6.1-6 ¥ in put Eq. 6.1-4 into the following form

wmH () + K(w) + iwC(w)| U/(w)

X

}{,‘\ W) "*’5UT‘.( ¥ )(”(‘hl} [)hf:’u}

5 into the following form

function associated with the




We shall show next that Eq. 6.1-9 is identical to Eq. 2.2.2.3-6:

For the model shown in Figure 6.1-1, A and I of Eq. 2.2.2.3-6 become:

1]
A={1 h ;, T {ﬁ{ b 6.1-10
h|

since modes are normalized to the mass matrix (i.e., m¢® = 1).

In view of eq. 6.1-10, the matrix products involved in Eq. 2.2.2.3-6 become:

(1 A
47m . ml : 6.1-11a
Lk W
(1 & I
PHUI‘T - mj((’(w)i 6.1-11b
Lh &
g
FHOQI' - f){,(w) 6.1-11¢
¢ h J
Substitution of Eqs. 6.1.-11 as well as Eq. 6.1-2b into Eq. 2.2.2.3-6 yields exactly Eq. 6.1-9.

Next, analytic expressions are defined for the total foundation motion and for the
superstructure motion of the model shown in Figure 6.1-1. By carrying out the inversion in Eq.

6.1-Y¢ we obtain:

U (w) @l ¢ ky(w) + iwc () 1 + )

e P )

H{w)

6.1-12a

Y(w) -wzhmb + h{k‘(w) 4 iwc,(m)}



M(w) = [-@im + m) - @*mH (@) + k() + iwc w)] -
~{-ullb-m3‘mh'~’[ + H(w)] + ky(@) + ioc (@)} - 6.1-12b
- {w?mH{1 '}(‘,(u)]}2

The relative structural motion is obtained by the relation:

l N w 2
o [H,(w)Fp(w)e ‘dw 6.1-13a

where F (w) is the Fourier transform of the applied force at the superstructure and H,(w) is the
transfer function between the applied force and the flexural motion. By substitution of Eq.

6.1-12 into Eq. 6.1-6 we obtain:

Hw) 1+ Hw)|Hw)

H(w) wzlo tiwe (w) ¢+ ko(w)l 6.1-13b

mw* {w) l
I = mph? + I, 6.1-13¢
¢ (W) = hic(w) + ¢ (w) 6.1-13d
k(@) = Wk (w) + k(w) 6.1-13¢

Note that the first term of Eq. 6.1-13b represents the corresponding transfer function for the

fixed-base case.

Assuming that both the applied force and the relative structural motion are weakly

stationary, then the spectral density of the relative structural motion ®,, is given by:
P (w) = H () ®,(w) 6.1-14a

where $4.(w) is the power spectral density function of the applied force and H,(w) is the transfer

function given by Eq. 6.1-13b.

The mean-square relative structural motion E[x*(1)] can be obtained by:

8%
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Substituting Eqs. 6.2-2 and 6.2-7 into Eqs. 6.2-5 and 6 we obtain:

_wz[m[l 4 ‘J{o(w)] ! mb]Uo(w) wzmhi 1 + ‘_}{o(w)]']’(w) + Plw) = 0 6.2-8

,wlmh[l ' ‘.Ho(w)]Uo(w) w211b + mh‘:‘I 4 “H“(w)n‘}’(w) + O(w) - 0 6.2-9

Substitution of Eqs. 6.2-3 into Eqs. 6.2-8 and 9 yields the transfer functions relating the total

foundation motion and the free-field.

U, = H(o)U, 6.2-10a
where
U(w) X (w)
U, s o s Ug={ ' 6.2-10b
Plw) 0

and the 2 X 2 complex matrix H,(w) is given by:

~wim + my) - wmH(0) ¢ ki) ¢ ivclw) -w'mil + H ()
H(w) = ' ‘ !
~w'mhl + H (w)| wl, - w'mhil + Hfw)| + k'(w) ¢ iwe (@) |
[ k(w) + iwc (w) 0
0 :t.(m) +we (@)

6.2-10¢
Using similar procedures as in Section 6.1 it can be shown that Eq. 6.2-10 is identical to
Eq. 2.2.2.4-1 for the model considered. Specifically, it can be verified that substitution of Eqs.

6.1-11 into Eq. 2.2.2.4-1 yields Eq. 6.2-10.

Next we shall derive the transfer functions H, and H, of the model which are associated

with the relative and total displacement of the structural mass m respectively

By carrying out the inversion in Eq. 6.2-10c¢, the total foundation motion can be written

as.
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6.3 Solutions for Convoelution/Deconvelution

In Section 5, we distinguished three cases with respect to the transfer functions relating the
foundations input motion Uy to the "free-field motion U% Here we shall present some solutions

related to the second case i.e., convolution /deconvolution. Specifically, we present analytic
expressions for the transfer matrix H(w) in Eq. 2.2.2.4-5 for cases involving uniform and
layered soil deposits. For the latter case, a two-layered configuration representing a soil deposit

overlying a uniform rock formation is analyzed.
6.3.1 Uniform Deep Soil Deposits

Soil deposits which can b> modeled by uniform half spaces are considered here. We
present transfer functions for cases involving inclined SH waves as well as inclined P waves.
These two cases are presented in the following two sections.

6.3.1.1 Inclined SH-Waves

Consider the incident SH wave shown in Figure 6.3.1.1-1. The displacement is given by:

u(r: w0 s Ae™? N g4 6.3.1.1-1a
where:
p is the unit propagation vectur:
p =sinBi, + cos6i, 6.3.1.1-1b
d is the unit vector defining the direction of motion:
d=i 6.3.1.1-1c

r is the position vector:
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Uniform Soil Deposit: SH-Wave Incidence

Figure 6.3.1.1-1




rexd + Xl 6.3.1.1-1d

-

and A, k, ¢, are the amplitude, wavenumber and phase velocity respectively. The corresponding

apparent wavenumber and apparent phase velocity are:

k, = ksin® 6.3.1.1-2a
3 6.3.1.1-2b
. sinf

respectively

The requirement that the surface is free of tractions yields that the reflected wave is in

phase with the incident wave. The total displacement (due to incident plus reflected waves) is:
sind - ¢ e I
Ug(X Ky 5 WF) = Mcosa,,e"(" /) 6.3.1.1-Ja

where a, is the dimensionless frequency:

Ay

6.3.1.1-3b

I'he total stress and the total strain due to the incident and reflected SH waves are:
p . x8nl - ¢f) s
Togl¥y ks 3 W) = TfX X, § W) = Zkoosﬁsmneew ' “ 63114

and

2 ) j

respectively.  In Eqs. 6.3.1.1-4 g is the shear modulus of the halfspace and a, is the

dimensionless frequency given by Eq. 6.3.1.1-3b.

U6



For vertical incidence, i.¢, ¢ = () we have

Eq. 6.3.1.1-3 equal

For vertical incidence, the corresponding expression for H(w) and a, are

' ¢ . .
where the dimensionless frequency a, 1s given by:
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Displacement:
u“ftl'z: X w’r) z Mcwa"e wr 6..3.1.1-5a
Stress
Tyyfkiky & W) © XX, 3 f) = ~2kpdsing e O 6.3.1.1-5b
SLrain:
Yaul¥1o%y 3 Wid) = Yyplk oty o @f) = -kAsing e 6.3.1.1-5¢
where a, 1s the dimensionless frequency:
a, = kx,
s, 6.3.1.1-5d
e,
In view of Eqs. 6.3.1.1-3, the transfer function between the displacement (or acceleration)
at depth x, = -h and the displacement (or acceleration) at the surface x, = 0 is:
Uyx,, = bt :
H((O) ; _.i“_,__.. \_.‘W,_,) x Cmah 6.3.1.1-6a
(X0 ;3 wr)
where a, is the dimensionless frequency:
a, = khcosf
6.3.1.1-6b
wh :
~— ¢0os0
(3

Note that in Eq. 6.3.1.1-6a the time term was cancelled out since we kept the exponentials in



Hh( (u)

6.3.1.2 Inclined P-Waves

x. - K o )

¥ = 8 i ad) cosa’ 6.3.1.1-7a
Uy(%,,0 5 w,f)

al = kh » 22 6.3.1.1-7b

Consider the incidence of an inclined P-wave at angle 6 with the vertical axis as shown in

Figure 6.3.1.2-1

() we obtain

(15, = 7y =

Incident P-wave;

Reflected P-wave

Reflected SV-wave:

= A, { cosb ( e

= ‘1:

From the condition that the surface (i.e., plane x, = 0) is free of tractions

sin®

ik(r - py - o) 6.3.1.2-1

J sinf

r . <)
cusﬁ'e“‘ h - ) Wil ete

QX

NG EE En aE S = .
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Uniform Soil Deposit: P-Wave incidence




i, COSBO
W, 5 = A3 sin® e‘*(' Py - of) 6.3.1.2-3
- o
U, 0
where:
€40, ' P and S wave velocities respectively
ALALA, wave amplitudes for the incident P-wave, reflected P-wave and reflected
SV-wave respectively.
pLpp: propagation vectors associated with the incident P-wave, reflected P-wave

and reflected SV-wave respectively.

Furthermore, the reflection angle 6, and the wavenumber k, for the reflected SV-wave are:

sineo = _S}n_@ 6.3.1.2-4a
S

k, = sk 6.3.1.2-4b
respectively. In Eqgs. 6.3.1.2-4, s represents the ratio of the P to the S wave velocities, i.e,

S = ._.Z 631.2‘5

Finally, the amplitudes A,. A; and A, satisfy the relation:

. uencly  -spsin28 | | + 2ucos?
A + 2ucos® B 0 : 4 e {1 2ucos™® 6.3.1.2-6a
| usin26

!
|
1 - usin26 —sucos?.()“ | 4,

where
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01 - e “y q,e‘“‘)sinﬁ + qze""cosﬂo

‘ . 6.3.1.2-10
uh, - o I+ q,)sin® + g,c086,
In Egs. 6.3.1.2-9 and 10 we have set:
a, = khoos® = 2% cosd 6.3.1.2-11a
€L
a, = khcosb, = - cos@, 6.3.1.2-11b
CJ

to represent dimensionless frequencies for P and S waves respectively,

Finally, for vertical incidence (f# = 0), Eq. 6.3.1.2-6 gives: q, = -1; q, = 0 and by

substitution into Eq. 6.3 1.2-7 we obtain:

U, 0
o o - ‘x ¢ 3 -)
., - A (,“‘L ‘e ia, e’ 6.3.1.2-12a
| %3 0

where the dimensionless frequency a@; is given by:

gl « 93 6.3.1.2-12b
)

Note that Eq. 6.3.1.2-12 is the standard one-dimensional P-wave solution from which the
transfer function between the vertical displacement at depth h and the surface displacement is

obtained as:

N
J‘v 5 . o 6.3.1.2-13

(Note the similarity between Eqs. 6.3.1.2-13 and 6.3.1.1-7). Equation 6.3.1.2-13 can be also

obtained directly from eq. 6.3.1.2-9 by setting q, = -1, q, = Oand § = 0.
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Soil Deposit Overlying Rock:

Figure 6.3.2-1
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a, = 9% cost, 6.3.2-3b
Css
motion at depth x,” = ~h o e
H,(Q)) » - Nl e - e o, : 6524
“ motion at interface x," = -H orx, = Q0 % , , W
motion at depth x,” = ~h PRI
Hy(w) = 2 ' 6.3.2-5

motion at interface without top soil | (1 - q)e"’n‘ v (1 + q)e™

Considering that the rock is sufficiently stiff, then Eq. 6.3.2-5 gives the transfer function

between the motion at depth h and the outcropping motion.
Usiag eqs. 6.3.2-3, 4 and 5 it can be found that

® at the free-surface (h = ()

H'(w) = 1 6.3.2-6a
§
Hy(w) =~ 6.3.2-6b
e 4
"
HY = < - S——— 6.3.2-6¢

(1 -qe“™ « (1 +qe

® at the interface (h =H)

H0) i 6.3.2-7a
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6.3.3 Complex Form of Propagation Parameters

Several parameters from those used in Sections 6.3-1 and 2 are complex due to dissipation
in the foundation medium. Conventionally, it is assumed that the latter exhibits viscoslastic
behavior which is incorporated into the analysis through the use of complex material constants.

For soils, the shear modulus is usually taken as:

“o B p + ‘wn 6.3.3‘1
where 5 1s the soil viscosity which can be related to the soil damping ratio £ by:
2 3
n = ZE3 6.3.3-2

Typically the soil shear modulus u and soil damping ratio £ are taken as frequency-independent
parameters. From Eqgs. 6.3.3-1 and 2 we have the following expression for the complex soil

shear modulus:

o u ¢ i28) i
A similar expression can be written for A, 1.¢.,
A = A1+ i26) 6.3.3-4

The complex representation of the Lamé’s constants given by eqs. 6.3.3-3 and 4 for viscoelastic
soil behavior assumes that the damping ratio is the same for both dilatational as well as

distortional motion.

The P-wave and S-wave velocities should also be replaced with the following complex

counterpars:
e LT 6.3.3-5a
P »
1 - it
. Cg
g ® oo 6.3.3-5b
1 - ik
and the corresponding wavenumbers by:
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k* = k(1 - if) et

Furthermore, in our formulation given in Sections 6.3.1 and 2 we presented relevant
transfer functions associated with wave motions as well as stresses and strains in terms of

dimensionless frequencies of the general form

a e by » 22 6.3.3-6a

The physical sigmficance of such dimensionless frequencies is that they compare a given length
x to the wavelength of the waves under consideration The corresponding complex

dimensionless frequencies are

a’ = a(l - i) 6.3.3-6b

Equations 6.3.3-3 up to 6 give the complex representation of the parameiers required to compute
the numenical values of the transfer functions and the other wave response quantities given in

Sections 6.3.1 and 2

09




MSructures Subjected 1o

I IL\};H-'E\“.'» }‘.k rin.



