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ABSTRACT

h DIGES is a computer code that tmats the msponse of structural and foundation systems
due to dynamic loadings. The building foundation configumtion and its response is computed

{ by solving the pertinent equations of motion. A variety of structural and foundation systems are -
considemd which are typical to those encountered in today's engineering problems.

.

This mport describes the theoretical basis of DIGES. The primary goal of the report is
to present pertinent information mquired to initiate the pmcess of having individuals from
industry, regulatory agencies, and academic insth.tiens as users of the code.
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EXECUTIVE SUMMARY

In recent years, more analysts are using direct generation methods in studies of dynamic
response of structums as well as mechanical / electrical systems and components. The use of
direct generation methods seems to be predominant in re-analysis or margin type assessments
of existing stmetures to updated design criteria. The realization of this trend from a regulatory

| perspective, reflected the need for a computational tool that can be used to benchmark the results
obtained through direct generation. This apparent need lead to the development of the DIGES
code.

I During the development of DIGES, a systematic effort was made to give a generic
character to the code by restricting the amount of limitations imposed on its theoretical basis.

| We believe that we accomplished this objective. This is reflected by the following basic features
of the code:

.

DIGES has both deterministic and probabilistic msponse analysis capabilities.*

Accordingly, one can use a single time history representing the dynamic input and
perform a deterministic dynamic analysis using DIGES. The output computed byI DIGES consists of time histories associated with the system response or transformed
forms of it, which are essentially Fourier records or conventional response spectra.
On the other hand, one can use a power spectal density function or a cross-spectal

.I density matrix representing the dynamic input and perform a probabilistic dynamic
analysis. The output computed by DIGES consists, in this case, by power spectral

j density functions or cross-spectal density matrices and associated correlation functions
3 of the system response. DIGES subsequently converts the response power spectral

densities to corresponding response spectra. A third option of analysis by DIGES
involves simulation. Briefly, in simulation the dynamic input consists of a set of timeI histories, each of them deterministically filtered by the system thus producing a set
of response time histories and associated response spectra. Representative responses
can be then computed statistically from the latter set.

DIGES is capable of performing response calculations for the two fundamental*

I categories of dynamic input considered in dynamic analysis. Specifically, the user
of DIGES has two options for defining the input for response calculations: a) input
in the form of applied dynamic loads and b) input in the fonn of excitation.#

Therefore, we did not restrict the code only in the seismic area but we breaden its
computational capabilities to include general types of dynamic loads imposed on the
superstmeture. Such capability is required to tackle engineering problems in which

j the computation of the dynamic response is requimd for cases involving vibration
tests, impact, wind and general type of latemi dynamic loadings.

| DIGES considers both structural as well as soil dynamics in computing responses due*

to ground motions or due to dynamic loads applied at the superstmeture. This is
done through a detailed soil-stmeture interaction formulation whicS allows for such
computations to be carried out. We concentrated on the development of a
comprehensive set of transfer functions relating fundamental system response
parameters to the ground motion or to the applied loads. Tids reflects our belief thatI direct generation, essentially a probabilistic dynamic analysis, should include all

I "
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I
system characteristics that are conventionally considered in detenninistic tusponse |analys,s.i

DIGES is capable of handling alternate ways of defining the seismic input. |*

SpeciGcally, the latter can be defined by: gmund acceleration time histories, ground
response spectra, Fourier amplitude spectra or power spectral densities.
Furthennore, the seismic input is defined as either the excitation which is directly |
applied at the foundation of a structure or the ground motion of a site at a given
point. In de latter case, the motion is " transferred" to the foundation through a.
convolution / deconvolution or generally through kinematic interaction. Consequently, [-
we believe that DIGES has a bmad capability in the area of seismic input definition.

Another point of interest which is worthwhile to brie 0y discuss here, is that from
published studies on the subject of direct generation it can be seen that the way we define the
design seismic input for earthquake response analysis still remains an issue of concem (Refs, 9, g
10) While the convenience of defining the seismic input by design ground response spectra has 3
been well understood, the difficulties in using response spectra as input for dynamic analysis
continues to be a source of controversies. In simple terms, a response spectrum of an g
earthquake acceleration record is what the record looks like after subjected to some level of 5
filtering by a single degree-of-freedom system. Theoretically, we cannot uniquely recover an
earthquake acceleration record from its response spectmm. One, however, can uniquely recover E
an earthquake record through transformations, e.g., fmm its Fourier transfonn or perhaps from E
other type of transforms. Fourier transforms, however, have not been found yet to be a
convenient v ay for defining a design seismic input. Therefore, when an analyst is given a
response spectrum to perfonn a dynamic analysis of a given structure, what he/she is asked to
do is to compute the response of the stmeture using as iDP111 the mpOmq of single degree-of-
freedom systems to "some" earthquake. Although spectrum superposition techniques based on ;

modal analysis offer some approximate solutions which could be acceptable in cenain
'

applications, a rigorous dynamic analysis (linear or nonlinear) cannot be carried out under thesc
.

circumstances. These are known facts to which we are simply reminded of. Consequently, it
seems that the pmeticality of defining the scismic input for dynamic analysis by design spectra
is still questionable.

IThe main pmcedure followed in existing direct genemtion studies consists of genemting -

PSD's compatible with given gmund design spectra. This proceduit has similar short-comings
to that of genenting spectrum compatible times histories. As a result of a recent review of
published studies in the area of direct generation (Refs. 9,10), NRC was advised to undenake
a systematic effort leading to the development of design seismic inputs for dynamic analysis
using purely pmbablistic approach. By doing so, the clear advantage is that the resulting design |
seismic input would describe the design ground motion alone (not the response of the design
ground motion to single degree-of-freedom systems). The development of generic type PSD's a.
has also considerable appeal. Such development can be similar to that lead to the Newmark- g
Kapur generic spectra. The appealing factors of such PSD can be understood by considering
the following facts: a) time histories can be readily synthesized with a given PSD and b) reliable g;
estimates of the statistics of clastic and inelastic nonlinear random scismic response can be E'
efficiently computed by using well established techniques.

I.
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1.0 INTRODUCTION

{
1.1 Problem Definition

The need to develop acceptable floor response spectra has been an ongoing process.

Such spectra are affiliated with dynamic loads that the stmeture is subjected to and they

represent the pmdiction of the responses at various elevations within the structure that in turn |
|

can be utilized to predict the response of equipment and components located at a particular
'

elevation. The seismic loads are conventionally expressed in the form of design response

spectra.
!

Consequently, the development of computational schemes which can incorporate the !
!

information, or assessment, pertaining to the seismic input and, in conjunction with the dynamic |

characteristics of the stmeture, predict the spectral responses at various elevations, has been the

focus of canhquake response prediction. The definition of the seismic load, which detennines

of course the theoretical basis of the link between excitation and msponse, has been deduced

from both detenninistic as well as stochastic models.

On one hand, the detemiinistic approaches seek to assess the in-stmeture response due

to a prescribed ground excitation or a prescribed dynamic load imposed on the structure itself.

On the other hand the stochastic approaches attempt to define the in-structure response to an

r anticipated ground excitation that belongs to a family of earthquakes which in turn is described

by target msponse or power spectra.

Within the stochastic proces.ses, however, the statistics that accompany the definition of

the ground excitation are usually carried over to the floor response with an ensemble of

realizations of the stochastic process that defines the ground excitation. This simulation of

earthquakes pmcedure that attempts to match the statistics of the target spectrum has been used

extensively both by directly linking the target response spectrum to an artificial earthquake

excitation or by implementing the constraint of the power spectml density function of the ground

motion. The latter eanhquake simulation process, more sophisticated in nature, matches some

of the statistics of the target response spectmm with the sample earthquakes which are deduced

from the power spectrum of the stochastic process.

1
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The direct link between a stochastic characterization of the ground excitation and the

stochastic in-stmeture response has received less attention than the time history approach.

Through this process, the statistical properties of an anticipated family of earthquakes, expressed

by its power spectmm, are transferred to the stmeture of deterministically defined dynamic

properties. |
1.2 DIGES Profile

The present effort has been undertaken so that an efficient theoretical / computational tool |
can be devised such that seismic problems of concern to regulatory agencies can be effectively

treated. In this study, the direct link between the input excitation and the output response in the

stochastic sense is explored (from which DIGES is deduced). This aspect of the seismic

analysis, along with the earthquake simulation procedures and the deterministic seismic and

dymanic response of the stmeture, defines the DIGES computational domain.

I
An overall description of DIGES can been seen in Figure 1.2-1 where its general

capabilities are listed. According to Figure 1.2-1, analyses of both stochastic and deterministic

nature can be undertaken. While in the deterministic analysis the consideration of dynamic

superstmeture loads has been implemented (an important element of dynamic analysis) alongside .

with the classical treatment of defined ground motion, the stochastic analysis mode incorporates

both the earthquake simulation and the direct transferring of stochastic properties. -

The relationships that connect the dynamic input to the system response are schematically

shown in Figures 1.2-2 and 1.2-3 (stochastic and deterministic modes respectively). In both

modes of analysis the link is the transfer function H(w) of the system which identifies the

superstmeture/ foundation / soil medium.

The stochastic mode of Figure 1.2-2, which implements both the simulation and the direct

generation, seeks to evaluate the response spectra induced by ground excitations that can be

defined by either target response spectra or cross-spectral densities of the stochastic process

describing the excitation.

I
2 g
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I
The direct stochastic mode determines the cross-spectml density matrix of the response

4>y(w) for a stochastic process with cross-spectral density 4>x(w). For a stochastic process that

defines the free field in terms of target response spectra a consistent cross-spectral matrix is

fonned and eventually transferred to the elevation. The simulation seeks the floor rasponse

spectra by utilizing statistical properties of the responses at the same elevation due to an

k ensemble of ground accelerations whose response spectra that match the target spectrum over

some of its statistic propedies. As shown in Figure 1.2-2, both simulation procedures are

implemented (one leads to ground motions from a response spectrum through its power spectrum

and the other to gmund motions directly from the response spectmm).

Considering that stmetures are dynamically treated mostly as linear systems, so all of the

above listed alternative procedures can be utilized, room must be left to explore non-linear
'

behavior. The direct mode of spectra generation seems to work well for linear systems and for

stationary stochastic processes. However, work needs to be done to genemlize its applicability.

This gap can be filled with the help of simulated earthquakes, w'hich as an ensemble can

equivalently represent the stochastic process, by exciting the non-linear system in the time space

rather than frequency.

I The detenninistic mode of Figure 1.2-3 utilizes the system transfer function H(w) to

evaluate the response spectmm at specified elevations due to a defined ground acceleration. This

process requires that the input ground motion be expressed in tenns of the Fourier expansion

of the record. The evaluation of the response of the superstructure as well as the response of

the foundation due to applied dynamic loads is also incorporated. Wind loads, impact loads and

floor dynamic loads due to equipment can be treated by utilizing appropriate system transfer

j functions which relate the dynamic superstmetum loads to the motion of the building-foundation

system.

1
1.3 Biture Work

While the fundamental steps in evaluating in-structure responses are both thcomtically

and computationally implemented in this study and the fundamental objectives have been met,

3
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I
much work needs to be done in certain areas of the analysis in order to more realistically define

both the ground excitation and the behavior of the system. Specifically:

a. The definition of the free field excitation and the realistic correlation of the three

components of the motion of the control point, both deterministically and

stochastically, require further attention. Indeed, the restriction of stationarity of the

stochastic processes which are used for earthquake representation in the present

format of the program, must be removed. It will be more appropriate to introduce

stochastic models and methods of analysis which account for the variation of

intensity of the seismic motion versus time. The area of nonstationary random
'

vibmtion has become quite mature. This potential aspect of an impmved code will

give to users the option of assessing the severity of ground motions as they are |
affected by local geological conditions.

I
b. The treatment of non-linear aspects in the behavior of the structure and of the

foundation is a critical necessity which should be incorporated into the code in the-

immediate future. Currently, techniques like statistical linearization are reliable

tools for incorporating in random vibration analysis both elastic (geometrical or

material), and inelastic behavior of stmetural systems. This option can be a

desimble feature of the code which can be used to assess the significance of

hysteresis and other nonlinearities in realistic models of combined structural-

foundation systems exposed to stochastic excitation.

c. Further work must be done to lead to the definition of foundation input motion, as

well as soil medium impedances in a more accessive manner. This can be

accomplished by utilizing more sophisticated computational schemes such as

boundary integral methods.

d. It is believed that the time has come for reassessing the usefulness of specifying

seismic motion exclusively in terms of design spectra. It is clear that for linear

analysis, design spectm can expedite the response calculation. However, proceeding

to nonlinear analysis introduces difficulties which lead to the necessity of genemting

spectrum compatible time histories. Alternatively, a systematic effort can be '

4 E'
m
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|- undertaken to generate a power response spectrum similar to the Newmark-Kapur

.

Design Spectrum. The development of a power spectrum of this nature would be

readily applicable for linear analysis of structural-foundation systems. Further, by . !

adopting readily available techniques of nonlinear random vibration, it can be used

to conduct nonlinear analysis of structures without facing the need of developing

spectrum compatible time histories. Finally, it will make available to the community.

versatile techniques like the Monte Carlo simulation method for assessing a variety

of issues involving physic:1 parameters of the problem. i

I ;
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2.0 TIIEORETICAL BASIS

DIGES incorporates all necessary components that allow the determination of the

response (output) to a given dynamical load (input). This determination assumes that the

| properties of the system are known in the deterministic sense or that the system properties have

uncertainties associated with them. In the latter case, relevant variations in the system response

| can be treated with DIGES through variation-of-parameter studies. This approach represents

standard practice and it is the primary tool for assessing potentialimpact of system uncertainties.

For each parametric solution the system properties are fixed and the output is accordingly

determined.

I
This chapter describes the primary ingredients of the theoretical basis of the DIGES and

discusses various aspects related to the particular algorithms implemented into it. In particular,

the following topics are presented:

IDefinition of the overall problem treated by DIGES*

Solution procedures*

Determination of system transfer functions*

Input definition*

Response characteristics*

I Simplifying solutions*

I 2.1 Definition of Overnli Problem

I The overall pmblem considered by DIGES is a dynamical problem in which the structure,

as well as, the associated foundation are modeled together as a multi-degree-of-freedom system.

The superstructure is represented by appmpriate stick models idealizing the inertia and flexibility

characteristics of the buildings. All stick models necessary for modeling the substructure must
'

be founded on the same foundation mat. Implicitly, this reflects the fact that the current version

of DIGES does no perform structure-to-structure interaction. Accordingly, the assumption of

common foundation mat must be maintained in modeling of the superstructure. Energy

dissipation due to structural motion is taken into account through modal damping. This subject

I "
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will be discussed in detail in the next Sections where, in addition, the similar subject of energy

dissipation due to the foundation motion in terms of geometric or radiation and material damping

is discussed. The parameters considered in modeling the foundation are its mass and its

flexibility. The latter is represented by a generally complex compliance matrix or through its

associated impedance matrix, the elements of which depend on geometric characteristics of the |
mat and the underlying medium, as well as, on pertinent soil properties (e.g., shear modulus,

Poisson's ratio, damping and soil mass densities). |
With respect to the types of input handled by DIGES, they can be classified under two |

main categories as follows:

I
input in the form of ground excitation*

input in the form of applied dynamic loads at the superstructure*

The fonner is representative of earthquake engineering applications while the latter is

associated with general stmetural dynamics applications. Main emphasis is given to descriptions

of relevant information of how DIGES performs solutions to problems of the first of the above

categories which is admittedly the more complex. The option of performing dynamic response

analysis of building-foundation systems for dynamic loads imposed on the superstructure has also

significant applications, e.g., ibrced vibration test verifications, impact and general lateml

dynamic loadings. Figure 2.1-1 shows the two general categories of dynamic input.

The fundamental approach used by D.GES in computing dynamic responses through

deterministic, simulation or probablistic calcul.tions is based on substructure analysis. The

specific sebstmeturing followed is similar to the in Refs. I through 4. Accordingly, the

dynamic equations of motion of the superstructure am s.mployed to determine the corresponding

forces exerted on the foundation. The latter forces toge'rar with those exerted by the soil on

the foundation are then used to balance the inertia forces of the foundation mat. The solution

of the resulting equilibrium equations of the foundation paduces the total motion of the

foundation from which all required response parameters can be cemputed by back substitution.

This concept is shown in Figure 2.1-2.

I
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!

|
|

The above approach has, in our opinion, several advantages. Among them:

|
reasonably follows the mechanics of the problem*

[ handles energy dissipation consistently; structural, foundation geometric and soil*

damping are treated separately without the need of introducing composite or other

type of damping solutions.

allows for computational efficiency in the implementation process.*

provides flexibility for obtaining intermediate results throughout the computation.*

easily amended to extensions and/or modifications to incorpomte new features*

[ resulting from ongoing research.

performs very well in parametric variation studies or simulation problems.*

H
!

The primary limitation of this approach is that it is not generally suitable for applications

I to nonlinear problems. In practice, however, some nonlinear effects are studied by using linear

codes and treating the p oblem through parametric variations in which the primary parameters

! art stiffness and damping. The results of such studies are frequency shifts and amplitude

changes of the response of interest.
!
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2.1.1 Computation of Responses ;

DIGES considers the stmeture-foundation configuration as a multidegree-of-freedom

linear system subjected to dynamic forces that are either applied at the superstmeture or resulting

from the scattering of the seismic waves by the foundation mat. The applied forces or the

foundation input motion can be described a) deterministically, i.e., forcing function or

acceleration time histories and b) probabilistically, i.e., cross-spectral densities of the force or

excitation. The computation of the relevant response of the structure-foundation system, either

response time histories or cross-spectral densities of the response, is carried out in the frequency

domain. For this purpose a two-step appmach is followed:

I
Step 1: Computation of appropriate system transfer functions H(w) by considering

steady-state analysis.

Step 2: Computation of the response to transient loads using Fourier analysis.

I
The tenn transfer function is used in this report as synonymous to the tenn frequency

response function. It signifies the steady-state response due to harmonic input. The transfer

functions of the system relating the amplitudes of the dynamic input to the msponse amplitudes

are expressed in terms of frequency-dependent complex matrices H(w). Their evaluation is

based on the equations of motion of the system. Typically, the type of transfer functions which

am evaluated correlate: .

the input with the relative stmetural msponse with respect to foundationa

the input with the total structural response*

the input with the total forces exerted by the superstmeture on the foundation*

I
The analytical modeling of the system is adequately flexible so that other transfer

functions of interest can be reasonably implemented.

Having established the system transfer functions, DIGES proceeds with the computation

of the response. Deterministic responses are computed by Fourier analysis (Refs. 5,6):

I
14 g
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I ..

y(t) = 1 H(e)F,(e)e'*'de
2x

~~

2.2.1-1,

F,(e) = [x(t)e-'"'dt| ..

F,(w) . Fourier transform of input

System responsey(t) =

H(w) = System transfer function

Probabilistic responses are computed in terms of cross-spectral densities of the response

(Refs. 5, 6): |

4,(e) = H(a) 0,(e)H '(e)r
** 2.1.1-2

| R,(t) = [ H(e) 4,(e)H '(e)r i"'dee

i

where

.

4,(w) cross-spectral density of input

+,(w) cross-spectral density of the response

R(r) correlation matrix of the system responsey

II(w) : system transfer function

II*(u)7 transpose of conjugate-

.
;g

8

E
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2.1.2 Description of Dynamic Input

On the basis of the fundamental acceptance of the concept that the motion at a point on the

free-field, for any given seismic event, is a complex superposition of motions induced by

different waves impinging on the free surface, the free-field control motion is formulated. Fme-

field motion at a given site is of course the response of the undisturbed soil to the incident

seismic wave (prior to the interference induced by the presence of the superstructure).

For any given seismic input the free-Held motion at a reference point can be seen in thes

vector fonn,

Uo = Uj,,Uj,,Uj}T 2.1.2-1#

where the three components of the vector are generally dependent both detenninistically and

statistically.

The problem to be addressed is the transferring of the 3-D motion of Eq. 2.1.2-1 from the

free-field to the structure, given of course the property profile of the soil medium, the propenies

of the foundation and the dynamic propenies of the structure. The most fundamental

transferring of such motion can be seen through the relation,

2.1,2-2F,(a) = II(w)F,(w)

where F,(w) represents the Fourier transfonn of the input, II(w) represents the transfer function

of the system and F (e) represents the Fourier tmnsform of the msponse.y

I
This simple but powerful relationship between the input excitation and the response is to

become the basis for far more complex analyses in terms of both the input excitation and systen

characteristics.

Consider that the free-Geld excitation is described by canhquake accelerograms, or by a

stochastic process a(t) which is defined by a cross-spectral density matrix. Each of the almve

carry along infonnation penaining to a single given event or to a family of events. The

I
16 g
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transferring of that information provided in any of the above forms constitutes the basic

( bmnching of DIGES.
II

Four basic appmaches make up the generic capability of the program. The level of

branching can be seen in Figure 1.2-2. Specifically, the Drst option enables the direct

transferring of the free-field motion that is expressed in tenns of a power density function or

ground response spectra into the structure. The cross-spectral density matrix of the free-field

is fonned and then transferred by utilizing the following relationship which links the output with

the corresponding input:

@,(w) = R(o)G,(w)H'(e)r 2.1.2-3

where the asterisk indicates complex conjugate.

8
Through an interactive scheme consistent spectral densities are calculated to equivalently

represent the stochastic process that is in the form of response spectra. The procedure for this

step is presented in the next section. It should be mentioned that the above process also renders

the name DIGES (Direct Generation of Spectra) to the program.
>

|

The second option utilizes earthquake simulation procedures according to which artificial

eanhquake records are genemted reflecting the stochastic characteristics of a family of

earthquakes that each one is a member of. Such earthquake family can be equally represented

| by a power or a response spectmm. Each generated earthquake, expressed in its Fourier,

expansion, is transferred to the stmeture via the transfer function H(w) of the system. The
|

| response of the structure at any of its degrees-of-freedom is consequently fonned on the basis

of the family of the responses associated with each member of th' input.e

I
;

i

The third option reflects the detenninistic solution capability of the DIGES (see
,

I Figure 1.2-3). Specifically, the response of the system to a deterministically defined canhquake

in the free-Held is calculated utilizing the system transfer function and the Fourier expansion of

the earthquake accelerogram. It resembles the previous approach except that the input time

history is not artificially generated and the response is the result of a single cycle.

17j
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The fourth and last option (see Figure 1.2-3) is the one associated with the response of the |

system when subjected to dynamicforces on the superstnicture. This is made possible by

incorporating such effects appropriately into the transfer function of the system which links the

dynamic load with the motion of the building-foundation system. !

Il
2.1.2.1 Direct Generation of Spectra

E
The first option of the first level of branching shown in Figure 1,2-2 is discussed in this

Section of the report. This option enables the stochastic evaluation of the response of the

structure which results from a fme-field motion also defined stochastically. Given that the

stationary stochastic process g(t) representing the fme-field motion satisfies a zero mean

E[g(t)] = 0 2.1.2.1-1

its cross-spectral density matrix is defined by:

Ii 4 ,(w) G (w) 4 ,(a)y

2.1.2.1-2ega) - e (e) 4 ,(w) Q ,(w)y

C (w) C (w) @y(u)
Iy y

On the other hand, the transfer function of the multi-degree-of-freedom system can be expressed

by

H ,(e)H (w) H ,(e) iiu

H (w) # ,(w) H (w)3 2 u

2.1.2.1-3H ,(w)H(w) = # (w) # ,(w) 333

. . .

Ha(w) Hg(e) Ha(w)

Accordingly, then the cross-spectral density matrix of the response of the system can lx:

expressed by

I
I

18 g:
um

- - - - _ _ _ _ - - - _ _ _ _ _ _



.

,

|

{ e (e) = H(e)e (e)H'(e)r 2.1.2.1-4-
y x

ty(e) of size 6N x 6N (where 6N is the total number of d.o.f. of the system) cross correlates

the responses of all the d.o.f. in the system. The diagonal tenns of this matrix represent the
,

power-spectral density of the response at the particular degree of fmedom. )

| The completion of the goal which is the generation of response spectra will require to

express the resulted stochastic process in a final form consisting of response spectra. These

spectra should equivalently represent the response process that is now in the form of power

,

spectra. An outline of the analytical procedure used to transfonn the power-spectral density of

f the response to a n:sponse spectrum is pmsented below.

Power spectra to Response spectra

For a weakly stationary process g(t) exciting a simple oscillator of natum! frequency w ando

damping ratio ( the power spectral density of the response +y(w) can be related to the excitation

as follows:

@y(e) = |H(a)|24,(e) 2.1.2.1-5

where H(w) and +x(w) are the transfer function of the oscillator and the psd of the excitation

respectively.

I whh the statistical propenies M the exchation pas

E a; = [ 4 (e)de
-

,

x
0

I
| A, = e'o (o)do, i = 1,2,3,.... 2.1.2.1-6

x

g

I
19



I..

the dispersion of the psd function about its center frequency is seen through the shape factor 6

2
1 2.1.2.1-76= 1-

b A0 2

With a cumulative distribution of the maxima of the response pmcess y(t) given by (Refs. 7, 8)

~V ,; +21 g
2.1.2.1-8a- ,2 ,

2 ,T - i
F,,(r) = 1 - c

.

,. ; r>0

where 6, = 6 2, a = r/a, and

1 b 2.1.2.1-8bv =
o

8 h Ao

I
the mean displacement response spectrum which represents the mean of maximum absolute value

of the response process y(t) is

RSje ,() = p,c, 2.1.2.1-9a

I.
o

,

where the peakfactor p, is given by

0.5772
P. = /2 In(v,7) + 2.1.22.1-9b

/2In(v,7)

and

v,T = max (2.1, 26v 7) ; O < $ s 0.1o

v,7 = (1.636a45 - 0.38)v T ; 0.1 < 6< 0.69 2.1.2.1-9c
o

v,T = v T ; 0.69 s 6 < 1.0
o

Given the displacement response spectrum, the acceleration spectrum will simply be

2.1.2.1-10RS,(m ,&) = w RS (w ,()o o g o

I
g20
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Response spectra to power spectra

Returning to the free-field motion, one can assume that the family of earthquakes which

form the 3-D stochastic process can also be represented by response spectra rather than power

spectra. The second level of branching in Figure 1.2-2 shows the various forms that the free-

; field input motion that can be assumed.

Since the transferring of the stochastic process to the structure takes place over the cross

spectml density matrix <bx of the process (Eq. 2.1.2.1-4), it is necessary to generate power

spectra consistent with the given response spectra that chameterize the process. It is desirable

to make the conversion to a power spectrum using analytic forms which in turn can be utilized

in parametric studies. The process is described next.

The response spectrum characterizing the free-field motion RS,(w,$) is known for the

frequency range of interest. This spectmm could also be called target response spectrum.

Assume that the po ver spectrum consistent with the target response spectmm is <b,(w,A) where

A is a vector of parameters that are specific of the power spectmm. These parameters define

the shape of the analytical expression of the psd and they are unknown until the consistency

between the power and the response spectra is achieved.
<

In order to begin the iterative process, an analytic expression for the psd is chosen and
c'

| initial values of parameter vector A are assumed. Over the years, several closed fom)

expressions that can describe the power spectrum of earthquake ground accelerations have been

proposed. The expressions that the DIGES program utilizes are the following:

1. Kanal-Tajimi form

1 + 4(2
'g"
G" >S,(e,1) = S '

o .,"
r 32r 32

1- 1 + 4(2 3
\ 81 \ 8)

:

A = [(y,w,,S ]r 2.1.2.1-11
o

- 21
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11. Ruiz-Penzien form

f 12 f 44

1 + 4(,
W Q

r s> r P>S,(u ,1) = So ., ,
'

1- 1 + 4 (* 1 1- 1 + 4(2 S
*s]. *s > *r> *r >r r rr

2.1.2.1-121 = [(,, w,,S , (,, e,]ro

111. Superposition form -

I
$

2 2 u,

S,(e,1) = S { P, {g,44);y_,
o ,*

k=1 f 32 f 32

1- - + 4 (, -

*k <*kr i i

2.1.2.1-13A = [(i, e ,S ,(2, W ,S )Ti i 2 2

When any of the above expressions is multiplied by the filter ;

'

2 21+ag
j

a new form of analytic psd is deduced.

| The resulting power spectral density is used to generate a consistent response spectrum

according to the procedum already described above. In that process a duration of the stationary

part of the seismic event has to be assumed since the target response spectmm does not provide

such information. The calculated response spectmm RS ,w(e,5) and the target msponse spectmmc

RS,(w,() are then compared. This comparison is taking place over a finite number of :

frequencies within the range and the criterion of convergence is the minimization of the square

of the difference
;

i
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|

X (1) = [RS,(e () - RSfe,,()]2 2.1.2.1-142
p

Apparently, in this relation one is seeking the values of the vector A that will minimize X'.

This non-linear least square fitting is performed by utilizing the Levenberg-Marquardt method.

The background and the pertinent routines of the method can be found in Numerical Recipes in
|

Fortran (Ref.15).

I
2When minimization of x has been successful, the final vector A is mturned. Consequently,

the power spectral density of the input can be evaluated for the entire frequency range that the

target response spectrum RS,(w,5) is defined. One should keep in mind that the response / power |
spectmm consistency has been enfomed on a set of frequencies over the mnge of the analysis

and these frequencies are not necessarily the same with those associated with the transfer of

motion from the free field to the structure.

Upon completion of the response-to-power spectmm conversion, the free-field cross

spectral density matrix is transferred to the stmeture according to Eq. 2.1.2.1-4. Again a

power-to-response spectrum precedure will provide response spectra of the output for any d.o.f.

of the system. 4

2.1.2.2 Earthauake Simulati.o_n

The second option of the first level of branching shown in Figure 1.2-2, is associated with J

the transferring of the stochastic free-field process a(t). What one can achieve through this
'

<

approach is that as size of the ensemble gets larger, the ensemble of the output responses will
'

retain the stochastic characteristics of the input. Consequently, the generated input ground ,

i

accelerations, which are members of the family that the stochastic process a(t) represents, are -)
i
1deterministically transferred to the stmeture by utilizing the transfer function of the system II(w)

according to the relationship
1

:

4-

|

I
i
1
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2.1.2.2-1F,(w) = H(w)F,(w)

where F,(w) and F,(w) are the Fourier expansions of the input and output respectively. The

response of the system can subsequently be expressed in time by means of the Fourier synthesis,

i.e.,

8 2.1.2.2-2y(t) = F,(w)e "'dt

When the complete ensemble of generated earthquakes has been transferred to the

stmeture, the response of the system at any d.o.f. can be then seen as a single msponse spectrum
.

which is deduced from the ensemble of response spectra, i.e.,

I
RS(<c () = Q RSje ()

2.1.2.2-3
_ p

p

l
"

along with the statistical propenies of the ensemble of amplifications at every specified
,

frequency w,, i.e., [ +o]*RS(w). This process will also include a non-exceedence probability

requirement.

I
Given that the free-field stochastic process can be equally represented by its response or

power spectra, simulation of ground accelerations should be possible from both representations.

2.1.2.2.1 PSD Ilased Ground Acceleration Simulation

The ground motion during an earthquake event can be characterized as a three-dimensional

process. It is also expected that the motion of a control point in any of the directions is not

independent but rather dependent to the other two components. Thus, accepting that such

correlation exists, the most appropriate way to stochastically describe the process is through its _

'

cross-spectral density matrix. The evaluation of the latter matrix is rather difficult and thus the

alternative description of three independent components of ground motion appears to be more

accessible. An outline of these two cases will be presented below.

I-
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Consider the 1-D stationary stochastic pmcess a(t) of zem mean, autocorrelation and power

_

spectral density functions given by the relations,

E[a(t)] = 0

E[a(t + t)a(t)] = R,,(t)

4,(e) = 1 R,,(t)e '"'dr~ 2.1.2.2.1-1
2n

R,,(t) = 4,(e)e '"'de

A time history g(t) of an artiGeial acceleration can be generated from the form (Ref.16):

N

g(t) = 2{ /0,(e,)Aecos (e,t + 4,) 2.1.2.2.1-2
i=l

e
w' = ih e he="

N

where e,is a cutoff frequency. The generated time history g(t) can be assumed to represent a(t)

as N - m. In Eq. 2.1.2.2.1-2 4 is a vector of random phase angles unifonnly distributed

between 0 and 2r; @,,(w) is the power spectral density of the process. Different choices of the

vector of random phase angles will lead to a different simulated process that has both the mean

and the autocorrelation of the stochastic process a(t).
.

1

By taking into consideration the fact that in an actual earthquake only the strong motion.

part of the excitation is stationary, so the stochastic relations hold only then, one needs to

assume the strong motion duration of the simulated event. Consequently, it can be stated that

the simulated process g(t) is periodic with a period,"

i
" ?T= 2.1.2.2.1-3

o Ae

Apparently the above relation can detemiine the duration of the stochastic process. |
J

25
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5

It should be again emphasized that the anificial canhquakes genemted are stationary. This

implies that the build-up and the die-down portions of an actual earthquake record cannot be seen

in any anificial earthquakes of this kind unless the nonstationarity is introduced through a

modulating function f(t), shown in Figure 2.1.2.2.1-1 such that

8'(t) = ((t)R(t) 2.1.2.2.1-4 -

y

In order to incorporate the stochastic correlation between the components of gmund |
| motion, the theoretical model of Ref.17 has been adopted. According to this model, a 1

stochastic process gf(t);i = 1,2,3 that satisfies

|E'gf(t)' =0 i = 1,2,3 2.1.2.2.1-5

is described by the cross-spectral density matrix

0 (w) = @ (w)' ; ij = 1,2,3 2.1.2.2.1-60

I
+,,(w) is the tmnsfonn of the cmss-correlation function R,,(r) or autocorrelation if i = j.

In order to simulate a stationary stochastic process g,(t) (i = 1,2,3) the cross-spectral

density matrix is decomposed as: |

4 (e) = T(e)T*(e)r 2.1.2.2.1-7

I
so a g,(t) can Se deduced fmm the series below (as N -+ m)

I
I
I
I

I
I
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g,(t) = 2 { { H ((e,)/Aecos[e,t + 0,(e,) + 4g] ; i = 1,2,33
mal i=1

2.1.2.2.1-8a =

where:

e, = IA e ; I = 1,2,3
.

I'
0"" 2.1.2.2.1-8b

0'" = tan-, hn[TQe,)]
Re[T,,(e,)]

In the above e,, represents an upper cut-off frequency beyond which thepsd is assumed to vanish

while each column of the 3 x N matrix [b] is a vector of independent random phase angles =

.

uniformly distributed in the interval [0,2r].

I
While, by adopting this mathematical model the expected value and the cross-correlation

functions of the simulated stochastic process g,(t) are those of the target process gf(t)

E'gf(t)' = E{g,(t)] = 0

R$(t) = R (t)a

the simulated process g,(t) is not ergodic. Since, however, the stationary character of the

simulated pmcess is still in place, a modulating function q(t) (e.g., Figure 2.1.2.2-1) is also |
utilized in order to provide a more realistic ground motion.

I'
It is suggested, however, not to introduce the non-stationary form of the simulated

earthquakes if direct comparison of the output response spectm (average of spectra from all

simulated earthquakes) is to take place with spectra that are generated by utilizing the direct

method. That is of course due to the fact that the direction genemtion,. ~

4,(e) = H(w)@,,,,(w)#*(w)r

is only valid for stationary input and output stochastic process.

I
28
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I
j As mentioned earlier, the Fourier transform of each simulated canhquake will be

tmnsferred to a given d.o.f. on the structure according to Eq. 2.1.2.2-1. The inverse Fourier

| transfonn of the response F,(w) will represent the time history of the response. Subsequently,

with the time history of the system variable (e.g. accelemtion) at the d.o.f. and an assumed

| percentage of damping the response spectrum is calculated.

Lastly, the ensemble of response spectra (one for each simulated earthquake) will be

statistically processed to obtain a representative single response spectrum at the degree-of-

freedom on the superstructure.

2.1.2.2.2 Simulation Based on Response Spectra

The mndom process that represents the earthquake ground motions at a particular site could

be also defined in the form of a response spectmm. Simulated earthquakes that belong to the

- family of the target response spectmm can assume the form,

'g N
2.1.2.2.2-1E g(t) = ((t) { C,(e) sin (e,t + 4,)

. n.

- where C,(w) is the amplitude of the n-th contributing sinusoid and 4, is its phase angle. f(t) is

a detenninistic envelope function as described in the previous section.

Any choice of the vector & which contains the uniformly distributed in the interval [0,2x]

non-correlated phase angles and a set of amplitudes C(w) will define a ground motion.

In order for the genemted ground motion to be consistent with the target response

spectmm, the amplitudes C(w) have to be adjusted so that the difference between the target

response spectmm, which claracterizes the random process, and the generated one from Eq.

2.1.2.2.2-1 is minimized over the control frequencies. This is done iteratively and it consists

of the following steps:

I
I
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a. A mndom vector of phase angles is chosen.

b. An initial set of amplitudes Cwa (w) is chosen. While it is desimble to minimize the

iterations by starting at the best guess for the vector Cwa (w), that can be achieved by

assigning the amplitudes of the Fourier expansion the values of the zero-damping

target spectnim, theoretically any choice should work. In DIGES, the entire initial

vector could be set equal to one.

c. With the two vectors available, the response spectnim of the genemted time history

is calculated for a given duration and damping,

d. The iteration procedure is implemented. For each . iteration cycle i the generated

response spectrum is compared to the target spectrum and the initially chosen

amplitudes Cwa (w) are adjusted according to the relation |
RS'(w)C,.i(w) = C,(e) 2.1.2.2.2-2

RS,(w)

While exact convergence criteria for the above itemtive process are not available, it has

seen that agreement of the generated to the target spectnam can be achieved after a few

iterations. The simulated earthquake is of course the time history that results fmm Eq.

2.1.2.2.2-1 after the response spectra have been matched.

Similarly, the ensemble of ground motions is transferred to the stnicture by utilizing the

tmnsfer function of the system (Eq. 2.1.2.2-1). Each n:sponse, a time history of the variable

of interest at a given d.o.f., will be again represented by its response spectmm and finally an

ensemble spectnim will be deduced.

2.1.2.3 Deterministic Input Analysis

As can be seen from Figure 1,2-3, DIGES has the option of performing deterministic

analysis for cases involving seismic excitation as well as dynamic loads imposed on the

superstmeture. In both cases, the response is based on the motion of the building-foundation

system. This implies that the analysis incorporates SSI effects for both seismic as well as
-

superstructure loads. We felt that it is important to have DIGES perfonning deterministic

analysis in addition to its capability of stochastic analysis.
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| When DIGES performs deterministic analysis, the seismic excitation a(t) or the dynamic

load imposed on the superstructure P(t) are transformed into the frequency domain by Fourier

| transform, i.e.,

F,(e) = a(t)c -''dt 2.1.2.3-1

and

F (e) = P(t)e 'd'dt 2.1.2.3-2d
f

respectively.

Accordingly, the response of the butiding-foundation system is computed by

y(t) = H,(e)F,(e)e''de 2.1.2.3-3

or

y(t) = 1 H (e)F (e)e''de 2.1.2.3-4
7 r2x

for seistnic excitation or dynamic load respectively. In Eqs. 2.1.2.3-3 and 4 II,(w) and Hr(e)

are the transfer functions of the building-foundation system relating its steady-state response to

| a unit excitation or to a unit dynamic load respectively.

2.2 Description of System Motion

2.2.1 Equations of Motion of Superstructure

The dynamic characteristics of the superstructure are obtained by DIGES using a three-

dimensional idealization of its inertia and stiffness properties. This is done through stick model

type of representation of the structure in which lumped masses are interconnected with 3D beam
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elements. Each mass is associated with 6 degrees-of-freedom. Let N be the total number of

lumped masses representing the superstmeture. Then the equations of motion for the 6xN

degrees-of-freedom system are:

M A, + Cd + Ku = 0 2.2.1-1

where:

6Nx6N mass matrixM =

6Nx6N damping matrixC =

6Nx6N stiffness matrixK =

6N displacement vector representing the total motion of the superstructureU, =

U= 6N displacement vector repmsenting the relative motion of the superstructure

with respect to the foundation.

I
The relationship between total and relative motions of the system is discussed in the next

section.

2.2.1.1 Flexural and Rield-Body Motion

The total motion of the system consists of two parts: Gexural motions due to the -

deformation of the superstructure relative to the foundation and rigid lxxly motions with respect

to a Oxed system. In the later case, the stmeture-foundation system behaves as a rigid body.

Based on this, the total displacement vector u, at the superstmeture can be decomposed into two

parts: the relative displacement vector u plus a rigid displacement ver for u,. Therefore, we can

write:

u, = u + u, 2.2.1.1-1

All vectors in Eq. 2.2.1.1-l' are 6N-vectors. The instantaneous motion of the stmeture

foundation system acting as a rigid body is completely defined by its velocity of translation plus

an angular velocity. The velocity of the translation is equal to that of some arbitrary point of

the structure-foundation system while the axis of angular velocity passes through the same point.

Based on principles of rigid body kinematics, the angular velocity of the system is independent

of the choice of the base point in terms of both magnitude and direction. The velocity of

32
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[
translation, however, depends on the choice of the base point but it can be determined by

[- knowing the corresponding velocity at any other point on the stmetun:-foundation system and

the angular velocity vector chameterizing the motion. In view of these kinematic principles,

( computationally convenient choices of a base point for referring the rigid body motion of the

system are: a) center of gravity of the building foundation system, b) center of gravity of the

b foundation itself, c) a geometrically convenient point at the rigid foundation. In genemi, any

of these choices can be followed. The main reason for amplifying this issue is to emphasize that

b. the freedom of choosing a reference point in DIGES must be complemented with consistency

in defining pertinent parameters of the system, e.g., compliance or impedance functions of the

foundation, driving forces related to the solution of the scattering of seismic waves by the

foundation, etc.

In DIGES, the rigid displacement vector, u,, representing the total displacement at any

point of the superstructure due to rigid body motion is calculated from the total motion at a

reference point O, iri the rigid foundation. In order to maintain consistency throughout the

discussion in this report, the latter will be termed as " foundation refemnce point." Let u,, denote

the 6 vector of the total foundation motion which is the total motion of the foundation referencep
point, i.e.,

i

e' ' 1

M
[ u*./6'E. 1 2.2.i.i-2

50 0'

b. O'
1

0|

The 6 vector u, is a key parameter in our analyses. Knowing u,,, the rigid body motion

at any point of interest which could be located either at the superstructure or at the fourulation - !

itself, could then be completely defined.

[
Writing Ik . 2.2.1.1-1 for the i-th node of the superstructure we have,l

g
33
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uf = u(0 + up 2.2.1.1-3a

or in terms of their components,

g(0 g(0 g(0
x,e x 2r

g(0 g(0 g(0
y.t s y,r

d(0 A(0 d(0u z u 2.2.1.1-3b, ,,, , ., ,

0[, 0[ 0}0,

$s $ $r
0(0 0(0 0(0
tJ t 2.r

(subscripts t and r denote " total" and " rigid" respectively).

The relative motion u* of the i-th node is referred to the foundation reference point, i.e.,

I
3(0x

ar(0 A(0 2.2.1.1-3c=< ,

0 1

g(0
x

The corresponding rigid body motion u,* of the i-th node is computed from the motion of the

foundation reference point as follows:

With respect to Figure 2.2.1.1-1 the total rigid displacement of the i-th node of the

superstructure consists of a tanslational displacement (equal and pamllel to that of the reference
'

point) plus a small rotation about the axis of rotation, i.e.,

or = org + 6 0 x r, 2.2.1.1-4

where 6 is used to signify small motions.

Using the relevant components and by carrying out the cross product, Eq. 2.2.1.1-4 can

be written as:
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I~
to o r,, - r,, 'gog go

Oo
2.2.1.1-5a(0 3' - r,. O r?,+,< ,<4

11 1 0 1

Ah, 6 0|
, 4, r,, - r ., 0o

where r is the position vector of the i-th node with respect to the reference point Og, i.e. r =o o

r ,, i + r ,,J + r , k, and 60 is the angular displacement associated with the rigid body motion ;o o o
i

and has components {0j 0,* 0|}. Accordingly,

| l

' $~ O! |0

2.2.1.1-6 |g(0 . < e,' ,<

,

g(o 0*
. u. .

In view of Eqs. 2.2.1.1-5 and 6 the rigid body motion u? of the i-th node of the !

superstructure can be written as:

u(,0 = A(Ou, 2.2.1.1-8a

where

I I 2.2.1.1-8bA(0 = 0 I

:

and
.

il
- (y - y,)'o z, - z, g

!g #4 -(t, - z,) 2.2 1.1-8co x, - y,
iE 1 ~ 1, ~{X ~X) oI o

,

il I and O are 3x3 unit and null matrices respectively.*

* (x,, yi, z,) and (x , yo, z ) are rectangular coordinates of the i-th node and the foundationo o

; reference point respectively.

I
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Substituting Eq. 2.2.1.1-8 into Eq. 2.2.1.1-1 for all nodes of the mperstructure we obtain:

u, = u + A u, 2.2.1.1-9

where A is a 6Nx6 matrix assembled in DIGES by using Eq. 2.2.1.1-8b for all nodes of

the superstnicture, while u, and u are 6N vectors representing the total and relative motion of

the superstmeture.

In view of Eq. 2.2.1.1-9, the total motion of the superstnicture (motion with respect to a

fixed system) is equal to a rigid body motion plus a flexural motion relative to the foundation

reference point.

2.2.1.2 Transfer Functions Between Superstructure Motion
and Total Foundation Motion

DIGES employs modal decomposition of the superstructure for detennining relative

motions of the superstnicture with respect to the foundation. The key parameters of the

superstnicture which are required for this purpose am its mass and stiffness. The latter are

assembled by direct finite element approach in terms of the 6Nx6N M and K mass and stiffness

matrices mspectively. The mass matrix M consists of element mass matrices plus lumped

masses at various nodes as specified by the user. The element stiffness matrix is three

dimensional which allows for 6 DOF's per node. Finally, relevant dissipation due to stnictumi

motion is computed in terms of modal damping using the fixed-base modes of the structure.

Substitution of Eq. 2.2.1.1-9 into Eq. 2.2.1-1 gives equations of motion of the

superstructure in tenns of its relative motion u with respection to the foundation:

Mn + Cd + Ku = -M A G, 2.2.1.2-1

Since the tmnsfer function between the relative motion of the superstmeture and the total

foundation motion is of interest, we are considering steady-state harmonic motion at frequency

u. Accordingly, the displacement vectors u and n can be described as follows:o

E ,

|
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u = u(t) = U(e)c'*'
2.2.1.2-2

u, = u,(t) = U,(e)e'"'

Substitution of Eq. 2.2.1.2-2 into Eq. 2.2.1.2-1 gives:

I
(-e'M + le C + K) U = e*MA U,

from which,

' #
2.2.1.2-3,

2 2 8H = H (e) = e [_g M + i e C+AT M A
3 3 I

where the 6Nx6 fmquency elependent matrix Il repmsents the tmnsfer functions between thei

total foundation motion and the relative motion of the superstnicture. Considering Eqs.

2.2.1.1-1, 2.2.1.1-9, 2.2.1.2-2, and 2.2.1,2-3 we can write:

U."
, 2 2.2.1.2-4,

H = H (e) = H (e) + A
'

2 2 3

where the 6Nx6 frequency-dependent matrix II MPresents the transfer function between the total2

foundation motion and the total motion of the superstmetum.

In view of Eqs. 2.2.1.1-9 and 2.2.1.2-4, the total motion of the superstructure (mquired

for computing in-stmeture responses) consists of flexural and rigid body motions and its

amplitudes at frequency w am completely dermed by the corresponding amplitudes of the total

foundation motion U, and the tansfer function H given by Eq. 2.2.1.2-4.2

From Eqs. 2.2.1.2-3 and 4 it is concluded that the computation of the transfer functions,
2H (w) and H (w) requires the inversion of the 6Nx6N complex frequency-dependent matrix [-wi 2

M + iw C + K] assuming that M, C, and K are appropriately defined. If the superstructure

itself, considered as a conventional fixed-base system cannot be decomposed into classical

modes, then the computation of the transfer functions Il (w) and II (w) can be done by numericali 2

2inversion of the matrix [-w M + i e C + K] at each frequency ofinterest. If fixed-base modes

exist in the classical sense, then DIGES computes the above transfer functions using the results

38 g-
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|
of the modal analysis. In the latter case, DIGES perfonns modal analysis by the solution of the

| following equation:

MG + Ku = 0 2 2 1 2-5
|

from which the 6Nx6N modal matrix 4> containing the fixed-base modal shapes of the

! superstructure is obtained. By employing the modal matrix and the resulting modal equations

DIGES computes Il (w) and II (w) on the basis of the following formulation.i

I

By employing the fixed-based modal matrix 4>, the amplitudes of the relative motion of the

superstmeture can be written as:

I
U = o 33 2.2.1.2-6,

I
t

where g is the amplitude of the modal displacement of the j-th mode. Accordingly, we can

write:

= Rfl I'j U, 2.2.1.2-7yj

where #[ is the modal tmnsfer function of the j-th mode given by the relation:

20H*= I
o ,

1+2i(jj-0; 2.2.1.2-8
0

,

O =1
j

U
J

w, frequency of j-th mode;=

f, modal damping of j-th mode;=

6N modal shape vector of j-th mode;4, =

&[ MAI', modal participation 6-vector of j-th mode;=

$[ M4j

U, 6-vector of amplitudes of the total foundation motion, and;=

39
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E'
U'

[1 |i =

DIGES nonnalizes the modal matrix + with respect to the mass matrix. Therefore, |,74 M + = I.

Substitution of Eqs. 2.2.1.2-7 and 8 in*o Eq. 2.2.1.2 6 yields the relation: I
U = H, U 2.2.1.2-9

H = H (w) = 4Hyr |,c
,

i 3

where

P = A ry, 2.2.1.2-10

I
and H,, is a diagonal frequency-dependent matrix with elements IIf given by Eq.

2.2.1.2-8. The corresponding transfer function for the total motion of the superstmeture is

obtained by substitution of Il (w) from Eq. 2.2.1.2-9 into Eq. 2.2.1.2-4, i.e.,i

2.2.1.2-11H = H (e) = H + A egy + A
2 2 2

For every frequency w, DIGES computes II (w) using the corresponding modal frequency .

o

w, and damping (. Then, the 6Nx6 transfer matrix Il (w) is calculated from Eq. 2.2.1.2-9 whilei

the corresponding 6Nx6 transfer matrix II (w) is calculated from Eq. 2.2.1.2-4.2

2.2.1.3 Transfer Functions !!etween Superstructure Forces and .

Total Foundation Motion

In the previous section, the tonsfer functions relating the motion of the superstructure and

the total foundation motion were discussed. The associated transfer matrices II, and II, are

employed in this section to compute the forces exerted by the superstructure on the foundation.!

Let II represent the tmnsfer matrix which at each frequency w relates the amplitude of the total'

3

foundation motion Uo to the amplitudes of the forces F,, exerted by the superstructure on the

foundation. Then,
2.2.1.3-1F,, = 11 U,3

I
where F ,, U are 6-vectors and II = II (w) is a 6x6 frequency-dependent complex matrix.3 3o

The vector F,,is referred to the same point to that of the total foundation motion U,,, that is, the
-

I*

;



. foundation refemnce point Op. The pertinent transfer functions can be then derived by computing

the resultant of the inertial forces of the superstructure with aspect to the foundation reference

point. Let F.,' be the 6-vector of the inenia forces at the i-th node of the superstructure due to

the total motion of the foundation, i.e.,

g(0
x

-

F(0y

Fj0 2.2.1.3-2g"o , < ,

M}0

M,(0

M|0

The resultant of all these forces and moments (over all the nodes of the superstmeture),

with respect to the foundation refemnce point, represents the vector F,, i.e.,

F,'

F,'

F[ 2.2.1.3-3y" , < ,

M|
u;

[ u

[' Consequently, F,, can be determined by considering the contributions (See Figure 2.2.1.3-1).

{ r(,0 x /,0 -2.2.1.3-4I [M ;u
i i

expressing summations of nodal inertia forces and moments with respect to foundation reference I

point Op.
1

1
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The resultant forces F,*, F *, and F/ are the sums of the corresponding forces F?, F *,y y

and F? respectively. The moments M/, M ", and M/ are the sums of the correspondingy

| moments, M?, M *, and M?, plus the resulting moments of the forces F?, F *, and F? withy y

respect to the foundation reference point. The summation is over all nodes of the superstnicture.

Based on this, the forces exerted on the foundation due to the inertia forces of the i-th node of

the superstructure are:

'E F,' F)*

Fjo 2.2.1.3-5aF," > =<< -

ioyo p
2 .m .z

i

and

M,' M}* o m m F*
. ,o.5 ,of

.

rjj 2.2.1.3-5bgjoMjoM,' 0 m* =< < -< +
-r

M* Mjo -r)", r}} gjooz,g

E 1

where rf is the position vector of the i-th node with respect to the foundation reference

point. Eqs. 2.2.1.3-2 through 5 can be written in the following compact fonn ,

1

E F' F*1 A

F,* Fj"| F I 6 Fj02 2.2.1.3-6a4 , . ,

M' Q* I, M]* ;

M,' M|*
M*' M** :

m i

1

where:

0 -(z, - z,) (y, -y,)

2.2.1.3-6b
|

yo , z, - Z 0 -(x, -x,)!
o

(2 -2 ) 0-(Vi 7.)
-

4

.
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I
By comparing Eqs. 2.2.1.3-6b and 2.2.1.1-8c, it is concluded that Q* is the transpose of R*.

Thus, in view of Eqs. 2.2.1.3-6a and 2.2.1.1-8, b, ES is the tmnspose of A*. This is a

consistent result since in view of Eq. 2.2.1.1-8a, A* is a 6x6 transfonnation matrix.

By carrying out the summation over the N nodes of the superstructure and by taking into |
account that each element of FS in Eq. 2.2.1.3-6, is equal to the corresponding row of the mass

matrix M times the vector of the total motion of the superstmeture, we obtain: |
F, = e 3 rAf u, 2.2.1.3-72

Substituting U, from Eqs. 2.2.1.2-11 we can write:

F, = H U,3

# = H (e) - e gr 3f U2
3 3 2

2.2.1.3-8,

= e grM(H + A)2
i I

- e [j rMA + PH,P )2 I

I
| 2.2.1.4 Summary of Supfrstructure Tnmsfer FuDItinns .

The following is a summary of transfer functions associated with the motion of the

! superstructure as computed by DIGES (see Figure 2.2.1.4-It

A. Between total foundation motion and superstructure relative motion:
!

U = H U, 'li 2.2.1.2-9
| # = H,(e) = 4HJr

3

| I
'

II, = diagonal matrix with j-th element:

I
|

| I
|

u ,
- - - - - - - - -- -- - -_ - - - - - -



. _ - _ _ _ _ _ _ - - - - _ _ _ _ _ _ _ _ - _ _ _ _ . _ - _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ - _ _ _ __-

iuw.
1 + 2i (j O - 0] 2.2.1.2-8j ,

0, = * ; {e,, 5,) = modal (frequency, damping)
J

l

transformation matrix consisting of 6x6 submatrices 1A =

1 # 01
0 1

0 z, - z, -(y, -y,) 2.2.1.1-8

#0 = ~(Z -Z ) 0 2,-x,o

'(X ~X ) 01:~1, i o

3x3 unit matrixI =

3x3 zero matrix0 =

coordinates of reference point(x , yo, z ) =
o o

(xi,yi,z) coordinates of i-th node=

F

B. Between total foundation motion and total superstructure motion

r'
U"HU

s 2 o

2.2.1.2-11H = H (e) = H, + A ,
2 2

= @H,pr A

C. Between total foundation motion and forces exerted by superstructure on the

foundation:

F, = H U,3

H = H (e) = o 3 r Af H 2.2.1.3-82
,

3 3 2

2= e (gr3fg pg p
o

45
_

- - .. r .
, , _ . _ _ _ , _ , _ _ , , _ _ _ _ _ _ , _ _ _ _ . _ _ _ _ _ _



E
a

The computational steps required for defining the transfer functions relating:

flexural motions of superstructure*

total motions of superstructure , with foundation motion*

forces exerted by superstmeture on foundation*

|are summarized as follows:

Compute stiffness and mass matrices M and K respectively,*

Compute transformation matrix A*

Perform fixed-base modal analysis. Compute modal shape matrix 4 and modal*

frequencies w3 Compute participation matrix I' from Eq. 2.2.1.2-10.

At each fmquencies e of the analysis compute:*

diagonal matrix II, using the modal frequency wj and modal damping (j of the j-th*

mode.

compute Il (w) from Eq. 2.2.1.2-9*
i

compute II:(w) from Eq. 2.2.1.2-11 !*

compute II (w) from Eq. 2.2.1.3-8*
3

Repeat these calculations for all frequencies of interest, thus building up function II ,*

11, and II, in terms of fmquency w. .

2

2.2.2 Dynamic Response of Foundation

2.2.2.1 Ecuations of Motion of Foundation -

;

The motion of the foundation is completely defined by the motion of the foundation reference

point Or, that is, the total foundation motion. With reference to Figure 2.2.2.1-1, the latter

consists of three displacements A,', A, and A represented by the vector 6rg and three rotationsz

1

0/, 0, and 0," represented by the vector 60, i.e.,
,

1
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tA*x
O

s
~ar gor 2.2.2.1-14

cr ,, ,,, ,

30 0,*
*

O,'

0,*

The total external forces and moments applied at the foundation are represented by the 6-

vector F , i.e.,

F: I
F,'

y* , f F* l, , ,
F 2.2.2.1 2x ,

(M* Af,',

Af,' |
M,*

Note that F,is defined with n:spect to the foundation reference point Og in consistency with

the vector U,. The displacement at any point P of the rigid foundation can be found from the :

total foundation motion by,

5r = orr + 50 x r 2.2.2.1-3

where Srp and 60 are defined by Eq. 2.2.2.1-1 and r is the position vector of P relative to
'

the foundation reference point (See Figure 2.2.2.2-1). In particular, the displacement of the

center of gravity of the foundation is,

2.2.2.1-4aro = ory + 50 x ra

The equations of motion of the rigid foundation can be obtained by balancing its linear and

angular momenta to the external forces F, as follows:

I
I

4s ,
-
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I
= Fo 2.2.2.1-5a

dt

II
dII. . . = Mo 2.2.2.1-5b
dt

where L is the linear momentum of the foundation and H is its angular momentum with

respect to reference point Op.

The linear momentum of the foundation is:

I
L =mv 2.2.2.1-6

o

Where m is the mass of the foundation and v the velocity of motion at its center of gravity,a

i.e.,va = dr /dt. By taking the time derivative of Eq. 2.2.2.1-4, substituting the result into Eq.o

2.2.2.1-6 and then taking the time derivative of the linear momentum, Eq. 2.2.2.1-5a can be a

written in terms of the total foundation motion as follows:

f i

O Za ~1a n 7o 0

$x* x x
2.2.2.1-7F,' +0,*

2 -Z 0 XA, * +-ca m ,=<a a
<<

OYyo ~X 0 ^a ,y

1

Where x , yo and z are the coordinates of the center of gravity of the foundation witho o

respect to OpXYZ.

Next, the angular momentum of the foundation with respect to the foundation reference point

Ogis: I
H = | prxv dV 2.2,2.1-8

I"

| where v is the velocity at any point P of the foundation, whose position vector with respect

to the foundation reference point is r, i.e., y = dr/dt and the integmtion is over the volume V

of the foundation. By calculating the velocity with the aid of Eq. 2.2.2.1-3 and substituting the

result into Eq. 2.2.2.1-8,
1

i .
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|I
II 2 p(A,i + AJ + A k)dV 2.2.2.1-9a=-e

3

I
where

.

'A 0
i 0 z y 3

| A A,*2 z 0 -x *>= <
4

I A) -y x 0
3*.3

2.2.2.1-9b

2 2y +z -xy -xi *

-xy x +z yz 0,"
2 2 ' "+

-xz -yz x +y go

u

p = mass density of foundation>

x , yo, zo = coordinates of the center of gravity of the foundation.a

The above volume integrals become the mass moments and mass products of inertia of the

foundation about OpXYZ. Substituting Eq. 2.2.2.1-9b into Eq. 2.2.2.1-5b:

< ,

I, I,, I, 0,* M,*0 -za ya *

A,* >+1 1, I, 1,, 0,* M,* *-a m Z 0 -x < > - <<o o m
l i l-Ja x 0 o

0" J s
y*a g: a n a

2t

2.2.2.1-10

Combination of Eqs. 2.2.2.1-7 and 2.2.2.1-10 gives the final form of the equations of motion

of the foundation (in terms of the total foundation motion U, and the resultant forces F,) with

respect to the foundation reference point Op.

2 y, y, = p, 2.2.2.1-1la-w

where,
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I A o

2.2.2.1-1 mM, = m A[ 1
, _ f*
m

is the mass matrix of the foundation, and,

0 z -ya -

o

~'
Ac= ~*G 0 X '''

I.a

yo -x oo

mass of the foundationm =

3x3 unit matrixI =

I..

3x3 moment of inertia matrix about OpXYZ :I, =

coordinates of the center of gravity with respect to OgXYZ.x , yo. Zo =o

In applying Eq. 2.2.2.1-11, it should be kept in mind that ALL external forces should be

referred to the foundation reference system OpXYZ which is common with that of reference of

the mass matrix of the system. If it is decided to use the center of gravity of the foundation as

a reference point (take G as Op), then again both the mass matrix and the resultant of the

external forces must be referred to the center of gravity.

2.2.2.2 Foimdation Forces .

The forces associated with the motion of the foundation are due to:

| a. forces exerted by the superstnicture on the foundation F,,

b. forces due to interactions between the surrounding soil and the foundation F,

forces due to ground motion that result in from seismic waves impinging on thec.

j foundation Fa

| I
| The general equations of motion of the foundation expressed by Eqs. 2.2.2.1-11 can be

|written as:

!
! 52 g
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I
-w y,y,+p,=p, 2.2.2.2-12

{
The total motion of the foundation U, consists of its relative motion with respect to the soil

I expressed by the 6-vector U, plus the foundation input motion due to seismic waves which is

expressed by the 6-vector Ua (i.e., U = U, + Ua). The foundation forces due to the

| interaction with the soil in the absence of seismic excitation are:

I F, = K, U, 2.2.2.2-2

where K, is the impedance matrix of the foundation. The foundation forces assochted with
i

I the seismic wave incidence on the foundation can be written in a similar form;

I F = K, U l'1'1'1~3, o c
I

In DIGES, two loading cases are considered:

Case 1: The motion of tile building-foundation system is due to dynamic loads imposed on

the superstmeture only.

Case 2: The motion of the building-foundation system is due to seismic waves incidence on

the foundation only.

In the first case, the total motion of the foundation U represents its relative motion witho

respect to the soil (i.e., U =Us). In this case, Eq. 2.2.2.2-1 becomes:o

(-w M, + K ) U, = F, 2.2.2.2-42
3

When seismic excitation only is of interest (i.e., Case 2), then U = Us + Ua and Eq.o

2.2.2.2-1 becomes:

(- w M, + K,) 0, = F, + F 2 2 2 2-52
o

_

The solutions of Eqs. 2.2.2.2-4 and 5 are given in the next two sections of the report. Note l

that the case of simultaneous application of dynamic loads on the superstmeture and seismic

loads would require the knowledge of the phasing between the two loads. )

53
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er

i

2.2.2.3 Ammile Loads on Superstructura .

The dynamic loads iraposed on the superstructure are considered to be applied at its nodes

in the global sense, and thus are associated with the 6N degrees-of-freedom of the system.

Distributed loads are ultimately converted into nodal loads. Ixt P be the 6N vector representing

these loadt, i.e.,

I
g(0
J

P e
p(0 gi

y
_

.

Fj* |,
,

2.2.2.3-1 mP=< P, ; P, = < ,-

M? j.

g.

g'(0
-

.

P :N , gg

M(0
3 . 6xts

The equations of motion of the foundation are given by Eq. 2.2.2.2-4 in which the total

foundation motion U,is essentially the relative motion of the foundation with respect to the soil,

I i.e. , U, = U . .

3

|

The transfer function H for the relative displacement., of the superstructure can bei

computed from its fixed-base modal analysis (modal shapes 4, modal frequencies and damping)

by considering that in this case the amplitudes of the modal displacements become: -

I
I
I
I
I-

54 g
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)
!

#fA#A 4
-

yj ,,, y, g.I0 / p 2.2.2.3-2

, +| Ar+, +J At+,"
,

where Hf is given by Eq. 2.2.1.2-8.

The amplitudes of the mlative displacemem U are:

U = e q = @ H,prU, + 4H,4 rP 2.2.2.3-3
e

The total motion of the superstmeture (relative to the soil) is:

U, = U + A U 2.2.2.3-4

The fomes exerted by the superstmeture on the foundation is the sum of the corresponding

inenia forces plus those associated with the applied forces on the superstructure. The inertia

forces are given by Eq. 2.2.1.3-7. The equivalent forces exerted on the foundation due to P can

be obtained in a similar fashion by using Eq. 2.2.1.3-6. Based on the above, the total force

exerted by the superstructure on the foundation is:

2 T TF, = w A Af U, + A P 2 2.2 3-53

Using Eqs. 2.2.2.3-3 and 4, F., takes the form:

F, = w (A'AIA + r H, P ) U,2 T

2.2.2.3 5b

+ (A r + P H, 4 )P7

Substitution of F,, into Eq. 2.2.2.2-4 yields the transfer function between the motion of the

foundation with respect to the soil and the force P imposed at the superstructure:

U,= H (e)P4

2.2.2.3-6,

H, a H,(e) a [K,-w (3f, grAfA + PH,P ){' (PH,@r 3 )
2 7 7

Note that the computation of H requires the inversion of a 6x6 complex matrix. The4

transfer function relating the response of the superstmeture to the applied loads can then be

obtained by back-substitution into Eqs. 2.2.2.3-3, 4, and 5:

{
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Transfer function between applied force and stnictural displacements relative to the soil.*

U = H,P

2.2.2.3-7r 3

H, = H (e) = 4H, prH, + 4ri
a

gs s

Transfer function between applied force and total stnictural displacements,*

U, = H P2

2.2.2.3-8 -< 3

H = H (e) = @H, prH, + 4r .jy
2 2

( 0 e

Transfer function between applied force and fon:es exerted on the foundation,*

F,,= H P
3

2.2.2.3-9

H = H (e) = w [gryg pg,pr)y gr + PH,@r2

3 3

2.2.2.4 Ground Excitation

iFor the case of seismic excitation, the forces F,, exened by the superstructure on the

foundation are the inenia forces given by Eq. 2.2.1.3-8. The transfer function between the total

response of the foundation U, and the foundation input motion Ua can be computed by

substitution of Eq. 2.2.2.1.3-8 into the right side of Eq. 2.2.2.2-5:

U, = H (o) U4 a
2.2.2.4-1

<

H, a H (a) = [K,- o {M, + A MA + TH,P )('K,T
4

Acconling to Eq. 2.2.2.4-1, the solution for the transfer function, II, requires the inversion

of a 6x6 matrix. Note, that this matrix is the same as in Eq. 2.2.2.3-6. Having computed II4

from Eq. 2.2.2.4-1 the transfer functions for the superstnicture are obtained as follows: |
Transfer function between structural displacements relative to the foundation and the*

foundation input motion:

U=HU in a
2.2.2.4-2 1

H = H (w) = @H,prg,
3 i

|

g'56
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Transfer function between total structural displacements and the foundation*

input motion:
.

U, = II U2 g
2.2.2.4-3

11=II(a)=(OH,PT + AyI,2 2

Transfer function between the forces exerted by the superstructure and the foundation*

input motion

F, = H Ua3
2.2.2.4-4

II = II (w) = e2(4r y 3 pjf,pryff(g)3 3

In view of Eq. 2.2.2.4-1, II,(w) relates the total motion of the foundation U, to the

foundation input motion Uo. The latter can be further represented in terms of the free-field

motion Ua*, i.e ,

2.2.2.4-5Ua * II (W) Ua5

where II (w) contains the scattering coefficients associated with the scattering of the seismic5

waves by the foundation. By incorporating Eq. 2.2.2.4-5 into Eqs. 2.2.2.4-1 through 4, the

response is directly related to the free-field.

2.2.3 Summary of Buildimi-Foundation System Transfer Functions

-

,

For convenience, the transfer functions of the building-foundation system are summarized

in Figures 2.2.3-1 and 2.2.3-2 for the cases of ground excitation and dynamic loads applied at i

the superstmeture respectively. The relevant transfer functions for the case of ground excitation

are relating the response of the superstmeture to thefoundation input motion. Similarly, the

tmnsfer ftmetions for the case of dynamic loads imposed on the superstructure are relating the

response of the superstmeture to the applied loads. In both loading cases, the response of the

superstructure involved:

Flexural motions of the superstmeture with respect to the foundation reference point*

(i.e., relative displacements)

57
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I
Total motion of the superstructure with respect to the foundation input motion or with ]*

respect to the soil.
'

Forces exerted by the superstructure on the foundation at the foundation reference*

point.

I
,

E

I
I
I
I
I

|

,

Ii

I
I
I
I
I
I
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FOUNDATION

INPUTI MOTION

U G

T TP )).1 KH =[Ks -e (Mo +A MA+rH
'

4 o s

g (Eq.2.2.2.4-1)

I TOTAL
FOUNDATION

I- MOTION

U O

I
| @ Ho rH 4 (c Ho r +A)H 4 co (A MA+ TH F )H4T T 2 T I

0

(Eq. 2.2.2.4-2) (Eq. 2.2.2.4-3) (Eq. 2.2.2.4-4)

| |

I
|

II RELATIVE TOTAL TOTAL INERTIA
STRUCTURAL STRUCTURAL FORCES EXERTED

l MOTION MOTION BY STRUCTURE

( U U ON FOUNDATION |

t
F ss

I
f-

SUMMARY OF TRANSFER FUNCTIONS
(CASE: GROUND EXCITIATION)

Figure 2.2.3-1

|
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I
DYNAMIC FORCES 3

ACTING ON 5
BUILDING

g.P

I
T T

H =[Ks - m (M0 +A MA+ F H FI)]- (A + F H0* )4 0

(Eq.2.2.2.3-6)

I-

TOTAL
~g-FOUNDATION

MOTION

Uo"U gs

2 T Im (g MA+ r H F )H40
T cH (F H 4+m- 2,T)+AHoho (P H 4 +m. 2,T) T

0 4 T+A + F H *0
(Eq2.2.2.3-7) (Eq2.2.2.3-8)

'

(Eq2.2.2.3-9)

RELATIVE TOTAL TOTAL FORCES E
STRUCTURAL STRUCTURAL EXERTED BY 5

MOTION MOTION STRUCTURE ON
FOUNDATION E

U U F Et ss
:

I
SUMMARY OF TRANSFER FUNCTIONS

| (CASE : SUPERSTRUCTURE DYNAMIC LOADS)

1 I'

| Figure 2.2.3-2

I
5. :

*
| .
,
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4
| 3.0 DIGES Algorithm

'

The implementation of the theoretical background, pertaining to the tmnsferring of the free-

field motion onto the superstructure, into a computational tool has been achieved with the

DIGES computer program which utilizes the FORTRAN 77 computer language. The program

itself resides in the a SPARC 1+ Workstation with open window capabilities. The workstation

is part of an ethemet network that allows login from a remote host. This gives it the capability

.

of window sharing between two remote hosts for on-line communication.

The program itself reflects the capabilities already described in the main text, such as direct

generation of spectra, earthquake simulation, deterministic earthquake solutions and system

response under dynamic superstructure loads.

In the following the main programming featums of DIGES will be outlined as well as theI sequence of processes that are incorporated for a complete solution of any of the four major

modules of analysis. Figure 3-1 outlines the basic solution flow chart while Figures 3-2aI through d describe in more detail the operations executed in each solution module.

I Main Program

.E The main program of DIGES plays the role of the driver of the program. It identifies the

module of analysis, the form of free-field input, the frequency content of the input along with j

the size of the dynamic pmblem, the geometric / dynamic properties of the soil /stmeture system

and the locations where the response is to be evaluated. With this provided information (both

interactively and extemally) the program has been designed to allocate memory space exactly ]
equal to what the solution needs. This is course has the advantage of utilizing all the working

memory the host system may allow instead of confining the computer code to a specified i

problem size. Further, the ability of swapping memory space while the progmm is in execution

allows even further flexibility.

I
The sequence of operations am dictated by the main subroutine of the progmm which calls

the following main families of subroutines:

I "



.I
a. The modal properties of the superstructure are evaluated by successively invoking the

subroutines that (1) identify the nodal locations with the degme of freedom, (2)

calculate the stiffness of the finite element system representing the superstructure (3)

evaluate the bandwidth and the global stiffness and mass matrices and (4) call the

eigensolution subroutine that returns the eigenvalues and the eigenvectors of the

superstructure.

b. In order for the equivalent mass matrix of the superstructure to be calculated which
'

implies the transferring of superstmeture information on the foundation the system

invokes the subroutines that (1) calculate the rigid displacement matrix (2) the modal

participation matrix (3) mass matrix of the superstructure for displacement about a

reference point on the foundation and (4) the mass matrix of the rigid foundation.

I
To this point the calculated information is independent of the analysis fmquency.

Fmm this point on the evaluation of system properties takes place at every selected f
frequency value associated with the specified frequency range of the solution.

I-
c. The total transfer function H(w) is established for the complete frequency range.

H(w) is the product of (1) a transfer function which transfers the total foundation input
_

characteristics to any d.o.f. of the superstructure, (2) a transfer function relating the

foundation input motion to the total foundation motion and (3) the scattering matrix
.

that incorporates the modification of the free-field motion due to the presence of the
.

massless foundation.

Specifically, the program invokes the modal amplification matrix routine, the -

frequency dependent equivalent mass matrix routine and, on the basis of the type of

foundation, the impedance (or compliance) matrices. Finally the scattering matrix is

called and the total transfer matrix of the system (complex) is calculated for every

frequency of the analysis.
'

For the case of system response due to dynamic loads on the superstructure the first

of the above tmnsfer functions is appropriately modified.

62
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,

o

d. The free-field input is established in the frequency domain. If (1) the direct transfer

option has been chosen and the control motion is in the form of a power spectral

density, the cross-spectml matrix over the frequency range is formed. When the

control motion is in response spectra form, the consistent cross-spectral matrix is

evaluated for the solution frequency range by invoking the subroutines that generate

psd functions consistent with the free-field msponse spectmm. If (2) the simulation

process is chosen then, depending on the spectra type (power or msponse) chosen as

representative of the stochastic process, the Fourier coefficients of the simulated

earthquakes are calculated by going through the process as many times as the number

of simulations chosen. If (3) the deterministic analysis for an actual eaithquake is to

take place, the Fourier coefficients of the record are established. This of course is

similar to the previous pmcess for a single simulation except that the time history is

not generated. Finally, (4) if the system is excited by a dynamic load in the

superstructum, the Fourier coefficients of the dynamic load am established by

invoking the appropriate Fourier Transform subroutine.

e. On the basis of the final fonn of the free-field motion (psd or Fourier expansion

coefficients) the routines that calculate either the cross-spectral density matrix of the

output or the Fourier coefficients of the time history of the output are called

appropriately. If the output response is in a psd fonn, its response spectrum is

calculated directly from the process described in Section 2.1.2. If the response is in

the form of a time history (or the Fourier coeff.), the corresponding response spectra i

1

are calculated. )

P

. .j

i

1

i

4
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MODULE 1
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Figure 3-2a
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Figure 3-2d
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4.0 SUPERSTRUCTURE MODELING

The DIGES formulation idealizes the superstructum with a stick model consisting of flexible

members with equivalent stiffness and mass matrices. The finite element representation utilizes

3-D elastic beam properties which allows for six degmes of freedom in each nodal location

(Refs.18,19). The special feature that allows rigid links between nodal locations in the finite

element idealization has been incorpomted. The presence of such links will allow for a

master / slave relationship between nodes and of course enable the evaluation of the response of

a superstmeture with such particularities.

While a consistent stiffness matrix is always used, the mass matrix that accounts for the

equivalent mass can be both consistent or lumped (diagonal matrix).

The orientation of a single finite 3-D beam element connecting two nodes (I and J) is shown

in Figure 4-1. Figure 4-2 shows the order of the degrees of freedom in element coordinates.
,

i

The stiffness matrix in element coordinates is given by Eq. 4-1 and the mass matrix by Eq. 4-2

.

respectively:

I

,

.,

I

u

i
69



A

E
=

7
n

|
rac :.
L W ,

@e : o

$ T

Ii$|4 o o

|\%
s~to .c

!|'
%

e re v er
a ma a. ? 3.

a a a

I

4 e o o o o

8 Q" a o
e o o 4 >4 o e ,

L W % L W'

2 2
# o o o o o 4 : o g
i T i W 3

2 ||
@, ,i d 5G|4 w e ee o o o

w
o .

:
- - - -

c & ? A a p ? p
- I;~ ~ ~ ~

,ga
m,

a
N-
2 f,( 1 o e o : :o : o o o

-- - --.

N & Q Q
'

o
LiJ 4 o o o o o e4 o o o o o y,q

i I

!!a

nW
.

.

--
_ _ - - - - _ - - _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ - _ _ .



-- -- - ---

_

T

1!' |

*q
L|2

r' WX
l -
.

4|A o +

"lsa

|-
F
,

&n

bf M
%

-

g( . o
. . e

L- cln eIs-n

o e o o,

N

L
t

"lM o o o o o

'+ o , o o o

M N
I- Q

.

,

'

a4

! . .
. . o . o. o o

,,

g|35"| A o o e o o e o

( e
N h 4* n

f @ $$ ~
~

|
o o o o o+ , ., o '

qg

L- Cl2 U m|g M|R-,
,

1

M # 3
M

e s g|)L S g
|

.o o o . o o o .,..

c CIA d|2 alR dl@

L'
|'

,-' '"IM o o o o o -lo o o o o o

d
,

.

I
*

..
_ _ _ _ _ - _ - _ -



-

E
=

|-whem:
1

i12EI 12El,3

4, = ; 4, . 4

GA,,L GA,,L'

Young's modulusE =

moment of inertia normal to direction iI, =

E
Shear modulus =G =

2(1 + v)

Cross sectional areaA =

shear area normal to direction iA,; =

length of clement connecting nodes I and J.L =

Poisson's ratiop =

tortional moment of inertia (= J if I = 0, = I, otherwise)J =
2 x

polar moment of inertia = I, + I,J, =

densityp =

I
The global solution, however, must be expressed in the global rather than local coordinates

since the superstructure degrees of freedom are expressed in these coordinates. This, in order -

to fann the final system matrices in the global coordinates, specified as X, Y, and Z on Figure

4-1, a transformation matrix T, is utilized such that, .

K,g = T,T ,,T, 4-3K

and similarly,

M,, = T,'M ,T, 4-4
g

IT, relates the vector of displacements in the element Canesian coordinates to the Global

Cartesian coordinates through the relation

u, = T,u 4-5

I
I
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.

The formation of the global stiffness and mass matrices K and M will involve the assemblage

of the individual stiffness and mass matrices given by Eqs. 4-3 and 4 respectively,

j

b
;

L
,

;
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5.0 IMPEDANCES AND FOUNDATION INPUT MOTIONS

5.I Foundation Inmnlagsgi

The relationship of harmonic generalized external forces and moments exciting a rigid

foundation and the response of such foundation is expressed in tenns of the 6 x 6 frequency

|| dependent impedance matrix K,. In addition, this matrix depends on the geometry of the

foundation as well as the pmpenies of the underlying soil medium. The complexity that
'

accompanies the exact description of the interaction between the foundation and the soil has

limited the number of generic analytic solutions (e.g., Refs. I1,13). To circumvent this

f difficulty studies of parametric nature have been conducted and appratimate analytical solutions

have been deduced for simple geometry foundations such as circular and rectangular (Ref.12).

The problem, even for the simple geometries, gets further complicated for foundations that are

embedded into the soil.

I
Several sets of approximate impedance fannulae have been implemented into the DIGES

computational process. Each of the elements of K, reflect both the stiffness and the damping

contribution according to the relation K = k + ias are whem k and c normalized stiffness and |

damping coefficients and a is a dimensionless frequency. (See DIGES User's' Manual.) Ino

1

addition, DIGES provides the option of user-supplied impedance data. '

I
5.2 EMD111!Ll!HLluput Al!1 tin

.I
According to Equation 2.2.2.4 5, the foundation input motion Ua is related to the free-fieldI

motion @ through II (w). DIGES distinguishes three general cases relating the free-field
3

motion with the foundation input motion:
:

I
E

LI
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1

Cr.w 1: Free-field directly applied as input motion

Accord!ng to this case, schematically shown in Figun: 5.2-1, the foundation input motion is

equal to tta free-field motion (i.e., Ua = da').. This case represents early stages of seismic

analyses of building-foundation systems according to which the criteria motion was directly

applied at the bottom of the soil springs. This reflects primarily cases involving surface

foundations. Since the free-field is applied directly as the excitation of the building foundation m

system the 6 x 3 matrix H (w) takes the fonn3

H (e) = f 5.2-1
3

I
where I and 0 are 3 x 3 unit and null matrices respectively.

Case 2: Convolution / Deconvolution

E
In this case the foundation input motion is the free-field motion at some depth, depending on

the embeddment depth of the foundation (Figure 5.2-2). The free-field motion at a given depth

is obtained through convolution or deconvolution depending on whether the criteria motion'is

treated as an outcrop motion or as a surface (or near surface for very soft top layers) motie:: -

respectively. In both cases, the transfer matrix H (w) has the following form:3

:
.

y,(g) , 'H(e)' 5.2-2
0

where 0 is a 3 x 3 null matrix and the 3 x 3 frequency dependent submatrix H(w) contains the

transfer functions for convolution / deconvolution. When one dimensional propagation of shear

and dilatational waves is assumed, the H(w) is a diagonal matrix. Othenvise H(w) has off-

diagonal turns representing coupling between horizontal and vertical components of motion, e.g.,

cases involving inclined waves. (See Section 6.3.3.1.) DIGhi has the option that allows the

user to input convolution / deconvolution data from external sources (e.g, CARES, SHAKE). A

set of models is also available which are presented in Section 6.3 of this report.

I
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Case 3: Kinematic Interaction

In the case of foundation input motion incomorating kinematic interaction effecis due to

the scattering of the seismic waves by the rigid foundation (Figum 5.2-3) II(w) is a 6 x 33

frequency dependent matrix containing the scattering coefficients which depend on the types of

seismic waves considered, the pmperties of the underlying medium and the geometry of the

foundation itself. When kinematic interaction is considered, the lower 3 x 3 part of the II (w)3

matrix is no longer zero (as opposed to Cases 1 and 2). Specifically, the lower 3 x 3 portion

of the II (w) contains scattering coefficients relating the rocking and torsional motion of the3

f:_ foundation due to the horizontal and vertical components of the free-field motion da-
gc:

Consequently, the transfer matrix II (w) has the form:3

v( ) 5.2-3II (G) "5 II(e)t

where Ilu(w). II (w) are generally full 3 x3 frequency-dependent suhmatrices. DIGES has thet

option that allows the user to input the relevant coefficients of II (w) from available sources j3

.

(e.g., Refs. I1,14). It is recommended that a database be implemented into DIGES so it can
1

he used with minimum input data.
|

I
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f.'

6.0 SOLUTIONS FOR SWIPLE MODELS

L

The discritization of typical building-foundation models results in a large number of

equations thus making it difficult to carry out hand solutions. For simple models, however, such

task is manageable and it is pursued in this section of the report. By simple models we mean
-

L building-foundation models in which the superstructure portion of the model is defined by a

single fixed-base natural frequency. The goal is to verify the solutions given in Section 2.0 of

[ the report by comparing them to analytic solutions obtained by direct equilibrium. For

convenience we distinguish two cases of loading i.e., the case of a ground excitation and the
r

case in which d) .dc loads are imposed on the superstructure. These cases am analyzed in,

Sections 6.1 and 6.2.
r

Finally, a set of simple models are also pre:ented which deal with wave motions in uniform

soil deposits or soil deposits overlying a rock medium.

6.1 SpJntions for 1;ynamic Ioads Iruposed on Superstructure

The model considered is shown in Figure 6.1-1. The superstmeture is represented by a

mass m which is lumped at height h above the foundation. The mass of the foundation is m -

and the mass moment of inertia of the foundation is I,. The kinematic parameters of the

building-foundation system are:

i

x : structumi displacement relative to foundation

x, : foundation translation relative to the soil

iy rigid body rotation.

: u : total structural displacement
1.

u, : total foundation translation l

i

|
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Note that:

u = u, + h9 + x 6.1-la

6.1-lbu, a x3

The dynamic force Po(t) is imposed on the structumi mass m. The foundation forces due to the

interaction with the soil are p(t) and q(t). For simplicity the coupling between translation and

rocking is assumed to be zero. Accordingly, the force-displacement relation of the foundation

can be written in the time domain as

p k, O u, c, O n,
6.1-2a< ,, , ,. , ,

.9 0 k, .9 0 c, _f

= or in frequency domain as
1

E P K,(e) + lac,(e) 0 U ]6.1 -2b.E < = , ,

,Q 0 K,(e) + iaC,(o) T

where the 2 x 2 matrix in Eq. 6.1-2b is the impedance matrix of the foundation K,(w).

Equilibrium of structumi mass m yields:

P,(t) 6.1-32s(t) + 2(,w/(t) + w t(,) ,
*

where w , to represent the stmetural frequency and damping respectively. Considemtion of the
. I o

overall equilibrium of the building-foundation system produces the following two equations in

terms of forces and moments respectively:

ms(t) + m 6,(t) + p(t) = P,(t) 6.1-4
3

I
mhs(t) + 1 $(t) + q(t) = hP,(t) 6.1-5

3

Equations 6.1-3,4 and 5 are the equations of motion of the model shown in Figure 6.1-1. The

solution will be formulated in tenns of the total foundation motion (i.e., translation u, and
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I
rotation () and the relative stmetural motion (i.e., x). Accordingly, the relative structumi

displacement can be obtained from Eq. 6.1-3 in the frequency domain as:

1
X(e) - M,(e) U,(e) + hT(e) + * , P,(e)

6.1-6

O=1M,(e) = ;
21 + f24 ,0 - 0 g,

.

With the aid of Eqs. 6.1-2b and 6.1-6 we can put Eq. 6.1-4 into the following form:

(-w (m + m ) - e mM,(e) + K,(e) + ioC,(e)) U,(e)
-2 2

3

2- e mh[1 + M,(e)] T(e) = [1 + M,(e)] P,(e)

Similarly, using Eqs. 6.1-2b and 6.1-6 we can put Eq. 6.1-5 into the following form:

2-e mh[1 + M,(e)]U,(e) +

2 2 6.1-8+ (-e 7, _ g mh2{1 + y,(g)] + g (g) + igc (g)] y(g) =

= h[1 + M,(e)] P,(e)

Equations 6.1-7 and 8 are then solved to obtain the transfer function associated with the

translation and rocking of the foundation as follows:

|U, = H (e)P 6.1-9a
4

where: .

U,(e) 1
-

6.1-9b
U, = < ; P = [1 + M,(e)] < P,(e)

T(e) h -

and the 2 x 2 complex matrix H (e) is given by: .4

2 2 2-u {m . ,,) . g g,(g) . gjg) . ggcjg) _g mql+ X,(w)]
H,(w) =

-w mql + M,(e)] -w 7, _ g mh}1 + X,(o)) + K,(u) + twC,(u) ,2 2 2

6.1-9c

g86
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I
We shall show next that Eq. 6.1-9 is identical to Eq. 2.2.2.3-6:

For the model shown in Figure 6.1-1, A and I' of Eq. 2.2.2.3-6 become:

1
6.1-10A = (1 h} ; P = fig , ,

h

I 2since modes are nonnalized to the mass matrix (i.e., m6 = ;),

I In view of eq. 6.1-10, the matrix products involved in Eq. 2.2.2.3-6 become:

A rMA = m 6.1-ila
2h h

1 h

|I PH,Pr = m'lf,(e) 6.1-l lb
h h ,'

I
1

6.1 - 1 IcPH,@r , <y{o(g) , ,

Substitution of Eqs. 6.1.-l1 as well as Eq. 6.1-2b into Eq. 2.2.2.3-6 yields exactly Eq. 6.1-9.
L

l

Next, analytic expressions are defined for the total foundation motion and for the

superstructure motion of the model shown in Figure 6.1-1. By carrying out the inversion in Eq.

6.1-9c we obtain:

2
U,(e) -e 1 + k,(e) + iec,(e) 1 g((g)

2 U(G)'I'(e) -e hm3 + h[k,(e) + iec,(e)]

|
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1

II(e) - -e (m + m ) - 0 m3f,(e) + k,(e) + lec,(e)' -2 2
3

- {-e 7,_g mh [ + Sf,(e)] + k,(e) + lec,(e)} - 6.1-12b2 2 2

- {w mh[1 + Sf,(e)y2
2

The mlative stmetural motion is obtained by the relation:

x(t) = [H (e)F,(e)e'"'de 6.1-13a
3

-- y
where F,(w) is the Fourier transform of the applied force at the superstmeture and H (w) is thei

transfer function between the applied force and the flexural motion. By substitution of Eq.

6.1-12 into Eq. 6.1-6 we obtain:

af,(e) + [1 + Sf,(e)]3f,(e) (-e 1, + fac,(e) + k,(e)]
i

2 6.1-13b -

H (e) =3 2me II(w)

1,= m h2 + f, 6.1-13c
3

j

2 6.1-13dc,(a) = h c,(e) + c (w)
5

2 6.1-13ek,(e) = h k,(e) + k,(e)
,

Note that the first tenn of Eq. 6.1-13b represents the corresponding transfer function for the

fixed-base case.

Assuming that both the applied force and the relative structural motion are weakly

stationary, then the spectral density of the relative structural motion 4>,, is given by:

I,
6.1-14a@,(e)=pl(e)f4pp(e)i

where 4(w) is the power spectral density function of the applied force and H (w) is the transferi

function given by Eq. 6.1-13b.

2

| The mean-square relative structural motion E[x (t)] can be obtained by:
!

gj88
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E{x (t)] = @,(w)de 6.1-14b2

-

where 4%(w) is given by Eq. 6.1-14a.~

Finally, using Eqs. 6.1-12,13 and Eq. 6.1-la the total structural displacement can be

computed deterministically by

u(t) = H (W)F (w)e de 6.1-15a
{ 2 f

b where F,(w) is the Fourier transform of the force imposed on the superstructure and H (w) IS2

the relevant tmnsfer function given by:

M,(w)
1 + M,(w) [-W*l + IWC (w) + k,(w)]+ 6.1-15b# (W) "2 2 o oII(g)F' mw

E

When both the applied force and the response processes are weakly stationary then the power

b spectral density function of the total stmetural displacement 4 (w) is given by%

4,(w) = VI(W)| *y(w) 6.1-15c
2

where 4g(w) is the spectral density of the applied force.

Equations 6.1-13b and 6.1-15b give analytic expressions for the tmnsfer functions

associated with the relative and total stmetural motion of the model shown in Figure 6.1-1. |

L

6.2 Solutions for Gtqund Excitations

The model considered in this Section is shown in Figure 6.2-1. Essentially, it is similar
[ to that of Figure 6.1-1 except that instead of having a dynamic load applied at the structure we

now consider that the model is subjected to a ground excitation i,(t). The kinematic parameters

of the model are the same with those described in Section 6.1 with the exception that the total j

{~ foundation translation u (t) is now equal to the foundation tmnslation relative to the soil x3(t) pluso

the ground displacement x,(t). Accordingly, Eq. 6.1-lb becomes:

[
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E

6.2-1u, = x + x,3

while Eq. 6.1-la is still applicable in this case and therefore the total stmetural motion is given

h by:

. u = u, + h$ + x 6.2-2

The parameters involved in Eqs. 6.2-1 and 2 are shown in Figure 6.2-1.

In view of Eq. 6.2-1, the force-displacement relationship of the foundation (See Eq. 6.1-2)

can be written in tenns of the total foundation motion as:

P k,(e) + isc,(e) 0 U, - X8 M -3

.Q 0 k,(e) + lec,(e) ip

The equilibrium of the structural mass m is expressed by

2 6.2-4#(t) + 24,ef(t) + e (g) m _g,(g),

From the global equilibrium of the model in translation and rocking we can write:

md(t) + m r7 (t) + p(t) = 0 6.2-5
33

mhd(t) + 19(t) + q(t) = 0 6.2-6
3

respectively.

[
Using Eq. 6.2-2, the solution of Eq. 6.2-4 can be written in the frequency-domain as:

[ X(e) = 7f,(e)[U,(e) + h'P(e)] 6.2-7a

[
O O=1 6.2-7baf,(e) = ;

21 + i2(,0 - 0 a,

where w , (, are the fixed-base stmetural frequency and damping respectively.o

[
91
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.I
Substituting Eqs. 6.2-2 and 6.2-7 into Eqs. 6.2-5 and 6 we obtain: g

2 2 6.2-8-e [m[1 + M,(e)] + m ]U,(e) - e mh[ 1 + M,(e)]T(e) + P(e) = 03 I
2 2 6.2-9-w mh[1 + M,(e)]U,(e) - w}I + mh [1 + M,(e)]T(e) + Q(e) = 0 I3

Substitution of Eqs. 6.2-3 into Eqs. 6.2-8 and 9 yields the tmnsfer functions relating the total

|foundation motion and the fme-field.

U, = R (e)U 6.2-10a
4 a

where

U,(e) ' X (e) '8 6.2-10b; Ua=4U, a < ,>

gT(e) 0

and the 2 x 2 complex matrix H (w) is given by: E4

5.
2 2 t-w (m + m,) - w ,9(,(g) . g,(g) . gge,(g) .g mql + K(w)]

n.(w) - g
2 2

-w'myl + K(w)] -w'l, - w mh [L * 4(a)1 * *,(a) + 'ac.(a) . E,

' k,(w) + f ac,(w) 0
-

.

O A,(W) + IWC,(0)

|~6.2 10c

! Using similar procedures as in Section 6.1 it can be shown that Eq. 6.2-10 is identical to

Eq. 2.2.2.4-1 for the model considered. Specifically, it can be verified that substitution of Eqs.

6.1-11 into Eq. 2.2.2.4-1 yields Eq. 6.2-10.

I
! Next we shall derive the transfer functions H and H: of the model which are associated -

.i

with the relative and total displacement of the structural mass m respectively.

By carrying out the inversion in Eq. 6.2-10c, the total foundation motion can be written ;.

as: ,

I|
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I
I 2 2 2-w 1 - w mh [1 + Of,(w)] + k,(a) + lec,(w)U,(w)

k,(w) + twc,(w) X,(w)
3

< ,< >

2 II(W),T(u) w mh(1 + Of,(w)]

6.2-1I

where H(w) is given by Eq. 6.1-12b.

The transfer function H (w) for the relative displacement of the stnictural mass m can bei

obtained by substitution of Eq. 6.2-11 into Eq. 6.2-7. This leads to the following relation:

* 2 6.2-12H (e) = [-9 I + k,(e) + isc,(e)) [k,(e) + ioc,(e)]3 3

Similarly, the transfer function H (w) for the total stnictural displacement can be obtained by2

substitution of Eqs. 6.2-11 and 12 into Eq. 6.2-2. This opemtion yields:

I|'
I + Sf,(e) [-W I6 + k,(e) + lec,(e)] [k,(e) + ioc,(e)]# (W) " 6.2-13

2 g

| For probabilistic analysis, the power spectral density of the relative and total motion of the

stnictural mass m are given by:

|

0,(e) = PI,(e)f 4,,,,(e) 6.2-15a

! and

I
4,(e) = VI (W)f *2, x,(e) 6.2-15b

2

respectively. These equations are valid for weakly stationary ground motion and responses. In
l
! Eq. 6.2-15 4,,,,(e) is the power spectral density function of the ground excitation. The

transmittance or system functions |H (w)|2 and |H (w)|2 can be obtained from Eqs. 6.2-12 andi 2

6.2-13 respectively.

I
I
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I
6.3 Solutions for Convolution / Deconvolution

-

In Section 5, we distinguished three cases with respect to the transfer functions relating the .

foundations input motion Ua to the " free-field motion @. Here we shall present some solutions

related to the second case i.e., convolution / deconvolution. Specifically, we present analytic -

expressions for the transfer matrix H (w) in Eq. 2.2.2.4-5 for cases involving uniform and5

layered soil deposits. For the latter case, a two-layered configuration representing a soil deposit

overlying a unifonn rock formation is analyzed. -

6.3.1 Uniform Deep Soil Deposits

Soil deposits which can be modeled by unifonn half spaces are considered here. We

present transfer functions for cases involving inclined SH waves as well as inclined P waves.

These two cases are presented in the following two sections.

6.3.1.1 Inclined SH-Waves :

Consider the incident SH wave shown in Figure 6.3.1.1-1. The displacement is given by: |
6.3.1.1-lau(r, e,t) = Ae T' ' 'Ad I

where:

p is the unit propagation vector:

p = sin 0l + cos0/ 6.3.1.1-lb
i 2

| .

d is the unit vector defining the din:ction of motion:

|-
| d=1 6.3.1.1-Ic

3

'

r is the position vector:

|
|

.

I
| s*

-
\
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I
=|

r = x l, + 3 i 6.3.1.1-Idi 22

and A, k, c, are the amplitude, wavenumber and phase velocity mspectively. The corresponding

apparent wavenumber and apparent phase velocity are: I

k, = ksine 6.3.1.1-2a '

I' 6.3.1.1-2bc =3
sin 0

respectively.

The requimment that the surface is free of tractions yields that the reDected wave is in

phase with the incident wave. The total displacement (due to incident plus reDected waves) is:

u (x ,r ; e,t) = 2Acosa eT**8 - e/) 6.3.1.1 3a

I3 i 2 g

when: a, is the dimensionless frequency:

a = kr cos0 =
'

o 2

6.3.1.1-3b

|-
gy

2 cos0=

c,

The total stress and the total strain due to the incident and reflected SH waves are:

i W t) " T32(X *2 ; W t) " -2k Acos0sina,e%M - % 6.3.1. M
23(XTt i 2 i i i

and

Y23(x r ; W t) " Y32N*I2 ; e,t) = -kAcosesina,cT'*8 - c/) 6.3.1.1-4b
'

i 2 i

respectively. In Eqs. 6.3.1.1-4 p is the shear modulus of the halfspace and a, is the

j dimensionless frequency given by Eq. 6.3.1.1-3b.
.

| I
I
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I
For vertical incidence, i.e, 0 = 0 we have:

Disphcrment:

6. 3.1.1-5au (x r ; e,t) = 2Acosa,e *'3 i 2

E!Les1:

I 2;Gl)'T32(J rt2 ; e,t) = -2k Asina,e *' 6.3.1.1 -5b
23(x rT i ii

Etmin:

Y23(J rt2 ; 0,f) " Y32(X rt2 ; e,t) = -kAsina,e *' 6.3.1.1-5c
i i

where a,,is the dimensionless frequency:

'

a, = kr2"
6.3.1.1-5dg,

| c,

In view of Eqs. 6.3.1.1-3, the transfer function between the displacement (or acceleration)

at depth x2 = -h and the displacement (or acceleration) at the surface x2 = 0 is:

u (x ,- h ; e,t) = cosa^| 3 i 6.3.1.1-6aH(e) =
u (x ,0 ; wt)3 1

!

I where a is the dimensionless frequency:n

I
i a = Mem03
|

6.3.1.1 -6b
.I ch

= - cos0
c,

a Note that in Eq. 6.3.1.1-6a the time tenn was cancelled out since we kept the exponentials in

Eq. 6.3.1.1-3 equal.

For vertical incidence, the corresponding expression for II(w) and a am:n

where the dimensionless frequency a3 is given by:

, .

..



E,
a

# (w) = "3P*, - h ; e,t) = cosa3' 6.3.1.1-7a
3

u (x ,0 ; e,t)3 i

I
= kh = wh 6.3.1.1-7b

"

a3
c, -

6.3.1.2 Inclined P-Waves

I-
Consider the incidence of an inclined P-wave at angle 0 with the vertical axis as shown in

Figure 6.3.1.2-1. From the condition that the surface (i.e., plane x2 = 0) is free of tractions
'

(72i = 722 = 0) we obtain:

Incident P-wave:

"i sino

u **A< cos0 + e W' ''' - c/) 6.3.1.2-1<

2 i

u 0
3

Reflected P-wave: am

g.
"i sin 0

||| W r r2 - c/) 6.3.1.2-2u '=A< -cose 'e,

2 2

|
u 0

.

3

Reflected SV-wave:

I
I

; I
,

I
i

I
g.98
.,
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5 - 1

.I:
|

'u' cos0,'3

u *=A< sino, > c 4 6 - 4) 6.3.1.2-3
,

2 3

u, o
,

I
where:

E.
c,,c, : P and S wave velocities respectively

A,A,A3 : wave amplitudes for the incident P-wave, mflected P-wave and reflected
.i 3

SV-wave mspectively.

pi,P2 P3 : Propagation vectors associated with the incident P-wave, mflected P-wave

and reflected SV-wave respectively.

I
Furthemmre, the reflection angle 6 and the wavenumber k, for the reflected SV-wave are:

sino , = s h 0 6.3.1.2-4a
s

I
k,= sk 6.3.1.2-4b

I'
respectively. In Eqs. 6.3.1.2-4, ,s mpresents the ratio of the P to the S wave velocities, i.e,

c
-

s=f 6.3.1.2-5
c,

Finally, the amplitudes A , A and A satisfy the relation:i 2 3

A + 2pcos 0 -spsin20, qi A + 2pcos 0 6.3.1.2-6a
2 2

_ ,

- sin 20 -s cos20, q2 psin20

where

I
I
I
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A A2 l 6.3.1.2-6b
| q, = _A

;
q,= _A,

n

and A, p are the Lam 6's constants for the material of the halfspace.

I
j Using Eqs. 6.3.1.2-1 through 6.3.1.2-6, the total displacement due to the incident and

reflected waves can be written as:

1

~*2")+coso,q2' u (x Ji i 2 ; e,t) sin 0(e*2"' + qie ~ ^ ~ ~8

~ ' #'iU+f)*=A' cos0(e*2"" q3en(xJ *2=e) + sin 0,q2e "^"** *#< i 2

N (I **2 ; G'f) 03 t

6.3.1.2-7

in which we have set A to represent the amplitude of the incident P-wave (i.e, A = A ).i
|

Using Eq. 6.3.1.2-7, several transfer functions can be constructed. Of primary interest

is the transfer function between the horizontal and the vertical displacement at the free-surface.
,

0 in Eq. 6.3.1.2-7, the transfer function between the horizontal to verticalSetting x2 =

displacement becomes:i

Nk . o , (1 + qi)sinD + q2cos0* 6.3.1.2-8 |
ug , o (1 - qi)cose + q2 sin 0, i,

|

I The transfer function between the vertical displacement at depth h (i.e., x2 = -h) and the vertical
1displacement at the surface (i.e, x2 = 0) is:

Nk.-3 , (c ''' qie'')cos0 + q2e "' sin 0* 6.3.1.2-9

Nk . o (1 - qi)cos0 + q2 sin 0,g

1

Similarly, the transfer function between the horizontal displacement at depth h and the horizontal

displacement at the surface is: 1
|
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I
kug . 3 (e -''t+ q,e ')sinD + 92e 'cos0* 6.3.1.2-10

ug , o (1 + qi)sinD + 42cos0, ,

In Eqs. 6.3.1.2-9 and 10 we have set:

I
t = khcos0 N cose 6.3.1.2-I laa

:

a, = k,hcoso, = cos0, 6.3.1.2-I lb

to represent dimensionless frequencies for P and S waves respectively.

Finally, for vertical incidence (0 = 0), Eq. 6.3.1.2-6 gives: qi = -1; q2 = 0 and by

substitution into Eq. 6.3.1.2-7 we obtain:

'

u, 0

u '=A' e'I + e -''l ' e '' 6.3.1.2-12a<

2

u 03

I
where the dimensionless frequency a[ is given by:

a[ = N 6.3.1.2-12b
ct

Note that Eq. 6.3.1.2-12 is the standard one-dimensional P-wave solution from which the

transfer function between the venical displacement at depth h and the surface displacement is

obtained as:

I
~ ~ ^

=cosaf 6.3.1.2-13

"k - o

(Note the similarity between Eqs. 6.3.1.2-13 and 6.3.1,1-7). Equation 6.3.1.2-13 can be also

obtained directly from eq. 6.3.1.2-9 by setting gi = -1, q2 = 0 and 0 = 0.

I
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In conclusion, Eqs. 6.3.1.2-8,9 and 10 are the basic transfer functions which can be used

j to fill-in the elements of the transfer matrix in Eq. 5.2-2. If venical incidence is of interest,

then the transfer function given by Eq. 6.3.1.2-13 is the only non-zero element in Eq. 5.2.2.

} For inclined P-wave incidence, however, Eqs. 6.3.1.2-8,9 and 10 should be used in a consistent

manner with Eq. 5.2.2 since both horizontal as well as vertical components are involved in the

( deconvolution.

I
( 6.3.2 Soll Deposit Overlying a Rock Formation

I
! The model considered is shown in Figure 6.3.2-1. The halfspace represents the rock

underlying the soil. This case was selected in order to present analytic expressions for transfer
,

L functions involving base rock or outempping motion. The incidence of an SH-wave from the

underlying halfspace on the interface between the soil deposit and rock formation is considered.
I

We identify the relevant parameters of .ock and soil by the subscripts R and S respectively.

As shown in Figure 6.3.2-1, the following waves are involved:

t

L~ Incident SH-wave:

r
uS) = A e 9 ' 6 - c ./; 6.3.2-las

i

Reflected SH-wave at interface:

uf' = A eN' - 's ) 6.3.2-1 b
2

Refracted SH-wave across interface:

u) = A e ""('' ' O ~ ''/) 6.3.2-1eU
3

!

Reflected SH-wave at surface
.

u['=Aea f A -e /) 6.3.2-1ds
3

!
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where:

{
c3,,, c ,3 : S wave velocities in the rock and soil respectivelys

r, r' : position vectors with respect to ox,x2 and o'x', x2' systems respectively

pi , . . . , p4 : propagation vectors

A,...,A3 : wave amplitudesi

k, k, : wave numbers

p., p, : shear modulus of soil and rock respectively

Continuity of total stresses 7n and total displacements u3 across the interface between rock

and soil yields the following relations with respect to the amplitudes A , A and A :i 2 3

^ "
A I~4 I+4 #

3 6.3.2-2a, ,,

A 2 1+q 1-q -hu
2 e

where

# m 0,p'8Aq. 6.3.2-2b
C .scos0 ,L s

f
t

"II
a,= caso, (dimensionless frequency) 6.3.2-2cf

?_ c .ss

sin 0,- ## sin 0 6.3.2-2d
c ,gs

' With the aid of eqs. 6.3.2-1 and 2 the following transfer functions can be defined:

motion at depth x ' = -h g u
Il (w) ~ = le * + e .u') 6.3.2 3a2

,

i motion m surjace 2'
'

|

where the dimensionless frequency a is given by:
,

<
n

I
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a

3 = d cos0, 6.3.2-3ba

c .ss

I
ks + e *smotion at depth x ' = -h e2 6.3.2-4# (e) = =

2
a + e +umotion at interface x ' = -H or x = 0 k

2 2 e

I-
s + e *"s '

kmotion at depth x ' = -h e2 6.3.2-5N'(e) = =

motion at interface without top soll (t . qye u + (1 + q3e +ab

I
Considering that the rock is sufficiently stiff, then Eq. 6.3.2-5 gives the transfer function

between the motion at depth h and the outcropping motion.

Using eqs 6.3.2-3, 4 and 5 it can be found that:

e at the free-surface (h = 0)

H'(e) a 1 6.3.2-6ai

I:
,

H (e) = 6.3.2-6b -

*

2

e "" + e*"

I
H'= 6.3.2-6c3

(1 - q)e'" + (1 + q)s *"

e at the interface (h mH) !

!
!

| hs * #*e
H "(w) = # 6.3.2-7a'

i
2
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[
H "(e) = 1 6,3.2 7b-

2

# "'# "
-

H/'(e) = 6.3.2-7c
(1 - q)e"" + (1 + q)e *"

Based on Eqs. 6.3.2-6 and 7 it is concluded that:

b H"(e)R/'(e) = H fw)H"(W) " 1 6.3.2-8a#

i 2 i

while,

H *(e ) H "(e) * 1 6.3.2-8b
3 3

\

Finally, the amplitudes of the strains and the stresses at depth h in the soil deposit are:

L

I.W. A c s0' (c'* - e **)3 6.3.2-9ayg .
2 c .ss

and
L

u * IU Hs (e * - e *) 6.3.2-9br

c .ss ,

i

r
k respectively. According to Eq. 6.3.2-2a, the three amplitudes A , A and A are related withi 2 3

p. two equations. The third equation required to completely define them depends on how we define j
the input to the system of Figure 6.3.2-1. For example, if the outcropping motion U,e" is 4

1

= 3 , and A , A can be subsequently obtained from Eq. 6.3,2-2a.known, then A U 2 3i

107
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6.3.3 Complex Form of Propagation Parameters

Several parameters from those used in Sections 6.3-1 and 2 are complex due to dissipation |
in the foundation medium. Conventionally, it is assumed that the latter exhibits viscoslastic

behavior which is incorporated into the analysis through the use of complex material constants.

For soils, the shear modulus is usually taken as:
:

6.3.3-1 -p. + ggy=

where n is the soil viscosity which can be related to the soil damping ratio ( by:

2(y- 6.3.3-2 E
o 5

Typically the soil shear modulus and soil damping ratio $ are taken as frequency-independent

parameters. From Eqs. 6.3.3-1 and 2 we have the following expression for the complex soil

|shear modulus:

6.3.3-3* (i + i2()=

A similar expression can be written for A, i.e.,
g.

A' = A(1 + i2() 6.3.3-4 5

The complex repn:sentation of the Lame's constants given by eqs. 6.3.3-3 and 4 for viscoelastic ;

soil behavior assumes that the damping ratio is the same for both dilatational as well as;

distortional motion.

The P-wave and S-wave velocities should also be replaced with the following complex

counterparts:,

| I
F 6.3.3-5a'

c#
.

1 - i(

|
3 6.3.3-5b |

*

c3
=

1 - i( 5

and the corresponding wavenumbers by:

|
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k * = k(1 - i() 6.6.3.3-5c

Furthennore, in our fonnulation given in Sections 6.3.1 and 2 we presented relevant

transfer functions associated with wave motions as well as stresses and strains in terms of

dimensionless frequ<:ncies of the general form

jE a = kx E 6.3.3-6a
5 c

| The physical significance of such dimensionless frequencies is that they compare a given length

x to the wavelength of the waves under consideration. The corresponding complex j

dimensionless frequencies are:

a * = a(1 - f() 6.3.3-6b !I l
Equations 6.3.3-3 up to 6 give the complex representation of the parameters required to compute )

the numerical values of the tmnsfer functions and the other wave response quantities given in

Sections 6.3.1 and 2.
.

I
I ,

I
I
I
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I
I
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