ENCLOSURE 4

BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 & 50-324 OPERATING LICENSES DPR-71 & DPR-62 REQUEST FOR LICENSE AMENDMENT RESPONSE TIME TABLE RELOCATION

MARKED-UP TECHNICAL SPECIFICATION PAGES - UNIT 1

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE.with REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2. Set points and interlocks are given in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

- a. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the inoperable channel(s) and/or trip system in the tripped condition* within one hour.
- b. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system** in the tripped condition within one hour and take the ACTION required by Table 3.3.1-1.
- c. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip function of Table 3.3.1.2 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one logic train such that both logic trains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip function.

- * An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.1-1 for that Trip Function shall be taken.
- ** If more channels are inoperable in one trip system than in the other, place the trip system with more inoperable channels in the tripped condition, except when this would cause the Trip Function to occur.
- # Neutron detectors are exempt from response time testing.

BRUNSWICK - UNIT 1

DELSTE - RELOCATE TO UPDATED FSAR

TABLE 3.3.1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

FUNCTIONAL WNIT	RESPONSE TIME (Secondy)
1. Intermediate Range Monitors	
a. Neutron Flux - High ^(a)	NA
b. Inoperative (a)	NA
2. Average Power Range Monitor(a)	1.000
a. Neutron Flux - Wigh, 15%	< 0.09
b. Flow-Biased Neutran Flux - High	NA
c. Neutron Flux - High, 120%	< 0.09
d. Inoperative	NA
e. Downscale	NA
f. LPRM	NA
3. Reactor Vessel Steam Dome Pressure - High	< 0.55
4. Reactor Vessel Water Level - Low, Level 1	≤ 1.05
5. Main Steam Line Isolation Valve - Clorure	< 0.06
6. Main Steam Line Radiation - High	NA
7. Drywell Pressure - High	NA
8. Scram Discharge Volume Water Level - High	NA
9. Turbine Stop Valve - Closure	< 0.06
10. Turbine Control Valve Fast Closure, Control Oil Pressure - Yow	≤ 0.08
11. Reactor Mode Switch in Shutdown Position	NA
12. Manual Scram	NA
	\sim
	\sim
	\mathbf{i}
(a) Neutron detectors are exempt from response shall be measured from detector output or electronic component in the channel.	e time testing. Response from the input of the fir

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.2 The isolation actuation instrumentation channels shown in Table 3.3.2-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.2-2, and with ISOLATION SYSTEM RESPONSE TIME as shown in Table 3.3.2-3.

APPLICABILITY: As shown in Table 3.3.2-1.

ACTION:

- a. With an isolation actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.2-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the inoperable channel(s) and/or that trip system in the tripped condition* within one hour.
- c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system** in the tripped condition within one hour and take the ACTION required by Table 3.3.2-1.
- d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each isolation actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.2-1.

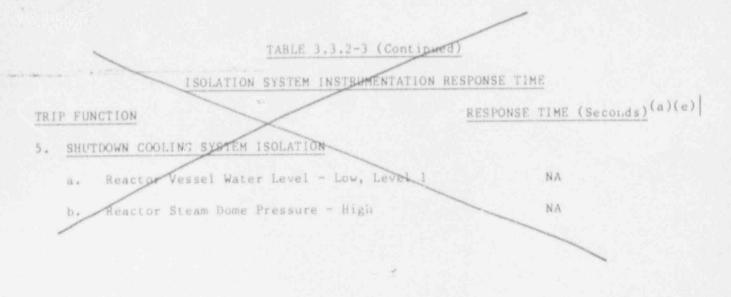
4.3.2.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

** If more channels are inoperable in one trip system than in the other, place the trip system with More inoperable channels in the tripped condition, except when this would cause the Trip Function to occur.

^{*} An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.2-1 for that Trip Function shall be taken.

SURVEILLANCE REQUIREMENTS (Continued)

4.3.2.3 The ISOLATION SYSTEM RESPONSE TIME of each isolation function chown in Table 3.3.2.3 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one logic train such that both logic chains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific isolation function.


Radiation monitors are exempt from response time testing.

Add

the

Dripto- LE	LOCATED TO UFSAR TABLE 3.3.2-3	,
Decere	ISOLATION SYSTEM INSTRUMENTATION RE	SPONSE TIME
TRIE FI	UNCTION	RESPONSE TIME (Seconds) (a) (e)
1. PR	MARY CONTAINMENT ISOLATION	/
a.	Reactor Vessel Water Level -	=18
	2. Low. Level 3	≤1.0 ^(d) ≤13 ^(r)
b.	Drywell Pressure - High	≤13
с.	Main Steam Line 1. Radiation - High ^(b)	≤1.0 ^(d) ≤13 ^(f)
	2. Pressure - Low	\$13
	3. Flow - High	≤0.5 ^(d) ≤13 ^(r)
d.	Main Steam Line Tunnel Temperature - High	≤13
e.	Condenser Vacuum - Low	≤13
ť.	Turbine Building Area Temperaturg - High	NA
g.	Main Stack Radiation - High(b)	≤ 1.0 ^(d)
h.	Reactor Building Exhaust Radiation - High ^(b)	NA
2. <u>SECC</u>	NDARY CONTAINMENT ISOLATION	
a.	Reactor Building Exhaust Radiation - High ^(b)	≤13
b.	Drywell Pressure - High	≤13
с.	Reactor Vessel Water Level - Low, Level &	≤13
3. REAC	TOR WATER CLEANUP SYSTEM ISOLATION	
a.	Δ Flow - High	NA
b.	Area Temperature - High	NA
с.	Area Ventilation Δ Temperature - High	NA
d.	SLCS Initiation	NA
е.	Reactor Vessel Water Level - Low, Level 2	≤13
*/	Δ Flow - High - Time Delay	NA
/g.	Piping Outside RWCU Rooms Area Temperature	High NA

1.	ISOLATION SYSTEM INSTRUMENTATION RESP	ONSE TIME
TRUP FUN	CTION	ESPONSE TIME (Seconds) (a)
4. CORE	STANDBY COOLING SYSTEMS ISOLATION	/
a. As	igh Pressure Coolant Injection System Isolatio	on /
1.	HPCI Steam Line Flow - High	≤13 ^(c)
2.	HPCI Steam Line Flow - High Time Delay Rel	ay NA
3.	HPCI Steam Supply Pressure - Low	≤13
4.	HPCI Steam Line Tunnel Temperature - High	NA
5.	Bus Power Monitor	NA
6.	HPCI Turbine Exhaust Diaphragm Pressure - 1	High NA
7.	HPCI Steam Line Ambient Temperature - High	NA
8.	HPCI Steam Line Area Δ Temperature - High	NA
9.	HPCI Equipment Area Temperature - High	NA
10	. Drywell Pressure - High	NA
b. Re	actor Core Isolation Cooling System Isolation	이 이 가 가 좋지 않는
1.	RCIC Steam Line Flow - High	≤ 13 ^(c)
2.	RCIC Steam Line Flow - High Time Delay Rela	ay NA
3.	RCIC Steam Supply Pressure - Low	NA
4.	RCIC Steam Line Tunnel Temperature - High	NA
5.	Bus Power Monitor	NA
6.	RCIC Turbine Exhaust Diaphragm Pressure - H	High NA
7.	RCIC Steam Line Ambient Temperature - High	NA
8.	RCIC Steam Line Area Δ Temperature - High	AN
9.	RCIC Equipment Room Ambient Temperature - H	ligh NA
10	. RCIC Equipment Room Δ Temperature - High	NA
11	. RCIC Steam Line Tunnel Temperature - High Time Delay Relay	NA
12	. Drywell Pressure - High	NA

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

NOTES

- (a) The isolation system instrumentation response time shall be measured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME. Isolation system instrumentation response time specified includes any delay for diesel generator starting assumed in the accident analysis.
- (b) Radiation monitors are exempt from response time testing. Response time shall be measured from detector output or the input of the first electronic component in the channel.
- (c) Includes time delay added by the time delay relay.
- (d) Isolation actuation instrumentation response time for MSIVs only. No diesel generator delays assumed.
- (e) Isolation system instrumentation response time specified for the Trip Function actuating each valve group/damper shall be added to the isolation time for valves in each valve group shown in Table 3.6.3-1 and secondary containment isolation dampers shown in Table 3.6.5.2-1 to obtain ISOLATION SYSTEM RESPONSE TIME for each valve/damper.
- (f) Isolation system instrumentation response time for associated valves except MSIVs.

DELETE - RELOCATED TO UFSAR

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3 The Emergency Core Cooling System (ECCS) actuation instrumentation shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2. and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table -3.3.3-3.

APPLICABILITY: As shown in Table 3.3.3-1.

ACTION:

- a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With one or more ECCS actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.3-1.
- c. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.3-1.

4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

4.3.3.3 The ECCS RESPONSE TIME of each ECCS function chewn in Table 3.3.3.3 shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one logic train such that both logic trains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months, where N is the total number of redundant channels in a specific ECCS function.

TABLE 3.3.3-3	
EMERGENCY CORE COOLING SYSTEM	M RESPONSE TIMES
ECCS	RESPONSE TIME (Seconds)
1. CORE SPRAY SYSTEM	<u><</u> 27
2. LPCI MODE OF RHR SYSTEM	≤ 40
3. HICH PRESSURE COOLANT INJECTION SYST	EM < 30
4. AUTOMATIC DEPRESSURIZATION SYSTEM	NA
5. LOSS OF POWER	NA

ENCLOSURE 5

BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 & 50-324 OPERATING LICENSES DPR-71 & DPR-62 REQUEST FOR LICENSE AMENDMENT RESPONSE TIME TABLE RELOCATION

MARKED-UP TECHNICAL SPECIFICATION PAGES - UNIT 2

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE.with REACTOR PROTECTION SYSTEM REOPONSE TIME as shown in Table 3.3.1 2. Set points and interlocks are given in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

- a. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the inoperable channel(s) and/or trip system in the tripped condition* within one hour.
- b. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system** in the tripped condition within one hour and take the ACTION required by Table 3.3.1-1.
- c. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3,1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip function of Table 3.3.1.2 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one logic train such that both logic trains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip function.

- * An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.1-1 for that Trip Function shall be taken.
- ** If more channels are inoperable in one trip system than in the other, place the trip system with more inoperable channels in the tripped condition, except when this would cause the Trip Function to occur.

Neutron detectors are exempt from response time testing.

BRUNSWICK - UNIT 2

TABLE 3.3.1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

FUN	TIONAL UNIT	RESPONSE TIME (Seconds)
1.	Intermediate Range Monitors a. Neutron Flox - High (a) b. Inoperative	NA NA
2.	Average Power Range Monitor ^(a) a. Neutron Flux - High, 15% b. Flow-Biased Neutron Flux - High c. Neutron Flux - High, 120% d. Inoperative e. Downscale f. LPRM	< 0.09 NA < 0.09 NA NA NA
3.	Reactor Vessel Steam Dome Pressure - High	< 0.55
4.	Reactor Vessel Water Level - Low, Level A	< 1.05
5.	Main Steam Line Isolation Valve - Closure	≤ 0.06
6.	Main Steam Line Radiation - High	NA
7	Drywell Pressure - High	NA
8.	Scram Discharge Volume Water Level - High	NA
9,	Turbine Stop Valve - Closure	≤ 0.06
10.	Turbine Control Valve Fast Closure, Control Oil Pressure - Yow	≤ 0.08
11,	Reactor Mode Switch in Shutdown Position	NA NA
12.	Manual Scram	NA
(a)	Neutron detectors are exempt from response time t shall be measured from detector output or from t electronic component in the channel.	esting, Response he input of the fi

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.2 The isolation actuation instrumentation channels shown in Table 3.3.2-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.2-2. and with ISOLATION GYSTEM RESPONSE TIME as shown in Table 3.3.2-3.

APPLICABILITY: As shown in Table 3.3.2-1.

ACTION:

- a. With an isolation actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.2-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the inoperable channel(s) and/or that trip system in the tripped condition* within one hour.
- c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one trip system** in the tripped condition within one hour and take the ACTION required by Table 3.3.2-1.
- d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each isolation actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.2-1.

4.3.2.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

- * An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.2-1 for that Trip Function shall be taken.
- ** If more channels are inoperable in one trip system than in the other, place the trip system with more inoperable channels in the tripped condition, except when this would cause the Trip Function to occur.

SURVEILLANCE REQUIREMENTS (Continued)

2 Add

4.3.2.3 The ISOLATION SYSTEM RESPONSE TIME of each isolation function chownin Table 3.3 2.2 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one logic train such that both logic chains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months, where N is the total number of redundant channels in a specific isolation function.

Radiation monitors are exempt from response time testing.

BRUNSWICK - UNIT 2

. . .

TRI	P FUN	CTION SET	RESPONSE TIME (Seconds) (e)
1.	PRIM	ARY CONTAINMENT ISOCATION	
	a .	Reactor Vessel Water Level - 1. Jow, Level 1	513
		2. Low, Level 3	
	b.	Dryvell Pressure - High	13
	Ċ.	Main Sceam Line 1. Radiation - High(b)	$\leq 1.0(d) \\ \leq 13(t)$
		2. Pressure - Low	<u></u> 13
		3. Flow - High	<0.5 ^(d) ^{<0.5(d)} ^{<13(t)}
		4. Flow - High	$\frac{<0.5(d)}{<13(f)}$
	d.	Main Steam Line Tunnel Temperature - High	≤13
	е.	Condenser Vacuum - Low	≤13
	£+	Turbine Building Area Temperature - High	NA
	g.	Main Stack Radiation - High(b)	<1.0 ^(d)
	Б.,	Reactor Building Exhaust Radiation - High ^(b)	NA
2	SECO	ONDARY CONTAINMENT ISOLATION	
	а.	Reactor Building Exhaust Radiation - High (b)	<u><13</u>
	b.	Drywell Pressure High	<u><13</u>
	Ç.,	Reactor Vessel Water Level - Low, Level 2	<u>≤13</u>
3.	REAG	TOR WATER CLEANUP SYSTEM ISOLATION	
	a.	a Flow - High	<45(c)
	b.	Area Temperature - High	sh2
	с.	Area Ventilation & Temperature - High	<u>≤</u> 13
	d.)	SLCS Initiation	NA
	g.	Reactor Vessel Water Level - Low, Level 2	<u>≤13</u>
1	έ,	& Flow - High - Time Delay Relay	NA

1

	TABLE 3.3.2-351 Continued		
- lor la	ELOCATED TO UFSAK		
DELEIG	TABLE 3.3.2-351 Continued)	
-	ISOLATION SYSTEM INSTRUMENTATION RE	ESPONSE TIME	
TRIP FUNCTION	~	RESPONSE TIME (Seconds) (a)(e)	
4. CORE STANDBY CO	COLING SYSTEMS ISOLATION		
a. High Pres	sure Coolant Injection System Isolat	cion	
1. HPCI	Steam Line Flow - High	517(c)	
2. NPCI	Steam Line Flow - High Time Delay Re	elay MA	
3. HPGI	Steam Supply Pressure - Low .	<13 ·	
4. HPCI	Steam Line Tunnel Temperature - High	h	
5. Bus P	over Monicor	NA	
6. HPC1	Turquine Exhaust Diaphragm Pressure -	- High NA	
7. HPCI	Sceam Line Ambienc Temperature - His	gh NA	
8. HPCI	Steam Line Area & Temperature - Aligi	h NA	
9. HPC1	Equipment Area Temperature - High	NA	1
10. Drywe	11 Pressure High	NA	£.,
b. Reactor C	ore Isolation Cooling System Isolat.		
I. RCIC	Steam Line Flow - High	<u>≤</u> 13(c)	
2. RCIC	Steam Line Flow - High Time Delay R	elay NA	ŀ.
3. RCIC	Steam Supply Pressure Low	NA	
4. RCIC	Steam Line Tunnel Temperature - Hig	h NA	ŀ
5. Bus P	ower Monicor	NA	
6. RC1C	Turbine Exhaust Diaphram Pressure -	High NA	
7. RCIC	Steam Line Ambient Temperature - Hi	gh NA	
8. RCIC	Steam Line Area & Temperature - Hig	NA NA	1
9. RCIC	Equipment Room Ambient Temperature	- Hhen NA	1
10. RCIE	Equipment Room & Temperature - High	NA NA	1
	Steam Line Tunnel Temperature - Hig Delay Relay	sh NA	
12 Drywe	ill Pressure - High	WA .	

TABLE 3.3.2-3 (Continue	
ISOLATION SYSTEM INSTRUMENTATION	RESPONSE TIME (Seconds)(a)(e)
 SHUTDOWN COOLING SYSTEM ISOLATION a. Reactor Vessel Water Level - Low, Level 1 	NA
b. Reactor Steam Dome Pressure - High	NA

1.4

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

NOTES

- (a) The isolation system instrumentation response time shall be measured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME. Isolation system instrumentation response time specified includes any delay for diesel generator starting assumed in the accident analysis.
- (b) Radiation monitors are exempt from response time testing. Response time shall be measured from detector output or the input of the first electronic component in the channel.
- (c) Includes time delay added by the time delay relay.
- (d) Isolation actuation instrumentation response time for MSIVs only. No diesel generator delays assumed.
- (e) Isolation system instrumentation response time specified for the Trip Function actuating each valve group/damper shall be added to the isolation time for valves in each valve group shown in Table 3.6.3-1 and secondary containment isolation dampers shown in Table 3.6.5.2-1 to obtain LSOLATION SYSTEM RESPONSE TIME for each valve/damper.
- (f) Isolation system instrumentation response time for associated valves except MSIVs.

DELETE - RELOCATED TO UFSAR.

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3 The Emergency Core Cooling System (ECCS) actuation instrumentation shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2. and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table 3.3.3-3.

APPLICABILITY: As shown in Table 3.3.3-1.

ACTION:

- a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With one or more ECCS actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.3-1.
- c. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS

4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.3-1.

4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

4.3.3.3 The ECCS RESPONSE TIME of each ECCS function shown in Table 3.3.3.3 shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one logic train such that both logic trains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months, where N is the total number of redundant channels in a specific ECCS function.

	ALC: 10	-	100	100	100	100	
TA	121	FL	- E	- X -	- R	-3	
1.25	DL		3.4	.2.3	1. 1.	- A	

	EMERGENCY CORE COOLING SYSTEM R	ESPONSE TIMES
ECCS		RESPONSE TIME (Seconds)
1.	CORE SPRAY SYSTEM	<u><</u> 27
2.	LPCI MODE of RHR SYSTEM	<u><</u> 40
3.	HICH PRESSURE COOLANT INJECTION SYSTEM	<u>≤</u> 30
4.	AUTOMATIC DEPRESSURIZATION SYSTEM	NA
5.	LOSS OF POWER	NA
/		

DELETE - RELOCATED TO UFSAR

ENCLOSURE 6

BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 & 50-324 OPERATING LICENSES DPR-71 & DPR-62 REQUEST FOR LICENSE AMENDMENT RESPONSE TIME TABLE RELOCATION

LIST OF REGULATORY COMMITMENTS

The following table identifies those actions committed to by Carolina Power & Light Company in this document. Any other actions discussed in the submittal represent intended or planned actions by Carolina Power & Light Company. They are described to the NRC for the NRC's information and are not regulatory commitments. Please notify the Manager-Regulatory Affairs at the Brunswick Nuclear Plant of any questions regarding this document or any associated regulatory commitments.

Commitment	Committed date or outage
 Relocate Response Time Tables that are being removed from Technical Specifications by TSC 94TSB02 into the Updated FSAR in Amendment 13 to the UFSAR. 	Amend. 13