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1.2 Summary

Results of XCOBRA-IIIC calculations performed to estimate the core MONER for
™ ¢ 2 . B 14 5 e . *ETY { Tah -

future mixed configurations of HTP and SMV assemblies are summarized in Table

| v .

bl he core conditions for the loss-of-

load transient were used for al
cases and the core loading patterns and assembly relative powers for Cycle 14

were utilized. The MTP assembly ONBR values were calculated using the ANFP

correlation (Ref. 1) while the SMV DNBRs were calculated using the XN
correlation (Ref. 2). The peak power assembly was assumed to be at the igw
Technical Specification limit of 1.65. An SMV assembly is the peak power
assembly only for the early portion of the first mixed core cycle. Table |

also notes the nominal and mixed core MONBR limits for each correlation

The calculations indicate the use of HTP assemblies will not result in a core

MONBR below the mixed core, 95/95 correlation limit for either the SMV or HTP

assemblies
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Tabie 1.2. MONBR values for the three most limiting Chapter 15
Events (Cycle 14 core configuration).

SMV HTP
Assembly Assembly
Transient _ ___  _MONBR (1)

Loss-of-load
Control rod withdrawal

Control rod drop
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2.0 THERMAL HYDRAULIC CHARACTERIZATION OF HTP AND SMV FUEL ASSEMBLIES

Comparison of the spacer configuration for HTP and SMV assemblies is shown in
Figure 1. The HIP configuration represents a significant design change
relative to the SMV grid configuration. The [FMs result in an abrupt change
in hydraulic resistance between the HTP and adjacent SMV assemblies which will
affect the cross-flow between assemblies. Also, the different hydraulic
resistance of the spacer grids will also influence the assembly cross flow.
The characteristics of the HTP and SMV fuel assemblies are summarized in the
following subsections.

2.1 Thermal Characterization of HTP and SMV Assemblies

The HTP spacer grids and IFMs have been shown in Tables 1.] and 1.2 to provide
a significant increase in the thermal margin (MONBR) for H. B. Robinson, Unit
2. The thermal characteristics of the HTP assemblies have been extensively
quantified via critical heat flux tests which were used to develop the ANFP
ONB correlation (Ref. 1). The ANFP correlation was used to calculate the
MONBR for the HTP assemblies. The DONBR for the SMV assemblies were evaluated
using the XNB correlation (Ref. 2) as in previous H. B. Robinson, Unit 2 fuel
cycles.

2.2 Pressure Drop Characterization of HTP Assemblies

Component hydraulic loss coefficients for the HTP and SMV assemblies are
compared in Table 2.1. The HTP data were measured in tests performed in ANFs
portable loop hydraulic test Facility (Ref. 3). The SMV assembly spacer loss
coefficient is documented in Reference 4. The loss coefficients are for the
liquid phase and are referenced to the in-reactor, bare rod flow area. The
upper and lower tie plate loss coefficients include reversible losses due to
area change and losses due to simulated upper and lower core support
$° uctures. The overall assembly loss coefficient for the HTP and SMV
assemblies are compared in Figure 2.
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Table 2.1. Comparison of SMV and HTP Pressure Loss Coefficients
(values for in-reactor application)
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Figure 2. Distribution of pressure loss coefficients for SMV and HTP
Robinson fuel assemblies (evaluated at Re=500,000 for in-
reactor values)



3.0 XCOBRA-IIIC THERMAL HYDRAULIC ANALYSIS
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Cross flow between adjacent assemblies in the open lattice cor s
directly modeled. The single-phase loss coefficients of Table 2 i are
used.

As noted earlier, the calculations utilized the thermal hydraulic
boundary conditions associated with the H. B. Robinson, Unit 2 limiting
(loss-of-1oad) transient transient and a axfal power
profile. The peak fuel assembly is adjusted to be at the Technical
Specification limit of 1.65.

The following core configurations were modeled:

all SMV fuel assemblies (for reference)
first cycle HTP loading configuration
second cycle HTP loading configuration, and
all HTP fuel assemblies,

HowW N e

3.2 Peak Fuel Assembly Model

The XCOBRA-IIIC peak fuel assembly model is a symmetric 1/8 assembly
sector as shown in Figure 4. Heat, mass, and momentum fluxes between
the inter-rod flow channels are explicitly calculated. Loca) values of
mass flux and enthalpy are determined, and :sed to calculate the DNBR.
Coolant mass and momentum flux vs axial position calculated from the
core model are used as boundary conditions to the outer, vertical
boundary of the assembly.
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