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2.0 SUMMARY

& The mechanical analysis shows the fuel assembly w meet the dJesiqgr
criteria for the expected operating tions and postulated a jents to tne

l design assembly burnup of 52.5 GWd/MTU
The key results of the fuel system damage evaluation are
L . The maximum steady-state cladding and assembly mponent stresses

are within the ASME Boiler and Pressure Vesse i€ mits

. The maximum steady-state cladding strair ,  we below the 1%
design 1imit

J . The cladding and assembly component fatigue usage factors are below
the design limit.

. Fretting wear of the spacers and fue! rod preciyded

- grrasion of the fuel rod and the FUe a emb !y
components 1s below the desigr mit

o Fuel rod bowing wi be limited that t e t on therma
margin

- Axia arowth of the fue rods and ftug 1ssemt \ ) mmodate
within the design clearances
- ; . .

. ne frue rod interna pressure remains Deloyv the reaclor ystem
pressure throughout 1ife

. Fue assembly liftoff will not occur during norma perat n
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3 :vtprr‘a‘ p\_\/ﬂr.:]vy\c ‘f) :"?v‘!’”!i‘f} :‘_' \;"\'\"t.. na hydry aen <
manufacture of the fue
& !
' Evaluation of the fue rod behavior shows that cladding
collapse will not occur
. Adequate cooling exists to prevent overheating of the gdding
. Fuel melting will not juring norma nerat nd  ant

operaticnal occurrences
’ The transient circumferential strain is within the 1% design |

’ The impact of cladding rupture is incorporated in the LOCA anal

“ % - 1 - ‘. - - . - - . m '. . W . am ) - o
‘ Fuel coolable geometry and the capability for contr rod inse
1S shown to be maintained during seismic and LOCA event
5 ¢ P,




DESIGN DESCRIPTION
The H.B binson 15x] | assemblies each

instrument ¢t g 2 The fuel assembl

roloaﬁ54~5 in t i f @ seven standard bi-metal

by all Zircaloy high thermal performance (HTP) spacer
mixers (IFMs) are added The . .movable stainiess steel
incone! 718 leaf springs is unchanged from earlier reloads

1 s " | . 1 = - - al) 14 . 4 “ i e
plate 18 replaced with a small hole debris resistant

fuel Assembly Description

The high thermal performance (HTP ; assembly
incorporates the same fuel rod design as ided in previous reloads
fuel assembly ge 15 revised, whereby, at six of the seven
the bi-metall spacer is replaced by ar
three mid-span locations, in limiting ONE regions
assembly, intermediate flow mixers are added
1fied s«
spacer
assembly
Figure 3.2
There are several design differences that make the
improvement over the F bi-metal
ircailoy spri reduces
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ABLE 3.1 FUEL ASSEMBLY HARA EF
havrartoy 4
L..S&...“A,\ t P
Array |5x1§

Number of Fuel Rods 204
Number of Guide Tubes 20

Instrument Tube

Fuel Rod Pitch (in J . 56
Rod to Rod Spacing (in) 0.139
Rod to Guide Tube Spacing (in 0,079

Number of Bi-Metallic Spacers ‘

High Thermal Performance (HTP) Spacers 6

Intermediate ¥low Mixers (IFMs) 3
Guide Tube 0D (in) 0,544
Guide Tube ID (in 0.511
asht 4 :: r i€
. 3 . v »
- vaLe 4 Om d 4 Ve 81
Lower Tie Plate Envelope n 8.424
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FUEL ASSTABLY ENVIRONMENT

This section summarizes the

the fuel rods and f assembly
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Core inlet temperature
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Maximum overpower
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Rod History

gescription
High Fi1 Cycle U0,

High Second Cycle, UQj

High Assembly Exposure, UOj

High Cycle, U02

. A o
High First Cycle, NAF
High Second

High

These histories are analyzed with the RODEX2 code

nent to steady-state operation, and are used I«

itions for power ramps

to determine

transients, ramps t0o maximum

power histories at various times during the i1rradiation







Current and Anticipated Practice

Weekly valve operating test
100% to 70%
hold @ 70% for 2.5 hours

70% tc 100% @ PREMACX rate

Twice/month S . arator
100% to hot

hold @ hot

hot standby

hold @ 30% for 0.5 hour

30% to 100% @ PREMACX rate

Once/6 months Steam Generator inspe
100% to 0 power

cold for one week

0 power to 30%

old @ 30% for C

0% to I @ PRE
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5.0 DESIGN EVALUATION

Fuel rod and assembly design analyses and tests were performed in
accordance with the requirements of Chapter 4.2 of the Standard Review Plan
(SRP) and the ANF design bases and methodology presented in References 1, 2 &
3,

5.1 [Luel System Damage Evaluation

The following paragraphs discuss the ability of the high therma)
performance fuel assemblies to meet the fue) system damage criteria described
in Section 3.1 of SRP 4.2, The criteria apply to normal operation and
anticipated transients,

5.1.1 Steady:-State Stress

a) Euel Rod

The cladding steady-state stress analysis was performed considering
primary and secondary membrane and bending stresses due to hydrostatic
pressure, flow inguced vibration, ovality, spacer contact, pellet ¢lad
interaction (PCI), thermal and mechanica) bow, and thermal gradients.
Stresses were calculated for various combinations of the following conditions
and locations:

BOL (beginning-of-1ife) and EOL (end-of-1ife)

Cold and hot conditions

At mid-span and at spacer locations

At both the inner and outer surfaces of the cladding

The applicable stresses in each orthogonal direction were combined to
calculate the maximum stress intensities which were then compared to the
design criteria®. The results of the analysis indicate that all stress values
are within acceptable design limits for all combinations of conditions and
locations. A summary of the stress intensity results is shown in Table 5.1.
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b) Quide Tubes

The control rod guide tubes tie the assembly structure together and
provide channels for the insertion of the control rods. The bottom section of
the guide tube consists of a reduced diameter to produce a dashpot action when
the control rods approach the end of their travel during a reactor trip. The
guide tube stresses due to differences in frictional loads between HTP and bi-
metallic spacers and the fuel rods which result from differential thermas)
expansion between the fuel rods and the guide tubes are examined, The
stresses due to control rod insertion are unchanged from the ceference
analysis’,

Axial Stresses:

As the power level of the reactor is increased, differential thermal
expansion between the Zircaloy guide tubet and the hotter Zircaloy clad fuel
tends to put the guide tubes in tension. After a period at power, vibration
loads tend to reduce or eliminate differential thermal expansion loads. With
a reduction in power, differences in temperature between the guide tubes and
fuel rods decrease and cause compression loading on the guide tubes.

The magnitude of guide tube loading depends on the differential expansion
between the fuel rods and guide tubes and upon whether or not the fuel rods
slip through the spacers. [f the force developed by the differential therma)
. Apansion times the guide tube stiffness exceeds the friction force, s)ippage
occurs first at the outer spacers with the friction force being exerted on the
inner spans. The spacer friction forces are »~umulated toward the center of
the assembly until the accumulated force equals the expansion force. The
weight of the assembly and the holddown force are also considered in the
calculations,
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Buckling:

As the power level in the reactor is reduced, the difference in
temperature between the guide tubes and fuel rods decreases causing
compressive stresses resulting in a buckiing type load in the guide tube
spans. The differential thermal expansion was conservatively considered as
an external load and not limited by differential strain.
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¢) Spager

The spacer grid attachments must withstand the frictional forces duc to
the differential thermal expansion between the fue! rods and the guide tubes.
The grids are attached to the guide tubes and instrument tubes by resistance
spot welds. The MTP spacer represents the limiting case because its friction
forces are greater than those in the I[FM, and because the HTP spacers are
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attached to each guide tube in four places, whereas, the bi-metallic spacer i
attached in eight places.
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d) ILie Flate Strength

Structural tests have beern made on both the upper and lower tie plates
for the H.B. Robinson assemblies.

5.1.2 ateady-State Strain
The cladding steady-state strain was evaluated with the approved RODEX2

code®. The code considers the thermal-hydraulic environment at the cladding
surfaces; the coolant and rod pressures; and the thermal, mechanical, and
compositional state of the fuel and c¢ladding.

The calculations are performed on & time fincremental basis with
conditions updated at each calculated increment so that the power history and
path dependent processes can be modeled. The axial dependence of the power
and burnup Jistributions are handled by dividing the fuel rod into a numter of
axial anc radia) regions. Power distributions can be changed at any desired
time, and the coolant and cladding temperatures are readjusted in all the
regions., A1l the performance models, e.g., the deformations of the fuel and
cladding and gas release, are calculated at successive times during each
period of assumed constant power generation.
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5.1.3 Lrelic Fatigue
a) Euel Rod

The stress results from the ramping analysis (Section 5.2.5) were used to
evaiuate the cladding fatigue damage through EOL due to the cyclic power
variations defined in fable 4.1. For each of these repetitive operations,
high and low reactor puwer levels were identified. Fatigue damage was
evaluated for the specified number of repetitive operations as the reactor
power 1s cycled back and forth between these two levels,

The transient stress results were evaluated to determine the fatigue
usage for each cycle based on the 0'Donnel and Langer?® design curve shown in
Figure 5.3. These results were accumulated to determine the total fatigue
usage factor which 1s tabulated in Table 5.2.

b)  Guide Tube

The variation in stresses due to differential expansion at beginning of
Tife (BOL) are used in determining the fatigue usage throughout the 1ife of
the guide tubes.
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¢) Spacer

The grid attachment welds must withstand cyclic stresses. The operating
duty cycles defined in Table 4.] were used to estimate the number of cycles
that would be applied to the joint.

5.1.4 Eretting Wear

a) [Bi:-Metallic Spacer

Each grid spacer is designed to support the fue! rod without fretting
wear throughout the design 1ife of the fuel. For the bi-metallic spacer, this
is assured by maintaining a positive spring force greater than the flow
induced lateral vibratior forces.

Spring Relaxation:

During the irradiation of a fuel assembly there is a gradual reduction of
the holding force exerted by the Inconel spacer spring in the bi-metallic
spacer. The force reduction is due to irradiation induced spacer spring
relaxation and to creepdown of the fuel rod cladding. The rate of change is
more rapid early in burnup with a gradua) decrease in the rate of change
throughout {rradiation. The c¢lad creepdown eventually reaches a minimum
diameter when firm pellet clad interaction is established.
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Flow Vibration Force:

The spring force, F_,, required to counteract the maximum latera)
acceleration forces due to flow induced vibrations to the extent of preventing
1ift-off of the rod from the dimples

dspan calculated from
Paidoussis’s equationi?®
£l = Bending stiffness of clad
L . Span length
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End-of-Life Bi-Metallic Spacer Spring Force:

At the end-of-1ife, the spacer spring must overcome the force due to
flow-induced vibration. The fuel rod cladding will have relaxed during
irradiation so there are no forces due to thermal or mechanical bow,

'b) HIP and IFM Spacers

The prevention of fretting corrosion in the WTP and IFM spacers is
demonstrated in accordance with the methods of reference ANF-89-080° by a
combination of anaiysis and fretting tests. The design analysis determines
the projected maximum end-of-1ife gap considering spring relaxation, clad
creepdown, minimum fuel rod diameter, and minimum initial spring deflection at
the beginning-of-1ife. Flow test data are used to confirm that fretting
corrosion will not occur for the Targest possible projected gaps.
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5.1.% Externa] Corrosion
a) Fuel Rod

The waterside corrosion and hydrogen pickup in the cladding were
evaluated with RODEX2 for the seven power histories used in the steady-state
strain analysis.
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§.2.2 Creep Collapse
Creep collapse calculations were performed with the RODEX? and COLAPXIZ
codes.

collapse will not occur.

$.2.3 Querheating of Cladding

As stated in SRP Section 4.2, adeguate cooling {s assumed to exist when
the trhermal margin criterion departure from nucleate boiling ratio (DNBR) fs
satisfied. The method employed to meet the ONBR design 1imit has been
reviewed by the NRC as part of a thermal hydraulic codes and methods. The
Cycle 14 reload analysis report gives the details of this analysis and
results.

5.2.4 Qverheating of Fuel Pellets

The prevention of fuel failure from overheating of the fuel pellets is
accomplished by ensuring that the peak linear heat generation (LHGR) during
normal operation and anticipated cperational occurrences (A0Os) does not
result in calculated fuel centerline melting. This analysis is performed as
part of the plant transient analysis (Chapter 15 analyses),
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5.2.8 Transient Stress and Strain
a) Normal Operation

In order to determine the stresses and strains of the cladding during
transients, ramps to maximum LMGR conditions were applied to the steady-state
histories pericdically throughout the irradiation,

The ramp LMGR levels were determined by assuming that a pellet from & rod
ot the F, Timit can be ramped to Fq, where F,. 15 the maximum allowable rod
peaking factor in the core (1.79) and Fo 1s the maximum allowable pellet
peaking factor in the core (2.55)
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§.2.6  (ladding Rupture

ANF's cladding rupture model for LOCA analysis is described in a generic
report [XN-NF-82-07) entitled, "Exxon Nuclear Company ECCS Cladding Swelling
and Rupture Model." This report adopted the NUREG-0630 data base and
modeiing. The NRC has reviewed this report and found 1t acceptable. The
impact of rupture using this accepted model is implicit in the LOCA results
reported in the reload analysis report for Cycle 14,

§.2.7  fuel Rod and Assenbly Damage from fxternal Forces

The fuel assembly cage must assure that fuel assemdly coolable geometry,
and the ability to insert control rods, 1s maintained under anticipated
accident conditions. Axial and latera) loading conditions due to seismic and
LOCA events have previously been analyzed and reported in the XN-NF.76.47
(P)(A)1S for the 15x15 fuel assembly with bi-metallic spacers.

Due to the incorporation of different fuel assembly components, namely
HTP and IFM spacers and the debris-resistant lower tie plate, the
seismic-LOCA evaluation reported in the reference has been readdressed. The
differences between the reference and the revised fuel assembly design have
been analyzed tc show that the characteristics of the new fue! design are
equivalent to or improved over the reference design.
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a) Lere Evaluation

b) HIP Spacer

The strength characteristics of the HTP spacer are compared with the data
for the bi-metallic spacer and the simulated Westinghouse spacer considered in
the reference analysis in Table §.4. The comparative WTP and bi-metallic
spacer load-deflection characteristics are shown in Figure §.26.

The grid spacer strength was evaluated in accordance with SRP 4.2
Appendix A guidelines, whereby, the maximum allowable crushing load 1¢ the $5%
confidence lower 1imit on the mean of the crush test measurements.
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Combined Stresses:
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TABLE 5.1 SUMM/RY OF LIMITIki STEADY-STATE CLADDING STRESSES

Primary Primary

watin I s ROoBeo Gerome AR

Notes:
MS = Criteria/Stress Intensity - |

Primary Membrane Stress
Criteria = lower value of 2/3 Y or 1/3 U
Y = yield strength (ksi)
U= yltimate strength (ksi)

Net Primary Stress = Primary Membrane + Primary Bending
Criteria « lower value of Y or 1/2 U

Primary + Secondary Stresses
Criteria = lower value of 2 Y or V



Maximum
HOOD
Stress
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4 SPACER CHARACTERISTICS AT OPERATING TEMPERATURE

Dynamic

Dynamic
stiffness |

fness (1b/in)  Strength (1bs
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TABLE 5.5 GUIDE TUBE TOMBINED SEISMIC-LOCA STRESSES

Stress at lower end of
outboard guide tube

koad Condition (psi)

Stress criteria from ASME Boiler & Pressure Vessel Code, Section I[II,
Division I, Appendix F, 1980.
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6.0 TESTING, INSPECTION, AND SURVEILLANCE PLANS

6.1 JTesting and Inspection of New Fuel

As described in SRP Section 4.2, testing and inspection plans for new
fuel should include verification of significant fuel cesign parameters. ANF's
high thermal performance fuel design is tested and inspected during
manufacture to comply with the engineering and quality control requirements of
ANF’'s reload parts list, drawing and specifications.

The requirements of ANF's quality control program are provided in ANF-1,
which addresses design, process, Qquality, procurement and document contrel
applicable to design and manufacture of fuel system component parts, fuel
peilets, rods and assemblies. Fuel 1inspections vary for the different
component parts and may include dimensions, visual appearance, audits of test
reports, material certification, and non-destructive examinations. Pellet
inspection is performed for dimensional characteristics such as diameter,
density, length, and squareness of ends. Fuel rods, absorber rods, upper and
lower plates, and spacer grid inspections consist of non-destructive
examination techniques such as leak testing, weld inspection, and dimensional
measurements.

Process control procedures are described in detail. In addition, for any
tests and inspections performed by other vendors, ANF reviews the quality
control procedures and inspection plans to ensure that they are equivalent to
those described in ANF-1 and are performed properly. The requirements are
changed from those for the existing H.8. Robinson fuel to the high thermal
performance fuel only in the dimensional and fabrication details and
inspection plans of the revised and new HTP and [FM components.

6.2 Post-Irradiation Surveillance
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assemblies which are currently in their first cycle will be examined after
irradiation t) verify that the fuel assemblies are performing as anticipated.
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