ATTACHMENT 4

WESTINGHOUSE REPORT WCAP-13831, REVISION 1

VIRGINIA ELECTRIC AND POWER COMPANY

9404190196 940415 PDR ADDCK 05000338 P PDR Westinghouse Class 3 (Non-Proprietary)

WCAP-13831 Revision 1

HEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION FOR NORTH ANNA UNIT 1

J. M. Chicots M. J. Malone

November 1993

Work Performed Under Shop Order VKLP-139

Prepared by Westinghouse Electric Corporation for the Virginia Electric and Power Company

16 Approved by

T. A. Meyer, Manager Structural Reliability and Plant Life Optimization

WESTINGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355

> © 1993 Westinghouse Electric Corp. All Rights Reserved

PREFACE

This report was revised to change the margin values for the upper shell forging and weld seams W05A and W05B. In addition, the maximum temperature difference between RCS fluid and reactor vessel 1/4-T and 3/4-T locations for heatup and cooldown rates was added.

TABLE OF CONTENTS

Section	Title	Page
	LIST OF ILLUSTRATIONS	ü
	LIST OF TABLES	li
1	INTRODUCTION	1
2	FRACTURE TOUGHNESS PROPERTIES	1
3	CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS	2
4	HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES	4
5	CALCULATION OF ADJUSTED REFERENCE COMPERATURE	6
6	REFERENCES	16
APPENDIX A:	DATA POINTS FOR HEATUP AND COOLDOWN CURVES WITHOUT MARGINS FOR INSTRUMENTATION ERRORS	
APPENDIX B:	PRESSURIZED THERMAL SHOCK EVALUATION RESULTS	

8

LIST OF ILLUSTRATIONS

Figure	Title	Page
1	North Anna Unit 1 Reactor Coolant System Heatup Limitations	12
	(Heatup rate of 20°F/hr) Applicable for the First 30.7 EFPY	
	(Without Margins for Instrumentation Errors)	
2	North Anna Unit 1 Reactor Coolant System Heatup Limitations	13
	(Heatup rate of 40°F/hr) Applicable for the First 30.7 EFPY	
	(Without Margins for Instrumentation Errors)	
3	North Anna Unit 1 Reactor Coolant System Heatup Limitations	14
	(Heatup rate of 60°F/hr) Applicable for the First 30.7 EFPY	
	(Without Margins for Instrumentation Errors)	
4	North Anna Unit 1 Reactor Coolant System Cooldown Limitations	15
	(Cooldown Rates up to 100°F/hr) Applicable for the First 30.7 EFPY	
	(Without Margins for Instrumentation Errors)	

LIST OF TABLES

Table	Title	Page
1	North Anna Unit 1 Reactor Vessel Toughness Table	8
	(Unirradiated)	
2	Summary of Adjusted Reference Temperatures (ART's) at 1/4-T	9
	and 3/4-T Locations for 30.7 EFPY	
3	Calculation of Adjusted Reference Temperatures at 30.7 EFPY	10
	for the Limiting North Anna Unit 1 Reactor Vessel Material -	
	Circumterential Weld Seam	
4	Maximum Temperatures Difference Between RCS Fluid and Reactor	11
	Vessel 1/4-T and 3/4-T Locations for Heatup and Cooldown Rates	

1. INTRODUCTION

Heatup and cooldown limit curves are calculated using the most limiting value of RT_{NDT} (reference nil-ductility temperature) corresponding to the limiting beltline region material for the reactor vessel. The most limiting RT_{NDT} of the material in the core region of the reactor vessel is determined by using the unirradiated reactor vessel material fracture toughness properties and estimating the radiation-induced ΔRT_{NDT} . The unirradiated RT_{NDT} is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60°F.

 RT_{NDT} increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limiting RT_{NDT} at any time period in the reactor's life, ΔRT_{NDT} due to the radiation exposure associated with that time period must be added to the original unirradiated RT_{NDT} . The extent of the shift in RT_{NDT} is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99 Rev. 2 (Radiation Embrittlement of Reactor Vessel Materials)^[1]. Regulatory Guide 1.99, Revision 2 is used for the calculation of ART values at 1/4-T and 3/4-T locations. T is the thickness of the vessel at the beltline region measured from the clad/base metal interface.

The pressure-temperature limit curves in Figures 1 through 4 of this report correspond to allowable pressure-temperature values at the limiting beltline region of the reactor vessel and do not include margins for instrumentation errors or for pressure differences between the wide-range pressure transmitter and the limiting reactor vessel beltline region.

2. FRACTURE TOUGHNESS PROPERTIES

The fracture-toughness properties of the ferritic material in the reactor coolant pressure boundary are determined in accordance with the NRC Regulatory Standard Review Plan^[2]. The pre-irradiation fracture-toughness properties of the North Anna Unit 1 reactor vessel are presented in Table 1. The post-irradiation fracture toughness properties of the intermediate to lower shell circumferential weld and the lower shell forging were obtained directly from the North Anna Unit 1 Reactor Vessel Radiation Surveillance Program. Credible surveillance data are currently available for two capsules (Capsules U and V) for North Anna Unit 1.

3. CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS

The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, K_{i} , for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, K_{iB} , for the metal temperature at that time. K_{iB} is obtained from the reference fracture toughness curve, defined in Appendix G of the ASME Code^[3]. The K_{iB} curve is given by the following equation:

$$K_{IR} = 26.78 + 1.223 * e^{[0.0145 (T-RTNDT + 160)]}$$
(1)

where,

K_{IR} = reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RT_{NUT}.

Therefore, the governing equation for the heatup-cooldown analysis is defined in Appendix G of the ASME Code⁽³⁾ as follows:

$$C^* K_{iM} + K_{iT} \leq K_{iR}$$
⁽²⁾

where,

K _{1M} =	stress intensity factor caused by membrane (pressure) stress	
K ₁₇ #	stress intensity factor caused by the thermal gradients	
K ₁₈ =	function of temperature relative to the RT _{NOT} of the material	
C ==	2.0 for Level A and Level B service limits	

C = 1.5 for hydrostatic and leak test conditions during which the reactor core is not critical.

At any time during the heatup or cooldown transient, K_{IR} is determined by the metal temperature at the tip of the postulated flaw, the appropriate value for RT_{NDT} , and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, K_{IT} , for the reference flaw are computed. From Equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.

For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates. Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw.

During cooldown, the 1/4-T vessel location is at a higher temperature than the fluid adjacent to the vessel ID. This condition, of course, is not true for the steady-state situation. It follows that, at any given reactor coolant temperature, the ΔT developed during cooldown results in a higher value of K_{iR} at the 1/4-T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in K_{iR} exceeds K_{iT}, the calculated allowable pressure during cooldown will be greater than the steady-state value.

The above procedures are needed because there is no direct control on temperature at the 1/4-T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.

Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cookdown analysis, allowable pressure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 1/4-T defect at the inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant temperature; therefore, the K_{in} for the 1/4-T crack during heatup is lower than the K_{in} for the 1/4-T crack during steady-state conditions at the same coolant temperature. During heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower K_{in}'s do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 1/4-T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.

The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations

for the case in which a 1/4-T deep outside surface flaw is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

Finally, the 1983 Amendment to 10CFR50⁽⁴⁾ has a rule which addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unimadiated RT_{NOT} by at least 120°F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure (621 psig for North Anna Unit 1). Table 1 indicates that the limiting unimadiated RT_{NOT} of -22°F occurs in the vessel flange of North Anna Unit 1, so the minimum allowable temperature of this region is 98°F at pressures greater than 621 psig. This limit is shown in Figures 1 through 4 whenever applicable.

4. HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES

Pressure-temperature limit curves for normal heatup and cooldown of the primary conctor coolant system have been calculated for the pressure and temperature in the reactor vessel boltune region using the methods discussed in Section 3. Since indication of reactor vessel beltline pressure is not available on the plant, the pressure difference between the wide-range pressure transmitter and the limiting beltline region must be accounted for when using the pressure-temperature limit curves presented in this report.

Figures 1 through 3 present the heatup curves using heatup rates of 20°F/hr, 40°F/hr and 60°F/hr applicable for the end-of-license life (30.7 EFPY), respectively. Figure 4 presents the cooldown curves

using cooldown rates up to 100°F/hr applicable for the end-of-license life (30.7 EFPY). No margins for possible instrumentation errors are included in the development of heatup and cooldown curves.

Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in Figures 1 through 4. This is in addition to other criteria which must be met before the reactor is made critical.

The reactor must not be made critical until pressure-temperature combinations are to the right of the criticality limit line shown in Figures 1 through 3. The straight line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservice hydrostatic test as required by Appendix G to 10CFR Part 50. The governing equation for the hydrostatic test is defined in Appendix G to Section III of the ASME Code as follows:

where,

K_{IM} is the stress intensity factor covered by membrane (pressure) stress,

 $K_{IR} = 26.78 + 1.233 e^{[0.0145 (T-RTNDT + 160])}$

T is the minimum permissible metal temperature, and

RTNDT is the metal reference nil-ductility temperature.

The curved portion of the criticality limit is shifted 40°F to the right of and parallel to the heatup curve as required by Appendix G to 10 CFR Part 50. It should be noted that there are other criteria which must be met before the reactor is made critical. For example, the reactor must not be made critical until a steam bubble is formed in the pressurizer. The leak test limit curve shown on the heatup curve in Figures 1 through 3 represents minimum temperature requirements at leak test pressures ranging from 2000 psig to 2485 psig. The leak test limit curve was determined by the same method used to compute the inservice hydrostatic test temperature. This method used a 1.5 safety factor on the pressure stress intensity factor as explained previously.

The leak limit curve shown in Figures 1 through 3 represents minimum temperature requirements at the leak test pressure specified by applicable codes^[2,3]. The leak test limit curve was determined by methods of References 2 and 4.

Figures 1 through 4 define limits for ensuring prevention of nonductile failure for the North Anna Unit 1

reactor vessel.

The data points used to develop the heatup and cooldown pressure-temperature limit curves shown in Figures 1 through 4 are presented in Appendix A.

The maximum temperature difference between the RCS fluid and the vessel at the 1/4-T and 3/4-T locations for both heatup and cooldown cases were calculated and the results are provided in Table 4.

5. CALCULATION OF ADJUSTED REFERENCE TEMPERATURE

From Regulatory Guide 1.99 Rev. 2⁽¹⁾ the adjusted reference temperature (ART) for each material in the bettline is given by the following expression:

$$ART = Initial RT_{NDT} + \Delta RT_{NDT} + Margin$$
(3)

Initial RT_{NDT} is the reference temperature for the unimadiated material as defined in paragraph NB-2331 of Section III of the ASME Boiler and Pressure Vessel Code. If measured values of initial RT_{NDT} for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.

 ΔRT_{NOT} is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows:

$$\Delta RT_{NOT} = [CF] * f^{(0.26 - 0.10 \log 1)}$$
(4)

To calculate ΔRT_{NDT} at any depth (e.g., at 1/4-T or 3/4-T), the following formula must first be used to attenuate the fluence at the specific depth.

$$f_{(depth x)} = f_{eurlace} * \Theta^{(-24x)}$$
(5)

where x (in inches) is the depth into the vessel wall measured from the vessel clad/base metal interface. The resultant fluence is then put into equation (4) to calculate ΔRT_{NDT} at the specific depth. The calculated surface fluence at end-of-license life (30.7 EFPY) for North Anna Unit 1 is 3.95 x 10¹⁹ n/cm² ^[6].

CF ("F) is the chemistry factor, obtained from Tables in Reference 1, using the values of the copper and

nickel content as reported in Table 1. If plant-specific surveillance data has been deemed credible per Reg. Guide 1.99, Revision 2, it may be considered in the calculation of the chemistry factor.

All materials in the bettline region of North Anna Unit 1 reactor vessel were considered in determining the limiting material. The results of the ART's at 1/4-T and 3/4-T are summarized in Table 2. From Table 2, it can be seen that the limiting material is the circumferential weld seam for heatup and cooldown curves applicable up to end-of-license life (30.7 EFPY). Sample calculations to determine the ART values for the circumferential weld seam at end-of-license life (30.7 EFPY) are shown in Table 3.

				TABL	E1		
NORTH	ANNA	UNIT	1	REACTOR	VESSEL	TOUGHNESS	TABLE
				(Unirrad	liated)		

Material Description	Cl' (%)	NI (%)	IRT _{NDT} (°F)
Closure Head Flange	**	0.82	-40 (b)
Vessel Flange	8.5	0.77	-22 (b)
Upper Shell Forging 05	0.16	0.74	6 (c)
Intermediate Shell Forging 04	0.12	0.82	17 (a)
Lower Shell Forging 03	0.15	0.80	38 (a)
Intermediate Shell to Lower Shell Circumferential Weld Seam, W04	0.086	0.11	19 (a)
Weld Seam, W05A	0.30	0.10	0 (c)
Weld Seam, W058	0.11	0.10	0 (c)

(a) The initial RT_{NDT} values for the plates and circumferential weld are measured values.

- (b) Initial RT_{NDT} values for the closure head and vessel flange were estimated per U.S. NRC Standard Review Plan⁽²⁾. These values are used for considering flange requirements for the heatup/cooldown curves⁽⁴⁾.
- (c) Initial RT_{NDT} values are estimated per U.S. NRC Standard Review Plan^[2]. For margin calculations for these materials, σ_i = 30°F for forging and σ_i = 20°F for welds per BAW-1911, Rev. 1, "Reactor Pressure Vessel and Surveillance Progrem Materials Licensing Information for North Anna Units 1 and 2", A. L. Lowe, dated August 1986.

Copper and nickel concentrations are taken from North Anna Unit 1 Table 7 "Beltline Materials" of BAW-2168, Revision 1, "Response to Generic Letter 92-01 for Virginia Electric and Power Company North Anna Units 1 and 2", dated September 1992.

TABLE 2

SUMMARY OF ADJUSTED REFERENCE TEMPERATURES (ART's) AT 1/4-T and 3/4-T LOCATIONS FOR 30.7 EFPY

Material	1/4-T ART (°F)	3/4-T ART (°F)
Upper Shell Forging 05	140.3	117.3
Inter. Shell Forging 04	158.1	136.8
Lower Shell Forging 03	215.2 (146.5)	186.7 (128.3)
Circumferential Weld Seam, W04	137.5 (162.9)*	119.1 (139.9)*
Weld Seam, W05A	143.4	111.2
Weld Seam, W05B	82.4	65.4

ART numbers within () are based on chemistry factors calculated using surveillance capsule data.

*These ART numbers were used to generate heatup and cooldown curves.

TABLE 3

CALCULATION OF ADJUSTED REFERENCE TEMPERATURES AT 30.7 EFPY FOR THE LIMITING NORTH ANNA UNIT 1 REACTOR VESSEL MATERIAL - CIRCUMFERENTIAL WELD SEAM

	Regulatory Guide 1.99 -Revision 2 30.7 EFPY				
Parameter	<u>1/4-T</u>	3/4-T			
Chemistry Factor, CF (*F) Fluence, f (10 ¹⁹ n/cm ²) ^(a) Fluence Factor, ff	93.09 2.492 1.245	93.09 0.992 0.998			
$\Delta RT_{NDT} = CF \times ff (°F)$ Initial RT _{NDT} , I (°F) Margin, M (°F) ^(D)	115.9 19 28	92.9 19 28	***		
Revision 2 to Regulatory Guide 1.99					
Adjusted Reference Temperature, ART = Initial RT _{NDT} + ΔRT _{NDT} + Margin	162.9	139.9			
***************************************	*************	************	***		

(a) Fluence, f, is based upon f_{aur} (10¹⁹ n/cm², E>1 Mev) = 3.95 at end-of-license life (30.7 EFPY). The North Anna Unit 1 reactor vessel wall thickness is 7.677 inches at the beltline region.

(b) Margin is calculated as, $M = 2 [\sigma_i^2 + \sigma_{\Delta}^2]^{0.5}$. The standard deviation for the initial RT_{NDT} margin term, σ_i , is assumed to be 0°F since the initial RT_{NDT} is a measured value. The standard deviation for ΔRT_{NDT} term, σ_{Δ} , is 28°F for the weld, except that σ_{Δ} need not exceed 0.5 times the mean value of ΔRT_{NDT} . σ_{Δ} is 14°F for the weld (half the value) when surveillance data is used.

10

TABLE 4

MAXIMUM TEMPERATURES DIFFERENCE BETWEEN RCS FLUID AND REACTOR VESSEL 1/4-T AND 3/4-T LOCATIONS FOR HEATUP AND COOLDOWN RATES

Case	Rate ° F/hr	Time (sec)	Water Temp. (°F)	1/4-T Temp. (°F)	3/4-T Temp. (°F)	∆T @ 1/4-T (°F)	∆T @ 3/4-T (°F)
Heatup	60	28,800	550	535	519	15	31
Cooldown	100 100	5940 6120	385 380	408 403	434 429	23	 49

LIMITING MATERIAL: CIRCUMFERENTIAL WELD SEAM

LIMITING ART AT 30.7 EFPY: 1/4-T. 162.9'F

3/4 39.9°F

North Anna Unit 1 Reactor Coolant System Heatup Limitations (Heatup rate of 20°F/hr) Applicable for the First 30.7 EFPY (Without Margins for Instrumentation Errors)

LIMITING MATERIAL: CIRCUMFERENTIAL WELD SEAM LIMITING ART AT 30.7 EFPY: 1/4-T, 162.9*F

3/4-T, 139.9°F

North Anna Unit 1 Reactor Coolant System Heatup Limitations (Heatup rate of 40°F/hr) Applicable for the First 30.7 EFPY (Without Margins for Instrumentation Errors)

LIMITING MATERIAL: CIRCUMFERENTIAL WELD SEAM LIMITING ART AT 30.7 EFPY: 1/4-T, 162.9°F

3/4-T, 139.9'F

North Anna Unit 1 Reactor Coolant System Heatup Limitations (Heatup rate of 60°F/hr) Applicable for the First 30.7 EFPY (Without Margins for Instrumentation Errors)

LIMITING MATERIAL: CIRCUMFERENTIAL WELD SEAM LIMITING ART AT 30.7 EFPY: 1/4-T, 162.9 F

3/4-T, 139.9'F

North Anna Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown rates up to 100°F/hr) Applicable for the First 30.7 EFPY (Without Margins for Instrumentation Errors)

6. REFERENCES

- Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials", U.S. Nuclear Regulatory Commission, May, 1988.
- [2] "Fracture Toughness Requirements", Branch Technical Position MTEB 5-2, Chapter
 5.3.2 in <u>Standard Review Plan</u> for the Review of Safety Analysis Reports for Nuclear
 Power Plants, LWR Edition, NUREG-0800, 1981.
- [3] <u>ASME Boiler and Pressure Vessel Code</u>, Section III, Division 1 Appendixes, "Rules for Construction of Nuclear Power Plant Components, Appendix G, Protection Against Nonductile Failure", pp. 558-563, 1986 Edition, American Society of Mechanical Engineers, New York, 1986.
- [4] Code of Federal Regulations, 10CFR50, Appendix G, "Fracture Toughness Requirements", U.S. Nuclear Regulatory Commission, Washington, D.C., Federal Register, Vol. 48 No. 104, May 27, 1983.
- [5] WCAP-8771, "Virginia Electric and Power Company North Anna Unit No. 1 Reactor Vessel Radiation Surveillance Program", J. A. Davidson and J. H. Phillips, September 1976. (Westinghouse Proprietary Class 3)
- [6] WCAP-11777, "Analysis of Capsule U from the Virginia Electric and Power Company North Anna Unit 1 Reactor Vessel Radiation Surveillance Program", S. E. Yanichko, et al., February 1988. (Westinghouse Proprietary Class 3)
- [7] Material Certification Report, Rotterdam Order No. 30661, Lab No. J 575.

APPENDIX A DATA POINTS FOR HEATUP AND COOLDOWN CURVES (Without Margins for Instrumentation Errors) North Anna Unit 1 Heatup/Cooldown Curve Data WITHOUT margins

Cooldown Curves

iteady !	State	20 DEC	CD	40 DEC	G CD	60 DEC	CD	100 DE	GCD
T	P	Т	P	T	P	T	Р	T	P
85	547.28	85	513.64	85	479.44	85	444.59	85	373.22
90	552.65	90	519.15	90	485.12	90	450.47	90	379.55
95	558.42	95	525.11	95	491.20	95	456.85	95	386.47
100	564.63	100	531.51	100	497.82	100	463.73	100	393.94
105	571.30	105	538.32	105	505.00	105	471.20	105	402.08
110	578.47	110	545.75	110	512.72	110	479.24	110	410.82
115	586.06	115	553.77	115	521.07	115	487.96	115	420.38
120	594.35	120	562.38	120	530.05	120	497.26	120	430.71
125	603.26	125	571.68	125	\$39.66	125	507.42	125	441.85
130	612.85	130	581.66	130	550.10	130	518.37	130	453.95
135	623.15	135	592.32	135	561.39	135	530.21	135	467.07
140	634.08	140	603.90	140	573.52	140	542.85	140	481.22
145	645.99	145	616.38	145	586.50	145	556.63	145	496.47
150	658.79	150	629.77	150	600.59	150	571.46	150	513.00
155	672.54	155	644.11	155	615.80	155	587.36	155	530.89
160	687.19	160	659.65	160	632.00	160	604.60	160	550.08
165	703.09	165	676.35	165	649.64	165	623.22	165	570.94
170	720.16	170	694.21	170	668.61	170	643.11	170	593.30
175	738.39	175	713.59	175	688.90	175	664.74	175	617.60
180	758.16	180	734.23	180	710.90	180	687.84	180	643.63
185	779.19	185	756.66	185	734.42	185	712.94	185	671.90
190	802.03	190	780.55	190	759.89	190	739.76	190	702.20
195	826.34	195	806.48	195	787.16	195	768.82	195	734.90
200	852.71	200	834.16	200	816.63	200	799.99	200	770.25
205	880.84	205	864.11	205	848.28	205	833.52	205	808.29
210	911.22	210	896.19	210	882.22	210	869.58	210	849.22
215	943.79	215	930.62	215	918.77	215	908.64	215	893.33
220	978.72	220	967.62	220	958.26	2.20	950.46	220	940.81
225	1016.23	225	1007.61	225	1000.60	225	995.48	2.2.5	991.95
230	1056.54	230	1050.44	230	1046.08	230	1043.85	230	1046.95
235	1100.08	235	1096.47	235	1094.99	235	1095.93		
240	1146.64	240	1145.88						
245	1196.62								
250	1250.15								
255	1307.90								
260	1369.68								
265	1435.87								
270	1507.19								
275	1583.43								
280	1664.94								
285	1752.74								
290	-1846.59								
295	1946.83								
300	2054.44								
305	2169.27								
310	2292.07								
315	2423.12								
9.84	10 Mar - 1.6								

North Anna Unit 1 Heatup/Cooldown Curve Data WITHOUT margins

Heatup Curves

20 DE	GHU	Criticality	Limit	40 DE0	O HU	Criticality	Limit
Т	P	Ť	P	Т	Р	Ť	P
85	541.05	292	0	85	523.08	292	0
90	544.65	292	544.65	90	523.08	292	523.08
95	551.19	292	551.19	95	523.91	2.72	523.91
100	558.02	292	558.02	100	526.71	292	526.71
105	566.12	292	566.12	105	531.26	292	531.26
110	574.67	292	374.67	110	536.96	292	536.96
115	583.99	292	583.99	115	543.07	202	543 07
120	594.05	292	594.05	120	551.92	202	551 92
125	603.26	292	603.26	125	560.88	292	560.88
130	612.85	292	612.85	130	570.68	292	570.68
135	623.15	292	623.15	135	581.44	202	581.44
140	634.08	292	634.08	140	507 48	202	502.09
145	645.99	292	645.99	145	605.64	202	605 64
150	658.79	292	658 79	150	610 27	302	610.27
155	672.54	202	672 54	155	633 87	202	633.07
160	687 19	292	687 10	160	640 71	202	640 71
165	703.09	292	203.00	165	666.91	292	666 91
170	720.16	292	720.16	170	685.00	202	686.00
175	738 30	292	738 30	175	704 70	202	704 70
180	758.16	292	758 16	190	775 84	292	726.79
185	779.19	292	770 10	185	748 73	202	749 53
190	802.03	202	802 03	100	773 99	294	7903.76
195	826.34	292	826 34	190	700 50	292	700 80
200	852 71	202	852 71	200	977 KA	292	199.30
205	880 84	202	880 84	205	949 13	292	067.04
210	911 22	202	011 22	210	800.40	202	838.14
215	943 79	202	043 70	215	075.64	292	075.64
220	978 72	202	978 72	220	063.17	294	943.04
225	1016 23	202	1016 23	226	1003 72	296	903.17
230	1056 54	202	1056 54	230	1047.10	202	1047.10
235	1100.08	2.92	1100.08	236	1007.62	292	1007.63
240	1146.64	292	1146.64	240	1143.61	202	1093.04
245	1196.62	202	1196.62	245	1106.67	292	1143.01
250	1247.04	202	1247 04	250	1946 41	296	1190.02
255	1301.47	205	1301 47	250	1240,01	292	1200.01
260	1350 75	300	1350 75	260	1257 70	295	1297.00
265	1422.22	305	1477 77	260	1006.70	300	1354.70
270	1480 11	310	1490 11	200	1411.33	300	1411.33
275	1561.00	315	1461.00	375	14/4./2	310	14/4./3
280	1637 87	320	1637 87	290	1396.37	315	1346.37
285	1720.33	335	1230 23	200	1014.80	320	1014.80
290	1808 46	330	1908.46	283	1092.39	345	1092.59
205	1003.06	235	1003.40	290	17/3.78	330	1775.78
300	2004 25	340	2004.25	293	1009.70	3.53	1804.70
305	211242	345	2112 48	300	2900.00	340	1900.06
310	2227 78	340	5116.90	305	2001.90	343	2001.90
314	2751 31	350	2251 21	310	21/0,/1	330	2170.71
320	2482.02	333	2482.07	313	2.280.98	335	2286.98
5.60	P407.21	300	2484.91	3.20	2410.81	360	2410.81

North Anna Unit I Heatup/Cooldown Curve Data WITHOUT margins

Heatup (Curves			Leak Test (for all hea	Data itup curves
60 DEG	HU	Criticality	Limit		
Т	P	Ť	P	Т	P
85	507.18	292	0	270	2000
90	\$07.18	292	507.18	292	2485
95	507.18	292	507.18		
100	507.18	292	507.18		
105	507.82	292	507.82		
110	510.04	292	510.04		
115	513.81	292	513.81		
120	518.78	292	518.78		
125	525.00	292	525.00		
130	532.25	292	532.25		
135	540.50	292	540.50		
140	549.81	292	549.81		
145	\$60.20	292	560.20		
150	\$71.56	292	\$71.56		
155	583.91	292	583.91		
160	507.43	292	597.43		
165	612.13	292	612.13		
170	628.00	292	628.00		
175	645.05	2.92	645.05		
180	663.57	292	663.57		
185	683.38	292	683.38		
190	704.87	292	704.87		
195	727.84	292	727.84		
200	752.74	292	752.74		
205	779.33	292	779.33		
210	808.11	2.92	808.11		
215	838.87	292	838.87		
2.20	871.89	292	871.89		
225	907.59	292	907.59		
230	945.78	292	945.78		
235	986.80	292	986.80		
240	1030.80	292	1030.80		
245	1078.06	292	1078.06		
250	1128.77	292	1128.77		
255	1183.17	295	1183,17		
260	1241.50	300	1241.50		
265	1304.05	305	1304.05		
270	1371.17	310	1371.17		
275	1443.05	315	1443.05		
280	1520.15	320	1520.15		
285	1602.65	325	1602.65		
290	1691.00	330	1691.00		
295	1785.48	335	1785.48		
300	1886.69	340	1886.69		
305	1994.52	345	1994.52		
310	2110.10	350	2110.10		
315	2229.35	355	2229.35		
320	2346.49	360	2346.49		
325	2471.30	365	2471.30		

APPENDIX B

PRESSURIZED THERMAL SHOCK EVALUATION RESULTS

A limiting condition on reactor vessel integrity known as Pressurized Thermal Shock (PTS) may occur during a severe system transient such as a Loss-Of-Coolant-Accident (LOCA) or a steam line break. Such transients may challenge the integrity of a reactor vessel under the following conditions:

- severe overcooling of the inside surface of the vessel wall followed by high repressurization;
- significant degradation of vessel material toughness caused by radiation embrittlement; and
- the presence of a critical-size defect in the vessel wall.

In 1985 the Nuclear Regulatory Commission (NRC) issued a formal ruling on PTS. It established screening criteria on pressurized water reactor (PWR) vessel embrittlement as measured by the nil-ductility reference temperature, termed RT_{PTS}^[81]. RT_{PTS} screening values were set for bettline axial welds, forging or plates and for bettline circumferential weld seams for the end-of-license plant operation. The screening criteria were determined using conservative fracture mechanics analysis techniques. All PWR vessels in the United States have been required to evaluate vessel embrittlement in accordance with the criteria through end-of-license. The NRC has amended its regulations for light water nuclear power plants to change the procedure for calculating radiation embrittlement. The revised PTS Rule was published in the Federal Register, May 15, 1991 with an effective date of June 14, 1991^(B2). This amendment makes the procedure for calculating RT_{PTS} values consistent with the methods given in Regulatory Guide 1.99, Revision 2^(B3).

The PTS Rule requires that the PTS submittal be updated whenever there are changes in core loadings, surveillance measurements or other information that indicates a significant change in projected RT_{PTS} values.

The Rule outlines regulations to address the potential for PTS events on pressurized water reactor vessels in nuclear power plants that are operated with a license from the United States Nuclear Regulatory Commission (USNRC). PTS events have been shown from operating experience to be transients that result in a rapid and severe cooldown in the primary system coincident with a high or increasing primary system pressure. The PTS concern arises if one of these transients acts on the bettine region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Such an event may result in the propagation of flaws postulated to exist near the inner wall surface, thereby potentially affecting the integrity of the vessel.

The Rule establishes the following requirements for all domestic, operating PWRs:

All plants must submit projected values of RT_{PTS} for reactor vessel bettline materials by giving values for time of submittal, the expiration date of the operating license, and the projected expiration date if a change in the operating license or renewal has been requested. This assessment must be submitted within six months after the effective date of this Rule if the value of RT_{PTS} for any material is projected to exceed the screening criteria. Otherwise, it must be submitted within 5 years from the effective date of this Rule change, whichever comes first. These values must be calculated based on the methodology specified in this rule. The submittal must include the following:

- the bases for the projection (including any assumptions regarding core loading patterns), and
- copper and nickel content and fluence values used in the calculations for each bettine material. (If these values differ from those previously submitted to the NRC, justification must be provided.)

Using the prescribed PTS Rule methodology, RT_{PTS} values were generated for all bettline region materials of the North Anna Unit 1 reactor vessel as a function of present time (11 EFPY) and end-of-life (30.7 EFPY) fluence values.

Table B-1 provides a summary of the RT_{PTS} values for all bettline region materials for 11 EFPY and end-of-license (30.7 EFPY), using the PTS Rule. As shown in Table B-1 all the RT_{PTS} values remain below the NRC screening values for PTS using the fluence values for the present time (11 EFPY) and the projected fluence values for the end-of-license (30.7 EFPY).

TABLE B-1

NORTH ANNA UNIT 1 RT PTS VALUES (°F) FOR 11 EFPY AND 30.7 EFPY

MATERIAL	11 EFPY	30.7 EFPY
Upper Shell Forging 05	105.2	132.9
Intermediate Shell Forging 04	146.0	167.4
Lower Shell Forging 03	199.1 (153.2)	227.7 (171.5)
Circumferential Weld Seam, W04	140.9 (177.9)	155.7 (201.0)
Weld Seam, W05A	124.3	155.9
Weld Seam, W05B	90.6	104.0

Note values in () were calculated based upon surveillance capsule data.

REFERENCES

- [B1] 10CFR Part 50, "Analysis of Potential Pressurized Thermal Shock Events," July 23, 1985.
- [B2] 10CFR Part 50.61, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events," May 15, 1991. (PTS Rule)
- [B3] Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, May 1988.