ROCHESTER GAS AND ELECTRIC CORPORATION
GINNA STATION
CONTROLLED COPY NUMBER 23

TECHNICAL REVIEW

PORC REVIEW DATE 3-30-94

PLANT SUPERINTENDENT

H-7-9H EFFECTIVE DATE

CATEGORY 1.0

REVIEWED BY:

EOP: TITLE:			
		REV: 9	
ES-3.2	POST-SGTR COOLDOWN USING BLOWDOWN		
		PAGE 2	of 10

A. PURPOSE - This procedure provides actions to cool down and depressurize the plant to cold shutdown conditions following a SGTR. This recovery method depressurizes the ruptured S/G by draining via S/G blowdown.

- B. ENTRY CONDITIONS/SYMPTOMS
 - 1. ENTRY CONDITIONS This procedure is entered from:
 - a. E-3 STEAM GENERATOR TUBE RUPTURE, if plant staff selects the blowdown method.

POST-SGTR COOLDOWN USING BLOWDOWN

REV: 9

PAGE 3 of 10

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- NOTE: o FOLDOUT page should be open AND monitored periodically.
 - o Adverse CNMT values should be used whenever CNMT pressure is greater than 4 psig or CNMT radiation is greater than 10+05 R/hr.
- 1 Energize PRZR Heaters As Necessary To Saturate PRZR Water At Ruptured S/G Pressure
- 2 Check If SI ACCUMs Should Be Isolated:
 - a. Check the following:
 - o RCS subcooling based on core exit T/Cs - GREATER THAN 0°F USING FIGURE MIN SUBCOOLING
 - o PRZR level GREATER THAN 5* [30% adverse CNMT]
 - b. Dispatch AO with locked valve key to locally close breakers for SI ACCUM discharge valves
 - MOV-841, MCC C position 12F
 - MOV-865, MCC D position 12C
 - c. Close SI ACCUM outlet valves
 - . ACCUM A. MOV-841
 - · ACCUM B. MOV-865

a. Go to ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT - SUBCOOLED RECOVERY DESIRED, Step 1.

- c. Vent any unisolated ACCUMs:
 - 1) Open vent valves for unisolated SI ACCUMs.
 - ACCUM A. AOV-834A
 - . ACCUM B. AOV-834B
 - 2) Open HCV-945.
- d, Locally reopen breakers for MOV-841 and MOV-865

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

NOTE: Leakage from ruptured S/G into RCS will dilute RCS boron concentration.

3 Verify Adequate shutdown Margin

- a. Direct HP to sample RCS and ruptured S/G for boron
- b. Verify boron concentration b. Borate as necessary. GREATER THAN REQUIREMENTS OF FIGURE SDM

IF CST LEVEL DECREASES TO LESS THAN 5 FEET, THEN ALTERNATE WATER SOURCES FOR AFW PUMPS WILL BE NECESSARY (REFER TO ER-AFW. 1, ALTERNATE WATER SUPPLY TO AFW PUMPS).

NOTE: TDAFW pump flow control valves fail open on loss of IA.

* 4 Monitor Intact S/G Level:

- THAN 5% [25% adverse CNMT]
- b. Control feed flow to maintain narrow range level between 17% [25% adverse CNMT] and 50%
- a. Narrow range level GREATER a. Maintain total feed flow greater than 200 gpm until narrow range level greater than 5% [25% adverse CNMT] in intact S/G.
 - b. IF narrow range level in the intact S/G continues to increase in an uncontrolled manner, THEN go to ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT - SUBCOOLED RECOVERY DESIRED, Step 1.

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

NOTE: Since ruptured S/G may continue to depressurize to less than the minimum RCS pressure necessary for continued RCP operation, cooldown to cold shutdown should not be delayed.

- 5 Initiate RCS Cooldown To 350°F:
 - a. Establish and maintain cooldown rate in RCS cold legs LESS THAN 100°F/HR
 - b. Dump steam to condenser from intact S/G
- b. Manually or locally dump steam from intact S/G using S/G ARV.

IF no intact S/G available, THEN
perform the following:

o Use faulted S/G.

-OR -

o Go to ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT -SUBCOOLED RECOVERY DESIRED, Step 1.

POST-SGTR COOLDOWN USING BLOWDOWN

REV: 9

PAGE 6 of 10

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

RCS AND RUPTURED S/G PRESSURES MUST BE MAINTAINED LESS THAN 1050 PSIG.

* 6 Control RCS Pressure And Makeup Flow To Minimize RCS-To-Secondary Leakage:

a. Perform appropriate action(s)
 from table:

PRZR	RUPTURED S/G NARROW RANGE LEVEL			
LEVEL	INCREASING	DECREASING	OFFSCALE HIGH	
LESS THAN 13% [40% ADVERSE CNMT]	o Increase RCS makeup flow	Increase RCS makeup flow	o Increase RCS makeup flow	
	o Depressurize RCS using Step 6b.		o Maintain RCS and ruptured S/G pressure equal	
BETWEEN 13* [40* ADVERSE CNMT] AND 50*	Depressurize RCS using Step 6b.	Energize PRZR heaters	Maintain RCS and ruptured S/G pressure equal	
BETWEEN 50% AND 75% [65% ADVERSE CNMT]	o Depressurize RCS using Step 6b.	Energize PRZR heaters	Maintain RCS and ruptured S/G pressure	
	o Decrease RCS makeup flow		equal	
GREATER THAN 75% 65% ADVERSE CNMT	o Decrease RCS makeup flow	Energize PRZR heaters	Maintain RCS and ruptured S/G pressure equal	

- b. Use normal PRZR spray to obtain desired results for Step 6a
- b. <u>IF</u> letdown is in service, <u>THEN</u> use auxiliary spray (AOV-296). <u>IF NOT</u>, <u>THEN</u> use one PRZR PORV.

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 7 Establish Required RCS Hydrogen Concentration (Refer to S-3.3C, H2 OR O2 REMOVAL FROM PRIMARY SYSTEM BY BURPING VCT)
- 8 Check If RCS Cooldown Should Be Stopped:
 - a. RCS cold leg temperatures LESS a. Return to Step 3. THAN 350°F

- b. Stop RCS cooldown
- c. Maintain RCS cold leg temperature - LESS THAN 350°F
- * 9 Monitor Ruptured S/G Narrow Range Level - LEVEL GREATER THAN 17% [25% adverse CNMT]

Refill ruptured S/G to 67% [55% adverse CNMT | using feed flow.

IF either of the following conditions occurs, THEN stop feed flow to ruptured S/G:

o Ruptured S/G pressure decreases in an uncontrolled manner.

-OR -

o Ruptured S/G pressure increases to 1020 psig.

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

NOTE: Blowdown from ruptured S/G may be stopped when RHR system is placed in service.

10 Consult TSC To Determine Appropriate Procedure To Establish Blowdown From Ruptured S/G IF blowdown can <u>NOT</u> be initiated, <u>THEN</u> go to alternate post-SGTR cooldown procedure, ES-3.1, POST-SGTR COOLDOWN USING BACKFILL, Step 1, <u>OR</u> ES-3.3, POST-SGTR COOLDOWN USING STEAM DUMP, Step 1.

- *11 Control RCS Makeup Flow And Letdown To Maintain PRZR Level:
 - a. PRZR level GREATER THAN 13% [40% adverse CNMT]
 - b. PRZR level LESS THAN 75% [65% adverse CNMT]
- a. Increase RCS makeup flow as necessary and go to Step 12.
 - b. Decreases RCS makeup flow to decrease level and go to Step 13.

NOTE: The upper head region may void during depressurization if RCPs are not running. This may result in a rapidly increasing PRZR level.

- *12 Depressurize RCS To Minimize RCS-To-Secondary Leakage:
 - a. Depressurize using normal PRZR a. IF letdown is in service, THEN depressurize using auxiliary
 - a. IF letdown is in service, THEN depressurize using auxiliary spray valve (AOV-296). IF NOT, THEN use one PRZR PORV.
 - Energize PRZR heaters as necessary
 - c. Maintain RCS pressure at ruptured S/G pressure
 - d. Maintain RCS subcooling based on core exit T/Cs - GREATER THAN 0°F USING FICTURE MIN SUBCOOLING

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

*13 Monitor RCP Operation:

- a. RCPs ANY RUNNING
- b. Check the following:
 - o RCP #1 seal D/P LESS THAN 220 PSID

-OR-

- o Check RCP seal leakage LESS THAN 0.25 GPM
- c. Stop affected RCP(s)

14 Check If RHR Normal Cooling Can Be Established:

- a. RCS cold leg temperature LESS a. Return to Step 9. THAN 350°F
- b. RCS pressure LESS THAN 400 psig [300 psig adverse CNMT]
- c. Place RCS overpressure protection system in service (Refer to 0-7, ALIGNMENT AND OPERATION OF THE REACTOR VESSEL OVERPRESSURE PROTECTION SYSTEM)
- d. Establish RHR normal cooling (Refer to Attachment RHR COOL)

- a. Go to Step 14.
- b. Go to Step 14.

- b. Return to Step 9.
- c. IF RCS overpressure protection system can NOT be placed in service, THEN notify TSC of potential Tech Spec violation if RHR system is placed in service.

POST-SGTR COOLDOWN USING BLOWDOWN

REV: 9

PAGE 10 of 10

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 15 Continue RCS Cooldown To Cold Shutdown:
 - a. Maintain cooldown rate in RCS cold legs - LESS THAN 100°F/HR
 - b. Use RHR System
 - c. Dump steam to condenser from c. Manually or locally dump steam intact S/G
 - using intact S/G ARV.

IF no intact S/G available and RHR system NOT in service, THEN perform the following:

o Use faulted S/G.

-OR-

- o Go to ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT -SUBCOOLED RECOVERY DESIRED. Step 1.
- 16 Check Core Exit T/Cs LESS Return to Step 9. THAN 200°F

- 17 Evaluate Long Term Plant Status:
 - a. Maintain cold shutdown conditions - (Refer to 0-2.3. PLANT AT COLD OR REFUELING SHUTDOWN)
 - b. Consult TSC

ES-3.2 POST-SGTR COOLDOWN USING BLOWDOWN PAGE 1 of 1

ES-3.2 APPENDIX LIST

	TITLE	PAGES
1)	RED PATH SUMMARY	1
2)	FIGURE MIN SUBCOOLING	1
3)	FIGURE SDM	1
4)	ATTACHMENT RHR COOL	2
5)	FOLDOUT	1

TITLE:

REV: 9

PAGE 1 of 1

RED PATH SUMMARY

- a. SUBCRITICALITY Nuclear power greater than 5%
- b. CORE COOLING Core exit T/Cs greater than 1200°F
 -ORCore exit T/Cs greater than 700°F AND
 RVLIS level (no RCPs) less than 43% [46%
 adverse CNMT]
- C. HEAT SINK Narrow range level in all S/Gs less than 5% [25% adverse CNMT] AND total feedwater flow less than 200 gpm
- d. INTEGRITY Cold leg temperatures decrease greater than 100°F in last 60 minutes AND RCS cold leg temperature less than 285°F
- e. CONTAINMENT CNMT pressure greater than 60 psig

ES-3.2 POST-SGTR COOLDOWN USING BLOWDOWN PAGE 1 of 1

FIGURE MIN SUBCOOLING

NOTE: Subcooling Margin = Saturation Temperature From Figure Below [-] Core Exit T/C Indication

OP: TITE		REV: 9
ES-3.2	POST-SGTR COOLDOWN USING BLOWDOWN	KEA: A
	TOOL DOTTS GOODS IN SOLING BLONDON	PAGE 1 of 1

FIGURE SDM

NOTE: o Curve includes allowance for one stuck rod. Add 100 ppm for each additional stuck rod. o To obtain core burnup, use PPCS turn on code BURNUP.

POST-SGTR COOLDOWN USING BLOWDOWN

REV: 9

PAGE 1 of 1

FOLDOUT PAGE

1. SI REINITIATION CRITERIA

IF either condition listed below occurs, THEN operate SI pumps manually as necessary and go to ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT - SUBCOOLED RECOVERY DESIRED, Step 1:

O RCS subcooling based on core exit T/Cs - LESS THAN O'F USING REQUIREMENTS OF FIGURE MIN SUBCOOLING.

OR

O PRZR level - CHARGING CAN NOT CONTROL LEVEL GREATER THAN 5% [30% adverse CNMT].

2. SECONDARY INTEGRITY CRITERIA

IF any S/G pressure is decreasing in an uncontrolled manner or is completely depressurized AND has not been isolated, THEN go to E-2, FAULTED S/G ISOLATION, Step 1.

3. COLD LEG RECIRCULATION SWITCHOVER CRITERION

IF RWST level decreases to less than 28%, THEN go to ES-1.3, TRANSFER TO COLD LEG RECIRCULATION, Step 1.

4. AFW SUPPLY SWITCHOVER CRITERION

IF CST level decreases to less than 5 feet, THEN switch to alternate AFW water supply (Refer to ER-AFW.1, ALTERNATE WATER SUPPLY TO AFW PUMPS).

5. MULTIPLE S/G TUBE RUPTURE CRITERIA

IF any intact S/G level increases in in an uncontrolled manner OR IF any intact S/G has abnormal radiation, THEN go to ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT - SUBCOOLED RECOVERY DESIRED, Step 1.