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ABSTRACT

Computer codes which simulate hydrogen detonators in planar,
cylindrical, spherical and two-dimensional axisymmetric geometries
have been developed. The computational method is based on the
Random Choice Technique which can handle accurately sharp discontin-
uities. The detunation front is represented in the model as a dis-
continuity which changes the still unburnt gas to a completely burnt
one, according to the Chapman-Jouguet conditions. Numerical results
for one-dimensional geometries show good agreement with available
analytical solutions. The one-dimensional code was modified to
include coupling with an elastically deformable wall and the modified
version was used to demonstrate that for typicel concrete containment
structures interaction of the waves with wall deformations has in-
significant effects on the wave properties, and can be neglected.

The two-dimensional axisymmetric code was used to calculate pressure
time histories at the wall of a cylindrical containment capped with

a semi-spherical dome. Dimensions were similar to the ones of the
containment of the Indian Point Nuclear Power Plant. The detonations
simulated had initiation at either the center of the base mat or at

a point on the axis at approximately two-thirds the cylinder height,
and were for two different intensities. Computed pressures included
repeated reflections at the walls and died out within a few tenths

of a second.
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CHAPTER 1
INTRODUCTION

1.1 Background Information

After the Three Mile Island accident of March 28, 1979,
questions haye been raised concerning the safety of Nuclear Power

Plants if a rapid hyvdrogen explosion occurs.

Internal explosions are a severe test for the integrity of
the ontainment structure of Nuclear Power Plants. In Light-Water-
Reactors (LWR) such events may result from hydrogen detonations
(due to exothermic chemical reactions between hydrogen and oxygen)
or steam explosions. Hydrogen is generated from the coolant water,
both during normal operations and during accidents. Sources of
hydrogen during normal operation include aqueous corrosion of
core metals, electrolysis and radiolysis. During an accident that
involves core heatur, hydrogen may be produced in the core by the
high-temperature reaction of water with metals, namely with zirconium
from the zircaloy fuel cladding and with iron from the molten steel.
Large quantities of hydrogen gas may thus accumulate in the reactor
pressure vessel, as was actually the case in the Three Mile Island
accident. The sources of oxygen are primarily in-leakage of air,

and again, water electrolysis and radiolysis.
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Detonation may start as a result of minor sparks, contact
to metal surface, temperature above the spontaneous ignition temperature,
minor shock propagating in the gas or by transition from deflagration.
Although a detonation is very unlikely to happen in a LWR containment,
the possibility should not be disregarded because of the high

temperature and pressure, and the intense radiation in case of an

accident.

1.3 Previous Work in the Area

The effect of the quasi-static increase of pressure
(resulting from slow burning) on containments integrity has been
studied by the U.S.N.R.C. [1.3] and Fardis [1.2); however, little
has been done on the effect of a detonation on the containment
structure.

Morrison et al.. [1.5] have treated the hydrogen
detonation and steam explosion in an over-simplified manner. They
modeled these phenomena as TNT explosions occurring at the center of
a containment (idealized as a sphere), through an equivalence be-
tween released energy and TNT mass. Then they computed the peak
overpressure at a distance equal to the containment radius. They
nejlected the effect of the reflection at the wall pressure (the
reflection can increase the overpressure by a factor of the order

of 2 to 3).

In a better attempt, Carbiener et al. [1.6] tried to

soive the same problem; however, they neglected the fact that the



shock pressure takes a finite time to decay from its Chapman-Jouguet
plane to the steady state pressure (the Chapman-Jouguet plane is the
detonation front plane); thus, the impuise calculated on the basis of
this assumption may be 300-400 times smaller. They also neglected

the effect of repeated reflections.

After the Three Mile Island accident, the interest in this
area rose again; Byers [1./] studied the effect of the hydrugen
detonation on the containment structure using a code based on
"artificial viscosity". The code was originally used for continuum
mechanics problems and it is difficult to adapt it to hydrogen
detonations. Running such a program requires a large amount of CPU

time.

1

nt of a numerical model able to predict correctly

the behavior of the gas in an axisymmetric containment in case of

an explosion is required in order to assess the capability of the

structure to contain the explosion. Because of many uncertainties
in the physical models, it is very difficult to develop a computer
program to predict the initiation and development of a hydrogen
detonation. It has been assumed in this work that a hydrogen
detonation can be developed instantaneously after ignition. Such
conditions present a higher challenge for the containment structure
since pressure waves induced by detonation are expected to be

larger than pressure waves induced by a slow combustion (deflagration).
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In this research, a reliable computer code is developed
capable of solving the hydrogen detonation problem for axisymmetric
geometries.

The gas dynamics equations for planar, cylindrical and
axisymmetric geometries are derived in Chapter 1I; the following

assumptions are made:

1) homogeneous mixing of the hydrogen with steam and
air in the containment volume,

2) the energy due to radiation is negligible

3) heating of the containment wall by che gases is
negligible.

The Random Choice Technique is used for solving numerically the
equations of motion. Chapter IIl includes the principles, the
advantages and the implementation of the method for planar, spherical
and axisymmetric geometries. Validation of the method, pressure
histories and interactions with the wall are included in Chapter IV.
Chapter V presents the application of the two-dimensional code in
computing the pressure histories generated by a hydrogen detonation

in a realistic nuclear containment building. The conclusions are

summarized in Chapter VI.
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CHAPTER 11
COMPRESSIBLE FLOW EQUATIONS

In this chapter the basic gas dynamics equations which con-
stitute the starting point of the analysis are presented. The derivation
can be found in any gas dynamics book (see for example Landau & Lifshitz
[2.1]).

The equations describing the motion of a compressible inviscid

gas are:

ap .
el R

<
"

0, (2.1a)

au 1
-ty -Vus- -, (2.1b)

¢

—%%—-+ v - (e*p) u = o0, (2.1¢)

where o is the density, y is the velocity, p is the pressure, e is the
total energy per unit volume, and t is time. The energy due to external
sources or sinks, Q, is considered to be equal to zero. The total energy,

e, is given by

" o€ + -%—-o l!lz. (2.2)

where
L ta, (2.3)
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where m = pu is the momentum flux. Observe that the equations in one-

dimensional cartesian system can be written in a conservation form without

source or sink terms.

2.2 One-Dimensional Spherical and Cylndrical Coordinate Systems

v = gf o (2.2.1)

and
3u u
. r =
v u ~ + (n-1) -l (2.2.2)

where i is the unit vector in the r direction and n = 3 for spherical,

n = 2 for cylindrical coordinates.

By inserting these relations in the gas dynamics equations (2.1),

we obtain
gt ’ g': « (n- 1) =, (2.2.3a)
2 2
g:: 3 3ar ("; ¥ 0 %) 'g,, »  (2.2.3b)
g: E aar (5{e+p)) = -(n-1) ;"%—(es*p). (2.2.3¢)

where in this case, m = U is the momentum flux and u. is the radial
velocity. Observe that in cylindrical or spherical coordinates, the

equations have sink terms.



In a two-dimensional cylindrical coordinate system, the

gradient and the divergence are

are unit vectors in the r and z directions and

u=uJj+ uk.
r 2

The cas dynamics equations for the axisymmetric problem become




«-11=-

where mr = our is the momentum flux in the radial direction and mz-'»puz

is the momentum flux in the z direction.

Equations (2.3.3) can be written in the general vector form
used by Sod (1980)
gt + E(Q)r + 9(9)2 = -W(U), (2.3.4)
where subscripts indicate differentiation. In equation (2.3.4)
P m., m mr/r

m nl/o+ : / 2/or
r p/ PP MM,/ 0 m./e
oE L mg| s B = mme |G = [ m2/otp [ W(Y) = tmmsor

e m.(e+p)/p m (e+p)/p m, (e+p)/or.
It is worth noticing at this point that equations (2.1.3) for

the one-dimensional cartesian problem can be recovered from equation

(2.3.4) by setting G(Y) = W(U) = 0. Similarly, equations (2.2.3) can be
obtained by taking §(g) = 0.

2.4 Chapman-Jouguet (C-J) Conditions

The one-dimensional cartesian equations (section 2.1) can be
solved in a closed form (see Williams [2.2]) or Courant and Friedrich
[2.3]).

In the following discussion the subscript u refers to the
unburnt gas (i.e., gas which has not yet undergone chemical reaction)

and the subscript b refers to the burnt gas. By defining

"b = ub - U end w " uu - U,



is the velocity of the reaction zone and u is the particle vel-

ocity in the Eulerian reference frame, we can express the continuity and

momentum equation

From these

(2.4.3)

From the energy equation an expression for Ty in func-

can be derived

arivinag equatiun (2.4.4), it has been assumed

c-J detonation moves with respect to the burnt gas with a

velocity equal to the velocity of sound in the burnt gas, 1.ty

(2.4.5)

W, Cy

Using equations (2.4.1), (2.4.2) and (2.4.5) we can find

an expression for Ph*
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pf, +2bp, +c =0, (2.4.6)
where

b = 9, qu(y-])t (2.4.7a)
and

¢ = o2 + 2p o a; (2.4.7b)

A trivial calculation shows that b° - ¢ >0ify>landqg< 0

(exothermi reaction). Thus,

> 1/2
Pej *Pp =-b+ (d" -¢) , (2.4.8)

cJ
where the + sign is mandatory since a detonation is compressive. There-
fore, given the properties of the unburnt gas and the energy per unit
mass released by the combustion, we can find the pressure behind a C-J.
detonation; equation (2.4.4) is used to find the density Ocy* From

equation (2.4.1) we find the expression for the detonation speed,

. 1/2
Ue (o u, * (chj/pcj) )/ (2.4.9)
and then,

= ch = €y (2.4.10)

ucj

If a C-J detonation occurs, it is followed by a rarefaction
wave to adjus’ .- the boundary conditions. For a still wall behind the
detonation, the gas has to adjust itself to a zero velocity at the wall.

A non-dimensional analysis has been performed by Taylor [2.5] to deter-

+Notice that in Chorin [2.4] the second term of this expression is
multiplied by 2 which is incorrect.



mine the behavior of the gas behind a detonation if bounded by a wall.
The resulting curves are shown in Figures 2.¢ 3 he solution of this
planar problem was obtained by taking into account the consistency

of the Riemann invariants in the rarefaction region. The solution ic
hence dependent on the gas constant Y. It is seen from the figures

that the gas has constant properties until about a mid-distance be-
tween the wall and the detonation front; at this point a discontinu-

ity occurs and the velocity starts increasing linearly towards the

C-J velocity; the equations describing the pressure and density curves

are polynomials of order 5 and

An analysis similar to Taylor's has been performed for
radially symmetric detonations by Barenblatt et al.[2.6]. For

Y 1.4 the results are shown in Figures 2 4.1-3. 1t can be seen that

the gradients of the velocity, pressure and density near the detonation

front are larger in the cylindrical coordinate system than in the planar

one. They become even larger for a spherical detonation.

In the next chapter we will present the numerical techniques

used for solving the equations of motion.
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these reasons, we have decided to use in this program the random choice
method to calculate the pressure histories generated by hydrogen

detonations in a nuclear reactor containment.

The random choice method is described in the following sections,

for one-dimensional plane, spherical and axisymmetric geometries.

3.1 One-Dimensional Plane Geometry

3.1a Gas dynamic flows without detonations

For one-dimensional plane geometry, the equations 2n be

written in the following form:

Uy *+ F(U) = 0 (3.1.1)
where R »
U = m and F(U) = n/p +p
e (m/p)(e+p)

We discretize the time in intervals of length At and the space in inter-
vals Ax. The solution advances at each grid point in time from t to

t + At by first calculating the values of the variables atmid gridpoints
at time t + At/2 and then, advancing in a similar fashion the solution
to time t + At. The solution at each half time si2p is found by solving
a Riemann problem between adjacent grid points. The solution is
evaluated at times nAt, where n is a positive integer, at the spacial
grid points iAx, where i = 0, +1, +2, ..., and at times (n + —%—)At

at (i + —-)ox.
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Let u? approximate U(iAx, nAt) and a2 approximate U((i + —%—)Ax.
8 i+1/2 4

(n + —%—)At). To find u"+]/2. consider the system (3.1.1) assuming
i+1/2
piecewise constant initial data (time t = nAt)
gy o : 1

= & 3 L
= U, X< (i + 5 JAx.

This defines a sequence of Riemann problems. If At < Ax/2(]ul+c),
where ¢ is the local sound speed and |u| is the absolute value of the
particle velocity, the waves generated will not interact. Hence, the
solution V(x,t) to the Riemann problem can be combined into a single
exact solution (see Figure 3.1.1). The solution at the time step

t + At/2 is found, following Glimm's method, by sampling the exact
solution to the Riemann problem V(x.t) at time t + At/2. Let £, bea

uniformly distributed random variable in the interval [- -}—— 5 —%~]. Define

un+1/2

i+1/2 = V(i + £ )ax, (n + ‘%—)At); (3.1.3)

(see Figure 3.1.2).

At each time step the solution is ajproximated by a piece-
wise constant function. The solution is then advanced in time exactly

and the new values are sampled.

A method of choosing the random variable 5n has been studied

by Chorin [2.4, 3.4]. He suggested choosing one random variable £
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If P lies inside the rarefaction, °p' up and pp can be derived by
equating the slope of the characteristic dx/dt = utc to the slope
of the line defined by the origin (which in this case is the grid point)

and P

= g ._A_x_.._

then using the constancy of the Riemann invariant and the isentropic
law po” " = constant.
Cases 3 and 4 are essentially identical to cases 1 and 2.

3.1.b A method to incorporate the detonation discontinuity
in the random choice method

The objective of the present work was to predict pressure
histories generated by hydrogen detonations in an enclosure. It is
assumed that a hydrogen detonation will be initiated and developed if
the hydrogen concentrations are within th> detriability limits
(Herzberg [3.6].  To avoid treating the chemical kinetics of com-
bustion, we decided to represent the detonation as a sharp discon-
tinuity which changes the still unburnt gas to a completely burnt
gas according to the Chapman-Jouguet conditions (see section 2.4).
This proposition is consistent with the observation that the chemical

kinetic reaction rates are very large,.

For each hydrogen concentration within the detonability
limits, the Chapman-.ln+~pat state behind the detonation can be calcu-
lated (see section 2.4). For the numerical solution, we associate

a variabie ¢ = 1 if the gas is unburnt and 4 = 0 otherwise. The
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propagation of the detonation is calculated numerically by using the
random choice method. Consider two adjacent grid points with their states

represented at time t = nAt by

: 1
= { = =
SQ (pn' u[‘ pg L ¢2)0 x < .1 + 2 )Ax’

w
n

= (o U Pas 80y X2 (1 4 I, (3.1.4)

If ¢£ = ¢ detonation does not occur between these points and Glimm's
method (see section 3.1a) is used to advance the solution; if ¢2 =0
and ¢, = 1 a detonation wave will propagate from left to right (see

Figure 3.1.4). Its speed will be (see section 2.4)

U,=u.,*+C.. (3.1.5)

where u_. = u

cj 2 is the particle velocity and Cej = € is the sound speed

J
corresponding to Chapman-Jouguet conditions corresponding to the state

of the unburnt gas (cr, Ups pr).

The solution is advanced in a similar way as i: the Riemann
problem (see section 3.1a) by sampling the detonation discontinuity
(see Figure 3.1.4) using the same random numbers as in the Riemann
problem.

The computer . ogram CRTDET for solving the one-dimensional

plane gas dynamics equations including detonation is listed in Appen-

dix B.



-29.

Detonation dx

Wave dt
-TF*
stz Sps ¥ S 6, = 1
L el
X

FIGURE 3.1.4:

SOLUTION OF THE DETONATION PROBLEM

cJ



3.2 Boundary Conditions

Particular attention should be given to the boundary con-
ditions especially as far as sampling is concerned. Assume the
location of the boundary point is to the right of the region of flow
at x = ioAx and moving with a certain velocity V. To model the

reflection at the wall we create a fake state to the right of x at

(i, * —%—)Ax such that

o = p . (3.2.1a)

io +1/2 io - 1/2
uiow 12" - Y e (3.2.1b)
(3.2.1c)

s LA Py REL T

(see Chorin [3.4]Jor Courant [2.3]). This will make a s . yle wave
to propagate on both sides of the boundary point; the constant state

in the middle of the Riemann solution is the wall state.

Special care should be taken in the sampling procedure.

1
should make sure that the resulting physical point does not lie to

the right of the wall line . V, so that no information is lost

dt
at the wall. This condition can be satisfied in different ways de-

If £, and 52 are the values of £' at two successive time steps, we

pending on each problem.
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To satisfy the previous condition in the present case,

g; and z; can be chosen as follows: pick 5; in the interval

[- %? N %; ] according to the usual procedure and choose £' = -£'
2 1"
This method also ensures the physical point to lie within the boundary

and avoids the problem of singular points.

3.3 One-Dimensional Spherical Geometry

The system of differential equations for the one-dimensional
spherical problem is given by the set of differential equations (2.2.3).

These equations can be written in the vector form
u, + f(g)r = =2 !(g); (3.3.1)

U, F and W were defined in section 2.3.

-~
-

To solve the equations (3.3.1), we use the method of operator
splitting used by Sod [3.7]. 1n a first step we remove the inhomogeneous

term - 2¥(U) thus, we solve the homogeneous system

gt + f(y)r =0, (3.3.2)



A

which represents the one-dimensional equations of gas dynamics in

cartesian coordinates and whose solution was presented in detail in
the previous two sections.
Thesecond step consists of solving the system of ordinary

differential equations

using the results of the solution of equation (3.3.2).

This is done as follows: Once the solution ﬁ?+] of (3.3.2) is found,

equation (3.3.3) is approximated by

uq+1 _ =n+]
i i - 2@, (3.3.4)
at :
or
o1 = A - 2ae WG, (3.3.5)

This scheme is only first order accurate, however there is no reason
to use a higher order method since the random choice method is also at

the wost first order accurate.

The boundary conditions at the wal! was chosen to be similar
to the cartesian case, i.e., gé = 0 at the wall. The center of the
detonation is treated similarly to the wall problem however, because of
the singularity at the center, the appropriate sampling scheme dis-

cussed in section 3.2 should be used.
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SPHDET is the computer program which is used to solve the

one-dimensional spherical detonation problem (see Appedix C).

3.4 Axisymmetric (Two-Dimensional Cylindrical) Geometry

The numerical technique of solving the equations of the
axisymmetric problem (2.3.4) is an extension of the one-dimensicnal
case. Chorin [2.4] and Sod [3.8, 3.9] have already used it for the
shock problesi.

The basic procedure consists of two major steps:

1. use the operator splitting technique in the spatial
coordinates and solve the equation

Uy + F(U), + 6(U), = o, (3.4.)

2. solve the equation

gt = -W(U). (3.4.2)

Solving the ordinary differential equation (3.4.2) is exactly identical
to solving equation (3.3.3). Equation (3.4.1) is solved using an
extended version of Glimm's method. At each time step,‘four quarter time
steps of duration %} are performed; each quarter time step is &

sweep in either r or z direction. Again, the operator splitting
technique in the spatial coordinates is used to reduce the system of

two-dimensional equations into two sets of one-dimensional ones.

Hence, the equations to be solved in the r sweeps are



is equal to zero and hence,

a passive scalar. Similar equat?

counled with equation

3.4.4) , Glimm's method can be used. At each partial step, the

solution vector is approximated by a piecewise constant vector.

In the r sweeps the resulting waves in the r direction are found and
in the z sweeps the waves in the z direction are found. In order to

account properly for the interaction of the r and z waves, the follow-
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ing scheme is used: at the beginning of the time step p, p, u, and
u, are known at point (iar, jaz). After an r sweep, the solution is
found at ((i + —%—)Ar, jaz) (see Figure 3.4.1). ((i + —%—)Ar, jaz)
and ((i + —%—)Ar, (J + 1)Az) can then be used to find the solution
at ({1 + —%—)Ar. (7 + —%—)Az) by a z sweep. An r sweep then leads to

(iar, (§ + -%—)Az) and a z sweep back to (iAr, jAz). One pseudorandom

variable is used per quarter step.

The detonation conditions are handled in a similar way as

in the one-dimensional case, however, one should bear in mind that
the C-J velocity represents the total velocity which should be splitted
into its r and z components. For example, consider two points iAr and
(i+1)ar (z the same) with ©=0 at iAr and ¢=1 at (i+1)Ar. In accordance
with our approach, a detonation is expected between these points. The
conditions behina the detonation are known as a function of hydrogen
concentration. By using the operator splitting technique in space,
the two components of particle velocity can be calculated. Then, the
solution is advanced by using the random choice method.

The boundary conditions are handled in the same way as in
the one-dimensional problem. A curved boundary is represented by a
stepwise line parallel to the mesh.

The computer prgram TWODIM (see Appendix D) uses the method

outlined to solve the axisymmetric problem.
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TIME STEP FOR THE AXITYMMETRIC PROBLEM
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CHAPTER IV

COMPUTER CODE DEVELOPMENT AND RESULTS

4.1 One-Dimensional Planar Geometry

The main task of this section is to verify the validity
of the numerical method described previously. To achieve this goal,
the pressure, density and velocity histories of a hydrogen detonation
in a one-dimensional cartesian coordirate system have been studied.
The numerical results were compared with existing analytical solu-

tions prior to reflections (see Figures 2.4.1, 2.4.2 and 2.4.3).

The first problem we investigated simulates a detonation
initiated at the center of a shock tube, 2m long, bounded by a wall
at both sides. As a result of the symmetry with respect to the
initiation plane, the study was limited to half the length, the
origin behaving as a wall. A mesh of one hundred and one grid points,
equally spaced, was used. The time intervals were of variable length
to meet the condition of non-interaction between the waves (see
Section 3.1.a). Initially the unburnt gas was considered to be at
rest, with a pressure of 10100 N/m2 and a density of 0.1188 Kg/m3.
The hydrogen concentration was considered to be stoichiometric. The
detonaticn was assumed b have reached the second grid point from the
origin. Those grid points were assigned the values corresponding to
the Taylor curves (Figures 2.4.1 to 2.4.3). The detonation front

propagates with constant gas properties (The Chapman-Jouguet condi-
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tions); the C-J pressure is approximately 15 times the pressure of

the unburnt gas.

The computer program CRTDET (see Appendix B) was used to
solve this problem. After 0.47 ms, the detonation wave progressed
in the cylinder and was ready to contact the wall. Non-dimensional
plots for the pressure, density and velocity as a function of the
non-dimensional distance (defined as x/cht), are shown in Figures
4.1.1-4.1.3. These are close to the analytical Taylor curves; the
gas reaches steady conditions with zero velocity at approximately
half distance between the origin and the detonation front; however,
as noted by Sod [3.8], because of the randomness of the sampling,
the rarefaction waves occurring just behind the detonation front
are not reproduced by a smooth curve. Figures 4.1.4 to 4.1.6 show
the pressure, density and velocity distributions in the shock tube
at five different times. After the wave is reflected by the wall,
there is an increase of pressure; the pressure exerted on the wall
becomes 2.3 times higher than the C-J pressure or 37 times the initial
one. These results are in agreement with the analytical equation
given by Landau and Lifshitz [2.1] to determine the reflected
pressure. After the wave has reached the wall, all the gas in the
shock tube has already been burnt and the reflected wave is a strong
shock which decreases in strength as it goes back towards the origin.
When it reflects at the center the shock increases in strength and
travels again towards the wall. Eventually, the wave decays and the

gas reaches steady state conditions.
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As previously noted, to ensure that waves do not inter-
act, At < Ax/(|u|+c) must hold true. The effect of choosing
different time intervals was studied next. Figures 4.1.7 to 4.1.9
show that a time step (SIGMA = 0.4; see Appendix B) equal to half
the previous one (SIGMA = 0.8; see Appendix B) has little effect on
the solution (Figures 4.1.1-4.1.3). The only difference noted was in
reproduction of the rarefaction wave; this is due to the randomness
of the sampling. The time steps should not be very small because
the explicit technique used can lead to numerical instabilities,
causing the wave to move backward. Hence, to ensure the stability

of the solution it was found that

0.3 < 2=(uf+c) < 1.0.

Next we examined the effect on the numerical solution of the
number of the initial grid points behind the detonation wave. In
Figures 4.1.10 to 4.1.15, at the beginning of the computation, eight

~ial grid points were assigned in accordance with the Taylor solu-
tion. The pressure, density and velocity histories agree with those
in Figures 4.1.1 - 4.1.6 where only two initial grid points were em-

ployed before the detonation wave started to expand.

The most important output of the numerical analysis was the
evaluation of the variation of the pressure with time, ciose to the
wall. For the problem described above, the pressure and density pro-
files at a still wall, Im distant from the origin of the detonation,

are shown in Figu-es 4.1.16 and 4.1.17. At a time 0.58 ms after the
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SIGMA=0.8, Ax=0.01]
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initiation of the detonation, the detonation front is reflected by
the wall which results in an increase in prescure (approximately

37 times the pressure of the unburnt gas). Then, the pressure
starts to decrease until it reaches a constant value at t = 1.2 ms.
This value of the pressure is close to the pressure of an expanding
detonation close to the center where the velocity of the gas

equals zero. At t = 1.3 ms, the wave gets reflected at the center
(Figures 4.1.18 and 4.1.19). At the origin, the shock increases

in strength and the pressure reaches a value 23 times greater than
the initial pressure. Then the wave moves back towards the wall.
At t = 2.3 ms, a second reflection against the wall occurs; this
reflection is much weaker than the first reflection; the pressure

is 16 times the initial pressure of the unburnt gas.

Next, a detonation was investigated in a plane geometry

of size comparable to a nuclear reactor containment. The gas was

confined by walls at a distance of 20 m apart. The initial pressure
and density of the gas in the containment was considered to be
atmospheric. The mesh was compos2d of 201 grid points 0.1 meter
apart. We let the programs run for 100 time steps (t = 45 ms);

the computational time on an IBM - 370 was approximateiy 8 CPU
minutes. The results for the pressure and density profiles at the
wall and at the centerline are shown in Figures 4.1.20 to 4.1.23.

The shape of the curves are, as expected, similar to those shown in
Figures 4.1.16 - 4.1.19. We should also note here, that the relative

pressures are almost identical in both problems studied in this sec-
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FIGURE 4.1.23: CENTERLINE DENSITY HISTORY FOR A 20 m RADIUS

(planar geometry) Ax=0.1, pu=1 atm, pu=1.19 l(g/m3
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tion: this is a result of considering in both cases the same

hydrogen concentration.

4.2 Deformable Wall

In the problems discussed in Section 4.1, we assumed the
walls to be rigid; however, if the increase of pressure, due to the
detonation and reflected waves, is very large, the wall may start to
deform and vibrate because of the elasticity of the material. The
velocity of the wall, if it becomes large enough, might have some
effects on the properties of the flow. These effects are studied

in this section.

The equations governing the motion of the wall can be

written as
Mw + Kw=P, (4.2.1)

where M = t5, and for the elastic part of the stress-strain curve of

the wall material, K = (n-1) — (Ag + A ); the symbols in equation

(4.2.1) are defined as follows:

w = wall displacement from its equilibrium position
P = pressure exerted on the wall,
t = wall thickness,

= wall density,

= 2 for cylindrical wall, 3 for spherical wall,

E = Young's modulus of steel,

R = vradius,

AR = area of hoop reinforcing bars,per unit wall height ,
A, = Tliner thickness.
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Equation (4.2.1) can be discretized in time, to become
=

. a = s ¥n-2

n
+
At2

A (4.2.2)

=|x
=|©
-

where v is the dsiplacement of the wall at time nAt. The velocity of
the wall can be approximated by

W - W
n n-1
Bl | SEReN (4.2.3)

V=ws=

Equation (4.2.2) can be easily incorporated in the algorithm described
in Chapter IIl; equation (4.2.3) can be combined with equation (3.2.1b).

In the application, the values of K and M in Equation (4.2.2)
were selected equal to those of an 1 m-high segment of the c. .indrical
wall of the Indian Point containment. The 1.37 m-thick reinforced
concrete wall was considered cracked, and only the contribution of the
horizontal steel bars and the liner plate were taken into account. These
latter steel components were considered elastic. The distance between the
initiation axis and thewall was taken equal to the internal radius of the
containment (20.7 m). Results are shown in Figures 4.2.1 - 4.2.3: When the
detonation starts, the wall is at rest with zero displacement and zero velocity.
It remains in this condition untii t = 11 ms, when the detonation wave con-
tacts the wall. The increase in pressure.is transmitted to the wall, which
acquires a small velocity; this velocity increases until it reaches its maxi-
mum value of 4.5 m/s at t = 20 ms,before it starts decreasing. This
sinusoidal behavior of the velocity seems to have negligible effects on
the pressure and on the density of the gas (less than 1%). The corresponding
graphs (Figures 4.2.2 and 4.2.3) are almost identical to those of the rigid
wall problem (Figures 4.1.20 and 4.1.21); the reason for this similarity is
mainly the fact that the velocity of the wall is negligible compared to the
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wave velocity (1787 m/s). This lack of shock-wall interaction is expected

to hold even when multiple reflections are considered, since the interarri.al
time of waves (10.04 sec.) is much shorter than the period of the wall (0.1
sec.). Sensitivity studies have shown that increasing or decreasing the value

of K by 2 orde f magnitude do not change the conclusions above

Spherical Geometry

An approach similar to the one followed in section 4.1 has
been adopted here to tes: the one-dimensional spherical algorithm in
the computer program SPHDET (see Appendix C).
The first problem studied is that of a detonation wave
initiated at the origin of a 1 m radius sphere bounded by a rigid
wall. A mesh of 101 grid points, 0.01 m apart was constructed. In-

3

ly the gas is at rest at a pressuyre nu = 10100 N/m“ and a

1 ’ ’ { * s ’ ’ "
0.1188 Kg/m~. The chemical composition is stoichiometric.

[t was necessary to assign the Taylor conditions to a
minimum of 20 grid points. This is due to two reasons: Glimm's
method is basically the solution of the one-dimensional planar
problem; and the gradient of the pressure,density and velocity profiles
just behind the detonation front are very large (see Figures 2.4.1,2.4.3

and 2.4.3).

The non-dimensional graphs (Fiqures 4.3.1 - 4.3.3) at

t = 0.55 ms show the good agreement of the solution with the Taylor

curves: however, because of the randomness of the sampling. the

curves are not reproduced smoothly. It ic worth noting that the values
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near the center do not follow the prediction of the Taylor solution.

The pressure, density and velocity histories inside the
sphere are shown in Figures 4.3.4 - 4.3.6, for five different times.
It can be seen how the detonation wave propagates inside the sphere
(times (1) and (2)); then, the wave is reflected by the wall. The
resulting shock wave travels back towards the center. First, the
shock decreases in strength but as it approaches the center, the
shock front properties increase steadily until the wave reaches
the origin; there, the pressure behind the reflected wave becomes 43 times
the pressure of the initial unburnt gas This implosion phenomenon,
for spherical and cylindrical converging waves has already been noticed
experimentally by Perry and Kantrowitz [3.10] and analytically by
Oswatitsh [3.11] and Sod [3.7].

The pressure and density profiles at the still wall (Figures
4.3.7 and 4.3.8) are similar to the cartesian problem. The wall re-
mains at the constant initial pressure (10100 N/mz) and density
(0.1188 Kg/m3) until the combustion wave is reflected by the wall at
t = 0.53 ms; then, the pressure rises to approximately 40 times the
initial pressure. It starts decreasing to reach a <table pressure of

65000 N/mz, for the remaining of the interval of time shown.

The computer analysis was extended to conditions expected
in a nuclear containment of spherical geometry: the initial pressure
was et at 1 atm, the initial density was set at 1.19 Kg/m3. the gas

was bounded by a 20 m radius sphere. The results are shown in Figures
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4.3.9 and 4.3.10. The shape of the curves are similar to the previous
case; the pressure rises to 40.5 atm at t = 11 ms, when the wave con-
tacts the wall, and decreases to 6.5 atm at t = 23 ms.

For an interval of time longer than that skown, it is expected that
another reflection takes place at the wall; another spike, with smaller
magnitude than the first one would be recorded. For 1500 time steps
(t=40 ms) the computation time was 22 CPU minutes.

4.4 Axisymmetric Geometry

In thi, section we consider the axisymmetric program TWODIM
(see Appendix D). For this purpose we evaluated the capability of
this program to reproduce a one-dimensional spherical detonation

(whose solution can be obtained using SPHDET).

The non-dimensional pressure, density and velocity profiles
of a spherical detonation in a 1 m radius sphere (pu = 10100 N/mz.
0, = 0.1188 Kg/m’) can be seen in Figures 4.4.1 - 4.4.3.

To solve the equivalent problem in an axisymmetric coor-
dinate system we took 101 grid points in the x and y directions,
0.01 m apart. We assigned the initial conditions to ali the grid
points within a 0.2 m radius according to the Taylor [2.5] solution; the
program was run for 80 time steps (t = 0.4 ms). The properties were
recorded at the grid points lying on the 45° diagonal line. The non-
dimensional plots of these properties are shown in Figures 4.4.4 - 4.4.6.

These graphs compare well enough with the graphs obtained from the
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spherical code. However, more oscillations are observed in the results
for the two-dimensional axisymmetric code. This behavior may be ex-
plained by the randomness of the technique; while in the one-dimen-
sional case two half time steps are needed (i.e. two different
pseudorandom numbers), for a two-dimensional geometry four quarter
time steps are used (i.e. four different pseudorandom numbers ).

More computer runs are required to validate the two-dimensional program.

The computation time taken to solve this problem (101x101
grid points and 80 time steps) on an IBM-370 was approximately 40 CPU

minutes.

4.5 Summary

The summary of the work done is presented in Table 4.5.1;
different geometries have been studied (planar, spherical and axis-
ymmetric). We validated the one-dimensional codes by comparing the
results to the Taylor solutions. The axisymmetric code was validated
by using it to solve the spherical geometry problem. The results
for the pressure at the wall were obtained for the one-dimensional
geometries and the interaction with the wall has been studied for

the planar ceometry.

The computer time depends on the code used. More iterations
are needed in SPHDET than in CRTDET to correct for the inhomogeneous
terms; hence, the CPU time per t.me step per grid point is larger in
SPHDEY (by a factor of 2). The efficiency of the TWODIM code has been
improved by bypassing the calculations for those grid points ahead of
the detonation front; this reduces the CPU time per time step and grid

point by approximately 25%.



TABLE 4.5.1: DETONATION CONDITIONS AND RESULTS
GEOMETRY H, CONCENTRATION  UNBURNT GAs® VALIDATION OF PRESSURE OF
——————————  CONDITIONS THE PROGRAMS THE WALL
*
Planar Stoichiometric (1)and(2) yes yes
* *
Spherical Stoichiometric (1)and(2) yes yes
. "k
Axisymmetric Stoichiometric (1) yes yes

KR
By comparison with the Taylor solution.

**By comparison with the spherical solution.

+

(1) p,=10100N/n” ,p =0.1188 kg/m’

3
' - = 1
(2) Py 1 atm,pu 1.19kg/m

INTERACTION
WITH THE WALL

yes
no

no

-0(3_
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CHAPTER V
PRESSURE CALCULATIONS FOR THE INDIAN POINT CONTAINMENT

The two-dimensional axisymmetric program described in sections
3.4 and 4.4 was used to calculate pressure time histories inside the
containment building of the Indian Point Nuclear Power Plant. The
geometry of the containment is shown in Fig. 5.1. No obstacles inside
the containment building were considered.

The program allows for detonation initiation at any point
on the axis of the containment structure. No attempt was made to
model the initial growth of the detonation. Instead it was assumed
that the detonation progresses spherically to an arbitrary radius
from the initiation point. This arbitrary radius was always selected
less than the closest distance of the initiation point from the con-
tainment wall. The initial conditions behind the initial spherical
detonation were taken as the conditions given by the Taylor [2.5] solu-
tion for the selected detonation radius [see section 2.4].

A uniform concentration of hydrogen was assumed inside the
containment, so that the strength of the detonation is the same everywhere.
For a uniformly dispersed detonable mixture and for a given . iitiation
point, the pressure P at a point x inside the containment and at time t,
is proportivnal to the initial uniform cortainment pressure Po’ and
is a function of 1) the gas constant, y = Cp/Cv; and 2) the ratio of
the heat generated by the detonation, q (which is proportional to hydrogen

concentration), to the product of the initial absolute containment
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Fig. 5.1 - Geometry of the Containment of the Indian Point
Nuclear Power Plant
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temperature, To' and the universal gas constant R [2.1, 3.11].

Symbolically, and in terms of dimensionless quantities,

p(t;X) tC X
e Al S A
f(‘Y s RTOQ L ' 1 (5.‘)

0

where Co is the speed of sound at the initial conditions and L
is a characteristic linear scale of the containment. Eq. 5.1 is
valid for geometrically similar containments.
In the pressure calculations performed, any variations in
the gas constant, y, were neglected and its value was taken equal to
1.4, For hydrogen concentrations less than or equal to stoichiometric,

the dimensionless heat release rate q/RTo is equal to:

288.5
=C b (5.2)
§$; H2 0

where CH2 is the volume concentration of hydrogen, in percent, and

the initial containment temperature, To’ is in degrees Kelvin [1.1,
3.6]. The ranges of hydrogen concentration and initial temperatures
that can realistically be expected in a containment following an
accident, are shown in Fig. 5.2. Computer calculations were performed
here for two values of the dimensionless heat release rate, equal

to 17 and 23. Fig. 5.2 shows that these two values of q/RT0

cover an important portion of the range of possible hydrogen concen-
trations and initial temperatures.

The spatial discretization in the r-z plane had a variable

grid size and consisted of 28 points in the radial (r) and 59 in the
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vertical direction. Figure 5.3 presents the calculation grid for
the Indian Point containment. The dome was approximated by a stepwise
line, consisting of segments parallel to the r and z directions.
Although a variable grip size can be used in the program for calculation
efficiency, very large differences in the grip should be avoided,
because they may induce fluctuations due to large differences in the

AX

characteristic Courant number At (compare also with the discussion

in section 4.1).

PreTiminary computer runs were made to check the stability
of the code and its ability to reproduce exactly the times of first
arrival of the detonation front to the walls,which can be calculated
easily.

Results were obtaired for two initiation points, one at the
certer of the base mat and another at a point on the axis 34.5 m above
the base, and for two values of the dimensioniess heat release rate,

17 and 23. Calculated pressure time histories at several points on

the wall are presented in Appendix E. A1l pressure values are normal-
ized with respect to the initial containment pressure, P , and are

given as a function of the dimensionless time tco/r. where r is the
inside radius of the cylinder and the dome. In the present case, the
non-dimensionalizing constant, r/Co. equals 0.06 sec. Results typically
show a series of decaying pressure peaks. The first peak is due to

the first arrival of the detonation front. Subsequent peaks represent
reflections of shocks which have been reflected before at the containment

axis. Pressure peaks at nearby points occur at approximately the same
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times. After a few reflections (3 or 4, at most), pressures decay
to an almost constant value. Decay is faster for initiation at a
point 34.5 m above the base than for initiation at the center of the
base mat, because the stronger three-dimensionality of the shocks in
the former case produces more scattering of the waves. For given
initiation point, decay is faster for the larger of the two heat
release rates, but peak pressures are slightly higher.

The pressure time histories obtained show considerable high
frequency oscillations. These oscillations are believed to be numeri.al
and can be attributed to: 1) the randomness built in the code by using
the random choice technique; 2) the variable grid size; 3) the stepwise
approximation of the dome geometry. (Notice that at the poircs of
the dome there are, in general, more oscillations). Performing the
computations with differcnt time steps has shown that the high
frequency oscillations do not affect the lower frequency trends in
the pressure time histories, which are real and not numerical,and are
important for the dynamic response of the structure.

The results reported herein agree qualitatively with those
reporied in "€ [1.7]. The results in the latter reference were
obtained by a Finite Difference code which introduces artificial damping
and smooths sharp discontinuities. On the contrary the method used
in this work preserves exactly the sharpness of the shock front, but
introduces some artificial high frequency components. This fundamental
difference between the two methods is the reason for the fact that
significantly higher peak pressures are caiculated by the present
method.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

Computer codes for solving the hydrogen detonation problem
in the containment of a nuclear reactor were developed and u
compressible flow equations including detonation were solved
new numerical technique due to G1imm.

The computer codes CRTDET, SPHDET and TWODIM have been
ageveloped and tested; they reproduce satisfactorily existing analytical
results CRTDET solves the one-dimensional planar problem.

The oy e-dimensional spherical or cylindrical geometries are handled

by SPHDET, which is very similar to CRTDET: it solves for the in-
homogeneous terms in the equations of motion by using the operator
splitting method. The computer program TWODIM is a natural extension of
CRTDET and SPHDET, since it uses the same techniques used in these two
codes; however, to account properly for the wave in the r and z directions,
we used a splitting technique with a four-sweeps cycle; the duration for
each sweep is lf.

Pressure histories on the wall for a plane and spherical
geometry have been calculated. Interactions with an elastic wall have
been evaluated numerically only in a plane geometry. The results indi-
Cate that the effect of the motion of the wall on the pressure histories
is negligible.

The two-dimensional axisymmetric program was validated by

using it to predict pressure histories in a spherical geometry. Pressure
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histories have been calculated for an actual nuc lear containment building,
that of the Indian Point Nuclear Power Plant. Hydrogen concentration

in the containment volume was assumed uniform, any obstacles inside the

containment were neglected, and a hvdroagen detonation was postuiated

The probability of such a detonation and the question of the initial
detonation arowth were considered out of the scope of the present work.
The numerical results for wall pressures are presented in dimensionless
form, which allows their use for dirtrerer t combinations of hydrogen
concentrations and initial conditions. Thvee cases were considered in
the calculations.which include two sets of dimensionless heat release
the detonation: one at the center of the
the containment axis above the base. The
areement with previous ones obtained by
CS(). However, higher pressures (sometimes
in aeneral by the present method.
the absence of artificial viscosity which
ccurate description of pressure discontinuities.
multiple reflections, peak pressures at some points
verv hiagh (e.q..fifty times the initial containment pressure), but
for verv short times, and the dynamic pressures decay to almost
onstant values within a imately 0.1 sec. for initiation 34.5 m
above the base, or w appri 1 0.2 sec for initiation at the
center of the base. Jecay was fast or the highest of the two non-
dimensionles t relea: ate vq .. but peak pressures were, in

eneral ‘ ther. Dug o multinle reflections, most pressure




histories exhibit three or four peaks. These peaks are not expected

cause resonance of the structure, because their interarrival times
are too short in comparison to the top few natural periods of the

containmert.
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NOMENCLATURE
Latin Alphabet
c sound speed
y sound speed in the burnt gas
cCj Chapman-Jouguet sound speed
.y sound speed in the unburnt gas
e energy per unit volume
K wall stiffness
M mass of the wall
m momentum flux
P pressure evarted at the wall
p gas pressure
Py pressure of the burnt gas
pCJ Chapman-Jouguet pressure
Py pressure of the unburnt gas
Q energy due to external sources or sinks
G energy released by chemical reactions
t time
U wave velocity
u particle velozity
Uy particle velocity of the burnt gas
ch particle velocity given the Chapman-Jouguet conditions
u particle velocity of the urburnt cas
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burnt gas velocity in the Eulerian frame

b

W, unburnt gas velocity in the Eulerian frame
W displacement of the wall

w velocity of the wall

W acceleration of the wall

Greek Alphabet

€; internal energy per unit mass

n integer equal 2 for cylindrical coordinates, 3 for spherical
¢ labeling integer equal 1 for unburnt gas and 0 otherwise
r Riemann invariant

Y gas constant equal to Cp/Cv

¥ detfined by equations (A.7)

E random number

! pseudorandom number

o) gas density

ey Chapman-Jouguet gas density

Pp density of the burnt gas

p density of the unburnt gas

i

Other symbols are defined in the text.
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APPENDIX A
THE GODUNOV METHOD
This method of calculation of the conditions behind the detonation
front was first implemented by Godunov [3.5] and then modified by Chorin [2.4]
and Sod [3.1]. The method is used by thc computer codes developed herein, and
is described in this Appendix for completeness.
Given the equation (3.1.4), we would like to find the proper-

ties pys Uy, P, in state S,. Let us define

. - Pe)/(u, - uu), (A.1)

and

=
"

g = (g = Pe)/luy - uy). (A.2)

It can be easily shown that if the right wave is a shock,

Mo = =palu. - U) = -pu(u, - U), (A.3)

where p, is the density in the region adjacent to the right shock
and Ur is the velocity of the right shock.

Similarly, if the left wave is a shock,

Ml - pﬂ,(uﬁ, w Ul) » 'p*(u* al Uz)l (A-4)

where o, is the density in the portion of S, adjacent to the left
shock and Uz is the velocity of the left shock. "r and MQ can be

can be written in the form



Upon elimination of u, from ‘A.1) and (A.2), we obtain

w Tl S s B s

p* = —"]-/M + T7M — (A8)

r

Equations (A.5), (A.6) and (A.8) are three equations in three unknowns
for which there exists a real solution. The solution can be found

iteratively by choosing a starting value ps(or M; or M?), and then

a+ Q 0+ .
compute p, ], Mr s Ty ], q > 0 using

S q qy;¢1 /M9 q
pY = (ug-u *p /MC + p /M)/(1/M0 + 1/M)

. (
max(€y» oY),

1/2

q+1 \

V(px /P,)

q+]
W(pe /Pg)-
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Equation (A.9b), where £ is a very small number (*10'6). is used to

prevent the pressure of becoming negative.

Once p,, M. and M, are found, we may obtain u, by eliminating

P, from (A.1) and (A.2),

Up = (g =P+ Mu. +Mu )/ (M +M). (A.10)
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APPENDIX B

THE COMPUTER PROGRAM CRTDET

B.1 General Description

The program consists of the main program, the subroutine

GLIMM and the output section. The overall idea behind the main

program can be found in the flow chart of Figure B.1. The major

steps to follow in order to run this program are

TN

Select the grid spacing for each specific problem
and adjust accordingly the values of N and DX;

Decide about the number of time steps necessary
(NSTOP) and the time intervals for which a printed
output of the properties is required (NPRINT);

Assign the parameters defining the initial con-

ditons of the gas and the properties of the combustion,
GAMMA and DELTA are respectively, the gas constant

and the energy released by the combustion. PR, RR

and UR are the initial conditions of the unburnt gas
and PL, RL and UL are the C-J conditions of the

burnt gas. On the other hand, the grid points behind
the detonation front should be given their appropriate
value§ obtained from the Taylor curves (Figures 2.4.1-
2.4.3).

The subroutine GLIMM solves the Riemann problem for each

grid point.
Sod (1978).

The major part of this subroutine has been described by

However, the last section of the subroutine has been

added to solve the detonation problem.
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START

|

ASSIGN INTTIAL VALUES FOR
p, p AND u AT EACH
GRID POINT

REPEAT NSTOP TIMES

CALCULATE HALF THE

TIME STEP —Az,t——

1
SOLVE THE RIEMANN PROBLEM

AT MID DISTANCE BETWEEN
ADJACENT GRID POINTS
AFTER HALF TIME STEP

SOLVE THE RIEMANN PROBLEM
AT EACH GRID POINT
AFTER ANOTHER HALF

TIME STEP

PRINTED OUTPUT EVERY NPRINT
TIME STEPS

|
END

FIGURE B.1: FLOW CHART FOR CRTDET
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B.2 Dictionary of the Key Terms in the Program

B
C
CL

CR

CSTAR
DELTA
GAMMA
GGUBFS
ML

MR
MUSQ

N
NPRINT

NSTOP
PHI(T)

PRE(I)
PSI
PSTAR
RHO(T)
RSTAR
SI
SIGMA

Defined in equation (2.4.7a)
Defined in equation (2.4.7b)

Sound speed in the left state of the solution of the Riemann
problem

Sound speed in the right state of the solution of the
Riemann problem

Scund speed in state S, or C-J sound speed
Cremical energy released by the combustion process
Gas constant = Cp/Cv

Random number generator; IMSL function subroutine
Defined in equation (A.2)

Defined in equation (A.1)

Defined in equation (2.4.4)

Number of intervals generated by the grid points

Controls the output section; the properties at each
grid point will be printed every NPRINT time steps

Number of time steps

Variable indicating whether the gas is burnt or not at
grid point 1

Pressure of the gas in N/m2 at grid point I
Function subroutine defined by equation (A.7)
Pressure in state S, or C-J pressure

Density of the gas in kg/m3 at grid point I
Density in state S, or C-J density
Pseudorandom number in the interval [0,1]

Coefficient in ]0,1] to control the length of each time
step



TIME

ucJ
USTAR
ux(I)

X1

-114-

Total time in seconds elapsed since the origin
of the detonation

Detonation front velocity given C-J conditions
Particle velocity in state S, or particle C-J velocity
Particle velocity in m/s at grid point I

Pseudorandom number in the interval [-—%;—.-lgLJ




-115-

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
c

CRTDET c

c

ONE DIMENSIONAL PROGRAM(CARTESIAN) TO CALCULATE c
PRESSURE,DENSITY AND VELOCITY HISTORY IN A REACTIVE c
MIXTURE c
c

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC»CCCCCCCCCCC

R EsEsEsNeoNeNe N Ne]

COHHON//DT.GAHMA,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DBLTA
1,KiIM
COMMON/OUT/TIME,N,DX,RHO(2001) ,PRE(2001) ,UX(2001)
1,PHI(2001)
COMMON/RAD/ETA
COMMON/LIN/LAM

REAL LAM

DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
NPRINT=25

NSTOP=1000

N=200

NPl=N+1

NMl=N-1
DX=20.0/FLOAT(N)
DT=0.01
TIME=0.1/1787.7
VMAX=0.

NP=0

GAMMA=1.4
DELTA=1447716.8
BLIP=0.0DO

Kl=11

K2=7

NU=2

SIGMA=0.8

ETA=1.

SET INITIAL CONDITIONS

s Ne e

RL=2.10939
PL=1539126.7
UL=777.0
RR=1.19242
PR=101325.
UR=0.

DO 15 1I=1,2
PHI(I)=0
RHO(I)=RL



PRE(I)=PL
UX(I)=UL
CONTINUE
RHO(1)=0.91546
PRE(1)=478350.0
UX(1)=0.0

DO 16 I=3,NP1l
PHI(I)=1
RHO(I)=RR
PRE(I)=PR
UX(I)=UR
CONTINUE

BEGIN TIME STEP

DO 100 TSTP=1,NSTOP

NP=NP+1

DO 8 I=2,N

VMAX 1=ABS(UX(I))+SQRT(GAMMA*PRE(I)/RHO(I))
IF(VMAX1.GT.VMAX) VMAX=VMAX1

CONTINUE

DTT=SIGMA*DX/(2.*VMAX)

IF(DTT.LT.DT) DT=DTT

TIME=TIME+2.*DT

LAM=0.5/VMAX

COMPUTE FIRST HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
BLIP=BLIP+2.D0O
SI-(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(Kl)

XI LIES BETWEEN -DX/2 AND +DX/2

DO 40 I=2,NP1
XI=SI*DX~-0.5%DX
RR=RHO(I)
UR=UX(I)
PR=PRE(1)
KPHI=PHI(I)
IF(1.EQ.2)GO TO 43
RL=RIM1

PL=P IM1

UL=UIM1

GO TO 44

BOUNDARY CONDITION AT AXIS R=0
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RL=RHO(1)
UL=UX(1)
PL=PRE(1)
KIM=PHI(1)
GO TO 44

COMPUTE FIRST HALF STEP OF GLIMM

CALL GLIMM
RIM1=RHO(I)
RHO(I)=R
PIM1=PRE(I)
PRE(I)=P
UIMl=UX(I)
UX(I)=U
KIM=PHI(I)
PHI(I)=KPHI
CONTINUE

COMPUTE SECOND HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)

XI LIES BETWEEN -DX/2 AND 4DY/2

KIM=PHI(1)
DO 60 I=1,NP1
XI=SI*DX-0.5%DX
RL=RHO(I)

PL=PRE(I)

UL=UX(I)

IF(1.EQ.NP1) GO TO 63
KPHI=PHI(I+1)
RR=RHO(I+1)
PR=PRE(I+1)
UR=UX(I+1)

IF(I.EQ.1) GO TO 62
GO TO 64

BOUNDARY CONDITION AT Rel.
RR=RL

UR=-UL

PR=PL

KPHI=PHI(I)

X1=0.0

GO TO 64



COMPUTE SECOND HALF STEP OF GLIMM

X1=0.0
RL=RR
UL=-UR
PL=PR
CALL GLIMM
RHO(I)=R
PRE(1)=P
UX(I)=U
KIM=PHI(I+1)
PHI(1)=KPHI
60 CONTINUE
WRITE(15,20000) TIME
20000 FORMAT(1H1,7H TIME = ,F11.7)
WRITE(15,20001) RHO(1l),PRE(1)
WRITE(15,20001) RHO(NP1),PRE(NP1)
20001 FORMAT(1HO,2F13.5)
{[F(NP.LT.NPRINT) GO TO 100
NP=0
100 CONTINUE
STOP
END

SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM

SUBROUTINE GLIMM
COMHON//JT,GAMHA,RL,UL,PL,R,U,P,E,RR,UR,PR,A[,KPHI,DELTA
1,KIM

COMMON/RAD/ETA
COMMON/LIN/LAM

REAL MR,ML,MRP1,6MLP1
REAL LAM,MUSQ
EPS=1.E-6

IT=0

ITSTOP=20
KPHIP=KPHI*KIM

IF KPHI=1 , MIGHT HAVE A DETONATION

[F(KPHI.EQ.I.AND.KPHIP.EQ.O) GO TO 111

CONSTRUCTION OF RIEMANN PROBLEM
ALFA IS THE CONVERGENCE FACTOR

ALFA=1.
ALFAM=1.~-ALFA

INITIAL ML AND MR
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ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT(PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

RAV=0.5% (RL+RR)
PAV=0.5*% (PL+PR)

A=PAV/ (RAV**GAMMA)
R=RAV-LAM* (UR*RR-UL*RL)
PSTAR=A* (R**GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD

IT=IT+1

IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE

PSTAR=AMAX1(EPS,PSTAR)
COMPUTE MR AND ML AT STEP Q+1

MLP1=COEFL*PSI(PSTAR/PL,GAMMA)
MRP1=COEFR*PSI(PSTAR/PR,GAMMA)
DIFML=ABS(MLP1-ML)
DIFMR=ABS(MRP1-MR)

ML=MLP1

MR=MRP1

COMPUTE NEW PRESSURE PSTAR

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML) /(1. /ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
IF(ABS(PSTAR-PSTARP).LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA=ALFA/2.

ALFAM=1.-ALFA

IF(ALFAM.LT.EPS) GO TO 40

IT=0

(F(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION

USTAR=(PL-PR+MR*UR+ML*UL) /(ML+MR)
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1

BEGIN GLIMM'S METHOD

IREGL=1

IF(PSTAR.LT.PL) IREGL=2
IREGR=1

IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT

IF(XI.GE.X) GO TO 200

LEFT SIDE

IF(IREGL.EQ.2) GO TO 110

COMPUTE LEFT SHOCK SPEED

U=UL-ML/RL
X=U*DT
IF(XI.GE.X) GO TO 100

LEFT OF LEFT SHOCK

R=RL
U=UL
P=PL

GO TO 500

RIGHT OF LEFT SHOCK

R=ML/(USTAR-U)
U=USTAR
P+PSTAR

¢0 TO 500

COMPUTE SOUND SPEED IN LEFT STATE

CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GE.X) GO TO 120

LEFT OF LEFT FAN

R=RL
U=UL
P=PL

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A

A=PL/(RL**GAMMA)
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C
c COMPUTE DENSITY IN STATE STAR
C
RSTAR=(PSTAR/A)**(1./GAMMA)
c COMPUTE SOUND SPEED IN STATE STAR
c
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130
c
c IN LEFT FAN
C
U=s(2./(GAMMA+1.))*(XI/DT+CL+0.5%(GAMMA~-1.)*UL)
RINT=CL+0.5%(GAMMA-1.)*(UL-U)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)
GO TO 500
c
c RIGHT OF LEFT FAN
C
130 R=RSTAR
U=USTAR
P=PSTAR
GO TO 500
c
c RIGHT SIDE
C
200 IF(IREGR.EQ.2) GO TO 220
c
c COMPUTE RIGHT SHOCK SPEED
c
U=UR+MR/RR
X=U*DT
IF(XI.GE.X) GO TO 210
c
c LEFT OF RIGHT SHOCK
c
R=-MR/(USTAR-U)
U=USTAR
P=PSTAR
GO TO 500
c
c RIGHT OF RIGHT SHOCK
C
210 R=RR
U=UR
P=PR

GO TO 500
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COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PR/(RR**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT

IF(XI.GE.X) GO TO 23C

LEFT OF RIGHT FAN

R=RSTAR

UsUSTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN RIGHT STATE
CR=SQRT(GAMMA*PR/RR)

X=(UR+CR)*DT

IF(XI.GE.X) GO TO 240

IN RIGHT FAN

Us(2./(GAMMA+1.))*(XI/DT-CR+0.5*% (GAMMA-1. )*UR)
RINT=CR+0.5*(GAMMA-1.)*(U-UR)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)

GO TO 500

RIGHT OF RIGHT FAN

R=RR
U=UR
P=PR
GO TO 500

DETONATION CONDITIONS

CALCULATE CONDITIONS JUST BEHIND CJ DETONATION

B=-PR~-DELTA*(GAMMA-1.)*RR
MUSQ=(GAMMA~-1.)/(GAMMA+1.)
C=(PR*PR)+2.*MUSQ*PR*RR*DELTA
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PSTAR=-B+SQRT((B*B)~C)
RSTAR=(PSTAR*(GAMMA+1.)-PR)*RR/ (GAMMA*PE TAR)
UCJ=SQRT(GAMMA*PSTAR*RSTAR)/RR+UR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
USTAR=UCJ~CSTAR

USTAR=777.0

PSTAR=1539126.7

RSTAR=2.10939

CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
UCJ=USTAR+CSTAR

BEGIN GLIMM'S METHOD

X=UCJ*DT
IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333

COMPUTE SOUND SPEED IN LEFT STATE

CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GE.X) GO TO 444

LEFT OF RAREFACTION FAN

R=RL

U=UL

P=PL
KPHI=0

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PSTAR/(RSTAR**GAMMA)
IN RIGHT FAN

U=(2./(GAMMA+1.))*(XI/DT-CSTAR+0.5%(GAMMA-1.)*USTAR)
RINT=CSTAR+0.5% (GAMMA-1.)*(U~USTAR)
R=(RINT*RINT/(A*GAMMA) )**(1./(GAMMA-1.))

P=A* (R**GAMMA)

KPHI=0

GO TO 500

RIGHT OF DETONATION

U=USTAR
P=PSTAR
R=RSTAR
KPHI=0



222

500

oo

100

200

20

10000
10001
10002

GO0 TO 500
U=UR

P=PR

R=RR
CONTINUE
RETURN
END

FUNCTION PSI

FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
[F(ABS(1.-X).GT.EPS) GO TO 100
PSI=SQRT (GAMMA)

RETURN

COEF1=0.5% (GAMMA+1.)
COEF2=0.5*%(GAMMA-1.)
COEF3=COEF2/GAMMA

IF(X.GE.1.) GO TO 200
PST=COEF2*(1.-X)/(SQRT(GAMMA)*(1.~(X**COEF3)))
RETURN

PSI=SQRT(COEFL*X+COEF2)

RETURN

END

SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM

SUBROUTINE OUTPUT
COHHON//DT,CAMHA.RL,UL,PL,R,U,P,E.RR,UR,PR,XI,KPHI,DELTA

1,KIM

COMMON/OUT/TIME, ,N,DX,RHO(2001) ,PRE(2001) ,UX(2001)

1,PHI(2001)

INTEGER PHI

NP1l=N+1

WRITE(6,10000) TIME
WRITE(6,10001)

DO 20 I=1,NP1
X=FLOAT(I-1)*DX

R=RHO(I)

U=UX(I)

P=PRE(I)

K=PHI(I)

WRITE(6,10002) X,R,U,P,K
CONTINUE

RETURN

FORMAT(1H1,7H TIME = ,F11.7)
FORMAT(1H ,3H X,6X,SHDENSE,8X,3HVEL,10X,4HPRES,10X,3HPHI)
FORMAT(1HO,F6.3,3¥13.5,12)
END
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APPENDIX C

THE COMPUTER PROGRAM SPHDET

The computer program SPHDET is very similar to CRTDET;
however, the subroutine INHOM has been added to make the correction
for the inhomogeneous terms in the equations of gas dynamics in
one dimensional spherical or cylindrical coordinate system. This
subroutine is called after the solution of the Riemann problem has

been advanced one time step in the time space. It uses the method

described in section 3.3.

Actually the one-dimensional cartesian, cylindrical and
spherical problems can be solved by SPHDET by taking ETA equal to 1,

2, and 3 respectively.



-126-

cceeeceeeececeeceeececeececeeccececeececececccecececceceecccceceecccecececccceccecccecccc

c c
c SPHDET c
C C
C ONE DIMENSIONAL PROGRAM(CYL. OR SPHE.) TO CALCULATE C
c PRESSURE ,DENSITY AND VELOCITY HISTORY IN A REACTIVE C
C MIXTURE c
c C
cceceeceeeecececececeececcecececcececceeecceececccceccececcececcecceccccacccec

COMMON//DT ,GAMMA ,RL,UL ,PL,R,U,P,E,RR,UR,PR,KPHI ,DELTA ,KINM
COMMON/OUT/TIME,N,DX,RHO(111) ,PRE(111),UX(111) ,PHI(111)
COMMON /RAD /ETA
COMMON/LIN/LAM

REAL LAM

DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
NPRINT=20

NSTOP=100

N=100

NP1l=N+1

NM1l=N-1
DX=1.0/FLOAT(N)
DT=0.01
TIME=0.19/1787.85
VMAX=0.

NP=0

GAMMA=1.4
DELTA=1447711.2
BLIP=10.0D0

Kl=11

K2=7

NU=2

SIGMA=0.8

ETA=3.

SET INITIAL CONDITIONS

aoaa

RL=0.2102
PL=153419.
UL=777.
RR=0.11886
PR=10100.
UR=0.
DO 15 I=1,20
PHI(I)=0
RHO(I)=RL
PRE(I)=PL
UX(I)=UL

15 CONTINUE
RHO(1)=0.0841




PRE(1)=42550.91
UX(1)=0.0
RHO(2)=0.0841
PRE(2)=42550.91
UX(2)=0.0
RHO(2)=0.0841
PRE(3)=42550.91
UX(3)=0.
RHO(4)=0.0841
PRE(4)=42550.91
UX(4)=0.
RHO(5)=0.0841
PRE(5)=42550.91
UX(5)=0.
RHO(6)=0.0841
PRE(6)=42550.91
UX(6)=0.0
RHO(7)=0.0841
PRE(7)=42550.91
UX(7)=0.0
RHO(8)=0.0841
PRE(8)=42550.91
UX(8)=0.0
RHO(9)=0.0841
PRE(9)=42550.91
UX(9)=0.0
RHO(10)=0.0841
PRE(10)=42550.91
UX(10)=0.0
RHO(11)=0.08565
PRE(11)=43264.16
UX(11)=23.29
RHO(12)=0.08933
PRE(12)=45642.15
UX(12)=62.06
RHO(13)=0.09354
PRE(13)=49477.62
UX(13)=100.98
RHO(14)=0.09984
PRE(14)=54463.75
UX(14)=139.82
RHO(15)=0.10720
PRE(15)=60216.95
UX(15)=191.87
RHO(16)=0.11661
PRE(16)=67504.36
UX(16)=252.45
RHO(17)=0.12822
PRE(17)=774756.59
UX(17)=322.36
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RHO(18)=0.14188
PRE(18)=88983.02
UX(18)=419.46
RHO(19)=0.16395
PRE(19)=~105859.11
UX(19)=532.10

DO 16 I=21,NP1
PHI(I)=1
RHO(I)=RR
PRE(I)=PR
UX(I)=UR
CONTINUE

BEGIN TIME STEP

DO 100 TSTP=1,NSTOP

NP=NP+1

DO 8 I=2,N

VMAX 1=ABS(UX(1))+SQRT(GAMMA*PRE(I)/RHO(I))
IF(VMAX1.GT.VMAX) VMAX=VMAX1

CONTINUE

DTT<SIGMA*DX/(2.*VMAX)

IF(DTT.LT.DT) DT=DTT

TIME=TIME+2.*DT

LAM=0.5/VMAX

COMPUTE FIRST HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
BLIP=BLIP+1.D0
STI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)

X1 LIES BETWEEN -DX/2 AND +4DX/2

DO 40 I=2,NP1
XI1l=SI*DX-0.5%DX
RR=RHO(I)
UR=UX(I)
PR=PRE(I)
KPHI=PHI(I)
IF(I.EQ.2)GO TO 43
RL=RIM1

PL=P IM1

UL=UIM]

GO TO 44

BOUNDARY CONDITION AT AXIS R=0
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RL=RHO(1)
UL=UX(1)
PL=PRE(1)
KIM=PHI(1)
GO TO 44

COMPUTE FIRST HALF STEP OF GLIMM

CALL GLIMM(XI1)
RIML=RHO(I)
RHO(T)=R
PIM1=PRE(I)
PRE(T)=P
UIML=UX(I)
UX(1)=U
KIM=PHI(I)
PHI(L)=KPHI
CONTINUE

COMPUTE SECOND HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)

XI LIES BETWEEN -DX/2 AND 4DX/2

KIM=PHI(1)

DO 60 I=1,NP1
XI2=SI*DX~0.5%DX
RL=RHO(I)

PL=PRE(I)

UL=UX(I)

IF(I.EQ.NP1) GO TO 63
KPHI=PHI(I+1)

RR=RHO(I+1)

PR=PRE(I+1)

UR=UX(I+1)

IF(I.EQ.1) GO TO 62

GO TO 64

BOUNDARY CONDITION AT R=l.
RR=RL

UR=-UL

PR=PL

KPHI=PHI(I)

X12=C.0
GO TO b4




COMPUTE SECON HALF STEP OF GLIMM

aBS(X12)
(P{XI11.LT.0.) XI2 . 5*DX
RL=RR
UL=-UR
PL=PR
CALL GLIMM(XI12)
RHO(I)=R
PRE(1)=P
UX(1)=U
KIM=PHI(I+1)
PHI(I)=KPHI
CONTINUE
CALL INHOM
WRITE(15,20000) TIME
20000 FORMAT(1H1,7H TIME = ,Fl11.7)
WRITE(15,20001) RHO(1) ,PRE(1)
WRITE(15,20001) RHO(NP1) ,PRE(NP1)
20001 FORMAT(1HO,2F13.5)
[F(NP.LT.NPRINT) GO TO 100

B
NP=0

CALL UTPUT
CONTINUE
STOP

END

SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM

SUBROUTINE GL MM(XI)

COMMON/ /DT ,GAMMA ,RL,UL,PL,R,U,P ,E ,RR,UR,PR,KPHI,DELTA,KIM
COMMON/RAD/ETA

COMMON/LIN/LAM

REAL MR,ML,MRP1,MLPI

REAL LAM,MUSQ

EPS=1.E-6

[T=0

ITSTOP=20

KPHIP=KPHI*KIM

.F KPHI=1 , MIGFT HAVE A DETONATION

IF(KPHI.EQ.1.AND.KPHIP.EQ.O) GO TO 111

CONSTRUCTION OF RIEZEMANN PROBLEM
ALFA IS THE CONVERGENCE FACTOR

ALFA=1.
ALFAM=1.~-ALFA
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INITTAL ML AND MR

ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT(PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

RAV=0.5%* (RL+RR)
PAV=0.5%(PL+PR)

A=PAV /(RAV**GAMMA)
R=RAV-LAM* (UR*RR-UL*RL)
PSTAR=A* (R**GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
IT=1IT+1

IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE

PSTAR=AMAX1(EPS ,PSTAR)
COMPUTE MR AND ML AT STEP Q+1

MLP1=COEFL*PSI(PSTAR/PL,GAMMA)
MRP1=COEFR*PSI(PSTAR/PR,GAMMA)
DIFML=ABS(MLP1-ML)
VDIFMR=ABS(MRP1-MR)

ML=MLP1

MR=MRP 1

COMPUTE NEW PRESSURE PSTAR

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
IF(ABS(PSTAR-PSTAR?).LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA=ALFA/2.

ALFAM=1.,-ALFA

IF(ALFAM.LT.EPS) GO TO 40

IT=0

IF(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10

COMPUTE USTAR AT END OF GOLUNOV ITERATION
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USTAR=(PL-PR+MR*UR+ML*UL) / (ML+MR)
BEGIN GLIMM'S METHOD

IREGL=1 |
IF(PSTAR.LT.PL) IREGL=2
IREGR=1

IF(PSTAR.LT.PR) IRECR=2
X=USTAR*DT

IF(XI.GE.X) GO TO 200

LEFT SIDE

IF{IREGL.EQ.2) GO TO 110
COMPUTE LEFT SHOCK SPEED
U=UL-ML/RL

X=U*DT

IF(XI.GE.X) GO TO 100
LEFT OF LEFT SHOCK

R=RL

U=UL

P=PL

GO TO 500

RIGHT OF LEFT SHOCK

R=ML/(USTAR-U)
U=USTAR
P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN LEFT STATE

CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GE.X) GO TO 120

LEFT OF LEFT FAN
R=RL

U=UL

P=PL

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
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20 A=PL/(RL**GAMMA)

COMPUTE DENSITY IN STATE STAR

o= 0

RSTAR=(PSTAR/A)**(1./GAMMA)

COMPUTE SOUND SPEED IN STATE STAR

o000

CSTAk=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130

IN LEFT FAN

ao0on

Usm(2./(GAMMA+1.))*(XI/DT+CL+0.5%(GAMMA-1.)*UL)
RINT=CL+0.5*%(GAMMA-1.)*(UL-U)
R=(RINT*RINT/ (A*GAMMA) )**(1./(GAMMA-1.))
P=A*(R**GAMMA)

GO TO 500

RIGHT OF LEFT FAN

Onoon

30 R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

RIGHT SIDE
IF(IREGR.EQ.2) GO TO 220

COMPUTE RIGHT SHOCK SPEED

OO0ONMOOO
()
o

U=UR+MR/RR
X=U*DT
IF(XI.GE.X) GO TO 210

LEFT OF RIGHT SHOCK

MDon

R=~-MR/(USTAR-U)
U=USTAR
P=PSTAR

GC TO 500

RIGHT OF RIGHT SHOCK

NOOO

10 R=RR
U=yR
P=PR
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TO0

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PR/ (RR**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT

IF(XI.GE.X) GO TO 230

LEFT OF RIGHT FAN

R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN RIGHT STATE
CR=SQRT(GAMMA*PR/RR)

X=(UR+CR)*DT

IF(XI.GE.X) GO TO 240

IN RIGHT FAN

U-(2./(GAMMA+1.))*(XI/DT-CR+O.5*(GAMMA—1.)*UR)
RINT=CR+0.5* (GAMMA-1.)*(U~UR)
R=(RINT*RINT/(A*GAMMA) )**(1./(GAMMA-1.))
P=A*(R**GAMMA)

GO 70 500

RIGHT OF RIGHT FAN
R=RR

U=UR

P=PR

GO TO 500

DETONATION CONDITIONS

CALCULATE CONDITIONS JUST BEHIND CJ DETONATION

B=-PR-DELTA* (GAMMA-1.)*RR
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MUSQ=(GAMMA~1.)/(GAMMA+1.)
C=(PR*PR)+2.*MUSQ*PR*RR*DELTA
PSTAR=-B+SQRT((B*B)~C)

RSTAR= (PSTAR* (GAMMA+1.)-PR)*RR/ (GAMMA*PSTAR)
UCJ=SQRT(GAMMA*PSTAR*RSTAR) /RR+UR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
USTAR=UCJ~-CSTAR

BEGIN GLIMM'S METHOD

oo

X=UCJ*DT
IF(XI.GE.X) GO TO 222

LEFT OF DETONATION

wooo

33 U=USTAR
P=PSTAR
R=RSTAR
KPHI=0
GO TO 500

222 U=UR

P=PR
R=RR

500 CONTINUE

RETURN

END

FUNCTION PSI

aoon

FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
IF(ABS(1.-X).GT.EPS) GO TO 100
PSI=SQRT(GAMMA)
RETURN

100 COEFl=0.5* (GAMMA+1.)
COEF2=0.5*(GAMMA-1.)
COEF3=COEF2 /GAMMA
IF(X.GE.1.) GO TO 200
PSI=COEF2#*(1.-X)/(SQRT(GAMMA)*(1.~(X**COEF3)))
RETURN

200 PSI=SQRT(COEF1L*X+COEF2)
RETURN
END

SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS
DIFFERENTIAL EQUATION

o000

SUBROUTINE INHOM
COMMON/ /DT ,GAMMA ,RL,U%,PL,R,U,P,E,RR,UR,PR,KPHI,DELTA ,KIM
COMMON/OUT/TIME,N,DX,RHO(111) ,PRE(111) ,UX(111) ,PHI(111)



3

HI(L+]
KPHI*KPH
PHIP.EQ.
(GAMMA-1
153 :‘tW:ﬁ

~R *

S*MOM*MOM/DEN)

v,p,C,RR,UR,PR,KPHI,DELTA ,KIM
) ,PRE(111),UX(111),PHI(111)

' TURN
FORMAT(1H1,7H TIME = P Ys7)
FORMAT(1H ,3H X,6X,5HDENSI ,AQ'f‘;,3”\'5‘:[‘,‘x“f‘:,'*H':\‘RES,10\(,3HPHI)
,,'11",}:?\.3,3?13.3,1
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APPENDIX D

THE COMPUTER PROGRAM TWODIM

D.1 Description of the Program

The major parts o *he program are similar to the previous
two programs i.e., the main program, the subroutine GLIMM, the sub-
routine INHOM and the output section. However two subroutines have
been added. Subroutine LABEL defines the boundaries for the problem,
it simulates the curved walls of a containment by a stepwise line;
it also identifies the grid points which fall outside the boundaries.
Subroutine SPLINE is a third order polynomial approximation of the

Taylor curves in spherical coordinates.

The general flow chart of the main section of the program
can be found in Figure D.1. The data file cards are explained in

Table D.1.

PL.2 Dictionary of Key Terms in TWODIM

The terms which have been defined in secticn B.2 are not
repeated here
AP(12), BP(12), Coefficient of the third order polynomial

approximating the Tayler curves for the
cP(12), oP(12), pressure, density and velocity
AR(12), BR(12),

Cr(12), DR(12),
Au(12), Bu(12),

DETDIS Initial distance the detonation front had
reached:
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START

ASSIGN INITIAL VALUES OF p, p, u AND v

REPEAT NSTOP TIMES

1
CALCULATE THE HALF T'ME STEP —%fw—

|

CALCULATE THE PROPERTIES AT MID DISTANCE
BETWEEN GRID POINTS FOR EACH J LINE
BY AN x SWEEP

|

CALCULATE PROPERTIES AT MID DISTANCE
BETWEEN GRID POINTS FOR EACH I + —%— COLUMN

BY A y SWEEP

l

CALCULATE PROPERTIES AT EACH GRID PCINT

FOR EACH J + -%— LINE BY AN x SWEEP

CALCULATE PROPERTIES AT EACH GRID POINT
FOR EACH I COLUMN BY A y SWEEP

1

MAKE THE CORRECTION FOR THE INHOMOGENEOUS TERMS

1
lPRINTED OUTPUT EVERY NPRINT TIME STEPS

!
END
FIGURE D.1: FLOW CHART FOR TWODIM
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TABLE D.1: DATA FILE

NO. OF CARDS FORTRAN NAME[FORMAT]
: NPRINT [14]
NSTOP [14]
: NX[I3]
NY[13]
* X(I)[10F7.3]
S
0
2 Y(I)[10F7.3]
NY
[‘To_] .
1 SXDXY[F10.4]
1 DETDIS[F7.3]
1 JCYL[13]

*
[X] = 1largest integer < X

COLUMN N°
1-4 last digit in colur 4
5-8 last digit in column 8

1-3 last digit in column 3
4-6 last digit in column 6

x(1)  1-7
X(2)  8-14
X(10)  64-70
X(11)  1-7
X(NX)

Y(1)  1-7
Y(2)  8-14
Y(10)  64-70
Y(11)  1-7
Y(NY)

1-10

1-7

1-3 last digit in column 3
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Dummy variable which identifies whether the grid
point is an internal, external or boundary point.

Last grid point in the y-direction before the wall
of the containment starts to curve

Subroutine which defines the wall boundaries of the
containment

Number of grid points in the x-direction
Number of grid points in the y-direction
Smallest grid interval in the x and in the y directions

Subroutine which generates the coefficients of the

third order fit polynomial

Selected points on the jssa axis of the Taylor
curves

Y-component of the velocity at grid point (1,d)
Y-component of the velocity at grid poing (1,J)
Grid distance from the origin in the x-direction

6rid distance from the origin in the y-direction

),Ordinate corresponding to SX in the sphericai Taylor
curves for the pressure, density and velocity




9999
8888

10000

Qa0

10001
10002
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TWO DIMENSIONAL AXISYMMETRIC PROGRAM TO CALCULATE
PRESSURE,DENSITY AND VELOCITY HISTORY IN A REACTIVE MIXTURE

COMMON//DT,GAMMA , RL, UL, PL,R,U,V,P,E,RR, UR, PR, KPHI , DELTA, KIM,
& vl
COMMON/OUT/TIME, NX,NY, RHO(101,101), PRE(101,101),UX(101,101)
COMMON/OWT /PHI (101, 101)
COMMON/AWT/VY(101,101),X(101),Y(101),DIST’101,101),
& IDUM(101,101)
COMMON/RAD/ETA
COMMON/LIN/LAM
COMMON/INI/RCHJ, PCHJ, UCHJ
DIMENSION SX(12),YP(12),AP(12),BP(12),CP(12),DP(12)
DIMENSION YR{12),AR(12),BR(12),CR(12),DR(12)
DIMENSION YU(12),AU(12),BU(12),CU(12),DU(12)
DATA SX/.501,.6,.7,.75,.8,.85,.9,.92,.94,.96,.98,1./
DATA YP/.2773,.3075,.3675, .405, .45, .515,.59, .62, .67,.725, .8,
& 1./
DATA YR/.4,.43,.485,.52,.565,.6175,.68,.715,.76, .815,.88,1./
DATA YU/.0,.1,.2,.265,.345,.43,.55,.61,.66,.73,.83,1./
CALL SPLINE(SX,YP,AP,BP,CP,DP)
CALL SPLINE(SX,YR,AR,BR,CR,DR)
CALL SPLINE(SX,YU,AU,BU,CU,DU)
REAL LAM
DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
READ(5,9999) NPRINT,NSTOP
FORMAT(214)
READ (5,8888) C1
FORMAT(F12.5)

READ THE DIMENSION OF THE GRID IN THE X AND Y DIRECTIONS

READ(5, 10000 )NX, NY
FORMAT(213)
NXM1=NX-1
NYM1=NY-1

READ THE GRID LOCATION

READ(5,10001) (X(I),I=1,NX)
READ(S5,10001) (Y(J),J=1,NY)
FORMAT (10F7.3)
READ(5,10002) SDXY
FORMAT(F10.4)

DT1=0.00001

TIME=0.0

VMAX=0.

NP=0

GAMMA=1. 4

DELTA=1447711.2

BLIP=0.0DO



K1=11

K2=7

NU=

SIGMA=1.0

ETA IS A DUMMY CONTROL
ETA=3.

READ THE INITIAL INITIATION RADIU

READ(S5,10003) DETDIS
FORMAT(F7.3)

SET INITIAL COND

~
J

READ(S5,1
READ(S5,1
READ(5,1
READ(5,1
READ(S5, 100
READ(5, 100
FORMAT(F13.
RL=RCHJ
PL=PCHJ
UL=UCHJ
L=0.
RR=RIN
PR=PIN
UR=UIN
VR=0.
READ(S

04 )RCHJ

)PCHJ
JCHJ

)RIN

)

)U

)

N
vV
0
W
0

v
0
N

v
"
v
0
0
v IN
0

~
v/
"

v
0
()
e
J/
~
(v

4
4)
&
&
&
-~

+(Y(J)-YO)*(Y(J)-YO))
GO TO ll

(DDET.

PRE(I,J)

RHO(‘,,)

UX(I,

GO TO 29

DO 9 K=2,12

IF(DDET.GT.SX(K)) GO TO 9

XX=DDET-SX(K-1)

PRE(I, J) =AP (K-1) *XX*XX*XX+BP (K-1)*XX*XX+CP(K-1) *XX+DP(K-1)
PRE(I,J)=PRE(I,J)*PL

RHO(1,J)=AR (K- 1) *XX*XX*XX+BR(K-1)*XX*XX+CR(K-1)*XX+DR(K-1)
RHO(I,J)=RHO(I,J)*RL

UX(I,J)=AU(K-1)*XX*XX*XX+BU(K- 1) *XX*XX+CU(K-1)*XX+DU(K-1)




29
12
13

11

10
10005

333
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UX(1,J)=UX(I,J)*UL
GO TO 29
CONTINUE
IF(I.EC.1.AND.J.EQ.NYO) GO TO 12
GO TO 13
VY(I,J)=UX(I,J)
GO TO 10
=UX(1,J)
UX(I,J)=U*X(1)/DIST(I,J)
VY(1,J)=U*(Y(J)-YO)/DIST(I,J)
GO TO 10
RHO(I,J)=RR
PRE(I,J)=PR
UX(I,J)=UR
VY(I,J)=VR
PHI(I,J)=1
CONTINUE
READ(5,10005) JCYL
FORMAT(13)
CALL LABEL(NX,NY, JCYL)
DO 333 I=1,NXM1
DO 333 J=1,NYM1
IF(IDUM(I,J).EQ.4) GO TO 333
IF(PHI(I+1,J).EQ.1.AND.PHI(I,J).E0.0) IDUM(I,J)=3
IF(PHI(I,J+1).EQ.1.AND.PHI(I,J).EQ.0) IDUM(I,J)=3
CONT INUE

BEGIN TIME STEP

DO 100 TSTP=1,NSTOP
NP=NP+1

DO 30 I=1,NX

DO 30 J=1,NY

VMAX1=SQRT(UX(I,J)*UX(I,J)+VY(I,J)*VY(I,J))+SQRT(GAMMA*PRE(I,J)/

&RHO(I,J))

00 O

aoaoQaoan

IF(VMAX1.GT.VMAX) VMAX=VMAX1
CONTINUE

SET INITIAL VALUE OF DT
DT=0.01
FIND THE HALF TIME STEP DT

DTT=SIGMA*SDXY/(2. *VMAX)
IF(DTT.LT.DT) DT=DTT
DT=AMAX1(DT,DT1)
TIME=TIME+2. *DT
LAM=0.5/VMAX

COMPUTE FIRST QUARTER STEP. X-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD
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UR=VY(I,J)
PR=PRE(I,J)
KPHI=PHI(I,J)
V1=UX(1I,J)
IF(J.EQ.2) GO TO 53
RL=RIM1
PL=PIM1
UL=UIM1
V=VIM1

GO TO 54
RL=RHO(I,1)
UL=VY(I,1)
PL=PRE(I,1)
KIM=PHI(I,1)
V=UX(I,1)
CALL GLIMM(XI2)
RIM1=RHO(I,J)
RHO(I,J)=R
PIM1=PRE(I,J)
PRE(I,J)=P
UIM1=VY(I,J)
VY(I,J)=U
VIM1=UX(I,J)
UX(1,J)=V
KIM=PHI(I,J)
PHI(I,J)=KPHI
CONTINUE

COMPUTE THIRD QUARTEPR STEP. X-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD (NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT (K1)

DO 60 J=2,NY

DO 60 I=1,NX
IF(IDUM(I,J).EQ.0) GO TO 60
RL=RHO(I,J)

PL=PRE(I,J)

UL=UX(I,J)

V=vY(I,J)

IF(I.EQ.NX) GO TO 63
IF(IDUM(I+1,J) EQ.0) GO TO 63
DXR=(X(I+1)-X(I))*0.5
IF(I.EQ.1) DXL=DXR

IF(I.NE.1) DXL=(X(I)-X(I-1))*0.5
XI3=(DXR+DXL)*SI-DXL
KPHI=PHI(1+1,J)

RR=RHO(I+1,J)

PR=PRE(I+1,J)



1 e
CONTINUE
YA ANV e

-

3

O
[
O
&
O
ol
53]
—
4

|
-

un
@)
.
)
>
|
-
+
)
S
ot
i
24
{

-
&

DYL=DYR

1)

IF(J.EQ.




N0O00

N0

74

70

777

300

-147-

IF(J.NE.1) DYL=(Y(J)-Y(J-1))*0.5
XI14=(DYR+DYL)*SI-DYL
KPHI=PHI(I,J+1)

RR=RHO(I,J+1)

PR=PRE(I,J+1)

UR=VY(I,J+1)

V1=UX(I,J+1)

IF(J.EQ.1) GO TO 72

GO TO 74

BOUNDARY CONDITIONS AT THE UPPER WALL

RR=RL

UR=-UL

PR=PL
KPHI=PHI(I,J)
XI14=-ABS(X14)
GO TO 74

BOUNDARY CONDITIONS AT THE I.OWER WALL

X14=ABS(XI4)

RL=RR

PL=PR

UL=-UR

KIM=PHI(I,2)

PHI(I,1)=PHI(I,2)

V=UX(I,J+1)

UX(I,J)=UX(I,J+1)

CALL GLIMM(XI4)

RHO(I,J)=R

PRE(I,J)=P

VY(I,J)=U

IF(J.NE.NY) KIM=PHI(I,J+1)

PHI(I,J)=KPHI

UX(I,J)=V

CONTINUE

CALL LABEL(NX,NY,JCYL)

DO 777 I=1,NXMl

DO 777 J=1,NYM1

IF(IDUM(I,J).EQ.4) GO TO 777
IF(PHI(I+1,J).EQ.1.AND.PHI(I,J).EQ.0) IDUM(I,J)=3
IF(PHI(I,J+1).EQ.1.AND.PHI(I,J).EQ.0) IDUM(I,J)=3
CONTINUE

CALL INHOM

WRITE(6,300) TIME,PRE(NX,1),PRE(NX,8),“RE(NX,16),PRE(NX,21),
*PRE(NX, 26) , PRE(NX, 30), PRE(NX, 34 ), PRE(NX, 38) , PRE(NX, 41),
*PRE(24,46),PRE(20,50),PRE(15,55),PRE(1C,60), PRE(5,65),
*PRE(1,65) ,PRE(1,1),PRE(1,24),PRE(1,34),PRE(1,44),PRE(1,54)
FORMAT(1X,E9.3,1X, 10(E9.3,1X),/, 10X, 10(E9. 3, 1X) )
IF(NP.LT.NPRINT) GO TO 100

NP=0



100 CONT INUE
STOP
END

SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM

oo

SUBROUTINE GLIMM(XI)
COMMON/ /DT, GAMMA, RL, UL, PL,R,U,V,P,E,RR, UR, PR, KPHI , DELTA, KIM,
& V1

COMMON/RAD/ETA
COMMON/LIN/LAM

COMMON/ INI/RCHJ, PCHJ , UCHJ
REAL MR,ML,MRP1,MLP1

REAL LAM,MUSQ

EPS=1.E-6

EPS1=1.E-3

IT=0

ITSTOP=20

KPHIP=KPHI*KIM

IF KPHI=1 , MIGHT HAVE A DETONATION

oo

IF(KPHI.EQ.1.AND.KPHIP.EQ.0) GO TO 111
IF(KIM.EQ.1.AND.KPHIP.EQ.O0) GO TO 111

CONSTRUCTION OF RIEMANN PROBLEM
ALFA 1S THE CONVERGENCE FACTOR

oo

ALFA=1.
ALFAM=1.-ALFA

INITIAL ML AND MR

o0

ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT(FR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

oo

RAV=0.5* (RL+RR)
PAV=0.5*(PL+PR)
=PAV/(RAV**GAMMA )
=RAV-LAM* (UR*RR-UL*RL)
PSTAR=A* (R**GAMMA )

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
IT=IT+1

IF PSTAR IS LESS THAN EPS1THEN PSTAR IS SET EQUAL
TO 1.0E-3 TO PREVENT PSTAR FROM BECOMING NEGATIVE

onNoO=00n0
o
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PSTAR=AMAX1(EPS1,PSTAR)
COMPUTE MR AND ML AT STEP Q+1

MLP1=COEFL*PSI (PSTAR/PL, GAMMA )
MRP1=COEFR*PSI (PSTAR/PR, GAMMA )
DIFML=ABS(1.-(MLP1/ML))
DIFMR=ABS(1.-(MRP1/MR))
ML=MLP1

=MRP1

COMPUTE NEW PRESSURE PSTAR

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
DIFPS=ABS(1.-(PSTARP/PSTAR))
IF(DIFPS.LT.EPS1) GO TO 40
IF(DIFML*DIFMR.LT.EPS1) GO TO 40
ALFA=ALFA/2.

ALFAM=1.-ALFA

IF(ALFAM.LT.EPS1) GO TO 40

IT=0

IF(DIFML.GT.EPS1) GO TO 10
IF(DIFMR.GT.EPS1) GO TO 10

COMPUTE USTAR AT END OF GCDUNOV JITERATION

PSTAR=AMAX1(EPS1,PSTAR)
USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)

BEGIN GLIMM'S METHOD

IRECL=1

IF(PSTAR.LT.PL) IREGL=2
IREGR=1

IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT

IF(XI.GE.X) GO TO 200

LEFT SIDE

IF(IREGL.EQ.2) GO TO 110
COMPUTE LEFT SHOCK SPEED
=UL-ML/RL

X=U*DT
IF(XI.GE.X) GO TO 100



SHOCK

COMPUTE SOUND

CL=SQRT (GAMMA*t
’ g gy
X=(UL~ *D

L**GAMMA)

~ '\N;’v- UTE

RSTAR=( PSTAR, 1./GAMMA)
STATE STAR

GAMMA*PSTAR/RSTAR)

D AN £

5 3\ ™m
*AJ i

TO 130

LEFT FAN

) *U

(”A””A .))*(XI/DT+CL+0.5* (GAMMA-1.
LCL+0. 5% (GAMMA-1.) * (UL-U)
RINT’~INT,(A*“AHUA))*'(1,/(”mhﬁﬁ-l.))

(R**GAMMA )

aal
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U=USTAR

P=PSTAR
GO TO 500
c
c RIGHT SIDE
c
200 IF(IREGR.EQ.2) GO TO 220
c
c COMPUTE RIGHT SHOCK SPEED
c
=UR+MR/RR
X=U*DT
IF(XI.GE.X) GO TO 210
c
c LEFT OF RIGHT SHOCK
c
R=-MR/(USTAR-U)
U=USTAR
P=PSTAR
GO TO 500
c
c RIGHT OF RIGHT SHOCK
c
210 R=RR
U=UR
P=PR
GO TO 500
c
c COMPUTE CONSTANT OF ~ SENTROPIC LAW-A
c
220 A=PR/(RR**GAMMA)
c
c COMPUTE DENSITY IN STATE STAR
c
RSTAR=(PSTAR/A)**(1./GAMMA)
c
c COMPUTE SOUND SPEED IN STATE STAR
c
CSTAR=SQRT (GAMMA *PSTAR/RSTAR)
X=(USTAR+CSTAR) *DT
IF(XI.GE.X) GO TO 230
c
c T.EFT OF RIGHT FAN
c
R=RSTAR
U=USTAR
P=PSTAR
GO TO 500
c
c COMPUTE SOUND SPEED IN RIGHT STATE
c
230 CR=SQRT(GAMMA*PR/RR)
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X=(UR+CR) *DT
IF(XI.GE.X) GO TO 240

IN RIGHT FAN

U=(2./(GAMMA+1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR)

RINT=CR+0.5* (GAMMA-1.)*(U-UR)

R=(RINT*RINT/(A*GAMMA) ) **(1./(GAMMA-1.))

P=A*(R**GAMMA)
GO TO 500

RIGHT OF RIGHT FAN
R=RR

U=UR

P=PR

GO TO 500

DETONATION CONDITIONS

CALCULATE CONDITIONS JUST BEHIND CJ DETONATION

B=-PR-DELTA* (GAMMA-1. ) *RR
MUSQ=(GAMMA-1.)/(GAMMA+1. )
C=(PR*PR)+2.*MUSQ*PR*RR*DELTA
PSTAR=-B+SQRT((B*B)-C)

RSTAR=(PSTAR* (GAMMA+1.)~-PR)*RR/(GAMMA*PSTAR)

UCJ=SQRT (GAMMA*PSTAR*RSTAR) /RR+UR
CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
USTAR=UCJ-CSTAR

PSTAR=PCHJ
USTAR=SQRT(ABS(UCHJ*UCHJ-V*V))
RSTAR=RCHJ

CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
UCJ=(USTAR,UCHJ ) * (CSTAR+UCHJ)
IF(KIM.EQ.1) GO TO 555

BEGIN GLIMM'S METHOD
X=UC.*DT

IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333

COMPUTE SOUND SPEED IN LEFT STATE
NEXT STATEMENTS TO333 NOT USED

CL=SQRT(GAMMA*PL/RL)
X=(UL+CL)*DT
IF(XI.GE.X) GO TO 444

LEFT OF RAREFACTION FAN



O()()::O()(:
S

woaOnN

222
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557

556

500

R=RL

U=UL

P=PL
KPHI=0

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
=PSTAR/(RSTAR**GAMMA )
IN RIGHT FAN

U=(2./(GAMMA+1.))*(XI/DT-CSTAR+0.5* (GAMMA-1. ) *USTAR)
RINT=CSTAR+0.5* (GAMMA-1. ) * (U-USTAR)
R=(RINT*RINT/(A*GAMMA) )**(1./{GAMMA-1.))

P=A* (R**GAMMA)

KPHI=0

GO TO 500

RIGHT OF D:TONATION

U=USTAR
P=PCHJ
R=RCHJ
KPHI=0

GO TO 500
=UR

P=PR

R=RR

V=0

GO TO 500

DETONATION FROM RIGHT TO LEFT

USTAR=SQRT(ABS (UCHJ*UCHJ-V1*V1))
UCJ=(USTAR/UCHJ ) * (CSTAR+UCHJ)
X=-UCJ*DT
IF(X1.LE.X) GO TO 556
IF(ETA.LT.3.5) GO TO 557
=-USTAR
P=PCHJ
R=RCHJ
V=Vl
KPHI=0
GO TO 500
U=UL
P=PL
R=RL
KPHI=1
=0
CONTINUE



RETURN
END

FUNCTION PS
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IF(J.NE.1) =KPHI*KPHI

IF(KPHIP.EQ. 1 AND.KIP.EQ. ) C 70 1
IF(KPHIPY.EQ.1.AND.KIPY. EQ 0) GO TO 10
TF(J.NE.1.AND.KPHIPP.EQ.1.AND.KIPP.EQ.O) GO TO 10
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MOMY=R#V-2, *DT*R*U*V /XX
E=E-2.*DT*U* (E+P) /XX
RHO( I, J)=DEN
UX(I,J)=MOMX/DEN
VY(I,J)=MOMY/DEN
POP=(GAMMA-1. ) * (E-KPHI *DELTA*DEN-0. 5*MOMX *MOMX/DEN-0 . 5 *MOMY *M
&OMY /DEN)
PRE(I,J)=AMAX1(EPS2, POP)
GO TO 100

RHO(I,J)=R

UX(I,J)=U

VY(I,J)=V

PRE(I,J)=P

CONTINUE

RETURN

END

SUBROUTINE SMOOTH TO DAMP THE OSCILLATIONS

SUBROUTINE SMOOTH(C1)
COMMON/OUT/TIME, NX,NY, RFO(101,101),PRE(101,101),UX(101,101)
COMMON/OWT /PHI (101, 101)
COMMON/AWT/VY(101,101),X(101),¥(101),DIST(101,101),

& IDUM(101,101)

DO 1 J=1,NY

RP=RHO(1,J)

UP=UX(1,J)

PP=PRE(1,J)

VP=VY(1,J)

NXM1=NX-1

DO 1 I=2,NXM1

IF(IDUM(I+1,J).EQ.0) GO TO 1

R=RHO(I,J)

U=UX(I,J)

V=VY(I,J)

P=PRE(I,J)

R1DEL=RHO(I,J)-RP

U1DEL=UX(I,J)-UP

P1DEL=PRE(I,J)-PP

V1DEL=VY(I,J)-VP

R2DEL=RHO(I+1,J)-R

U2DEL=UX(I+1,J)-U

P2DEL=PRE(I+1,J)-P

V2DEL=V¥(I+1,J)-V

R=R+C1* (ABS(U2DEL) *R2DEL-ABS (U1DEL) *R1DEL)
U=U+C1+(ABS(UZDEL) *U2DEL~ABS (U1DEL) *U1DEL)
P=P+C1* (ABS(U2DEL)*P2DEL-ABS(U1DEL) *P1DEL)
=V+C1*(ABS(U2DEL)*V2DEL-ABS (U1DEL) *V1DEL)

=RHO(I,J)

RHO(I,J)=R

UP=UX(1.J)

UX(I,J)=U
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CONTINUE

RETURN

END

SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS

SUBROUTINE LABELF (NX,NY,JCYL)
COMMON/AWT/VY (101, 101), X(101),¥(101),DIST(101,101),
IDUM(101,101)

no 1 I
DO 1 I=
IDUM(I,J
IF(1.EQ.NX.OR.J.EQ.NY) IDUM(I,J
1X1=30

1X2=24

1X3=20




I1X4=12

IY1=12

1Y2=20

1Y3=24

1Y4=30

DO 2 I=IX2,NX

DO 2 J=1Y1,1Y2

IDUM(I,J)=0

IF(I.EQ.IX2) IDUM(I,J)=4
IF(J.EQ.IY1.AND.I.LE.IX1) IDUM(I,J)=4
DO 3 I=IX3,NX

DO 3 J=1Y2,1Y3

IDUM(I,J)=0

IF(I.EQ.IX3) IDUM(I,J)=4
IF(J.EQ.IY2.AND.I.LE.IX2) IDUM(I,J)=4
DO 4 I=IX4,NX

DO 4 J=1Y3,1Y4

IDUM(I,J)=0

IF(I.EQ.IX4) IDUM(I,J)=4
IF(J.EQ.IY3.AND.I.LE.IX3) IDUM(I,J)=4
RETURN

END

SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS

SUBROUTINE LAPFEL(NX,NY, JCYL)
COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)

DO 1 J=1,NY

DO 1 I=1,NX

IDUM(I,J)=1

IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
NXF=NX+1

JCYLF=JCYL-1

NYM1=NY-1

DO 2 I=1,NX

IM=NXF- I

JCYLF=JCYLF+1

IF{JCYLF.GT.NYM1) GO TO 11

DO 2 J=JCYLF,NYM1

IDUM(IM, J+1)=0

IDUM(IM-1,J)=4

IDUM({IM-1,J+1)=4

RETURN

END

SUBROUTINE OUTPUT:QOUTPUT SECTION OF THE PROGRAM

SUBROUTINE OUTPUT

COMMON/ /DT, GAMMA ,RL,UL,PL.R,U,V,P,E,RR,UR, PR,KPHI ,DELTA, KIM
COMMON/OUT/TIME,6 NX,NY,RHO(101,101),PRE(101,101),UX(101,101)

COMMON/OW1/PHI(101,101)



COMMON/AWT /VY(101,101), X(

DIST(101,101),

& IDUM(101,101)

INTEGER PHI
WRIT

DO 20
"V ¥\‘Y¢\_'Y
WRITE(S,
WQITE(é
WRITE(S6,
WRITE (6,
WRITE(S6,
WRITE(6,

AANT T NITT
VCuA;‘LE

&Phl\;‘l){,gl
CONTINUE
RETURN
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SPHERICAL COORDINATES
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APPENDIX E
PRESSURE TIME HISTORIES AT THE WALL OF THE

INDIAN POINT CONTAINMENT

Pressure time histories at selected points on the wall of
the Indian Point containment are presented in this Appendix. Wall

pressures are normalized with respect to the initial pressure in the

containment, PO, and are shown as a function of dimensionless time

since initiation, tCC/r, where CO is the speed of sound at the initial
conditions and r is the radius of the cylinder and the dome. In the
Indian Point Containment r equals 20.7 m and at atmospheric initial
conditions r/CO = 0.06 sec. Results are shown for two initiation

points and two dimensionless heat release rates, q/RTO = 17 and 23.




Fiq. E.1 - Wall Pressure History at the Junction of
the Pase and the Cylincer (q/P.TO = 17;
Initiation at Base Center)
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Fig. E.2 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.3 - Wall Pressure H1story at Elevation 12.0 m of the
Cylinder (q/RT 17; Initiation at Base Center)



Fig. E.4 - Wall Pressure History at Elevation 18.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)




Fig. E.5 - Wall Pressure History at Elevation 24.0 m of the
Cylinder (Q/RT0 = 17; Initiation at Base Center)
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Fig. E.6 - Wall Pressure History at Elevation 30.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.7 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.B8 - Wall Pressure History at Elevation 42.0 m of the
Cylinder (q/RT° = 17; Initiation at Base Center)
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Fig. E.9 - Dome Pressure History at Elevation 47.0 m and Radius 20.7 m
(q/RTo = 17; Initiation at Base Center)
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Fig. E.10 - Dome Pressure History at Elevation 51.0 and Radius
19.4 m (q/RT
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= 17; Initation at Base Center)



Fig. E.11 - Dome Pressure History at Elevation 56.0 and Radius
17.6 m (q/RTO = 17; Initiation at Base Center)
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Fig. E.12 - Dome Pressure History at Elevation 61.0 and Radius
13.6 m (QIRT = 17, Initiation at Base Center)
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Fig. E.13 - Dome Pressure History at Elevation 64.0 m and
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Fig. E.14 - Dome Pressure History at Elevation 66.0 m and
Radius 9.6 m (QIRT° = 17; Initiation at Base Center)



Fig. E.15 - Pressure History 2t the Apex of the Dome
(qIRTo = 17; Initiation at Base Center)
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Fig. E.16 - Wall Pressure History at the Junction of the Base and
the Cylinder (q/RTo = 17; Initiation 34.5 Above Base)
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Fig. E.17 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RT0 = 17; Initiation 34.5 m Above Base)
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Fig. E.18 - Wall Pressure Historv at Elevation 12.0 m of the
Cylinder (Q/RTO = 17; Initiation 34.5 Above Base)




P/P

El

70
il

60

%0
v

44
J

30
|

20
1

10
)

|

A
NN

«Q

W
N

T R iy R
.S 2.2 2.3 3.6

tColr

Fig. E.19 - Wall Pressure History at Elevation 18.0 m of the

Cylinder (q/RTo = 17; Initiation 34.5 m Above Base)
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Fig. E.20 - Wall Pressure History at Elevation 24.0 m of the

Cylinder (a/RTo = 17; Initiation 34.5 m Above Base)
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.21 - Wall Pressure History at Elevation 30.0 m of the

Cylinder (q/RTo = 17; Initiation 34.5 m Above Base)
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Fig. E.22 - Wall Pressure History at Elevation 36.0 m of the

Cylinder (q/RTo = 17; Initiation 34.5 m Above Base)
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Fig. E.23 - Wall Pressure History at Elevation 42.0 m of the
Cylinder (q/RT = 17; Initiation 34.5 m Above Base)
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Fig. E.24 - Dome Pressure History at Elevation 47.0 m and
Radius 20.7 m (q/RT_ = 17; Initiation 34.5 m
Above Base) o
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Fig. E.25 - Dome Pressure History at Elevation 51.0 m and
Radius 19.4 m (q/RT_ = 17; Initiation 34.5m
Ahove Base) ’
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Fig. E.26 - Dome Pressure History at Elevation 56.0 m and

Radius 17.1 m (q/RTO = 17; Initiation 34.5 m
Above Base)
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Fig. E.27 - Dome Pressure History at Elevation 61.0 m and
Radius 13.6 m (q/RT_ = 17; Initiation 34.5 m
Atove Base) 9




Fig. E.28 - Dome Pressure History at Elevation 64.0 m and

Radius 9.6 m (q/RTO = 17; Initiation 34.5 m
Above Base)
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Fig. E.29 - Dome Pressure History at Elevation 66.0 and
Radius 5.6 m (q/RT0 = 17; Initiation 34.5 m
Above Base Center)
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(a/RT,

e History at the Apex of the Dome
= 17; Initation 34.5 m Above Base)



tco/r

. E.31 - Wall Pressure History at the Junction of the Base
and the Cylinder (Q/RTO = 23; Initiation 34.5 m
Above Base)
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Fig. E.32 - Wall Pressure History at Elevation 6.0 m of the

Cylinder (q/RT] = 23; Initiation 34.5 m Above Base)
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£.33 - Wall Pressure History at Elevation 12.0m of the Cylinder
(a/RT = 23: Initiation 34.5 m Above Base)
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E.34 - Wall Pressure History at Elevation 18.0 m of the
Cylinder (q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.35 - Wall Pressure History at Elevation 24.0 m of the Cylinder
(a/RT = 23; Initiation 34.5 m Above Base)
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Fig. E.36 - Wall Pressure History at Elevation 30.0 m of the Cylinder
(q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.37 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (Q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.38 - Wall Pressure History at Elevation 42.0 m of the Cylinder
(q/RTo = 23; Initiation 34.5 Above Base)
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Fig. E.39 - Dome Pressure History at Eilevation 47.0 m and Radius
20.7 m (q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.30 - Dome Pressure History at Elevation 51.0 m and
Radius 19.4 m (a/RT_ = 23; Initiation 34.5m
Above Base) .
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Fig. E.41 - Dome Pressure History at Elevation 56.0 m and Radius
17.6 m (q/RT = 25; Initiation 34.5 m Above Base)
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Fig. E.42 - Domg Pressure History at Elevation 61.0 m and
Radius 13.6 m (q/RT_ = 23; Initiation 34.5 m
Above Base) ’
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Radius 9.6 m (g/RT_ = 23; Initiation 34.5 m
Above Base) ”




Fig. E.44 - Dome Pressure History at Elevation 66.0 m and
Radius 5.6 m (q/RT_ = 23; Initiation 34.5 m
Above Base) "
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_ E.45 - Pressure History at the Apex of the Dome
(q/RTo = 23; Initiation 34.5 m Above Base)
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