Calculations of Hydrogen Detonations in Nuclear Containments by the Random Choice Method

Prepared by M. A. Delichatsios, M. B. Genadry, M. N. Fardis
Department of Civil Engineering
Massachusetts Institute of Technology

Prepared for
U.S. Nuclear Regulatory

Commission

NOTICE

This reoon was prepared as an account of work sponsoted by an aarncy of the United States Government. Neither the United States Governmicnt nor any aqency thereot, or any of theil emplovees. makes any warranty, expressed or implied, or assumes any legal hability of responsibility for any third party's use, or the results of such use of any intormation annaratus. product of process disclosed in this report, or represents that its use by such third party would not infringe privately owned inghts

Availability of Reference Materials Cited in NRC Publicztions

Most documentseited in NRC publications will be available trom one of the following sources

1. The NRC Public Document Roum, 1717 H Street, N. W Washington, DC 20555
2 The NRCIGPO Sales Prognam, U.S. Nuclear Requlatory Commission, Washington, DC 20555
2. The National Technical Information Service, Springfield, VA 22161

Although the listing that folliows represents the majority of documents cited in NAC publications it is not intended to be exhaustive
Feferenred documents available for inspection and copying for a fee from the NRC Public Docu ment Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulfetins, circulars, information notices, inspection and investigation notices, Licensee Event Reports; vendor reports and correspondence; Gorkmission papers: and applicant and licensee documents and correspondence
The following documents in the NUREG series are available for purchase from the NAC/GPO Sales Program: formal NAC staff and contractor reports. NRC-sponsored conference procecdings, and NRC booklets and brochures. Also avalitable are Pegutarory Guides. NRC requlations in the Code of Federal Regularions, and Nuclear Regulatory Commission issuances
Documents available trom the National Technical Information Service include NUREG series reports and technical renorts prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunmer agency to the Nuelear Regulatory Commission.
Documents available from public and special technical libraries include all open fiterature items, such as books, journal end periodical articles, and transactions. Federal Register notices, federal and state iegislation, and congressionat reports can usually be obtained from these libraries.
Documents such as theses, dissertations, foreign reports and transiat ons, and non. $\mathrm{N} A \mathrm{C}$ conference proceedings are available for purchase from the organization sponsoring the publication cited.
Single copies of NRC draft reports are available free upon written request to the Division of Tech nical Information and Document Cont.ol, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Coples of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for relerence use by the public. Codes and standards are usualiy copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway. New York, NY 10018.

Calculations of
 Hydrogen Detonations in Nuclear Containments by the Random Choice Method

Manuscript Completed: Decemoer 1981
Date Published: September 1982
Prepared by
M. A. Delichatsios, M. B. Genadry, M. N. Fardis
Department of Civil Engineering
Massachusetts Institute of Technology
Cambridge MA 02139
Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
NRC FIN B7085

ABSTRACT

Computer codes which simulate hydrogen detonators in planar, cylindrical, spherical and two-dimensional axisymmetric geometries have been developed. The computational method is based on the Random Choice Technique which can handle accurately sharp discontinuities. The detunation front is represented in the model as a discontinuity which changes the still unburnt gas to a completely burnt one, according to the Chapman-Jouguet conditions. Numerical results for one-dimensional geometries show good agreement with available analytical solutions. The one-dimensional code was modified to include coupling with an elastically deformable wall and the modified version was used to demonstrate that for typical concrete containment structures interaction of the waves with wall deformations has insignificant effects on the wave properties, and can be neglected. The two-dimensional axisymmetric code was used to calculate pressure time histories at the wall of a cylindrical containment capped with a semi-spherical dome. Dimensions were similar to the ones of the containment of the Indian Point Nuclear Power Plant. The detonations simulated had initiation at either the center of the base mat or at a point on the axis at approximately two-thirds the cylinder height, and were for two different intensities. Computed pressures included repeated reflections at the walls and died out within a few tenths of a second.
-v-
TABLE OF CONTENTS
PAGE
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
CHAPTER I - INTRODUCTION 1
1.1 Background Information 1
1.2 Hydrogen Combustion 2
1.3 Previous Work in the Area 3
1.4 Objective 4
CHAPTER II - COMPRESSIBLE FLOW EQUATIONS 7
2.1 One-Dimensional Cartesian Coordinate System 8
2.2 One-Dimensional Spherical and Cylindrical Coordinate Systems 9
2.3 Axisymmetric (Two-Dimensional Cylindrical) Coordinate Systems 10
2.4 Chapman-Jouguet (C-J) Conditions 11
CHAPTER III - NUMERICAL SOLUTION OF HYDROGEN DETONATION BY THE RANDOM CHOICE METHOD 19
3.1 Ore-Dimensional Plane Feometry 20
3.la Gas Dynamic Flows Without Detonation 20
3.1b A Method to Incorporate the Detonation Discontinuity in the Random Choice Method 27
3.2 Boundary Conditions 30
3.3 One-Dimensional Spherical Geometry 31
3.4 Axisymmetric (Two-Dimensional Cylindrical) Geometry 33
CHAPTER IV - COMPUTER CODE DEVELOPMENT AND RESULTS 37
4.1 One-Dimensional Planar Geometry 37

TABLE OF CONTENTS (CONTINUED)

PAGE
4.2 Deformable Wall 64
4.3 One-Dimensional Spherical Geometry 69
4.4 Axisymmetric Geometry 79
4.5 Sunmary 88
CHAPTER V - PRESSURE CALCULATIONS FOR THE INDIAN POINT CONTAINMENT 91
CHAPTER VI - SUMMARY AND CONCLUSIONS 101
NOMENCLATURE 103
REFERENCES 105
APPENDIX A - THE GODUNOV METHOD 107
APPENDIX B - THE COMPUTER PROGRAM CRTDET 111
B. 1 General Description 111
B. 2 Dictionary of the Key Terms in the Program 113
APPENDIX C - THE COMPUTER PROGRAM SPHDET 125
APPENDIX D - THE COMPUTER PROGRAM TWODIM 137
D. 1 Description of the Program 137
D. 2 Dictionary of Key Terms in TWODIM 137
APPENDIX E - PRESSURE TIME HISTORIES AT THE WALL OF THE INDIAN POINT CONTAINMENT 161
FIGURE NUMBER TITLE PAGE
2.4.1 Pressure Distribution Pehind Planar, Cylindrical and Spherical Detonation Fronts When $\gamma=1.4$ 15
2.4.2 Density Distribution Behind Planar, Cylindrical and Spherical Detonation Fronts When $\gamma=1.4$ 16
2.4.3 Velocity Distribution Behind Planar, Cylindrical and Spherical Detonation Fronts When $\gamma=1.4$ 17
3.1.1 Sequence of Riemann Problems on Grid. 22
3.1 .2 Sampling Procedure for the Glimm's Method 23
3.1 .3 Solution of the Riemann Problem 25
3.1 .4 Solution of the Detonation Problem 29
3.4.1 Direction of the Computation at Each Time Step for the Axisymmetric Problem 36
4.1.1 Non-Dimensional Pressure Distribution (planar geometry) for a lm Radius; 2 Initial Grid Points, Sigma $=0.8, R=U_{C J} J^{t} \ldots . . \quad 39$
4.1.2 Non-Dimensional Density Distribution (planar geometry) for a 1 m Radius; 2 initial Grid Points, Sigma $=0.8$ 40
4.1.3 Non-Dimensional Velocity Distribution (planar geometry) for a 1 m Radius; 2 Initial Grid Points, Sigma $=0.8$ 41
4.1.4 Pressure Distribution (planar geometry) for a Im Radius at Five Different Times; 2 Initial Grid Points, Sigma $=0.8$ 42
4.1.5 Density Distribution (planar geometry) for a lm Radius at Five Different Times; 2 Initial Grid Points, Sigma $=0.8$ 43
4.1.6 Velocity Distribution (planar geometry) for a 1m Radius at Five Different Times; Initial Grid Points, Sigma $=0.8$. 44

FIGURE NUMBER

TITLE

PAGE

4.1 .7
4.1.8 Non-Dimensional Density Distribution (planar geometry) for 1 m Radius; 2 Initial Grid Points, Sigma=0.4.47
4.1 .9 Non-Dimensional Pressure Distribution
(planar geometry) for a 1 m Radius; 2
Initial Grid Points, Sigma=0.4. 48
4.1 .104.1.11 Density Distribution (planar geometry)for a 1 m Radius at Five Different Times;8 Initial Grid Points, Sigma=0.8.50
4.1 .12 Velocity Distribution (planar geometry) for a Im Radius at Five Different Times; 8 Initial Grid Points, Sigma=0.8. 51
4.1.13 Non-Dimensional Pressure Distribution (planar geometry) for a 1 m Radius; 8 Initial Grid Points, Sigma=0.8. 52
4.1.14 Non-Dimensional Density Distribution (planar geometry) for 1 m Radius; 8 Initial Grid Points, Sigma=0.8. 53
4.1 .15 Non-Dimensional Velocity Distribution (planar geometry) for a $1 m$ Radius; 8 Initial Grid Points, Sigma=0.8. 54
4.1.16 Wall Pressure History for a 1 m Radius (planar geometry) 2 Initial Grid Points, Sigma $=0.8, \quad \Delta x=0.01$ 55
4.1 .17 Wal1 Density History for a 1 m Radius (planar geometry) 2 Initial Grid Points, Sigma $=0.8, \quad \Delta x=0.01$ 56

4.1 .18	Centerline Pressure History for a 1 m Radius (planar geometry) 2 Initial Grid Points, Sigma $=0.8, \Delta x=0.01 \ldots$.

4.1.19	Centerline Density History for a im Radius (planar geometry) 2 Initial Grid Points Sigma $=0.8, \Delta x=0.01$.

4.1.20 Wall Pressure History for a 20 m Radius (planar geometry) $\Delta x=0.1, p_{u}=1 \mathrm{~atm}$, $\rho_{u}=1.19 \mathrm{Kg} / \mathrm{m}^{3}$60
4.1 .21 Wall Density History for a 20 m Radius (planar geometry) $\Delta x=0.1, p_{u}=1 \mathrm{~atm}$, $p_{u}=1.19 \mathrm{Kg} / \mathrm{m}^{3}$ 61
4.1 .22 Centerline Pressure History for a 20 m Radius (planar geometry) $\Delta \mathrm{x}=0.1$, $p_{u}=1 \mathrm{~atm}, \rho_{u}=19 \mathrm{Kg} / \mathrm{m}^{3}$ 62
4.1 .23 Centerline Density History for a 20 m Radius (planar geometry) $\Delta x=0.1, p_{u}=1 \mathrm{~atm}$, $\rho_{\text {, }}=1.19 \mathrm{Kg} / \mathrm{m}^{3}$ 63
4.2 .1 Velocity Profile of the Deformable Wall 66
4.2 .2 Pressure History at the Deformable Wall 67
4.2.3 Density History at the Deformable Wall 68
4.3.1 Non-Dimensional Pressure Distribution; Spherical Geometry, Im Radius 70
4.3.2 Non-Dimensional Density Distribution; Spherical Geometry, 1m Radius 71
4.3.3 Non-Dimensional Velocity Distribution; Spherical Geometry, 1m Radius 72
4.3 .4 Pressure Distribution in a $1 m$ Radius Sphere at Five Different Times 74
4.3.5 Density Distribution in a 1 m Radius Sphere at Five Different Times 75
4.3 .6 Velocity Distribution in a $1 m$ Radius Sphere at Five Different Times 76

FIGURE NU:ABER

4.3.7 Pressure Profile at the Wall of a 1 m Radius Sphere $p_{u}=10100 \mathrm{~N} / \mathrm{m}^{2}, \rho_{u}=0.1188$ $\mathrm{kg} / \mathrm{m}^{3}$ 77
4.3 .84.3.94.3.104.4.1 Non-Dimensional Pressure Distributionfor the One-Dimensional SphericalProblem Using SPHDET82
4.4.2 Non-Dimensional Density Distribution for the One-Dimensional Spherical Problem Using SPHDET 83
4.4.3 Non-Dimensional Velocity Distribution for the One-Dimensional Spherical Problem Using SPHDET 84
4.4.4 Non-Dimensional Pressure Distribution for the One-Dimensional Spherical Problem Using the Axisymmetric Algorithm. 85
4.4.5 Non-Dimensional Density Distribution
for the One-Dimensional Spherical Problem Using the Axisymmetric Algorithm. 86
4.4.6 Non-Dimensional Velocity Distribution for the One-Dimensional Spherical Problem Using the Axisymmetric Algorithm 87
5.1 Geometry of the Containment of the Indian Point Nuclear Power Plant 92
5.2 Range of Interest of Hydrogen Concentration and Initial Temperature in the Containment. 94
5.3 Calculation Grid for the Indian Point Containment 96
E. 1 Wall Pressure History at the Junction of the Base and the Cylinder $\left(q / R T_{0}=17\right.$; Initiation at Base Center) 162
E. 2Wall Pressure History at Elevation 6.0 m of
the Cylinder $\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at BaseCenter)163
E. 3 Wall Pressure History at Elevation 12.0 m of the Cylinder ($q / \mathrm{RT}_{0}=17$; Initiation at Base Center) 164
E. 4 Wall Pressure History at Elevation 18.0 m of the Cylinder ($\mathrm{q} / \mathrm{RT}_{0}=17$; Initiation at Base Center) 165
E. 5 Wall Pressure History at Elevation 24.0 m of the Cylinder ($q / R T_{0}=17$; Initiation at Base Center) 166
E. $6 \quad$ Wall Pressure History at Elevation 30.0 m of the Cylinder ($\mathrm{q} / \mathrm{RT}_{0}=17$; Initiation at Base Center) 167
E. $7 \quad$ Wall Pressure History at Elevation 36.0 m of the Cylinc. $\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center) 168
E. 8 Wall Pressure History at Elevation 42.0 m of the Cylinder ($q / \mathrm{RT}_{0}=17$; Initiation at Base Center) 169
E. $9 \quad$ Dome Pressure History at Elevation 47.0 m and Radius 20.7 m (q/RT $=17$; Initiation at Base Center) 170
E. 10 Dome Pressure History at Elevation 51.0 m and Radius 19.4 m (q/RT $=17$; Initiation at Base Center) 171
E. 11 Dome Pressure History at Elevation 56.0 m and Radius 17.6 m (q/RT $=17$; Initiation at Base Center) 172
E. 12 Dome Pressure History at Elevation 61.0 m and Radius $13.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center) 173

E. 14 Dome Pressure History at Elevation 66.0 m and Radius $5.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center)175
E. 15 Pressure History at the Apex of the Dome $\left(\mathrm{q} / \mathrm{RT} T_{0}=17\right.$; Initiation at Base Center).176
E. 16 Wall Pressure History at the Junction of the Base and the Cylinder $\left(q / R T_{0}=17\right.$; Initiation 34.5 m Above Base177
E. 17 Wall Pressure History at Elevation 6.0 m of the Cylinder ($q /$ RT $_{0}=17$; Initiation 34.5 m Above Base)178
E. 18 Wall Pressure History at Elevation 12.0 m of the Cylinder $\left(q /\right.$ RT $_{0}=17$; Initiation 34.5 m Above Base)179
E. 19 Wall Pressure History at Elevation 18.0 m of the Cylinder ($q / R T_{0}=17$; Initiation 34.5 m Above Base) 180
E. 20 Wall Pressure History at Elevation 24.0 m of the Cylinder $\left(q /\right.$ RT $_{0}=17$; Initiation 34.5 m Above Base)181
E. 21 Wall Pressure History at Elevation 30.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation 34.5 m Above Base) 182
E. 22 Wall Pressure History at Elevation 36.0 m of the Cylinder $\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base) 183
E. 23 Wall Pressure History at Elevation 42.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation 34.5 m Above Base)184
E. 24 Dome Pressure History at Elevation 47.0 m and Radius $20.7 \mathrm{~m}\left(q / R T_{0}=17\right.$; Initiation 34.5 m Above Base) 185
E. 25 Dome Pressure History at Elevation 57.0 m and Radius $19.4 \mathrm{~m}\left(q /\right.$ RT $_{0}=17$; Initiation 34.5 m Above Base)

E. 26	Dome Pressure History at Elevation 56.0 m and Radius $17.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base)

E. 27 Dome Pressure History at Elevation 61.0 m and Radius $13.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base) 188
E. 28 Dome Pressure History at Elevation 64.0 m and Radius $9.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base) 189
E. 29 Dome Pressure History at Elevation 66.0 m and Radius 5.6 m ($\mathrm{q} /$ RT $=17$; Initiation 34.5 m Above Base Center). 190
E. 30 Pressure History at the Apex of the Dome (q/RT ${ }_{0}=17$; Initiation 34.5 m Above Base) 191
E. 31 Wall Pressure History at the Junction of the Base and the Cylinder $\left(q / R T_{0}=23\right.$; Initiation 34.5 m Above Base) 192
E. 32 Wall Pressure History at Elevation 6.0 m of the Cylinder $\left(q / R T_{0}=23\right.$; Initiation 34.5 m Above Base) 193
E. 33 Wall Pressure History at Elevation 12.0 m of the Cylinder ($q / R T_{0}=23$; Initiation 34.5 m Above Base) 194
E. 34 Wall Pressure History at Elevation 18.0 m of the Cylinder ($q / R T_{0}=23$; Initiation 34.5 m Above Base) 195
E. 35 Wall Pressure History at Elevation 24.0 m of the Cylinder $\left(q / R T_{0}=23\right.$; Initiation 34.5 m Above Base) 196
E. 36 Wall Pressure History at Elevation 30.0 m of the Cylinder $\left(\mathrm{q} / \mathrm{RT}_{0}=23\right.$; Initiation 34.5 m Above Base) 197
E. 37 Wall Pressure History at Elevation 36.0 m of the Cylinder $\left(q / R T_{0}=23\right.$; Initiation 34.5 m Above Base) 198
FIGURE NUMBERTITLEPAGE
E. 38 Wall Pressure History at Elevation 42.0 m of the Cylinder $\left(q / R^{\prime}=23\right.$; Initiation 34.5 m Above Base) 199
E. 39 Dome Pressure History at Elevation 47.0 m andRadius 20.7 m ($q /$ RT $=23$; Initiation34.5 m Above Base)200
E. 40 Dome Pressure History at Elevation 51.0 mand Radius 19.4 m ($\mathrm{q} / \mathrm{RT}_{\mathrm{C}}=23$; Initiation34.5 m Above Base)201
E. 41 Dome Pressure History at Elevation 56.0 m
and Kadius $17.6 \mathrm{~m}(\mathrm{q} / \mathrm{RT}=23$; Initiation34.5 m Above Base)202
E. 42 Dome Pressure History at Elevation 61.0 m and Radius 13.6 m (q/RT $=23$; Initiation 34.5 m Above Base) 203
E. 43 Dome Pressure History at Elevation 64.0 mand Radius 9.6 m (q/RT $=23$; Initiation34.5 m Above Base)204
E. 44 Dome Pressure History at Elevation 66.0 mand Radius 5.6 m (q/RT - 23; Initiation34.5 m Above Base)205
E. 45 Pressure History at the Apex of the Dome $\left(q / R T_{0}=23\right.$; Initiation 34.5 m Above Base) 206

CHAPTER I

INTRODUCTION

1.1 Background Information

After the Three Mile Island accident of March 28, 1979, questions haye been raised concerning the safety of Nuclear Power Plants if a rapid hydrogen explosion occurs.

Internal explosions are a severe test for the integrity of the intainment structure of Nuclear Power Plants. In Light-WaterReactors (LWR) such events may result from hydrogen detonations (due to exothermic chemical reactions between hydrogen and oxygen) or steam explosions. Hydrogen is generated from the coolant water, both during normal operations and during accidents. Sources of hydrogen during normal operation include aqueous corrosion of core metals, electrolysis and radiolysis. During an accident that involves core heatun, hydrogen may be produced in the core by the high-temperature reaction of water with metals, namely with zirconium from the zircaloy fuel cladding and with iron from the molten steel. Large quantities of hydrogen gas may thus accumulate in the reactor pressure vessel, as was actually the case in the Three Mile Island accident. The sources of oxygen are primarily in-leakage of air, and again, water electrolysis and radiolysis.

In the event of such internal explosions, the consequences could be catastrophic as they may cause the failure of several Engineering Safety Systems and hence, the containment structure is the last line of defense against early release of radioactive fission-products to the atmosphere.

1.2 Hydrogen Combustion

If the hydrogen is homogeneously distributed in a containment, deflagrations or detonations may occur if the composition of the hydrogen-air mixture falls within the corresponding range on the Shapiro and Moffette [1.1] tripartite diagram. Flammability limits depend on the pressure, temperature and direction of the flame. Considerable uncertainty exists on the exact location of the detonability limits. Shapiro and Moffette assumed these limits to be 19% and 45% hydrogen for air-hydrogen mixtures and drew the limits conservatively, almost parallel to the flammability limits. Detonation 1 imits also depend on the pressure and were found to be equal to 20% and 65% in hydrogen-air mixtures at room pressure and temperature [1.2].

Detonation is a shock wave driven and sustained by the chemical energy released from oxygen-hydrogen reaction. The shock wave and the chemical reaction propagate together at a supersonic speed relative to the burnt medium. The shock front is characterized by an abrupt increase in pressure, temparature and density of the gas and by a net forward movement of the gas particies.

Detonation may start as a result of minor sparks, contact to metal surface, temperature above the spontaneous ignition temperature, minor shock propagating in the gas or by transition from deflagration. Although a detonation is very unlikely to happen in a LWR containment, the possibility should not be disregarded because of the high temperature and pressure, and the intense radiation in case of an accident.

1.3 Previous Work in the Area

The effect of the quasi-static increase of pressure (resulting from slow burning) on containments integrity has been studied by the U.S.N.R.C. [1.3] and Fardis [1.4]; however, little has been done on the effect of a detonation on the containment structure.

Morrison et al., [1.5] have treated the hydrogen detonation and steam explosion in an over-simplified manner. They modeled these phenomena as TNT explosions occurring at the center of a containment (idealized as a sphere), through an equivalence betiveen released energy and TNT mass. Then they computed the peak overpressure at a distance equal to the containment radius. They neglected the effect of the reflection at the wall pressure (the reflection can increase the overpressure by a factor of the order of 2 to 3).

In a better attempt, Carbiener et a1. [1.6] tried to solve the same problem; however, they neglected the fact that the
shock pressure takes a finite time to decay from its Chapman-Jouguet plane to the steady state pressure (the Chapman-Jouguet plane is the detonation front plane); thus, the impulse calculated on the basis of this assumption may be $300-400$ times smaller. They also neglected the effect of repeated reflections.

After the Three Mile Island accident, the interest in this area rose again; Byers [1.] studied the effect of the hydrogen detonation on the containment structure using a code based on "artificial viscosity". The code was originally used for continuum mechanics problems and it is difficult to adapt it to hydrogen detonations. Running such a program requires a large amount of CPU time.

1.4 Objective

Development of a numerical model able to predict correctly the behavior of the gas in an axisymmetric containment in case of an explosion is required in order to assess the capability of the structure to contain the explosion. Because of many uncertainties in the physical models, it is very difficult to develop a computer program to predict the initiation and development of a hydrogen detonation. It has been assumed in this work that a hydrogen detonation can be developed instantaneously after ignition. Such conditions present a higher challenge for the containment structure since pressure waves induced by detonation are expected to be larger than pressure waves induced by a slow combustion (deflagration).

In this research, a reliable computer code is developed capable of solving the hydrogen detonation problem for axisymmetric geometries.

The gas dynamics equations for planar, cylindrical and axisymmetric geometries are derived in Chapter II; the following assumptions are made:

1) homogeneous mixing of the hydrogen with steam and air in the containment volume,
2) the energy due to radiation is negligible
3) heating of the containment wall by the gases is negligible.

The Random Choice Technique is used for solving numerically the equations of motion. Chapter III includes the principles, the advantages and the implementation of the method for planar, spherical and axisymmetric geometries. Validation of the method, pressure histories and interactions with the wall are included in Chapter IV. Chapter V presents the application of the two-dimensional code in computing the pressure histories generated by a hydrogen detonation in a realistic nuclear containment building. The conclusions are summarized in Chapter VI.

CHAPTER II

COMPRESSIBLE FLOW EQUATIONS

In this chapter the basic gas dynamics equations which constitute the starting point of the analysis are presented. The derivation can be found in any gas dynamics book (see for example Landau \& Lifshitz [2.1]).

The equations describing the motion of a compressible inviscid gas are:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\rho \nabla \cdot \underset{\sim}{u}=0, \tag{2.1a}\\
& \frac{\partial u}{\partial t}+\underset{\sim}{u} \cdot \nabla \underset{\sim}{u}=-\frac{1}{\rho} \nabla p, \tag{2.1b}\\
& \frac{\partial e}{\partial t}+\nabla \cdot(e+p) \underset{\sim}{u}=\rho Q, \tag{2.1c}
\end{align*}
$$

where ρ is the density, y is the velocity, p is the pressure, e is the total energy per unit volume, and t is time. The energy due to external sources or sinks, Q, is considered to be equal to zero. The total energy, e, is given by

$$
\begin{equation*}
o \varepsilon+\frac{1}{2} p|\underset{\sim}{u}|^{2}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
+q \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{i}=\frac{1}{\gamma-1} \frac{p}{\rho} . \tag{2.4}
\end{equation*}
$$

In equations $(2.2),(2.3)$ and $(2.4) \varepsilon_{i}$ is the internal energy per unit mass, γ is a gas constant equal to $C_{p} / C_{v}, \gamma>1$ and q is the energy released by chemical reactions.

2.1 One-Dimensional Cartesian Coordinate System

The equations in one-dimensional cartesian coordinate system follow directly from equations (2.1). The gradient and divergence are

$$
\begin{equation*}
\nabla \phi=\frac{\partial \phi}{\partial x} \underset{\sim}{i}, \tag{2.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot \underset{\sim}{u}=\frac{\partial u x}{\partial x}, \tag{2.1.2}
\end{equation*}
$$

where $\underset{\sim}{i}$ is the unit vector in the x direction, and $\underset{\sim}{u}=u_{x}{\underset{\sim}{i}}_{i}$. After rearranging the gas dynamics equations, we get:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial m}{\partial x}=0 \tag{2.1.3a}\\
& \frac{\partial m}{\partial t}+\frac{\partial}{\partial x}\left(\frac{m^{2}}{\rho}+p\right)=0 \tag{2.1.3b}\\
& \frac{\partial e}{\partial t}+\frac{\partial}{\partial x}\left(\frac{m}{p}(e+p)\right)=0 \tag{2.1.3c}
\end{align*}
$$

where $m=\rho u_{x}$ is the momentum flux. Observe that the equations in onedimensional cartesian system can be written in a conservation form without source or sink terms.

2.2 One-Dimensional Spherical and Cylndrical Coordinate Systems

$$
\begin{equation*}
\nabla \phi=\frac{\partial \phi}{\partial r} \underset{\sim}{j}, \tag{2.2.1}
\end{equation*}
$$

and
where $\underset{\sim}{j}$ is the unit vector in the r direction and $n=3$ for spherical, $n=2$ for cylindrical coordinates.

By inserting these relations in the gas dynamics equations (2.1), we obtain

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial m}{\partial r}=-(n-1) \frac{m}{r} \tag{2.2.3a}\\
& \frac{\partial m}{\partial t}+\frac{\partial}{\partial r}\left(\frac{m^{2}}{\rho}+p\right)=-(n-1) \frac{m^{2}}{\rho r} \tag{2.2.3b}\\
& \frac{\partial e}{\partial t}+\frac{\partial}{\partial r}\left(\frac{m}{\rho}(e+p)\right)=-(n-1) \frac{m}{\rho r}(e+p) \tag{2.2.3c}
\end{align*}
$$

where in this case, $m=\rho u_{r}$ is the momentum flux and u_{r} is the radial velocity. Observe that in cylindrical or spherical coordinates, the equations have sink terms.

2.3 Axisymmetric (Two-Dimensional Cylindrical) Coordinate System

In a two-dimensional cylindrical coordinate system, the gradient and the divergence are

$$
\begin{align*}
& \nabla \phi=\frac{\partial \phi}{\partial r} \underset{\sim}{j}+\frac{\partial \phi}{\partial z} \underset{\sim}{k}, \tag{2.3.1}\\
& \nabla \cdot \underset{\sim}{u}=\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}+\frac{u_{z}}{r}, \tag{2.22}
\end{align*}
$$

where $\underset{\sim}{j}$ and $\underset{\sim}{k}$ are unit vectors in the r and z directions and

$$
\underset{\sim}{u}=u_{r} \underset{\sim}{j}+u_{z} k .
$$

The gas dynamics equations for the axisymmetric problem become

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial m_{r}}{\partial r}+\frac{c m_{z}}{\partial z}=-\frac{m_{r}}{r}, \\
& \frac{\partial m_{r}}{\partial t}+\frac{\partial}{\partial r}\left(\frac{m_{r}^{2}}{\rho}+p\right)+\frac{\partial}{\partial z}\left(\frac{m_{r}^{m} z}{\rho}\right)=-\frac{m_{r}^{2}}{\rho r}, \\
& (2.3 .3 a) \\
& \frac{\partial m_{z}}{\partial t}+\frac{\partial}{\partial r}\left(\frac{m_{r}^{m} z}{\rho}\right)+\frac{\partial}{\partial z}\left(\frac{m_{z}^{2}}{\rho}+p\right)=-\frac{m_{r}^{m} z}{\rho r}, \\
& \frac{\partial e}{\partial t}+\frac{\partial}{\partial r}\left(-\frac{m_{r}}{\rho}(e+p)\right)+\frac{\partial}{\partial z}\left(\frac{m_{z}}{\rho}(e+p)\right)=-\frac{m_{r}}{\rho r}(e+p), \\
& (2.3 .3 d)
\end{aligned}
$$

where $m_{r}=\rho u_{r}$ is the momentum flux in the radial direction and $m_{z}=\rho u_{z}$ is the momentum flux in the z direction.

Equations (2.3.3) can be written in the general vector form used by Sod (1980)

$$
\begin{equation*}
\underset{\sim}{U}+\underset{\sim}{F}(\underset{\sim}{U}) r+\underset{\sim}{G} \underset{\sim}{U}(\underset{z}{U}=-\underset{\sim}{W}(\underset{\sim}{U}), \tag{2.3.4}
\end{equation*}
$$

where subscripts indicate differentiation. In equation (2.3.4)
$\underset{\sim}{U}=\left[\begin{array}{l}\rho \\ m_{r} \\ m_{z} \\ e\end{array}\right], \underset{\sim}{\underset{\sim}{U}(\underset{\sim}{U})}=\left[\begin{array}{l}m_{2}^{r} \\ m_{r}^{2} / \rho+p \\ m_{r} m_{z} / \rho \\ m_{r}(e+p) / \rho\end{array}\right], \underset{\sim}{G}(\underset{\sim}{U})=\left[\begin{array}{l}m_{z} \\ m_{r} m_{z} / \rho \\ m_{z}^{2} / \rho+p \\ m_{z}(e+p) / \rho\end{array}\right], \underset{\sim}{\underset{\sim}{W}(\underset{\sim}{U})}=\left[\begin{array}{l}m_{r} / r \\ m_{r}^{r} / \rho r \\ m_{r}^{m} / \rho r \\ m_{z} \\ m_{z}(e+p) / \rho r\end{array}\right]$
It is worth noticing at this point that equations (2.1.3) for the one-dimensional cartesian problem can be recovered from equation (2.3.4) by setting $\underset{\sim}{G}(\underset{\sim}{U})=\underset{\sim}{U}(\underset{\sim}{U})=0$. Similarly, equations (2.2.3) can be obtained by taking $\underset{\sim}{G}(\underset{\sim}{U})=0$.

2.4 Chapman-Jouguet ($C-J$) Conditions

The one-dimensional cartesian equations (section 2.1) can be solved in a closed form (see Williams [2.2]) or Courant and Friedrich [2.3]).

In the following discussion the subscript u refers to the unburnt gas (i.e., gas which has not yet undergone chemical reaction) and the subscript b refers to the burnt gas. By defining

$$
w_{b}=u_{b}-U \text { and } w_{u}=u_{u}-U \text {, }
$$

where U is the velocity of the reaction zone and U is the particle velocity in the Eulerian reference frame, we can express the continuity and momentum equation by

$$
\begin{align*}
& \rho_{b} w_{b}=\rho_{u} w_{b}=-M \tag{2,4,1}\\
& \rho_{u} w_{u}^{2}+p_{u}=\rho_{b} w_{b}^{2}+\rho_{b} . \tag{2.4.2}
\end{align*}
$$

From these relations we can deduce

$$
\begin{equation*}
-M^{2}=\left(p_{b}-p_{u}\right) /\left(\tau_{b}-\tau_{u}\right), \tag{2.4.3}
\end{equation*}
$$

where $\tau=1 / \rho$. From the energy equation an expression for τ_{b} in function of $\tau_{u}, \gamma, q, p_{u}$ and p_{b} can be derived

$$
\begin{equation*}
\tau_{b}=\tau_{u}\left(\frac{p_{u}+\mu^{2} p_{b}}{\mu^{2} p_{u}+p_{b}}\right)+\frac{2 \mu^{2} q}{\mu^{2} p_{u}+p_{b}} \tag{2.4.4}
\end{equation*}
$$

where $\mu^{2}=\frac{\gamma-1}{\gamma+1}$; in deriving equation (2.4.4), it has been assumed that $\gamma_{b}=\gamma_{u}=\gamma$.

A C-J detonation moves with respect to the burnt gas with a velocity equal to the velocity of sound in the burnt gas, i.t.,

$$
\begin{equation*}
\left|w_{b}\right|=c_{b}=\left(\frac{\gamma p_{b}}{\rho_{b}}\right)^{1 / 2} \tag{2.4.5}
\end{equation*}
$$

Using equations (2.4.1), (2.4.2) and (2.4.5) we can find an expression for p_{b},

$$
\begin{equation*}
p_{b}^{2}+2 b p_{b}+c=0 \tag{2.4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
b=-p_{u}-q \rho_{u}(\gamma-1)^{+} \tag{2.4.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
c=p_{u}^{2}+2 \mu^{2} p_{u}{ }_{u} q \tag{2.4.7b}
\end{equation*}
$$

A trivial salculation shows that $b^{2}-c \geq 0$ if $\gamma \geq 1$ and $a \leq 0$ (exothermi reaction). Thus,

$$
\begin{equation*}
p_{c j}=p_{b}=-b+\left(b^{2}-c\right)^{1 / 2} \tag{2.4.8}
\end{equation*}
$$

where the + sign is mandatory since a detonation is compressive. Therefore, given the properties of the unburnt gas and the energy per unit mass released by the combustion, we can find the pressure behind a $C-J$. detonation; equation (2.4.4) is used to find the density $\rho_{c j}$. From equation (2.4.1) we find the expression for the detonation speed,

$$
\begin{equation*}
u_{c j}=\left(\rho_{u} u_{u}+\left(\gamma p_{c j} / \rho_{c j}\right)^{1 / 2}\right) / \rho_{u}, \tag{2.4.9}
\end{equation*}
$$

and then,

$$
\begin{equation*}
u_{c j}=U_{c j}-c_{c j} \tag{2.4.10}
\end{equation*}
$$

If a $\mathrm{C}-\mathrm{J}$ detonation occurs, it is followed by a rarefaction wave to adjus* the boundary conditions. For a still wall behind the detonation, the gas has to adjust itself to a zero velocity at the wall. A non-dimensional analysis has been performed by Taylor [2.5] to deter-

[^0]mine the behavior of the gas behind a detonation if bounded by a wall. The resulting curves are shown in Figures 2.4.1-3. The solution of this planar problem was obtained by taking into account the consistency of the Riemann invariants in the rarefaction region. The solution is hence dependent on the gas constant γ. It is seen from the figures that the gas has constant properties until about a mid-distance between the wall and the detonation front; at this point a discontinuity occurs and the velocity starts increasing linearly towards the C-J velocity; the equations describing the pressure and density curves are polynomials of order 5 and 7.

An analysis similar to Taylor's has been performed for radially symmetric detonations by Barenblatt et al.[2.6]. For $\gamma=1.4$ the results are shown in Figures 2.4.1-3. It can be seen that the gradients of the velocity, pressure and density near the detonation front are larger in the cylindrical coordinate system than in the planar one. They become even larger for a spherical detonation.

In the next chapter we will present the numerical techniques used for solving the equations of motion.
-15-

FIGURE 2.4.1: PRESSURE DISTRIBUTIOR BEHIND PLANAR, CYLINDRICAL AND SPHERICAL DETONATION FRONTS WHEN $\gamma=1.4$

FIGURE 2.4.2: DENSITY DISTRIBUTION BEHIND PLAMIR, CYLINDRICAL AND SPHERICAL DETONATION FRONTS WHEN $\gamma=1.4$

FIGURE 2.4.3: VELOCITY DISTRIBUTION BEHIND PLANAR, CYLINDRICAL AND SPHERICAL DETONATION FRONTS WHEN $\gamma=1.4$

CHAPTER III

NUMERICAL SOLUTION OF HYDROGEN DETONATION BY THE RANDOM CHOICE METHOD

The gas dynamics equation (see Chapter II) form a non-linear unsteady hyperbolic system. A general analytic solution of the gas dynamics equations is not possible for an arbitrary geometry including repeated reflections from walls. Various numerical methods have been developed to solve these equations (see e.g. Sod [3.1]):

1) Finite-difference methods;
2) The random choice method; and recently:
3) Spoctral transformation and finite element methods. The finite-difference methods have the disadvantage to broaden, a time increases, expected discontinuities (like shock waves) of the flow. Recently correction terms have been proposed to counteract the diffusion of the width of a discontinuity (see Boris and Book [3.2]). Spectral and finite element methods are promising because they may reduce considerably the computation time; however, they are still in an experimental stage.

A method that produces infinitely sharp shocks is the method of Glimm [3.3]. Alexander Chorin [2.4] developed and applied Glimm's method for the fluid dynamical part of a combusting gas flow; here an artificial amount of diffusion would grossly distort those phenomena, like flame propagation, which depend on the rage of energy production. For
these reasons, we have decided to use in this program the random choice method to calculate the pressure histories generated by hydrogen detonations in a nuclear reactor containment.

The random choice method is described in the following sections, for one-dimensional plane, spherical and axisymmetric geometries.

3.1 One-Dimensional Plane Geometry

3.1a Gas dynamic flows without detonations

For one-dimensional plane geometry, the equations $i \rightarrow n$ be written in the following form:

$$
\begin{equation*}
{\underset{\sim}{U}}_{\mathrm{U}}+\underset{\sim}{F}(\underset{\sim}{U})_{x}=0 \tag{3.1.1}
\end{equation*}
$$

where

$$
\underset{\sim}{\mathrm{U}}=\left[\begin{array}{l}
\rho \\
m \\
e
\end{array}\right] \quad \text { and } \quad \underset{\sim}{F}(\underset{\sim}{U})=\left[\begin{array}{c}
m \\
m^{2} / \rho+p \\
(m / \rho)(e+p)
\end{array}\right]
$$

We discretize the time in intervals of length Δt and the space in intervals Δx. The solution advances at each grid point in time from t to $t+\Delta t$ by first calculating the values of the variables at mid grid points at time $t+\Delta t / 2$ and then, advancing in a similar fashion the solution to time $t+\Delta t$. The solution at each half time siap is found by solving a Riemann problem between adjacent grid points. The solution is evaluated at times $n \Delta t$, where n is a positive integer, at the spacial grid points $i \Delta x$, where $i=0, \pm 1, \pm 2, \ldots$, and at times $\left(n+\frac{1}{2}\right) \Delta t$ at $\left(i+\frac{1}{2}\right) \Delta x$.

Let u_{i}^{n} approximate $\underset{\sim}{U}(i \Delta x, n \Delta t)$ and $u_{i+1 / 2}^{n+1 / 2}$ approximate $\underset{\sim}{U}\left(\left(i+\frac{1}{2}\right) \Delta x\right.$, $\left.\left(n+\frac{1}{2}\right) \Delta t\right)$. To find $u_{i+1 / 2}^{n+1 / 2}$, consider the system (3.1.1) assuming piecewise constant initial data (time $t \equiv n \Delta t$)

$$
\begin{aligned}
\underset{\sim}{U}(x, n \Delta t) & =u_{i+1}^{n}, \quad x \geq\left(i+\frac{1}{2}\right) \Delta x, \\
& =u_{i}^{n}, \quad x<\left(i+\frac{1}{2}\right) \Delta x .
\end{aligned}
$$

This defines a sequence of Riemann problems. If $\Delta t<\Delta x / 2(|u|+c)$, where c is the local sound speed and $|u|$ is the absolute value of the particle velocity, the waves generated will not interact. Hence, the solution $V(x, t)$ to the Riemann problem can be combined into a single exact solution (see Figure 3.1.1). The solution at the time step $t+\Delta t / 2$ is found, following Glimm's method, by sampling the exact solution to the Riemann problem $V(x, t)$ at time $t+\Delta t / 2$. Let ξ_{n} be a uniformly distributed random variable in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Define

$$
\begin{equation*}
\frac{u^{n+1 / 2}}{i+1 / 2}=v\left(\left(i+\xi_{n}\right) \Delta x,\left(n+\frac{1}{2}\right) \Delta t\right) ; \tag{3.1.3}
\end{equation*}
$$

(see Figure 3.1.2).
At each time step the solution is approximated by a piecewise constant function. The solution is then advanced in time exactly and the new values are sampled.

A method of choosing the random variable ξ_{n} has been studied by Chorin $[2.4,3.4]$. He suggested choosing one random variable ξ

FIGURE 3.1.1: SEQUENCE OF RIEMANN PROBLEMS ON GRID

FIGURE 3.1.2: SAMPLING PROCEDURE FOR THE GLIMM'S METHOD
per time level rather than one for each point and each time level. In order that the variance of the solution be further reduced by making ξ reach approximate equidistribution over $\left[-\frac{1}{2}, \frac{1}{2}\right]$ at a faster rate, Chorin [2.4] suggested the following procedure. Let m_{1}, m_{2}, $m_{1}<m_{2}$ be two mutually prime integers. Consider the sequence of integrers

$$
\begin{aligned}
& n_{0} \text { given, } \quad n_{0}<m_{2} \\
& n_{j+1}=\left(n_{j}+m_{1}\right)\left(\bmod m_{2}\right)
\end{aligned}
$$

then,

$$
\xi_{j}^{\prime}=\left(n_{j}+\xi_{j}\right) / m_{2},
$$

where ξ_{j} is the randon number and ξ_{j}^{\prime} is the pseudorandom nuriber which is actually used for sampling; j indexes the time.

In each time step, the solution consists of three states: S_{r}, S_{ℓ}, and a middle state S_{\star} with $u=u_{\star}, p=p_{\star}$, separated by waves which may be either shock or rarefaction waves. A slip line $\frac{d x}{d t}=u_{\star}$ separates the gas initially at $x<\left(i+\frac{1}{2}\right) \Delta x$ from the gas initially at $x \geq\left(i+\frac{1}{2}\right) \Delta x$ with possibly different values of f_{\star} but equal values of u_{\star} and p_{\star} (see Figure 3.1.3).

The first step is to calculate the pressure p_{\star} and the velocity u_{\star} in state S_{\star}. This is done by a method due to Godunov [3.5]. The outline of this method can be found in Appendix A. Now there are four cases to be considered:

FIGURE 3.1.3: SOLUTION OF THE RIEMANN PROBLEM

Case 1 The sample point P lies to the right of the slip line ($\xi^{\prime} \Delta x \geq u_{\star} \frac{\Delta t}{2}$), and the right wave is a shock ($p_{\star}>p_{r}$);

Case $2 P$ lies to the right of the slip line and the right wave is a rarefaction wave $\left(\xi^{\prime} \Delta x \geq u_{\star} \frac{\Delta t}{2}\right.$ and $\left.P_{\star} \leq P_{r}\right)$;

Case $3 P$ lies to the left of the slip line and the left wave is a shock $\left(\xi^{\prime} \Delta x<u_{\star} \frac{\Delta t}{2}\right.$ and $\left.p_{\star}>p_{\ell}\right)$; and

Case 4 P lies to the left of the slip line and the left wave is a rarefaction wave ($\xi^{\prime} \Delta x<u_{\star} \frac{\Delta t}{2}$ and $\left.p_{\star} \leq p_{\ell}\right)$.

For Case 1, the velocity, U_{r} of the right shock can be found by using equation (A.2). If P lies to the right of the shock line $d x / d t=U_{r}$, we have $p_{p}=p_{r}, u_{p}=u_{r}, p_{p}=p_{r}$. If p lies to the left of the shock, $u_{p}=u_{\star}, p_{p}=p_{\star} ; p_{r}=p_{\star}$ can be found from equation (A.i). In solving Case 2 we let $c=(\gamma p / \rho)^{1 / 2}$ be the sound speed. If P lies to the right of the rarefaction, $\rho_{p}=\rho_{r}, u_{p}=u_{r}, p_{p}=p_{r} ;$ If P lies to the left of the rarefaction $\rho_{p}=\rho_{\star}, u_{p}=u_{\star}, p_{p}=p_{\star} ; \rho_{\star}$ is found from the constancy of the Riemann invariant

$$
r_{r}=2 c_{\star}(\gamma-1)^{-1}-u_{\star}=2 c_{r}(\gamma-1)^{-i}-u_{r} .
$$

If P lies inside the rarefaction, p_{p}, u_{p} and p_{p} can be derived by equating the slope of the characteristic $d x / d t=u+c$ to the slope of the line defined by the origin (which in this case is the grid point) and P

$$
u_{p}+c_{p}=2 \xi^{\prime} \frac{\Delta x}{\Delta t},
$$

then using the constancy of the Riemann invariant and the isentropic law $\mathrm{pp}^{-\gamma}=$ constant.

Cases 3 and 4 are essentially identical to cases 1 and 2.

3.1.b A method to incorporate the detonation discontinuity in the random choice method

The objective of the present work was to predict pressure histories generated by hydrogen detonations in an enclosure. It is assumed that a hydrogen detonation will be initiated and developed if the hydrogen concentrations are within th detciability limits (Herzberg [3.6]. To avoid treating the chemical kinetics of combustion, we decided to represent the detonation as a sharp discontinuity which changes the still unburnt gas to a completely burnt gas according to the Chapman-Jouguet conditions (see section 2,4). This proposition is consistent with the observation that the chemical kinetic reaction rates are very large.

For each hydrogen concentration within the detonability limits, the Chapman-innguot, state behind the detonation can be calculated (see section 2.4). For the numerical solution, we associate a variable $\phi=1$ if the gas is unburnt and $\phi=0$ otherwise. The
propagation of the detonation is calculated numerically by using the random choice method. Consider two adjacent grid points with their states represented at time $t=n \Delta t b_{y}$

$$
\begin{align*}
& S_{\ell}=\left(\rho_{\ell}, u_{\ell}, p_{\ell}, \phi_{\ell}\right), \quad x<\left(i+\frac{1}{2}\right) \Delta x, \\
& S_{r}=\left(\rho_{r}, u_{r}, p_{r}, \phi_{r}\right), \quad x \geq\left(i+\frac{1}{2}\right) \Delta x . \tag{3.1.4}
\end{align*}
$$

If $\phi_{l}=\phi_{r}$, detonation does not occur between these points and Glimm's method (see section 3.1a) is used to advance the solution; if $\phi_{\ell}=0$ and $\phi_{r}=1$ a detonation wave will propagate from left to right (see Figure 3.1.4). Its speed will be (see section 2.4)

$$
\begin{equation*}
U_{c j}=u_{c j}+c_{c j} \tag{3.1.5}
\end{equation*}
$$

where $u_{c j}=u_{\ell}$ is the particle velocity and $c_{c j}=c_{\ell}$ is the sound speed corresponding to Chapman-Jouguet conditions corresponding to the state of the unburnt gas (ρ_{r}, u_{r}, p_{r}).

The solution is advanced in a similar way as in the Riemann problem (see section 3.1a) by sampling the detonation discontinuity (see Figure 3.1.4) using the same random numbers as in the Riemann problem.

The computer ogram CRTDET for solving the one-dimensional plane gas dynamics equations including detonation is listed in Appendix B.
-29-

FIGURE 3.1.4: SOLUTION OF THE DETONATION PROBLEM

3.2 Boundary Conditions

Particular attention should be given to the boundary conditions especially as far as sampling is concerned. Assume the location of the boundary point is to the right of the region of flow at $x=i_{0} \Delta x$ and moving with a certain velocity V. To model the reflection at the wall we create a fake state to the right of x at $\left(i_{0}+\frac{1}{2}\right) \Delta x$ such that

$$
\begin{align*}
& \rho_{i_{0}}+1 / 2=\rho_{i_{0}}-1 / 2 \tag{3.2.1a}\\
& u_{i_{0}}+1 / 2=2 v-u_{i_{0}}-1 / 2 \tag{3.2.1b}\\
& p_{i_{0}}+1 / 2=p_{i_{0}}-1 / 2 \tag{3.2.1c}
\end{align*}
$$

(see Chorin [3.4]or Courant [2.3]). This will make a s..ple wave to propagate on both sides of the boundary point; the constant state in the middle of the Riemann solution is the wall state.

Special care should be taken in the sampling procedure. If ξ_{1}^{\prime} and ξ_{2}^{\prime} are the values of ξ^{\prime} at two successive time steps, we should make sure that the resulting physical point does not lie to the right of the wall line $\frac{d x}{d t}=V$, so that no information is lost at the wall. This condition can be satisfied in different ways depending on each problem.

To satisfy the previous condition in the present case, ξ_{1}^{\prime} and ξ_{2}^{\prime} can be chosen as follows: pick ξ_{1}^{\prime} in the interval $\left[-\frac{\Delta x}{2}, \frac{\Delta x}{2}\right]$ according to the usual procedure and choose $\xi_{2}^{\prime}=-\xi_{1}^{\prime}$. This method also ensures the physical point to lie within the boundary and avoids the problem of singular points.

3.3 One-Dimensional Spherical Geometry

The system of differential equations for the one-dimensional spherical problem is given by the set of differential equations (2.2.3). These equations can be written in the vector form

$$
\begin{equation*}
\underset{\sim}{U}+\underset{\sim}{U}+\underset{\sim}{U}(U)=2 \underset{\sim}{W} \underset{\sim}{U} \underset{\sim}{U}) ; \tag{3.3.1}
\end{equation*}
$$

$\underset{\sim}{U}, \underset{\sim}{F}$ and $\underset{\sim}{W}$ were defined in section 2.3 .

To solve the equations (3.3.1), we use the method of operator splitting used by Sod [3.7]. In a first step we remove the inhomogeneous term - $2_{\sim}^{W}(U)$ thus, we solve the homogeneous system

$$
\begin{equation*}
{\underset{\sim}{\mathrm{t}}}_{\mathrm{t}}+\underset{\sim}{F}(\underset{\sim}{\mathrm{U}})_{r}=0, \tag{3.3.2}
\end{equation*}
$$

which represents the one-dimensional equations of gas dynamics in cartesian coordinates and whose solution was presented in detail in the previous two sections.

The second step consists of solving the system of ordinary differential equations

$$
\underset{\sim}{U} \mathrm{t}=-\underset{\sim}{W}(\underset{\sim}{U}) \text {, }
$$

using the results of the solution of equation (3.3.2).
This is done as follows: Once the solution \tilde{u}_{i}^{n+1} of (3.3.2) is found, equation (3.3.3) is approximated by

$$
\begin{equation*}
\frac{u_{i}^{n+1}-\tilde{u}_{i}^{n+1}}{\Delta t}=-2 \underset{\sim}{w}\left(\tilde{u}_{i}^{n+1}\right), \tag{3.3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{i}^{n+1}=\tilde{u}_{i}^{n+1}-2 \Delta t \underset{\sim}{w}\left(\tilde{u}_{i}^{n+1}\right) \tag{3.3.5}
\end{equation*}
$$

This scheme is only first order accurate, however there is no reason to use a higher order method since the random choice method is also at the inost first order accurate.

The boundary conditions at the wall was chosen to be similar to the cartesian case, i.e., $\xi_{2}^{\prime}=0$ at the wall. The center of the detonation is treated similarly to the wall problem however, because of the singularity at the center, the appropriate sampling scheme discussed in section 3.2 should be used.

SPHDET is the computer program which is used to solve the one-dimensional spherical detonation problem (see Appedix C).

3.4 Axisymmetric (Two-Dimensional Cylindrical) Geometry

The numerical technique of solving the equations of the axisymmetric problem (2.3.4) is an extension of the one-dimensional case. Chorin [2.4] and Sod [3.8, 3.9] have already used it for the shock probleri.

The basic procedure consists of two major steps:

1. use the operator splitting technique in the spatial coordinates and solve the equation

$$
\begin{equation*}
\underset{\sim}{U}+{\underset{\sim}{F}}_{\sim}^{(U)} r+\underset{\sim}{G}(\underset{\sim}{U})_{z}=0, \tag{3.4.1}
\end{equation*}
$$

2. solve the equation

$$
\begin{equation*}
\underset{\sim}{U}=-\underset{\sim}{W}(\underset{\sim}{U}) . \tag{3.4.2}
\end{equation*}
$$

Solving the ordinary differential equation (3.4.2) is exactly identical to solving equation $(3,3.3)$. Equation $(3,4.1)$ is solved using an extended version of Glimm's method. At each time step, four quarter time steps of duration $\frac{\Delta t}{2}$ are performed; each quarter time step is à sweep in either r or z direction. Again, the operator splitting technique in the spatial coordinates is used to reduce the system of two-dimensional equations into two sets of one-dimensional ones. Hence, the equations to be solved in the r sweeps are

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial r}\left(\rho u_{r}\right)=0 \tag{3,4,3a}\\
& \frac{\partial}{\partial t}\left(\rho u_{r}\right)+\frac{\partial}{\partial r}\left(\rho u_{r}^{2}+p\right)=0 \tag{3.4.3b}\\
& \frac{\partial}{\partial t}\left(\rho u_{z}\right)+\frac{\partial}{\partial r}\left(\rho u_{r} u_{z}\right)=0 \tag{3.4.3c}\\
& \frac{\partial e}{\partial t}+\frac{\partial}{\partial r}\left((e+p) u_{r}\right)=0 \tag{3.4.3d}
\end{align*}
$$

Equation (3.4.3c) can be written in the form

$$
\begin{equation*}
\frac{\partial u_{z}}{\partial t}+u_{r} \frac{\partial u_{z}}{\partial r}=0 \tag{3.4.4}
\end{equation*}
$$

i.e., the convective derivative of u_{z} is equal to zero and hence, in the r sweeps u_{z} is transported as a passive scalar. Similar equations hold in the z sweeps.

Now, given equations ($3.4 .3 \mathrm{a}, \mathrm{b}, \mathrm{d}$) coupled with equation (3.4.4), the Glimm's method can be used. At each partial step, the solution vector is approximated by a piecewise constant vector. In the r sweeps the resulting waves in the r direction are found and in the z sweeps the waves in the z direction are found. In order to account properly for the interaction of the r and z waves, the follow-
ing scheme is used: at the beginning of the time step ρ, p, u_{r} and u_{z} are known at point (i $i \Delta r, j \Delta z$). After an r sweep, the solution is found at $\left(\left(i+\frac{1}{2}\right) \Delta r, j \Delta z\right)$ (see Figure 3.4.1). $\quad\left(\left(i+\frac{1}{2}\right) \Delta r, j \Delta z\right)$ and $\left(\left(i+\frac{1}{2}\right) \Delta r,(j+1) \Delta z\right)$ can then be used to find the solution at $\left(\left(1+\frac{1}{2}\right) \Delta r,\left(j+\frac{1}{2}\right) \Delta z\right)$ by a z sweep. An r sweep then leads to ($\left.i \Delta r,\left(j+\frac{1}{2}\right) \Delta z\right)$ and a z sweep back to $(i \Delta r, j \Delta z)$. One pseudorandom variable is used per quarter step.

The detonation conditions are handled in a similar way as in the one-dimensional case, however, one should bear in mind that the $C-J$ velocity represents the total velocity which should be splitted into its r and z components. For example, consider two points $i \Delta r$ and $(i+1) \Delta r$ (z the same) with $\phi=0$ at $i \Delta r$ and $\phi=1$ at $(i+1) \Delta r$. In accordance with our approach, a detonation is expected between these points. The conditions behina the detonation are known as a function of hydrogen concentration. By using the operator splitting technique in space, the two components of particle velocity can be calculated. Then, the solution is advanced by using the random choice method.

The boundary conditions are handled in the same way as in the one-dimensional problem. A curved boundary is represented by a stepwise line parallel to the mesh.

The computer prgram TWODIM (see Appendix D) uses the method outlined to solve the axisymmetric problem.

FIGURE 3.4.1: DIRECTION OF THE COMPUTATION AT EACH TIME STEP FOR THE AXISYMMETRIC PROBLEM

CHAPTER IV

COMPUTER CODE DEVELOPMENT AND RESULTS

4.1 One-Dimensional Planar Geometry

The main task of this section is to verify the validity of the numerical method described previously. To achieve this goal, the pressure, density and velocity histories of a hydrogen detonation in a one-dimensional cartesian coordiriate system have been studied. The numerical results were compared with existing analytical solutions prior to reflections (see Figures 2.4.1, 2.4.2 and 2.4.3).

The first problem we investigated simulates a detonation initiated at the center of a shock tube, 2 m long, bounded by a wall at both sides. As a result of the symmetry with respect to the initiation plane, the study was limited to half the length, the origin behaving as a wall. A mesh of one hundred and one grid points, equally spaced, was used. The time intervals were of variable length to meet the condition of non-interaction between the waves (see Section 3.1.a). Initially the unburnt gas was considered to be at rest, with a pressure of $10100 \mathrm{~N} / \mathrm{m}^{2}$ and a density of $0.1188 \mathrm{Kg} / \mathrm{m}^{3}$. The hydrogen concentration was considered to be stoichiometric. The detonation was assumed to have reached the second grid point from the origin. Those grid points were assigned the values corresponding to the Taylor curves (Figures 2.4 .1 to 2.4.3). The detonation front propagates with constant gas properties (The Chapman-Jouguet condi-
tions); the $C-J$ pressure is approximately 15 times the pressure of the unburnit gas.

The computer program CRTDET (see Appendix B) was used to solve this problem. After 0.47 ms , the detonation wave progressed in the cylinder and was ready to contact the wall. Non-cimensional plots for the pressure, density and velocity as a function of the non-dimensional distance (defined as $x / U_{c j} t$), are shown in Figures 4.1.1-4.1.3. These are close to the analytical Taylor curves; the gas reaches steady conditions with zero velocity at approximately half distance between the origin and the detonation front; however, as noted by Sod [3.8], because of the randomness of the sampling, the rarefaction waves occurring just behind the detonation front are not reproduced by a smooth curve. Figures 4.1 .4 to 4.1 .6 show the pressure, density and velocity distributions in the shock tube at five different times. After the wave is reflected by the wall, there is an increase of pressure; the pressure exerted on the wall becomes 2.3 times higher than the $C-J$ pressure or 37 times the initial one. These results are in agreement with the analytical equation given by Landau and Lifshitz [2.1] to determine the reflected pressure. After the wave has reached the wall, all the gas in the shock tube has already been burnt and the reflected wave is a strong shock which decreases in strength as it goes back towards the origin. When it reflects at the center the shock increases in strength and travels again towards the wall. Eventually, the wave decays and the gas reaches steady state conditions.
-39-

FIGURE 4.1.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION
(planar geometry) FOR A Im RADIUS;
2 INITIAL GRID POINTS, SIGMA $=0.8, R=\mathrm{U}_{\mathrm{CJ}} \mathrm{t}^{\mathrm{t}}$

FIGURE 4.1.2: NON-DIMENSIONAL DENSITY DISTRIBUTION (p lanar geometry) FOR A 1 m RADIUS;
2 Initial Grid Points, SIGMA $=0.8$

FIGURE 4.1.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION
(planar geometry) FOR A Im RADIUS;
2 TWO GRID POINTS, SIGMA $=0.8$

FIGURE 4.1.4: PRESSURE DISTRIBUTION (flanar geometry) FOR A 1 m RADIUS AT FIVE DIFFERENT TIMES; 2 INITIAL GRID POINTS, SIGMA $=0.8$

$-43-\quad \operatorname{TIME}(1)$	$=0.00024200$
$+\operatorname{TIME}(2)$	$=0.00059520$
$\times \operatorname{TIME}(3)$	$=0.00130450$
	$\Delta \operatorname{TIME}(4)=0.00154050$
	*TIME $(5)=0.00165870$

FIGURE 4.1.5: DENSITY DISTRIBUTION (planar geometry) FOR A 1 m RADIUS AT FIVE DIFFERENT TIMES; 2 INITIAL GRID POINTS, SIGMA $=0.8$

$$
\begin{aligned}
-\quad \text { TIME }(1) & =0.00024200 \\
+\quad \text { TIME }(2) & =0.00059620 \\
\times \quad \text { TIME }(3) & =0.00130450 \\
\Delta \quad \text { TIME }(4) & =0.00154060 \\
* & \text { TIME }(5)
\end{aligned}=0.00165370
$$

FIGURE 4.1.6: VELOCITY DISTRIBUTION (planar geometry) FOR A 1m RADIUS AT FIVE DIFFERENT TIMES; 2 INITIAL GRID POINTS, SIGMA $=0.8$

As previously noted, to ensure that waves do not interact, $\quad \Delta t<\Delta x /(|u|+c)$ must hold true. The effect of choosing different time intervals was studied next. Figures 4.1.7 to 4.1.9 show that a time step (SIGMA $=0.4$; see Appendix B) equal to half the previous one (SIGMA $=0.8$; see Appendix B) has little effect on the solution (Figures 4.1.1-4.1.3). The only difference noted was in reproduction of the rarefaction wave; this is due to the randomness of the sampling. The time steps should not be very small because the explicit technique used can lead to numerical instabilities, causing the wave to move backward. Hence, to ensure the stability of the solution it was found that

$$
0.3<\frac{\Delta t}{\Delta x}(|u|+c)<1.0 .
$$

Next we examined the effect on the numerical solution of the number of the initial grid points behind the detonation wave. In Figures 4.1 .10 to 4.1.15, at the beginning of the computation, eight ial grid points were assigned in accordance with the Taylor solution. The pressure, density and velocity histories agree with those in Figures 4.1 .1 - 4.1 .6 where only two initial grid points were employed before the detonation wave started to expand.

The most important output of the numerical analysis was the evaluation of the variation of the pressure with time, close to the wall. For the problem described above, the pressure and density profiles at a still wall, 1 m distant from the origin of the detonation, are shown in Figumes 4.1.16 and 4.1.17. At a time 0.58 ms after the

FIGURE 4.1.7: NON-DIMENSIONAL PRESSURE DISTRIBUTION (planar geometry) FOR A Im RADIUS;
2 INITIAL GRID POINTS, SIGMA $=0.4$

FIGURE 4.1.8: NON-DIMENSIONAL DENSITY DISTRIBUTION (planar geometry) FOR 1m RADIUS; 2 INITIAL GRID POINTS, SIGMA $=0.4$

FIGURE 4.1.9: NON-DIMENSIONAL PRESSURE DISTRIBUTION (planar geometry) FOR A 1m RADIUS; 2 INITIAL GRID POINTS, SIGMA $=0.4$

FIGURE 4.1.10: PRESSURE DISTRIBUTION (planar seometry) FOR A 1 m RADIUS AT FIVE DIFFERENT TIMES; 8 INITIAL GRID POINTS, SIGMA $=0.8$

FIGURE 4.1.12: VELOCITY DISTRIBUTION (planar geometry) FOR A 1 m RADIUS AT FIVE DIFFERENT TIMES; 8 INITIAL GRID POINTS, SIGMA $=0.8$

FIGIJRE 4.1.13: NON-DIMENSIONAL PRESSURE DISTRIBUTION (planar geometry) FOR A 1 m RADIUS; 8 INITIAL GRID POINTS, SIGMA $=0.8$

FIGURE 4.1.14: NON-DIMENSIONAL DENSITY DISTRIBUTION (plandr geometry) FOR A 1m RADIUS; 9 INITIAL GRID POINTS, SIGMA $=0.8$

FIGURE 4.1.15: NON-DIMENSIONAL VELOCITY DISTRIBUTION (planar geometry) FOR A 1 m RADIUS; 8 INITIAL GRID POINTS, SIGMA $=0.8$

FIGURE 4.1.16: WALL PRESSURE HISTORY FOR A 1m RADIUS (planar geometry) 2 INITIAL GRID POINTS, SIGMA $=0.8$, $\Delta x=0.01$.

[^1]initiation of the detonation, the detonation front is reflected by the wall which results in an increase in pressure (approximately 37 times the pressure of the unburnt gas). Then, the pressure starts to decrease until it reaches a constant value at $t=1.2 \mathrm{~ms}$. This value of the pressure is close to the pressure of an expanding detonation close to the center where the velocity of the gas equals zero. At $t=1.3 \mathrm{~ms}$, the wave gets reflected at the center (Figures 4.1.18 and 4.1.19). At the origin, the shock increases in strength and the pressure reaches a value 23 times greater than the initial pressure. Then the wave moves back towards the wall. At $t=2.3 \mathrm{~ms}$, a second reflection against the wall occurs; this reflection is much weaker than the first reflection; the pressure is 16 times the initial pressure of the unburnt gas.

Next, a detonation was investigated in a plane geometry of size comparable to a nuclear reactor containment. The gas was confined by walls at a distance of 20 m apart. The initial pressure and density of the gas in the containment was considered to be atmospheric. The mesh was composed of 201 grid points 0.1 meter apart. We let the programs run for 100 time steps ($t=45 \mathrm{~ms}$); the computational time on an IBM - 370 was approximately 8 CPU minutes. The results for the pressure and density profiles at the wall and at the centerline are shown in Figures 4.1.20 to 4.1.23. The shape of the curves are, as expected, similar to those shown in Figures 4.1.16-4.1.19. We should also note here, that the relative pressures are almost identical in both problems studied in this sec-

FIGURE 4.1.18: CENTERLINE PRESSURE HISTORY FOR A 1m RADIUS (planar geometry) 2 INITIAL GRID POINTS, SIGMA $=0.8, \Delta x=0.01$

FIGURE 4.1.20: WALL PRESSURE HISTORY FOR A 20 m RADIUS ${ }_{3}$ (planar geometry) $\Delta x=0.1, p_{u}=1 \mathrm{~atm}, \rho_{u}=1.19 \mathrm{Kg} / \mathrm{m}$

FIGURE 4.1.21: WALL DENSITY HISTORY FOR A 20 m RADIUS (planar geometry) $\Delta x=0.1, p_{u}=1 \mathrm{~atm}, p_{u}=1.19 \mathrm{Kg} / \mathrm{m}^{3}$

FIGURE 4.1.22: CENTERLINE PRESSURE HISTORY FOR A 20 m RADIUS (planar geometry) $\Delta \mathrm{x}=0.1, \mathrm{p}_{\mathrm{u}}=1 \mathrm{~atm}, \rho_{\mathrm{u}}=19 \mathrm{Kg} / \mathrm{m}^{3}$

FIGURE 4.1.23: CENTERLINE DENSITY HISTORY FOR A 20 m RADIUS (planar geometry) $\Delta x=0.1, p_{u}=1 \mathrm{~atm}, \rho_{u}=1.19 \mathrm{Kg} / \mathrm{m}^{3}$
tion; this is a result of considering in both cases the same hydrogen concentration.

4.2 Deformable Wall

In the problems discussed in Section 4.1, we assumed the walls to be rigid; however, if the increase of pressure, due to the detonation and reflected waves, is very large, the wall may start to deform and vibrate because of the elasticity of the material. The velocity of the wall, if it becomes large enough, might have some effects on the properties of the flow. These effects are studied in this section.

The equations governing the motion of the wall can be written as

$$
\begin{equation*}
M \ddot{w}+K w=P \tag{4.2.1}
\end{equation*}
$$

where $M=t_{\rho}$, and for the elastic part of the stress-strain curve of the wall material, $K=(\eta-1) \frac{E}{R^{2}}\left(A_{R}+A_{L}\right)$; the symbols in equation (4.2.1) are defined as follows:

```
w = wall displacement from its equilibriun position
P = pressure exerted on the wall,
    t = wall thickness,
    p = wall density,
    \eta = 2 for cylindrical wall, 3 for spherical wall,
    E = Young's mwdulus of steel,
    R = radius,
    AR}=\mathrm{ area of hoop reinforcing bars, per unit wall 
    A}=l\mathrm{ liner thickness.
```

Equation $(4.2 .1)$ can be discretized in time, to become

$$
\begin{equation*}
\frac{w_{n}-2 w_{n-1}+w_{n-2}}{\Delta t^{2}}+\frac{k}{M} w_{n}=\frac{p}{M}, \tag{4.2.2}
\end{equation*}
$$

where w_{n} is the dsiplacement of the wall at time $n \Delta t$. The velocity of the wall can be approximated by

$$
\begin{equation*}
v=\dot{w}=\frac{w_{n}-w_{n-1}}{\Delta t} \tag{4.2.3}
\end{equation*}
$$

Equation (4.2.2) can be easily incorporated in the algorithm described in Chapter III; equation (4.2.3) can be combined with equation (3.2.1b).

In the application, the values of K and M in Equation (4.2.2) were selected equal to those of an 1 m -high segment of the c_{0}. indrical wall of the Indian Point containment. The 1.37 m-thick reinforced concrete wall was considered cracked, and only the contribution of the horizontal steel bars and the liner plate were taken into account. These latter steel components were considered elastic. The distance between the initiation axis and the wall was taken equal to the internal radius of the containment (20.7 m). Results are shown in Figures 4.2.1-4.2.3: When the detonation starts, the wall is at rest with zero displacement and zero velocity. It remains in this condition until $\mathrm{t}=11 \mathrm{~ms}$, when the detonation wave contacts the wall. The increase in pressure is transmitted to the wall, which acquires a small velocity; this velocity increases until it reaches its maximum value of $4.5 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=20 \mathrm{~ms}$, before it starts decreasing. This sinusoidal behavior of the velocity seems to have negligible effects on the pressure and on the density of the gas (less than 1%). The corresponding graphs (Figures 4.2.2 and 4.2.3) are almost identical to those of the rigid wall problem (Figures 4.1.20 and 4.1.21); the reason for this similarity is mainly the fact that the velocity of the wall is negligible compared to the
-66-

FIGURE 4.2.1: VELOCITY PROFILE OF THE DEFORMABLE WALL

FIGURE ^.2.2: PRESSURE HISTORY AT THE DEFORMABLE WALL

FIGURE 4.2.3: DENSITY HISTORY AT THE DEFORMABLE WALL
wave velocity ($1787 \mathrm{~m} / \mathrm{s}$). This lack of shock-wall interaction is expected to hold even when multiple reflections are considered, since the interarrival time of waves (20.04 sec .) is much shorter than the period of the wall (~ 0.1 sec.). Sensitivity studies have shown that increasing or decreasing the value of K by 2 orders of magnitude do not change the conclusions above.

4.3 One-Dimensional Spherical Geometry

An approach similar to the one followed in section 4.1 has been adopted here to test the one-dimensional spherical algorithm in the computer program SPHDET (see Appendix C).

The first problem studied is that of a detonation wave initiated at the origin of a 1 m radius sphere bounded by a rigid wall. A mesh of 101 grid points, 0.01 m apart was constructed. Initially the gas is at rest at a pressure $p_{u}=10100 \mathrm{~N} / \mathrm{m}^{2}$ and a density $\rho_{u}=0.1188 \mathrm{~kg} / \mathrm{m}^{3}$. The chemical composition is stoichiometric.

It was necessary to assign the Taylor conditions to a minimum of 20 grid points. This is due to two reasons: Glimm's method is basically the solution of the one-dimensional planar problem; and the gradient of the pressure, density and velocity profiles just behind the detonation front are very large (see Figures 2.4.1, 2.4.3 and 2.4.3).

The non-dimensional graphs (Figures 4.3.1-4.3.3) at $\mathrm{t}=0.55 \mathrm{~ms}$ show the good agreement of the solution with the Taylor curves; however, because of the randomness of the sampling, the curves are not reproduced smoothly. It is worth noting that the values

FIGURE 4.3.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION; SPHERICAL GEOMETRY, Im RADIUS
-71-

FIGURE 4.3.2: NON-DIMENSIONAL DENSITY DISTRIBUTION; SPHERICAL GEOMETRY, 1 m RADIUS

FIGURE 4.3.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION; SPHERICAL GEOMETRY, 1m RADIUS
near the center do not follow the prediction of the Taylor solution.
The pressure, density and velocity histories inside the sphere are shown in Figures 4.3.4-4.3.6, for five different times. It can be seen how the detonation wave propagates inside the sphere (times (1) and (2)); then, the wave is reflected by the wall. The resulting shock wave travels back towards the center. First, the shock decreases in strength but as it approaches the center, the shock front properties increase steadily until the wave reaches the origin; there, the pressure behind the reflected wave becomes 43 times the pressure of the initial unburnt gas This implosion phenomenon, for spherical and cylindrical converging waves has already been noticed experimentally by Perry and Kantrowitz [3.10] and analytically by Oswatitsh [3.11] and Sod [3.7].

The pressure and density profiles at the still wall (Figures 4.3 .7 and 4.3 .8) are similar to the cartesian problem. The wall remains at the constant initial pressure ($10100 \mathrm{~N} / \mathrm{m}^{2}$) and density $\left(0.1188 \mathrm{~kg} / \mathrm{m}^{3}\right)$ until the combustion wave is reflected by the wall at $t=0.53 \mathrm{~ms}$; then, the pressure rises to approximately 40 times the initial pressure. It starts decreasing to reach a ctable pressure of $65000 \mathrm{~N} / \mathrm{m}^{2}$, for the remaining of the interval of time shown.

The computer analysis was extended to conditions expected in a nuclear containment of spherical geometry: the initial pressure was eet at 1 atm , the initial density was set at $1.19 \mathrm{Kg} / \mathrm{m}^{3}$, the gas was bounded by a 20 m radius sphere. The results are shown in Figures

FIGURE 4.3.4: PRESSURE DISTRIBUTION IN A 1m RADIUS SPHERE AT FIVE DIFFERENT TIMES

FIGURE 4.3.5: DENSITY DISTRIBUTION IN A 1 m RADIUS SPHERE AT FIVE DIFFERENT TIMES

$\begin{array}{ll}\text { FIGURE 4.3.6: } & \text { VELOCITY DISTRIBUTION IN A } 1 \mathrm{~m} \text { RADIUS SPHERE AT } \\ \text { FIVE DIFFERENT TIMES }\end{array}$
-77-

FIGURE 4.3.7: PRESSURE PRC E AT THE WALL OF $\mathrm{A}_{3} 1 \mathrm{~m}$ RADIUS SPHERE $p_{u}=10100 \mathrm{~N} / \mathrm{m}^{-}, p_{u}=0.1188 \mathrm{Kg} / \mathrm{m}^{3}$

FIGURE 4.3.8: DENSITY PROFILE AT THE WALL OF A 1 m RADIUS SPHERE $p_{u}=10100 \mathrm{~N} / \mathrm{m}^{2}, p_{u}=0.1188 \mathrm{Kg} / \mathrm{m}^{3}$
4.3.9 and 4.3.10. The shape of the curves are similar to the previous case; the pressure rises to 40.5 atm at $\mathrm{t}=11 \mathrm{~ms}$, when the wave contacts the wall, and decreases to 6.5 atm at $\mathrm{t}=23 \mathrm{~ms}$. For an interval of time longer than that shown, it is expected that another reflection takes place at the wall; another spike, with smaller magnitude than the first one would be recorded. For 1500 time steps ($t=40 \mathrm{~ms}$) the computation time was 22 CPU minutes.

4.4 Axisymmetric Geometry

In thi; section we consider the axisymmetric program TWODIM (see Appendix D). For this purpose we evaluated the capability of this program to reproduce a one-dimensional spherical detonation (whose solution can be obtained using SPHDET).

The non-dimensional pressure, density and velocity profiles of a spherical detonation in a 1 m radius sphere $\left(p_{u}=10100 \mathrm{~N} / \mathrm{m}^{2}\right.$, $o_{u}=0.1188 \mathrm{Kg} / \mathrm{m}^{3}$) can be seen in Figures 4.4 .1 - 4.4.3.

To solve the equivalent problem in an axisymmetric coordinate system we took 101 grid points in the x and y directions, 0.01 m apart. We assigned the initial conditions to all the grid points within a 0.2 m radius according to the Taylor [2.5] solution; the program was run for 80 time steps $(t=0.4 \mathrm{~ms})$. The properties were recorded at the grid points lying on the 45° diagonal line. The nondimensional plots of these properties are shown in Figures 4.4.4-4.4.6. These graphs compare well enough with the graphs obtained from the

FIGURE 4.3.9: PRESSURE PROFILE AT THE WALL OF A 20 m RADIUS SPHERE $p_{u}=1 \mathrm{~atm}, \rho_{u}=1.19 \mathrm{~kg} / \mathrm{m}^{3}$

FIGURE 4.3.10: DENSITY PROFILE AT THE WALL OF A 20 m RADIUS SPHERE $p_{u}=1 \mathrm{~atm}, \rho_{u}=1.19 \mathrm{Kg} / \mathrm{m}^{3}$

FIGURE 4.4.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION FOR THE ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET

FIGURE 4.4.2: NON-DIMENSIONAL DENSITY DISTRIBUTION F ${ }^{\circ}$. , THE ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET

FIGURE 4.4.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION FOR THE ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET

FIGURE 4.4.4: NON-DIMENSIONAL PRESSURE DISTRIBUTION FOR THE ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE AXISYMMETRIC ALGORITHM

FIGURE 4.4.5: NON-DIMENSIONAL DENSITY DISTRIBUTION FOR THE ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE AXISYMMETRIC ALGORITHM
-87-

FIGURE 4.4.6: NON-DIMENSIONAL VELOCITY DISTRIBUTION FOR THE ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE AXISYMMETRIC ALGORITHM
spherical code. However, more oscillations are observed in the results for the two-dimensional axisymmetric code. This behavior may be explained by the randomness of the technique; while in the one-dimensional case two half time steps are needed (i.e. two different pseudorandom numbers), for a two-dimensional geometry four quarter time steps are used (i.e. four different pseudorandom numbers). More computer runs are required to validate the two-dimensional program.

The computation time taken to solve this problem (101×101 grid points and 80 time steps) on an IBM- 370 was approximately 40 CPU minutes.

4.5 Summary

The summary of the work done is presented in Table 4.5.1; different geometries have been studied (planar, spherical and axisymmetric). We validated the one-dimensional codes by comparing the results to the Taylor solutions. The axisymmetric code was validated by using it to solve the spherical geometry problem. The results for the pressure at the wall were obtained for the one-dimensional geometries and the interaction with the wall has been studied for the planar geometry.

The computer time depends on the code used. More iterations are needed in SPHDET than in CRTDET to correct for the inhomogeneous terms; hence, the CPU time per time step per grid point is larger in SPHDET (by a factor of 2). The efficiency of the TWODIM code has been improved by bypassing the calculations for those grid points ahead of the detonation front; this reduces the CPU time per time step and grid point by approximately 25%.

TABLE 4.5.1: DETONATION CONDITIONS AND RESULTS

GEOMETRY	H_{2} CONCENTRATION	UNBURNT GAS ${ }^{+}$ CONDITIONS	VALIDATION OF THE PROGRAMS	PRESSURE OF THE WALL	INTERACTION WITH THE WALL
Planar	Stoichiometric	(1) and(2)	yes*	yes	yes
Spherical	Stoichiometric	(1) and(2)	yes*	yes	no
Axisymmetric	Stoichiometric	(1)	yes**	yes	no

*By comparison with the Taylor solution.
** By comparison with the spherical solution.
(1) $p_{u}=10100 \mathrm{~N} / \mathrm{m}^{2}, \rho_{u}=0.1188 \mathrm{~kg} / \mathrm{m}^{3}$
(2) $p_{u}=1 \mathrm{~atm}, p_{u}=1.19 \mathrm{~kg} / \mathrm{m}^{3}$

CHAPTER V

PRESSURE CALCULATIONS FOR THE INDIAN POINT CONTAINMENT

The two-dimensional axisymmetric program described in sections 3.4 and 4.4 was used to calculate pressure time histories inside the containment building of the Indian Point Nuclear Power Plant. The geometry of the containment is shown in Fig. 5.1. No obstacles inside the containment building were considered.

The program allows for detonation initiation at any point on the axis of the containment structure. No attempt was made to model the initial growth of the detonation. Instead it was assumed that the detonation progresses spherically to an arbitrary radius from the initiation point. This arbitrary radius was always selected less than the closest distance of the initiation point from the containment wall. The initial conditions behind the initial spherical detonation were taken às the conditions given by the Taylor [2.5] solution for the selected detonation radius [see section 2.4].

A uniform concentration of hydrogen was assumed inside the containment, so that the strength of the detonation is the same everywhere. For a uniformly dispersed detonable mixture and for a given i itiation point, the pressure P at a point \underline{x} inside the containment and at time t, is proportional to the initial uniform containment pressure P_{0}, and is a function of 1) the gas constant, $\gamma=C_{p} / C_{v}$; and 2) the ratio of the heat generated by the detonation, q (which is proportional to hydrogen concentration), to the product of the initial absolute containment

Fig. 5.1 - Geometry of the Containment of the Indian Point Nuclear Power Plant
temperature, T_{0}, and the universal gas constant $R[2.1,3.11]$. Symbolically, and in terms of dimensionless quantities,

$$
\begin{equation*}
\frac{P(t, x)}{P_{0}}=f\left(\gamma, \frac{q}{R T_{0}}, \frac{t C_{0}}{L}, \frac{x}{L},\right. \tag{5.1}
\end{equation*}
$$

where C_{0} is the speed of sound at the initial conditions and L is a characteristic linear scale of the containment. Eq. 5.1 is valid for geometrically similar containments.

In the pressure calculations performed, any variations in the gas constant, γ, were neglected and its value was taken equal to 1.4. For hydrogen concentrations less than or equal to stoichiometric, the dimensionless heat release rate $q / R T_{0}$ is equal to:

$$
\begin{equation*}
\frac{q}{R T_{0}}=C_{H_{2}} \frac{288.5}{T_{0}} \tag{5.2}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{H}_{2}}$ is the volume concentration of hydrogen, in percent, and the initial containment temperature, T_{0}, is in degrees Kelvin [1.1, 3.6]. The ranges of hydrogen concentration and initial temperatures that can realistically be expected in a containment following an accident, are shown in Fig. 5.2. Computer calculations were performed here for two values of the dimensionless heat release rate, equal to 17 and 23. Fig. 5.2 shows that these two values of $q / R T_{0}$ cover an important portion of the range of possible hydrogen concentrations and initial temperatures.

The spatial discretization in the $r-z$ plane had a variable grid size and consisted of 28 points in the radial (r) and 59 in the

Fig. 5.2 - Range of Interest of Hydroqen Concentration and Initial Temperature in the Containment
vertical direction. Figure 5.3 presents the calculation grid for the Indian Point containment. The dome was approximated by a stepwise line, consisting of segments parallel to the r and z directions. Although a variable grip size can be used in the program for calculation efficiency, very large differences in the grip should be avoided, because they may induce fluctuations due to large differences in the characteristic Courant number $\frac{\Delta x}{\Delta t}$ (compare also with the discussion in section 4.1).

Preliminary computer runs were made to check the stability of the code and its ability to reproduce exactly the times of first arrival of the detonation front to the walls, which can be calculated easily.

Results were obtained for two initiation points, one at the center of the base mat and another at a point on the axis 34.5 m above the base, and for two values of the dimensionless heat release rate, 17 and 23. Calculated pressure time histories at several points on the wall are presented in Appendix E. All pressure values are normalized with respect to the initial containment pressure, P_{n}, and are given as a function of the dimensionless time $t C_{0} / r$, where r is the inside radius of the cylinder and the dome. In the present case, the non-dimensionalizing constant, r / C_{0}, equals 0.06 sec . Results typically show a series of decaying pressure peaks. The first peak is due to the first arrival of the detonation front. Subsequent peaks represent reflections of shocks which have been reflected before at the containment axis. Pressure peaks at nearby points occur at approximately the same

Fig. 5.3 - Calculation Grid for the Indian Point Containment
times. After a few reflections (3 or 4, at most), pressures decay to an almost constant value. Decay is faster for initiation at a point 34.5 m above the base than for initiation at the center of the base mat, because the stronger three-dimensionality of the shocks in the former case produces more scattering of the waves. For given initiation point, decay is faster for the larger of the two heat release rates, but peak pressures are slightly higher.

The pressure time histories obtained show considerable high frequency oscillations. These oscillations are believed to be numerival and can be attributed to: 1) the randomness built in the code by using the random choice technique; 2) the variable grid size; 3) the stepwise approximation of the dome geometry. (Notice that at the poincs of the dome there are, in general, more oscillations). Performing the computations with different time steps has shown that the high frequency oscillations do not affect the lower frequency trends in the pressure time histories, which are real and not numerical, and are important for the dynamic response of the structure.

The results reported herein agree qualitatively with those reporieu in nof [1.7]. The results in the latter reference were obtained by a Finite Difference code which introduces artificial damping and smooths sharp discontinuities. On the contrary the method used in this work preserves exactly the sharpness of the shock front, but introduces some artificial high frequency components. This fundamental difference between the two methods is the reason for the fact that significantly higher peak pressures are caiculated by the present method.

CHAPTER VI

SUMMARY AND CONCLUSIONS

Computer codes for solving the hydrogen detonation problem in the containment of a nuclear reactor were developed and used. The compressible flow equations including detonation were solved using a new numerical technique due to Glimm.

The computer codes CRTDET, SPHDET and TWODIM have been developed and tested; they reproduce satisfactorily existing analytical results. CRTDET solves the one-dimensional planar problem. The ore-dimensional spherical or cylindrical geometries are handled by SPHDET, which is very similar to CRTDET; it solves for the inhomogeneous terms in the equations of motion by using the operator splitting method. The computer program TWODIM is a natural extension of CRTDET and SPHDET, since it uses the same techniques used in these two codes; however, to account properly for the wave in the r and z directions, we used a splitting technique with a four-sweeps cycle; the duration for each sweep is $\frac{\Delta t}{2}$.

Pressure histories on the wall for a plane and spherical geometry have been calculated. Interactions with an elastic wall have been evaluated numerically only in a plane geometry. The results indicate that the effect of the motion of the wall on the pressure histories is negligible.

The two-dimensional axisymmetric program was validated by using it to predict pressure histories in a spherical geometry. Pressure
histories have been calculated for an actual nuclear containment building, that of the Indian Point Nuclear Power Plant. Hydrogen concentration in the containment volume was assumed uniform, any obstacles inside the containment were neglected, and a hydrogen detonation was postulated. The probability of such a detonation and the question of the initial detonation growth were considered out of the scope of the present work. The numerical results for wall pressures are presented in dimensionless form, which allows their use for different combinations of hydrogen concentrations and initial conditions. Three cases were considered in the calculations, which include two sets of dimensionless heat release rate and two initial points of the detonation: one at the center of the base mat and another 34.5 on the containment axis above the base. The results are in qualitative agreement with previous ones obtained by using the Finite Difference code CSO. However, higher pressures (sometimes by a factor of two) are predicted in general by the present method. This can be attributed to the absence of artificial viscosity which allows a more accurate description of pressure discontinuities.

Due to multiple reflections, peak pressures at some points are very high (e.g., fifty times the initial containment pressure), but they last for very short times, and the dynamic pressures decay to almost constant values within approximately 0.1 sec . for initiation 34.5 m above the base, or within approximately 0.2 sec for initiation at the center of the base. Decay was faster for the highest of the two nondimensionless heat release rate values, but peak pressures were, in general, slightly higher. Due to multiple reflections, most pressure
histories exhibit three or four peaks. These peaks are not expected to cause resonance of the structure, because their interarrival times are too short in comparison to the top few natural periods of the containmert.

NOMENCLATURE

Latin Alphabet

C sound speed
$c_{b} \quad$ sound speed in the burnt gas
$\mathrm{C}_{\mathrm{cj}} \quad$ Chapman-Jouguet sound speed
$c_{u} \quad$ sound speed in the unburnt gas
e energy per unit volume
K wall stiffness
M mass of the wall
m momentum flux
P pressure evarted at the wall
p
p_{b}
$p_{c j}$
Chapman-Jouguet pressure
$P_{U} \quad$ pressure of the unburnt gas
Q energy due to external sources or sinks
q energy released by chemical reactions
t time
U wave velocity
u particle velocity
ub particle velocity of the burnt gas
${ }_{c j} \quad$ particle velocity given the Chapman-Jouguet conditions
$u_{u} \quad$ particle velocity of the unburnt gas

```
w
wu unburnt gas velocity in the Eulerian frame
w displacement of the wall
\dot{w}
    velocity of the wall
w}\mathrm{ acceleration of the wall
Greek Alphabet
    \varepsilon
    n integer equal 2 for cylindrical coordinates, 3 forspherical
    \phi labeling integer equal 1 for unburnt gas and 0 otherwise
I Riemann invariant
y gas constant equal to }\mp@subsup{C}{p}{}/\mp@subsup{C}{v}{
\psi defined by equations (A.7)
\xi random number
\xi' pseudorandom number
p gas density
P}\textrm{CJ}\quad\mathrm{ Chapman-Jouguet gas density
\rho
P
```

Other symbols are defined in the text.

REFERENCES

1.1 Shapiro, Z. M. and Moffette, T. R., "Hydrogen Flammability Data and Application to PWR Loss-of-coolant Accident," WAPD-SC-545, 1957.

1.2 Zabetakis, M. G., "Safety with Cryogenic Fluids," Plenum Press,
New York, N. Y., 1967.
1.3 U.S.N.R.C.,"U.S. Nuclear Regulatory Commission, Reactor Safety Study," WASH-1400, 1975.
1.4 Fardis, M. N., "Accident and Seismic Containment Reliability Including Statistical Uncertainty," Research Report R77-45, Department of Civil Engineering, M.I.T., Cambridge, MA, 1977.
1.5 Morrison, D.L, et al., "An Evaluation of the Applicability of Existing Data to the Analytical Description of a Nuclear Reactor Accident-core Meit-down Evaluation," Trpical Report, Task 18, Battelle Memorial Institute, BMI-1910, 191.
1.6 Carbiener, W. A., et al., "Physical Prucesses in Reactor Melt-down Accidents," Appendix VIII of the U.S.N.R.C. Reactor Safety Study, WASH-1400, 1975.
1.7 Byers, R.K., "CSQ Caiculations of H_{2} Detonations in Zion and Sequoyah," Presented at Workshop on the Impact ${ }^{2}$ of hydrogen on Water Reactor Safety, Albuquerque, N.M., 1981
2.1 Landau L. D. and Lifshitz, E. M., Fluid Mechanics, Addison-Wesley, Reading, Massachusetts, 1959.
2.2 Williams, F. A., Combustion Theory, Addison Wesley, Reading, Massachusetts, 1965.
2.3 Courant R., and Friedrichs, K. 0., "Supersonic Flow and Shock Waves,"Interscience, New York, 1948.
2.4 Chorin, A. J. "Random Choice Solution of Hyperbolic Systems," Journal of Computational Physics, Vol. 22, pp. 517-533, 1976.
2.5 Taylor, G., "The Dynamics of the Combustion Product and Spherical Detonation Fronts in Explosives," ProcSociety A 200, pp. 235-247, 1950.
2.6 Barenblatt, G. I., et al., "Self-similar Explosion Waves of Variable Energy at the Front," Journal of Fluid Mechanics, Vol. 99, part 4, pp. 841-858, 1980.
3.1 Sod, G. A., "The Computer Implementation of Glimm's Method," UCID-17252, Lawrence Livermore Laboratory, University of California, 1976.
3.2 Boris, J. P. and Book, D.C., "Flux Corrected Transport.I.SH, ${ }^{\top}$ A, A Fluid Transport Algorithm that Works," Journal of Computationa Physics, Vol. 11, pp. 38-69, 1973.

REFERENCES (CONTINUED)

3.3 Glimm, J., "Solutions in the Large for Nonlinear Hyperbolic Systems of Equations," Comm. Pure Applied Math., Vol. 18, p. 697, 1965.
3.4 Chorin, A. J., "Random Choice Methods with Application to Reacting Gas Flow," Journal of Computational Physics, Vol. 25, pp. 253-272, 1977.
3.5 Godunov, S.K., "Finite Difference Methods for Numerical Computation of Discontinuous Solution of the Equations of Fluid Dynamics," Mat. Sbornik, Vol. 47, p. 271, 1959.
3.6 Herzberg, M. "Flammability Limits for Hydrogen Detonations," Presented at Sandia Labs. Workshop in the Impact of Hydrogen on Water Reactor Safety, Albuquerque, N.M., 1981.
3.7 Sod, G. A., "A Numerical Study of a Converging Cylindrical Shock," Journal of Fluid Mechanics, Vol. 83, part 4, pp. 785-794, 1977.
3.8 Sod, G. A., "A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws," Journal of Computational Physics, Vol. 27, 1978.
3.9 Sod, G. A., "Automotive Engine Modeling with a Hybrid Random Choice Method, II," SAE Technical Paper Series, No. 800288, 1980.
3.10 Perry, R. W. and Kantrowitz, A., "The Production and Stability of Converging Shock Waves," Journal of Applied Physics, Vol. 22, p. 878, 1951.
3.11 Oswatitsh, K. Gas Dynamics, Academic Press, New York, p. 168, 1956.

APPENDIX A

THE GODUNOV METHOD

This method of calculation of the conditions behind the detonation front was first implemented by Godunov [3.5] and then modified by Chorin [2.4] and Sod [3.1]. The method is used by the computer codes developed herein, and is described in this Appendix for completeness.

Given the equation (3.1.4), we would like to find the properties $p_{\star}, u_{\star}, p_{\star}$ in state S_{\star}. Let us define

$$
\begin{equation*}
M_{r}=\left(p_{r}-p_{\star}\right) /\left(u_{r}-u_{\star}\right), \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\ell}=-\left(p_{\ell}-p_{\star}\right) /\left(u_{\ell}-u_{\star}\right) . \tag{A.2}
\end{equation*}
$$

It can be easily shown that if the right wave is a shock,

$$
\begin{equation*}
M_{r}=-\rho_{r}\left(u_{r}-u_{r}\right)=-\rho_{\star}\left(u_{\star}-u_{r}\right), \tag{A.3}
\end{equation*}
$$

where ρ_{*} is the density in the region adjacent to the right shock and U_{r} is the velocity of the right shock.

Similarly, if the left wave is a shock,

$$
\begin{equation*}
M_{\ell}=\rho_{\ell}\left(u_{\ell}-u_{\ell}\right)=-\rho_{\star}\left(u_{\star}-u_{\ell}\right), \tag{A.4}
\end{equation*}
$$

where ρ_{*} is the density in the portion of S_{\star} adjacent to the left shock and U_{l} is the velocity of the left shock. M_{r} and M_{l} can be can be written in the form

$$
\begin{align*}
& M_{r}=\left(p_{r} \rho_{r}\right)^{1 / 2} \psi\left(p_{\star} / p_{r}\right), \tag{A.5}\\
& M_{\ell}=\left(p_{\ell} \rho_{\ell}\right)^{1 / 2} \psi\left(p_{\star} / p_{\ell}\right), \tag{A.6}
\end{align*}
$$

where

$$
\begin{array}{rlrl}
\psi(w) & =\left(\frac{\gamma+1}{2} w+\frac{\gamma-1}{2}\right)^{1 / 2}, & & \text { for } w \geq 1 \tag{A.7}\\
& =\frac{\gamma-1}{2 \gamma 1 / 2} \frac{1-w}{1-w^{(\gamma-1) / 2 \gamma}}, & \text { for } w \leq 1 .
\end{array}
$$

Upon elimination of u_{\star} from (A.1) and (A.2), we obtain

$$
\begin{equation*}
p_{\star}=\frac{u_{l}-u_{r}+p_{l} / M_{l}+p_{r} / M_{r}}{1 / M_{l}+1 / M_{r}} . \tag{A.8}
\end{equation*}
$$

Equations (A.5), (A.6) and (A.8) are three equations in three unknowns for which there exists a real solution. The solution can be found iteratively by choosing a starting value $p_{*}^{\circ}\left(\right.$ or M_{r}° or M_{l}°), and then compute $p_{\star}^{q+1}, M_{r}^{q+1}, M_{l}^{q+1}, q \geq 0$ using

$$
\begin{align*}
& p^{q}=\left(u_{\ell}-u_{r}+p_{r} / M_{r}^{q}+p_{\ell} / M_{\ell}^{q}\right) /\left(1 / M_{r}^{q}+1 / M_{\ell}^{q}\right) \tag{A.9b}\\
& p_{\star}^{q+1}=\max \left(\varepsilon_{1}, p^{q}\right) \tag{A.9b}\\
& M_{r}^{q+1}=\left(p_{r} \rho_{r}\right)^{1 / 2} \psi\left(p_{\star}^{q+1} / p_{r}\right) \tag{A.9C}\\
& M_{\ell}^{q+1}=\left(p_{\ell} \rho_{\ell}\right)^{1 / 2} \psi\left(p_{\star}^{q+1} / p_{\ell}\right) . \tag{A.9d}
\end{align*}
$$

Equation (A.9b), where ε_{1} is a very small number $\left(\sim 10^{-6}\right)$, is used to prevent the pressure of becoming negative.

Once p_{\star}, M_{r} and M_{ℓ} are found, we may obtain u_{\star} by eliminating p_{\star} from (A.1) and (A.2),

$$
u_{\star}=\left(p_{\ell}-p_{r}+M_{r} u_{r}+M_{\ell} u_{\ell}\right) /\left(M_{r}+M_{\ell}\right)
$$

APPENDIX B

THE COMPUTER PROGRAM CRTDET

B. 1 General Description

The program consists of the main program, the subroutine GLIMM and the output section. The overall idea behind the main program can be found in the flow chart of Figure B.1. The major steps to follow in order to run this program are

1. Select the grid spacing for each specific problem and adjust accordingly the values of N and DX ;
2. Decide about the number of time steps necessary (NSTOP) and the time intervals for which a printed output of the properties is required (NPRINT);
3. Assign the parameters defining the initial conditons of the gas and the properties of the combustion. GAMMA and DELTA are respectively, the gas constant and the energy released by the combustion. PR, RR and UR are the initial conditions of the unburnt gas and PL, RL and UL are the C-J conditions of the burnt gas. On the other hand, the grid points behind the detonation front should be given their appropriate values obtained from the Taylor curves (Figures 2.4.12.4.3).

The subroutine GLIMM solves the Riemann problem for each grid point. The major part of this subroutine has been described by Sod (1978). However, the last section of the subroutine has been added to solve the detonation problem.

FIGURE B.1: FLOW CHART FOR CRTDET
B. 2 Dictionary of the Key Terms in the Program
B
Defined in equation (2.4.7a)
C Defined in equation (2.4.7b)CL Sound speed in the left state of the solution of the Riemannproblem
Sound speed in the right state of the solution of theRiemann problem
CSTAR Sound speed in state S_{*} or $C-J$ sound speed
DELTA Cremical energy released by the combustion process
GAMMA Gas constant $=C_{p} / C_{v}$
GGUBFS Random number generator; IMSL function subroutine
ML Defined in equation (A.2)
MR Defined in equation (A.1)
MUSQ Defined in equation (2.4.4)
$N \quad$ Number of intervals generated by the grid points
NPRINT Controls the output section; the properties at eachgrid point will be printed every NPRINT time steps
NSTOP Number of time steps
PHI(I) Variable indicating whether the gas is burnt or not atgrid point I
PRE(I) Pressure of the gas in $\mathrm{N} / \mathrm{m}^{2}$ at grid point I
PSI Function subroutine defined by equation (A.7)
PSTAR Pressure in state S_{\star} or $C-J$ pressure
RHO(I) Density of the gas in $\mathrm{kg} / \mathrm{m}^{3}$ at grid point I
RSTAR Density in state S_{\star} or $C-J$ density
SI Pseudorandom number in the interval $[0,1]$SIGMA Coefficient in $] 0,1]$ to control the length of each timestep

TIME

UCJ
USTAR
UX(I)
XI

Total time in seconds elapsed since the origin of the detonation

Detonation front velocity given $\mathrm{C}-\mathrm{J}$ conditions Particle velocity in state S_{\star} or particle $C-J$ velocity Particle velocity in m / s at grid point I
Pseudorandom number in the interval $\left[-\frac{\Delta x}{2}, \frac{\Delta x}{2}\right]$


```
CC
```

CRTDET
C

```C
```

C ONE DIMENSIONAL PROGRAM (CARTESIAN) TO CALCULATE C C
C PRESSURE, DENSITY AND VELOCITY HISTORY IN A REACTIVE C

```MIXTUREC
```

C C


```CC
```

```
        COMMON//DT,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA
```

 COMMON//DT,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA
 1,KIM
 1,KIM
 COMMON/OUT/TIME,N,DX,RHO(2001),PRE(2001),UX(2001)
 COMMON/OUT/TIME,N,DX,RHO(2001),PRE(2001),UX(2001)
 1, PHI (2001)
 1, PHI (2001)
 COMMON/RAD/ETA
 COMMON/LIN/LAM
 REAL LAM
 DOUBLE PRECISION BLIP
 INTEGER TSTP,PHI
 NPRINT=25
 NSTOP=1^00
 N=200
 NP1=N+1
 NM1=N-1
 DX=20.0/FLOAT(N)
 DT=0.01
 T IME=0.1/1787.7
 VMAX=0.
 NP=0
 GAMMA=1.4
 DELTA=1447716.8
 BLIP=0.0D0
 K1=11
 K2=7
 NU=2
 S I GMA=0.8
 ETA=1.
 C
C SET INITIAL CONDITIONS
C
RL=2.10939
PL=1539126.7
UL=777.0
RR=1.19242
PR=101325.
UR=0.
DO 15 I=1,2
PHI (I)=0
RHO(I)=RL

```
```

PRE (I) = PL
UX(I)=UL
1 5
DO 100 TSTP=1,NSTOP
NP=NP+1
DO }8\textrm{I}=2,
VMAX1=ABS(UX(I))+SQRT(GAMMA*PRE(I)/RHO(I))
IF(VMAXI.GT.VMAX) VMAX=VMAX1
CONTINUE
DTT=SIGMA*DX/(2.*VMAX)
IF(DTT.LT.DT) DT=DTT
TIME=TIME+2.*DT
LAM=0.5/VMAX
C
C
C
C
C
C
NU=MOD(NU+K2,K1)
BLIP=BLIP+2.DO
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)
XI LIES BETWEEN -DX/2 AND +DX/2
DO 40 I=2,NP1
XI=SI*DX-0.5*DX
RR=RHO(I)
UR=UX(I)
PR=PRE(I)
KPHI=PHI (I)
IF(I.EQ.2)GO TO 43
RL=R IM1
PL=P IM1
UL=U IM1
GO TO 44
C BOUNDARY CONDITION AT AXIS R=0

```
```

C
43 RL=RHO(1)
UL=UX(1)
PL=PRE(1)
KIM=PHI (1)
GO TO 44
C
C COMPUTE FIRST HALF STEP OF GLIMM
C
44 CALL GLIMM
RIMI=RHO(I)
RHO(I)=R
PIMI=PRE(I)
PRE (I)=P
UIM1=UX(I)
U X (I) = U
KIM=PHI (I)
PHI(I)=KPHI
CONTINUE
C
C COMPUTE SECOND HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C
NU=MOD(NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)
C
C XI LIES BETWEEN -DX/2 AND +DY/2
C
KIM=PHI (1)
DO 60 I=1,NP1
XI=SI*DX-0.5*DX
RL=RHO(I)
PL=PRE(I)
UL=UX(I)
IF(I.EQ.NP1) GO TO 63
KPHI=PHI (I+1)
RR=RHO(I+1)
PR=PRE(I+1)
UR=U X(I+1)
IF(I.EQ.1) GO TO }6
GO TO 64
C BOUNDARY CONDITION AT R=1.
63 RR=RL
UR=-UL
PR=PL
KPHI=PHI(I)
XI=0.0
GO TO }6

```
```

C COMPUTE SECOND HALF STEP OF GLIMM
C
62 XI=0.0
RL=RR
UL=-UR
PL=PR
64 CALL GLIMM
RHO(I)=R
PRE(I)=P
UX(I)=U
KIM=PHI(I+1)
PHI(I)=KPHI
60 CONTINUE
WRITE (15,20000) TIME
20000 FORMAT(1H1,7H TIME = ,F11.7)
WRITE (15,20001) RHO(1),PRE(1)
WRITE(15,20001) RHO(NP1),PRE(NP1)
20001 FORMAT(1H0,2F13.5)
IF(NP.LT.NPRINT) GO TO 100
NP=0
100 CONTINUE
STOP
END
C
C SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C SUBROUTINE GLIMM
CUBMOUT/ DDT,GAMMA ,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA
1,KIM
COMMON/RAD/ETA
COMMON/LIN/LAM
REAL MR,ML,MRP1,MLP1
REAL LAM,MUSQ
EPS=1.E-6
IT=0
ITSTOP=20
KPHIP=KPHI*KIM
C
C
IF KPHI=1 , MIGHT HAVE A DETONATION
IF(KPHI,EQ.1.AND.KPHIP,EQ.0) GO TO 111
C CONSTRUCTION OF RIEMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C
ALFA=1.
ALFAM=1.-ALFA
C
C INITIAL ML AND MR
INITIAL ML AND MR

```
```

C
ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT(PR*RR)
C
C COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV
C
RAV =0.5*(RL+RR)
PAV=0.5* (PL+PR)
A=PAV/(RAV * *GAMMA)
R=RAV -LAM* (UR*RR-UL*RL)
PSTAR=A* (R**GAMMA)
C
C SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
C
10 I T= I T+1
C
C IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
C TO 1.OE-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE
C
PSTAR=AMAX1(EPS,PSTAR)
C
C COMPUTE MR AND ML AT STEP Q+1
C
20 MLP1=COEFL*PSI(PSTAR/PL,GAMMA)
MRP1=COEFR*PSI(PSTAR/PR,GAMMA)
DIFML=ABS (MLP1-ML)
DIFMR=ABS(MRP1-MR)
ML=MLP 1
MR=MRP1
C
C COMPUTE NEW PRESSURE PSTAR
C
PS TARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO }3
IF(ABS(PSTAR-PSTARP).LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA=ALFA/2.
ALFAM=1. -ALFA
IF(ALFAM.LT.EPS) GO TO }4
IT=0
LF(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10
C
C COMPUTE USTAR AT END OF GODUNOV ITERATION
C
40 USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)

```
```

C
C BEGIN GLIMM'S METHOD
C
IREGL=1
IF(PSTAR.LT.PL) IREGL=2
IREGR=1
IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT
IF(XI.GE.X) GO TO 200
C
C LEFT SIDE
C
IF(IREGL.EQ.2) GO TO 110
C
C COMPUTE LEFT SHOCK SPEED
C
C
C LEFT OF LEFT SHOCK
C
R=RL
U=UL
P=PL
GO TO 500
C
C RIGHT OF LEFT SHOCK
C
100 R=ML/(USTAR-U)
U=USTAR
P\&PSTAR
dO TO 500
C
C COMPUTE SOUND SPEED IN LEFT STATE
C
110 CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GE.X) GO TO }12
C
C LEFT OF LEFT FAN
C
R=RL
U=UL
P=PL
GO TO 500
C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
A=PL/(RL**GAMMA)

```
```

C
C COMPUTE DENSITY IN STATE STAR
C
RSTAR=(PSTAR/A)**(1./GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130
C
C IN LEFT FAN
C
U=(2./(GAMMA+1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL)
RINT=CL+0.5* (GAMMA-1.)*(UL-U)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A* (R**GAMMA)
GO TO 500
C
C RIGHT OF LEFT FAN
C
130 R=RSTAR
U=USTAR
P=PS TAR
GO TO 500
C
C RIGHT SIDE
C
200 IF(IREGR.EQ.2) GO TO 220
C
C COMPUTE RIGHT SHOCK SPEED
C
U=UR+MR/RR
X=U * DT
IF(XI.GE.X) GO TO 210
C
C LEFT OF RIGHT SHOCK
C
R=-MR/(USTAR-U)
U =USTAR
P=PSTAR
GO TO 500
C
C RIGHT OF RIGHT SHOCK
C
210 R=RR
U = U R
P=PR
GO TO 500
C

```
```

C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
220
C
C COMPUTE DENSITY IN STATE STAR
C
RSTAR=(PSTAR/A)**(1./GAMMA)
C
C
C
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT
IF(XI.GE.X) GO TO 23C
C
C
C
R=RSTAR
U}=USTA
P=PSTAR
GO TO 500
C
C COMPUTE SOUND SPEED IN RIGHT STATE
C
230 CR=SQRT(GAMMA*PR/RR)
X=(UR+CR)*DT
IF(XI.GE.X) GO TO 240
C
C
IN RIGHT FAN
C
U}=(2./(GAMMA+1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR
RINT=CR+0.5*(GAMMA-1.)* (U-UR)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)
GO TO 500
C
C RIGHT OF RIGHT FAN
C
240 R=RR
U=U R
P=PR
GO TO 500
C
C DETONATION CONDITIONS
C
C
C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C
111
B=-PR-DELTA*(GAMMA-1.)*RR
MUSQ=(GAMMA-1.)/(GAMMA+1.)
C=(PR*PR)+2.*MUSQ*PR*RR*DELTA

```
```

 PSTAR=-B+SQRT((B*B)-C)
 RSTAR=(PSTAR* (GAMMA+1.)-PR)*RR/(GAMMA*PSTAR)
 UCJ=SQRT (GAMMA*PSTAR*RSTAR)/RR+UR
 CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
 USTAR=UCJ-CSTAR
 USTAR=777.0
 PSTAR=1539126.7
RSTAR=2.10939
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
UCJ=USTAR+CSTAR
C
C BEGIN GLIMM'S METHOD
C
X=U CJ * DT
IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333
C
C COMPUTE SOUND SPEED IN LEFT STATE
C
CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GE.X) GO TO 444
C
C LEFT OF RAREFACTION FAN
C
R=RL
U=UL
P=PL
KPHI=0
GO TO 500
C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
444 A=PSTAR/(RSTAR**GAMMA)
C
C IN RIGHT FAN
C
U=(2./(GAMMA+1.))*(XI/DT-CSTAR+0.5*(GAMMA-1.)*USTAR)
RINT=CSTAR+0.5* (GAMMA-1.)*(U-USTAR)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)
KPHI=0
GO TO 500
C
C RIGHT OF DETONATION
C
333 U=USTAR
P=PSTAR
R=RSTAR
KPHI=0

```
```

 GO TO 500
 222
5 0 0
CONTINUE
RETURN
END
C
C FUNCTION PSI
C
FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
IF(ABS(1.-X).GT.EPS) GO TO }10
PSI=SQRT(GAMMA)
RETURN
100 COEF1=0.5*(GAMMA+1.)
COEF2=0.5*(GAMMA-1.)
COEF3 =COEF2/GAMMA
IF(X.GE.1.) GO TO 200
PSI=COEF2* (1.-X)/(SQRT(GAMMA)*(1.-(X**COEF3)))
RETURN
200 PSI=SQRT(COEF1*X+COEF2)
RETURN
END
C
C SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
C
SUBROUTINE OUTPUT
COMMON//DT,CAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI, DELTA
1 , K IM
COMMON/OUT/TIME,N,DX, RHO(2001),PRE(2001),UX(2001)
1,PHI (2001)
INTEGER PHI
NP1=N+1
WRITE(6,10000) TIME
WRITE (6,10001)
DO 20 I=1,NP1
X=FLOAT}(I-1)*DX
R=RHO(I)
U=UX (I)
P=PRE(I)
K=PHI (I)
WRITE (6,10002) X,R,U,P,K
20 CONTINUE
RETURN
10000 FORMAT(1H1,7H TIME = F11.7)
10001 FORMAT (1H,3H X, 6X,5HDENSE, 8X, 3HVEL, 10X, 4HPRES, 10X, 3HPHI)
10002 FORMAT(1H0,F6.3,3F13.5,I 2)
END

```

\section*{THE COMPUTER PROGRAM SPHDET}

The computer program SPHDET is very similar to CRTDET; however, the subroutine INHOM has been added to make the correction for the inhomogeneous terms in the equations of gas dynamics in one dimensional spherical or cylindrical coordinate system. This subroutine is called after the solution of the Riemann problem has been advanced one time step in the time space. It uses the method described in section 3.3.

Actually the one-dimensional cartesian, cylindrical and spherical problems can be solved by SPHDET by taking ETA equal to 1 , 2 , and 3 respectively.
C ONE DIMENSIONAL PROGRAM (CYL. OR SPHE.) TO CALCULATE C
C
    PRESSURE, DENSITY AND VELOCITY HISTORY IN A REACTIVE C
    MIXTURE
C

COMMON//DT, GAMMA, RL, UL, PL, R, U, P, E, RR, UR , PR , KPHI, DELTA ,KIM
COMMON/OUT/TIME,N,DX,RHO(111), PRE(111), UX(111), PHI (111)
COMMON/RAD/ETA
COMMON/LIN/LAM
REAL LAM
DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
NPRINT=20
NSTOP=100
    \(\mathrm{N}=100\)
    \(\mathrm{NP} 1=\mathrm{N}+1\)
    \(\mathrm{NMI}=\mathrm{N}-1\)
    \(\mathrm{DX}=1.0 / \mathrm{FLOAT}(\mathrm{N})\)
    D T=0.01
    TIME=0.19/1787.85
    \(V M A X=0\).
    \(\mathrm{N}=0\)
    GAMMA \(=1.4\)
    DELTA \(=1447711.2\)
    BLIP=10.0D0
    \(\mathrm{K} 1=11\)
    \(\mathrm{K} 2=7\)
    \(\mathrm{NU}=2\)
    SIGMA=0.8
    ETA=3.
C
C SET INITIAL CONDITIONS
c
    RL=0.2102
    \(\mathrm{PL}=153419\).
    \(\mathrm{UL}=777\).
    \(\mathrm{RR}=0.11886\)
    \(P R=10100\).
    \(\mathrm{UR}=0\).
    DO \(15 \mathrm{I}=1,20\)
    PHI (I) \(=0\)
    RHO (I) \(=\) RL
    \(\operatorname{PRE}(I)=P L\)
    \(\mathrm{UX}(\mathrm{I})=\mathrm{UL}\)
15 CONTINUE
    RHO (1) \(=0.0841\)
```

PRE (1)=42550.91
UX(1)=0.0
RHO(2)=0.0841
PRE(2)=42550.91
UX(2)=0.0
RHO(3)=0.0841
PRE (3)=42550.91
UX(3)=0.
RHO(4)=0.0841
PRE(4)=42550.91
UX(4)=0.
RHO(5)=0.0841
PRE (5)=42550.91
UX(5)=0.
RHO(6)=0.0841
PRE(6)=42550.91
UX(6)=0.0
RHO(7)=0.0841
PRE (7)=42550.91
UX(7)=0.0
RHO(8)=0.0841
PRE(8)=42550.91
UX (8)=0.0
RHO(9) =0.0841
PRE (9)=42550.91
UX(9)=0.0
RHO(10)=0.0841
PRE(10)=42550.91
UX (10)=0.0
RHO(11)=0.08565
PRE (11)=43264.16
UX(11)=23.29
RHO(12) =0.08933
PRE(1 2)=45642.15
UX(12)=62.06
RHO(13)=0.09354
PRE (13)=49477.62
UX(13)=100.98
RHO(14)=0.09984
PRE (14)=54463.75
UX (14)=139.82
RHO(15)=0.10720
PRE (15)=60216.95
UX(15)=191.87
RHO (16)=0.11661
PRE(16)=67504.36
UX(16)=252.45
RHO(17)=0.12822
PRE (17)=77475.59
UX(17)=322.36

```
```

RHO(18)=0.14188
PRE(18)=88983.02
UX(18)=419.46
RHO(19)=0.16395
PRE (19)=105859.11
UX(19)=532.10
14 DO 16 I=21,NP1
PHI(I)=1
RHO(I)=RR
PRE(I)=PR
UX(I) =UR
16 CONTINUE
C
C BEGIN TIME STEP
C
DO 100 TSTP=1,NSTOP
NP=NP+1
DO }8\textrm{I}=2\mathrm{ ,N
VMAX1=ABS(UX(I))+SQRT(GAMMA*PRE(I)/RHO(I))
IF(VMAX1.GT.VMAX) VMAX=VMAX1
CONTINUE
DTT*SIGMA*DX/(2.*VMAX)
IF(DTT.LT.DT) DT=DTT
TIME=TIME+2.*DT
LAM=0.5/VMAX
C
C COMPUTE FIRST HALF STEP
C
C
C
C
NU=MOD(NU+K2,K1)
BLIP=BLIP+1.DO
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(KL)
C
C
C
DO 40 I=2,N P 1
XII=SI*DX-0.5*D X
RR=RHO(I)
UR=UX(I)
PR=PRE(I)
KPHI=PHI(I)
IF(I.EQ.2)GO TO 43
RL=RIM1
PL=P IM1
UL=U IMI
GO TO 44
C
C BOUNDARY CONDITION AT AXIS R=0

```
```

C
43 RL=RHO(1)
UL=UX(1)
PL=PRE(1)
KIM=PHI (1)
GO TO 44
C
C COMPUTE FIRST HALF STEP OF GLIMM
C
44 CALL GLIMM(XI1)
RIMI=RHO(I)
RHO(I)=R
PIMI=PRE(I)
PRE(I)=P
UIMI=UX(I)
UX(I)=U
KIM=PHI(I)
PHI(I)=KPHI
40 CONTINUE
C
C COMPUTE SECOND HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C
NU=MOD(NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT (K1)
C
C XI LIES BETWEEN -DX/2 RND +DX/2
C
KIM=PHI(1)
DO 60 I=1,NP1
XI2=SI*DX-0.5*DX
RL=RHO (I)
PL=PRE(I)
UL=UX(I)
IF(I.EQ.NP1) GO TO 63
KPHEI=PHI (I+1)
RR=RHO(I+1)
PR=PRE (I+1)
UR=U X (I+1)
IF(I.EQ.1) GO TO 62
GO TO }6
C BOUNDARY CONDITION AT R=1.
63 RR=RL
UR=-UL
PR=PL
KPHI=PHI(I)
XI2=C.0
GO TO }6

```
```

C
C COMPUTE SECOND HALF STEP OF GLIMM
C
62 \cdotsABS(XI2)
LF(XII.LT.0.) XI2 =XII +0.5*DX
RL=RR
UL=-UR
PL=PR
64 CALL GLIMM(XI2)
RHO(I)=R
PRE (I)=P
UX(I)=U
KIM=PHI (I+1)
PHI(I)=KPHI
60 CONTINUE
CALL INHOM
WRITE (15,20000) TIME
20000 FORMAT(1H1,7H TIME = F11.7)
WRITE (15,20001) RHO(1),PRE (1)
WRITE(15,20001) RHO(NP1),PRE(NP1)
20001 FORMAT (1H0,2F1 3.5)
IF(NP.LT.NPRINT) GO TO 100
NP=0
CALL OUTPUT
100 CONTINUE
STOP
END
C
C
SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C
SUBROUTINE GL`MM(XI)
COMMON//DT,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,KPHI,DELTA,KIM
COMMON/RAD/ETA
COMMON/LIN/LAM
REAL MR,ML,MRP1,MLP1
REAL LAM,MUSQ
EPS=1.E-6
IT=0
ITSTOP=20
KPHIP=KPHI*KIM
C
C iF KPHI=1 , MIGHT HAVE A DETONATION
c
IF(KPHI.EQ,1.AND.KPHIP,EQ,0) GO TO 111
C
C CONSTRUCTION OF RIZMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C
ALFA=1.
ALFAM=1.-ALFA

```
```

C
C INITTAL ML AND MR
C
ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT(PR*RR)
C
C
C
RAV=0.5*(RL+RR)
PAV=0.5* (PL+PR)
A=PAV/(RAV**GAMMA)
R=RAV-LAM* (UR*RR-UL*RL)
PSTAR=A*(R**GAMMA)
C
C SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
C
10 IT= IT+1
C
C IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
C
C
C
C COMPUTE MR AND ML AT STEP Q+1
C
20 MLP1=COEFL*PSI(PSTAR/PL,GAMMA)
MRP1=COEFR*PSI(PSTAR/PR,GAMMA)
DIFML=ABS (MLPI-ML)
DIFMR=ABS (MRP1-MR)
ML=MLP1
MR=MRP1
C
C COMPUTE NEW PRESSURE PSTAR
C
PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
IF(ABS (PSTAR-PSTARP).LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA=ALFA/2.
ALFAM=1,-ALFA
IF(ALFAM.LT.EPS) GO TO 40
IT=0
30 IF(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10
C
C COMPUTE USTAR AT END OF GOLUNOV ITERATION

```
```

C
40 USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)
C
c begin GLImm's method
C
I REGL=1
IF(PSTAR.LT.PL) IREGL=2
IREGR=1
IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT
IF(XI.GE.X) GO TO 200
C
C LEFT SIDE
C
IF(IREGL.EQ.2) GO TO 110
C
C COMPUTE LEFT SHOCK SPEED
C
U=UL-ML/RL
X=U*DT
IF(XI.GE.X) GO TO 100
C
C LEFT OF LEFT SHOCK
C
R=RL
U=UL
P=P L
GO TO 500
C
C RIGHT OF LEFT SHOCK
C
100 R=ML/ (USTAR-U)
U=USTAR
P=PSTAR
GO TO 500
C
C COMPUTE SOUND SPEED IN LEFT STATE
C
110 CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GB.X) GO TO }12
C
C LEFT OF LEPT FAN
C
R=RL
U}=\textrm{UL
P=PL
GO TO 500
C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A

```
```

C
120 A=PL/(RL**GAMMA)
C
C COMPUTE DENSITY IN STATE STAR
C
RSTAR=(PSTAR/A)**(1./GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C
CSTAK=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130
C
C IN LEFT FAN
C
U=(2./(GAMMA+1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL)
RINT=CL+0.5* (GAMMA-1.)* (UL-U)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A* (R**GAMMA)
GO TO 500
C
C RIGRT OF LEFT FAN
C
130 R=RSTAR
U=USTAR
P=PSTAR
GO TO 500
C
C RIGHT SIDE
C
200 IF(IREGR.EQ.2) GO TO 220
C
C COMPUTE RIGHT SHOCK SPEED
C
U=UR+MR/RR
X=U *DT
IF(XI.GE.X) GO TO 210
C
L LFFT OF RIGHT SHOCK
c
R=-MR/(USTAR-U)
U=USTAR
P=PSTAR
GO TO 500
C
C RIGHT OF RIGHT SHOCK
C
210 R=RR
U=U UR
P=PR

```
```

 GO TO 500
 C
C
C
220
C
C
C
C COMPUTE SOUND SPEED IN STATE STAR
C
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT
IF(XI.GE.X) GO TO 230
C
C
C
R=R STAR
U=USTAR
P=P STAR
GO TO 500
C
C COMPUTE SOUND SPEED IN RIGHT STATE
C
230 CR=SQRT(GAMMA*PR/RR)
X=(UR+CR)*DT
IF(XI.GE.X) GO TO 240
C
C IN RIGHT FAN
C
U=(2./(GAMMA+1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR)
RINT=CR+0.5* (GAMMA-1.)* (U-UR)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)
GO TO 500
C
C RIGHT OF RIGHT FAN
C
240 R=RR
U=UR
n=PR
GO TO 500
C
C DETONATION CONDITIONS
C
C
C
CALCULATE CONDITIONS JUST BEHIND CJ DETONATYON
C
111 B=-PR-DELTA* (GAMMA-1.)*RR

```
```

 MUSQ=(GAMMA-1.)/(GAMMA+1.)
 C=(PR*PR)+2. *MUSQ*PR*RR*DELTA
 PSTAR=-B+SQRT((B*B)-C)
 RSTAR= (PSTAR* (GAMMA+1.)-PR)*RR/ (GAMMA*PSTAR)
 UCJ=SQRT (GAMMA*PSTAR*RSTAR)/RR+UR
 CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
 USTAR=UCJ-CSTAR
C
C BEGIN GLIMM'S METHOD
C
C
C LEFT OF DETONATION
C
333 U=USTAR
P=PSTAR
R=RSTAR
KPHI=0
GO TO 500
U=UR
P=PR
R=RR
500 CONTINUE
RETURN
END
C
C FUNCTION PSI
C
FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
IF(ABS(1.-X).GT.EPS) GO TO 100
PSI=SQRT(GAMMA)
RETURN
100 COEF1=0.5*(GAMMA+1.)
COEF2=0.5*(GAMMA-1.)
COEF3=COEF2/GAMMA
IF(X.GE.1.) GO TO 200
PSI=COEF2* (1.-X)/(SQRT(GAMMA)*(1.-(X**COEF3)))
RETURN
200 PS I=SQRT(COEF1 * X +COEF2)
RETURN
END
C
C SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS
C DIFFERENTIAL EQUATION
C
SUBROUTINE INHOM
COMMON//DT,GAMMA,RL,U:, PL,R,U,P,E,RR,UR,PR,KPHI,DELTA,KIM
COMMON/OUT/TIME,N,DX,RHO (111), PRE(111),UX(111),PHI(111)

```
```

 COMMON/RAD/ETA
 REAL MOM
 INTEGER PHI
 NP1=N+1
 DO 100 I=2,NP1
 X=FLOAT(I-1)*DX
 R=RHO(I)
 U =U X (I)
 P=PRE(I)
 KPHI=PHI (I)
 KPHIP=PHI(I +1)
 KIP=KPHI*KPHIP
 IF(KPHIP.EQ.1.AND.KIP.EQ.0) GO TO 10
 E=P/(GAMMA-1.)+0.5*R*U*U+KPHI*DELTA*R
 DE N=R-2.*DT* (ETA 1.)*R*U/ X
 MOM=R*U-R*U*2.*DT*(ETA -1.)*U/X
 E=E-2.*DT* (ETA-1.)*U* (E+P)/X
 RHO(I)=DEN
 UX(I)
 PRE(I)=(GAMMA-1.)*(E-KPHI*DELTA*DEN-0.5*MOM*MOM/DEN)
 11 GO TO 100
10 RHO(I)=R
UX(I)=U
PRE(I)=P
100 CONTINUE
RETURN
END
C SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
C
SUBROUTINE OUTPUT
COMMON//DT,GAMMA,RL,UL,PL,R,U,P, E, RR,UR,PR,KPHI,DELTA,KIM
COMMON/OUT/TIME,N,DX,RHO(111), PRE (111),UX(111),PHI (111)
INTEGER PHI
NP1=N+1
WRITE(6,10000) TIME
WRITE (6,10001)
DO 20 I=1,NP1
X=FLOAT}(I-1)*D
R=RHO(I)
U=UX(I)
P=PRE(I)
K=PHI (I)
WRITE(6,10002) X,R,U,P,K
20 CONTINUE
RETURN
10000 FORMAT(1H1,7H TIME = ,F11.7)
10001 FORMAT(1H, 3H X,6X,5HDENSE, 8X, 3HVEL, 10X, 4HPRES, 10X, 3HPHI)
10002 FORMAT(1H0,F6.3,3F13.5,I2)
END

```

\section*{APPENDIX D}

\section*{THE COMPUTER PROGRAM TWODIM}

\section*{D. 1 Description of the Program}

The major parts 0 the program are similar to the previous two programs i.e., the main program, the subroutine GLIMM, the subroutine INHOM and the output section. However two subroutines have been added. Subroutine LABEL defines the boundaries for the problem, it simulates the curved walls of a containment by a stepwise line; it also identifies the grid points which fall outside the boundaries. Subroutine SPLINE is a third order polynomial approximation of the Taylor curves in spherical coordinates.

The general flow chart of the main section of the program can be found in Figure D.1. The data file cards are explained in Table D. 1.

\section*{D. 2 Dictionary of Key Terms in TWODIM}

The terms which have been defined in section B. 2 are not repeated here
\(A P(12), \quad B P(12), \quad\) Coefficient of the third order polynomial \(C P(12)\), \(\quad D P(12)\), approximating the Taylor curves for the \(A R(12), \quad B R(12)\), CR(12), DR(12), \(A \cup(12), \quad B U(12)\),

DETDIS Initial distance the detonation front had reached:


TABLE D.1: DATA FILE

* \([x] \equiv\) largest integer \(<x\)
\(\operatorname{IDUM}(I, J) \quad\) Dummy variable which identifies whether the grid point is an internal, external or boundary point.

LABEL Subroutine which defines the wall boundaries of the containment

NX Number of grid points in the \(x\)-direction
NY Number of grid points in the \(y\)-direction

SDXY
Smallest grid interval in the \(x\) and in the \(y\) directions
SPLINE Subroutine which generates the coefficients of the third order fit polynomial

SX(12) Selected points on the absissa axis of the Taylor curves

UX(I, J) X-component of the velocity at grid point \((1, J)\)
VY(I,J) Y-component of the velocity at grid poing ( \(I, J\) )
\(X(I) \quad\) Grid distance from the origin in the x-direction
\(Y\) (I) Grid distance from the origin in the \(y\)-direction
YP(12), YR(12), Ordinate corresponding to \(S X\) in the spherical Taylor
\(\mathrm{YU}(12)\) curves for the pressure, density and velocity
```

C TWO DIMENSIONAL AXISYMMETRIC PROGRAM TO CALCULATE
C PRESSURE,DENSITY AND VELOCITY HISTORY IN A REACTIVE MIXTURE
C
\& V1
COMMON/OUT/TIME,NX,NY, RHO(101,101), PRE (101,101),UX(101,101)
COMMON/OWT/PHI (101,101)
COMMON/AWT/VY(101,101),X(101),Y(101),DIST'101,101),
\&
IDUM(101,101)
COMMON/RAD/ETA
COMMON/LIN/LAM
COMMON/INI/RCHJ, PCHJ, UCHJ
DIMENSION SX(12),YP(12),AP(12), BP(12),CP(12),DP(12)
DIMENSION YR(12),AR(12), BR(12),CR(12),DR(12)
DIMENSION YU(12),AU(12),BU(12),CU(12),DU(12)
DATA SX/. 501,.6,.7,.75,.8,.85,.9,.92,.94,.96,.98,1./
DATA YP/. 2773,.3075,.3675,.405,.45,.515,.59,.62,.67,.725,.8,
\&
DATA YR/.4,.43,.485,.52,.565,.6175,.68,.715,.76,.815,.88,1./
DATA YU/.0,.1,.2,.265,.345,.43,.55,.61,.66,.73,.83,1./
CALL SPLINE(SX,YP,AP,BP,CP,DP)
CALL SPLINE(SX,YR,AR,BR,CR,DR)
CALL SPLINE (SX,YU,AU,BU,CU,DU)
REAL LAM
DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
READ (5,9999) NPRINT,NSTOP
9999 FORMAT(2I4)
READ (5,8888) C1
8888 FORMAT(F12.5)
C
C READ THE DIMENSION OE THE GRID IN THE X AND Y DIRECTIONS
READ (5,10000)NX,NY
10000 EORMAT(2I3)
NXM1=NX-1
NYM1=NY-1
C
C READ THE GRID LOCATION
READ (5,10001) (X(I), I=1,NX)
READ (5,10001) (Y(J),J=1,NY)
10001 EORMAT(10E7.3)
READ (5,10002) SDXY
10002 FORMAT(F10.4)
DT1=0.00001
TIME=0.0
VMAX=0.
NP=0
GAMMA=1.4
DELTA=1447711.2
BLIP=0.ODO

```
\(\mathrm{K} 1=11\)
\(\mathrm{K} 2=7\)
\(\mathrm{NU}=2\)
SIGMA \(=1.0\)
C ETA IS A DUMMY CONTROL
\(E T A=3\).

READ THE INITIAL INITIATION RADIUS
\(\operatorname{READ}(5,10003)\) DETDIS
10003 EORMAT(E7.3)
SET INITIAL CONDITIONS
\(\operatorname{READ}(5,10004)\) RCHJ
\(\operatorname{READ}(5,10004) \mathrm{PCHJ}\)
\(\operatorname{READ}(5,10004)\) UCHJ
\(\operatorname{READ}(5,10004) \operatorname{RIN}\)
\(\operatorname{READ}(5,10004)\) PIN
\(\operatorname{READ}(5,10004)\) UIN
10004 FORMAT(E13.5)
RL=RCHJ
\(\mathrm{PL}=\mathrm{PCHJ}\)
UL=UCHJ
\(\mathrm{VL}=0\).
RR=RIN
\(\mathrm{PR}=\mathrm{PIN}\)
UR=UIN
\(V R=0\).
\(\operatorname{READ}(5,10006)\) YO
10006 FORMAT (E7.3)
\(\operatorname{READ}(5,10007) \mathrm{NYO}\)
10007 FORMAT (I3)
DO \(10 \quad \mathrm{I}=1, \mathrm{NX}\)
DO \(10 \mathrm{~J}=1, \mathrm{NY}\)
\(\operatorname{DIST}(I, J)=\operatorname{SQRT}(X(I) * * 2 .+(Y(J)-Y O) *(Y(J)-Y O))\)
IE(DIST(I, J).GT.DETDIS) GO TO 11
PHI (I, J) \(=0\)
DDET=DIST(I, J)/DETDIS
IF(DDET.GT.SX(1)) GO TO 1
\(\operatorname{PRE}(1, J)=Y P(1) * \operatorname{PL}\)
\(\mathrm{RHO}(1, J)=\mathrm{YR}(1) * \mathrm{RL}\)
UX (I, J) \(=Y \mathrm{Y}(1) * U L\)
GO TO 29
1 DO \(9 \mathrm{~K}=2,12\)
IF(DDET.GT.SX(K)) GO TO 9
\(\mathrm{XX}=\mathrm{DDET}-\mathrm{SX}(\mathrm{K}-1)\)
\(\operatorname{PRE}(I, J)=A P(K-1) * X X * X X * X X+B P(K-1) * X X * X X+C P(K-1) * X X+D P(K-1)\)
\(\operatorname{PRE}(I, J)=\operatorname{PRE}(I, J) * \operatorname{PL}\)
\(\mathrm{RHO}(\mathrm{I}, \mathrm{J})=\mathrm{AR}(\mathrm{K}-1) * \mathrm{XX} * \mathrm{XX} * \mathrm{XX}+\mathrm{BR}(\mathrm{K}-1) * \mathrm{XX} * \mathrm{XX}+\mathrm{CR}(\mathrm{K}-1) * \mathrm{XX}+\mathrm{DR}(\mathrm{K}-1)\)
RHO (I, J) \(=\) RHO ( \(I, J\) ) *RL
\(U X(I, J)=A U(K-1) * X X * X X * X X+B U(K-1) * X X * X X+C U(K-1) * X X+D U(K-1)\)
```

 UX(I,J)=UX(I,J)*UL
 GO TO 29
 9 CONTINUE
29 IF(I.EQ.1.AND.J.EQ.NYO) GO TO 12
GO TO 13
12 VY(I,J)=UX(I,J)
GO TO 10
13 U=UX(I,J)
UX(I,J)=U*X(I)/DIST(I,J)
VY(I,J)=U*(Y(J)-YO)/DIST(I,J)
GO TO 10
11 RHO (I,J)=RR
PRE (I,J)=PR
UX(I,J)=UR
VY(I,J)=VR
PHI (I,J)=1
10 CONTINUE
READ (5,10005) JCYL
10005 EORMAT(I3)
CALL LABEL(NX,NY, JCYL)
DO 333 I=1,NXM1
DO 333 J=1,NYM1
IF(IDUM(I,J).EQ.4) GO TO 333
IF(PHI (I+1,J)\cdotEQ.1.AND.PHI (I,J).EQ.O) IDUM(I,J)=3
IF(PHI(I,J+1)\cdotEQ.1.AND.PHI (I,J).EQ.O) IDUM (I,J)=3
333 CONTINUE
C
C BEGIN TIME STEP
C
DO 100 TSTP=1,NSTOP
NP=NP+1
DO 30 I=1,NX
DO 30 J=1,NY
VMAX1=SQRT(UX(I,J)*UX(I,J) +VY(I,J)*VY(I,J)) +SQRT(GAMMA*PRE (I,J)/
\&RHO (I, J))
IF(VMAXI.GT. VMAX) VMAX=VMAXI
30 CONTINUE
C SET INITIAL VALUE OF DT
DT=0.01
C FIND THE HALE TIME STEP DT
C
DTT=SIGMA*SDXY/(2.*VMAX)
IF(DTT.LT.DT) DT=DTT
DT=AMAX1 (DT,DT1)
TIME=TIME+2.*DT
LAM=0.5/VMAX
C COMPUTE FIRST QUARTER STEP. X-SWEEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

```
```

NU=MOD(NU+K2,K1)
BLIP=BLIP+1.DO
SI=(GGUBES(BLIP)+ELOAT(NU))/ELOAT(K1)

```
    DO \(40 \mathrm{~J}=1, \mathrm{NY}\)
    DO \(40 \mathrm{I}=2\), NX
    \(\mathrm{DX}=(\mathrm{X}(\mathrm{I})-\mathrm{X}(\mathrm{I}-1))\)
    XII \(=\) SI*DX-0.5*DX
    \(\operatorname{IF}(\operatorname{IDUM}(I, T) . E Q .0)\) GO TO 40
    RR=RHO (I, J)
    UR \(=\mathrm{UX}(\mathrm{I}, \mathrm{J})\)
    \(P R=P R E(I, J)\)
    \(\mathrm{KPHI}=\mathrm{PHI}(\mathrm{I}, \mathrm{J})\)
    \(\mathrm{V} 1=\mathrm{VY}(I, J)\)
    IE(I.EQ.2) GO TO 43
    RL=RIM1
    PL=PIM1
    UL=UIM1
    \(\mathrm{V}=\mathrm{VIM} 1\)
    GO TO 44
\(43 \mathrm{RL}=\mathrm{RHO}(1, \mathrm{~J})\)
    UL=UX \((1, J)\)
    PL=PRE \((1, J)\)
    KIM=PHI \((1, J)\)
    \(\mathrm{V}=\mathrm{VY}(1, \mathrm{~J})\)
    CALL GLIMM (XII)
    RIM1 \(=\) RHO \((I, J)\)
    RHO ( \(I, J\) ) \(=\) R
    PIM1 \(=\) PRE \((I, J)\)
    \(\operatorname{PRE}(I, J)=P\)
    UIM1=UX(I, J)
    UX \((I, J)=U\)
    VIM1=VY(I, J)
    \(V Y(I, J)=V\)
    KIM=PHI (I, J)
    PHI (I, J) \(=\mathrm{KPHI}\)
    CONTINUE
C COMPUTE SECOND QUARTER STEP. Y-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD
```

$\mathrm{NU}=\mathrm{MOD}(\mathrm{NU}+\mathrm{K} 2, \mathrm{~K} 1)$
SI $=(\operatorname{GGUBFS}(B L I P)+$ ELOAT $(N U)) / E L O A T(K 1)$

```

C
```

DO 50 I=2,NX
DO 50 J=2,NY
DY=(Y(J)-Y(J-1))
XI2=SI*DY-0.5*DY
IE(IDUM(I,J).EQ.O) GO TO 50
RR=RHO(I,J)

```
```

 UR=VY(I,J)
 PR=PRE (I,J)
 KPHI=PHI (I,J)
 V1=UX(I,J)
 IF(J.EQ.2) GO TO 53
 RL=RIM1
 PL=PIM1
 UL=UIM1
 V=VIM1
 GO TO }5
 53 RL=RHO(I, 1)
UL=VY(I, 1)
PL=PRE (I,1)
KIM=PHI (I, 1)
V=UX (I,1)
CALL GLIMM(XI2)
RIM1=RHO (I,J)
RHO (I,J)=R
PIM1=PRE (I,J)
PRE (I,J)=P
UIM1=VY(I,J)
VY(I,J)=U
VIM1=UX(I,J)
UX (I,J)=V
KIM=PHI (I,J)
PHI (I,J)=KPHI
50 CONTINUE
C COMPUTE THIRD QUARTER. STEP. X-SWEEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C
NU=MOD(NU+K2,K1)
SI=(GGUBES(BLIP)+FLOAT(NU))/ELOAT(KI)
C
DO 60 J=2,NY
DO 60 I=1,NX
IF(IDUM(I,J).EQ.O) GO TO 60
RL=RHO (I,J)
PL=PRE (I,J)
UL=UX(I,J)
V=VY (I,J)
IE(I.EQ.NX) GO TO 63
IF(IDUM(I+1,J) EQ.O) GO TO 63
DXR=(X(I+1)-X(I))*0.5
IE(I.EQ.1) DXL=DXR
IF(I.NE.1) DXL=(X(I)-X(I-1))*0.5
XI3 = (DXR +DXL)*SI -DXL
KPHI=PHI (I+1,J)
RR=RHO(I+1,J)
PR=PRE (I+1,J)

```
```

UR=UX(I+1,J)
VI=VY(I+1,J)
IF(I.EQ.1) GO TO 62
GO TO }6

```
BOUNDARY CONDITIONS AT WALL
```

UR=-UL
PR=PL
KPHI=PHI (I,J)
XI3=-ABS(XI3)
GO TO }6

```
    XI3 \(=\) ABS (XI3)
    RL=RR
    \(\mathrm{PL}=\mathrm{PR}\)
    UL=-UR
        \(\mathrm{KIM}=\mathrm{PHI}(2, \mathrm{~J})\)
        \(\operatorname{PHI}(1, J)=\operatorname{PHI}(2, J)\)
\(\mathrm{V}=\mathrm{VY}(\mathrm{I}+1, \mathrm{~J})\)
\(V Y(I, J)=V Y(I+1, J)\)
64 CALL GLIMM (XI3)
RHO \((I, J)=R\)
\(\operatorname{PRE}(I, J)=P\)
UX (I, J) \(=\mathrm{U}\)
IF(I.NE.NX) KIM=PHI (I \(+1, \mathrm{~J}\) )
\(\operatorname{PHI}(I, J)=K P H I\)
VY \((I, J)=V\)
60 CONTINUE
C COMPUTE FOURTH QUARTER STEP. Y-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD
```

$\mathrm{NU}=\mathrm{MOD}(\mathrm{NU}+\mathrm{K} 2, \mathrm{~K} 1)$
SI $=(\operatorname{GGUBFS}($ BLIP $)+$ ELOAT $(N U)) / E L O A T(K 1)$

```

C
DO \(70 \mathrm{I}=1, \mathrm{NX}\)
DO \(70 \mathrm{~J}=1, \mathrm{NY}\)
IF(IDUM (I, J).EQ.O) GO TO 70
\(\mathrm{RL}=\mathrm{RHO}(\mathrm{I}, \mathrm{J})\)
PL=PRE (I, J)
\(\mathrm{UL}=\mathrm{VY}(\mathrm{I}, \mathrm{J})\)
\(\mathrm{V}=\mathrm{UX}(\mathrm{I}, \mathrm{J})\)
IE(J.EQ.NY) GO TO 73
IE(IDUM (I, J+1).EQ.O) GO TO 73
DYR=(Y(J+1)-Y(J))*0.5
IF(J.EQ.1) DYL=DYR
```

 IF(J.NE.1) DYL=(Y(J)-Y(J-1))*0.5
 XI4=(DYR+DYL)*SI-DYL
 KPHI=PHI (I, J+1)
 RR=RHO(I,J+1)
 PR=PRE (I,J+1)
 UR=VY(I,J+1)
 V1=UX(I,J+1)
 IF(J.EQ.1) GO TO }7
 GO TO }7
    ```
    BOUNDARY CONDITIONS AT THE UPPER WALL
    \(R \mathrm{R}=\mathrm{RL}\)
    \(U R=-U L\)
    \(P R=P L\)
    \(\mathrm{KPHI}=\mathrm{PHI}(\mathrm{I}, \mathrm{J})\)
    XI4 \(=-\) ABS (XI4 \()\)
    GO TO 74
C
C BOUNDARY CONDITIONS AT THE LOWER WALL
    XI4 \(=\) ABS (XI4)
    RL=RR
    PL=PR
    UL=-UR
    \(\mathrm{KIM}=\mathrm{PHI}(\mathrm{I}, 2)\)
    \(\operatorname{PHI}(I, 1)=P H I(I, 2)\)
    \(\mathrm{V}=\mathrm{UX}(\mathrm{I}, \mathrm{J}+1)\)
    \(U X(I, J)=U X(I, J+1)\)
74 CALL GLIMM (XI4
    RHO (I, J) \(=\) R
    \(\operatorname{PRE}(I, J)=P\)
    \(V Y(I, J)=U\)
    \(\operatorname{IF}(\mathrm{J} . \mathrm{NE} . \mathrm{NY}) \mathrm{KIM}=\mathrm{PHI}(\mathrm{I}, \mathrm{J}+1)\)
    \(\operatorname{PHI}(I, J)=K P H I\)
    \(U X(I, J)=V\)
70 CONTINUE
    CALL LABEL(NX,NY, JCYL)
    DO 777 I=1,NXM1
    DO \(777 \mathrm{~J}=1\), NYM1
    \(\operatorname{IF}(\operatorname{IDUM}(I, J) . E Q .4)\) GO TO 777
    \(\operatorname{IF}(\operatorname{PHI}(I+1, J) \cdot E Q \cdot 1 \cdot \operatorname{AND} \cdot \operatorname{PHI}(I, J) \cdot E Q \cdot 0) \quad \operatorname{IDIM}(I, J)=3\)
    \(\operatorname{IF}(\operatorname{PHI}(I, J+1) \cdot E Q \cdot 1 \cdot \operatorname{AND} \cdot \operatorname{PHI}(I, J) \cdot E Q \cdot 0) \operatorname{IDUM}(I, J)=3\)
CONTINUE
CALL INHOM
\(\operatorname{WRITE}(6,300) \operatorname{TIME}, \operatorname{PRE}(N X, 1), \operatorname{PRE}(N X, 8), \operatorname{PRE}(N X, 16), \operatorname{PRE}(N X, 21)\),
    *PRE (NX, 26) , \(\operatorname{PRE}(N X, 30), \operatorname{PRE}(N X, 34), \operatorname{PRE}(N X, 38), \operatorname{PRE}(N X, 41)\),
    * \(\operatorname{PRE}(24,46), \operatorname{PRE}(20,50), \operatorname{PRE}(15,55), \operatorname{PRE}(10,60), \operatorname{PRE}(5,65)\),
    *PRE \((1,65), \operatorname{PRE}(1,1), \operatorname{PRE}(1,24), \operatorname{PRE}(1,34), \operatorname{PRE}(1,44), \operatorname{PRE}(1,54)\)
    FORMAT (1X, E9. \(3,1 \mathrm{X}, 10(\) E9. 3, 1X) , /, 10X, \(10(\) E9. 3, 1X) )
        IF(NP.LT.NPRINT) GO TO 100
        \(N P=0\)
```

100 CONTINUE
STOP
END

```
```

 SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
 SUBROUTINE GLIMM(XI)
 COMMON//DT, GAMMA,RL,UL,PL, R,U,V,P,E,RR,UR,PR,KPHI,DELTA,KIM,
 &
 V1
 COMMON/RAD/ETA
 COMMON/LIN/LAM
 COMMON/INI/RCHJ,PCHJ,UCHJ
 REAL MR,ML,MRP1,MLP1
 REAL LAM,MUSQ
 EPS=1.E-6
 EPS1=1.E-3
 IT=0
 ITSTOP=20
 KPHIP=KPHI *KIM
 IF KPHI=1, MIGHT HAVE A DETONATION
 IF(KPHI.EQ.1.AND.KPHIP.EQ.0) GO TO 111
 IF(KIM.EQ.1.AND.KPHIP.EQ.O) GO TO 111
 CONSTRUCTION OF RIEMANN PROBLEM
 ALEA IS THE CONVERGENCE FACTOR
 ALFA=1.
 ALFAM=1. - ALFA
 INITIAL ML AND MR
 ML=100.
 MR=100.
 COEEL=SQRT(PL*RL)
 COEFR=SQRT(FR*RR)
 COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV
 RAV=0.5*(RL+RR)
PAV=0.5*(PL+PR)
A=PAV/(RAV**GAMMA)
R=RAV-LAM* (UR*RR-UL*RL)
PSTAR=A* (R**GAMMA)
SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
$I T=I T+1$
IF PSTAR IS LESS THAN EPSITHEN PSTAR IS SET EQUAL
TO 1.OE-3 TO PREVENT PSTAR EROM BECOMING NEGATIVE

```
```

C
PSTAR=AMAX1(EPS1,PSTAR)
C
C COMPUTE MR AND ML AT STEP Q+1
C
20 MLP1=COEFL*PSI (PSTAR/PL, GAMMA)
MRP1=COEFR*PSI (PSTAR/PR,GAMMA)
DIFML=ABS(1.-(MLP1/ML))
DIFMR=ABS(1.-(MRP1/MR))
ML=MLP1
MR=MRP1
C
C COMPUTE NEW PRESSURE PSTAR
C
PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)
PSTAR=ALFA*PSTAR+ALEAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 3O
DIFPS=ABS(1.-(PSTARP/PSTAR))
IF(DIFPS.LT.EPS1) GO TO 40
IF(DIFML*DIFMR.LT.EPS1) GO TO 40
ALFA=ALEA/2.
ALFAM=1. -ALEA
IF(ALFAM.LT.EPS1) GO TO 40
IT=0
30 IF(DIFML.GT.EPS1) GO TO 10
IF(DIEMR.GT.EPS1) GO TO 10
C
C COMPUTE USTAR AT END OF GODUNOV ITERATION
C
40 PSTAR=AMAX1(EPS1,PSTAR)
USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)
C
C BEGIN GLIMM'S METHOD
C
IREGL=1
IF(PSTAR.LT.PL) IREGL=2
IREGR=1
IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT
IF(XI.GE.X) GO TO 200
C
C
C
IF(IREGL.EQ.2) GO TO 110
C
C COMPUTE LEFT SHOCK SPEED
C
U=UL-ML/RL
X=U*D'T
IF(XI.GE.X) GO TO 100
C

```
```

C LEFT OF LEFT SHOCK
C
C
C
100 R=ML/(USTAR-U)
U=USTAR
P=PSTAR
GO TO 500
C
C COMPUTE SOUND SPEED IN LEET STATE
C
110
CL=SQRT(GAMMA*RL/KL)
X=(UL-CL) *DT
IE(XI.GE.X) GO TO }12
C
C
LEET OF LEET EAN
C
R=RL
U=UL
P=PL
GO TO 500
C
C
120
C
C
C
RSTAR=(PSTAR/A)**(1./GAMMA)
C
C
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR) *DT
IE(XI.GE.X) GO TO 130
C
IN LEET FAN
U=(2./(GAM:MA +1.))*(XI/DT+CL+0.5*(GAMMA-1)) *UL)
RINT=CL+0.5*(GAMMA-1.)*(UL-U)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)
GO TO 500
C
C RIGHT OE LEET EAN
130
R=RSTAR

```
\begin{tabular}{|c|c|}
\hline & U=USTAR \\
\hline & \(\mathrm{P}=\mathrm{PSTAR}\) \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & RIGHT SIDE \\
\hline C & \\
\hline 200 & IF(IREGR.EQ.2) GO TO 220 \\
\hline C & \\
\hline C & COMPUTE RIGHT SHOCK SPEED \\
\hline C & \\
\hline & \(\mathrm{U}=\mathrm{UR}+\mathrm{MR} / \mathrm{RR}\) \\
\hline & \(\mathrm{X}=\mathrm{U} * \mathrm{DT}\) \\
\hline & IF(XI.GE.X) GO TO 210 \\
\hline C & \\
\hline C & LEFT OF RIGHT SHOCK \\
\hline C & \\
\hline & \(\mathrm{R}=-\mathrm{MR} /\) ( USTAR-U) \\
\hline & U=USTAR \\
\hline & \(\mathrm{P}=\) PSTAR \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & RIGHT OF RIGHT SHOCK \\
\hline & \\
\hline 210 & \(\mathrm{R}=\mathrm{RR}\) \\
\hline & \(U=U R\) \\
\hline & \(\mathrm{P}=\mathrm{PR}\) \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & COMPUTE CONSTANT OF TENTROPIC LAW-A \\
\hline C & \\
\hline 220 & \(A=P R /(R R * * G A M M A)\) \\
\hline C & \\
\hline C & COMPUTE DENSITY IN STATE STAR \\
\hline C & \(\operatorname{RSTAR}=(\mathrm{PSTAR} / \mathrm{A}) * *(1 . / \mathrm{GAMMA})\) \\
\hline C & \\
\hline C & COMPUTE SOUND SPEED IN STATE STAR \\
\hline C & \\
\hline & CSTAR=SQRT ( GAMMA*PSTAR/RSTAR)
\[
\mathrm{X}=(\mathrm{USTAR}+\mathrm{CSTAR}) * D T
\] \\
\hline & IF (XI.GE.X) GO TO 230 \\
\hline C & \\
\hline C & I.EFT OF RIGHT EAN \\
\hline C & \\
\hline & R=RSTAR \\
\hline & U=USTAR \\
\hline & \(\mathrm{P}=\mathrm{PSTAR}\) \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & COMPUTE SOUND SPEED IN RIGHT STATE \\
\hline C & \\
\hline 230 & \(C R=S Q R T(G A M M A * P R / R R)\) \\
\hline
\end{tabular}
```

X=(UR+CR) *DT
IF(XI.GE.X) GO TO 240
C
C IN RIGHT FAN
C
U}=(2./(GAMMA+1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR
RINT=CR+0.5*(GAMMA-1.)*(U-UR)
R=(RINT*2INT/(A*GAMMA))**(1./(GAMMA-1.))
P=A* (R**GAMMA)
GO TO 500
C
C RIGHT OF RIGHT EAN
C
240 R=RR
U=UR
P=PR
GO TO 500
C
C DETONATION CONDITIONS
C
C
C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C
111 B=-PR-DELTA*(GAMMA-1.)*RR
MUSQ=(GAMMA - 1.)/(GAMMA +1.)
C=(PR*PR) +2.*MUSQ*PR*RR*DELTA
PSTAR=-B+SQRT ((B*B)-C)
RSTAR = (PSTAR* (GAMMA +1.) -PR)*RR/(GAMMA*PSTAR)
UCJ=SQRT(GAMMA*PSTAR*RSTAR)/RR+UR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
USTAR=UCJ-CSTAR
PSTAR=PCHJ
USTAR=SQRT(ABS(UCHJ*UCHJ -V*V))
RSTAR=RCHJ
CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
UCJ=(USTAR/UCHJ) * (CSTAR+UCHJ)
IE(KIM.EQ.1) GO TO }55
C
C BEGIN GLIMM'S METHOD
C
X=UC. }\mp@subsup{}{}{\top}*D
IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333
C
C COMPUTE SOUND SPEED IN LEET STATE
C NEXT STATEMENTS TO333 NOT USED
C
CL=SQRT(GAMMA*PL/RL)
X=(UL+CL) *DT
IF(XI.GE.X) GO TO 444
C
C LEFT OF RAREFACTION EAN

```

C
\begin{tabular}{|c|c|}
\hline & \(\mathrm{R}=\mathrm{RL}\) \\
\hline & U=UL \\
\hline & \(\mathrm{P}=\mathrm{PL}\) \\
\hline & \(\mathrm{KPHI}=0\) \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & COMPUTE CONSTANT OE ISENTROPIC LAW-A \\
\hline C & \\
\hline 444 & \(A=P S T A R /(R S T A R * * G A M M A)\) \\
\hline C & \\
\hline C & IN RIGHT EAN \\
\hline C & \\
\hline & \[
U=(2 . /(G A M M A+1 .)) *(\text { XI } / D T-\operatorname{CSTAR}+0.5 *(\text { GAMMA }-1 .) * U S T A R)
\] \\
\hline & RINT \(=\) CSTAR +0.5 * (GAMMA-1.) * (U-USTAR) \\
\hline & \(\mathrm{R}=(\mathrm{RINT} * \mathrm{RINT} /(\mathrm{A}\) GAMMA \()\) )**(1./(GAMMA-1.) ) \\
\hline & \(\mathrm{P}=\mathrm{A} *(\mathrm{R} * *\) GAMMA \()\) \\
\hline & \(\mathrm{KPHI}=0\) \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & RIGHT OF DETONATION \\
\hline C & \\
\hline 333 & U=USTAR \\
\hline & \(\mathrm{P}=\mathrm{PCHJ}\) \\
\hline & \(\mathrm{R}=\mathrm{RCHJ}\) \\
\hline & \(\mathrm{KPHI}=0\) \\
\hline & GO TO 500 \\
\hline 222 & \(\mathrm{U}=\mathrm{UR}\) \\
\hline & \(\mathrm{P}=\mathrm{PR}\) \\
\hline & \(\mathrm{R}=\mathrm{R} \mathrm{R}\) \\
\hline & \(\mathrm{V}=0\) \\
\hline & GO TO 500 \\
\hline C & \\
\hline C & DETONATION EROM RIGHT TO LEET \\
\hline C & \\
\hline 555 & USTAR=SQRT (ABS (UCHJ*UCHJ-V1*V1)) \\
\hline & UCJ \(=\) (USTAR/UCHJ) * (CSTAR+UCHJ) \\
\hline & \(\mathrm{X}=-\mathrm{UCJ} *\) DT \\
\hline & IF (XI.LE.X) GO TO 556 \\
\hline & IF(ETA.LT.3.5) GO TO 557 \\
\hline 557 & \(\mathrm{U}=-\) USTAR \\
\hline & \(\mathrm{P}=\mathrm{PCHJ}\) \\
\hline & \(\mathrm{R}=\mathrm{RCHJ}\) \\
\hline & \(\mathrm{V}=\mathrm{V} 1\) \\
\hline & \(\mathrm{KPHI}=0\) \\
\hline & GO TO 500 \\
\hline 556 & U=UL \\
\hline & \(\mathrm{P}=\mathrm{PL}\) \\
\hline & \(\mathrm{R}=\mathrm{RL}\) \\
\hline & \(\mathrm{KPHI}=1\) \\
\hline & \(\mathrm{V}=0\) \\
\hline 500 & CONTINUE \\
\hline
\end{tabular}
```

RETURN
END
FUNCTION PSI
FUNCTION PSI(X, GAMMA)
EPS=1.OE-6
IF(ABS(1.-X).GT.EPS) GO TO }10
PSI=SQRT(GAMMA)
RETURN
100 COEF1=0.5* (GAMMA + 1.)
COEF2=0.5* (GAMMA-1.)
COEF3=COEF2/GAMMA
IF(X.GE.1.) GO TO 200
PSI=COEF2* (1,-X)/(SQRT}(\operatorname{GAMMA})*(1,-(X**COEF3))
RETURN
PSI=SQRT(COEF1*X+COEE2)
RETURN
END

SUBROUTINE INHOM，TO CALCULATE THE NON－HOMOGENEOUS DIEEERENTIAL EQUATION

```
SUBROUTINE INHOM
```

SUBROUTINE INHOM
COMMON//DT, GAMMA, RL, UL, PL, R,U,V,P,E,RR, UR, PR, KPHI, DELTA, KIM
COMMON//DT, GAMMA, RL, UL, PL, R,U,V,P,E,RR, UR, PR, KPHI, DELTA, KIM
COMMON/OUT/TIME,NX,NY, RHO(101,101), PRE (101,101),UX(101,101)
COMMON/OUT/TIME,NX,NY, RHO(101,101), PRE (101,101),UX(101,101)
COMMON/OWT/PHI (101,101)
COMMON/OWT/PHI (101,101)
COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
\&
REAL MOMX,MOMY
REAL MOMX,MOMY
INTEGER PHI
INTEGER PHI
EPS2=1.E-3
EPS2=1.E-3
DO 100 J=1,NY
DO 100 J=1,NY
DO 100 I=2,NX
DO 100 I=2,NX
XX=X(I)
XX=X(I)
R=RHO(I,J)
R=RHO(I,J)
U=UX(I,J)
U=UX(I,J)
P=PRE (I,J)
P=PRE (I,J)
V=VY (I, J)
V=VY (I, J)
KPHI=PHI (I,J)
KPHI=PHI (I,J)
KPHIP=PHI (I+1,J)
KPHIP=PHI (I+1,J)
KPHIPY}=PHI(I,J+1
KPHIPY}=PHI(I,J+1
IF(J.NE.1) KPHIPP=PHI(I,J-1)
IF(J.NE.1) KPHIPP=PHI(I,J-1)
KIP=KPHI *KPHIP
KIP=KPHI *KPHIP
KIPY=KPHI * KPHIPY
KIPY=KPHI * KPHIPY
IF(J.NE.1) KIPP=KPHI*KPHIPP
IF(J.NE.1) KIPP=KPHI*KPHIPP
IE(KPHIP.EQ.1.AND.KIP.EQ.O) GO mO 10
IE(KPHIP.EQ.1.AND.KIP.EQ.O) GO mO 10
IF(KPHIPY.EQ.1.AND.KIPY.EQ.0) GO TO 10
IF(KPHIPY.EQ.1.AND.KIPY.EQ.0) GO TO 10
IE(J.NE.1.AND.KPHIPP.EQ.1.AND.KIPP.EQ.O) GO TO 10
IE(J.NE.1.AND.KPHIPP.EQ.1.AND.KIPP.EQ.O) GO TO 10
E=P/(GAMMA-1.) +0.5*R*U*U +KPHI*DELTA*R+0.5*R*V*V
E=P/(GAMMA-1.) +0.5*R*U*U +KPHI*DELTA*R+0.5*R*V*V
DEN=R-2.*DT*R*U/XX
DEN=R-2.*DT*R*U/XX
MOMX=R*U-R*U*2 . *DT*U/XX

```
    MOMX=R*U-R*U*2 . *DT*U/XX
```

```
    MOMY=R*V-2. *DT*R*U*V/XX
    E=E-2. *DT*U* (E+P)/XX
    RHO (I,J)=DEN
    UX (I,J)=MOMX/DEN
    VY(I,J)=MOMY/DEN
    POP=(GAMMA-1.)*(E-KPHI *DELTA*DEN-0.5*MOMX*MOMX/DEN-0.5*MOMY*M
&OMY/DEN)
    PRE (I, J)=AMAX1(EPS2,POP)
    GO TO 100
    RHO (I,J)=R
    UX(I,J)=U
    VY(I,J)=V
    PRE (I,J)=P
    CONTINUE
    RETURN
    END
    SUBROUTINE SMOOTH TO DAMP THE OSCILLATIONS
    SUBROUTINE SMOOTH(C1)
    COMMON/OUT/TIME,NX,NY,RHO(101,101),PRE(101,101),UX(101,101)
    COMMON/OWT/PHI (101,101)
    COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
&
                IDUM(101,101)
    DO 1 J=1,NY
    RP=RHO (1,J)
    UP=UX (1,J)
    PP=PRE (1,J)
    VP=VY(1,J)
    NXM1=NX-1
    DO 1 I=2,NXM1
    IF(IDUM(I+1,J).EQ.O) GO TO 1
    R=RHO (I, J)
    U=UX (I,J)
    V=VY(I,J)
    P=PRE (I,J)
    R1DEL=RHO (I, J)-RP
    U1DEL=UX(I,J)-UP
    P1DEL=PRE(I,J)-PP
    V1DEL=VY(I,J)-VP
    R2DEL=RHO(I+1,J)-R
    U2DEL=UX(I+1,J)-U
    P2DEL=PRE (I +1,J) -P
    V2DEL=VY'(I+1,J)-V
    R=R+C1*(ABS(U2DEL)*R2DEL-ABS(U1DEL)*R1DEL)
    U=U+C1*(ABS(U2DEL)*U2DEL-ABS(U1DEL)*U1DEL)
    P=P+C1*(ABS(U2DEL)*P2DEL-ABS(U1DEL)*P1DEL)
    V=V+C1.*(ABS(U2DEL)*V2DEL-ABS(U1DEL)*V1DEL)
    RP=RHO (I,J)
    RHO (I, J ) =R
    UP=UX(I,J)
    UX (I,J)=U
```

C
C
C

```
PP=PRE (I,J)
PRE(I,J)=P
VP=VY(I,J)
VY(I,J)=V
CONTINUE
NYM1 =NY-1
DO 2 I=1,NX
RP=RHO (I,1)
UP=UX(I,1)
PP=PRE (I,1)
VP=VY(I,1)
DO 2 J=2,NYM1
IF(IDUM(I,J+1).EQ.O) GO TO 2
R=RHO (I,J)
U=UX(I,J)
P=PRE (I,J)
V=VY(I,J)
R1DEL=RHO(I, J)-RP
U1DEL=UX(I,J)-UP
P1DEL=PRE(I,J)-PP
V1DEL=VY(I,J)-VP
R2DEL=RHO(I,J+1)-R
U2DEL=UX(I,J+1)-U
    P2DEL=PRE (I, J+1) -P
    V2DEL=VY(I,J+1)-V
    R=R+C1*(ABS(V2DEL)*R2DEL-ABS(V1DEL)*R1DEL)
    U=U+C1*(ABS (V2DEL)*U2DEL-ABS(V1DEL)*U1DEL)
    P=P+C1*(ABS(V2DEL)*P2DEL-ABS(V1DEL)*P1DEL)
    V=V+C1*(ABS(V2DEL)*V2DEL-ABS(V1DEL)*V1DEL)
    RP}=\textrm{RHO}(\textrm{I},\textrm{J}
    RHO(I,J)=R
    UP=UX(I,J)
    UX(I,J)=U
    PP=PRE (I,J)
    PRE(I,J)=P
    VP=VY(I,J)
    VY(I,J)=V
    CONTINUE
    RETURN
    END
    SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS
    SUBROUTINE LABELF(NX,NY,JCYL)
    COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)
    DO 1 J=1,NY
    DO 1 I=1,NX
    IDUM ( I, J)=1
    IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
    IX1=30
    IX2=24
    IX3=20
```

```
    IX4=12
    IY1=12
    IY2=20
    IY3=24
    IY4=30
    DO 2 I=IX2,NX
    DO 2 J=IY1, IY2
    IDUM(I,J)=0
    IF(I.EQ.IX2) IDUM(I,J)=4
    IE(J.EQ.IYI.AND.I.LE.IXI) IDUM(I,J)=4
    DO }3\mathrm{ I =IX3,NX
    DO 3 J=IY2,IY3
    IDUM(I,J )=0
    IE(I.EQ.IX3) IDUM(I,J)=4
    IE(J.EQ.IY2.AND.I.LE,IX2) IDUM(I,J)=4
    DO }4\textrm{I}=IX4,N
    DO 4 J=IY3,IY4
    IDUM(I,J)=0
    IF(I,EQ.IX4) IDUM(I,J)=4
    IF(J.EQ.IY3.AND.I.LE.IX3) IDUM(I,J)=4
    RETURN
    END
C
C
C
    SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS
    SUBROUTINE LAPEL(NX,NY,JCYL)
    COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
    &
            IDUM(101,101)
    DO I J=1,NY
    DO 1 I=1,NX
    IDUM(I,J)=1
    IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
    NXF=NX+1
    JCYLE=JCYL-1
    NYM1=NY-1
    DO 2 I=1,NX
    IM=NXF-I
    JCYLF=JCYLE+1
    IF(JCYLF.GT.NYM1) GO TO 11
    DO 2 J=JCYLE,NYM1
    IDUM(IM,J+1)=0
    IDUM(IM-1,J)=4
    IDTMM(IM-1,J+1)=4
    RETURN
    END
C
C SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
    SUBROUTINE OUTPUT
    COMMON//DT, GAMMA, RL, UL, PL, R, U, V, P, E, RR, UR, PR, KPHI, DELTA, KIM
    COMMON/OUT/TIME,NX,NY, RHO(101,101),PRE(101,101),UX(101,101)
    COMMON/OW1/PHI (101,101)
```

-158-
COMMON/AWT/VY(1.01, 101), X(101), Y(101), $\operatorname{DIST}(101,101)$,
\&
IDUM $(101,101)$
INTEGER PHI
WRITE $(6,20000)$ TIME
DO $20 \mathrm{~J}=1$, NY, 3
$J M=N Y+1-J$
WRITE $(6,20001)$ Y(JM), (RHO(I, JM), I=1,NX, 3)
WRITE $(6,20002)$ ($U X(I, J M), I=1, N X, 3)$
$\operatorname{WRITE}(6,20002)$ (VY(I, JM), $I=1, N X, 3)$
$\operatorname{WRITE}(6,20003) \quad(\operatorname{PRE}(I, J M), I=1, N X, 3)$
WRITE $(6,20004)$ (PHI (I, JM), $I=1, N X, 3)$
$\operatorname{WRITE}(6,20004)$ (IDUM ($I, J M), I=1, N h, 3)$
CONTINUE
$\operatorname{WRITE}(6,20005)(X(I), I=1, N X, 3)$
WRITE $(15,20000)$ TIME
WRITE $(15,30000)$
DO $30 \mathrm{~J}=1, \mathrm{NY}$
WRITE $(15,30001)$ Y(J), RHO (NX J) , UX (NX, J) , VY (NX, J) , PRE (NX, J),
\&PHI (NX, J)
CONTINUE
RETURN
20000 EORMAT (1X,' TIME $=$ ', E11.7/)
$20001 \operatorname{FORMAT}(1 X$, F7.3.11(F9.5.2X))
20002 FORMAT($8 \mathrm{X}, 11$ (F9.4,2X))
20003 FORMAT(8X,11(F9.1,2X))
20004 FORMAT(12X,11(I1,10X))
20005 FORMAT ($8 \mathrm{X}, 11$ (F9.3,2X))
30000 EORMAT ($1 \mathrm{H}, 3 \mathrm{H}$ X, $6 \mathrm{X}, 5 \mathrm{HDENSE}, 8 \mathrm{X}, 3 \mathrm{HVEL}, 10 \mathrm{X}, 4$ HPRES, $10 \mathrm{X}, 3 \mathrm{HPHI}$)
30001 FORMAT (1I: O, F6.3,4F13.5, 12)
END
C
C SUBROUTINE SPLTNE:FINDS THE THIRD ORDER EIT COEFEICIENTS FOR THE TAYLOR CURVES IN SPHERICAL COORDINATES

SUBROUTINE SPLINE (X,Y,A,B,C,D)
DIMENSION $\mathrm{X}(12), \mathrm{Y}(12), \mathrm{H}(11), \operatorname{RHS}(10), \mathrm{W}(10,10), \mathrm{A}(12), \mathrm{B}(12)$
DIMENSION C(12), D(12), AS(10), BS(10),CS(10),G(12)
DO $2 \mathrm{I}=1,11$
$\mathrm{J}=\mathrm{I}+1$
$\mathrm{H}(\mathrm{I})=\mathrm{X}(\mathrm{J})-\mathrm{X}(\mathrm{I})$
DO $3 \mathrm{I}=1,10$
$J=T+1$
$\mathrm{K}=\mathrm{I}+2$
RHS (I) $=3 . *(((Y(K)-Y(J)) / H(J))-((Y(J)-Y(I)) / H(I)))$
DO $4 \mathrm{I}=1,10$
DO $4 \mathrm{~J}=1,10$
4
$W(I, J)=0.0$
DO $5 \mathrm{I}=1,10$
$\mathrm{J}=\mathrm{I}+1$
$W(I, I)=2 . *(H(I)+H(J))$
IF(J.EQ.11) GO TO 6
$W(I, J)=H(J)$
$5 \quad W(J, I)=W(I, J)$
$6 \quad \operatorname{AS}(1)=W(1,1)$
$B S(1)=W(1,2)$
$\mathrm{CS}(1)=$ RHS (1)
$\mathrm{BS}(10)=0.0$
DO $7 \mathrm{I}=2,10$
$\mathrm{J}=\mathrm{I}+1$
$\mathrm{K}=\mathrm{I}-1$
$\mathrm{AS}(\mathrm{I})=(\mathrm{W}(\mathrm{I}, \mathrm{K}) * \mathrm{BS}(\mathrm{K}))-(\mathrm{AS}(\mathrm{K}) * \mathrm{~W}(\mathrm{I}, \mathrm{I}))$
$\operatorname{CS}(I)=(W(I, K) * C S(K))-(\operatorname{RHS}(I) * A S(K))$
IF (I.EQ.10) GO TO 7
$B S(I)=-A S(K) * W(I, J)$
7 CONTINUE
$B(10)=C S(10) / A S(10)$
DO $8 \mathrm{I}=2,10$
$J=11-I$
$\mathrm{K}=\mathrm{J}+1$
8
$B(J)=(C S(J)-(B S(J) * B(K))) / A S(J)$
DO $9 \mathrm{I}=1,10$
$\mathrm{J}=\mathrm{I}+1$
9
$G(J)=B(I)$
$G(1)=0.0$
$G(12)=0.0$
DO $12 \mathrm{I}=1,12$
(I) $=\mathrm{G}$ (I)
[) $10 \quad \mathrm{I}=1,11$
$\mathrm{J}=\mathrm{I}+1$
$A(\mathrm{I})=(\mathrm{B}(\mathrm{J})-\mathrm{B}(\mathrm{I})) / 3 \cdot / \mathrm{H}(\mathrm{I})$
$C(I)=((Y(J)-Y(I)) / H(I))-((H(I) *(B(J)+(2 . * B(I)))) / 3$.
10
$\mathrm{D}(\mathrm{I})=\mathrm{Y}(\mathrm{I})$
RETURN
END

APPENDIX E

PRESSURE TIME HISTORIES AT THE WALL OF THE INDIAN POINT CONTAINMENT

Pressure time histories at selected points on the wall of the Indian Point containment are presented in this Appendix. Wall pressures are nomalized with respect to the initial pressure in the containment, P_{0}, and are shown as a function of dimensionless time since initiation, $t C_{0} / r$, where C_{0} is the speed of sound at the initial conditions and r is the radius of the cylinder and the dome. In the Indian Point Containment r equals 20.7 m and at atmospheric initial conditions $r / C_{0}=0.06 \mathrm{sec}$. Results are shown for two initiation points and two dimensionless heat release rates, $q / R T_{0}=17$ and 23 .

Fin. E. 1 - Wall Pressure History at the Junction of the rase and the Cylincer ($q / R T_{0}=17$; Initiation at Base Center)

Fig. E. 2 - Wall Pressure History at Elevation 6.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation at Base Center)
-164-

Fig. E. 3 - Wall Pressure History at Elevation 12.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation at Base Center)

Fig. E. 4 - Wall Pressure History at Elevation 18.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation at Base Center)

Fig. E. 5 - Wall Pressure History at Elevation 24.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation at Base Center)

Fig. E. 6 - Wall Pressure History at Elevation 30.0 m of the
Cylinder $\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center)

Fig. E. 7 - Wall Pressure History at Elevation 36.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation at Base Center)
-169.

Fig. E. 8 - Wall Pressure History at Elevation 42.0 m of the Cylinder ($q / R T_{0}=17$; Initiation at Base Center)

Fig. E. 9 - Dome Pressure History at Elevation 47.0 m and Radius 20.7 m ($q / R T_{0}=17$; Initiation at Base Center)

Fig. E. 10 - Dome Pressure History at Elevation 51.0 and Radius $19.4 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initation at Base Center)

Fig. E. 11 - Dome Pressure History at Elevation 56.0 and Radius $17.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center)

Fig. E. 12 - Dome Pressure History at Elevation 61.0 and Radius $13.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center)

Fig. E. 13 - Dome Pressure History at Elevation 64.0 m and Radius $9.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation at Base Center)

Fig. E. 14 - Dome Pressure History at Elevation 66.0 m and Radius 9.6 m ($ๆ / \mathrm{RT}_{0}=17$; Initiation at Base Center)

Fig. E. 15 - Pressure History at the Apex of the Dome ($\mathrm{q} / \mathrm{RT} \mathrm{T}_{0}=17$; Initiation at Base Center)

Fig. E. 16 - Wall Pressure History at the Junction of the Base and the Cylinder ($q / R T_{0}=17$; Initiation 34.5 Above Base)

Fig. E. 17 - Wall Pressure History at Elevation 6.0 m of the Cylinder ($\mathrm{q} / \mathrm{RT} \mathrm{T}_{0}=17$; Initiation 34.5 m Above Base)

Fig. E. 18 - Wall Pressure History at Elevation 12.0 m of the Cylinder ($q / \mathrm{RT}_{0}=17$; Initiation 34.5 Above Base)

Fig. E. 19 - Wall Pressure History at Elevation 18.0 m of the Cylinder $\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base)

Fig. E. 20 - Wall Pressure History at Elevation 24.0 m of the Cylinder ($\mathrm{a} / \mathrm{RT} \mathrm{T}_{0}=17$; Initiation 34.5 m Above Base)

Fig. E. 21 - Wall Pressure History at Elevation 30.0 m of the Cylinder $\left(\mathrm{q} / \mathrm{RT} \mathrm{o}_{0}=17\right.$; Initiation 34.5 m Above Base)

Fig. E. 22 - Wall Pressure History at Elevation 36.0 m of the Cylinder $\left(q / R T_{0}=17\right.$; Initiation 34.5 m Above Base)

Fig. E. 23 - Wall Pressure History at Elevation 42.0 m of the Cylinder $\left(\mathrm{q} / \mathrm{RT}{ }_{0}=17\right.$; Initiation 34.5 m Above Base)

Fig. E. 24 - Dome Pressure History at Elevation 47.0 m and Radius $20.7 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation $\left.34.5 \mathrm{~m},{ }_{\text {Above Base }}\right)$ Above Base)

Fij. E. 25 - Dome Pressure History at Elevation 51.0 m and Radius $19.4 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT} \mathrm{T}_{0}=17\right.$; Initiation 34.5 m Ahove Base)

Fig. E. 26 - Dome Pressure History at Elevation 56.0 m and Radius $17.1 \mathrm{~m}\left(4 / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base)

Fig. E. 27 - Dome Pressure History at Elevation 61.0 m and Radius $13.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Atove Base)

Fig. E. 28 - Dome Pressure History at Elevation 64.0 m and Radius $9.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m
Above Base)

Fig. E. 29 - Dome Pressure History at Elevation 66.0 and Radius $5.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=17\right.$; Initiation 34.5 m Above Base Center) ${ }^{0}$
-191-

Fig. E. 30 - Pressure History at the Apex of the Dome ($q / R T_{0}=17$; Initation 34.5 m Above Base)

Fig. E. 31 - Nall Pressure History at the Junction of the Base and the Cylinder ($q / R T_{0}=23$; Initiation 34.5 m Above Base)

Fig. E. 32 - Wall Pressure History at Elevation 6.0 m of the Cylinder $\left(q / R T_{1}=23\right.$; Initiation 34.5 m Above Base)

E. 33 - Wall Pressure History at Elevation 12.an of the Cylinder $\left(q / R T_{0}=23\right.$; Initiation 34.5 m Above Base)

E. 34 - Wall Pressure History at Elevation 18.0 m of the Cylinder ($q / \mathrm{RT}_{0}=23$; Initiation 34.5 m Above Base)

Fig. E. 35 - Wall Pressure History at Elevation 24.0 m of the Cylinder (q/RT ${ }_{0}=23$; Initiation 34.5 m Above Base)

Fig. E. 36 - Wall Pressure History at Elevation 30.0 m of the Cylinder $\left(\mathrm{q} / \mathrm{RT} \mathrm{o}_{0}=23\right.$; Initiation 34.5 m Above Base)

Fig. E. 37 - Wall Pressure History at Elevation 36.0 m of the Cylinder ($q / R T_{0}=23$; Initiation 34.5 m Above Base)

Fig. E. 38 - Wall Pressure History at Elevation 42.0 m of the Cylinder ($q / R T_{0}=23$; Initiation 34.5 Above Base)
-200-

Fig. E. 39 - Dome Pressure History at Elevation 47.0 m and Radius $20.7 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT} \mathrm{o}_{0}=23\right.$; Initiation 34.5 m Above Base)

Fig. E. 40 - Dome Pressure History at Elevation 51.0 m and Radius 19.4 m (a/RT ${ }_{0}=23$; Initiation 34.5 m Above Base)

Fig. E. 41 - Dome Pressure History at Elevation 56.0 m and Radius $17.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=23\right.$; Initiation 34.5 m Above Base)

Fig. E. 42 - Dome Pressure History at Elevation 61.0 m and Radius $13.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT} \mathrm{o}_{0}=23\right.$; Initiation $34.5 \mathrm{~m},{ }_{\text {Above Base }}$ (

Fig. E. 43 - 've Pressure History at Elevation 64.0 m and Radius $9.6 \mathrm{~m}\left(\mathrm{q} / \mathrm{RT}_{0}=23\right.$; Initiation 34.5 m Above Base)

Fig. E. 44 - Dome Pressure History at Elevation 66.0 m and Radius 5.6 m ($q / R T_{0}=23$; Initiation 34.5 m Above Base) $)$

Fig. E. 45 - Pressure History at the Apex of the Dome (q/RT ${ }_{0}=23$; Initiation 34.5 m Above Base)

US NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET

4 TITLE AND SUBTITLE (Ada Volume No, it appropriate)
by the Random Choice Method
7. AUTHORIS
Michael A. Delichatsios, Marcel B. Genadry, Michael N. Fardi
9. PERF ORMING organization name and mailing address (Include Zip Code)
Michael N. Fardis
Dept. of Civil EngineeringMassachusetts Institute of TechnologyCambridge, Massachusetts 02139
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)
Division of Engineering Technology
Office of Nuclear Regulatory ResearchUSNRC
Washington, DC 20555 20555
pe RID COVE RED (Inclusive dates)
9/80-12/81
15. SUPPLEMENTARY NOTES14. (Leave blank)16 ABSTRACT 1200 words or lessComputer codes simulating hydrogen detonators in planar, cylindrical

| 1. REPORT NUMBE R (Assigned by DDC) NUREG/CR-2897 |
| :---: |
| 2. Lleave blonk) |
| 3. RECIPIENT'SACCESSION NO. |
| 5. DATE REPORT COMPLETED |
| MONTH \| YEAR |
| December 1981 |
| date report issued |
| MONTH \| YEAR |
| September 1982 |
| 6. TLeave blank) |
| 8. LLeave blank) |
| 10. PROJECT/TASK/WORK UNIT NO. |
| 11. contract no. |
| B7085 |

15. SUPPLEMENTARY NOTES onal axisymmetric geometries were developed. The computational method spherical and two-dimensional axisymmetric geometries were developed is tharp discontinuities. The detonation front is represented as a discontinuity changing the still unburnt gas to a completely burnt one, according to the Chapman-Jouguet conditions. Results for one-dimensiona? geometries show good agreement with available analytical solutions. The one-dimensional code was modified to include coupling with an elastically deformable wall and used to demonstrate that for typical concrete containment structures interaction of the waves with wall deformations has insignificant effects on the wave properties, and can be neglected. The twodimensional axisymmetric code was used to calculate pressure time histories at the wall of a cylindrical containment capped with a semi-spherical dome, dimensionally similar to the Indian Point Nuclear Power Plant. The detonations simulated had initiation at either the center of the base mat or at a point on the axis at approximately two-thirds the cylinder height, and were for two different intensities. Computed pressures included repeated reflections at the walls and died out within a few tenths of a second.
[^2]| 19 SE CURITY CLASS (This enem) Unclassified | 21 NO OFPAGES |
| :---: | :---: |
| 20 SECURITY CLASS ITTIS DAE*: | $\begin{gathered} 2 \overbrace{\mathrm{~S}} \text { PRICE } \\ \hline \end{gathered}$ |

UNITED STATES

NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

```
120555078877 I ANRD
US NKLV CF TIOC, OIV EPLICATIONS MGT BR
POLICY & PUBLPY
PCR DLL DC 20555
WASHIAGTCN
```


[^0]: ${ }^{+}$Notice that in Chorin [2.4] the second term of this expression is multiplied by 2 which is incorrect.

[^1]: FIGURE 4.1.17: WALL DENSITY HISTORY FOR A 1m RADIUS
 (planar geometry) 2 INITIAL GRID POINTS, SIGMA $=0.8, \Delta x=0.01$

[^2]: 17b. IDENTIFIE RS/OPEN-ENDED TERMS

