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ABSTRACT

Computer codes which simulate hydrogen detonators in planar,
cylindrical, spherical and two-dimensional axisymmetric geometries
have been developed. The computational method is based on the
Random Choice Technique which can handle accurately sharp discontin-
uities. The detonation front is represented in the model as a dis-
continuity which changes the still unburnt gas to a completely burnt
one, according to the Chapman-Jouguet conditions. Numerical results
for one-dimensional geometries show good agreement with available
analytical solutions. The one-dimensional code was modified to
include coupling with an elastically defonnable wall and the modified!

L
version was used to demonstrate that for typical concrete containment
structures interaction of the waves with wall de. formations has in-
significant effects on the wave properties, and can be neglected.
The two-dimensional axisyninetric code was used to calculate pressure
time histories at the wall of a cylindrical containment capped with
a semi-spherical dome. Dimensions were similar to the ones of the
containment of the Indian Point Nuclear Power Plant. The detonations!

simulated had initiation at either the center of the base mat or at
a point on the axis at approximately two-thirds the cylinder height,
and were for two different intensities. Computed pressures included
repeated reflections at the walls and died out within a few tenths
of a second.

_
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CHAPTER I
i

INTRODUCTION

,

1.1 Background Information

After the Three Mile Island accident of March 28, 1979,

questions have been raised concerning the safety of Nuclear Power

Plants if a rapid hydrogen explosion occurs.

Internal explosions are a severe test for the integrity of !

the containment structure of Nuclear Power Plants. In Light-Water-

Reactors (LWR) such events may result from hydrogen detonations,

(due to exothermic chemical reactions between hydrogen and oxygen)

or steam explosions. Hydrogen is generated from the coolant water,

both during normal operations and during accidents. Sources of !

hydrogen during nonnal operation include aqueous corrosion of

core metals, electrolysis and radiolysis. During an accident that

involves core heatup, hydrogen may be produced in the core by the

high-temperature reaction of water with metals, namely with zirconium

from the zircaloy fuel cladding and with iron from the molten steel.

Large quantities of hydrogen gas may thus accumulate in the reactor>

pressure vessel, as was actually the case in the Three Mile Island

accident. The sources of oxygen are primarily in-leakage of air,

and again, water electrolysis and radiolysis.
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In the event of such internal explosions, the consequences

could be catastrophic as they may cause the failure of several

Engineering Safety Systems and hence, the containment structure is

the last line of defense against early release of radioactive

fission-products to the atmosphere.

1.2 Hydrogen Combustion _

If the hydrogen is homogeneously distributed in a contain-

ment, deflagrations or detonations may occur if the composition of

the hydrogen-air mixture falls within the corresponding range on

the Shapiro and Moffette [l.1] tripartite diagram. Flamability

limits depend on the pressure, temperature and direction of the

flame. Considerable uncertainty exists on the exact location of the

detonability limits. Shapiro and Moffette assumed these limits to

be 19% and 45% hydrogen for air-hydrogen mixtures and drew the limits

conservatively, almost parallel to the flammability limits. Deton-

ation limits also depend on the pressure and were found to be equ'al

to 20% and 65% in hydrogen-air mixtures at room pressure and temp-

erature [1.2].

Detonation is a shock wave driven and sustained by the

chemical energy released from oxygen-hydrogen reaction. The shock

wave and the chemical reaction propagate together at a supersonic

speed relative to the burnt medium. The shock front is character-

ized by an abrupt increase in pressure, temperature and density of

the gas and by a net forward movement of the gas particles.

_ _ .

. _ _ _ _ _

--
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Detonation may start as a result of minor sparks, contact

to metal-surface, temperature above the spontaneous ignition temperature,
,

l

minor shock propagating in the gas or by transition from deflagration. I

Although a detonation is very unlikely to happen in a LWR containment,

the possibility should not be disregarded because of the high !

temperature and pressure, and the intense radiation in case of an

accident.

1.3 Previous Work in the Area

The effect of the quasi-static increase of pressure

(resulting from slow burning) on containments integrity has been

studied by the U.S.N.R.C. [1.3] and Fardis [1.4]; however, little

has been done on the effect of a detonation on the containment

structure.

Morrison et al., [1.51 have treated the hydrogen
i

detonation and steam explosion in an over-simplified manner. They
{

modeled these phenomena as TNT explosions occurring at the center of

a containment (idealized as a sphere), through an equivalence be-
,

tween released energy and TNT mass. Then they computed the peak

overpressure at a distance equal to the containment radius. They

neglected the effect of the reflection at the wall pressure (the

reflection can increase the overpressure by a factor of the order

of 2 to 3).

In a better attempt, Carbiener et al. [1.6] tried to

solve the same problem; however, they neglected the fact that the
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shock pressure takes a finite time to decay from its Chapman-Jouguet

plane to the steady state pressure (the Chapman-Jouguet plane is the

detonation front plane); thus, the impulse calculated on the basis of

this assumption may be 300-400 times smaller. They also neglected

the effect of repeated reflections.

After the Three Mile Island accident, the interest in this

area rose again; Byers [1./] studied the effect of the hydrogen

detonation on the containment structure using a code based on

" artificial viscosity". The code was originally used for continuum

mechanics problems and it is difficult to adapt it to hydrogen

detonations. Running such a program requires a large amount of CPU

time.

1.4 Objective

Development of a numerical model able to predict correctly

the behavior of the gas in an axisymetric containment in case of

an explosion is required in order to assess the capability of the

structure to contain the explosion. Because of many uncertainties

in the physical models, it is very difficult to develop a computer

program to predict the initiation and development of a hydrogen

detonation. It has been assumed in this work that a hydrogen

detonation can be developed instantaneously after ignition. Such

conditions present a higher challenge for the containment structure

since pressure waves induced by detonation are expected to be

larger than pressure waves induced by a slow combustion (deflagration).
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In this research, a reliable computer code is developed

capable of ' solving the hydrogen detonation problem for axisymmetric

| geometries.

The gas dynamics equations for planar, cylindrical and

axisymmetric geometries are derived in Chapter II; the following

assumptions are made:

1) homogeneous mixing of the hydrogen with steam and
3air in the containment volume, '

2) the energy due to radiation is negligible

3) heating of the containment wall by the gases is
negligible.

The Random Choice Technique is used for solving numerically the

equations of motion. Chapter III includes the principles, the

advantages and the implementation of the method for planar, spherical

and axisymmetric geometries. Validation of the method, pressure

. histories and interactions with the wall are included in Chapter IV.

Chapter V presents the application of the two-dimensional code in

computing the pressure histories generated by a hydrogen detonation

in a realistic nuclear containment building. The conclusions are

summarized in Chapter VI.

. - - . -
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CHAPTER II

COMPRESSIBLE FLOW EQUATIONS

,

In this chapter the basic gas dynamics equations which con-

stitute the starting point of the analysis are presented. The derivation

can be found in any gas dynamics book (see for example Landau & Lifshitz

[2.1]).

The equations describing the motion of a compressible inviscid

gas are:

+pV u=0, (2.la)

i " I; +u Vu=- vp, (2.lb)p

l

8' + V - (e+p) u = pQ, (2.lc)Bt

where p is the density, y is the velocity, p is the pressure, e is the

total energy per unit volume, and t is time. The energy due to external

sources or sinks, Q, is considered to be equal to zero. The total energy,

e, is given by

fp|uj, (2.2)
2' oc +

where

+q, (2.3)

._
.- - - - - - ,
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and
I P (2.4)=c i y-1-

-

p

is the internal energyIn equations (2.2), (2.3) and (2.4) c5

per unit mass, y is a gas constant e' qual to C /C , Y > 1 and q is thep y

energy released by chemical reactions.

2.1 One-Dimensional Cartesian Coordinate System

The equations in one-dimensional cartesian coordinate system

follow directly from equations (2.1) . The gradient and divergence are

vc = i, , (2.1.1)

and
au

g[ (2.1.2)Vu= ,

where i is the unit vector in the x direction , and u = u i. After re-

arranging the gas dynamics equations, we get:

0, (2.1.3a)U + =

t

8

3x ( * + p) = 0, (2.1.3b)0* +
3

0' 0

3x (
(e+p))=0, '2.1.3c)+ ,

3

. . . . _ _ _ _ - _ _ .

' - ~
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i
where m = pu is the momentum flux. Observe that the equations in one-x

dimensional cartesian system can be written in a conservation form without

source or sink terms.

2.2 One-Dimensional Spherical and'Cylndrical Coordinate Systems

0*
V4 j, (2.2.1)=

_3r

and

au u
" "Vu + (U-I) (2.2.2)ar r

,

where j is the unit vector in the r direction and n = 3 for spherical,
n = 2 for cylindrical coordinates.

By inserting these relations in the gas dynamics equations (2.1),

we obtain
1

30 + = -(n- 1) (2.2.3a)9t ,

2
*2

3[ + ar (p + P) = -(n-1) (2.2.3b),
r

8' + ( (e+P)) = -(0-1) p"r (e+p), (2.2.3c)t ar

where in this case, m = pu is the momentum flux and u is the radial
r p

velocity. Observe that in cylindrical or spherical coordinates, the

equations have sink terms.

__



- - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-10-

2.3 Axisynnetric (Two-Dimensional Cylindrical) Coordinate System

In a two-dimensional cylindrical coordinate system, the

gradient and the divergence are

34 8*
V4 = j+ k, (2.3.1)

3r az~ ~

au au u
r z z

V u= , + (2.3 2),

Br BZ r~

where j and k are unit vectors in the r and z directions and

u=ug+u,g.
r

The gas dynamics equations for the axisynnetric problem become

3* '* "rao r z (2.3.3a)+ + "- ,

at ar az r

mm mOm
0 m" 8 r

Br ( p + p) + BZ( rz),,# + '
p prat

(2.3.3b)

Bm mm m mm
B z rzz 3 rz ) , 3z [ p ,p) _ ,, *prat Br p

(2.3.3c)
w

m m

* 8 - (~ pm" (**P)) * Bz ( p (*+P))* - pr (e+P),
"E*

gt

(2.3.3d)

1

.
.

.



.

!

-11-

where m = pu
is the momentum flux in the radial direction and m "P"zp

z

is the momentum flux in the z direction.
.

Equations (2.3.'3) can be written in the general vector form

used by Sod (1980)

St 5(S)r !(N)z
+ + -W(V), (2.3.4)=

where subscripts indicate differentiation. In equation (2.3.4)

p- -m ' *z ' "r/r
' -~

r
2m m /p+p m m /p m /prr r p2
r

U = m , F(U) = m m /p , G(U) = 2m /p+p , W(U) = m * /PIp2 rz
.e. _m (e+p)/0, _ m ("*E)/P- *z ('+ P)/PI-r z

It is worth noticing at this point that equations (2.1.3) for

the one-dimensional cartesian problem can be recovered from equation

(2.3.4) by setting G(U) = W(U) = 0. Similarly, equations (2.2.3) can be

obtained by taking G(U) = 0.>

2.4 Chapman-Jouguet (C-J) Conditions

The one-dimensional cartesian equations (section 2.1) can be

solved in a closed fonn (see Williams [2.2]) or Courant and Friedrich

[2.3]) .

In the following discussion the subscript u refers to the

unburnt gas (i.e., gas which has not yet undergone chemical reaction)

and the subscript b refers to the burnt gas. By defining

wb " "b - U and wu " "u - U,

_ _ _ _ _ _ _ _
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where U is the velocity of the reaction zone and u is the particle vel-

ocity in the Eulerian reference frame, we can express the continuity and

momentum equation by

D "b =
-M, (2.a . 9"

o *b ub

(2.4.2)+ Pu"PW + pb.p "u bu

From these relations we can deduce

-M = (pb - p )/ITb-Tu), (2.4.3)2
u

where T = 1/p. From the energy equation an expression for Tb n unc-

tion of Tu Y qip and p can be derivedu b

p +pp 2

b"TI )+ (2.4.4),

u 2 2T
Up +E D P +Ebu b u

={;) ; in deriving equatien (2.4.4), it has been assumedwhere p

*T*that Yb"Tu
A C-J detonation moves with respect to the burnt gas with a

velocity equal to the velocity of sound in the burnt gas,10 .

1/2
YP

* (-|wl"Cb obb

Using equations (2.4.1), (2.4.2) and (2.4.5) we can find

an expression for pb'

_ _ _ _ _ - . .

.

. _ _



. . - -- - - -

.

-13-

pb + 2bpb + c = 0, (2.4.6)

where

1 b = -p ~ 9P (Y-l) (2.4.7a)u u,

and

2 + 2p p o q; (2.4.7b)
2

'

.c=p
u u

A trivial calculation shows that b c > 0 if y > 1 and q < 0-

(exothermit reaction). Thus,

1/22
cj pb = -b + (b - c) (2.4.8)p =

,

'

where the + sign is mandatory since a detonation is compressive. There-

fore, given the properties of the unburnt gas and the energy per unit-

! mass released by the combustion, we can find the pressure behind a C-J.

detonation; equation (2.4.4) is used to find the density p Fromcj.
equation'(2.4.1) we find the expression for the detonation speed,

" (P "u + (YP j P j} IIP , (2.4.9)"cj u c c u

and then,
,

|

"cj = Ucj - ccj. (2.4.10)

If-a C-J detonation occurs, it is followed by a rarefaction
.

wave to adjust e the boundary conditions. For a still wall behind the

detonation, the gas has to adjust itself to'a zero velocity at the wall.

A non-dimensional analysis has been performed by Taylor [2.5] to deter-

* Notice that in Chorin [2.4] the second term of this expression =is
multiplied by 2 which is incorrect.

.

, m .-4. % .. y73 _ _ . ,.u -,u e,g
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mine the behavior of the gas behind a detonation if bounded by a wall.

The resulting curves are shown in Figures 2.4.1-3. The solution of this

planar problem was obtained by taking into account the consistency

of the Riemann invariants in the rarefaction region. The solution is

hence dependent on the gas constant v. It is seen from the figures

that the gas has constant properties until about a mid-distance be-

tween the wall and the detonation front; at this point a discontinu-

ity occurs and the velocity starts increasing linearly towards the

C-J velocity; the equations describing the pressure and density curves

are polynomials of order 5 and 7.

An analysis similar to Taylor's has been performed for

radially symmetric detonations by Barenblatt et al.[2.6]. For

y = 1.4 the results are shown in Figures 2.4.1-3. It can be seen that

the gradients of the velocity, pressure and density near the detonation

front are larger in the cylindrical coordinate system than in the planar

They become even larger for a spherical detonation.one.

In the next chapt'er we will present the numerical techniques

used for solving the equations of motion.

.

-

'

.
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CHAPTER III

NUMERICAL SOLUTION OF HYDROGEN DETONATION BY

THE RAN00ti CH0 ICE METHOD

The gas dynamics equation (see Chapter II) form a non-linear

unsteady hyperbolic system. A general analytic solution of the gas

dynamics equations is not possible for an arbitrary geometry including

repeated reflections from walls. Various numerical methods have been

developed to solve these equations (see e.g. Sod [3.1]);

1) Finite-difference methods;

2) The random choice method; and recently:

3) Spectral transformation and finite element methods.

The finite-difference methods have the disadvantage to broaden, a

time increases, expected discontinuities (like shock waves) of the flow.

Recently correction tenns have been proposed to counteract the diffusion

of the width of a discontinuity (see Boris and Book [3.2]). Spectral

and finite element methods are promising because they may reduce con-

siderably the computation time; however, they are still in an experi-
mental stage.

A method that produces infinitely sharp shocks is the method

of Glim [3.3]. Alexander Chorin [2.4] developed and applied Glimm's

method for the fluid dynamical part of a combusting gas flow; here an arti-
<

ficial amount of diffusion would grossly distort those phenomena, like

flame propagation, which depend on the rage of energy production. For

L
, . .. ..

. .

_.
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these reasons, we have decided to uso in this program the random choice

method to calculate the pressure histories generated by hydrogen

detonations in a nuclear reactor containment.

The random choice method is described in the following sections,

for one-dimensional plane, spherical and axisymmetric geometries.
|

3.1 One-Dimensional Plane Geometry

3.la Gas dynamic flows without detonations

For one-dimensional plane geometry, the equations can be-

written in the following form:

u + f @x = 0 (3.1.1 )
t

where - - - m
-

2
= m and F(U) m /p + pU =

_ m/p)(e+p)_(_e_

We discretize the time in intervals of length At and the space in inter-

vals Ax. The solution advances at each grid point in time from t to

t + At by first calculating the values of the variables atmid grid points'

at time t + At/2 and then, advancing in a similar fashion the solution

to time t + At. The solution at each half time step is found by solving

a Riemann problem between adjacent grid points. The solution is

evaluated at times nat, where n is a positive integer, at the spacial

grid points iAx, where i = 0, i 1, i 2, ..., and at times (n + f)At
I at (i + f)Ax.

. ._ .__ . _ _ .
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Let u" approximate U(iax, nat) and u +1/2 approximate U((i + f)ax,
n

~

i+1/2 ~

I n(n+ 2 )At). To find u +1/2, consider the system (3.1.1) assumingI

i+1/2
piecewise constant initial data (time t E nat)

uy,) x > (1 + f)Ax,U(x,nat) =
,

u" x < (1 + f)Ax.
=

,

This defines a sequence of Riemann problems. IfAt<Ax/2(|ul+c),

wherecisthelocalsoundspeedand|ulistheabsolutevalueofthe

particle velocity, the waves generated will not interact. Hence, the

solution V(x,t) to the Riemann problem can be combined into a single

exact solution (see Figure 3.1.1). The solution at the time step

t + at/2 is found, following Glim's method, by sampling the exact

solution to the Riemann problem V(x,t) at time t + At/2. Let E be an

uniformly distributed random variable in the interval [- h , f ]. Define

n+1/2u , y((I + I )Ax, (n + )At); (3.1.3)ni+1/2

(see Figure 3.1.2).

- At each time step the solution is approximated by a piece-

wise constant function. The solution is then advanced in time exactly

and the new values are sampled.

A method of choosing the random variable E has been studied
n

by Chorin [2.4, 3.4]. He suggested choosing one random variable E

- - - - _ _ - - - - - - - _ _+- m-
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,. . . . . .
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FIGURE 3.1.2: SAMPLING PROCEDURE FOR THE GLIMM'S METHOD

.

.
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.
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per time level rather than one for each point and each time level.

In order that the variance of the solution be further reduced by

making C reach approximate equidistribution over [- h, I ] at a faster2

rate, Chorin [2.4] suggested the following procedure. Let m), m '2

be two mutually prime integers. Consider the sequence of
m) < m2

integrers

n given, n <m'g g 2

n ,) = (nj + m))(mod m )'j 2

then,

j + E )/m 'Ej = (n j 2

where E is the random number and E is the pseudorandom nuraber which
j

is actually used for sampling; j indexes the time.

In each time step, the solution consists of three states:

S , S , and a middle state S, with u = u,, p = p., separated by waves
p g

d
which may be either shock or rarefaction waves. A slip line = u,

dt

separates the gas initially at x < (i + I )Ax from the gas initially
2

at x > (i + I )Ax with possibly different values of p, but equal values
2

of u, and p, (see Figure 3.1.3).

The first step is to calculate the pressure p, and the

velocity u, in state S,. This is done by a method due to Godunov

[3.5]. The outline of this method can be found in Appendix A. Now

there are four cases to be considered:

..

..

_ _ _ _ _
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l lf
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Case 1 The sample point P lies to the right of the slip
line (C' Ax > u,h), and the right wave is a
shor.k (p, > p );p

Case 2 P lies to the right of the slip line and the right
wave is a rarefaction wave (&'Ax > u* 0t and2

p* 1 p )I
r

Case 3 P lies to the left of the slip line and the left
wave is a shock (C'Ax < u* 0t and p, > p ); and

2 g

Case 4 P lies to the left of the slip line and the left
wave is a rarefaction wave (C'Ax < u ,At and

2

p* 1 p )-g

For Case 1, the velocity, U of the right shock can be found by usingp

equation (A.2). If P lies to the right of the shock line dx/dt = U ,p

we have p =p,u =u'P *P. If P lies to the left of the shock,
p p p r p r

= p ; pr * P* can be found from equation (A.L;. In solvingu = u,, p
p p

Case 2 we let c = (yp/p)1/2 be the sound speed. If P lies to the right

of the rarefaction, p =p'U *Ur' P *P; If P lies to the left
p r p p r

of the rarefaction p =p,u = u,, p = p,; p,is found from the con-
p p p

stancy of the Riemann invariant

= 2c (y-1)-I - u, 2c (y-1)~' - u .P =

r r p

_ _ _ _ _ _

.
.

.
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.If P lies inside the rarefaction, p , u and p can be derived by
p p p

j equating the slope of the characteristic dx/dt = u+c to the slope

of the line defined by the origin (which in this case is the grid point)

and P

u +c = 2C' ,
p p

'

then using the constancy of the Riemann invariant and the isentropic

law pp-T = constant.

Cases 3 and 4 are essentially identical to cases 1 and 2. '

3.1.b A method to incorporate the detonation discontinuity
in the random choice method

The objective of the present work was to predict pressure

histories generated by hydrogen detonations in an enclosure. It is

; assumed that a hydrogen detonation will be initiated and developed if
'the hydrogen concentrations are within th? detcaability limits

(Herzberg [3.6]. To avoid treating the chemical kinetics of com-

bustion, we decided to represent the detonation as a sharp discon-

tinuity which changes the still unburnt gas to a completely burnt

gas according to the Chapman-Jo.uguet conditions (see section 2.4).
,

This proposition is consistent with the observation that the chemical

kinetic reaction rates are very large.- '

For each hydrogen concentration within the detonability

limits, the Chapman-Jo";e9t state behind the detonation can be calcu-

. lated (see section 2.4). For the numerical solution, we associate

a variable & = 1 if the gas is unburnt and 4 = 0 otherwise. The

. _ - .
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propagation of the detonation is calculated numerically by using the
|.

random choice method. Consider two adjacent grid points with their states
!

' represented at time t = nAt by
|

g g g g, $g), x < (i + f)Ax,(p , u , pS =

Sr" (P ' "r* Pr* @r), x > (1 + )Ax. (3.1.4)
r

If $g = $r, detonation does not occur between these points and Glim's

method (see section 3.la) is used to advance the solution; if $g = 0

and 4 = 1 a detonation wave will propagate from left to right (see
~

r

Figure 3.1.4). Its speed will be (see section 2.4)
|

(3.1.5)U " "cj + ccjcj;

is the sound speedis the particle velocity and ccj = cgwhere ucj = ug
corresponding to Chapman-Jouguet conditions corresponding to the state

of the unburnt gas (p ' "r' P )-r r

The solution is advanced in a similar way as in the Riemann

problem (see section 3.la) by sampling the detonation discontinuity

(see Figure 3.1.4)'using the same random numbers as in the Riemann

problem.

The computer c.cogram CRTDET for solving the one-dimensional

plane gas dynamics equations including detonation is listed in Appen-

~ dix B.
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| 3.2 Boundary Conditions

Particular attention should be given to the boundary con-

ditions especially as far as sampling is concerned. Assume the -

location of the boundary point is to the right of the region of flow

at x = i ax and moving with a certain velocity V. To model the
n

reflection at the wall we create a fake state to the right of x at

I )Ax such that(i +g 2

(3.2.la)pi + 1/2 " Pi - 1/2 ,
,

g

(3.2.lb)i + 1/2 = 2V - ui -1/2u

(3.2.lc) -

pi + 1/2 " Ei - 1/2n

(see Chorin [3.4]or Courant [2.3]). This will make a si..ple wave

to propagate on.both sides of the boundary point; the constant state
,

in the middle of the Riemann solution is the wall state.

Special care should be taken in the sampling procedure.

and'Eh are the values of E' at two successive time steps, we'-If C

should make sure that the resulting physical point does not lie to

i the right of the wall line = V, so that no information'is lost

at the. wall. This-condition can be satisfied in different ways de-

|. pending on each problem.
,

- w - .- - __-______-__.___________.______:-
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To satisfy the previous condition in the present case,

C' and-C' can be chosen as follows: pick C' in the interval
1 2 1

[-hf,Sh!]accordingtotheusualprocedureandchooseC'=-C',
2 1

This method also ensures the physical point to lie within the _ boundary

and avoids the problem of singular points.

3.3 One-Dimensional Spherical Geometry,

.

The system of differential equations for the one-dimensional

spherical problem is given by the set of differential equations (2.2.3).

These equations can be written in the' vector form.

Ut + F(U)r = =2 W(U); (3.3.1)

U, F and W were defined in section 2.3.
~ ~ ~.

To solve the equations (3.3.1), we use the method of operator ;

|splitting used by Sod [3.7]. In a first step we remove the inhomogeneous

term - 2W(U) thus, we solve the hanogeneous system

-

,

~t + F(U)r = 0, (3.3.2)U
, ~

.

r .- -- - . -,
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which represents the one-dimensional equations of gas dynamics in

cartesian coordinates and whose solution was presented in detail in

the previous two sections.

Thesecond step consists of solving the system of ordinary
i

differential equations

St =-23(g),

using the results of the solution of equation (3.3.2).

This is done as follows: Once the solution B"+I of (3.3.2) is found,

equation (3.3.3) is approximated by

n+1 ~n+1

=-2W(Lfl), (3.3.4)I i
~

At

or

ufI = Ufl - 26t W(5 ). (3.3.5)

This scheme is only first order accurate, however there is no reason

to use a higher order method since the random choice method is also at

the inost first order accurate.

The boundary conditions at the wall was chosen to be similar
,

tothecartesiancase,i.e.,gj=0atthewall. The center of the
detonation is treated similarly to the wall problem however, because of

the singularity at the center, the appropriate sampling scheme dis-

cussed in section 3.2 should be used.

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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SPHDET is the computer program which is used to solve the

one-dimensional spherical detonation problem (see Appedix C).

3.4 Axisymetric (Two-Dimensional Cylindrical) Geometry

The numerical technique of solving the equations of the

axisymetric problem (2.3.4) is an extension of the one-dimensional

case. Chorin [2.4] and Sod [3.8, 3.9] have already used it for the

shock problem.

The basic procedure consists of two major steps:

1. use the operator splitting technique in the spatial
coordinates and solve the equation

-t + F(U)r + G(U)z = 0, (3.4.1)V
~ ~~

2. solve the equation
,

1

U = -W(U). (3.4.2)t

Solving the ordinary differential equation (3.4.2) is exactly identical

to solving equation (3.3.3). Equation (3.4.1)is solved using an,

extended version of Glim's method. At each time step, four quarter time- |

steps of duration ~ f are perfomed; each quarter time step is a

sweep in either r or z direction. Again, the operator splitting

technique in the spatial coordinates is used to reduce the system of

two-dimensional equations into two sets of one-dimensional ones.

Hence, the equations to be solved in the r sweeps are
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3 (pu ) 0, (3.4.3a)0 + =

3 r

(Pu ) + ar (pu2 + p) 0, (3.4.3b)D =

3t r p

D 0, (3.4.3c)0 (pu ) + Br (pu u ) =

7 rz3t

D 0. (3.4.3d)3'
3r ((e+p)u )+ =

3 r

Equation (3.4.3c) can be written in the form

au au
+U =0 (3.4.4)

8t r ar

i.e., the convective derivative of u, is equal to zero and hence, in

the r sweeps u is transported as a passive scalar. Similar equations
z

hold in the z sweeps.

Now, given equations (3.4.3a, b, d) coupled with equation

(3.4.4), the Gliam's method can be used. At each partial step, the

solution vector is approximated by a piecewise constant vector.

In the r sweeps the resulting waves in the r direction are found and

in the z sweeps thewaves in the z direction are found. In order to

account properly for the interaction of the r and z waves, the follow-

..

.
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ing scheme is used: at the beginning of the time step p,p u and
r

u areknownatpoint(iar,jaz). After an r sweep, the solution isz

found at ((i + f )Ar, jaz) (see Figure 3.4.1). ((i + f)Ar,jaz)
I' and ((i + f )Ar, (j + 1)Az) can then be used to find the solution

at ((1 + f )Ar, (j + f)Az)byazsweep. An r sweep then leads to

(iar, (j + f)Az)andazsweepbackto(iar,jaz). One pseudorandom

variable is used per quarter step.

The detonation conditions are handled in a similar way as

in the one-dimensional case, however, one should bear in mind that

the C-J velocity represents the total velocity which should be splitted

into its r and z components. For example, consider two points iar and
,

(i+1)Ar (z the same) with c=0 at iAr and 4=1 at (i+1)Ar. In accordance |

with our approach, a detonation is expected between these points. The

conditions behind the detonation are known as a function of hydrogen

concentration. By using the operator splitting technique in space,
1

the two components of particle velocity can be calculated. Then, the

solution is advanced by using the random choice method.

The boundary conditions are handled in the same way as in

the one-dimensional problem. A curved boundary is represented by a

stepwise line parallel to the mesh.
.

The computer prgram TW0 DIM (see Appendix D) uses the method

outlined to solve the axisymmetric problem.

.
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Ar
: 3

(iar,( H1)Az) ((1+1) sr,(J+1)Az)

0(iar,(j+ [7)Az)
C((1 + {)Ar,(j + {} Az)

" = Az

I
'

=- ir

A(lar ,jaz)
,

B((i + )Az,jaz) ((i+ lor,j Az)
t

.

FIGURE 3.4.1: DIRECTION OF THE COMPUTATION AT EACH
TIME STEP FOR THE AX15YMMETRIC PROBLEM

_ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ .
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CHAPTER IV

l

COMPUTER CODE DEVELOPl1ENT AND RESULTS

4.1 One-Dimensional Planar Geometry

The main task of this section is to verify the validity

of the numerical method described previously. To achieve this goal,

the pressure, density and velocity histories of a hydrogen detonation

in a one-dimensional cartesian coordinate system hhve been studied.

The numerical results were compared with existing analytical solu-

tions prior to reflections (see Figures 2.4.1, 2.4.2 and 2.4.3).

The first problem we investigated simulates a detonation

initiated at the center of a shock tube, 2m long, bounded by a wall

at both sides. As a result of the symmetry with respect to the

initiation plane, the study was limited to half the length, the

origin behaving as a wall. A mesh of one hundred and one grid points,

equally spaced, was used. The time intervals were of variable length

to meet the condition of non-interaction between the waves (see

Section 3.1.a). Initially the unburnt gas was considered to be at '

2 3rest, with a pressure of 10100 N/m and a density of 0.1188 Kg/m ,

The hydrogen concentration was considered to be stoichiometric. The

detonation was assumed to have reached the second grid point from the

origin. Those grid points were assigned the values corresponding to
:

the Taylor curves (Figures 2.4.1 to 2.4.3). The detonation front

propagates with constant gas properties (The Chapman-Jouguet condi-

.

T
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tions); the C-J pressure is approximately 15 times the pressure of

-the unburnt gas. 1

f The computer program CRTDET (see Appendix B) was used to i

l
solve this problem. After 0.47 ms, the detonation wave progressed

in the cylinder and was ready to contact the wall. Non-dimensional

plots for the pressure, density and velocity as a function of theI

cj ), are shown in Figuresnon-dimensional distance (defined as x/U t

4.1.1-4.1.3. These are close to the analytical Taylor curves; the
i

gas reaches steady conditions with zero velocity at approximately

half distance between the origin and the detonation front; however,
|

as noted by Sod [3.8], because of the randomness of the sampling,

the rarefaction waves occurring just behind the detonation front

are not reproduced by a smooth curve. Figures 4.1.4 to 4.1.6 show

the pressure, density and velocity distributions in the shock tube

at five different times. After the wave is reflected by the wall,

there is an increase of pressure; the pressure exerted on the wall

becomes 2.3 times higher than the C-J pressure or 37 times the initial

one. These results are in agreement with the analytical equation

given by Landau and Lifshitz [2.1] to determine the reflected

pressure. After the wave has reached the wall, all the gas in the

shock tube has already been burnt and the reflected wave is a strong

shock which decreases in strength as it goes back towards the origin.

When it reflects at the center the shock increases in strength and

travels again towards the wall. Eventually, the wave decays and the

gas reaches steady state conditions.
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As previously noted, to ensure that waves do not inter-

act. At<Ax/(jul+c)mustholdtrue. The effect of choosing

different time intervals was studied next. Figures 4.1.7 to 4.1.9
'

show that a time step-(SIGMA = 0.4; see Appendix B) equal to half

the previous one (SIGMA = 0.8; see Appendix BJ has little effect on

the solution (Figures 4.1.1-4.1.3). The only difference noted was in

reproduction of the rarefaction wave; this'is due to the randomness

of the sampling. The time steps should not be very small because

the explicit technique used can lead to numerical instabilities,

causing the wave to move backward. Hence, to ensure the stability

of the solution it was found that
,

fx(ul+c)<1.0.
t0.3 <

Next we examined the effect on the numerical solution of the

number of the initial grid points behind the detonation wave. In

Figures 4.1.10 to 4.1.15, at the beginning of the computation, eight
*

.;ial grid points were assigned in accordance with the Taylor solu-
'

tion. The pressure, density and velocity histories agree with those

in Figures 4.1.1 - 4.1.6 where only two initial grid points were em-
I

ployed before the detonation wave started to expand.

The most important output of'the nwnerical analysis was the4

,-

evaluation of the variation of the pressure with time,close to the

- wall. For the problem described above, the pressure and density pro--

files at a still wall, im distant from the origin of the detonation,

are shown in Figu es 4.1.16 and 4.1.17. At a time 0.58 ms after the

.
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initiation of the detonation, the detonation front is reflected by

the wall which results in an increase in pressure (approximately

37 times the pressure of the unburnt gas). Then, the pressure
'

starts to decrease until it reaches a constant value at t = 1.2 ms.

This value of the pressure is close to the pressure of an expanding

detonation close to the center where the velocity of the gas

equals zero. At t = 1.3 ms, the wave gets reflected at the center

(Figures 4.1.18 and 4.1.19). At the origin, the shock increases

in strength and the pressure reaches a value 23 times greater than

the initial pressure. Then the wave moves back towards the wall.

At t = 2.3 ms, a second reflection against the wall occurs; this

reflection is much weaker than the first reflection; the pressure

is 16 times the initial pressure of the unburnt gas.

Next, a detonation was investigated in a plane geometry

of size comparable to a nuclear reactor containment. The gas was

confined by walls at a distance of 20 m apart. The initial pressure

and density of the gas in the containment was considered to be

atmospheric. The mesh was composed of 201 grid points 0.1 meter

apart. We let the pr.ograms run for 100 time steps (t = 45 ms);

the computational time on an IBM - 370 was approximately 8 CPU

minutes. The results for the pressure and density profiles at the

wall and at the centerline are shown in Figures 4.1.20 to 4.1.23.

The shape of the curves are, as expected, similar to those shown in

Figures 4.1.16 - 4.1.19. We should also note here, that the relative

pressures are almost identical in both problems studied in this sec-

. . .
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tion; this is a result of considering in both cases the same

hydrogen concentration.

4.2 Deformable Wall

In the problems discussed in Section 4.1, we assumed the

walls to be rigid; however, if the increase of pressure, due to the

detonation and reflected waves, is very large, the wall may start to

defonn and vibrate because of the elasticity of the material. The

velocity of the wall, if it becomes large enough, might have some

effects on the properties of the flow. These effects are studied

in this section.

The equations governing the motion of the wall can be

written as

MW + K w = P , (4.2.1)

where M = to, and for the elastic part of the stress-strain curve of

the wall material, K = (n-1) E (AR + A ); the symbols in equation2 L
R

(4.2.1) are defined as follows:

wall displacement from its equilibriun positionw =

pressure exerted on the wall,P =

wall thickness,t =

p wall density,=

2 for cylindrical wall, 3 for spherical wall,=n

Young's nodulus of steel,E =

radius,R =

area of hoop reinforcing bars,per unit wall height ,
AR=

liner thickness.A =
g

. .

_ _
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Equation (4.2.1) can be discretized in time, to become
.

* - 2w
n-1 + "n-2 + M "n = g,K P.n

2 (4.2.2)
At

where w is the dsiplacement of the wall at time nat. The velocity ofn

j the wall can be approximated by

W" - W"V=w= (4.2.3)At

Equation (4.2.2) can be easily incorporated in the algorithm described

in Chapter III; equation (4.2.3) can be combined with equation (3.2.lb).

In the application, the values of K and M in Equation (4.2.2)

were. selected equal to those of an 1 m -high segment of the c. .indrical

wall of the Indian Point containment. The 1.37 .m-thick reinforced

concrete wall was considered cracked, and only the ccntribution of the
I

horizontal steel bars and the liner plate were taken into account. These

latter steel components were considered elastic. The distance between the

initiation axis and thewall was taken equal to the internal radius of the

containment (20.7 m). Results are shown in Figures 4.2.1 - 4.2.3: When the

detonation starts, the wall is at rest with zero displacement and zero velocity.

It remains in this condition until t = 11 ms,when the detonation wave con-
,

tacts the wall. The increase in pressure is transmitted to the wall, which

acquires a small velocity; this velocity increases until it reaches its maxi-

mum value of 4.5 m/s at t = 20 ms,before it starts decreasing. This

sinusoidal' behavior of the velocity seems to have negligible effects on

the pressure-and on the density of the gas (less than 1%). The corresponding

- graphs (Figures 4.2.2 and 4.2.3) are almost identical to those of the rigid

wall problem (Figures 4.1.20 and 4.1.21); the reason for this similarity is

mainly the fact that the velocity of the wall is negligible compared to the

.
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wave velocity (1787 m/s). This lack of shock-wall interaction is expected

to hold even when multiple reflections are considered, since the interarrisal

time of waves (@.04 sec.) is much shorter than the period of the wall (%.1

sec.). Sensitivity studies have shown that increasing or decreasing the value

of K by 2 orders of magnitude do not change the conclusions above.

4.3 One-Dimensional Spherical Geometry

'

An approach similar to the one followed in section 4.1 has

been adopted here to test the one-dimensional spherical algorithm in

the computer program SPHDET (see Appendix C).

The first problem studied is that of a detonation wave

initiated at the origin of a 1 m radius sphere bounded by a rigid

wall. A mesh of 101 grid points, 0.01 m apart was constructed. In-

itially the gas is at rest at a pressure p = 10100 N/m and a2
u

3density p = 0.1188 Kg/m . The chemical composition is stoichiometric.u

It was necessary to assign the Taylor conditions to a

minimum of 20 grid points. This is due to two reasons: Glimm's

method is basically the solution of the one-dimensional planar

problem; and the gradient of the pressure, density and velocity profiles

just behind the detonation front are very large (see Figures 2. 4.1, 2. 4. 3

and 2.4.3).

The non-dimensional graphs (Figures 4.3.1 - 4.3.3) at

t = 0.55 ms show the good agreement of the solution with the Taylor

curves; however, because of the randomness of the sampling .the

curves are not reproduced smoothly. It is worth noting that the values

.. -.
--

- -

-
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near the center do not follow the prediction of the Taylor solution.

The pressure, density and velocity histories inside the

sphere are shown in Figures 4.3.4 - 4.3.6, for five different times.

It can be seen how the detonation wave propagates inside the sphere

(times (1) and (2)); then, the wave is reflected by the wall. The

resulting shock wave travels back towards the center. First, the

shock decreases in strength but as it approaches the center, the

shock front properties increase steadily until the wave reaches

the origin; there, the pressure behind the reflected wave becomes 43 times

the pressure of the initial unburnt gas. This implosion phenomenon,

for spherical and cylindrical converging waves has already been noticed

experimentally by Perry and Kantrowitz [3.10] and analytically by

Oswatitsh [3.11] and Sod [3.7].

The pressure and density profiles at the still wall (Figures

4.3.7 and 4.3.8) are similar to the cartesian problem. The wall re-
2mains at the constant initial pressure (10100 N/m ) and density

3(0.1188 Kg/m ) until the combustion wave is reflected by the wall at

t = 0.53 ms; then, the pressure rises to approximately 40 times the

initial pressure. It starts decreasing to reach a stable pressure of
265000 N/m , for the remaining of the interval of time shown.

The computer analysis was extended to conditions expected

in a nuclear containment of spherical geometry: the initial pressure
3was <,et at 1 atm, the initial density was set at 1.19 Kg/m , the gas

was bounded by a 20 m radius sphere. The results are shown in Figures

.
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4.3.9 and 4.3.10. The shape of the curves are similar to the previous
,

case; the pressure rises to 40.5 atm at t = 11 ms, when the wave con-

tacts the wall, and decreases to 6.5 atm at t 23 ms.=

For an interval of time longer than that shown, it is expected that

another reflection takes place at the wall; another spike, with smaller

magnitude than the first one would be recorded. For 1500 time steps

(.t=40 ms) the computation time was 22 CPU minutes.

4.4 Axisymetric Geometry

In thh section we consider the axisymmetric program TW0 DIM

(see Appendix D). For this purpose we evaluated the capability of

this program to reproduce a one-dimensional spherical detonation

(whosesolutioncanbeobtainedusingSPHDET).

The non-dimensional pressure, density and velocity profiles
,

2 |of a spherical detonation in a 1 m radius sphere (p = 10100 N/m '
u

3= 0.1188 Kg/m ) can be seen in Figures 4.4.1 - 4.4.3.u

To solve the equivalent problem in an axisymmetric coor-

dinate system we took 101 grid points in the x dnd y directions,

0.01 m apart. We assigned the initial conditions to all the grid

points within a 0.2 m radiu:: according to the Taylor [2.5] solution; the

program was,run for 80 time steps (.t = 0.4 ms). The properties were

recorded at the grid points lying on the 45 diagonal line. The non-

dimensional plots of these properties are shown in Figures 4,4.4 - 4.4.6.

These graphs compare well enough with the graphs obtained from the
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spherical code. However, more oscillations are observed in the results

for the two-dimensional axisymmetric code. This behavior may be ex-

plained by the randomness of the technique; while in the one-dimen-

sional case two half time steps are needed (i.e. two different |

.pseudorandom numbers), for a two-dimensional geometry four quarter

time steps are used (i.e. four different pseudorandom numbers).

More computer runs are required to validate the two-dimensional program.

The computation time taken to solve this problem (10lx101

grid points and 80 time steps) on an IBM-370 was approximately 40 CPU

minutes.

4.5 Summary

The summary of the work done .is presented in Table 4.5.1;

different geometries have been studied (planar, spherical and axis-

ymmetric). We validated the one-dimensional codes by comparing the

results to the Taylor solutions. The axisymmetric code was validated

by using it to solve the spherical _ geometry problem. The results

for the pressure at the wall were obtained for the one-dimensional

geometries and the interaction with the wall has been studied for

the planar geometry.

The computer time depends on the code used. More iterations

are needed in SPHDET than in CRTDET to correct for the inhomogeneous

terms; hence, the CPU time per time step per grid point is larger in

SPHDET (by a factor of 2). The efficiency of the TWODIM code has been

improved by bypassing the calculations for those grid points ahead of

the detonation front; this reduces the CPU time per time step and grid

point by approximately 25%.

_
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TABLE 4.5.l: DETONATION CONDITIONS AND RESULTS

GE0 METRY H CONCENTRATION UNBURNT GAS * VALIDATION OF PRESSURE OF INTERACTION '

2
CONDITIONS THE PROGRAMS THE WALL WITH THE WALL

*
Planar Stoichiometric (1)and(2) yes yes yes

|

*

]Spherical Stoichiometric (1)and(2) yes yes no

**
Axisymmetric Stoichiometric (1) yes yes no

*
By comparison with the Taylor solution.

**
By comparison with the spherical solution.

2 3(1) p =10100N/m ,p =0.1188 kg/m
u u

3(2) p =1 atm,p =1.19kg/mg u

1

. /
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CHAPTER V

PRESSURE CALCULATIONS FOR THE INDIAN P0 INT CONTAINMENT
|
,

The two-dimensional axisymmetric program described in sections

3.4 and 4.4 was used to calculate pressure time histories inside the,

containment building of the Indian Point Nuclear Power Plant. The

geometry of the containment is shown in Fig. 5.1. No obstacles inside

the containment building were considered.

The program allows for detonation initiation at any point

on the axis of the containment structure. No attempt was made to

model the initial growth of the detonation. Instead it was assumed

that the detonation progresses spherically to an arbitrary radius

from the initiation point. This arbitrary radius was always selected

less than the closest distance of the initiation point from the con-

tainment wall. The initial conditions behind the initial spherical

detonation were taken as the conditions given by the Taylor [2.5] solu-

tion for the selected detonation radius [see section 2.4].

A unifom concentration of hydrogen was assumed inside the

containment, so that the strength of the detonation is the same everywhere.

For a unifomly dispersed detonable mixture and for a given i litiation

point, the pressure P at a point x_ inside the containment and at time t,

is proportional to the initial unifom containment pressure P , andg

is a function of 1) the gas constant, y = C /C ; and 2) the ratio ofp y

the heat generated by the detonation, q (which is proportional- to hydrogen

concentration), to the product of the initial absolute containment



. . . _ _ _ - . - . _. - _ _ _ ._

-92-

|
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41.44 m )

45.11 m

:
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Fig. 5.1 - Geometry of the Containment of the Indian Point
Nuclear Power Plant
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temperature,- T , and the universal gas constant R [2.1, 3.11].g

Symbolically, and in tenns of dimensionless quantities,

:

P(t,x_) tC x
'

p = f(y , R (5.1)' ,

L
o o

where C, is' the speed of sound at the initial conditions a.1d L |

is a characteristic linear scale of the containment. Eq. - 5.1 is

valid for geometrically similar containments.

In the pressure calculations performed, any variations in

the gas constant, y, were neglected and its value was taken equal to

1 4. For hydrogen concentrations less than or equal to stoichiometric,

the dimensionless heat release rate q/RT is equal to:g
:

f=C 7 (5.2)g
o 2 o '

where C is the volume concentration of hydrogen, in percent, and
H

2
the initial containment temperature, T , is in degrees Kelvin [1.1,g

3.6]. The ranges of hydrogen concentration and initial _ temperatures

that can realistically be expected in a containment following an

accident, are shown in Fig. 5.2 Computer calculations were performed

here for two values of the dimensionless heat release rate, equal

to 17 and 23. Fig. 5.2 shows that these two values of q/RT g

cover an important portion of the range of possible hydrogen concen-

trations and initial temperatures.

The spatial discretization in the r-z plane had a variable

grid size and consisted of 28 points in the radial (r) and 59 in the

a . - . . . ,
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Fig. 5.2 - Range of Interest of Hydrogen Concentration and
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vertical direction. Figure 5.3 presents the calculation grid for

the Indian Point containment. The dome was approximated by a stepwise

line, consisting of segments parallel to the r and z directions.;

Although a variable grip size can be used-in the program for calculation

efficiency, very large differences in the grip should be avoided,

because they may induce fluctuations due to large differences in the

characteristic Courant number y (compare also with the discussion

in section 4.1).

Preliminary computer runs were made to check the stability
i

of the code and its ability to reproduce exactly the times of first

arrival of the detonation front to the walls,which can be calculated,

easily.

Results were obtained for two initiation points, one at the

center of the base mat and another at a point on the axis 34.5 m above

the base, and for two values of the dimensionless heat release rate,'

17 and 23. Calculated pressure time histories at several points'on

the wall are presented in Appendix E. All pressure values are nonnal-
t

ized with respect to the initial containment pressure, P , and areg

given as a function of the dimensionless time tC /r, where r is theg

inside radius of the cylinder and the dome.- In the present case, the

non-dimensionalizing constant, r/C , equals 0.06 sec. Results typically'

g .

show a' series of decaying pressure peaks. The first peak is due to

the first' arrival of the' detonation front. Subsequent peaks represent

reflections of shocks which have been reflected before at the containment-

_ axis. Pressure' peaks at nearby points occur a't approximately the same

__ _ , _ _ _ -
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times. After a few reflections (3 or 4, at most), pressures decay

to an almost constant value. Decay is faster for initiation at a

point 34.5 m above the base than for initiation at the center of the

base mat, because the stronger three-dimensionality of the shocks in

the former case produces more scattering of the waves. For given

initiation point, decay is faster for the larger of the two heat

release rates, but peak pressures are slightly higher.

The pressure time histories obtained show considerable high

frequency oscillations. These oscillations are believed to be numerival

and can be attributed to: 1) the randomness built in the code by using

the random choice technique; 2) the variable grid size; 3) the stepwise

approximation of the dome geometry. (Notice that at the points of

the dome there are, in general, more oscillations). Perfoming the

computations with different time steps has shown that the high

frequency oscillations do not affect the lower frequency trends in

the pressure time histories, which are real and not numerical,and are
i

important for the dynamic response of the structure.
'

The results reported herein agree qualitatively with those

repori.ed in Rd [1.7]. The results in the latter reference were

obtained by a Finite Difference code which introduces artificial damping

and smooths sharp discontinuities. On the contrary the method used

in this work preserves exactly the sharpness of the shock front, but

introduces some artificial high frequency components. This fundamental

difference between the two methods is the reason for the fact that

significantly higher peak pressures are calculated by the present

method.

P

__--.__ .-_._ ---- - -
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CHAPTER VI

SUPNARY AND CONCLUSIONS

Computer codes for solving the hydrogen detonation problem

in the containment of a nuclear reactor were developed and used. The

compressible flow equations including detonation were solved using a

new numerical technique due to Glimm.

The computer codes CRTDET, SPHDET and TW0 DIM have been

developed and tested; they reproduce satisfactorily existing analytical

results. CRTDET solves the one-dimensional planar problem.

The ci e-dimensional spherical or cylindrical geometries are handled

by SPHDET, which is very similar to CRTDET; it solves for the in-

homogeneous terms in the equations of motion by using the operator

splitting method. The computer program TW0 DIM is a natural extension of

CRTDET and SPHDET, since it uses the same techniques used in these two

codes; however, to account properly for the wave in the r and z directions,

we used a splitting technique with a four-sweeps cycle; the duration for

eachsweepisf.

Pressure histories on the wall for a plane and spherical.

geometry have been calculated. Interactions with an elastic wall have

been evaluated numerically only in a plane geometry. The results indi-

cate that the effect of the motion of the wall on the pressure histories

is negligible.

The two-dimensional axisymmetric program was validated by

using it to predict pressure histories in a spherical geometry. Pressure

Io
_ - _ _ .
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histories have been calculated for an actual nuclear containment building,

that of the Indian Point Nuclear Power Plant. Hydrogen concentration

in the containment volume was assumed uniform, any obstacles inside the

containment were neglected, and a hydrogen detonation was postulated.

The probability of such a detonation and the question of the initial

detonation growth were considered out of the scope of the present work.

The numerical results for wall pressures are presented in dimensionless

fonn, which allows their use for different combinations of hydrogen

concentrations and initial conditions. Th ee cases were considered in

the calculations,which include two sets of dimensionless heat release

rate and two initial points of the detonation: one at the center of the

base mat and another 34.5 on the containment axis above the base. The

results are in qualitative agreement with previous ones obtained by

using the Finite Difference code CSQ. However, higher pressures (sometimes

by a factor of two) are predicted in general by the present method.

This can be attributed to the absence of artificial viscosity which

allows a more accurate description of pressure discontinuities.

Due to multiple reflections, peak pressures at some points

are very high (e.g. , fifty times the initial containment pressure), but

they last for very short times, and the dynamic pressures decay to almost

constant values within approximately 0.1 sec. for initiation 34.5 m

above the base, or within approximately 0.2 sec for initiation at the

center of the base. Decay was faster for the highest of the two non-

dimensionless heat release rate values, but peak pressures were, in

general, slightly higher. Due to multiple reflections, most pressure
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histories exhibit three or four peaks. These peaks are not expected

to cause resonance of the structure, because their interarrival times

are too short in comparison to the top few natural periods of the

containment.

.

O |
, ,, _ _ _ _ - _



-103-

NOMENCLATURE

Latin Alphabet

c sound speed

c sound speed in the burnt gas
b

c Chapman-Jouguet sound speedcj

!, c sound speed in the unburnt gas
u

e energy per unit volume

K wall stiffness

M mass of the wall

m momentum flux

P pressure er.arted at the wall

p gas pressure

pb pressure of the burnt gas

cj Chapman-Jouguet pressurep

p pressure of the unburnt gas
u

Q energy due to external-sources or sinks

q energy released by chemical reactions

t time

U wave velocity

u ' particle velocity

u particle velocity of the burnt. gasb

u particle velocity given the Chapman-Jouguct conditionscj
u particle velocity of the unburnt gas

u

_ - _ __ . - _ _ -
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.w burnt gas velocity in the Eulerian frame
b

w unburnt gas velocity in the Eulerian frame
u:

'

w. displacement of the wall

w velocity of the wall

W acceleration of the wall

Greek Alphabet

ej internal energy per unit mass -

n integer equal 2 for cylindrical coordinates, 3 for spherical

4 labeling integer equal 1 forunburnt gas and 0 otherwise

r Riemann invariant

y gas constant equal to C /Cp y

$ defined by equations (A.7)

E random number.

E' pseudorandom number

p gas density

pCJ Chapman-Jouguet gas density

pb density of the burnt gas

p density of the. unburnt gas
u

Other- symbols are defined in the text.

.

..- . - , . - - , . - . - , ..;
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| APPENDIX A

l
THE G000N0V METHOD

This method of calculation of the conditions behind the detonation

front was first implemented by Godunov [3.5] and then modified by Chorin [2.4]

and Sod [3.1]. The method is used by the computer codes developed herein, and

is described in this Appendix for completeness.

Given the equation (3.1.4), we would like to find the proper-

ties p., u,, p, in state S,. Let us define

(P ~ P*)/(u ~"*), (A.1)M =
r r r

and

M =-(pg - p )/(u -u,). (A.2)g g

It can be easily shown that if the right wave is a shock,

~P ("r - U ) * ~P*(u, - U ), (A.3)M "
r r r r

where p,is the density in the region adjacent to the right shock

and U is the velocity of the right shock.
r

Similarly, if the left wave is a shock,

M = p (u - U ) = -p,(u, - U ), (A.4)g g g g g

where p, is the density in the portion of S, adjacent to the left -

shock and U is the velocity of the left shock. M and M can beg r g

can be written in the form

._ _ - .- ,
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M * (P P ) $(p*/P), (A.5)
r rr r

= (p p )l/2 4(p,/p)', (A.6)M gg gg

where

Y-I) for w > 1,$(w) = (Y l y+ -

,

(A.7)

Y-l l-W for w < l .= ,
-

2y /2 ),,(y-1)/2yl

Upon elimination of u, from (A.1) and (A.2), we obtain

u -u + P /Mg + p /Mg r L r r (A.8)p*
1/M + 1/M

= .

A r

Equations (A.5), (A.6) and (A.8) are three equations in three unknowns

for which there exists a real solution. The solution can be found

iterativelybychoosingastartingvaluep!(orM or M ), and thenr

, M * , M +I q > 0 using9 9computepII ,

r g

p9 = (u -u *P /M9*P/M{)/(1/M9+1/M}), (A.9b)
g r r r L

p[I= max (c),p), (A.9b)9

M +I = (p P ) ! $(p /p ), (A.9c)9
rr p

M *I = (p p )1/2 $(pII/p ). (A.9d)9
g gg g

. - - .

.

.
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Equation -(A.9b), where c) is a very small. number (~10-6), is used to

prevent the pressure of becoming negative,
i-

.Once p., M and M are found, we may obtain u, by eliminatingp g

p,from(A.1)and(A.2),

u,= (p -p + M "r + M u )/(M + M ). (A.10)g r r Lg r A

1

4'

.

-
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. APPENDIX B

:
!

THE COMPUTER PROGRAM CRTDET

B.1 ' General Description

'The program consists of the main program, the subroutine
* GLIM and the output section. The overall idea behind the main

program can be found in the flow chart of Figure B.1. The major

steps to follow in order to run this program are

1. Select the grid spacing for each specific problem
and adjust accordingly the values of N and DX;

2. Decide about the number of time steps necessary
(NSTOP) and the time intervals for which a printed
output of the properties is required (NPRINT);

'3. Assign the parameters defining the initial con-
. ditons of the gas and the properties of- the combustion. !
GAMMA and DELTA are respectively, the gas constant '

and the energy released by the combustion. PR, RR
and UR are the initial conditions of the unburnt gas
and PL, RL and UL are the C-J conditions of the

burnt gas. On the other hand, the grid points behind
the detonation front should be given their appropriate
values obtained from the Taylor curves (Figures 2.4.1-

'2.4.3).
'

The subroutine GLIMM solves the Riemann problem for each

grid point. The major part of this subroutine has been described by

Sod (1978). However, the last section of the subroutine has been

added to solve the detonation problem.
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START
|-

! if
.

i
ASSIGN INITIAL VALUES FOR

p, p AND u AT EACH

GRID POINT
,

!

REPEAT NSTOP TIMES __

y4

CALCULATE HALF THE
^t

TIME STEP 2

,

u

SOLVE THE RIEMANN PROBLEM

AT MID DISTANCE BETWEEN

ADJACENT GRID POINTS

AFTER HALF TIME STEP

If

SOLVE THE RIEMANN PROBLEM

AT EACH GRID POINT

AFTER ANOTHER HALF

TIME STEP

4

PRINTED OUTPUT EVERY NPRINT

TIME STEPS

if
END

FIGURE B.1: FLOW CHART FOR CRTDET

. - - -- . - . - - -
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B.2 Dictionary of the Key Terms in the Program

B . Defined in equation (2.4.7a)

C Defined in equation (2.4.7b)

CL Sound speed in the left state of the solution of the Riemann
i

problem !

CR Sound speed in the right state of the solution of the
Riemann problem

CSTAR Sound speed in state S, or C-J sound speed

DELTA Chemical energy released by the combustion process

GAMMA Gas constant = C /Cp y
.GGUBFS Random number generator; IMSL function subroutine

ML Defined in equation (A.2)

MR Defined in equation (A.1)

MUSQ Defined in equation (2.4.4)
,

i

N Number of intervals generated by the grid points

NPRINT Controls the output section; the properties at-each
grid point will be printed every NPRINT time steps

NSTOP Number of time steps

PHI (I) Variable indicating whether the gas is burnt or not at
grid point I

2
PRE (I) Pressure of the gas in N/m at grid point I

i PSI Function subroutine defined by equation (A.7)

PSTAR Pressure in state S, or C-J pressure
3

.RH0(I) Density of the gas in kg/m at grid point I

RSTAR Density in state S, or C-J density

SI Pseudorandom' number.intheinterval'[0,1]

SIGMA Coefficient in ]0,1] to control the length of each time
' step
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TIME Total time in seconds elapsed since the-origin
of the detonation

UCJ Detonation front velocity given C-J conditions

Particle velocity in state S or particle C-J velocityUSTAR

UX(I) Particle velocity in m/s at grid point I

Pseudorandom number in the interval [-h, ^[ _]XI

|

.



- -
- . ..

-I15-'

'

~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |C
C iC CRTDET C '

.C
C

C ONE DIMENSIONAL PROCRAM(CARTESIAN) TO CALCULATE C
C PRESSURE, DENSITY AND VELOCITY HISTORY IN A REACTIVE Cj C MIXTURE C
C

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

COMMON / /DT ,C AMMA ,RL,U L, P L , R ,U , P , E , RR ,U R ,P R ,XI,KPHI, D ELTA
1,KIM

C OMMON/0UT/ T IM E ,N , D X, R H0( 2 001) ,P RE( 2 001) ,U X( 2 001)
1, PHI (2001)

COMMON / RAD / ETA
COMMON /LIN/ LAM
REAL LAM
DOUBLE PRECISION BLIP
INTEGER TSTP, PHI
NPRINT=25
NSTOP=1000
N=200
NPl=N+1
NM1=N-1
DX=20.0/ FLOAT (N) |DT=0.01 '

TIME =0.1/1787.7 i

j- VMAX=0.
NP=0
GAMMA =1.4

, DELTA =1447716.8
! BLIP =0.0D0

K1=11<

: K2=7
NU-2

*

SIGMA =0.8
ETA =1.

C
i C SET INITIAL CONDITIONS

C

RL-2.10939
'

PL=1539126.7
UL=777.0
RR=1.19242
PR=101325.
UR=0.
Do 15 I-1,2
PHI (I)=0
RH0(I)=RL

> %

+
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PRE (I)=PL
U X(I) =U L

15 CONTINUE
RH0(1)=0.91546
PRE (1)=478350.0
UX(1)=0.0

14 DO 16 I-3,NP1
PHI (I)=1
RH0(I)=RR
P RE(I) =P R
UX (I) =U R

16 CONTINUE
C
C BEGIN TIME STEP
C

DO 100 TSTP=1,NSTOP
NP=NP+1
DO 8 I-2,N
VM AX 1= AB S (U X( I) )+S QRT (G AMM A* P RE (I ) /RH0 (I ) )
IF(VMAX1.GT.VMAX) VMAX=VMAX1

8 CONTINUE
D TT= S IGM A* D X / (2 . *VM AX)
IF(DTT.LT.DT) DT=DTT
T IM E=T IM E+ 2 . * D T
LAH=0.5/VMAX

C
C COMPUTE FIRST HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

N U=M O D( N U+K 2,K 1)
BLIP = BLIP +2.D0
SI-(GGUBFS(BLIP)+ FLOAT (NU))/ FLOAT (K1)

C

C XI LIES BETWEEN -DX/2 AND +DX/2
C

DO 40 I=2,NP1
XI=SI*DX-0.5*DX
RR=RH0(I)
UR=UX(I)
PR= PRE (I)
KPHI= PHI (I)
IF(I.EQ.2)GO TO 43
RL= RIM 1
P L=P IM1
UL=UIM1
GO TO 44

C

C BOUNDARY CONDITION AT AXIS R=0

~

-

e
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C-

43 RL=RH0(1),

l
_UL=UX(1)

g - PL= PRE (1) !

KIM-PHI (1)
GO TO 44

C

C COMPUTE FIRST HALF STEP OF GLIMM
C
44 CALL GLIMM j

RIMl=RH0(I)
|RH0(I)=R !

PIM1= PRE (I)
PRE (I)=P
UIM1=UX(I) !

UX(I)=U !
KIM= PHI (I)4

PHI (I)=KPHI
40 CONTINUE
C,

C COMPUTE SECOND HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

NU= MOD (NU+K2,Kl)

SI=(GGUBFS(BLIP)+ FLOAT (NU))/ FLOAT (K1)
C '

C XI LIES BETWEEN -DX/2 AND +DY./2
C i

'

KIM= PHI (l)
DO 60 I=1,NP1 '

XI=SI*DX-0.5*DX
'

RL=RH0(I)
I PL= PRE (I) ,

UL=UX(I)
IF(I.EQ.NP1) GO TO 63
KPHI= PHI (I+1)
RR=RH0(I+1)
PR= PRE (I+1)
UR=UX(I+1)
IF(I.EQ.1) GO TO 62
GO TO 64

C BOUNDARY CONDITION AT R=1.
63 RR=RL<

UR=-UL
; PR=PL

KPHI= PHI (I)
XI=0.0
GO TO-64.

.
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C
C COMPUTE SECOND HALF STEP OF GLIMM
C
62 XI=0.0

RL=RR
UL=-UR
PL=PR

64 CALL GLIMM
RH0(I)=R
PRE (I)=P
UX(I)=U
KIM=P HI(I+1)
PHI (I)=KPHI

60 CONTINUE
WRITE (15,20000) TIME

20000 FORMAT (1H1,7H TIME = ,F11.7)
WRITE (15,20001) RH0(1), PRE (1)
W RITE (15,2 0001) RH0(NP1), PRE (NP1)

20001 FORMAT (lHO,2F13.5)
IF(NP.LT.NPRINT) GO TO 100
NP=0

100 CONTINUE
STOP
END

C
C SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C

SUBROUTINE GLIMM
COMMON / /DT ,G AMMA ,RL ,U L ,P L , R ,U , P , E ,RR ,U R ,P R ,XI ,KP HI ,DELT A
1,KIM

COMMON / RAD / ETA
COMMON /LIN/ LAM
REAL MR,ML,MRP1,MLP1
REAL LAM,MUSQ
EPS=1.E-6
IT=0
ITSTOP=20
KPHIP=KPHI*KIM

C

C IF KPHI=1 MIGHT HAVE A DETONATION,

C
IF(KPHI.EQ.1.AND.KPHIP.EQ.0) GO TO 111

C
C CONSTRUCTION OF RIEMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C

ALFA =1.
ALFAM-1.-ALFA

C
C INITIAL ML AND MR

. . ..
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C
l' ML=100.

MR=100.
COE FL= S QRT(P L* RL)
COEFR=SQRT(PR*RR)

C

C COMPUTE INITIAL PSTAR.USING LINEARIZED GODUNOV
.C

R AV = 0. 5 * ( RL+R R)
PAV=0.5*(PL+PR)
A=P AV / ( R AV * *C AMM A)
R=RAV-LAM *(UR*RR-UL*RL)
PSTAR=A*(R** GAMMA)

C
C SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
C

10 IT=IT+1
C
C IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
C TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE
C

PSTAR=AMAX1(EPS,PSTAR)
C
C COMPUTE MR AND ML AT STEP Q+1
C

20 MLPl=COEFL* PSI (PSTAR/PL, GAMMA)
MRPl=COEFR* PSI (PSTAR/PR, GAMMA)
DIFML= ABS (MLP1-ML)
DIFMR= ABS (MRP1-MR)
ML=MLP1
MR=MRP1

C

C COMPUTE NEW PRESSURE PSTAR
C '

PSTARP=PSTAR
P S TAR = (U L-U R+P R/MR+P L /ML ) / (1. /ML+1. /MR)
PSTAR= ALFA *PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
IF(ABS (PSTAR-PSTARP).LT.EPS) C0 TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA = ALFA /2.
ALFAM-1.-ALFA
IF(ALFAM.LT.EPS) GO TO 40
IT=0

30 1F(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10

C
C COMPUTE USTAR AT END OF GODUNOV ITERATION
C
40 USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)

_ _ .. - -- - . .~ .. . --
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C

C BEGIN GLIMM'S METHOD
C

IREGL=1
IF(PSTAR.LT.PL) IREGL=2
IREGR=1

!

IF(PSTAR.LT.PR) IREGR=2..

X=USTAR*DT
IF(XI.GE.X)'GO TO 200

C
C LEFT SIDE
C

IF(IREGL.EQ.2) GO TO 110
C
C COMPUTE LEFT SHOCK SPEED
C

.U=U L-ML / RL
X=U*DT
IF(XI.GE.X) GO TO 100

C
C LEFT OF LEFT SHOCK
C

R=RL
U=UL
P=PL
GO TO 500

C.
C RIGHT OF LEFT SHOCK
C
100 R=ML/(USTAR-U)

U=USTAR
PaPSTAR
GO TO S00

C

'C COMPUTE SOUND SPEED IN LEFT STATE
C
110 CL=SQRT(GAMMA *PL/RL)

X=(UL-CL)*DT
IF(XI.GE.X) GO TO 120

C-
C LEFT OF LEFT. FAN
C

R=RL
U=UL
P=PL-
GO TO 500

C
C COMPUTE CONSTANT.0F ISENTROPIC LAW-A
C
'120 A=PL/(RL** GAMMA)

L
-- - - - . _ _ _ _ _ . ___ _ ___._ _
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i

! C

C COMPUTE DENSITY IN STATE STAR
C

'RSTAR=(PSTAR/A)**(1./ GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C

CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT 4

IF(XI.GE.X)-GO TO 130
C ;

C IN LEFT FAN I
iC

U=(2./(GAMMA +1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL)
RINT=CL+0.5*(GAMMA-1.)*(UL-U)
R=(RINT*RINT/(A* GAMMA))**(1./(GAMMA-1.))
P=A*(R** GAMMA)
GO TO 500

C

C RIGHT OF LEFT FAN
C
130 R=RSTAR

U-USTAR
P=PSTAR i

GO TO 500
C
C RIGHT SIDE
C

|
200 IF(IREGR.EQ.2) GO TO 220 j

C |
C COMPUTE RIGHT SHOCK SPEED
C

U=UR+MR/RR
X=U*DT
IF(XI.GE.X) GO TO 210

C

C LEFT OF RIGHT SHOCK
C

R=-MR/(USTAR-U)
U=USTAR-
P=PSTAR
GO TO ~500

C
C RIGHT OF RIGHT SHOCK
C

210' 'R=RR
U=UR
P=PR
GO .TO 500

C

, s ---a
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C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
220 A=PR/(RR** GAMMA)
C

C COMPUTE DENSITY IN STATE STAR
C

RSTAR=(PSTAR/A)**(1./ GAMMA)
C

C COMPUTE SOUND SPEED IN STATE STAR
C

CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT
IF(XI.GE.X) GO TO 230

C
C LEFT OF RIGHT FAN
C

R=RSTAR
U**USTAR
P=PSTAR
GO TO 500

C
C COMPUTE SOUND SPEED IN RIGHT STATE
C

230 CR= S QRT(G AMMA*P R/ RR)
X=(UR+CR)*DT
IF(XI.GE.X) GO TO 240

C

C IN RIGHT FAN
C

U= (2. / (G AMMA+1. ) ) * (XI /DT-C R+0. 5 * (G AMMA-1. ) *U R)
RINT=CR+0.5*(GAMMA-1.)*(U-UR)
R=(RINT*RINT/(A* GAMMA))**(1./(GAMMA-1.))
P=A*(R** GAMMA)
GO TO 500

C

C RIGHT OF RIGHT FAN
C

240 R=RR
U =U R
P=PR
GO TO 500

C

C DETONATION CONDITIONS
C

C
C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C

111 B =-P R-D ELT A* (G AMM A-1. ) *RR
MUSQ=(GAMMA-1.)/(GAMMA +1.)
C= (P R*P R)+2. *MU SQ*PR* RR* DELTA

e
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L

| PSTAR=-B+SQRT((B*B)-C)
!- R S TA R= (P S TAR * (G AMM A+1. )-P R ) *RR/ (G AMM A*P E TAR)

UCJ=SQRT(GAMMA *PSTAR*RSTAR)/RR+UR
CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
USTAR=UCJ-CSTAR

L USTAR=777.0
PSTAR=1539126.7,

'RSTAR=2.10939
'CSTAR=SQRT(GAMMA *PSTAR/RSTAR)

'

UCJ=USTAR+CSTAR'

C ,

C BEGIN GLIMM'S METHOD
C

X=UCJ*DT
IF(XI.GE.X) GO TO 222,

IF(ETA.LT.3.5) GO TO 333
C
C COMPUTE SOUND SPEED IN LEFT STATE
C

CL=SQRT(GAMMA *PL/RL)
X=(UL-CL)*DT

i IF(XI.GE.X) GO TO 444
C

i C LEFT OF RAREFACTION FAN
C

R=RL
U=UL
P =P L
KPHI=0
GO TO 500

C

) C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C*

; 444 A=PSTAR/(RSTAR** GAMMA)
'

C-
. C IN RIGHT FAN
C'<

U= (2. / (G AMMA+1. ) ) * (X I / DT-C S TAR +0. 5 * (G AMMA-1. ) *U S TAR)
RINT=CSTAR+0.5*(GAMMA-1.)*(U-USTAR)

}- R=(RINT*RINT/(A* GAMMA))**(1./(GAMMA-1.))'

P=A*(R** GAMMA)
KPHI=0
GO 1M) 500

C

C RIGHT OF DETONATION
- C

333 U=USTAR
P=PSTAR

,

R=RSTAR
KPHI=0

4
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GO TO 500
222 U=UR

P=PR.
R=RR

500 CONTINUE
RETURN
END

C
C. FUNCTION PSI
C

FUNCTION PSI (X, GAMMA)
EPS=1.0E-6
IF(ABS (1.-X).GT.EPS) GO TO 100
PSI =SQRT(GAMMA)
RETURN

100 COE Fl = 0. 5 * (G AMM A+1. )
COEF2-0.5*(GAMMA-1.)
COEF3=COEF2/ GAMMA
IF(X.GE.1.) GO TO 200
P S I=COEF2 * (1. -X) / (S QRT(G AMMA) * (1. -(X* *COEF3 ) ) ) .
RETURN

200 PSI =SQRT(COEFl*X+COEF2)
RETURN
END

C
i
I C SUBROUTINE . 0UTPUT:0UTPUT SECTION OF THE PROGRAM

C
SUBROUTINE OUTPUT
C OMMON/ /DT ,C AMM A , RL ,U L , P L , R ,U , P , E , RR ,U R ,P R ,XI , KPHI ,D ELT A

1,KIM.
C OMMON /0UT/ T IME ,N , D X , RH0 (2 001) , PRE (2 001) ,U X( 2 001)

1, PHI (2001)
,

I INTEGER PHI
|= NPl=N+1

WRITE (6,10000) ' TIME'

WRITE (6,10001)
DO 20 I-1,NP1
X= FLOAT (I-1)*DX
R=RH0(I)
U=UX(I)
P= PRE (1)

,

i K= PHI (I)'
.

WRITE (6,10002) X,R ,U ,P ,K'
-

20 CONTINUE
RETURN

10000 FORMAT (1H1,7H TIME = ,F11.7)
10001 FORMAT (1H 3H X ,6X ,5HDENS E ,8X ,3HVE L ,10X ,4HPRE S ,10X ,3HP HI)
10002 FORMAT (1HO,F6.3,3F13.5,I2)

END

i

|

9
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,

APPENDIX-C
r

!
-THE COMPUTER PROGRAM SPHDET

The computer program SPHDET is very similar to CRTDET;.

however, the subroutine INHOM has been added to make the correction

for.the inhomogeneous terms in the equations of gas dynamics in -

one dimensional spherical or cylindrical coordinate system. This

- subroutine is called after the. solution of the-Riemann problem has

'been advanced one time step in the time space. It uses the method

described in section 3.3.

Actually the'one-dimensional cartesian, cylindrical and
~

spherical problems can be solved by SPHDET by taking ETA equal to 1,

2, and 3 respectively.
.

, e
-- e r p- , 4 -,~m - 4 -r w,am
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I
.

.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C

D C SPHDET C

| C C

C- ONE DIMENSIONAL PROGRAM (CYL. OR SPHE.) TO CALCULATE C'
C PRESSURE, DENSITY AND VELOCITY HISTORY IN A REACTIVE C

C. MIXTURE C

C C H

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
COMMON / / DT ,GAMM A , RL ,U L ,P L , R ,U , P , E , RR ,UR ,PR ,KPH I, DELTA ,KIM ,

l

i' COMMON /0 UT/ TIM E ,N , D X, RH0(111) ,PR E(111) ,U X(111) ,P HI(111)
COMMON / RAD / ETA
COMMON /LIN/ LAM

| REAL LAM

| DOUBLE PRECISION BLIP
INTEGER TSTP, PHI
NP RIN T= 2 0
NSTOP=100
N=100
NPl=N+1

| NM1=N-1
( DX=1.0/ FLOAT (N)
' DT=0.01

TIME =0.19/1787.85
VM AX=0.
NP=0
GAMMA =1.4
DELTA =1447711.2
BLIP =10.0D0
K1=11
K2=7
NU=2
SIGMA =0.8
ETA =3.

C'

C SET INITIAL CONDITIONS
C

RL=0.2102
PL=153419.
UL-777.
RR=0.11886
PR=10100.
UR=0.
DO-15 I=1,20
PHI (I)=0
RH0(I)=RL
PRE (I)=PL
U X(I) =U L

15 CONTINUE
RH0(1)=0.0841
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PRE (1)=42550.91
UX(1)=0.0 |

RH0(2)=0.0841
PRE (2)=42550.91 '

UX(2)=0.0
RH0(3)=0.0841
PRE (3)=42550.91'
U X( 3 ) = 0.
RH0(4)=0.0841
PRE (4)=42550.91

' UK(4)=0.
RH0(5)=0.0841
PRE (5)=42550 91

| UX(5)=0.
RH0(6)=0.0841
PRE (6)=42550.91-
UX(6)=0.0
RH0(7)=0.0841
PRE (7)=42550.91
UX(7)=0.0
RH0(8)=0.0841
PRE (8)=42550.91
UX(8)=0.0
RH0(9)=0.0841
PRE (9)=42550 91
UX(9)=0.0
RH0(10)=0.0841,

P RE(10) =4 2 5 50. 91
UX(10)=0.0,

RH0(11)=0.08565
i PRE (11)=43264.16

U X(11) =2 3. 2 9
RH0(12)=0.08933

'

P RE(12) =4 5642.15
I U X (12) = 6 2.0 6 -

RH0(13)=0.09354
PRE (13)=49477.62
UX(13)=100.98
RH0(14)=0.09984r

PRE (14)=54463.75
UX(14)=139.82,

RH0(15) =0.10 7 20
PRE (15)=60216.95

i UX(15)=191.87
RH0(16)=0.11661
PRE (16) = 67 504. 3 6
UX(16) =2 5 2.4 5
RH0(17)=0.12822
PRE (17)=77476.59
U X( 17) =3 2 2. 3 6

- . . . . _.- .-
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RH0(18)=0.14188
PRE (18) =88983. 02
UX (18) =419.4 6
RH0(19) = 0.16 3 9 5
PRE (19)=105859.11
UX(19)=532.10

14 DO 16 I=21,NP1
PHI (I)=1
RH0(I)=RR
PRE (I)=PR
UX(I)=UR |

i16 CONTINUE
I

C
C BEGIN TIME STEP
C

DO 100 TSTP=1,NSTOP
NP=NP+1
DO 8 I-2,N
VM AX 1=A B S (U X(I) )+S QRT(G AMMA* PRE (I ) /RH0(I ) )
IF(VMAX1.GT.VMAX) VMAX=VMAX1

8 CONTINUE
D T Tn S IGM A*DX/ (2. *VM AX )
IF(DTT.LT.DT) DT=DTT
TIME = TIME +2.*DT
LAM =0.5/VMAX

C
C COMPUTE FIRST HALF STEP
C
C

C GENERATE RANDOM SI USING CHORIN' S METHOD
C

NU=MO D( N U+K 2, K 1)
BLIP = BLIP +1.D0
S I= (G GUB F S ( B L IP)+F LO AT(N U) ) /FLO AT(K 1)

C
C XI LIES BETWEEN -DX/2 AND +DX/2
C

DO 40 I-2,NP1

| XI1=SI*DX-0.5*DX
| RR= RHO (I)
| UR=UX(I)
| PR= PRE (I)

KPHI= PHI (I)
IF(I.EQ.2)GO TO 43
RL= RIM 1
P L=P IM1
UL=UIM1
GO TO 44

C
C BOUNDARY CONDITION AT AXIS R=0

. . ._ _ . _ _ _ _ _ _ _ _ _ _ _ _ . ~
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C
43 RL=RH0(1)

UL=UX(1)
PL= PRE (1)
KIM= PHI (1)
GO TO 44

C

| C COMPUTE FIRST HALF STEP OF GLIMM
C

44 CALL CLIMM(XII)
RIM 1=RH0(I)
RH0(I)=R
PIM1= PRE (1)
PRE (I)=P
UIM1-UX(I)
U X(I) =U
KIM= PHI (I)
PHI (I)=KPHI> -

40 CONTINUE
C
C COMPUTE SECOND HALF STEP
C-4

C
j C GENERATE RANDOM SI USING CHORIN'S METHOD

C
NU= MOD (NU+K2,K1)

j S I= (GG U B F S ( BLIP )+FLO AT ( NU ) ) /F LO AT (K 1 )
. C

C XI LIES BETWEEN -DX/2 AND +DX/2
C

KIM= PHI (1)
DO 60 I=1,NP1
X12 = S I* D X- 0. 5 * D X
RL=RH0(I)

|
P L= P R E(I )
UL=UX(I)
IF(I.EQ.NP1) GO TO 63 !

KPHI= PHI (I+1)
RR=RH0(I+1)
PR= PRE (I+1) i

U R=U X( I+1 )
IF(I.EQ.1) GO TO 62
GO TO 64 >

'

C BOUNDARY CONDITION'AT R=1.
63 RR=RL

,UR=-U L
PR=PL'
KPHI=P HI(I )
XI2=C.0
GO TO 64

i

!



_ _ - _ - _ _ _ _

-130-

C

C COMPUTE SECOND HALF STEP OF GLIMM
C

62 '! -ABS (XI2)
IF(XII.LT.O.) XI2 =X 11+ 0. 5 *DX
RL=RR
U L= -U R
PL=PR

64 CALL GLIMM(XI2)
RH0(I)=R
PRE (I)=P
UX(I)=U
KIM= PHI (I+1)
PHI (I)=KPHI

60 CONTINUE
CALL INHOM
WRITE (15,20000) TIME

20000 FORMAT (1H1,7H TIME = ,F11.7)
WRITE (15,20001) RH0(1), PRE (1)
W RIT E (15,2 0001) RH0(NP1), PRE (NP1)

20001 FORMAT (1HO,2F13.5)
IF(NP.LT.NPRINT) GO TO 100
NP=0
CALL OUTPUT

100 CONTINUE
STOP
END

C
C SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C

SUBROUTINE GLIMM(XI)
C OMMO N/ /D T ,G AMMA ,RL ,U L , P L , R ,U ,P E . RR ,U R ,P R ,KP HI,D ELTA ,KIM
COMMON / RAD / ETA
COMMON /LIN/ LAM
REAL MR,ML,MRP1,MLP1
REAL LAM,MUSQ
EPS=1.E-6
IT=0
ITSTOP=20
K P HIP =K P H I*K IM

C

C 1F KPHI=1 , MIGPT HAVE A DETONATION
C

IF(KPHI. EQ.1. AND.K PHIP. EQ.0) GO TO 111
C
C CONSTRUCTION OF RISMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C

ALF A= 1.
ALFAM=1.-ALFA

l
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C
C INITIAL ML AND MR
C

ML=100. 6

MR=100. ;

C OE FL= S Q RT(P L*RL)
j COEFR=SQRT(PR*RR)
| C ,

| C COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV
; C

R AV - 0. 5 * ( R L+R R)
PAV=0.5*(PL+PR)
A=PAV/(RAV** GAMMA)
R=RAV-LAM *(UR*RR-UL*RL)
PSTAR=A*(R** GAMMA)

C

| C SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
I C

10 IT=IT+1
C
C IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL2

C TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE
C

P S T AR= AMAX 1( EP S ,P S TAR)
,

! C

{ C COMPUTE MR AND ML AT STEP Q+1' C
20 MLP l=C O EFL* P S I(P S T AR/ P L , G AMMA)4

MRPl=COEFR* PSI (PSTAR/PR, GAMMA)
DIFML= ABS (MLP1-ML)

!
DIFMR= ABS (MRP1-MR)
ML=MLP1
MR=MRP1

C

C COMPUTE NEW PRESSURE PSTAR
C

PSTARP=PSTAR
P S T AR= ( U L-U R+P R /MR+P L/ML ) / (1. /ML+1. /M R)
PSTAR= ALFA *PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) C0 TO 30
IF(AAS(PSTAR-PSTARP).LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA = ALFA /2.
ALFAM=1.-ALFA.
IF(ALFAM.LT.EPS) GO TO 40
IT=0

; 30 IF(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10

C
C COMPUTE USTAR AT END OF GOLUNOV ITERATION

.
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C

40 US TAR = (P L-P R+M R*U R+ML *U L) / (ML+M R)
C
C' BEGIN GLIMM'S METHOD
C

IREGL=1
IF(PSTAR.LT.PL) 'IREGL=2
IREGR=1
IF(PSTAR.LT.PR) IRECR=2 j

X=USTAR*DT
IF(XI.GE.X) GO TO 200

C
'

C LEFT SIDE
'

C I

IF(IREGL.EQ.2) GO TO 110
C

C COMPUTE LEFT SHOCK SPEED
. C.
I U=U L-ML / RL

X=U*DT
IF(XI.GE.X) GO TO 100

C
:

C LEFT OF LEFT SHOCK+

C
R=RL
U =U L
P=PL
GO TO 500

C
C RIGHT OF LEFT SHOCK

,

'
C

100 R=ML / (U S TAR-U )
'

| .U=USTAR
P=PSTAR4

GO TO 500
C

C COMPUTE SOUND SPEED IN LEFT STATE
-C,

110 CL=SQRT(GAMMA *PL/RL)
X=(UL-CL)*DT

! -IF(XI.GE.X) GO TO 120
C
C LEFT OF LEFT FAN|

I C
R=RL
U=UL
P=PL'
GO TO~500

C -

C COMPUTE CONSTANT OF ISENTROPIC LAW-A-

.1 - ._
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C
120 A=P L/ (RL* *G AMMA)

.C
i C COMPUTE DENSITY IN STATE STAR
| C
I R STAR = (P S TAR / A) * * (1. / G AMMA)

C
C COMPUTE SOUND SPEED IN STATE STARi

C

C STAk= S QRT(G AMMA*P S TAR / RSTAR).

X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130

C
C IN LEFT FAN
C

U=(2./(GAMMA +1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL)
RINT=CL+0.5*(GAMMA-1.)*(UL-U)
R= ( R INT * RINT/ ( A*G AMMA) ) * * (1. / (G AMMA-1. ) )
P=A*(R** GAMMA)
GO TO 500

C
C RIGHT OF LEFT FAN
C
130 R=RSTAR

U=USTAR
P=PSTAR
GO TO 500

C
C RIGHT SIDE
C
200 IF(IREGR.EQ.2) GO TO 220
C
C COMPUTE RIGHT SHOCK SPEED
C

U=U R+M R/ RR
X=U*DT
IF(XI.GE.X) CO TO 210

C
C LEFT OF RIGHT SHOCK
C

R=-MR/ (U S T AR-U ) -
U=USTAR
P=PSTAR
GO TO'500-

C
C RIGHT OF RIGHT SHOCK
C

210 R= R R

U=UR
P=PR

_ _ _. . , . _ - _ ,_
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GO TO 500
C

C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C

220 A=P R/ (RR* *G AMMA)
C
C COMPUTE DENSITY IN STATE STAR
C

RST AR= (P S T AR/ A) * * (1. /G AMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C

C ST AR= S QRT(G AMMA* P S T AR/ RST AR)
X=(USTAR+CSTAR)*DT
IF(XI.GE.X) GO TO 230

C
C LEFT OF RIGHT FAN
C

R=RSTAR
U=USTAR
P=PSTAR
GO TO 500

C

C COMPUTE SOUND SPEED IN RIGHT STATE
C
230 CR=SQRT(GAMMA *PR/RR)

X=(UR+CR)*DT
IF(XI.GE.X) GO TO 240

C

C IN RIGHT FAN
C

U = (2. / (G AMM A+1. ) ) * (XI / DT-C R+ 0. 5 * (G AMM A- 1. ) *U R)
RINT=CR+0.5*(GAMMA-1.)*(U-UR)
R=(RINT*RINT/(A*CAMMA))**(1./(GAMMA-1.))
P=A*(R** GAMMA)
GO TO 500

C

C RIGHT OF RIGHT FAN
C
240 R=RR

U=UR
P=P R
GO TO 500

C

C DETONATION CONDITIONS
C
C

C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C
111 B =-P R-D E LT A* (G AMMA- 1. ) * RR

-
. ..

.
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MUSQ=(GAMMA-1.)/(GAMMA +1.)
C= (P R*P R )+2. *MU SQ* P R* RR*D E LTA
PSTAR=-B+SQRT((B*B)-C)
RS TAR = (P S TAR * (G AMM A+1. )-P R) *R R/ (G AMMA*P S TAR)
UCJ=SQRT(GAMMA *PSTAR*RSTAR)/RR+UR
C STAR =S QRT(G AMMA*P S TAR / RSTAR) ,

USTAR=UCJ-CSTAR

iC BEGIN GLIMM'S METHOD
! C
'

X =U CJ * D T

IF(XI.GE.X) CO TO 222
C-
C LEFT OF DETONATION
C
333 U-USTAR

P=PSTAR
R=RSTAR
KPHI=0
GO TO 5004

222 U=UR
P=PR
R=RR

500 CONTINUE
RETURN
END

C
C FUNCTION PSI
C

FUNCTION PSI (X, GAMMA)
EPS=1.0E-6
IF(ABS (1.-X).GT.EPS) GO TO 100
PSI =SQRT(GAMMA)
RETURN

100 COEFl=0.5*(GAMMA +1.)
COEF2=0.5*(GAMMA-1.)
COEF3 =COEF2 /G AMMA
IF(X.GE.1.) GO TO 200
P S I=COEF2 * (1. -X) / (SQRT(G AMM A) * (1. -(X * *COEF3 ) ) )

i RETURN
200- PSI =SQRT(COEFl*X+COEF2)

RETURN
END

1 C
C SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS
C DIFFERENTIAL EQUATION
C

SUBROUTINE INHOM
C OM MO N/ /D T ,G AMMA , RL ,U L , P L , R ,U , P , E , RR ,U R ,P R ,K P HI, D ELTA ,KIM
COMMON /0UT/ TIME , N ,DX , RH0 (111) , PRE (111) ,UX (111) , PHI (111)

-- - _ , -__ - - . _ - . _-
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COMMON / RAD / ETA
REAL MOM
INTEGER PHI
NPl=N+1
DO 100 I=2,NP1
X= FLOAT (I-1)*DX
R=RH0(I)
U=UX(1)
P =P RE(I )
KPHI= PHI (I)

.KPHIP= PHI (1+1)
KIP =KPHI*KPHIP
IF(KPHIP. EQ.1. AND. KIP. EQ. 0) GO TO 10
E=P/(GAMMA-1.)+0.5*R*U*U+KPHI* DELTA *R
D 6N=R-2. *DT* (ET A-1. ) *R*U /X
MOM =R*U-R*U*2.*DT*(ETA-1.)*U/X
E=E-2. * D T * (E T A- 1. ) *U * (E+P ) /X
RH0(I)= DEN
UX(I) MOM / DEN
P RE(I ) = (G AMMA-1. ) * (E-KP HI* D E LTA* D E N- 0. 5 * MOM * MOM / D E N)

11 GO TO 100
10 RH0(I)=R

UX(I)=U
PRE (I)=P

100 CONTINUE
RETURN
END

C
C SUBROUTINE OUTPUT:0UTPUT SECTION OF THE PROGRAM
C

SUBROUTINE OUTPUT
C OMMO N / /DT ,G AMMA ,RL,U L ,P L , R ,U ,P , C RR ,U R ,P R ,KPHI,D ELT A ,KIM
C OMMO N /0UT /T IME , N ,D X , RH0 (111) , PRE (lll) ,UX (111) , PHI (lll)
INTEGER PHI
NPl=N+1
WRITE (6,10000) TIME
WRITE ( 6 ,10001 )
DO 20 I=1,NP1
X= FLOAT (I-1)*DX
R=RH0(I)
U=UX(I)
P= PRE (I)
K= PHI (I)
WRITE (6,10002) X,R,0,P,K

20 CONTINUE
RETURN

10000 FORMAT (lH1,7H TIME = ,Fil.7)
10001 FORMAT (lH ,3H X ,6X , 5HDEN S E ,8 X ,3HVE L ,10 X ,4HP RE S ,10X ,3HP H I )
10002 F ORMAT(1HO , F6. 3,3F13. 5,12)

END

.

. .

.
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APPENDIX D

|
i THE COMPUTER PROGRAM TW0 DIM

D.1 Description of the Program

The major parts o +he program are similar to the previous

two programs i.e., the main program, the subroutine GLIMM, the sub-

routine INHOM and the output section. However two subroutines have

been added. Subroutine LABEL defines the boundaries for the problem,

it simulates the curved walls of a containment by a stepwise line;

it also identifies the grid points which fall outside the boundaries. j

Subroutine SPLINE is a third order polynomial approximation of the

Taylor curves in spherical coordinates.

The general flow chart of the main section of the program

can be found in Figure D.1. The data file cards are explained in |

Table D.1.

D.2 Dictionary of Key Terms in TWODIM

The tenns which have been defined in section B.2 are not

repeated here

AP(12), BP(12), Coefficient of the third order polynomial
CP(12)' DP(12)'

approximating the Taylor curves for the
pressure, density and velocity

AR(12), BR(12),
CR(12), DR(12),
AU(12), BU(12),

DETDIS Initial' distance the detonation front had
reached:

.. . - - - - - ,
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START

U

ASSIGN INITIAL VALUES OF p, p, u AND v

REPEAT NSTOP TIMES _

F

0t 1

CALCULATE THE HALF T.IlfE STEP 2

v

CALCULATE THE PROPERTIES AT MID DISTANCE

BETWEEN GRID POINTS FOR EACH J LINE

BY AN x SWEEP

! p

CALCULATE PROPERTIES AT MID DISTANCE
I

BETWEEN GRID POINTS FOR EACH I + COLUMN
2

BY A y SWEEP
.

Uj

j CALCULATE PROPERTIES AT EACH GRID POINT

f-LINEBYANxSWEEPFOR EACH J +

F

CAL'CULATE PROPERTIES AT EACH GRID POINT

| FOR EACH I COLUMN BY A y SWEEP
!<

4

MAKE THE CORRECTION FOR THE INHOMOGENE0US TERMS

U

PRINTED OUTPUT EVERY NPRINT TIME STEPS
,

!-
_

o

| END

i
FIGURE D.1: FLOW CHART FOR TWODIMj

. _ _ _ _ _ _ _ - - _ _ . _ _ - _. . . . _ _
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TABLE D.1: DATA FILE

NO. OF CARDS FORTRAN NAME[ FORMAT] COLUMN N'

NPRINT [I4] 1-4 last digit in colurr 4
1

.NSTOP [I4] 5-8 last digit in column 8
,

NX[I3] 1-3 last digit in column 3
1

NY[I3] 4-6 last digit in column 6

1

X(I)[10F7.3] X(1) 1-7

[NX]*+I10 X(2) 8-14
1. .

: : i

X(10) 64-70

X(11) 1-7

:
'

X(NX)

Y(I)[10F7.3] Y(1) 1-7,

[ NY 1+ j Y(2) 8-14
10

(10) 64-70

Y(11) 1-7

:

Y(NY)

1 SXDXY[F10.4] 1-10

1 DETDIS[F7.3] 1-7
.

1 JCYL[I3] 1-3 last digit in column 3

*[X]'E largest integer < X

.
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!

IDUM(I,J) Dummy variable which identifies whether the grid
point is an internal, external or boundary point.

Last grid point in the y-direction before the wallJCYL
of the containment starts to curve

Subroutine which defines the wall boundaries of theLABEL
containment

NX Number of grid points in the x-direction

NY Number of grid points in the y-direction

Smallest grid interval in the x and in the y directionsSDXY

SPLINE Subroutine which generates the coefficients of the
third order fit polynomial

SX(12) Selected points on the absissa axis of the Taylor
curves

UX(I,J) X-component of the velocity at grid point (I,J)

VY(1,J) Y-component of the velocity at grid poing (I,J)

X(I) Grid distance from the origin in the x-direction

Y(I) Grid distance from the origin in the y-direction

YP(12),YR(12),0rdinate corresponding to SX in the spherical Taylor
YU(12) curves for the pressure, density and velocity

)
|

.-
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C TWO DIMENSIONAL AXISYMMETRIC PROGRAM TO CALCULATE
C PRESSURE, DENSITY AND VELOCITY HISTORY IN A REACTIVE MIXTURE

j
C '

COMMON //DT, GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR,PR,KPHI, DELTA,KIM, I
& V1

. |
COMMON /OUT/ TIME,NX,NY, RHO (101,101), PRE (101,101),UX(101,101) |
COMMON /OWT/ PHI (101,101)
COMMON /AWT/VY(101,101),X(101),Y(101),DIST'101,101), 1

& IDUM(101,101) I

COMMON / RAD / ETA
COMMON /LIN/ LAM
COMMON /INI/RCHJ,PCHJ,UCHJ
DIMENSION SX(12),YP(12),AP(12),BP(12),CP(12),DP(12)
DIMENSION YR(12),AR(12),BR(12),CR(12),DR(12)
DIMENSION YU(12),AU(12),BU(12),CU(12),DU(12)
DATA SX/. 501,.6,.7,.75,.8,.85,.9,.92,.94,.96,.98,1./
DATA YP/. 2773,.3075,.3675,.405,.45,.515,.59,.62,.67,.725,.8,

& 1./
DATA YR/. 4,.43,.485,.52,.565,.6175,.68,.715,.76,.815,.88,1./
DATA YU/. 0,.1,.2,.265,.345,.43,.55,.61,.66,.73,.83,1./
CALL SPLINE (SX,YP,AP,BP,CP,DP)
CALL SPLINE (SX,YR,AR,BR,CR,DR)
CALL SPLINE (SX,YU,AU,BU,CU,DU)
REAL LAM
DOUBLE PRECISION BLIP
INTEGER TSTP, PHI

i

READ (5,9999) NPRINT,NSTOP i

9999 FORMAT (2I4)
READ (5,8888) C1

8888 FORMAT (F12.5)

C READ THE DIMENSION OF THE GRID IN THE X AND Y DIRECTIONS
C |

READ (5,10000)NX,NY
10000 FORMAT (2I3)

NXM1=NX-1
NYM1=NY-1

C
C READ THE GRID LOCATION
C

READ (5,10001) (X(I),I=1,NX)
READ (5,10001) (Y(J),J=1,NY)

10001 FORMAT (10F7.3)
READ (5,10002) SDXY

10002 FORMAT (F10.4)
DT1=0.00001
TIME =0.0
VMAX=0.
NP=0
GAMMA =1.4
DELTA =1447711.2
BLIP =0.0D0
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K1=11
K2=7
NU=2
SIGMA =1.0

C ETA IS A DUMMY CONTROL
ETA =3.

C
C READ THE INITIAL INITIATION RADIUS
C

READ (5,10003) DETDIS
10003 FORMAT (F7.3)
C
C SET INITIAL CONDITIONS
C

READ (5,10004)RCHJ
READ (5,10004)PCHJ
READ (5,10004)UCHJ
READ (5,10004)RIN
READ (5,10004) PIN
READ (5,10004)UIN

10004 FORMAT (F13.5)
RL=RCHJ
PL=PCHJ
UL=UCHJ
VL=0.
RR=RIN
PR= PIN
UR=UIN
VR=0.
READ (5,10006) YO

10006 FORMAT (F7.3)
READ (5,10007) NYO

10007 FORMAT (I3)
DO 10 I=1,NX
DO 10 J=1,NY
DIST(I,J)=SQRT(X(I)**2.+(Y(J)-YO)*(Y(J)-YO))
IF(DIST(I,J).GT.DETDIS) GO TO 11
PHI (I,J)=0
DDET=DIST(I,J)/DETDIS
IF(DDET.GT.SX(1)) GO TO 1
PRE (I,J)=YP(1)*PL
RHO (I,J)=YR(1)*RL
UX(I,J)=YU(1)*UL
GO TO 29

1 DO 9 K=2,12
IF(DDET.GT.SX(K)) GO TO 9
XX=DDET-SX(K-1)
PRE (I,J)=AP(K-1)*XX*XX*XX+BP(K-1)*XX*KX+CP(K-1)*XX+DP(K-1)
PRE (I,J)= PRE (I,J)*PL
RHO (I,J)=AR(K-1)*XX*XX*XX+BR(K-1)*XX*XX+CR(K-1)*XX+DR(K-1)
RHO (I,J)= RHO (I,J)*RL
UX(I,J)=AU(K-1)*XX*XX*XX+BU(K-1)*XX*XX+CU(K-1)*XX+DU(K-1)

__
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UX(I,J)=UX(I,'J)*UL:

!- GO TO 29
9 CONTINUE |,

29 IF(I.EQ.1.AND.J.EQ.NYO) GO TO 12
GO TO 13

12 _VY(I,J)=UX(I,J)
GO TO 10

13 U=UX(I,J)
UX(I,'J)=U*X(I)/DIST(I,J)
VY(I,J)=U*(Y(J)-YO)/DIST(I,J)
GO TO 10>

11 RHO (I,J)=RR
PRE (I,J)=PR
UX(I,J)=UR
VY(I,J)=VR'

PHI (I,J)=1
10 CONTINUE

READ (5,10005) JCYL
, 10005 FORMAT (I3)

CALL LABEL (NX,NY,JCYL)
DO'333 I=1,NXM1
DO 333 J=1,NYM1
IF(IDUM(I,J).EQ.4) GO TO 333
IF(PHI (I+1,J).EQ.1.AND. PHI (I,J).EO.0) IDUM(I,J)=3
IF(PHI (I,J+1).EQ.1.AND. PHI (I,J).EQ.0) IDUM(I,J)=3 j333 CONTINUE 1

IC
C BEGIN TIME STEP
C

DO 100 TSTP=1,NSTOP |
NP=NP+1 i

DO 30 I=1,NX.

DO 30 J=1,NY

VMAX1=SQRT(UX(I',J)*UX(I,J)+VY(I,J)*VY(I,J))+SQRT(GAMMA * PRE (I,J)/
& RHO (I,J))

IF(VMAX1.GT.VMAX) VMAX=VMAX1
30 CONTINUE
C SET INITIAL VALUE OF DT

DT=0.01
C FIND THE HALF TIME STEP DT
C

DTT= SIGMA *SDXY/(2.*VMAX)
IF(DTT.LT.DT) DT=DTT
DT=AMAX1(DT,DTI)
TIME = TIME +2.*DT
LAM =0.5/VMAX'

C
C -COMPUTE FIRST QUARTER STEP. X-SWEEP
C

~C-
C ~ GENERATE RANDOM SI USING CHORIN'S METHOD
C

'

_ , _.
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NU= MOD (NU+K2,K1)
BLIP = BLIP +1.DO
SI=(GGUBFS(BLIP)+ FLOAT (NU))/ FLOAT (K1)

C
DO 40 J=1,NY
DO 40 I=2,NX
DX=(X(I)-X(I-1))
XI1=SI*DX-0.5*DX
IF(IDUM(I,1T) .EQ.0) GO TO 40
RR= RHO (I,J)
UR=UX(I,J)
PR= PRE (I,J)
KPHI= PHI (I,J)
Vl=VY(I,J)
IF(I.EQ.2) GO TO 43
RL= RIM 1
PL=PIM1
UL=UIM1
V= VIM 1
GO TO 44

43 RL= RHO (1,J)
UL=UX(1,J)
PL= PRE (1,J)
KIM= PHI (1,J)
V=VY(1,J)

44 CALL GLIMM(XII)
RIM 1= RHO (I,J)
RHO (I,J)=R
PIM1= PRE (I,J)
PRE (I,J)=P
UIMl=UX(I,J)
UX(I,J)=U
VIM 1=VY(I,J)
VY(I,J)=V
KIM= PHI (I,J)
PHI (I,J)=KPHI

40 CONTINUE
C
C COMPUTE SECOND QUARTER STEP. Y-SWEEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

NU= MOD (NU+K2,K1)
SI=(GGUBFS(BLIP)+ FLOAT (NU))/ FLOAT (K1)

C
DO 50 I=2,NX
DO 50 J=2,NY
DY=(Y(J)-Y(J-1))
XI2=SI*DY-0.5*DY
IF(IDUM(I,J).EQ.0) GO TO 50
RR= RHO (I,J)

_ _ _ _ _
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UR=VY(I,J)
PR= PRE (I,J)
KPHI= PHI (I,J)
Vl=UX(I,J)

j IF(J.EQ.2) GO TO 53
[: RL= RIM 1

PL=PIM1
UL=UIM1
V= VIM 1
GO TO 54

53 RL= RHO (I,1)
UL=VY(I,1)
PL= PRE (I,1)
KIM= PHI (I,1)
V=UX(I,1)

54 CALL GLIMM(XI2)
RIM 1= RHO (I,J)
RHO (I,J)=R
PIM1= PRE (I,J)
PRE (I,J)=P
UIM1=VY(I,J)
VY(I,J)=U
VIM 1=UX(I,J)
UX(I,J)=V
KIM= PHI (I,J)
PHI (I,J)=KPHI

50 CONTINUE
C
C COMPUTE THIRD QUARTER STEP. X-SWEEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

NU= MOD (NU+K2,K1)
SI=(GGUBFS(BLIP)+ FLOAT (NU))/ FLOAT (K1)

C
DO 60 J=2,NY
DO 60 I=1,NX
IF(IDUM(I,J).EQ.0) GO TO 60
RL= RHO (I,J)
PL= PRE (I,J)
UL=UX(I,J)
V=VY(I,J)
IF(I.EQ.NX) GO TO 63
IF(IDUM(I+1,J).EQ.0) GO TO 63'
DXR=(X(I+1)-X(I))*0.5
.IF(I.EQ.1) DXL=DXR
IF(I.NE.1) DXL=(X(I)-X(I-1))*0.5
XI3=(DXR+DXL)*SI-DXL
KPHI= PHI (I+1,J)
RR= RHO (I+1,J)

- PR= PRE (I+1,J)

,



.
.

. - - _ _ _ _ _ _ _

-146-

UR=UX(I+1,J)
Vl=VY(I+1,J)
IF(I.EQ.1) GO TO 62
GO TO 64

C
C BOUNDARY CONDITIONS AT WALL
C
63 RR=RL

UR=-UL
PR=PL
KPHI= PHI (I,J)
XI3=-ABS (XI3)
GO TO 64

C
C BOUNDARY CONDITIONS AT CENTERLINE
C
62 XI3= ABS (XI3)

RL=RR
PL=PR
UL=-UR

KIM= PHI (2,J)
PHI (1,J)= PHI (2,J)
V=VY(I+1,J)
VY(I,J)=VY(I+1,J)

64 CALL GLIMM(XI3)
RHO (I,J)=R
PRE (I,J)=P
UX(I,J)=U
IF(I.NE.NX) KIM= PHI (I+1,J)
PHI (I,J)=KPHI
VY(I,J)=V

60 CONTINUE
C
C COMPUTE FOURTH QUARTER STEP. Y-SWEEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

NU= MOD (NU+K2,K1)
SI=(GGUBFS(BLIP)+ FLOAT (NU))/ FLOAT (K1)

C
DO 70 I=1,NX
DO 70 J=1,NY
IF(IDUM(I,J).EQ.0) GO TO 70
RL= RHO (I,J)
PL= PRE (I,J)
UL=VY(I,J)
V=UX(I,J)
IF(J.EQ.NY) GO TO 73
IF(IDUM(I,J+1).EQ.0) GO TO 73
DYR=(Y(J+1)-Y(J))*0.5
IF(J.EQ.1) DYL=DYR

1

. . . _ _ _ _ _ . _
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IF(J.NE.1) DYL=(Y(J)-Y(J-1))*0.5
XI4=(DYR+DYL)*SI-DYL
KPHI= PHI (I,J+1)

'RR= RHO (I,J+1)
PR= PRE (I,J+1)
UR=VY(I,J+1)

'Vl=UX(IiJ+1)
IF(J.EQ.1) GO TO.72
GO TO 74

C
- C BOUNDARY CONDITIONS AT THE UPPER WALL

i - C
73 RR=RL

.UR=-UL.
PR=PL
KPHI= PHI (I,J)

-XI4=-ABS (XI4)
GO TO 74

* C
' C BOUNDARY CONDITIONS AT THE LOWER WALL

C
'

. 72 XI4= ABS (XI4)
; RL=RR'

PL=PR
UL=-UR,

KIM= PHI (I,2)
PHI (I,1)= PHI (I,2)
V=UX(I,J+1)
UX(I,J)=UX(I,J+1)

..74 CALL GLIMM(XI4)
RHO (I,J)=R
PRE (I,J)=P

! VY(I,J)=U
IF(J.NE.NY) KIM= PHI (I,J+1)
PHI (I,J)=KPHI.

UX(I,J)=V '

L 70 CONTINUE
CALL-LABEL (NX,NY,JCYL),

DO 777 I=1,NXM1
DO 777 J=1,NYM1,

IF(IDUM(I,J).EQ.4) GO TO 777.,

IF(PHI (I+1,J).EQ.1.AND. PHI (I,J)'.EQ.0) IDUM ( I', 'J ) =3
'

IF(PHI (I,J+1).EQ.1.AND. PHI (I,J).EQ.0) IDUM(I,J)=3
- 777' CONTINUE

CALL - INHOM
W, RITE (6,3OO) TIME, PRE (NX,1),~ PRE (NX,8), PRE (NX,16), PRE (NX,21),,

* PRE (NX,26), PRE (NX,30), PRE (NX,34), PRE (NX,38), PRE (NX,41),
* PRE (24,46), PRE (20,50), PRE (15,55), PRE (10,60), PRE (5,65),
* PRE (1,65), PRE (1,1), PRE (1,24), PRE (1,34), PRE (1,44), PRE (1,54)

; 300 ' FORMAT (1X,E9.3,1X,10(E9.3,1X)',/,10X,10(E9.3,1X))
IF(NP.LT.NPRINT) GO TO 100

:: N P = O -
'

,

m

,--m -- w -
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100 CONTINUE
STOP
END

C
C SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C

SUBROUTINE GLIMM(XI)
COMMON //DT, GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR,PR,KPHI, DELTA,KIM,

& "V1
COMMON / RAD / ETA
COMMON /LIN/ LAM
COMMON /INI/RCHJ,PCHJ,UCHJ
REAL MR,ML,MRP1,MLP1
REAL LAM,MUSQ
EPS=1.E-6
EPSl=1.E-3
IT=0
ITSTOP=20
KPHIP=KPHI*KIM

C
C IF KPHI=1 , MIGHT HAVE A DETONATION
C

IF(KPHI.EQ.1.AND.KPHIP.EQ.0) GO TO 111
IF(KIM.EQ.1.AND.KPHIP.EQ.0) GO TO 111

C '

C CONSTRUCTION OF RIEMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C

ALFA =1.
ALFAM=1.-ALFA

C
C INITIAL ML AND MR
C

ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT(PR*RR)

,C

C- COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV.
C

RAV=0.5*(RL+RR)
PAV=0.5*(PL+PR)
A=PAV/(RAV** GAMMA)

.R=RAV-LAM *(UR*RR-UL*RL)
PSTAR=A*(R** GAMMA)_|

! C
C SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD

|

C
10 IT=IT+1
C
C IF PSTAR IS LESS THAN EPS1THEN PSTAR IS SET EQUAL
C TO 1.OE-3 TO PREVENT PSTAR FROM BECOMING NEGATIVE

--



_ _ _ ._ __ _

-149
C

PSTAR=AMAX1(EPS1,PSTAR)
C
C COMPUTE MR AND ML AT STEP Q+1
C
20 MLPl=COEFL* PSI (PSTAR/PL, GAMMA)

MRPl=COEFR* PSI (PSTAR/PR, GAMMA)
i

DIFML= ABS (1.-(MLPl/ML)) <

DIFMR= ABS (1.-(MRP1/MR)) |
ML=MLP1

|
MR=MRP1 '

C
C COMPUTE NEW PRESSURE PSTAR
C

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)'

PSTAR= ALFA *PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
DIFPS= ABS (1.-(PSTARP/PSTAR)),

IF(DIFPS.LT.EPS1) GO TO 40
| IF(DIEML*DIEMR.LT.EPSI) GO TO 40
"

ALFA = ALFA /2.
ALFAM=1.-ALFA
IF(ALFAM.LT.EPSI) GO TO 40
IT=0

' 30 IF(DIFML.GT.EPSI) GO TO 10
IF(DIFMR.GT.EPSI) GO TO 10

j C |
C COMPUTE USTAR AT END OF GODUNOV ITERATION
C
40 PSTAR=AMAX1(EPS1,PSTAR),

! USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)
C

' ,

C BEGIN GLIMM'S METHOD
C

i IREGL=1
IF(PSTAR.LT.PL) IREGL=2
IREGR=1

''

IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT
IF(XI.GE.X) GO TO 200

C
C LEFT SIDE
C

IF(IREGL.EQ.2) GO TO 110
C
C COMPUTE LEFT SHOCK SPEED
C

U=UL-ML/RL
X=U*DT
IF(XI.GE.X) GO TO 100

C

_ _ _ _ . . _ ,
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C LEFT OF LEFT SHOCK
C

* R=RL
U=UL
P=PL
GO TO 500

C
C RIGHT OF LEFT SHOCK
C
100 R=ML/(USTAR-U)

U=USTAR
P=PSTAR
GO TO 500

C
C COMPUTE SOUND SPEED IN LEFT STATE
C
110 CL=SQRT(GAMMA *PL/RL)

X=(UL-CL)*DT
IF(XI.GE.X) GO TO 120

C
C LEFT OF LEFT FAN
C

R=RL
U=UL
P=PL
GO TO 500

C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
120 A=PL/(RL** GAMMA)
C
C COMPUTE DENSITY IN STATE STAR
C

RSTAR=(PSTAR/A)**(1./ GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C

CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130

C
C IN LEFT FAN
C

U=(2./(GAMMA +1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL)
RINT=CL+0.5*(GAMMA-1.)*(UL-U)
R=(RINT*RINT/(A* GAMMA))**(1./(GAMMA-1.))
P=A*(R** GAMMA)
GO TO 500

C
C RIGHT OF LEFT FAN
C
130 R=RSTAR

.,
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U=USTAR
| P=PSTAR
! GO TO 500

C
C RIGHT SIDE4

C
200 IF(IREGR.EQ.2) GO TO 220
C
C COMPUTE RIGHT SHOCK SPEED
C

U=UR+MR/RR
X=U*DT
IF(XI.GE.X) GO TO 210

C
C LEFT OF RIGHT SHOCK
C

R=-MR/(USTAR-U)
U=USTAR ,

|
P=PSTAR
GO TO 500

C
C RIGHT OF RIGHT SHOCK
C
210 R=RR

U=UR
P=PR
GO TO 500

C
C COMPUTE CONSTANT OF T3ENTROPIC LAW-A
C
220 A=PR/(RR** GAMMA)
C I
C COMPUTE DENSITY IN STATE STAR I

C

RSTAR=(PSTAR/A)**(1./ GAMMA)
C

.

"
'C COMPUTE SOUND SPEED IN STATE STAR

C
CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT
IF(XI.GE.X) GO TO 230

C
C LEFT OF RIGHT FAN
C

R=RSTAR
U=USTAR
P=PSTAR
GO TO 500

C
C COMPUTE SOUND SPEED IN RIGHT STATE
C
230 CR=SQRT(GAMMA *PR/RR)
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X=(UR+CR)*DT
IF(XI.GE.X) GO TO 240

*

C
C IN RIGHT FAN
C

U=(2./(GAMMA +1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR)
RINT=CR+0.5*(GAMMA-1.)*(U-UR).

R= ( RINT * '1 INT / ( A * GAMMA ) ) * * ( 1. / ( GAMMA- 1. ) )
P=A*(R** GAMMA)
GO TO 500

C
C RIGHT OF RIGHT FAN
C
240 R=RR

U=UR
P=PR
GO TO 500

C
C DETONATION CONDITIONS
C
C
C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C
111 B=-PR-DELTA *(GAMMA-1.)*RR

MUSQ=(GAMMA-1.)/(GAMMA +1.)
C=(PR*PR)+2.*MUSQ*PR*RR* DELTA
PSTAR=-B+SQRT((B*B)-C)
RSTAR=(PSTAR*(GAMMA +1.)-PR)*RR/(GAMMA *PSTAR)
UCJ=SQRT(GAMMA *PSTAR*RSTAR)/RR+UR
CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
USTAR=UCJ-CSTAR
PSTAR=PCHJ
USTAR=SQRT(ABS (UCHJ*UCHJ-V*V))
RSTAR=RCHJ
CSTAR=SQRT(GAMMA *PSTAR/RSTAR)
UCJ=(USTAR/UCHJ)*(CSTAR+UCHJ)
IF(KIM.EQ.1) GO TO 555

C
C BEGIN GLIMM'S METHOD

,

C
X=UCJ*DT
IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333

C
C COMPUTE SOUND SPEED IN LEFT STATE
C NEXT STATEMENTS TO333 NOT USED
C

CL=SQRT(GAMMA *PL/RL)
X=(UL+CL)*DT
IF(XI.GE.X) GO TO.444

| C
| C LEFT OF RAREFACTION FAN .

,
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C

R=RL
U=UL
P=PL
KPHI=0
GO TO 500

C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
444 A=PSTAR/(RSTAR** GAMMA) |

| C '

| C IN RIGHT FAN
! C
'

U=(2./(GAMMA +1.))*(XI/DT-CSTAR+0.5*(GAMMA-1.)*USTAR)
RINT=CSTAR+0.5*(GAMMA-1.)*(U-USTAR)
R=(RINT*RINT/(A* GAMMA))**(1./(GAMMA-1.))
P=A*(R** GAMMA)
KPHI=0
GO TO 500

C
C RIGHT OF DETONATION
C 1

333 U=USTAR
P=PCHJ
R=RCHJ
KPHI=0
GO TO 500

222 U=UR |
P=PR );

R=RR
V=0 l

GO TO 500
C
C DETONATION FROM RIGHT TO LEFT
C
555 USTAR=SQRT(ABS (UCHJ*UCHJ-Vl*V1))

UCJ=(USTAR/UCHJ)*(CSTAR+UCHJ)
X=-UCJ*DT>

IF(XI.LE.X) GO TO 556
IF(ETA.LT.3.5) GO TO 557

557 U=-USTAR
P=PCHJ
R=RCHJ
V=V1
KPHI=0
GO TO 500

556 U=UL
P=PL
R=RL.
KPHI=1

-V=0
500 CONTINUE

. -
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RETURN
,

END
*C

C FUNCTION PSI
C

FUNCTION PSI (X, GAMMA)
EPS=1.OE-6
IF(ABS (1.-X).GT.EPS) GO TO 100
PSI =SQRT(GAMMA)
RETURN

100 COEFl=0.5*(GAMMA +1.)
COEF2=0.5*(GAMMA-1.)
COEF3=COEF2/ GAMMA
IF(X.GE.1.) GO TO 200
PSI =COEF2*(1.-X)/(SQRT(GAMMA)*(1.-(X**COEF3)))
RETURN

200 PSI =SQRT(COEFl*X+COEF2)
RETURN
END

C
C SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS
C DIFFERENTIAL EQUATION
C

SUBROUTINE INHOM
COMMON //DT, GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR,PR,KPHI, DELTA,KIM
COMMON /OUT/ TIME,NX,NY, RHO (101,101), PRE (101,101),UX(101,101)
COMMON /OWT/ PHI (101,101)
COMMON /AWT/VY(lOl/101),X(101),Y(101),DIST(101,101),

& IDUM(101,101)
REAL MOMX,MOMY
INTEGER PHI
EPS2=1.E-3
DO 100 J=1,NY
DO 100 I=2,NX
XX=X(I)
R= RHO (I,J)
U=UX(I,J)
P= PRE (I,J)
V=VY(I,J)
KPHI= PHI (I,J)
KPHIP= PHI (I+1,J)
KPHIPY= PHI (I,J+1)
IF(J.NE.1) KPHIPP= PHI (I,J-1)
KIP =KPHI*KPHIP
KIPY=KPHI*KPHIPY
IF(J.NE.1) KIPP=KPHI*KPHIPP
IF(KPHIP.EQ.1.AND. KIP.EQ.0) GO TO 10
IF(KPHIPY.EQ.1.AND.KIPY.EQ.0) GO TO 10
IF(J.NE.1.AND.KPHIPP.EQ.1.AND.KIPP.EQ.0) GO TO 10
E=P/(GAMMA-1.)+0.5*R*U*U+KPHI* DELTA *R+0.5*R*V*V
DEN =R-2.*DT*R*U/XX
MOMX=R*U-R*U*2.*DT*U/XX

1
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MOMY=R*V-2.*DT*R*U*V/XX
E=E-2.*DT*U*(E+P)/XX
RHO (I,J)= DEN
UX(I,J)=MOMX/ DEN
VY(I,J)=MOMY/ DEN
POP =(GAMMA-1.)*(E-KPHI* DELTA * DEN-0.S*MOMX*MOMX/ DEN-0.5*MOMY*M

&OMY/ DEN)
| PRE (I,J)=AMAX1(EPS2, POP)

11 GO TO 100|

10 RHO (I,J)=R
UX(I,J)=U4

VY(I,J)=V
PRE (I,J)=P

100 CONTINUE
RETURN
END

C
C SUBROUTINE SMOOTH TO DAMP THE OSCILLATIONS
C

SUBROUTINE SMOOTH (C1)
COMMON /OUT/ TIME,NX,NY,RFO(101,101), PRE (101,101),UX(101,101)
COMMON /OWT/ PHI (101,101)
COMMON /AWT/VY(101,101),X(101),Y(101),DIST(101,101),

& IDUM(101,101)
DO 1 J=1,NY
RP= RHO (1,J)
UP=UX(1,J),

PP= PRE (1,J) '

VP=VY(1,J)
NXM1=NX-1
DO 1 I=2,NXM1
IF(IDUM(I+1,J).EQ.0) GO TO 1
R= RHO (I,J)
U=UX(I,J)
V=VY(I,J)
P= PRE (I,J)
R1 DEL = RHO (I,J)-RP
U1 DEL =UX(I,J)-UP

.. .P1 DEL = PRE (I,J)-PP
'

VIDEL=VY(I,J)-VP
R2 DEL = RHO (I+1,J)-R
U2 DEL =UX(I+1,J)-U
P2 DEL = PRE (I+1,J)-P
V2 DEL =VY(I+1,J)-V
R=R+Cl*(ABS (U2 DEL)*R2 DEL-ABS (U1 DEL)*RIDEL).
U=U+Cl*(ABS (U2 DEL)*U2 DEL-ABS (U1 DEL)*U1 DEL)
P=P+Cl*(ABS (U2 DEL)*P2 DEL-ABS (U1 DEL)*P1 DEL)
V=V+Cl*(ABS (U2 DEL)*V2 DEL-ABS (U1 DEL)*VIDEL)
RP= RHO (I,J)
'ERO(I,J)=R
UP=UX(I,J)
UX(I,J)=U '

. _ -
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PP= PRE (I,J)
PRE (I,J)=P
VP=VY(I,J)
VY(I,J)=V

1 CONTINUE
NYMl=NY-1
DO 2 I=1,NX
RP= RHO (I,1)
UP=UX(I,1)
PP= PRE (I,1)
VP=VY(I,1)
DO 2 J=2,NYM1
IF(IDUM(I,J+1).EQ.0) GO TO 2
R= RHO (I,J)
U=UX(I,J)
P= PRE (I,J)
V=VY(I,J)
RlDEL= RHO (I,J)-RP
UlDEL=UX(I,J)-UP
P1 DEL = PRE (I,J)-PP
VIDEL=VY(I,J)-VP
R2 DEL = RHO (I,J+1)-R
U2 DEL =UX(I,J+1)-U
P2 DEL = PRE (I,J+1)-P
V2 DEL =VY(I,J+1)-V
R=R+Cl*(ABS (V2 DEL)*R2 DEL-ABS (VlDEL)*RlDEL)
U=U+Cl*(ABS (V2 DEL)*U2 DEL-ABS (VlDEL)*U1 DEL)
P=P+Cl*(ABS (V2 DEL)*P2 DEL-ABS (V1 DEL)*PlDEL)
V=V+Cl*(ABS (V2 DEL)*V2 DEL-ABS (V1 DEL)*VlDEL)
RP= RHO (I,J)
RHO (I,J)=R
UP=UX(I,J)
UX(I,J)=U
PP= PRE (I,J)
PRE (I,J)=P
VP=VY(I,J)
VY(I,J)=V

2 CONTINUE
RETURN
END

C SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS
C

SUBROUTINE LABELF(NK,NY,JCYL)
COMMON /AWT/VY(101,101),X(lO1),Y(101),DIST(101,101),

& IDUM(101,101)
DO 1 J=1,NY
DO 1 I=1,NX
IDUM(I,J)=1

1 IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
IX1=30
IX2=24
IX3=20

_____
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| IX4=12
! 'IYl=12

IY2=20
IY3=24
IY4=30
DO 2 I=IX2,NX
DO 2 J=IY1,IY2-
IDUM(I,J)=O-
IF(I.EQ.IX2)-IDUM(I,J)=4

2 IF(J.EQ.IY1.AND.I.LE.IX1) IDUM(I,J)=4
DO 3 I=IX3,NX
DO 3 J=IY2,IY3
IDUM(I,J)=0
IF(I.EQ.IX3) IDUM(I,J)=4

3 IF(J.EQ.IY2.AND.I.LE.IX2) IDUM(I,,J)=4
DO 4 I=IX4,NX
DO 4 J=IY3,IY4
IDUM(I,J)=0
IF(I.EQ.IX4) IDUM(I,J)=4

4 IF(J.EQ.IY3.AND.I.LE.IX3) IDUM(I,J)=4
RETURN
END

C
C SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS
C

SUBROUTINE LAPEL (NX,NY,JCYL)
COMMON /AWT/VY(101,101),X(101),Y(101),DIST(101,101),

& IDUM(101,101)
DO 1.J=1,NY
DO 1 I=1,NX
IDUM(I,J)=1

1 .IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
NXF=NX+1
JCYLF=JCYL-1 |

'

NYM1=NY-1
DO 2 I=1,NX
IM=NXF-I

-JCYLF=JCYLF+1
IF(JCYLF.GT.NYM1) GO TO 11
DO 2 J=JCYLF,NYM1
IDUM(IM,J+1)=0
IDUM(IM-1,J)=4

2- IDUM(IM-1,J+1)=4
'

11 RETURN
END

C
C SUBROUTINE' OUTPUT: OUTPUT SECTION OF THE PROGRAM
C

SUBROUTINE OUTPUT
COMMON //DT, GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR,PR,KPHI, DELTA,KIM
COMMON /OUT/ TIME,NX,NY, RHO (101,101), PRE (101,101),UX(101,101)
COMMON /OWT/ PHI (101,101)
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COMMON / ANT /VY(101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)

INTEGER PHI
WRITE (6,20000) TIME
DO 20 J=1,NY,3
JM=NY+1-J
WRITE (6,20001) Y(JM),(RHO (I,JM),I=1,NX,3)
WRITE (6,20002) (UX(I,JM),I=1,NX,3)
WRITE (6,20002) (VY(I,JM),I=1,NX,3)
WRITE (6,20003) (PRE (I,JM),I=1,NX,3)
WRITE (6,20004) (PHI (I,JM),I=1,NX,3)
WRITE (6,20004) (IDUM(I,JM),I=1,NA,3)

20 CONTINUE
WRITE (6,20005) (X(I),I=1,NX,3)
WRITE (15,20000) TIME
WRITE (15,30000)
DO 30 J=1,NY
WRITE (15,30001) Y(J), RHO (NX,J),UX(NX,J),VY(NX,J), PRE (NX,J),

& PHI (NX,J)
30 CONTINUE

RETURN
20000 FORMAT (1X,' TIME = ',F11.7/)
20001 FORMAT (1X,F7.3,11(F9.5,2X))
20002 FORMAT (8X,11(F9.4,2X))
20003 FORMAT (8X,11(F9.1,2X))
20004 FORMAT (12X,11(II,10X))
20005 FORMAT (8X,11(F9.3,2X))
30000 FORMAT (1H ,3H X,6X,5HDENSE,8X,3HVEL,10X,4HPRES,10X,3HPHI)
30001 FORMAT (iEO,F6.3,4F13.5,I2)

END
C
C SUBROUTINE SPLINE: FINDS THE THIRD ORDER FIT COEFFICIENTS
C FOR THE TAYLOR CURVES IN SPHERICAL COORDINATES
C

SUBROUTINE SPLINE (X,Y,A,B,C,D)
DIMENSION X(12),Y(12),H(11),RHS(10),W(10,10),A(12),B(12)
DIMENSION C(12),D(12),AS(10),BS(10),CS(10),G(12)
DO 2 I=1,11
J=I+1

2 H(I)=X(J)-X(I)
DO 3 I=1,10
J=I+1
K=I+2

3 RHS(I)=3.*(((Y(K)-Y(J))/H(J))-((Y(J)-Y(I))/H(I)))
DO 4 I=1,10
DO 4 J=1,10

4 W(I,J)=0.0
DO 5 I=1,10
J=I+1
W(I,I)=2.*(H(I)+H(J))
IF(J.EQ.11) GO TO 6
W(I,J)=H(J)

!
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5 W(J,I)=W(I,J)
-6 AS(1)=W(1,1)

BS(1)=W(1,2)
CS(1)=RHS(1)
BS(10)=0.0
IX) 7 I=2,10
J=I+1
K=I-1
AS(I)=(W(I,K)*BS(K))-(AS(K)*W(I,I))
CS(I)=(W(I,K)*CS(K))-(RHS(I)*AS(K))
IF(I.EQ.10) GO TO 7
BS(I)=-AS(K)*W(I,J)

7 CONTINUE
B(10)=CS(10)/AS(10)
DO 8 I=2,10
J=11-I
K=J+1

8 B(J)=(CS(J)-(BS(J)*B(K)))/AS(J)
DO 9 I=1,10
J=I+1

9 G(J)=B(I)
G(1)=0.0
G(12)=0.0
DO 12 I=1,12

12 B(I)=G(I)
E0 10 I=1,11
J=I+1

A(1)=(B(J)-B(I))/3./H(I)
C(I)=((Y(J)-Y(I))/H(I))-((H(I)*(B(J)+(2.*B(I))))/3.)10 D(I)=Y(I)
RETURN
END

.
__
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APPENDIX E

PRESSURE TIME HISTORIES AT THE WALL OF THE

INDIAN POINT CONTAINMENT

Pressure time histories at selected points on the wall of

the Indian Point containment are presented in this Appendix. Wall

pressures are normalized with respect to the initial pressure in the

containment, P , and are shown as a function of dimensionless timeg

since initiation, tC /r, where C is the speed of sound at the initialg g

conditions and r is the radius of the cylinder and the dome. In the

Indian Point Containment r equals 20.7 m and at atmospheric initial

conditions r/C = 0.06 sec. Results are shown for two initiationg
*

points and two dimensionless heat release rates, q/RTO = 17 and 23.

.

--_
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