CERTIFICATE OF COMPLIANCE

1aCEATHFCAYE MUMEEA	- hevisiom mimath	C PACKACE TDENTIFICATION NUMEEA	- Page number		Total	NUMBEE PAGES
6386		USA/6386/B(U)F				4

2 वैtameit

2. This certificate is issued to certity that the E.ackeging and contents duscritued in them 5 below, meets the applicabie safety standards set forth in Titie 10 . Code of Federel Regulations. Paft 71. "Pbokeging and Trensportation of Radioactive Material.
b. This certificsie does not relieve the consignor from compliance with any requirement of the reguietions of the U.S. Department of Transportation or cther applicabie regulatory apencies, including the government of any country frough or into which the package will be transported
3. THE CERTHICATE IS ISSUEO ON THE BASIS OF A SAFETY ANALYSIS REPORT OF THE PACKAGE DESIGN OR APPLICATION
a issued to (Neme ane Aderess)
U.S. Department of Energy Division of Naval Reactors Washington, DC 20585

Safety Analys is Report for 235R001 Shipping Container dated August 11, 1970, as supplemented.

4 CONDITIONS
This cerlificate is conditional upon fulfiling the renuirements of 10 CFA Part 71, as applicabie, and the conditions specified beiow
(a) Packaging
(1) Model No.: 235 ROO 1
(2) Description

The 235R001 shipping container structure is horizontal, having an oblong cross section and is fabricated from 0.104 -inch thick carbon sheet steel. The container is 313 inches long and has a maximum weight of 4,640 pounds, empty. The oblong cross section dimensions are approximately 35.5 inches high by 33.0 inches wide. The container was originally designed to ship unirradiared fuel modules of the A1G/A4W type. Subsequently, the container has been adapted to ship AlW-3 fuel modules using a strongback, partial AlW-R3 fuel modules using module support assemblies, standard size or partial S8G fuel modules by use of a special frame assembly and cradle clamps, S3G-3 refueling modules using cell support assemblies, rodded or unrodded DIG fuel modules, rodded ACNPP fuel cells and rodded or unrodded D2W fuel cells. The loaded container maximum weight is 12,421 pounds.
(3) Drawings

The packaging is constructed in accordance with container Research Corporation Drawing Nos. 235R001, Rev. C, 235R004, Rev, C, and 235R005, Rev. O, and Westinghouse Electric Corporation Drawing Nos. 9730425, Rev. 1, 903E693, Rev. 3, S.eet 1, 2 and 3 of 3, and 9473076 , Rev. 0 .

COmPITIOMS (continued)

Page 2 - Certificate No. 6386 - Revision No, 12 - Docket No. 71-6386
(b) Contents
(1) Type and form of material

Unirradiated fuel assemblies of the following type,
(i) A1G and AAW reactor cell without upper mechanism and with control rod, leadscrew and shipping fixture installed on rodded type modules.
(ii) A4W Reactor Test Assembly (RTA).
(iii) AlW-3 module without upper mechanism and with control rod, leadscrew, and control rod holodown device installed on rodded type mofules.
(iv) A) H -R3 Partial Lower Module.
(y) Standard size SSG reactor cluster with regular or substitute support adapters and regular control rods or Boral poison rods with control rod ho?ddown devices installed. If only one cell is shipped per container, a duneny load shall be installed for balance.
(vi) Partial size $\$ 86$ reactor cluster with regular or substitute support sdapters and regular control rods or Boral poison rods with control rod holdidown devices installed. If only one cell is shipped per sontainer, a dummy load shall be installed for balance.
(vii) S3G-3 refueling cells, with a maximum of one $0-1$ reactor cell assembly per container.
(viii) D16 fuel module, rodded.
(ix) DIG removable fuel assembly (RFA), unrodded.
(x) A1G fuel cluster, fueled end only of full AIG reactor cell, rodded.
(xi) ASNPP fuel cell ith control rod, and control rod holddown device installed.
(xii) D2W side or central fuel cells with control rod and control rod holddown device.
(xiii) D2W corner fuel cells, unrodded.
(xiv) STC fuel cells, unrodded.
(XV) D2W fuel cell and shear block with control rod inserted in rodded fuel cell.

Page 3 - Certificate No. 6386 -Revision No. 12 - Docket No. 71-6386
(2) Maximum quantity of material per package
(i) One fuel assembly as described in $5(b)()(i), 5(b)(1)(i i)$, $5(b)(1)(1 i i), 5(b)(1)(x i)$, or $5(b)(1)(x v)$.
(ii) Two fuel assemblies as described in $5(b)(1)($ iv $), 5(b)(1)(v)$, $5(b)(1)(v i), 5(b)(1)(v i i), 5(b)(1)(v i i i), 5(b)(i)(x)$, $5(b)(1)(x i i), 5(b)(1)(x i i i)$, or $5(b)(1)(x i v)$.
(iii) Four fuel assemblies as described in $5(b)(1)(i x)$.
(c) Fissile Class

Maximum number of parkioes Pen sh forme nt
(1) For the Contents described in $5(b)(1)(7+0)$ and inilyted in $5(\mathrm{~b})(2)(\mathrm{i})$:
(2) For the contents described in $5(b)(1)(i), 5(\theta)(1)(i i), 5(b)(1)(i v)$, $5(b)(1)(v), 5(b)(1)(v i), 5(b)(1)(v i i), 5(b)(-1)\{(y+i), 5(b)(1)(i x)$,
$5(b)(1)(x), 5(b)(1)(x i), 5(b)(1)(x i i), 5(b)(1)(x j$ (i), $5(b)(1)(x i v)$, E(b) (1) (x va as limited in $5(b)(2)(i)=3(b)(2)(i i)$. hand $5(b)(2)(a+i):$
6. Conmingltrg of packages for Fissile class If shipment is authorized provided that the sim of the ratios of the number of packages of an individual type to be shipped to the maximum allowable number of packages of the type per shipment does not exceed unity.
7. Expiration date: July 31, 1992.

COmoitions (continued)

Page 4 - Certificate No, 6386 - Revision No. 12 - Docket No. 71-6386

REFERENCES

Safety Analysis Resiort for $235 R 001$ Shipping Container, WAPD-OP (R)RD-357 dated August 11, 1970.

Supplements: Knolls Atomic Power Laboratory letter A16 25-159, dated October 2, 1970. Bettis Atomic Power Laboratory letters WAPD-OP (R)RD-444, dated October 9, 1970; WAPD-OP(R)RD-476, dated October 26, 1970; and WAPD-OP(R)RD-488, dated October 30, 1970. Knolls Atomic Power Laboratory letters A1G 25-181, dated April 9. 1971; and A1G 25-191, dated May 11, 1971. Bettis Atomic Power Laboratory letters WAPD-OP(R)C94, dated May 16, 1972; WAPD-OP(R)C-199, dated December 13, 1972; and WAPD-OP(R)C. 229, dated March 6, 1973. Naval Reactors letters CF5078, dated January 26, 1976; G*5776, dated September 8, 1977; G55905, dated danuary 23, 1978; 6\#5923, dated February 22, 1978; G\$6095, dated August 17, 1978; G/6208, dated March 8, 1979; G\$6373, dated September 4, 1979; G\$6813, dated October - 17 , 1980; G\#C85-0467, dated July 17, 1985; G*88-8112, dated October 18, 1988; and G90-03655, dated August 10, 1990.

Dated:
SEP 201998

UNITED STATES

NUCLEAR REGULAYORY COMMISSION
WASHINGTON, D.C. 20 L.5

APPROVAL RECORD

Model No, 235ROO1
Certificate of Compliance No. 6386
Revision No. 12

By letter dated August 10, 1990, the Division of Naval Reactors, U.S. Department of Energy requested that Certificate of Compliance No. 6386 be amended to designate the Model No. 235R001 shipping container as a " $B(U)^{\text {" }}$ package for the shipment of a single D2W fuel cell.

The D2W fuel cell is one of many authorized contents for the Model No. 235R001. The containment and basic fuel geometry are provided by the contents and are not susceptible to brittle fracture. The primary parts of the packaging are fabricated from thin material and are not susceptible to a brittle failure.

Based on considerations for brittle fracture, it is concluded that the Model No. 235 R001 may be designated as a Type $B(U)$, with additional fabrication authorized after August 31, 1986.

Date: \qquad

