

February 21, 1983 3F-0283-19

Director of Nuclear Reactor Regulation Attention: Mr. John F. Stolz, Chief Operating Reactors Branch No. 4 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Subject: Crystal River Unit 3 Docket No. 50-302 Operating License No. DPR-72 NUREG-0737, Items I.A.2.1.4 and II.B.4

Dear Sir:

In response to your December 27, 1982 letter, Florida Power Corporation (FPC) hereby responds to your request for additional information on "Upgrading of RO and SRO Training" (NUREG-0737 Item I.A.2.1.4) and "Training for Mitigating Core Damage" (NUREG-0737 Item II.B.4).

Question 1

Describe in detail how the material contained in Enclosure 2 of Denton's March 28, 1980 letter, is incorporated into the licensee's training and retraining programs.

Response to Question 1

Enclosure 2 of Mr. Denton's March 28, 1980 letter pertaining to training in heat transfer, fluid flow, and thermodynamics is incorporated into a forty-two (42) hour program. The Crystal River Unit 3 course is outlined in the table of contents of the program text. This table of contents, for the text titled "Heat Transfer, Thermodynamics and Fluid Flow for the Nuclear Power Plant Operator," is enclosed as Attachment 1.

Question 2

Describe in detail how the material contained in Enclosure 3 of Denton's March 28, 1980 letter is incorporated into the licensee's training and retraining programs.

Response to Question 2

Enclosure 3, concerning training criteria for mitigating core damage, is covered in FPC's sixteen (16) hour program, "Operator Training - Degraded Core Recognition and Mitigation." The topics covered in this course are listed in Attachment 2.

Mr. John F. Stolz 3F-0283-19 Page 2

Question 3

The response to Question 5 in your May 5, 1982 correspondence, refers to an instructor requalification program. If not the same as the licensed operator requalification program, please describe this program in detail.

Response to Question 3

The instructor requalification program is the same as the licensed operator requalification program.

Question 4

The total training time (approximation) that INPO has recommended to be provided on neat transfer, fluid flow and thermodynamics and on training to recognize and mitigate the consequences of core damage is 222 hours (STG-01 and STG-02). The NRC (OLB) has taken the position that approximately 80 contact hours of instruction are required to adequately cover this subject matter to the depth of understanding desired. FPC's training program provides only 56 total hours for this subject matter. Please describe in detail how your program covers this information to the depth required within the time frame specified in your program.

Response to Question 4

This question was verbally answered in a telephone conference with Mr. Pierce Skinner of the NRC on January 31, 1983.

Question 5

Your response to Question 3 in your May 5, 1982 correspondence states that training was provided to eleven different groups of personnel. The facility organization chart provided with Technical Specification Change Request Number 67, Rev. 1, dated January 19, 1982, identified various other personnel that would or could be involved in an accident. Please provide a detailed description of the training involved in an accident. Please provide a detailed description of the training involving mitigating core damage that is to be provided to personnel such as plant Health Physicist, Chemical and Waste Manager, Chemical and Waste Supervisor, Chemistry Technicians, and the Operations Engineer.

Response to Question 5

The training received by personnel such as the plant Hea'm Physicist, Chemical and Waste Manager, Chemical and Waste Supervisor, Chemistry Technicians, and Operations Engineers on mitigating core damage is the same instruction received by operators in training. The outline of the course, as stated in the Response to Question 2 above, is given in Attachment 2.

Mr. John F. Stolz 3F-0283-19 Page 3

Question 6

Please provide details of how increased emphasis on reactor transients has been implemented in the training program.

Response to Question 6

FPC has implemented a Transient Assessment Program (TAP) to emphasize reactor transients. As part of the TAP, various transients that have taken place at the Crystal River Unit 3 or similar nuclear facilities are studied. They are also modelled at the Babcock & Wilcox reactor simulator in Lynchburg, Virginia to allow operators and operators-in-training an opportunity to respond to these transients.

Sincerely,

Later y. Baynard Dr. Patsy Y. Baynard

Dr. Patsy Y. Baynard Assistant to Vice President Nuclear Operations

Attachments

TSW:mm

HEATTRANSFER,

.

1

THERMODYNAMICS

AND

FLUIDFLOW

FOR THE

NUCLEAR POWER PLANT OPERATOR

42 Hour Program

By

C. J. BOSTED

Illustrated by

Dolores F. Stark

C

1.

1

		Page
CHAPTER 1 D	IMENSIONS AND UNITS	1
1.0	Introduction	1
1.1	Definition of Dimensions and Units	i
1.2	Conversion of Units	2
1.3	Fundamental Dimensions and Units for	4
1.5	Heat Transfer and Fluid Flow	2
1.4	Weight and Mass	3
1.5	Unit Analysis	0
1.5	Problems	3 6 6 8
CHAPTER 2 P	ROPERTIES	10
2.0	Introduction	10
2.1	Density and Specific Volume	10
2.2	Pressure	11
2.3	Temperature	14
2.4	Charles' and Boyles' Law	14
2.5	Absolute Temperature Scale	16
2.6	General Gas Law	17
	Problems	19
CHAPTER 3 DI	EFINITIONS	21
3.0	Introduction	21
3.1	Thermodynamic System	21
3.2	Properties	22
3.3	State	23
3.4	Processs	24
3.5	Cycle	24
3.6	Phase	24
3.7	Working Fluids	25
3.8	Summary of State	25
	Problems	26
CHAPTER 4 EN	VERGY	27
4.0	Introduction	27
4.1	Definition of Energy	27
4.2	Forms of Energy	27
4.3	Heat	28
4.4	Heat Measurement	29
4.5	Types of Heat Transfer	30
4.6	Work	31
4.7	Work and Heat	32
4.8	Power	33
4.9	Internal Stored Energy	33
4.10	Specific	33
4.11	External Stored Energy	34
4.12	Flow Energy	35
	Problems	38

(Page 2)

		Page
CHAPTER 5 FIRS	T LAW OF THERMODYNAMICS	40
5.0	Introduction	40
5.1	First Law of Thermodynamics	40
5.2	General Energy Equation	40
5.3	Non-Flow System	42
5.4	Steady Flow Systems	44
5.5	Enthalpy	45
5.6	Use of General Enery Equations	45
5.7	Examples of Systems	46
5.8	Continuity Equation	49
5.9	Mass Flow and Volume Flow	51
5.10	Bernoulli's Equation	51
	Problems	53
CHAPTER 6 THE	RELATIONSHIP AND DETERMINATION OF PROPERTIES	57
6.0	Introduction	57
6.1	Forms of Matter	57
6.2	Conversion of Form	57
6.3	Critical Point	59
6.4	Liquid-Vapor Phase Change: Definitions	60
6.5	Determiation of Relationship of Properties	61
6.6	Saturated Vapor Tables	63
6.7	Compressed Liquid Tables	64
6.8	Techniques For Use of Tables	65
	Problems	66
CHAPTER 7 HEAT	ENGINES AND THE SECOND LAW OF THERMODYNAMICS	68
7.0	Introduction	68
7.1	Meat Engines	68
7.2	Directional Laws and Reversibility	71
7.3	Second Law of Thermodynamics	74
7.4	Entropy	74
7.5	The Carnot Engine	80
	Problems	83
CHAPTER 8 PROCI	ESSES: MOLLIER DIAGRAM	84
8.0	Introduction	84
8.1	Reversible and Non-Reversible Processes	84
8.2	Real Process	84
8.3	Mollier Diagaram	85
8.4	Isobaric Process	88
8.5	Isovolumic Process	89
8.6	Isothermal Process	89
8.7	Isentropic or Reversible Adiabatic Process	90
8.8	Isenthalpic Process	92
	Problems	93

(Page 3)

CHAPTER 9 ST	EAM POWER CYCLES	94
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7	Introduction The Ideal Rankine Cycle The Real Rankine Cycle Real Steam Generators Real Turbines Real Turbines Real Pumps Real Rankine Cycle, Solved Problem Improving Cycle Efficiency Problems	94 99 99 100 102 103 105 106
CHAPTER 10 T	HERMODYNAMIC STUDY OF A POWER STEAM PLANT	107
10.1 10.2	Design Study Additional Refinements for Power Plants Problems	107 111 122
CHAPTER 11 C	ONDUCTION HEAT TRANSFER	123
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Heat Transfer by Conduction Conduction Through a Plain Wall Conduction Through a Composite Wall Resistance Concept Heat Transfer in a Cylinder Conduction in Multi Layered Cylinders Heat Transmission in Plate Fuel Elements Heat Transmission in Clad-Plate Fuel Element Heat Transmission in Clad Cylinder Fuel Pin Problems	123 125 126 129 129 131 132 134 135 139
CHAPTER 12 F	LUID FLOW	141
12.1 12.2 12.3	Viscous Flow Viscosity Shearing Stress and Velocity Profiles	141 142
12.4 12.5 12.6	The Reynold's Number aminer and Turbulent Flow The Boundry Layer Concept Problems	145 147 151 153

.

. .

1

r.

(Page 4)

Page

PPLICATINS OF HEAT TRTANSFER AND FLUID FLOW	155
Heat Conduction Involving fluids Heat Conduction in the Case of Natural	155
Circulation	155
Film Coefficient	155
Combined Conduction Through Solids and	
	156
	159
Heat Transfer in Forced Convection	163
Application to Heat Exchangers	165
Boiling Water Heat Transfer	169
Problems	175
ASIS FOR THERMAL LIMITATIONS	177
Operating Limits	177
Thermal Envelope	177
DNBR	180
List of Symbols	182
Conversion Factors and Constants	185
Pump Theory	186
	 Heat Conduction Involving fluids Heat Conduction in the Case of Natural Circulation Film Coefficient Combined Conduction Through Solids and Fluid (Slabs) Combined Conduction Through Solids and Liquids (Cylinders) Heat Transfer in Forced Convection Application to Heat Exchangers Boiling Water Heat Transfer Problems ASIS FOR THERMAL LIMITATIONS Operating Limits Thermal Envelope DNBR List of Symbols

4

Attachment 2

TRG-81-3 May 1981

- STUDY GUIDE -

1.34

10 15-

「「「「「「「「「」」」」

Ca

(

4.23

OPERATOR TRAINING-DEGRADED CORE RECOGNITION AND MITIGATION

Phase 1

Volume 1

16 Hour Program

BABCOCK & WILCOX Nuclear Power Group Nuclear Power Generation Division P. O. Box 1260 Lynchburg, Virginia 24505

Babcock & Wilcox

CONTENTS

1. 9

. (

the set

die d

(

				Page
Lesson	1	-	CORE COOLING MECHANICS	1-1
Lesson	2	-	GAS/STEAM BINDING	2-1
Lesson	3	-	BORCN PRECIPITATION CONCERNS FOLLOWING A LOCA	3-1
Lesson	4	-	EQUIPMENT FAILURE SEQUENCES THAT COULD LEAD TO A DEGRADED CORE	4-1
Lesson	5	-	AVOIDING DEGRADED CORE CONDITIONS	5-1

TRG-81-3 77-1125866-00 June 1981

- STUDY GUIDE -

(

第二十二十二十二十二

()

(

OPERATOR TRAINING-DEGRADED CORE RECOGNITION AND MITIGATION

Phase 1

Volume 2

BABCOCK & WILCOX Nuclear Power Group Nuclear Power Generation Division P. O. Box 1260 Lynchburg, Virginia 24505

CONTENTS

Lesson 6	- CONSEQUENCES OF INADEQUATE CORE COOLING AND LIKELY CORE DAMAGE EFFECTS	L
Lesson 7	- USE OF SPNDs IN RECOGNITION OF DEGRADED CORE CONDITIONS	1
Lesson 8	DETECTION AND TREATMENT OF INADEQUATE CORE COOLING USING CORE EXIT THERMOCOUPLES	
Lesson 9	- RELATIONSHIP OF OCD SOURCE RANGE DETECTORS TO DEGRADED CORE CONDITIONS	1
Lesson 10	- INCORE THERMOCOUPLES AND CORE FLOW BLOCKAGE 10-	-1
Lesson 1	- RELEASE OF FISSION PRODUCTS FROM DAMAGED FUEL 11-	-1
Lesson 12	FISSION PRODUCT TRANSPORT CHARACTERISTICS AND RELEASE PATHWAYS 12-	.1
Lesson 13	RESPONSE OF GAMMA RADIATION MONITORS	-1
Lesson 14	- CHEMICAL AND RADIOCHEMICAL PROBLEMS	1

ere i

in the second

0

and in

C

. . .

. .

` (°?

推到

. .

Page