

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

March 17, 1994

Docket Nos. 50-266 and 50-301

> Mr. Robert E. Link, Vice President Nuclear Power Department Wisconsin Electric Power Company 231 West Michigan Street, Room P379 Milwaukee, Wisconsin 53201

Dear Mr. Link:

SUBJECT: GENERIC LETTER (GL) 92-01, REVISION 1, "REACTOR VESSEL STRUCTURAL INTEGRITY, " POINT BEACH, UNITS 1 AND 2, (TAC NOS. M83737 AND M83738)

By letter dated June 25, 1992, as supplemented July 30, 1992, and November 1, 1993, you provided your response to GL 92-01, Revision 1. The NRC staff has completed its review of your response and determined that: (1) based on the available surveillance data, the Point Beach reactor vessels will be below the pressurized thermal shock (PTS) screening criteria in 10 CFR 50.61 when their operating licenses expire; and (2) based on the analyses in BAW-2192 and BAW-2178P, the Point Beach reactor vessels will be able to satisfy the upper shelf energy (USE) requirements of 10 CFR 50, Appendix G, throughout the term of their operating licenses.

The GL is part of the staff's program to evaluate reactor vessel integrity for Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The information provided in response to GL 92-01, including previously docketed information, is being used to confirm that licensees and permittees satisfy the requirements and commitments necessary to ensure reactor vessel integrity for their facilities.

A substantial amount of information was provided in response to GL 92-01, Revision 1. These data have been entered into a computerized data base designated Reactor Vessel Integrity Database (RVID). The RVID contains the following tables: A PTS table for PWRs, a pressure-temperature limit table for BWRs and a USE table for PWRs and BWRs. Enclosure 1 provides the PTS and/or pressure temperature tables. Enclosure 2 provides the USE tables for your facilities, and Enclosure 3 provides a key for the nomenclature used in the tables. The tables include the data necessary to perform USE, pressuretemperature limit, and RT pts evaluations. These data were taken from your response to GL 92-01 and previously docketed information. The information in the RVID for your facilities will be considered accurate at this point in time, and will be used in the staff's assessments related to vessel structural integrity. References to the specific source of the data are provided in the 9404010257 940317 PDR ADOCK 05000266 tables. NINC FILE CENTER COPY

PDR

300094

DFOI 111

We request that you confirm within 30 days the plant-specific applicability of the NRC staff approved revisions of the topical reports BAW-2192 and BAW-2178P, and request review and approval in accordance with 10 CFR Part 50, Appendix G. This review will be a plant-specific action. We further request that you verify that the information you have provided for your facilities has been accurately entered in the data base. If no comments are made in your response to the last request, the staff will use the information in the tables for future NRC assessments of your reactor pressure vessel. Once your confirmation is received, the staif will consider your actions related to GL 92-01, Revision 1, to be complete.

If you desire to use surveillance data from another plant to determine the chemistry factor and margin value for welds in your beltline, you must compare the actual beltline irradiation temperatures (cold leg temperatures) of the two plants to determine whether a temperature correction is required. In addition, the data must: (1) be from a weld fabricated using weld wire with the same heat number and with the same type of flux as the beltline weld; and, (2) meet the credibility criteria of Regulatory Guide 1.99, Revision 2 (the scatter of the data about the best-fit line should normally be less than 28 °F).

The information requested by this letter is within the scope of the overall burden estimated in Generic Letter 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

> Sincerely, ORIGINAL SIGNED BY Richard J. Laufer for Allen G. Hansen, Project Manager Project Directorate III-3 Division of Reactor Projects III/IV/V Office of Nuclear Reactor Regulation

Enclosures:

- Pressurized Thermal Shock or 1.
- Pressure-Temperature Limit Tables
- 2. Upper-Shelf Energy Tables
- Nomenclature Key

cc w/enclosures: See next page

DISTRIBUTIONw/enclosures: Docket File OGC JZwolinski NRC&Local PDRs JHannon EGreenman, RIII PDIII-3 r/f BElliot AHansen JGadzala, RI ACRS (10) RGreger, RIII OFFICE PD: PDI/I-3 LA: PDIII-3 PM: PDIII-3 AHansen:dy NAME MRushbrack JHannon 7/17/94 DATE 3/19/94/20 any 117/94 OFFICIAL RECORD COPY

DMcDonald. MRushbrook JRoe KBohrer

FILENAME: G:\PTBEACH\PTB83737.LTR

We request that you confirm within 30 days the plant-specific applicability of the NRC staff approved revisions of the topical reports BAW-2192 and BAW-2178P, and request review and approval in accordance with 10 CFR Part 50, Appendix G. This review will be a plant-specific action. We further request that you verify that the information you have provided for your facilities has been accurately entered in the data base. If no comments are made in your response to the last request, the staff will use the information in the tables for future NRC assessments of your reactor pressure vessel. Once your confirmation is received, the staff will consider your actions related to GL 92-01, Revision 1, to be complete.

If you desire to use surveillance data from another plant to determine the chemistry factor and margin value for welds in your beltline, you must compare the actual beltline irradiation temperatures (cold leg temperatures) of the two plants to determine whether a temperature correction is required. In addition, the data must: (1) be from a weld fabricated using weld wire with the same heat number and with the same type of flux as the beltline weld; and, (2) meet the credibility criteria of Regulatory Guide 1.99, Revision 2 (the scatter of the data about the best-fit line should normally be less than 28 °F).

The information requested by this letter is within the scope of the overall burden estimated in Generic Letter 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

Sincerely,

fiched fayer in.

Allen G. Hansen, Project Manager Project Directorate III-3 Division of Reactor Projects III/IV/V Office of Nuclear Reactor Regulation

Enclosures:

- 1. Pressurized Thermal Shock or
 - Pressure-Temperature Limit Tables
- 2. Upper-Shelf Energy Tables

3. Nomenclature Key

cc w/enclosures: See next page Mr. Robert E. Link Wisconsin Electric Power Company Point Beach Nuclear Plant Unit Nos. 1 and 2

CC:

14

Ernest L. Blake, Jr. Shaw, Pittman, Potts & Trowbridge 2300 N Street, N.W. Washington, DC 20037

Mr. Gregory J. Maxfield, Manager Point Beach Nuclear Plant Wisconsin Electric Power Company 6610 Nuclear Road Two Rivers, Wisconsin 54241

Town Chairman Town of Two Creeks Route 3 Two Rivers, Wisconsin 54241

Chairman Public Service Commission of Wisconsin Hills Farms State Office Building Madison, Wisconsin 53702

Regional Administrator, Region III U.S. Nuclear Regulatory Commission 801 Warrenville Road Lisle, Illinois 60532-4351

Resident Inspector's Office U.S. Nuclear Regulatory Commission 6612 Nuclear Road Two Rivers, Wisconsin 54241

ENCLOSURE 1

president institution and and a state	and the second		pintere and a second	the second here day affine the second	anti-toines and the state of the state of the	Contractor Contractor Income	CONTRACTOR OF THE OWNER OF THE OWNER	NUMBER S AND IN COMPANY OF THE REAL PROPERTY OF	and control to the second second second
Plant Name	Beitline Ident.	Heat No. Ident.	ID Neut. Fluence at EOL/EFPY	1RT _{ourn}	Method of Determin. IRT _{edt}	Chemistry factor	Method of Determin. CF	%Cu	%N î
Point Beach 1	Nozzle Belt Forging	1229237VA1	2.95E18	50°F	Plant Specific	115.2	Table	0.11	0.82
EOL: 10/5/2010	int. Shell Plate	A-9811-1	2.68E19	1°F	Generic	92.556	Calculated	0.20	0.056
	Lower Sheil Plate	C-1423-1	2.33E19	1°F	Generic	47,466	Calculated	0.12	0.065
	Int. Sheil Axial Weids SA-812	190815	1.71E19	- 5 ° F	Generic	138.2	Table	0.17	0.52
	tower Shell Axial Welds SA-847	61782	1.56E19	-5°F	Generic	167.6	Table	0.25	0.54
	Circ. Weld SA-1101	71249	2.33E19	10°F	Plant Specific	180.0	Table	0.26	0.60
	Nozzle Belt to Int. Shell Circ. Weld SA-1426	811762	2.95818	-5°\$	Generic	152.25	Table	0.20	0.55

Summary File for Pressurized Thermal Shock

References

A 18

Chemical composition, fluence, and IRT_{eat} data are from June 25, 1992, letter from B. Link (WEPCo) to USNRC Document Control Desk, subject: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity, 10 CFR 50.54(1)

IRT_{wo}, for plates A-9811-1 and C-1423-1 were determined per pp 3-18 of BAW 10062P. The values are conservative relative to MTEB 5-2.

Percent copper for Nozzle Belt. Forging determined by the NRC staff from data from similar forgings in letter dated November 1, 1993. The value is a tolerance limit with 95 percent confidence that at least 95 percent of the population is less than the tolerance limit (TL). (TL = \overline{X} +K σ , where \overline{X} =0.06, K=3.187, σ =0.015)

Summary File for Pressurized Thermal Shock

Plant Name	Beltline Ident.	Heat No. Ident.	1D Neut. Fluence at EDL/EFPY	IRT _{odt}	Method of Determin. IRT _{em}	Chemistry Factor	Method of Determin. CF	xcu	30N i
Point Beach 2	Nozzle Belt Forging	123V352VA1	3.50E18	40°F	Plant Specific	113.25	Table	0.11	0.73
EDL: 3/8/2013	Int. Shell Forging	1237500VA1	2.92E19	40°F	Plant Specific	49.771	Calculated	0.09	0.70
	Lower Shell Forging	122w195va1	2.66E19	40°F	Plant Specific	28.63	Calculated	0.05	0.72
	Int./Lower Shell SA-1684	72442	2.56E19	-5°F	Generic	173	Table	0.24	0.60
	Nozzle Belt to Int. Shell Circ. Weld	CE Weld	3.50E18	-56°F	Generic	232.5	Table	0.27	0.90

References

4. 4

Chemical composition, fluence, and IRT_{net} data are from June 25, 1992, Letter from 8. Link (LEPCs) to USWRC Document Control Desk, subject: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity, 10 CFR 50,54(1)

Percent copper for Nozzle Belt. Forging determined by the WRC staff from data from similar forgings in letter dated November 1, 1993. The value is a tolerance limit with 95 percent confidence that at least 95 percent of the population November 1, 1995. The value limit (TL). is less than the tolerance limit (TL). $(TL = \overline{X} + K\sigma, where \overline{X} = 0.06, K = 3.187, \sigma = 0.015)$

Plant Name	Beltline Ident.	Heat No.	Material Type	1/4T USE at EOL	1/47 Neutron Fluence at EOL	Unirrad. USE	Method of Determin. Unirrad. USE			
Point Beach 1	Nozzle Belt Forging	1229237VA1	A 508-2	51	2.0618	59	NRC Generic			
EQL: 10/5/2010	Int. Sheli	A-9811-1	A 3028	54	1.81E19	70	65%			
	Lower Shell	C-1423-1	A 3028	60	1.58E19	77	65%			
	Int. Shell Axial Welds SA-812	120815	Linde BO, SAW	EMA	1.16E19	ENA'	Generic			
	Lower Shell Axial Welds SA-847	61782	Linde 80, SAW	ENA	1.06819	EMA'	Generic			
	Circ. Weld SA-1101	71249	Linde 80, SAW	EMA ²	1.58E19	EMA ²	Generic			
	Nozzle Belt/ Int. Shell Circ. Weld SA-1426	811762	Linde BO, SAW	EMA	2.0E18	EMA ²	Generic			
eferences X D Rev Chex UNM Vest	rop in USE for 2, paragraph mical composit RC Documment En sel Structural	plate A-9811 2.2. ion and fluen mtrol Desk, si integrity, 1	-1 determined ce data are f whject: Resp 0 CFR 50,54(f	from surveil rom June 25, onse to Gener)	lance data in a 1992, letter fr ic Letter 92-01	occordance wi nom B. Link (i , ≹ewision 1,	th RG 1.99, WEPCo) to , Reactor			
Cont Linte	E skate for wet trol Desk, sub egrity, 10 CFR	d 54-847 ere 1 ject: Respon 50,54(f)	from June 25, se to Generic	1992, letter Letter 92-01	from B. Link (, Revision 1, R	WEPCs) to US eactor Vesse	MC Document Structural			
UUSE	ISE for plate C-1423 and A-9811-1 are from WCAP-10736									
UUSE	SE data for other welds are from BAW-1803, Revision 1									
UUSE simi UUSE popu	for Nozzle B lar forging r value is a t lation is gre	elt. Forging o eported in a l olerance limit ater than the	determined by letter dated b t with 95 percent tolerance lin	using 65 perc November 1, 19 cent confidence	cent correction 293 from B. Lin ce that at leas	factor on da k (WEPCo) to t 95 percent	ata from USNRC. The of the			

Summary File for Upper Shelf Energy

 $(TL = \overline{X} - K\sigma \text{ where: } \overline{X} = 99, \sigma = 12.69, K = 3.187)$

 $^2\mbox{Licensee}$ must confirm applicability of Topical Reports BAW 2192 and BAW 2178P.

Summary File for Upper Shelf Energy

Plant Name	Beltline Ident.	Heat No.	Material Type	1/4T USE at EOL	1/4T Neutron Fluence at EOL	Unirræd. USE	Method of Determin, Unirrad, USE
Point Beach 2	Nozzle Belt Forging	123v352	A 508-2	74	2.37E18	89	65X
€OL: 3/8/2013	Int. Shell	123V500VA1	A 508-2	108	1.98E19	117	65%
	Lower Shell	122W195VA1	A 508-2	85	1.80E19	94	65%
	Circ. Weld SA-1484	72442	Linde 80, SAW	EMA'	1.73E19	EMA ²	Generic
	Nozzle Belt/ Int. Shell Circ. Weld	Not provided	No data available	53	2.37E18	75	NRC Generic

References

Chemical composition and fluence data are from June 25, 1992, letter from B. Link (WEPCo) to USWRC Document Control Desk, subject: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity, 10 CFR 50.54(f)

UUSE data for weld SA-1484 are from June 25, 1992, letter from B. Link (WEPCo) to USNRC Document Control Desk, subject: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity, 10 CFR 50.54(f)

UUSE for forging 122W195VA1 and 123V500VA1 is from 8AW-2140, which analyzed capsule \$

UUSE for forging 123V352 reported in a letter dated November 1, 1993 from 8. Link (WEPCo) to USNRC.

UUSE for Nozzle Belt/Int. Shell Circ. Weld is the NRC staff value for Combustion Engineering fabricated welds that was reported in a letter dated December 3, 1993 to T.L. Patterson (OPPD) from S. Bloom (USNRC).

²Licensee must confirm applicability of Topical Reports BAW 2192 and BAW 2178P

PRESSURIZED-THERMAL SHOCK TABLES AND USE TABLES

NOMENCLATURE

Pressurized Thermal Shock Table

Column	1:	Plant name and date of expiration of license.
Column	2:	Beltline material location identification.
Column	3:	Beltline material heat number. For some welds that a
		single-wire or tandem-wire process has been reported.
		(S) indicates single wire was used in the SAW process.
		(T) indicates tandem wire was used in the SAW process.
Column	4:	End-of-life (EOL) neutron fluence at vessel inner wall: cited
		directly from inner diameter (ID) value or calculated by using
		RG 1.99, Revision 2 neutron fluence attenuation methodology
		from the quarter thickness (T/4) value reported in the latest
		submittal (GL 92-01, PTS, or P/T limits submittals).
Column	5:	Unirradiated reference temperature.
Column	6:	Method of determining unirradiated reference temperature (IRT).
		a second s

Plant Specific

This indicates that the IRT was determined from tests on material removed from the same heat of the beltline material.

MTEB 5-2

This indicates that the unirradiated reference temperature was determined from following MTEB 5-2 guidelines for cases where the IRT was not determined using ASME Code Section III NB-2331 methodology.

Generic

This indicates that the unirradiated reference temperature was determined from the mean value of tests on material of similar types.

- Column 7: Chemistry factor for irradiated reference temperature evaluation.
- Column 8: Method of determining chemistry factor

Table

This indicates that the chemistry factor was determined from the chemistry factor tables in RG 1.99, revision 2.

Calculated

This indicates that the chemistry factor was determined from surveillance data via procedures described in RG 1.99, revision 2.

Column 9: Copper content; cited directly from licensee value except when more than one value were reported (staff used the average value in the latter case).

No data

This indicates that no copper data has been reported and the default value in RG 1.99, Rev. 2 will be used by the staff.

Column 10: Nickel content; cited directly from licensee value except when more than one value was reported (staff used the average value in the latter case).

No data

This indicates that no nickel data has been reported and the default value in RG 1.99, Rev. 2 will be used by the staff.

Upper Shelf Energy Table

Column	1:	Plant name and date of expiration of license.
Column	2:	Beltline material location identification.
Column	3:	Beltline material heat number. For some welds that a
		single-wire or tandem-wire process has been reported,
		(S) indicates single wire was used in the SAW process.
		(T) indicates tandem wire was used in the SAW process.
Column	4:	Material type; plate types include A 533B-1, A 302B, A 302B
		Mod., and forging A 508-2; weld types include SAW welds using
		Linde 80, 0091, 124, 1092, ARCOS-B5 flux, Rotterdam welds
		using Graw Lo, SMIT 89, LW 320, and SAF 89 flux, and SMAW
		welds using no flux.
Column	5:	EOL upper-shelf energy (USE) at T/4; calculated by using the
		EOL fluence and either the copper value or the surveillance
		data (both methods are described in RG 1.99, Revision 2.)
		그 같은 물건을 가지 않는 것 같은 것 같은 것이 같은 것이 가지 않는 것이 같이 많이 많이 많이 많이 많이 많이 없다.

EMA

This indicates that the USE issue may be covered by the approved equivalent margins analysis.

Column 6: EOL neutron fluence at T/4 from vessel inner wall; cited directly from T/4 value or calculated by using RG 1.99, Revision 2 neutron fluence attenuation methodology from the ID value reported in the latest submittal (GL 92-01, PTS, or P/T limits submittals).

Column 7: Unirradiated USE.

EMA

This indicates that the USE issue may be covered by the approved equivalent margins analysis.

Column 8: Method of determining unirradiated USE

Direct

This indicates that the unirradiated USE was from a transverse specimen.

65%

This indicates that the unirradiated USE was 65% of the USE from a longitudinal specimen.

Generic

This indicates that the unirradiated USE was reported by the licensee from other plants with similar materials to the beltline material.

NRC generic

This indicates that the unirradiated USE was derived by the staff from other plants with similar materials to the beltline material.

10, 30, 40, or 50 °F

This indicates that the unirradiated USE was derived from Charpy test conducted at 10, 30, 40, or 50 °F.

Surv, Weld

This indicates that the unirradiated USE was from the surveillance weld having the same weld wire heat number.

Equi, to Surv. Weld

This indicates that the unirradiated USE was from the surveillance weld having different weld wire heat number.

Sister Plant

This indicates that the unirradiated USE was derived by using the reported value from other plants with the same weld wire heat number.

Blank

This indicates that there is insufficient data to determine the unirradiated USE. These licensets may need to utilize an approved equivalent margins analysis to demonstrate USE compliance to Appendix G, 10 CFR 50.