	amecan warming and ventilating inc	DO MENT NO. 80278-74					
INDIAN WOOD CIRI	방법이 잘 못 잘 알 때 가지 않는 것 같아. 귀나 가지 않는 것	DATE: 10/11/84					
	ENGINEERING	PAGE: 1 OF 12					
TITLE:	Damper Test Report						
MODEL NO.:	NBD-70 & NBD-71						
UTILITY:	Houston Lighting and Power Co.						
FACILITY:	South Texas Project - Unit 1 & 2						
INGINEER:	Bechtel Energy Corporation - Houston						
EECHTEL JOB N	0.: 14926-001						
PURCILASE OFF	R NO.: 35-1197-4188	FOR APPROVAL					
SFECIFICATIO	NO.: 3V269VS0008	OCT 1 2 1984					
	NO. 80278/130						
ANY PREDUCTIO		AW&V					

APPROVED BY: Bruce Ruiner DATE: 10/12/84

EV. D	ATE	DESCRIPTION	BY	APPROVALS
				a and a subscription of the subscription of th
and an end of the lot		na kalan di kuna sana kana kana kana kana kana kana ka	Alexandria and a state of the s	the second s
				and the second
	9403300158 9	71017		
	PDR ADOCK C	5000498		and the second se
	per l	PDG		

	amecan warming and ventilating inc	DL JMENT NO, 80278-741
UID INDIAN WOOD CIRCLE	MAUMEE, OHIO 43537	DATE:
	ENGINEERING	PAGE: 2 OF 12

TEST RESULTS FOR NBD-70 & NBD-71 DAMPERS

Two (2) Dampers were tested for Bechtel Energy Corp., South Texas Project, AWV Job No. 80278/130, in accordance with the approved Test Procedure 80278-702 Rev. D. The damper tag no.'s are: (NBD-70) $3V111VDA277 \not\in$ (NBD-71) 3V111VDA276.

TABLE OF CONTENTS

Description												Page
Damper Cycle Test	÷ +	÷	į.	Ŧ		.*	×		ŕ	÷	1	3
Blade Deflection Test	Due	То	P	re	ssu	re	×.	×	×	×	+	4
Leakage Test		y.	÷	÷		÷.	×.		÷	×	ż	5
Computer Printouts Of	Lab.	Т	es	ts				÷.,	4	÷		6-12

.10 INDIAN WOOD CIRCLE	MAUMEE, OHIO 43537 ENGINEERING	DATE:
	ame ican warming and ventilating inc	<u>D</u> UMENT NO. 80278-741

DAMPER CYCLE TEST

Each damper was successfully cycled 25 times in accordance with Test Procedure 80278-702. No rework was required upon completion of the cycle testing.

Damper Tag #	<u>Size (in.)</u>	Successfully Cycled 25 Times	Required
3V111VDA277	12×12	Yes	None
3V111VDA276	24×42	Yes	None

的同局是	g amer	ican wo	irming L	DOCUMENT NO	80278-741
	/, and	ventilatir	ng inc f		an dia mandri di secondo di second
1310 indian w	ood circle / r	naumee, ohio	43537	uer er det techer nach and in a state of the	
				PAGE 4	OF 12
BLADE DE	FLECTION T	EST DUE TO P	RESSURE (NBD-70 & NBD	-71)
differential	Dressure ;	across the d	amper was	e test chamb gradually in aximum press	creased from
gauges were blade end ar	measuring on nd gauge no leased and 1	on the axle . 2 was at t	centerline he midspan	re and recor ; gauge no. centerline. o with ± .0	l was at the The pres-
reading for	actual bla o blade def	de deflectio lection at t	on at the t he design	from the gau est pressure pressure so	. This was
could be con	npared to t	he allowable	e deflectio	n.	
could be cor	mpared to t		e deflectio	n. $\left(\frac{1}{2}\right) \times \frac{De}{Te}$	
could be con BLADE DEFLE(@ DESIGN △ 1	npared to t CTION (in) P	= (GAUGE ∦] (in)	e deflectio GAUGE (in	n.	sign ∆P est ∆P
could be con BLADE DEFLE(@ DESIGN △ 1 The dampers Rev. D. Table No. 1	npared to t CTION (in) P were teste lists the lade deflec	GAUGE #1 (in) d in accorda damper tag t tion at the	GAUGE GAUGE (in ance with P	n. $\binom{\#2}{2} \times \frac{De}{Te}$ rocedure No.	esign ∆P est ∆P 80278-702 gn differentia
could be con BLADE DEFLE @ DESIGN △ 1 The dampers Rev. D. Table No. 1 pressure, b the allowab	npared to t CTION (in) P were teste lists the lade deflec le blade de e actual de	GAUGE #1 (in) d in accords damper tag t tion at the flection. flection was	GAUGE GAUGE (in ance with P no., damper design dif	n.) ^{#2}) X <u>De</u> Te rocedure No. size, desig ferential pr	esign ∆P est ∆P 80278~702 on differentia cessure and
could be con BLADE DEFLEG @ DESIGN △ 1 The dampers Rev. D. Table No. 1 pressure, b the allowab In each cas	npared to t CTION (in) P were teste lists the lade deflec le blade de e actual de	GAUGE #1 (in) d in accords damper tag r tion at the flection. flection was y.	GAUGE GAUGE (in ance with P no., damper design dif	n.) ^{#2}) X <u>De</u> Te rocedure No. size, desig ferential pr	esign ∆P est ∆P 80278-702 gn differentia
could be con BLADE DEFLEG @ DESIGN △ 1 The dampers Rev. D. Table No. 1 pressure, b the allowab In each cas	npared to t CTION (in) P were teste lists the lade deflec le blade de e actual de	GAUGE #1 (in) d in accords damper tag r tion at the flection. flection was y.	GAUGE GAUGE (in ance with P design dif s less thar ULTS	n.) ^{#2}) X <u>De</u> Te rocedure No. size, desig ferential pr	esign ∆P est ∆P 80278~702 on differentia cessure and
could be con BLADE DEFLEG @ DESIGN △ 1 The dampers Rev. D. Table No. 1 pressure, b the allowab In each cas	npared to t CTION (in) P were teste lists the lade deflec le blade de e actual de	GAUGE #1 (in) d in accorda damper tag t tion at the flection. flection was y. <u>TEST_RES</u>	GAUGE GAUGE (in ance with P design dif s less thar ULTS	n.) ^{#2}) X <u>De</u> Te rocedure No. size, desig ferential pr	esign ΔP est ΔP 80278-702 on differentia ressure and ole deflection
could be con BLADE DEFLEG @ DESIGN △ 1 The dampers Rev. D. Table No. 1 pressure, b the allowab In each cas No rework w	TEST NO.	<pre>GAUGE #1 (in) d in accords damper tag t tion at the flection. flection was y. <u>TEST RES</u> TABLE NO.</pre>	GAUGE GAUGE (in ance with P no., damper design dif s less thar ULTS 1 DES. △P	n. ^{#2}) X <u>De</u> Te rocedure No. size, desig ferential pr the allowat ELADE DEFL. (in) @ DES.	esign ΔP est ΔP 80278-702 on differentia cessure and ole deflection

MIND	american warming and ventilating inc circle / maumee, ohio 43537	DOCUME	NT NO), 80:	278- 741
		PAGE	5	OF	12

LEAKAGE TEST

The test damper was mounted to the end of the test chamber and the differential pressure across the device was gradually increased from zero to the maximum chamber limitation. Leakage readings were taken at 60, 70, 80, 90 and 100% of this pressure. The leakage was calculated, corrected to standard air and plotted. The measured leakage was determined by extending the curve to the design pressure.

Table # 2 lists the damper tag number, the allowable leakage and the measured leakage results.

In each case the measured leakage is less than or equal to the allowable leakage.

LEARAGE TEST RESULTS

Table # 2

Tag No.	Test No.	Design Damper Pressure Size(in)(in, w.g.)	Allowable leakage (scfm)@Des. Press	Measured Leakage (scfm)@Des.Press
3V111VDA277	84-0768	12 x 12 83 (3 PSI)	137	113
3V111VDA276	84-0820	24 x 42 83	638	638

	ar prican warming	OCUMENT NO. 80278-741
	and ventilating inc	REV. NO.
1310 INDIAN WOOD CIRCLE	MAUMEE, OHIO 43537	DATE:
	ENGINEERING	PAGE: & OF 12

DEFINITIONS FOR ABBREVIATIONS

USED ON TEST LABORATORY

PRINT OUTS

- DET Determination
- D6 Represents the diameter (in feet) of single nozzle that has an area equal to the sum of the areas of all the nozzles used in a particular combination.
- DN A term used to represent the nozzle coefficient of discharge for the particular nozzle combination being used.

- DPS Static pressure differential across the device under test.
- PD Pressure differential across nozzle.
- SP5 Static pressure at plane 5.
- DB5 Dry-bulb temperature at plane 5.
- DBA Dry-bulb temperature in general test area.
- WBA Wet-bulb temperature in general test area.
- BPA Barometeric pressure.
- TE Barometric temperature.

AMERICAN WARMING & VENTILATING INC.

BLADNER. OHIO

1	DAGE	7	OF	12
1	r MG la	manhanan	- Ur .	- formation
1	AWV:	8021	78-79	41
1	FILE C.	and the second		

1	10	B	ħ	11	M	B	E	R	4				8	0	2	?	8	1	1	13	0	
1	ΤE	9	T	N	U	M	ē	Lui	R	ł.			8	4	-		ç	7	6	7		
ſ	A	T	Ε	0	F		Ţ	E	S	Т	8		1	Q	1	8	Ż	8	4			

TEST UNIT MANUFACTURER: AHU TRADE NAME: DAMPER MODEL NO.: NBD-70 SIZE: 12 X 12 ND. OF BLADES: 1

TEST METHOD PER AMCA STANDARD 500-75 TEST SETUP APPARATUS:FIGURE 5.4 AIP FLOW MEASUREMENT APPARATUS:FIGURE 6.3 TEST TYPE:STRUCTURAL INTEGRITY TEST

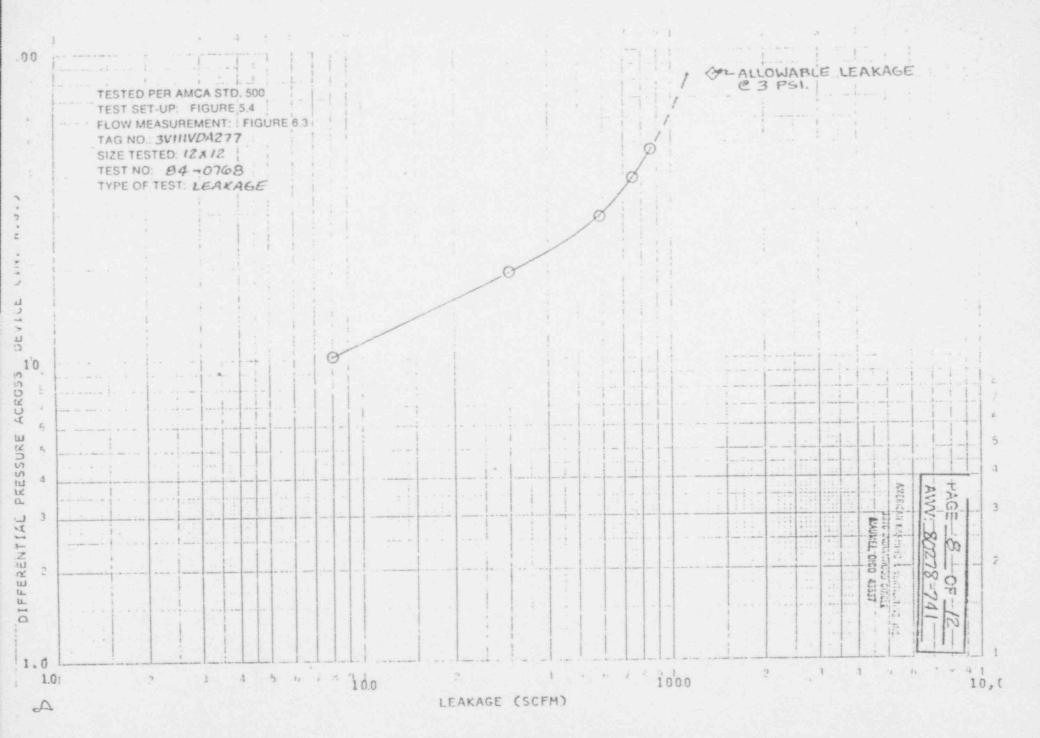
DETERMINATIONO:

DET D6 DN DPS PD SP5 DB5 DBA WBA BPA TB 1 0.15770 0.11606 46.150 1.250 46.150 68.7 73.0 55.0 29.49 73.0

RECULTS

AT TEST	CONDITIONS		AT STANDARD (AIR DENSITY
	LTA PS 150	CFN 05.6	DELTA FS 47,493	CFM 85.6

REMARKS TAC # 30111006277


	GAUGE READING (in)	GAUGE RETURN (in)
GAUGE NO. 1:	.004	.000
GAUGE NO. 2:	.0035	.000
BLADE DEFLECTION (in @ DESIGN $\triangle P$) = (GAUGE NO. 1 (READING (in)-	GAUGE NO. 2 READING (in) X $\left(\frac{\text{DESIGN } \Delta P}{\text{TEST } \Delta P}\right)$

= (.004 - .0035)X (<u>83</u>) 46.15

-23

A strategic s

46.73330

PAGE	9	OF	12
AWV:	20	278-	741

AMERICAN WARMING & VENTILATING INC.

PRADNER. OHIO

JOB NUMBER:	80278/130
TEST NUMBER:	84-0820
DATE OF TEST:	10/9/84

TEST UNIT

MANUFACTURER:	AUV
TRADE NAME:	DAMPER
MODEL NO. :	NED-71
SIZE:	24 X 42
NO. OF BLADES:	4
TYPE OF SEALS:	D-BULD & EPT-4
CLOSING TORQUE:	N/A

TEST METHOD PER AMCA STANDARD 500-75 TEST SETUP APPARATUS:FICURE 5.4 AIR FLOW MEASUREMENT APPARATUS:FICURE 6.3 TEST TYPE:LEAMAGE

DETERMINATIONS:

1 (1 12 1	0.25000	DH 0.25000 0.25000 0.25000 0.25000	8.720 17.700 25.18 36.460	0.120 0.410 0.820 1.740	8,730 17,700 25,180 34,440	72.2 71.7 71.1 69.8	72.5	64.0 64.0 64.0	20.0.0.0 20.0.0 2.0.00 2.0.00 2.0.00 2.0.00 2.0.00000000	71.0 71.0 71.0 71.0
τ.	0.25000	0.25000	43,970	2.000	43.830	48.2	72.0	64.0	29,59	11.0

PESULTS

	AT	TEST CONDITIONS		AT STANDARD AIR	DENSITY
DET	DENSITY	DELTA FS	CFM	DELTA PS	CFM
1	0.07291	8.730	66.5	8.979	66.5
2	0.07301	17.700	123.9	18.182	123.9
3	0.07301	25.180	182.0	25.845	182.0
4	0.07301	34.460	257.7	35.398	257.7
5	0.07301	43.830	336.2	45.023	336.2

REMARKS

TAG # 3011100A276

PAGE	10	OF.	12
AWV.	802	70 .	741

AMERICAN WARMING & VENTILATING INC.

ERADNER. OHIO

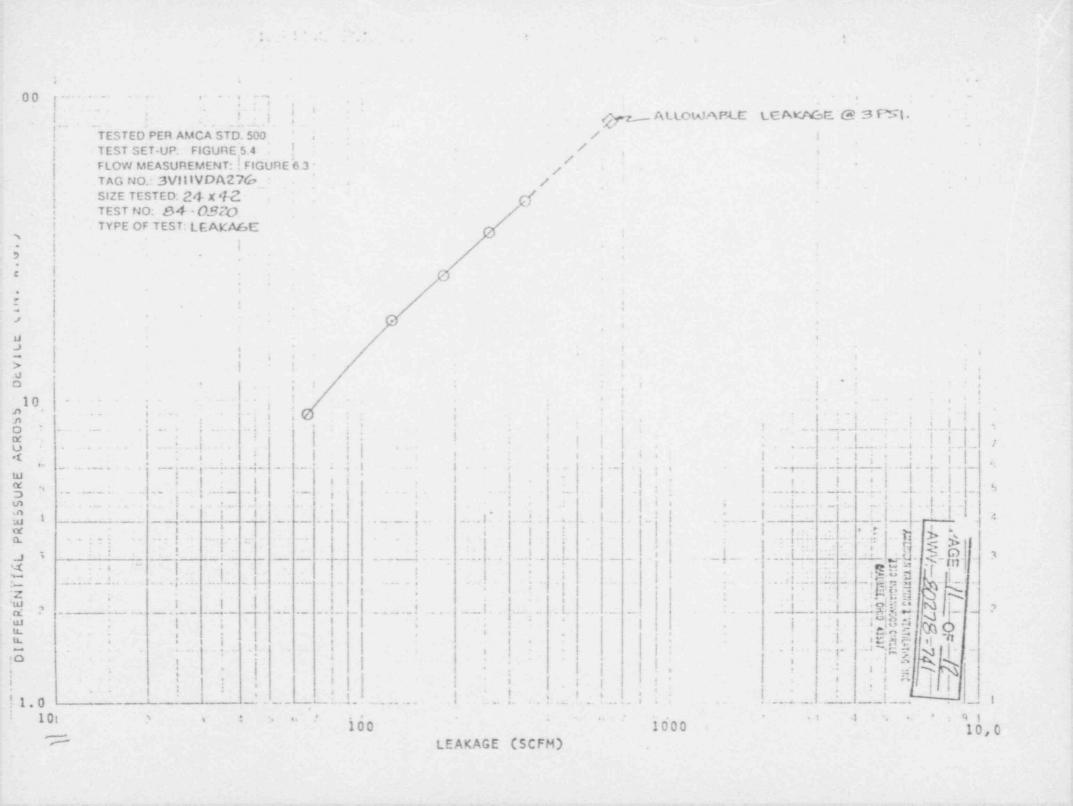
JOB	NUMBER:	80278/130
TEST	NUMBER:	84-0819
DATE	OF TEST:	10/9/84

TEST UNIT

MAN	UFAC'	TURER	AUU
1	RADE	NAMET	DAMPER
	MODE	- NO. :	NSD-71
		SIZE:	24 X 42
NO.	OF BI	ADES	4

TEST METHOD PER AMOA STANDARD 500-75 TEST SETUP APPARATUS:FIGUEL 5.4 AIR FLOW MEASUREMENT APPARATUS:FIGURE 6.3 TEST TYPE:STRUCTURAL INTEGRITY TEST

DETERMINATIONS;


DET D4 DM DFS PD SPS DB5 DBA WBA BPA TB 1 0.33341 0.33341 46.300 1.050 46.300 66.2 70.0 63.0 29.59 71.0

COULTS

	10	TEST CONDITIONS		AT STANDARD A	IR DENSITY
DET		DELTA PS	CFM	DELTA PS	CFM
1		45.2-0	353.3	47.375	353,3

REMARKS TAC # 30111006276

	GAUGE READING (in)	GAUGE RETURN (in)
GAUGE NO. 1:	.015	.0015
GAUGE NO. 2:	.004	.001
BLADE DEFLECTION (in) \bigcirc DESIGN $\triangle P$	= (GAUGE NO. 1 - GAUGE NO. 1 - READING (in) READING	$(in) \times \left(\frac{\text{DESIGN} \Delta P}{\text{TEST} \Delta P}\right)$
	$=$ (.015004) X ($\frac{83}{46.3}$	
	= <u>.020 (in)</u>	

PAGE	12	OF	12
AWV:	8027	8-	741

13 6/12

AMERICAN MARMING & VENTILATING INC.

BRADNER, OHIO

JOB	NUMBER:	80278/130
TEST	NUMBER:	84-0768
DATE	OF TEST:	10/8/84

TEST UNIT

1. . C

MANUFACTURER:	AUV
TRADE NAME:	DAMPER
MODEL NO. :	NED-70
SIZE:	12 X 12
NO. OF BLADES:	1
TYPE OF SEALS:	EPT-4 8 D-BULB
CLOSING TORQUE:	OPERATOR CLOSING

TEST METHOD PER AMCA STANDARD 500-75 TEST SETUP APPARATUS:FIGURE 5.4 AIR FLOW MEASUREMENT APPARATUS:FIGURE 6.3 TEST TYPE:LEAKAGE

DETERMINATIONS:

DET	C ±	DW	DrS	F.D	SPS	DBS	DEA	WBA BPA	TB
1	0.00323	0.08383	9,800	0.145	9.820	70.2	74.0	56.0 29.4	7 72.0
2	0.00393	0.09363	18.550	1.910	18.550	69.8	73.0	55.0 29.4	9 73.0
								55.0 29.4	
4	0.15773	0.11696	37.300	0.950	37.300	69.0	73.0	55.0 29.4	9 73.0
<u>17</u>	0.15778	0.11605	45.150	1.250	46.100	68.9	73.0	55.0 29.4	9 73.0

RESULTS

	AT	TEST CONDITIO	MG	AT STANDARD A	IR DENSITY
DET 1 2 3 4 5	DENSITY 0.07248 0.07287 0.07287 0.07287 0.07287	DELTA PS 9.820 18.550 27.950 37.300 46.150	CFM 29.8 58.5 74.5 85.6	DELTA PS 10.133 19.089 28.763 38.385 47.493	CFM 8.0 29.8 58.5 74.5 85.6

REMARKS TAG # 3V111VDA227

ATTACHMENT 2

DESIGN BASIS DOCUMENT EXTERNAL ENVIRONMENT 5N209MB1035

VOLUME 1 OF 1

South Texas Project Units 1 and 2 EXTERNAL ENVIRONMENT

5N209MB1035 Revision 0 Page 3-6 of 3-55

where W_{μ} = Tornado wind load due to wind velocity pressure W_{p} = Tornado differential pressure load W_{m} = Single tornado generated missile load

The following Category I structures are designed as non-vented with respect to tornado depressurization effects (i.e., systems and components located inside these structures will be protected from depressurization effects):

- A. Mechanical Auxiliary Building (except for truck bay)
- B. Electrical Auxiliary Building
- C. Fuel Handling Building
- D. Reactor Containment Building
- E. Auxiliary Feedwater Storage Tank

Details on protective measures are provided in Section 4.1.

3.1.3.2 Non-Category I Structures and Systems

Design wind velocity for non-Category I structures, systems and components except nonsafety-related piping and supports and PAR-KUT Model 43 security booths and supports is 120 mph at 30 feet above ground level. (Reference 6.3.1) This wind speed is based on the maximum recorded, sustained hurricane winds in the Texas coastal area. (Reference 6.1.10)

Nonsafety-related piping and supports and PAR-KUT Model 43 security booths and supports are designed to withstand a wind velocity of 90 mph at 30 feet above ground level. (Reference 6.3.1) South Texas Project Units 1 and 2 EXTERNAL ENVIRONMENT 5N209MB1035 Revision 0 Page 4-1 of 4-23

4.0 PROTECTIVE MEASURES

This Section discusses specific protection features provided at STP for the Design Basis Events identified in Section 3. Refer to Table T-12 for a matrix which identifies hazards discussed in this DBD along with the appropriate section number. The bulk of Table T-12 comes from the South Texas Project Probabilistic Safety Assessment Summary Report. (Reference 6.2.19)

4.1 TORNADO AND WIND

4.1.1 Category 1 Structures

A minimum thickness of 2 feet is provided for the roof slab of the ECWIS to protect against tornado missiles. (Reference 6.3.22) At the ECW Discharge Structure, the slab above the walls and on the sides of the discharge piping is 2 feet thick and is designed for protection against tornado missiles. (Reference 6.3.22) The minimum thickness of concrete walls and roofs provided for all Category I structures to resist the effects of postulated tornado winds and missiles is 2 feet, except for the Auxiliary Airlock Shield structure roof which is 1 foot. The integrity of this 1 foot structure has been analyzed and determined to provide the necessary protection for missile impact. (Reference 6.3.35)

The Mechanical and Electrical Auxiliary Building is provided with tornado resistant doors as listed in References 6.3.46 and 6.3.47. The Diesel Generator Building, Essential Cooling Water Intake Structure, and Fuel Handling Building are considered as vented buildings with no tornado protection provided at the outside openings. It should be noted that the door between the Fuel Handling Building and the Mechanical Auxiliary Building is designed for a tornado. The inside of these buildings will see tornado depressurization.

See Open Item OI-EE-09.

South Texas Project Units 1 and 2 EXTERNAL ENVIRONMENT 5N209MB1035 Revision 0 Page 4-2 of 4-23

4.1.2 Non-Category I Structures

Reference 6.5.33 provides an analysis showing that the TGB will not collapse onto any nearby Category I structures. In addition, since the elevator and stair tower structure on the east side of the TGB is adjacent to the DGB, this tower structure is designed for the tornado loads. (Reference 6.3.20)

The deaerator structure is designed to resist the tornado loads in the north-south direction. A potential failure of this structure in the east-west direction will not impair the integrity and functionality of any Category I structure. (Reference 6.3.20)

4.1.3 HVAC Openings

All outside air intake and exhaust openings of the EAB main control room HVAC system and EAB main area HVAC system are protected by tornado dampers designed to close automatically within 0.25 seconds during tornado conditions. (References 6.3.6 and 6.3.9)

All EAB technical support center HVAC system penetration openings in the EAB outside walls or roof are protected with tornado dampers designed to close automatically within 0.25 seconds during tornado conditions. (Reference 6.3.10)

The outside air intake opening of the FHB supply air system is provided with a tornado damper with a closing time not to exceed 0.25 seconds. (Reference 6.3.11)

See Open Item OI-EE-10.

The outside air intake and exhaust air openings of the MAB main supply and exhaust system are provided with tornado dampers with a closing time not to exceed 0.25 seconds. (Reference 6.3.12)

ATTACHMENT 3

ATTACHMENT 4

SYSTEM DESCRIPTION COVER SHEET SOUTH TEXAS PROJECT JOB NO. 14926-001

Date of Origin_ Revision Rationale:		reflect as-built turn fan.	conditions	and min/max moto	r HP
	e and the second	an an ann an ann an Thaonn an ta Chur an a' Sheannan	3	AN 16 1990	
10 Paul Bei EGL Iorigi	thelf n) Date	APPROVAL SIGN	gin) Date	1632N/A	Date
N/A PSSG EGS N/A	Date	N/A Plant Design EG N/A	S Date	N/A Mechanical EG N/A	S Date
Electrical EGS N/A Nuclear EGS	Date	Civil EGS N/A Architectural E	Date GS Date	Controls EGS	Date <u>II/7/8</u> Date
N/A Startup	Date	Pro	<i>Jaubi 1</i> ject Engine	Pandela	11/7/80 Date
	DEN'S ICA'S	Concerning & Long and Concerning	7 3 REV 14	BS/ 1/10/90 HL&P DATE 926-001	
1				in the tree	

5932W/0197W

1. -1

5V119VD0106 Rev. 7 Page 1 of 59

1.0 FUNCTION

The Electrical Auxiliary Building (EAB) heating, ventilating, and air conditioning (HVAC) system consists of the EAB main area HVAC subsystem, the main control room envelope HVAC subsystem, and the technical support center (TSC) HVAC subsystem. The function of these subsystems is to ensure the safety and comfort of plant personnel and operability of plant equipment during normal conditions and postulated accident conditions.

- 2.0 DESIGN BASES
- 2.1 SAFETY DESIGN BASES
- 2.1.1 Safety Design Bases for the EAB Main Area HVAC Subsystem
 - A. The EAB main area HVAC subsystem, except for the heating system for areas other than ESF battery rooms and elevator machine room HVAC system, is designed to remain functional during and after all upset and faulted conditions.
 - B. The EAB main area HVAC subsystem is designed so that a single failure of any active component, assuming loss of offsite power, cannot result in a loss of safety-related HVAC function in the building.
 - C. The battery rooms have a redundant, separate exhaust system designed as Safety Class 3 with spark-proof fan and motor. Controls are provided to alarm loss of air flow in each battery room.
 - D. Each battery room ventilation maintains the hydrogen concentration below 2 percent by volume, which is less than the lower flammability level of 4 percent.
 - E. The EAB main area HVAC subsystem components except for electrical penetration area normal HVAC system, heating system for areas other than ESF battery rooms and elevator machine room HVAC system, are designed as Safety Class 3 and seismic category I. The nonsafety equipment and ductwork supports are designed as Safety Class 7 per Seismic II/I design criteria.

5V119VD0106 Rev. 7 Page 2 of 59

- F. The subsystem consists of three 50-percent-capacity trains. Each train consists of an air-handling unit (AHU) with makeup/return air mixing box, prefilter, high efficiency filter, supply air fan, cooling coil, heating coil, and a return-air/smoke purge fan. The efficiencies of prefilters and high-efficiency filters are 85 percent and 95 percent, respectively, based on ASHRAE Standard 52. Reheat coils, return-air riser, exhaust-air riser, outside air, and supply air riser are common to all trains. An outside air intake louver (partly MAB intake louver) and its ductwork are shared with control room envelope and TSC subsystems. The electrical penetration area safety-related subsystem consists of three 100-percent fan coil units, one for each of the three train-separated penetration areas. The AHU and fan coil units cooling coils are served by the essential chilled water system.
- G. The subsystem is designed to maintain the room temperatures given in Table 1.

H. Design outside temperature conditions are as follows:

Winter 29°F DB minimum Summer 95°F DB maximum 81°F WB maximum 16°F daily range

- I. Controls are provided to trip the nonsafety heating coils during faulted condition, to prevent inadvertant operation.
- J. The battery room exhaust fans are operated at all times. The battery room is maintained at a slightly negative pressure by providing exhaust air flow greater than supply.
- K. All outside air intake and exhaust openings are protected by tornado dampers designed to close automatically subsequent to 3 psig differential pressure within 0.25 seconds during tornado conditions.
- L. The HVAC equipment trains are separated from each other with physical barriers such that a common-mode failure of any train does not jeopardize the other trains.
- M. A monitoring system is provided to indicate fan status and air flow failure, filter loading, high temperature in critical areas, and operable dampers status.

5V119VD0106 Rev. 7 Page 3 of 59

2.1.2 Safety Design Bases for the Main Control Room (MCR) Envelope HVAC Subsystem

- A. The radiation exposure of control room personnel through the duration of any postulated design-basis accident does not exceed the guidelines set by IOCFR50, Appendix A, General Design Criterion 19.
- B. Through the duration of any postulated design-basis accident, the subsystem maintains the control room envelope atmosphere at temperatures suitable for prolonged occupancy and equipment operation. Sufficient ventilation is provided for people occupying the MCR envelope during all operating modes.
- C. The MCR HVAC subsystem is capable of automatic transfer from its normal operational mode to its emergency or isolation modes upon detection of conditions that could result in induction of airborne hazardous chemicals (anhydrous ammonia, vinyl acetate, ammonium hydroxide, HCL, acetaldehyde, acetic acid and naphtha)

above permissible concentrations (Regulatory Guides 1.78 and 1.95), outside air smoke into the control room, or exposure of control room personnel to a high level of airborne radioactivity.

- D. The subsystem is designed so that a single failure of any active component assuming loss of offsite power cannot result in the inability of this subsystem to comply with paragraphs 2.1.2.A, B. and C. above.
- E. The MCR HVAC components (except for the toilet/kitchen exhaust system, computer room, HVAC system, and heating system) are designed as Safety Class 3 and seismic category I. Those components that are nonsafety-related have equipment and duct supports that are designed as Safety Class 7 per Seismic II/I design criteria.
- F. The subsystem consists of three 50-percent capacity trains. Each train consists of an AHU, RA/SP fan, emergency cleanup filter train (ECFT) unit, and makeup filter train (MFT) unit. The supply air duct, return air duct, and "sheat coi?(s) are shared by each of the three 50-percent trains. The outside air intake louver (partly MAB intake louver) and its ductwork is shared with the subsystem in paragraph 2.1.1 above.

Each AHU consists of a prefilter, high-efficiency filter. chilled-water cooling coil, and supply fan. The efficiencies of the prefilter and high-efficiency filters is 30 percent and 95 percent, respectively, based on ASHRAE 52. The cooling coils are served by the essential chilled water system.

- P. All outside air intake and exhaust openings are protected by tornado dampers designed to close automatically within 0.25 seconds during tornado conditions.
- Q. The HVAC equipment trains are separated by physical barriers such that a common mode failure of any train does not jeopardize the other trains.
- R. Air locks are provided for doors at the control room envelope boundary which may be used following accidents. Other boundary doors are locked during accident conditions.
- 2.1.3 Safety Design Bases for the Technical Support Center (TSC) HVAC Subsystem
- The TSC HYAC subsystem has no safety design bases.
- 2.2 POWER GENERATION DESIGN BASES
- 2.2.1 Power Generation Design Bases for the EAB Main Area HVAC Subsystem
 - A. This subsystem provides a secondary means of removing smoke from the main area upon a manual start after fire detection.
 - B. The outside air quantity is increased to 100 percent when required to purge the main area of smoke after a fire.
 - C. Electric heating coils for areas other than ESF battery rooms are powered from the non-Class 1E ac auxiliary power distribution system.
 - D. A room thermostat is provided for each electric duct heating coil.
 - E. Chilled water flow to the cooling coil is controlled to maintain 55°F supply air temperature during normal operation and uncontrolled with full flow through the coil during accident conditions.
 - F. Outside air is provided for the elevator machine room ventilation to maintain a room temperature of 104°F. The system is nonsafety and consists of one 100-percent exhaust fan with an outside air intake.
 - G. The following design bases apply to the penetration space HVAC subsystem:
 - The cooling subsystem is designed as nonsafety and nonseismic for normal operation.

- B. Tornado dampers in the intake and exhaust openings close subsequent to receipt of 3 psig differential pressure within 0.25 seconds. Under this condition, the HVAC equipment internal to the EAB is protected from the rapid depressurization. The damper will automatically open subsequent to the absence of this differential pressure. No operator intervention is required under this condition since the depressurization occurs for a very brief period, except in case of battery room exhaust fans which would tend to keep the damper closed. Therefore, following a tornado the operator is required to shut the exhaust fans momentarily to allow the tornado dampers to open.
- C. A smoke detector is installed in the return duct downstream of each return fan. Upon receipt of a smoke alarm, the return air dampers are shut, the outside air dampers are fully opened, and the smoke purge dampers are opened manually. The outside air intake damper 8V101VDA221 in MAB is opened manually to provide additional outside air during smoke purge. Under this condition, all the return air is discharged via the common exhaust riser with 100 percent outside air supply. Normal damper lineup must be reestablished manually, subsequent to the absence of a smoke alarm.
- D. In the event that a smoke alarm is observed during winter operation, an electric heating coil in the common outside air intake riser is energized manually. This coil will elevate the temperature of the inlet air and thus prevent possible freezing of the AHU cooling coils.
- E. On receipt of an ESF signal, all heating coils and reheat coils (except for the battery room) will be automatically deenergized in order to prevent inadvertent operation and consequent degradation of cooling.
- F. On receipt of an ESF and/or LOOP signal, the control valve for main AHU cooling coil chilled water flow fails in full-open position through the coil. Also, the electrical penetration area emergency AHUs are started. During this operating condition, the electrical penetration area normal AHUs and exhaust fans are not required to operate.
- G. During single train shutdown, specific EAS fire dampers require manual isolation to preclude shutdown areas from exceeding temperature limits (refer to Section 5.G for required administrative actions and Reference 6.D for overall shutdown description).

5V119VD0106 Rev. 7 Page 19 of 59

3.2.1.3 Soutdown

Shutdown of this subsystem is accomplished by deenergizing the fans at either the MCR or the auxiliary shutdown panel, and the heaters by local room thermostats.

3.2.2 Control Room Envelope Subsystem

3.2.2.1 Startup

- A. Startup of this subsystem is identical to the EAB main area HVAC subsystem regarding verification of damper position and fan energizing at the MCR. It is noted, however, that in addition, 1) two bubble-tight dampers at the outside air inlet for each main AHU and the exhaust fan inlet are open; 2) opposed blade emergency bypass damper in each main AHU return air inlet are fully open; 3) return air inlet damper for each cleanup filter unit are closed; and 4) halon isolation dampers in the supply and return ducts for relay and computer room are open. Also, after establishing the chilled water flow, one of the two AHUs for the computer room is started from the MCR. None of the control room HVAC subsystem is controlled at the auxiliary shutdown panel. The makeup and cleanup filter units do not operate during normal operation.
- B. The duct reheat coils for all the rooms are energized and controlled by local room thermostats. Each heating coil is interlocked with a flow switch to prevent energization in case of low air flow through the coil.
- C. Consistent with the design of the EAB main area HVAC subsystem, the following controls are provided: 1) chilled water valves to maintain supply air temperature at 53°F; 2) pressure differential indication and alarms across the fans and filters; and 3) high-temperature alarms in critical areas.
- D. The main system supplies a total of 34,800 scfm of conditioned air, returns a total of 32,800 scfm, and exhausts 1000 scfm during normal operation. The excess 1000 scfm maintains slightly positive pressure during normal operation.
- E. The computer room AHUs are controlled by a thermostat and humidistat furnished as part of the unit package.

3.2.2.2 Operation

- A. HVAC operation continues as discussed in Section 3.2.2.1 above except for the following off-normal conditions:
 - 1. Receipt of an ESF signal

Rev. 7 Page 21 of 59

The makeup unit heating coil maintains the humidity level at less than 70-percent relative humidity as required for suitable operation of carbon filters. The cleanup unit does not require a heating coil since the return air and makeup air mixture is previously conditioned, such that humidity is always less than 70-percent relative humidity.

- D. Consistent with EAB main area HVAC design, on receipt of an ESF signal the duct reheat coils are deenergized and the control valves for main AHU cooling-coil chilled water fail in the full flow-through coil position.
- E. Smoke purge operation is the same as for EAB main area HVAC system. See section 3.2.1.2.C.
- F. Tornado dampers at the intake and exhaust openings are shared with the EAB main area HVAC system, and operation during a tornado is the same as for EAB main area system. See section 3.2.1.2.8.

3.2.2.3 Shutdown

Shutdown of this subsystem is accomplished by deenergizing the fans at the MCR, and heaters by local room thermostats.

3.2.3 TSC HVAC Subsystem

The subsystem is nonsafety-related with the exception of the safety-related tornado dampers which are Class 3 dampers. The subsystem is reliable based on having the TSC diesel as an alternate power source. In addition, the supply and return air fans as well as the chilled water system is designed with 100 percent redundancy.

3.2.3.1 Startup

Operation of this subsystem is controlled locally in the TSC A. area, which has all the controls and system monitoring. The system operation is similar to control room HVAC system, except this is a single-train system with 100 percent redundancy for the supply and return fans only. Prior to manual start of the fans, the outside air inlet damper and return air dampers for the main AHU and normal exhaust damper are verified to be open. The smoke purge exhaust damper is similarly verified to be closed. After damper position verification and establishing chilled water flow through the main AHU cooling coil, the supply, return, and exhaust fans are started. Only one supply and return fan is required to operate; the other is on standby. Also, after establishing the chilled water flow, one of the two AHUs for computer room is started. The makeup filter unit does not operate during normal operation.

ATTACHMENT 5