

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20556-0001

PUBLIC SERVICE ELECTRIC & GAS COMPANY ATLANTIC CITY ELECTRIC COMPANY

DOCKET NO. 5C-354

HOPE CREEK GENERATING STATION

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 66 License No. NPF-57

- The Nuclear Regulatory Commission (the Commission or the NRC) has found that:
 - A. The application for amendment filed by the Public Service Electric & Gas Company (PSE&G) dated August 30, 1993, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I:
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance: (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations set forth in 10 CFR Chapter I;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-57 is hereby amended to read as follows:
 - (2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 66, and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into the license. PSE&G shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

 The license amendment is effective as of its date of issuance and shall be implemented within 60 day days of the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Charles L. Miller, Director Project Directorate I-2

Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuance: February 28, 1994

FACILITY OPERATING LICENSE NO. NPF-57

DOCKET NO. 50-354

Replace the following pages of the Appendix "A" Technical Specifications with the attached pages. The revised pages are identified by Amendment number and contain vertical lines indicating the area of change. Overleaf pages provided to maintain document completeness.*

Remove	Insert	
3/4 8-29	3/4 8-29 3/4 8-30*	
3/4 11-17	3/4 11-17 3/4 11-18*	

TABLE 3.8.4.1-1 (Continued)

PRIMARY CONTAINMENT PENE ION CONDUCTOR OVERCURRENT PROTECTI. DEVICES

2. 480-VOLT MOLDED CASE CIRCUIT BREAKERS (Continued)

CIRCUIT BREAKER NO.			SYSTEMS OR EQUIPMENT POWERED
52-253064			Reactor Vessel Head Vent to
		TM HFB150	
52-263011	10B263	IM HFB150	Reactor Vessel Head Vent
		TM HFB150	Outboard Isolation 1BB-HV-F002
52-263012*	108263	IM HFB150	Recirc Pump Motor Hoist 18H201
		TM HFB150	Disconnect Switch 1BS204
52-263042*	108263	IM HFB150	Main Steam Relief Valve Hoist
		TM HFB150	10H;02 Disconnect Switch 10S20
52-263054	108263	IM HFB150	RWCU Suction from Recirc
		TM HFB150	Loop A 1BG-HV-F100
52-263081	108263	IM HFBI50	RWCU Suction from RPV Drain
		TM HFB150	Valve 1BG-HV-F101
52-263082	10B263	IM HFB150	RWCU Suction Valve 1BG-HV-F102
		TM HFB150	
52-263083	10B263	IM HFB150	RWCU Suction from Recirc Loop
		TM HFB150	B Valve 1BG-HV-F106
52-264053	108264	IM HFB150	Recirc Pump A Discharge Valve
		TM HFB150	1BB-HV-F031A
52-264062	108264	IM HFB150	Feedwater Inlet B Shutoff
		TM HFB150	Valve 1AE-HV-F011B
52-264071	108264	IM HFB150	Reactor Recirc Pump 1AP201
		TM HFB150	Space Heater 1AS220
52-264072	10B264	IM HFB150	Reactor Recirc Pump 1BP201
		TM HFB150	Space Heater 1BS220
52-264083	10B264	IM HFB150	Recirc Pump A Suction Valve
		TM HFB150	1BB-HV-F023A

^{*} These breakers shall be administratively maintained open in OPERATIONAL CONDITIONS 1, 2 and 3 and are not required to be tested.

ELECTRICAL POWER SYSTEMS

MOTOR OPERATED VALVES - THERMAL OVERLOAD PROTECTION (BYPASSED)

LIMITING CONDITION FOR OPERATION

3.8.4.2 The thermal overload protection bypass circuit of each motor operated valve (MOV) shown in Table 3.8.4.2-1 shall be DPERABLE.

APPLICABILITY: Whenever the MOV is required to be OPERABLE.

ACTION:

With the thermal overload protection bypass circuit for one or more of the above required MOVs inoperable, restore the inoperable thermal overload protection bypass circuit(s) to OPERABLE status within 8 hours or declare the affected MOV(s) inoperable and apply the appropriate ACTION statement(s) for the affected system(s).

SURVEILLANCE REQUIREMENTS

- 4.8.4.2.1 The thermal overload protection bypass circuit for each of the above required MOVs shall be demonstrated OPERABLE:
 - a. At least once per 18 months by the performance of a CHANNEL FUNCTIONAL TEST for:
 - Those thermal overload protection devices which are normally in force during plant operation and bypassed only under accident conditions.
 - A representative sample of at least 25% of those thermal overload protection devices which are bypassed continuously and temporarily placed in force only when the MOVs are undergoing periodic or maintenance testing, such that the bypass circuitry for each thermal overload protection device of this type is tested at least once per 6 years.
 - 3. A representative sample of at least 25% of those thermal overload protection devices which are in force during normal manual (momentary push button contact) MOV operation and bypassed during remote manual (push button held depressed) MOV operation, such that the bypass circuitry for each thermal overload protection device of this type is tested at least once per 6 years.
 - t. Following maintenance on the motor starter.
- 4.8.4.2.2 The thermal overload protection for the above required MOVs which are continuously bypassed and temporarily placed in force only when the MOV is undergoing periodic or maintenance testing shall be verified to be continuously bypassed following such testing.

RADIOACTIVE EFFLUENTS

MAIN CONDENSER

LIMITING CONDITION FOR OPERATION

3.11.2.7 The radioactivity rate of noble gases measured at the recombiner after-condenser discharge shall be limited to less than or equal to 3.30 E+5 microcuries/sec after 30 minute decay.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2* and 3*.

ACTION:

With the radioactivity rate of noble gases at the recombiner after-condenser discharge exceeding 3.30 E+5 microculies/sec after 30 minute decay, restore the radioactivity rate to within its limit within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.11.2.7.1 The radicactivity rate of noble gases at the recombiner after-condenser discharge shall be continuously monitored in accordance with Specification 3.3.7.1.

4.11.2.7.2 The radioactivity rate of noble gases from the recombiner after-condenser discharge shall be determined to be within the limits of Specification 3.11.2.7 at the following frequencies by performing an isotopic analysis of a representative sample of gases taken near the discharge of the main condenser air ejector:

- a. At least once per 31 days.
- b. Within 4 hours following an increase, as indicated by the Offgas Pretreatment Radiation Monitor, of greater than 50%, after factoring out increases due to changes in THERMAL POWER level, in the nominal steady-state fission gas release from the primary coolant.
- c. The provisions of Specification 4.0.4 are not applicable.

^{*}When the main condenser air ejector is in operation.

RADIOACTIVE EFFLUENTS

VENTING OR PURSING

LIMITING COMDITION FOR OPERATION

3.11.2.8 VENTING or PURGING of the Mark I containment drywell shall be through either the reactor building ventilation system or the filtration, recirculation and ventilation system.*

APPLICABILITY: Whenever the containment is vented or purged.

ACTION:

- a. With the requirements of the above see .vi.ation not satisfied, suspend all VENTING and PURGING of the drywell.
- b. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.8 The containment shall be determined to be aligned for VENTING or PURGING through the reactor building ventilation system, the filtration, recirculation and ventilation system, or the hardened torus vent within 4 hours prior to start of and at least once per 12 hours during VENTING or PURGING of the drywell.

^{*} Following Type A Integrated Leakage Rate Testing, the Mark I containment drywell may be vented through the hardened torus vent.