- Wood-Leaver and Associates, Inc. -

WLA-1-R-82-02 Rev 1

RELIABILITY ANALYSIS OF THE EMERGENCY FEEDWATER SYSTEM AT THE SEABROOK NUCLEAR POWER STATION

FINAL REPORT

Prepared For:

YANKEE ATOMIC ELECTRIC COMPANY

and

PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE

By

B. A. Brogan R. E. Land L. E. Peters, Jr. A. E. Tome, Jr.

WOOD-LEAVER AND ASSOCIATES, INC. 296 Duff Road Monroeville, PA 15146

8209080111 820826 PDR ADOCK 05000443 A PDR June, 1982

TABLE OF CONTENTS

1.0	INTRODUCTION		
1.1	BACKGROUND		
1.2	PURPOSE		
1.3	SCOPE		
2.0	SYSTEM DESCRIPTION		
2.1	EMERGENCY FEEDWATER SYSTEM		
2.2	STARTUP FEEDPUMP SYSTEM		
2.3	EMERGENCY ELECTRICAL POWER SOURCES		
2.4	INSTRUMENTATION AND CONTROLS	11	
3.0	RELIABILITY ANALYSIS	14	
3.1	FAULT TREE MODEL	14	
3.2	DATA USED IN FAULT TREE QUANTIFICATION	16	
	3.2.1 Failure Data-General	17	
	3.2.2 Treatment of Time Dependent Failures	19	
	3.2.3 Test and Maintenance Outages	22	
	3.2.4 Operator Errors	25	
3.3	RESULTS FROM FAULT TREE ANALYSES	28	
	3.3.1 Computer Codes	28	
	3.3.2 Events Analyzed	28	
	3.3.3 Numerical Reliability Results	31	
	3.3.4 Dominant Failures for Three Pump AFW System	32	
	3.3.5 Potential Common Cause Failures	36	
4.0	CONCLUSIONS	38	
5.0	REFERENCES		
6.0	BIBLIOGRAPHY 4		
Appendi	ces (A-D)		

RELIABILITY ANALYSIS OF THE SEABROOK NUCLEAR STATION EMERGENCY FEEDWATER SYSTEM

1.0 INTRODUCTION

1.1 BACKGROUND

The action plan developed by the NRC in response to the accident at the Three Mile Island Unit-2, NUREG-0737, requires (Item II.E.1.1) that all operating nuclear power plants or plants applying for operating licenses conduct a reliability analysis of the auxiliary feedwater (AFW) system. The analysis is to be performed using event-tree and fault-tree logic techniques and is intended to evaluate the potential for system failure during a variety of loss of main feedwater transients. The primary purpose of the reliability evaluation is to identify potential failures resulting from human errors, common causes, single-point vulnerabilities, and outages due to test and maintenance.

The stated purpose of the recommendations associated with TMI Action Plan Item II.E.1.1 was to decrease the unreliability of AFW systems towards a goal of 10^{-4} to 10^{-5} per demand for loss of main feedwater and loss of offsite power transients. As a result of reliability evaluations performed both by the NRC staff (NUREG-0611) and various operating license applicants, it was deemed by the staff that three AFW pumps were necessary to achieve the desired unreliability goal assuming all other AFW system safety criteria are met. Therefore the current staff position is that applicants for operating licenses must include at least three AFW pumps in their plant design, and each pump must be capable of providing to the steam generators at least the minimum flow necessary for decay heat removal following a loss of offsite power. Also, a minimum of two of these pumps and their associated trains must be safety grade.

On October 30, 1981, the NRC staff informed the Public Service Company of New Hampshire, (PSNH) of the staff position regarding AFW system reliability, and questioned the ability of the Seabrook Nuclear Station auxiliary feedwater system to meet the specified reliability goals. The Seabrook AFW system¹ consists of a two-pump safety grade emergency feedwater (EFW) system and a non-safety grade "startup feed pump" that may operate in parallel with the emergency feed pumps. The staff's concern, as stated in the October 30 letter, related primarily to the perceived inability to power the third "start-up" pump from the emergency AC buses.

PSNH replied to the staff's concerns by letter on December 4, 1981.² In this response it was noted that provisions were included in the Seabrook design to allow the startup feed pump to be powered from an emergency bus if necessary. With this provision it is the position of PSNH that the Seabrook EFW system design meets the requirements of the October 30 letter from the staff.

1.2 PURPOSE

The purpose of this study was to perform a reliability analysis of the Seabrook EFW system considering the use of the startup feed pump as a third source of emergency feed water and to demonstrate using the results of the study the validity of PSNH's position, i.e., that the required reliability goals as specified by the NRC staff are met by the existing Seabrook AFW system design. In addition, this study was intended to identify for PSNH and the NRC staff any dominant faults affecting the AFW system reliability under the loss of main feedwater/loss of power transient conditions specified by the staff in NUREG-0611. The techniques used to achieve these objectives were the logic modeling methods specified by NUREG-0737.

1.3 SCOPE

The EFW system design evaluated by this study is that described in section 6.8 of the Seabrook Nuclear Station Final Safety Analysis Report (FSAR) and further described in system description document SD-1M. The

- In this report the term "auxiliary feedwater", or AFW, system as applied to Seabrook means the combined emergency feedwater and startup pump systems.
- 2 Letter No. SBN 198, T.F. H4.4.98 to Mr. Frank J. Miraglia from Mr. John DeVincentis.

design of the startup feed pump system is described in system description document SD-1Q. The primary sources of specific design information about both the systems described in these documents were facility P and I drawings and logic diagrams. A listing of all drawings used in the course of this study is provided in Appendix C.

The transient conditions under which the AFW system reliability was determined are those outlined by the NRC staff in NUREG-0611, i.e.,

- o Loss of main feedwater with reactor trip;
- Loss of main feedwater with coincident loss of offsite station power;
- Loss of main feedwater with coincident loss of all station AC power.

For each of the transient conditions analyzed, unreliability was defined as the probability of failure of the combined EFW and startup pump system to start and provide feedwater to at least two steam generators prior to the time that the steam generators would boil dry following a reactor trip from full power. The time required to boil away the water in the steam generators is determined by the initial mass of water contained in them at the time of trip and the amount of decay heat liberated from the core. For the Seabrook station this time would generally be in the range of 35 to 60 minutes following a trip from full power operation; therefore, 30 minutes was selected as a conservative mission time for this reliability study. The unreliabilities calculated exclude any consideration for the causes or probabilities of the specified transient conditions, nor do they consider external common mode failure initiators such as earthquakes, floods, etc.

2.0 SYSTEM DESCRIPTION

2.1 EMERGENCY FEEDWATER SYSTEM

A schematic of the emergency feedwater system at Seabrook is shown in Figure 1. The system consists of two pumps each supplied by individual suction lines from the condensate storage tank (CST). Each pump has a design flow of 710 gpm at a head of 3050 feet and is capable of providing full cooling of the reactor coolant system in emergency situations. One pump is driven by an AC motor which is powered by one of the 4160V plant emergency buses. The second pump is steam-turbine driven with steam being supplied from either of two steam generators. Take-off points for the turbine steam supply lines are upstream of the main steam isolation valves, thereby ensuring motive power to the turbine even in the event of steam line isolation. Both pumps are attached to a common return to the CST which is used for pump testing. This return line is isolated during normal operation.

During operation of the EFW system, both pumps discharge into a common header which in turn supplies four individual supply lines to each of the four steam generator main feed lines. Each emergency feed line joins its associated main feedwater header downstream of the feedwater isolation valve and outside of containment.

The emergency feedwater supply lines are each equipped with two motor-operated flow isolation valves and a flow limiting venturi. The valves are normally open and are designed to fail "as-is" on loss of power. The valve positions are set such that they assure a minimum of 235 gpm to each steam generator during normal operation with both EFW pumps running. The control systems for the valves are designed to isolate an emergency feed supply line if flow in the line exceeds a preset high flow value. This feature prevents diversion of EFW flow following a line break in any steam generator. A single flow orifice located between the isolation valves in each line provides differential pressure information to the control equipment for flow measurement. Two separate flow transmitters are used to provide independent high flow isolation signals to each of the isolation valves. The flow transmitters, control equipment, and motor-operators for the

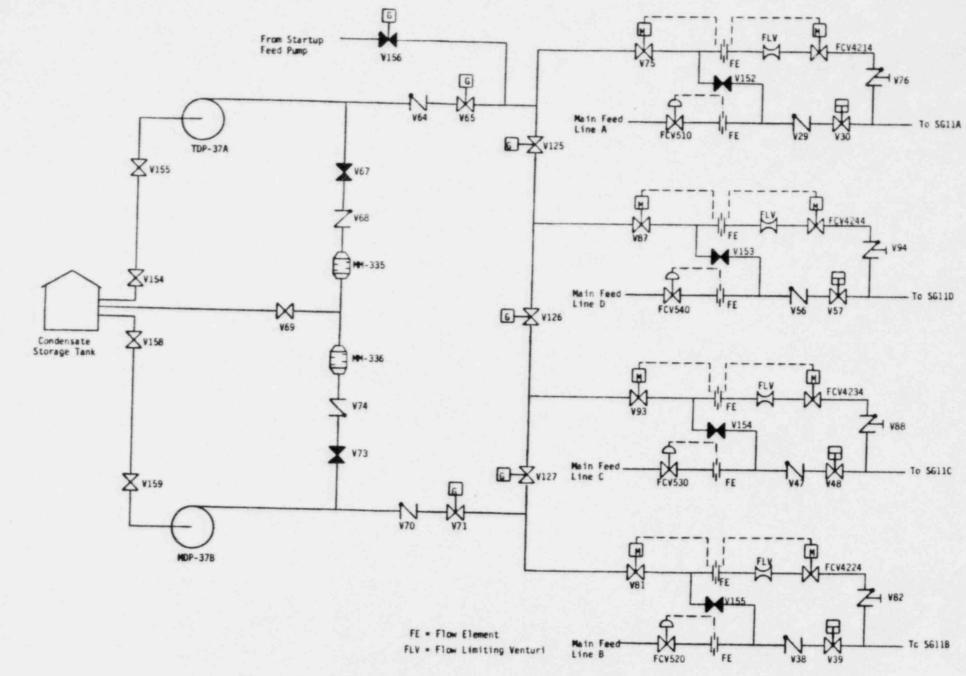
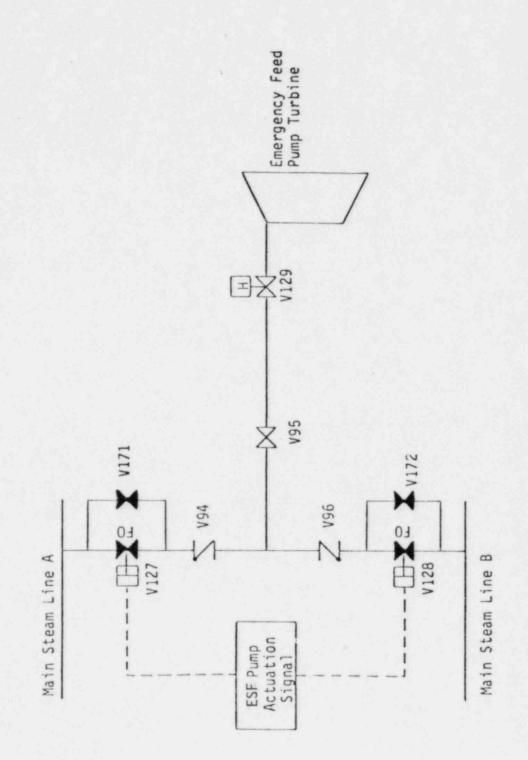


Figure 1. Seabrook Nuclear Station Emergency Feedwater System

S

valves upstream of the flow elements are powered by train B emergency electrical buses while those downstream of the flow elements are powered by train A buses.


Assuming both EFW pumps are running, flow through any EFW line is limited to a maximum of 750 gpm by a flow limiting venturi also located between the isolation valves. This flow limitation provides runout protection for the EFW pumps in the event of depressurization of any steam generator. The venturis provide an added benefit in that a pipe break in any steam generator along with failure of both isolation valves in the associated EFW line will not cause a complete loss of cooling water to the remaining steam generators.

Each supply line is also equipped with a non-return valve which prevents the EFW system from being subjected to normal steam generator pressures when the EFW system is not in use.

The pump discharge headers and the common emergency feedwater header are equipped with a total of five isolation valves that are used to segregate various parts of the system for testing and maintenance activities. These valves are all manual, gear-operated valves that are locked open when the system is in its normal readiness state. The pump discharge headers are also equipped with check valves to prevent reverse flow through a pump during operation with the pump out of service. Flow diversion through the pump recirculation lines is prevented during normal operation by normally closed manual valves in each recirculation header. The recirculation lines are also equipped with pressure reducing orifices that will limit flow should the manual valves be left open.

Each pump suction line to the CST contains two manual isolation valves, one in the tank yard and one in the emergency feed pump building. Both valves are normally open and locked in position.

The steam supply lines for the turbine-driven EFW pump are shown in Figure 2. Steam can be supplied to the turbine from either steam generator "A" or "B". Steam from either steam generator is supplied to a common header

.

Figure 2. Steam Supply for Turbine-Driven EFW Pump

through air-operated, fail-open valves that are actuated by an engineered safety feature (ESF) actuation signal. Both valves will open as a result of a loss of offsite power, low-low level in any steam generator, or any safety injection signal.* Each steam supply line is equipped with a check valve to prevent diversion of steam from the turbine in the event of a pipe break in one of the steam lines. The common supply header to the turbine-driven pump contains a normally open manual isolation valve used during turbine maintenance and a spring-loaded mechanical trip valve that closes on turbine over-speed.

Oil cooling for the turbine-driven EFW pump bearings is provided by an oil cooler supplied directly from the discharge of the turbine-driven pump. The cooling flow is discharged to the common recirculation header.

2.2 STARTUP FEEDPUMP SYSTEM

The elements of the startup feedpump (SUF) system at Seabrook are shown in Figure 3. The system consists of a single motor-driven pump capable of supplying 1500 gpm at 3000 ft. of head. The pump takes suction from the CST via the main condensate makeup line. The suction line between the pump and CST is equipped with three normally open manual isolation valves. The discharge headers from the pump attaches to six other feedwater system headers, i.e., the main feedwater pump discharge header, the high-pressure feedwater heater outlet header, the condensate pump discharge header, the make-up header from the CST, the steam generator recirculation pump discharge header, and the EFW pump discharge header. The pump is also equipped with a recirculation line to the CST for pump protection and testing. Flow through the recirculation line is controlled by a pressure-controlled throttling valve that senses pressure at the pump discharge.

With the exception of the main feedwater pump discharge header, the discharge from the startup pump is isolated from all feed system headers by at least one normally closed valve. The supply path to the main feedwater pump discharge header is normally open but is equipped with a manual gear-operated

 These same signals will also automatically start the motor-driven EFW pump.

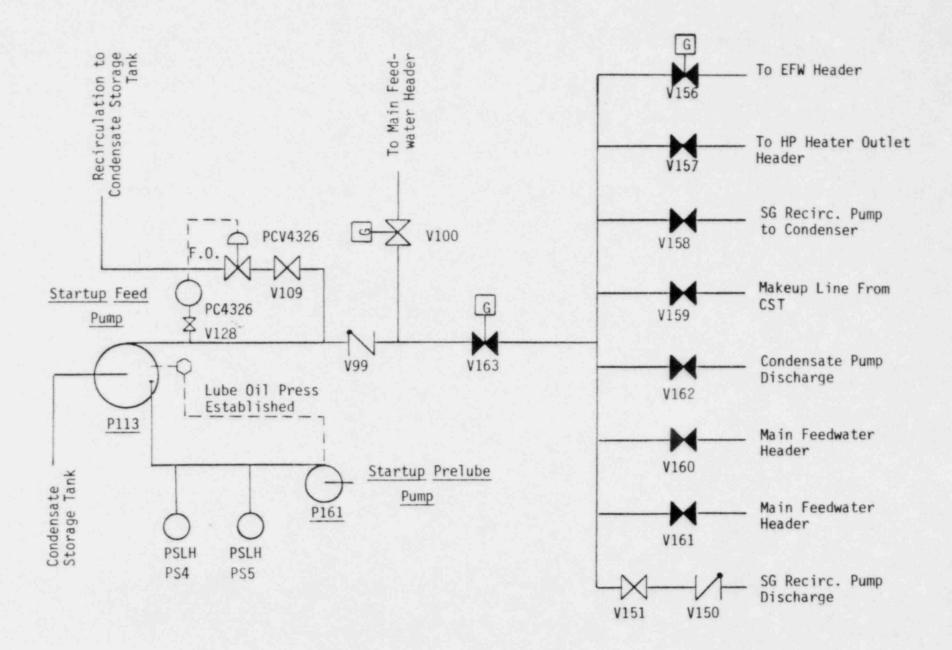


Figure 3. Seabrook Nuclear Station Startup Feed Pump System

valve to allow isolation if necessary. Flow to the EFW pump discharge header is prevented during normal operation by two normally closed manual gear-operated isolation valves.

During startup, lubrication of the SUF pump is provided by a motor driven auxiliary lube oil pump. Operation of the auxiliary lube oil pump is controlled by SUF pump lube oil pressure. When the SUF pump is in the AUTO control mode, startup of the lube oil pump will be followed by start of the SUF pump when sufficient oil pressure is established. Once started, a shaft-driven lube oil pump located on the SUF pump supplies lubrication and the auxiliary lube oil pump is stopped. Should the shaft-driven pump fail, the auxiliary oil pump will automatically restart.

In its normal operating mode the SUF pump will start automatically on a trip of both main feed pumps unless a safety injection or high-high steam generator level signal also occurs.

2.3 EMERGENCY ELECTRICAL POWER SOURCES

Emergency electrical power for the EFW and SUF systems is supplied from both 4160V emergency AC buses and both vital DC instrument buses. Power for the motor-driven EFW pump is taken from emergency AC bus E6 and dieselgenerator 1B while the SUF pump, via operator action, can be powered from emergency AC bus E5 and diesel-generator 1A. The auxiliary lube oil pump used when starting the SUF pump is also supplied power by bus E5 through buses E52 and E523. Control power for the motor-driven EFW train is taken entirely from vital DC instrument bus 11B. Control power for the steam-turbine admission valves is supplied from both ESF trains, one valve receiving control power from DC bus 11A in train A and the other receiving power from DC bus 11B in train B. There are no AC power dependencies in the turbine-driven EFW pump train. As noted in Section 2.1, electrical power for the EFW isolation valves also comes from the emergency buses, and train separation criteria are met for each EFW supply line.

2.4 INSTRUMENTATION AND CONTROLS

The control room operator at Seabrook has available a variety of instrumentation and controls that allow him to monitor and direct operation of both the emergency feedwater system and the startup feed pump. The important equipment relative to EFW and SUF system operation are listed below:

Instrumentation

Location

- Operating status lights for the motor-driven EFW pump
- Position indication lights for both steam admission valves to the turbine-driven EFW pump
- Suction and discharge pressures for both EFW pumps
- Flow indication for each emergency feedwater supply line
- Three narrow-range and one widerange level transmitter in each steam generator
- Steam pressure in each steam generator
- o Dual CST level transmitters

Alarms

- o Trip alarm for motor-driven EFW pump
- Alarms indicating local operation of either EFW pump
- Low suction pressure alarms for both EFW pumps
- o Startup feed pump trip alarm
- Startup feed pump pre-lube pump running alarm
- * Position indication is available at the remote shutdown panel only for valve V-127.

Control room/remote safe shutdown panel

Control room/remote safe shutdown panel *

Control room/local

Control room/remote safe shutdown panel

Control room/remote safe shutdown panel

Control room

Control room

Location

Control room

Control room

Control room

Control room

Control room

- o Low and low-low level alarms in each steam generator
- o CST low level alarms
- o SI actuation alarm
- Pump motor bearing and winding temperature alarms
- Emergency feed pump valves misaligned
- o SUF pump powered from bus E5

Controls

- Manual/auto controller for motor-driven EFW pump
- o Manual/auto controller for turbine-driven EFW pump steam admission valve
- o Manual/auto controller for each EFW flow limiting valve
- Manual/auto controller for startup feed pump
- o Manual/auto controller for startup feed pump prelube pump

Automatic Actuation Signals

- o Safety injection signal
- o High flow to one S/G
- Low-low level in any steam generator
- o Loss-of-offsite power signal

Control room

Control room

Control room

Control room

Control room

Control room

Location

Control room/ switchgear room

Control room/remote safe shutdown panel *

Control room/remote safe shutdown panel

Control room

Control room

EFW Function

Starts both EFW pumps

Close both EFW isolation valves in line with high flow

Starts both EFW pumps

Starts both EFW pumps

 Only steam-admission valve V-127 can be controlled at the remote shutdown panel.

- o Trip of both main feed pumps
- Low bearing oil pressure at SUF pump

Starts SUF pump *

Starts SUF prelube pump

 This signal is prohibited if either a safety injection or steam generator high-high level signal is present.

3.0 RELIABILITY ANALYSIS

3.1 FAULT TREE MODEL

The fault tree model used for this study was developed from an existing fault tree created several years ago as part of a "mini WASH-1400" review of the Seabrook station. In its original form the tree considered the two-pump emergency feedwater system but did not include modeling of the startup feed pump. In the initial phases of this study the old fault tree model was reviewed for accuracy and revised as necessary to properly reflect the current EFW system design at Seabrook. In addition, the logic necessary to model the impact of the SUF system on AFW system reliability was incorporated into the trees. As a result, the fault tree now models the entire "three pump" AFW system as it currently exists in the Seabrook design. In essence, failures of all components shown in Figures 1 through 3 of this report are now considered by the fault tree model. A logic diagram of the complete fault tree is provided in Appendix A.

In addition to component failures, the fault tree also includes logic to consider the effects of failures in interfacing systems on AFW system reliability. Examples are failures of the electrical power sources for the EFW and SUF pump and controls, failures of reactor protection system actuation signals, failures at piping interfaces with the main feedwater/condensate systems, failures in the steam generators, and errors by plant personnel while maintaining and operating the system.

The handling of operator errors by the Seabrook EFW system fault tree requires some discussion because of the potentially large impact such errors might have on the capability of the startup feed pump to function as a backup to the safety grade EFW system. As was noted in Section 1.0, the primary reason for conducting the reliability analysis reported here was to demonstrate this backup capability. To do this, two key concerns had to be addressed: the ability to provide emergency AC power to the SUF system and the ability to align the SUF system with the EFW system. In the current Seabrook design these two functions can be accomplished only through a specific set of operator actions at locations other than the control room.

In order to provide power to the SUF pump from an emergency AC bus, an operator must manually "rack out" the SUF pump breaker from bus 4 located in the non-essential switchgear room, move it to the essential switchgear room, and manually "rack in" the breaker to emergency bus E5. He must also change the bus transfer switch to the E5 bus position. The breaker has been equipped with built-in rollers to facilitate moving it from room to room. In addition, the two switchgear rooms are adjacent to each other minimizing the distance that the breaker must be moved.

Aligning of the SUF pump with the EFW systems also requires an operator (or operators) to change the position of three manual isolation valves. One of the valves (V-109) must be closed to prevent possible flow diversion of the SUF pump discharge to the condensate tank via the SUF recirculation line should power be lost to the SUF pump recirculation valve (PCV-4326). The remaining two valves (V-156 and V163) must be opened to connect the SUF pump discharge header to the EFW system header. Valves V-109 and V-163 are located in the turbine hall. Valve V-156 is in the emergency feed pump room.

The approach used in this analysis to correctly depict the operator actions outlined above was to consider alignment of the SUF pump for emergency operation to be four distinct actions rather than just one. Failure to perform any one of the four can prevent the SUF pump from performing the desired function under the appropriate set of conditions.

The first three actions relate to operation of the three manual valves in the cross-tie and pump discharge headers. Failure to change the position of any valve was assumed to prevent flow from the SUF reaching the EFW header. Each operation was considered to be a separate event because of the different valve locations, and because more than one operator might be sent to perform the required actions.

The fourth action considered in the fault tree was the loading of the startup pump system onto an emergency bus. In reality this action represents multiple operations (viz. starting the prelube oil pump, moving the pump circuit breaker to the essential switchgear room, starting the SUF pump, etc.). In this case, however, all the controls necessary to start both the SUF prelube pump and the SUF pump are available on the main control board. The only actions required outside the control room are moving of the pump breaker and changing of the bus transfer switch as described earlier. This is likely to be done by one operator following well defined procedures. Therefore, for the purpose of this study, it was judged that a single operator error event could adequately represent failures in the pump loading process.

In addition to using four operator errors that could result in failure of the SUF pump system, special consideration was also given to the failure rates applied to these actions. Even though it is assumed that specific emergency procedures and operator training will be used at Seabrook to ensure proper utilization of the SUF pump during emergencies, the failure rates used in this study for these operator errors is significantly higher $(.01/demand)^*$ than would normally be expected for situations where well developed procedures are in place and special operator training is provided. Again use of the higher values was felt to be necessary to reflect the disparity in locations where actions must be performed and because of the short time (\approx 30 minutes) available for the actions to be completed. Further discussion of these and other operator error rates is provided in the following section.

3.2 DATA USED IN FAULT TREE QUANTIFICATION

Previous analyses similar to the one presented here that have been conducted by other utilities owning plants designed by Westinghouse have generally had as an objective a comparative evaluation of the reliability of a specific emergency feedwater system with generic reliability analyses reported by the NRC staff in NUREG-0611. However, as noted in Section 1.0 of this report, the October 30th, 1981 letter to Seabrook specified a quantitative reliability goal for emergency feedwater system performance. For that reason the component failure data presented in NUREG-0611 was considered to be too

^{*} The error associated with isolating the SUF pump recirculation line was assigned a value of 10-³/d because it was assumed to be coupled with opening one of the cross-tie isolation values. See Section 3.2 for further discussion.

general to allow an accurate fault tree analysis of system unreliability to be performed. Therefore, it was decided that the best failure information available to date would be incorporated in this study. The following section presents that data and the sources from which it was taken.

3.2.1 Failure Data - General

Table B.1 (Appendix B) presents a compilation of data for various failure modes of different power plant components, both mechanical and electrical. The data was extracted from the following sources:

- 1) The Reactor Safety Study (WASH-1400)
- GE-22A2589, Recommended Component Failure Rates, May 1974
- 3) IEEE-Std 500-1977, Nuclear Reliability Data Manual.

and the following reports from the Licensee Event Report (LER) evaluation program:

- 1) NUREG/CR-1205, Data Summaries of LER's of Pumps
- NUREG/CR-1362, Data Summaries of LER's of Diesel Generators
- NUREG/CR-174C, Data Summaries of LER's of Selected Instrumentation and Control Components
- 4) NUREG/CR-1363, Data Summaries of LER's of Valves.

The data values obtained from the above references are resented in Table B.1 for each failure mode for which data from that reference was applicable. To avoid ambiguity where multiple values are presented for a single failure mode, Table B.1 indicates the recommended value that was used in the fault tree analysis. In the cases where multiple data values exist, engineering judgement was used to determine the most appropriate data based on similarity of the plant component, function and environment to the equipment represented by the data.

In some instances the data presented in the referenced sources were either too general or the component data were obtained on like components having dissimilar functions. In particular, NUREG/CR-1205 presents component failure data for pumps by generic classification, namely, running, alternating and standby. However, review of the LERs revealed that sufficient data was available to extract specific component data for motor and turbine driven auxiliary feedwater pumps.

Similarly, the generic values presented in NUREG/CR-1363 for safety/relief valve failure rates were calculated using primary side components (i.e., pressurizer relief valves, pump relief valves, etc.) only. The components of interest in the Seabrook fault tree were the steam generator safety/relief valves. A limited amount of data existed in the LERs on secondary safety/relief valve failures. Also, it was noted that licensees do not always report relief valve failures since no credit is taken for them in accident analyses. To compensate for these facts, the values presented in Table B.1 for safety and relief valve premature opening were calculated using the information available in NUREG/CR-1363 and applying a factor of 5 to the safety valve failure rate and a factor of 10 to the relief valve failure rate.

One further point should be mentioned as to the conservative bias built into some of the data. In particular, the failure rates of the diesel generator, as taken from NUREG/CR-1362 for weekly testing, are $1.0 \times 10^{-2}/d$ for the failure to start mode and $6.0 \times 10^{-3}/hr$ for the failure to run mode. These failure rates are calculated assuming that all plant diesel generators are tested weekly. However, this does not account for the many starts of the diesel generators which occur outside of normal testing periods. Therefore, the number of demands on the diesel generators are underestimated while, conversely, the number of failures reflects diesel generator failures which occur during all phases of operations. For those reasons, the failure rates from NUREG/CR-1362 associated with weekly testing were considered to be most representative of the diesel failure frequencies to be expected at the Seabrook station.

3.2.2 Treatment of Time Dependent Failures

Failure rates used in the fault tree analysis are either demand dependent or time dependent. Demand dependent failure rates are applied to static components which are required to change position or state to perform their required function. Examples are the auxiliary feedwater pumps which are required to start on demand and certain valves, such as the steam turbine inlet valves (V-127 and V-128), which are required to change state upon receipt of the appropriate actuation signal.

Time dependent failures are characterized by the necessity of a component to maintain condition, position or status in order to perform its required function. Examples are the auxiliary feedwater pumps which must continue to run once started, valves which must maintain their position (e.g., remain open), and electrical components which must maintain their status (e.g., pump breakers do not trip) for the entire mission time prescribed for a particular transient. Time dependent failures are also characteristic of components which are in a standby condition and which could fail prior to operation.

The unavailability of a time dependent component is calculated from the hourly failure rate and a mission time for operating components, or a testing interval for standby components. The time interval used is dependent on the testing frequency, the actuation circuitry employed, and the operational requirements of a component for the transient being considered. For example, consider the actuation circuit of the motor- driven emergency feedwater pump shown in Figure 4. This pump can be started automatically on receipt of either a safety injection signal, a loss of offsite power signal, or on a low-low steam generator water level signal. It can also be started manually from the control room by the operator using manual/auto control station CS-4255-1. The Technical Specifications require that the motor-driven EFW pump be tested every month. During these tests the pump will be started manually from the control room using CS-4255-1. This procedure will also test the integrity of the control circuit from CS-4255-1 to the pump. Therefore, for certain failure modes of the control circuits, the proper testing frequency would be calculated from the one month testing interval, i.e.:

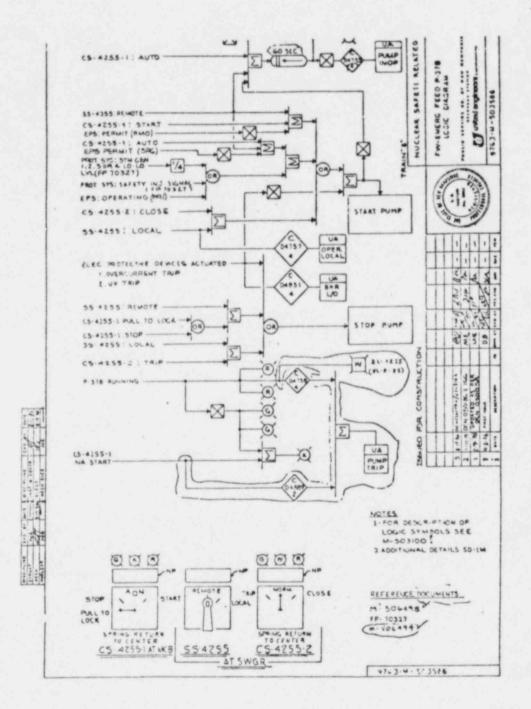


Figure 4. Motor-Driven EFW Pump Control Logic

t = [30 days x 24 hours/day] / 2 = 360 hours.

In comparison, the tests of EFW system components to actuate on an automatic signal will be performed only every 18 months. The unavailability of a component due to failure to receive an automatic actuation signal therefore would be calculated on the basis of the following time interval:

t = (18 months x 720 hours/month) / 2 = 6480 hours.

It is assumed that for the monthly test of the turbine-driven emergency feed pump only one of the two steam admission values is opened and that these values are used alternately from one test to the next. Therefore, the control circuitry to the steam inlet values V-127 and V-128 would each be tested on a bi-monthly interval, and the unavailability of these values due to failures of the control system are calculated using the following interval:

t = [60 days x 24 hours/day] / 2 = 720 hours.

The unavailability of components which are required to operate or maintain condition are calculated using the mission time. In the study presented here the mission time is the time in which the steam generators would boil dry given an insufficient supply of water from the emergency feedwater system.

The unavailability of each failure event used in the Seabrook fault tree analysis, defined using the criteria discussed above, is presented in Table B-2 (Appendix B).

3.2.3 Test and Maintenance Outages

In addition to a component being unable to accomplish its function due to mechanical or electrical faults, a component may be unable to respond to a system demand because that component is out of service due to maintenance or testing. Technical Specifications limit the time during which some components can be unavailable and the plant still maintained at full power conditions. At Seabrook one such limit applies to the EFW system. In the event that an emergency feedwater pump is disabled, restoration must occur within 72 hours or the plant must be placed in a hot standby condition. This 72 hour limit is assumed to apply also to pump discharge isolation valves if they require servicing.

All other components within the emergency feedwater system at Seabrook are assumed to have no time restrictions in relation to plant operation. However, the assumption was made that combinations of components which disable more than one emergency feedwater supply line could not be taken out of service simultaneously. No maintenance requirements were considered for manually operated valves within the emergency feedwater system since these valves are located in low energy lines and position changes, other than those required for testing, do not routinely occur between scheduled outages. Unavailabilities of these valves due to maintenance errors during scheduled outages have been considered and will be described in a later section.

Maintenance unavailabilities were calculated from data presented in NUREG/CR-1635, Nuclear Plant Reliability Data System 1979 Annual Reports of Cumulative System and Component Reliability. This source presents average restoration times for various components and failure modes. For those components whose outage times are limited by the Technical Specifications, the average restoration time was assumed equal to 72 hours if the average time specified by NUREG/CR-1635 was greater than 72 hours. The maintenance unavailability for a component was then calculated as follows:

 $Q_{maint} = N \times t_{/T}$

where:

N = number of maintenance acts
t = average component restoration time
T = total component calendar hours.

Note that this calculation introduces additional conservatism because it assumes all maintenance acts are performed while the plant is operating at power. A list of maintenance unavailabilities is presented in Table 1.

Additional unavailabilities can be assigned to emergency feedwater system components due to periodic testing. In particular, the Technical Specifications require that the emergency feedwater pumps be started every month. Referring to Figure 1, the procedure for testing pump P-37A or 37B is to close either manual isolation valve V-65 or V-71 and open manual valve V-67 or V-73 to recirculate emergency feedwater to the condensate storage tank.

The startup feed pump can be tested in several ways. One method would be through the normally open manual valve V-100 in the line which connects the startup pump discharge to the discharge line of the main feedwater pumps. Another would be to close V-100 and recirculate water to the condensate storage tank through PCV-4326 which will open automatically on high pump discharge pressure. However, if the startup pump is needed, PCV-4326 will automatically close as pump discharge pressure decreases thereby eliminating possible flow diversion. Neither of these test methods change the configuration of the startup feed pump; therefore, no test outage was applied to the startup feed system. One exception to this assumption is discussed in the section on operator actions.

The test frequency for the emergency system is once per month and the time interval of the test was assumed to be the average test time for pumps of 1.4 hours found in Table III 5-1 of WASH-1400. The unavailability due to testing therefore is:

$$Q_{\text{test}} = \frac{1.4}{720} = 2 \times 10^{-3}$$

The test unavailabilities and the components to which they apply are shown in Table 1.

TABLE 1

SUMMARY OF MAINTENANCE AND TEST UNAVAILABILITIES

	Componen	ts	Maintenance	Test	Total
1)	Motor Dri	ven EFP-37B	4.2×10^{-4}	N/A	4.2×10^{-4}
2)	Turbine D	riven EFP-37A		N/A	9.4×10^{-4}
		ntribution contribution	4.2×10^{-4} 5.2 x 10 ⁻⁴		
3)	Startup F	eed Pump P-113	7.0×10^{-4}	N/A	7.0 x 10 ⁻⁴
4)	Lube Oil I	Pump P-161	5.0 x 10 ⁻⁴	N/A	5.0×10^{-4}
5)	Diesel Ger	nerator	7.0 x 10 ⁻⁴	N/A	7.0×10^{-4}
6)	Valves				
	Iso (42)	rg Feed Flow lation Valves 14,4224,4234, 4,75,87,93	8.5 x 10 ⁻⁴	N/A	8.5 × 10 ⁻⁴
		em Supply ves V-127, 28	8.7 x 10 ⁻⁴	N/A	8.7 x 10 ⁻⁴
		m Supply e V-129	1.0×10^{-4}	N/A	1.0×10^{-4}
		al Isolation e V-65,V-71	9.3 × 10 ⁻⁶	2.0×10^{-3}	2.0×10^{-3}

3.2.4 Operator Errors

Operator errors can be divided into two basic types, 1) errors of commission and 2) errors of omission. Errors of commission occur when the operator performs an action which terminates or reverses the normal operation or condition of a component. Examples would be the operator shutting off a running pump or changing the position of a valve.

Errors of omission occur when the operator fails to perform an action which would initiate component operation or place it in its proper operating condition given that these actions have not occurred automatically. Errors of omission also occur when the operator is the prime mover causing a system to function, such as in the proper alignment of the startup feedwater system to provide backup emergency feedwater flow. This type of error also includes failure to restore valves to their proper position following maintenance test acts.

A description of all operator actions used in the fault tree analysis and their associated unavailabilities are shown in Table 2. The guidelines of NUREG/CR-1278, Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, and NUREG-0611 were used in formulating the unavailabilities.

As a general rule, errors of commission are assigned a probability of 1 x 10^{-4} and errors of omission a probability of 1 x 10^{-3} . These probabilities are adjusted for abnormal circumstances. For instance, a probability of 1 x 10^{-3} would normally be assigned both to errors of omission by the operator for actions which can be performed from the control room and to maintenance restoration acts. However, if the operation must be performed locally (outside of the control room) or under potentially adverse conditions, the failure probability is increased accordingly.

Except for automatic actuation of the lube oil pump (P-161), the startup feed water system requires manual operation outside of the control room for alignment to the emergency feedwater system. (Refer to Section 3.1 for a discussion of the assumptions used to model the startup feed pump for the Loss of Main Feedwater transient.) In the event of Loss of Station Power

the operator must manually transfer the startup pump breaker from Bus 4 in the non-essential switchgear room to Bus E5 in the essential switchgear room, change the bus transfer switch to the E5 bus position, open discharge isolation valve V-156 in the emergency feed pump building, open discharge isolation V-163 and close condensate storage tank recirculation line isolation valve V-109 in the turbine hall. This last action (closing V-109) is necessary to prevent a diversion of flow from the startup system because a Loss of Station Power could result in PCV-4326 opening due to loss of air. The operator failure rates for the first three actions are assumed to be 1 x 10^{-2} /demand because these actions, even though assumed to be covered by emergency procedures, may include multiple steps and must be done at different locations. In contrast, the failure probability assigned to the closing of V-109 is assumed to be only 1 x 10^{-3} . Since both V-163 and V-109 are located in the same vicinity, it was assumed that a single operator would be assigned the task of changing the position of both valves. Therefore, the failure to complete both actions will be dominated by the failure to perform the first, and the failure probability for the second action is more appropriately represented by the standard failure rate for errors of omission. Thus, the total failure probability for completing both actions is 1.1×10^{-2} .

TABLE 2

SUMMARY OF OPERATOR ACTIONS/FAILURE PROBABILITIES

	Operator Action/Error	Failure Probability
1)	Operator fails to open either Steam Supply Valve V127 or V128 given failure to open automatically,	5×10^{-3}
2)	Operator fails to close an isolation valve which fails to close automatically	5×10^{-3}
3)	Operator fails to close Emergency Feedwater System manual isolation valve to isolate rupture in header	9 × 10 ⁻¹
4)	Operator fails to restore valve to normal position after maintenance	1×10^{-3}
5)	Operator inadvertently blocks actuation signal, turns off running pump, shuts an isolation valve or fails to restore valve given indi- cation of improper positioning.	1 × 10 ⁻⁴
6)	Operator fails to open V-156 in startup feed pump discharge line and align pump to emergency power within 30 minutes	1 × 10 ⁻²
7)	Operator fails to open V-163 in startup feed pump discharge line and close V-109 in recirculation line to the CST	1.1 × 10 ⁻²
8)	Operator fails to start the startup feed pump (P-113) from the control room given no automatic actuation signal and existence of emergency procedure	1 × 10 ⁻³
9)	Operator fails to properly transfer breaker for SUF pump to bus E5	1×10^{-2}

3.3 RESULTS FROM FAULT TREE ANALYSES

3.3.1 Computer Codes

All qualitative cut-set analyses and numerical evaluations of unreliability made using the Seabrook AFW system fault tree model were performed by the WAMBAM⁽¹⁾ and WAMCUT⁽²⁾ computer codes. Versions of these codes were obtained from the Electric Power Research Institute (EPRI) by PSNH and its service organization, Yankee Atomic Electric Co. (YAEC) for the purpose of conducting this study. Some modifications were required to the codes to reduce their memory requirements during execution so that they could be run on the CDC-7600 computer at YAEC; however, the modifications only affected the size of the fault tree that could be analyzed and not the numerical probability calculations or cut-set evaluations performed by the code.

3.3.2 Events Analyzed

Three specific events were analyzed using the Seabrook fault tree. They were:

- A loss of main feedwater transient with reactor trip (LMFW)
- A loss of main feedwater transient with coincident loss of offsite power (LMFW/LOSP)
- A loss of main feedwater transient with coincident loss of offsite power and both onsite emergency diesel-generators (LMFW/LOAC).

In all cases, successful operation of the AFW system required that at least two of the four plant steam generators be supplied with cooling flow from the AFW system.

In a general sense, a loss of main feedwater event is the transient for which the auxiliary feedwater system is intended to provide protection. Therefore the reliability of the AFW system for the LMFW transient can be viewed as a reference against which reliability calculations for the other transients may be compared. The fault tree described in the previous sections and presented in Appendix A was designed specifically for the LMFW event. Evaluations of the other transients were made by modifying this baseline fault tree as described later.

Before discussing the modifications necessary to model these other events, one point of conservatism regarding LMFW events that has been included into the fault tree should be reiterated. As was noted in Section 3.1, fault tree modeling of the effects of the startup feed pump on AFW system reliability assumed in all cases that the SUF pump was successful only when supplying the emergency feedwater header. As a result all the operator actions required to achieve this goal must be successful. This includes manually starting the SUF pump and, if necessary, loading it on an emergency bus. It also requires the necessary actions to change the positions of the three valves in the startup pump discharge and cross-tie headers as was described in Section 3.2.4. In many LMFW transients, however, none of these actions will be required. In those transients which result in a trip of the main feed pumps but do not result in either a high steam generator level or a safety injection signal, the SUF pump will be automatically started and will deliver flow to the steam generators by way of the main feed lines. Therefore no operator actions are necessary to receive the benefit of cooling from the SUF pump. Similarly, if these same transients are accompanied by a loss of the normal SUF pump power source, only the actions to load the SUF pump on the emergency bus and isolate its recirculation line are necessary. Flow can still be provided to the steam generators through the main feedwater lines without additional valve manipulations.* Thus the fault tree model, by requiring the SUF pump to supply cooling water via the EFW headers in all cases, provides conservative estimates of reliability for these transients where main feedwater flow paths are still available and in which a safety injection or high steam generator level signal is not generated.

^{*} Note that if the cause of the power loss is a loss of offsite power, the main feedwater lines will not be open because of closure of the main feedwater isolation valves on loss of power.

The LMFW/LOSP transients impact the EFW system in only one way. They eliminate the redundant electrical power sources for both the motor-driven EFW pump and the motor-driven SUF pump. As a result the reliability of both pumps is reduced because all single point failures causing loss of the emergency bus supplying the pump will also result in loss of the pump. In the case of the startup pump, the necessity of an operator action to load the pump on the emergency bus is also introduced into the system.

Modeling the loss of offsite power in the fault tree was done by converting gates EP 21 (pg. A-38 of Appendix A) and SUP 21 (pg. A-43 of Appendix A) to AND gates, converting gates EPE6 (pg. A-38 of Appendix A) and SUP 19 (pg. A-43 of Appendix A), and MOD4 (pg. A-45 of Appendix A) to OR gates, and inputting an LOSP frequency of 0. This has the same effect as inputting an LOSP frequency of 1.0 in the reference tree but greatly reduces the computer calculations required to evaluate the tree. All cut-sets and failure probabilities determined for the modified tree will be conditional on the LOSP event even though the code cut-set output will not include specific indication of that fact.

The total loss of AC power events have a much more drastic effect on AFW system reliability. In essence the system is reduced to a single pump system because both motor-driven pumps become unavailable. Thus, all single point failures disabling the turbine-driven EFW pump result in loss of system function.

For the total loss of AC power events, the fault tree modifications were also more extensive. All tree structure below gates AF127, SUP1, and MOD4 (pgs. A-30, A-41, and A-45 of Appendix A) was eliminated. The net effect is the same as inputting frequency values of 1.0 for both the LOSP event and failure of both diesel generators in that both motor-driven pumps are eliminated from the system. Again code results are conditional on these failures although the conditionality is not reflected specifically in the output.

3.3.3 Numerical Reliability Results

A total of five cases were analyzed with the Seabrook AFW system fault tree model. They were the LMFW, LMFW/LOSP, and LMFW/LOAC events assuming all three pumps are part of the EFW system, and the LMFW and LMFW/LOSP events assuming only the two-train emergency feedwater system is used to provide steam generator cooling. The latter two cases were done to provide a reference for evaluating the effect of the SUF pump on overall system reliability. The results of the five cases are shown in Table 3.

TABLE 3

AFW SYSTEM UNRELIABILITY

TRANSIENT	3-PUMP AFW SYSTEM	2-PUMP EFW SYSTEM
LMFW	2.1×10^{-5}	2.8×10^{-4}
LMFW/LOSP	5.6 x 10 ⁻⁵	5.8×10^{-4}
LMFW/LOAC	2.1×10^{-2}	2.1×10^{-2}

It is clear from these results that the Seabrook AFW system easily meets the NRC specified reliability goals when use of the SUF pump is considered for the LMFW transient. Even with a coincident loss of offsite power, the system exhibits an unreliability of better than 10^{-4} /demand. In terms of the results published by the NRC in NUREG-0611 for other Westinghouse plants, the Seabrook AFW system would fall into the high, high, and medium categories respectively for the LMFW, LMFW/LOSP and LMFW/LOAC transients.

3.3.4 Dominant Failures for Three Pump AFW System

Dominant contributors to availability of the AFW system at Seabrook for the three loss of main feedwater/loss of power events are shown in Tables 4, 5, and 6. Events are ranked by the magnitude of their contribution to system unavailability. It should be noted that no single point failures* were found in either the LMFW or LMFW/LOSP events that would disable the entire AFW system, although, as should be expected, a number of single failures will disable the turbine-driven pump train during a LMFW/LOAC event.

^{*} One single failure exists that will disable the AFW system under any circumstance. That is a failure of the condensate storage tank such that no water is available to the suction of any of the pumps. The probability of such a failure was assumed negligible for the purposes of this study.

TABLE 4

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY LOSS OF MAIN FEEDWATER EVENT

	EVENT	CONTRIBUTION TO UNAVAILABILITY
1.	Equipment and maintenance faults: Failures preventing motor-driven EFW pump from func- tioning coupled with maintenance errors causing isolation valve V125 to be closed.	7.0 x 10 ⁻⁶
2.	Maintenance faults: Maintenance outage of motor-driven EFW pump train coupled with maintenance errors causing isolation valve V125 to be closed.	3.0 x 10 ⁻⁶
3.	Maintenance faults: Maintenance errors causing isolation valve V125 to be closed and the motor-driven EFW train to be inoperable.	2.0×10^{-6}
4.	Equipment and operator faults: Equipment failures in both EFW trains coupled with failure of operator to properly align SUF pump with EFW system.	1.9×10^{-6}
5.	Equipment faults: Equipment failures dis- abling motor-driven EFW pump train and iso- lation valve V125.	9.0×10^{-7}
6.	Equipment faults: Equipment failures disable all three pump trains.	7.3 x 10 ⁻⁷
7.	Equipment, maintenance and operator faults: Equipment failure in one EFW train while other EFW train out of service coupled with failure of operator to properly align SUF pump with EFW system.	5.9 x 10 ⁻⁷
8.	Cut-sets with unavailability values less than 1 x 10 ⁻⁷	4.4×10^{-6}
	Total unavailability (all cut-sets) =	2.1×10^{-5}

TABLE 5

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY LOSS OF MAIN FEEDWATER/LOSS OF OFFSITE POWER EVENT

	EVENT	CONTRIBUTION TO UNAVAILABILITY
1.	Equipment and maintenance faults: Failures preventing either diesel generator 1B or motor-driven EFW pump from functioning coupled with maintenance errors causing isolation valve V125 to be closed.	2.1 x 10 ⁻⁵
2.	Equipment and operator faults: Equipment failures disabling both EFW trains coupled with failure of operator to properly align SUF pump with EFW system.	8.5 x 10 ⁻⁶
3.	Maintenance faults: Maintenance outages or errors disabling motor-driven EFW pump train coupled with maintenance errors causing isolation valve V125 to be closed.	5.6 x 10 ⁻⁶
4.	Equipment faults (triples): Equipment failures disable all three pump trains.	7.0×10^{-6}
5.	Equipment faults (doubles): Equipment failures disabling motor-driven EFW pump train coupled with failure of valve V125 to remain open.	2.0 x 10 ⁻⁶
6.	Maintenance, equipment, and operator faults: Maintenance outage of one EFW pump train coupled with equipment and operator errors that disable both the remaining EFW pump train and the SUF pumps.	2.2x 10 ⁻⁶
7.	Maintenance, equipment, and operator faults: Maintenance errors that disable turbine-driven EFW pump train coupled with failures of diesel-generator 1B and failure of operator to properly align SUF pump with EFW system.	3.3 × 10 ⁻⁷
8.	Cut-sets with unavailability values less than 10^{-7} .	9.4×10^{-6}
	Total unavailability (all cut-sets) =	5.6 \times 10 ⁻⁵

TABLE 6

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY LOSS OF MAIN FEEDWATER/LOSS OF ALL AC POWER

	EVENT	CONTRIBUTION TO UNAVAILABILITY
1.	Equipment faults: Failure of turbine-driven EFW pump to start or continue running once started.	1.4×10^{-2}
2.	Maintenance faults: Maintenance errors causing turbine-driven EFW train to be inoperable.	4.1×10^{-3}
3.	Maintenance faults: Turbine-driven EFW train out of service for maintenance.	2.5×10^{-3}
4.	Equipment faults: Miscellaneous single valve failures.	7.0×10^{-4}
5.	Maintenance faults: Miscellaneous multiple maintenance errors causing turbine-driven EFW train to be inoperable.	8.5 x 10 ⁻⁵
6.	Cut-sets with unavailability values less than 10 ⁻⁵	1.1×10^{-5}
	Total unavailability (all cut-sets) =	2.1×10^{-2}

3.3.5 Potential Common Cause Failures

The cut-set results from the reliability analysis were also used in conjunction with the system engineering drawings to conduct a qualitative review of potential common-cause failure modes of the Seabrook AFW system. During the review, consideration was given to potential dependencies resulting from common location, environment, human interactions, and support equipment for all three AFW pump trains. As a result of this investigation, two potential susceptibilities were identified.

The first of the common-cause susceptibilities results from a combined location and environmental dependency. Because both emergency feedwater pumps are located in the same pump room, conditions which result in an extreme environment in that room can adversely affect both pumps. An obvious potential source for such an environmental upset are failures associated with the steam turbine-driven pump that cause steam to escape into the pump room. The resultant high temperatures and high humidity might result in consequential failure of the motor-driven pump. Failure of the two EFW pumps alone are not sufficient to fail the AFW system because of the availability of the SUF pump which is located in the turbine building. However, for the SUF pump to be able to supply cooling to the steam generators via the EFW piping requires that manual isolation valve V156 be opened. This valve is located in the emergency feed pump room and would be inaccessible in the event of extreme environments in the room.

As was noted in Section 3.3.2, in many situations it will not be necessary to align the SUF pump with the EFW system in order to use it for plant cooling. Only in circumstances where the normal flow path through the main feedwater lines is unavailable will this be required. Therefore, even should both EFW pumps fail due to a pump room steam leak and valve V156 also be inaccessible, the ability to cool the plant will still exist in most circumstances.

Most probable causes for steam leaks in the pump room of sufficient severity to cause environmental problems are associated with cracks in the pump turbine casing or breaks in the steam supply lines to the turbine. The

36

most likely cause of the main feedwater lines being unavailable for supplying cooling to the steam generators is a safety injection signal which will cause closure of the main feed isolation valves. The probability of simultaneous occurrence of these events is small compared to the overall system unavailability predicted by the fault tree analyses. Therefore this common-cause susceptibility has a negligible effect on the system.

A common-cause failure potential often present in systems that incorporate automatic feedwater line isolation features is the possibility of a faulty calibration procedure causing all isolation setpoints to be improperly adjusted. As a result, inadvertent closure of all isolation valves can occur during system startup or following system flow perturbations. The design of the Seabrook system avoids this problem by incorporating control logic to inhibit isolation of more than a single EFW line. Signals denoting the closure of EFW isolation valve in any EFW line will inhibit closure of additional valves in the remaining lines.

No other common-cause susceptibilities were identified which might adversely impact the Seabrook AFW design. Electrical power sources were found to be sufficiently separated and diverse to prevent dependencies due to power failures. With one exception,* all powered valves critical to system operation are of a fail-safe design such that loss of air or loss of power events do not pose threats to system function. With the exception of the location dependency noted above, separation of the SUF pump from the EFW pumps provides protection from location dependent effects such as vibration, grit, temperature, impact, explosions, etc. Separation of the SUF and EFW pumps also provides protection from electrical train common-cause failures due to localized grounding of power supplies.

* Recirculation valve PCV-4326 on the SUF pump discharge.

4.0 CONCLUSIONS

The results presented in this report lead to the following conclusions:

- 1. The Seabrook combined auxiliary feedwater system consisting of the two-train emergency feedwater system and the single-train startup feedwater system has an unreliability of 2.1×10^{-5} for a loss of main feedwater event and is well within the range of unreliability specified by the NRC staff in their October 30, 1981 letter to the Public Service Company of New Hampshire.
- 2. The unreliability of the Seabrook combined AFW system during combined loss of main feedwater/loss of offsite power events is 5.6 x 10^{-5} , and for a combined loss of main feedwater/loss of all AC power event is 2.1 x 10^{-2} . These values compare favorably with analyses done for auxiliary feedwater systems at other plants of Westinghouse design.
- Major contributors to system unreliability generally relate to failures of pumps and to maintenance errors causing pump trains to be inadvertently disabled.
- No severe common-cause failure susceptibilities were identified for the Seabrook auxiliary feedwater system.

5.0 REFERENCES

- F. L. Leverenz and H. Kirch, "User's Guide for the WAMBAM Computer Code," EPRI 217-2-5, January 1976.
- F. L. Leverenz and H. Kirch, "WAMCUT, A Computer Code for Fault Tree Evaluation," EPRI NP-803, June 1978.

6.0 BIBLIOGRAPHY

- NUREG/CR-1205, "Data Summaries of Licensee Event Reports of Pumps at U.S. Commercial Nuclear Power Plants," January 1, 1972 to April 30, 1978, W. H. Sullivan, et. al., January 1980.
- NUREG/CR-1363, "Data Summaries of Licensee Event Reports of Valves at U.S. Commercial Nuclear Power Plants," January 1, 1976 to December 31, 1978, Warren H. Habble, et. al., June 1980.
- NUREG/CR-1362, "Data Summaries of Licensee Event Reports of Diesel Generators at U.S. Commercial Nuclear Power Plants," January 1, 1976 to December 31, 1978, J.P. Poloski, et. al., March 1980.
- NUREG/CR-1740, "Data Summaries of Licensee Event Reports of Selected Instrumentation and Control Components at U.S. Commercial Nuclear Power Plants," C.F. Miller, et. al., May 1981.
- 5. NUREG/CR-1278, "Handbook of Human Reliability Analysis With Emphasis on Nuclear Power Plant Applications."
- NUREG/CR-1635, "Nuclear Plant Reliability Data System 1979 Annual Reports of Cumulative System and Component Reliability," Southwest Research Institute, September 1980.
- ANSI/IEEE Std 500-1977, "IEEE Guide to the Collection and Presentation of Electrical, Electronic, and Sensing Component Reliability Data for Nuclear Power Generating Stations."
- NUREG-0611, "Generic Evaluation of Feedwater Transients and Small Break Loss-of-Coolant Accidents," January 1980.
- NUREG-0737, "Clarification of TMI Action Plan Requirements," November, 1980.

APPENDIX A

SEABROOK EFW SYSTEM FAULT TREE

APPENDIX A

The following is a guideline for interpreting the basic fault identifiers used in the attached Seabrook EFW fault tree and in fault identifier Table B-2.

Each fault identifier consists of 10 alphanumeric characters of the form:

X-XX-1-XXXX-XX

The first character identifies the system to which the component belongs (see Table A.1). The second and third characters identify the component type (Table A.2). The fifth through eighth characters are for component identification and the last two characters identify the fault codes (Table A.3).

TABLE A.1

SYSTEM IDENTIFICATION CODE

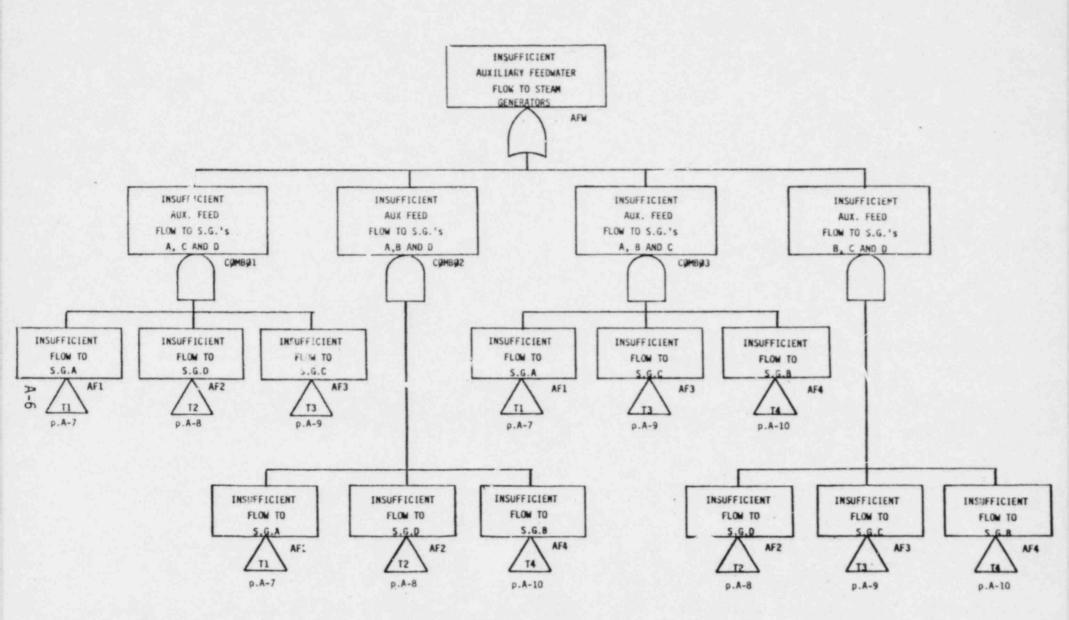
- C Condensate System
- M Emergency Feedwater System
- Q Steam Supply System
- R Electrical Distribution System
- 5 Condensate Storage System
- 6 Control/Protection System

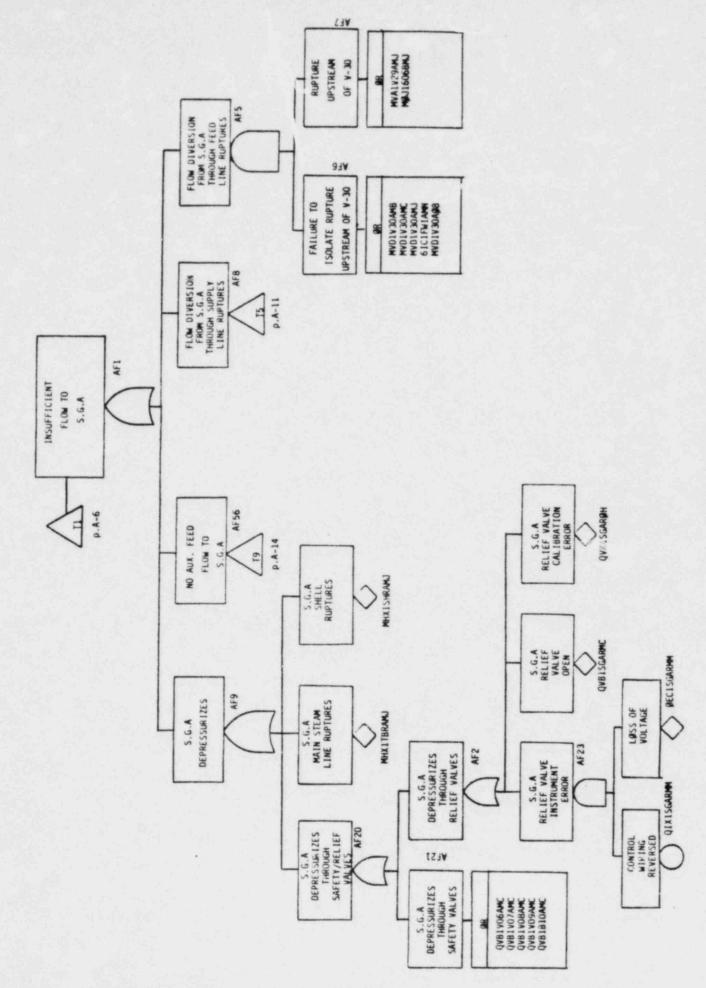
TABLE A.2

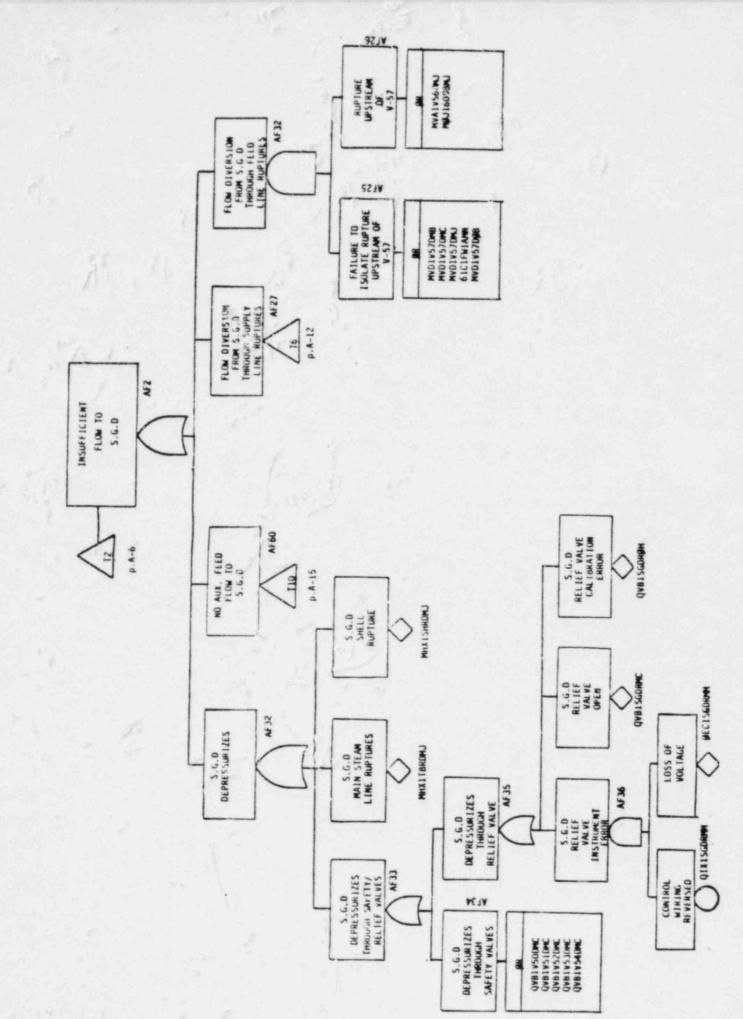
COMPONENT TYPES

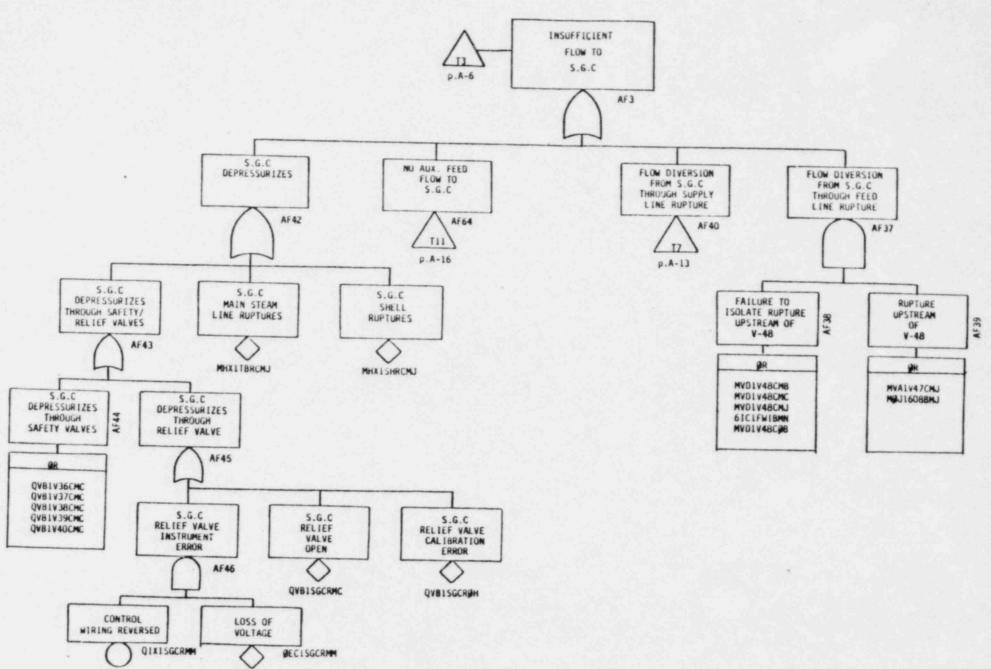
- BA Batteries
- BC Battery Chargers
- CA Circuit Breaker
- CB Contactor
- CC Controller
- CD Starter
- CE Switch
- EC Electrical Conductors
- GD Diesel Generator
- HX Heat Exchanger
- IC Instrument Controller
- ID Sensor/Detector/Element Pressure
- IE Sensor/Detector/Element Temperature
- IF Sensor/Detector/Element Flow
- IG Sensor/Detector/Element Level
- IH Sensor/Detector/Element Radiation
- IP Power Supply
- IX Instrument Error
- MA AC Motor
- MD DC Motor
- OA Piping less than 1 inch in diameter

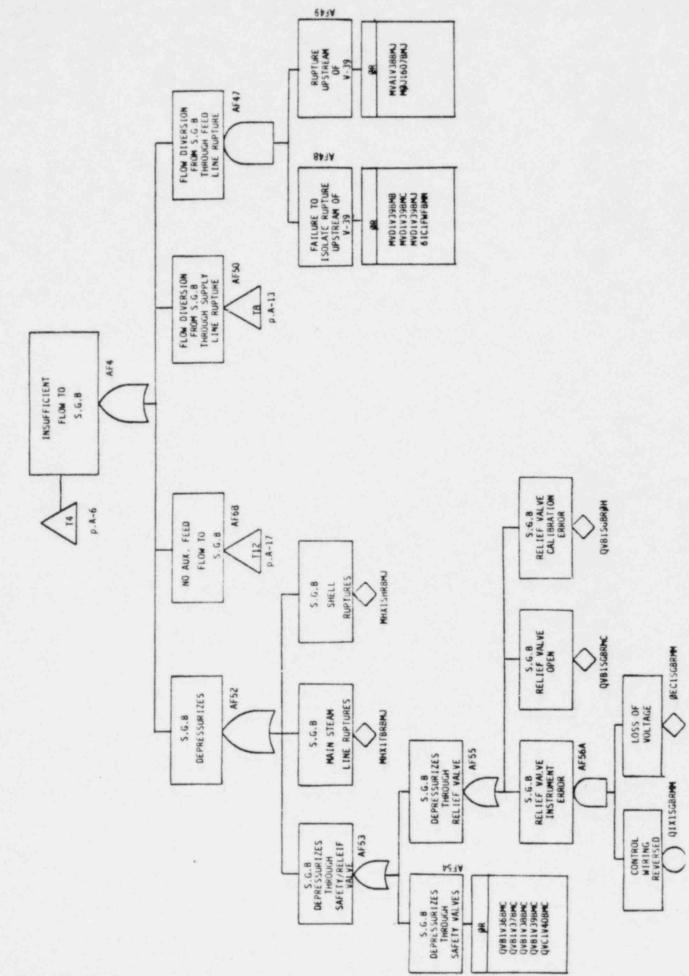
OB - Piping greater than 1 inch but less than 2 inch OC - Piping greater than 2 inch but less than 3 inch OD - Piping greater than 3 inch but less than 4 inch OE - Piping greater than 4 inch but less than 6 inch OF - Piping greater than 6 inch but less than 8 inch OG - Piping greater than 8 inch but less than 10 inch OH - Piping greater than 10 inch but less than 12 inch OI - Piping greater than 12 inch but less than 12 inch OJ - Piping greater than 16 inch but less than 24 inch OK - Piping greater than 24 inch but less than 36 inch OL - Piping greater than 36 inch

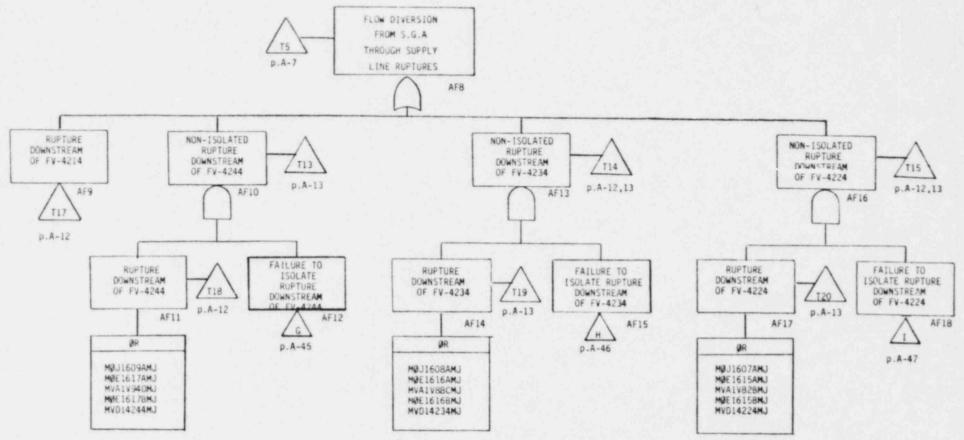

TABLE A.2 (CONT'D.)

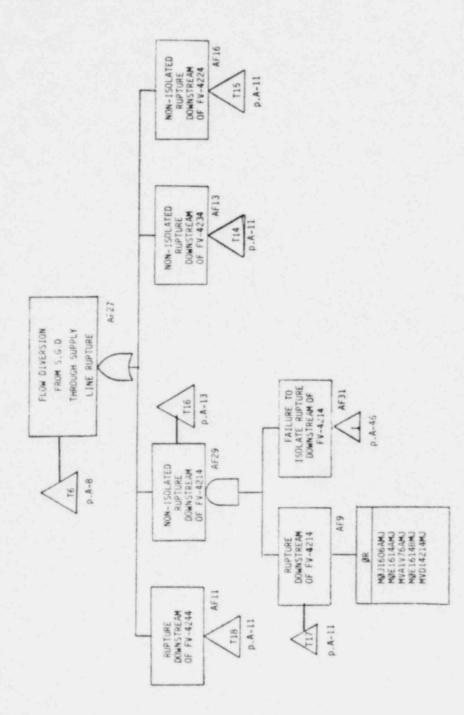

- PB Centrifugal Pump
- RA Control, General Purpose
- TR Transformer
- TU Turbine
- VA Check Valve
- VB Relief Valve
- VC Vacuum Relief
- VD Isolation, Shutoff Valve
- VG Flow Control

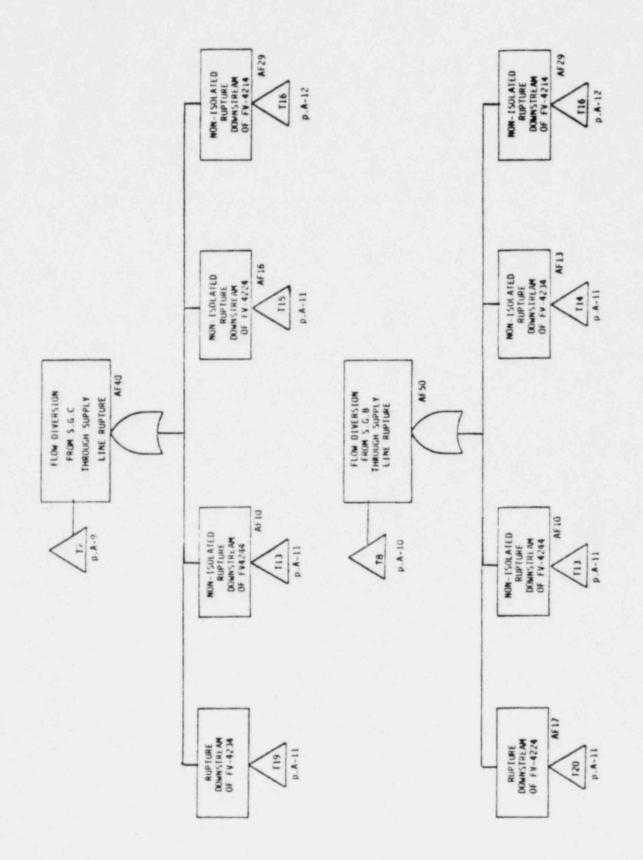

TABLE A.3

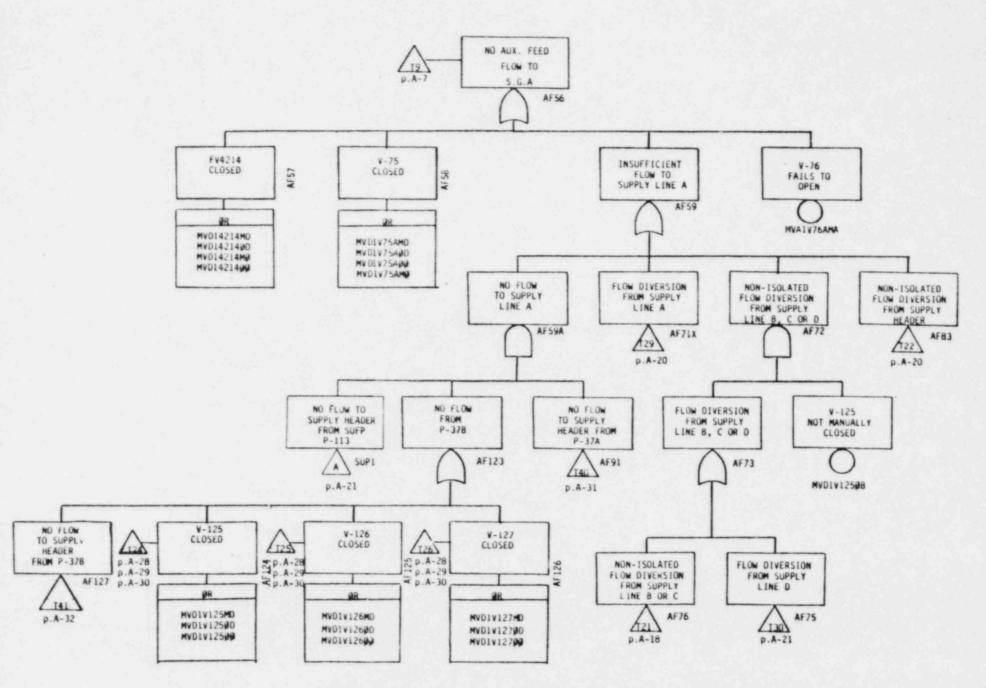

FAULT CODES

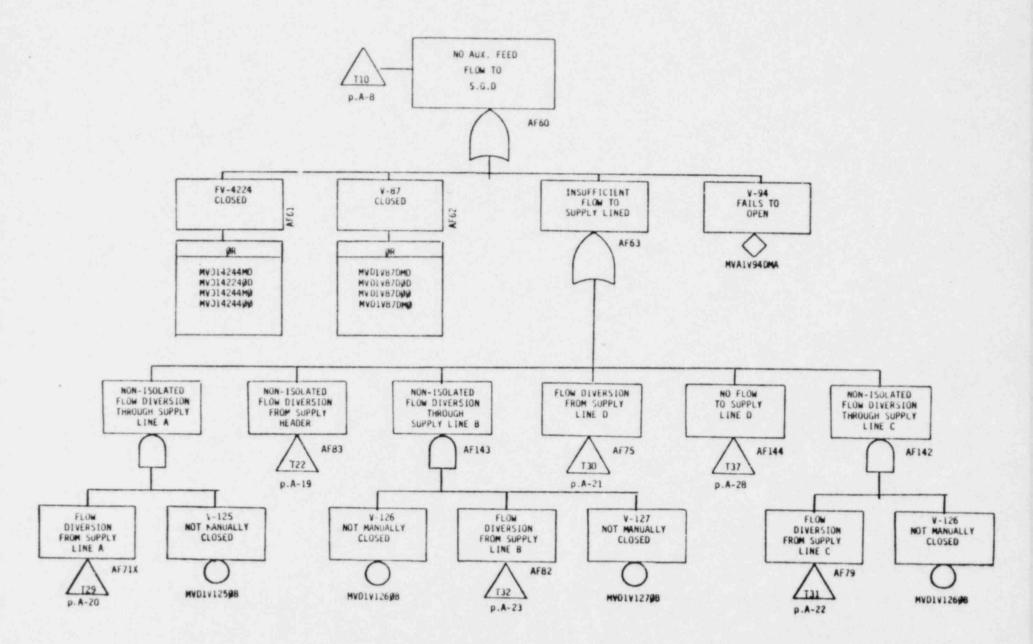

- CL Cooling Failure
- LB Lubrication Failure
- MA Fails to Open/De-energize/Disengage
- MB Fails to Close/Energize/Engage
- MC Fails to Remain Closed/De-energize/Disengaged
- MD Fails to Remain Open/Energized/Engaged
- ME Fail to Start
- MG Fail to Run
- MJ Leak/Rupture/Electrical Short Circuit
- MK Open Circuit
- ML Overload
- MM Underload
- MN No Signal/No Input
- MO Spurious Signal
- OA Operator Fails to Open/De-energize/Disengage
- OB Operator Fails to Close/Energize/Engage
- OC Operator Inadvertently Opens/De-energizes/Disengages/Leaves Open
- OD Operator Inadvertently Closes/Energizes/Engages/Leaves Closed
- OE Operator Fails to Start
- OG Operator Fails to Leave Running
- OH Calibration Error
- 00 Out of Service



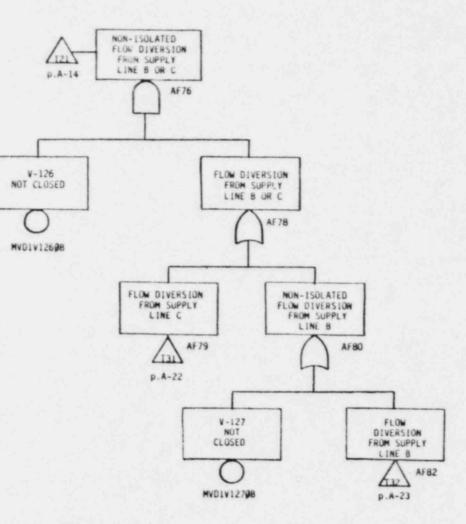


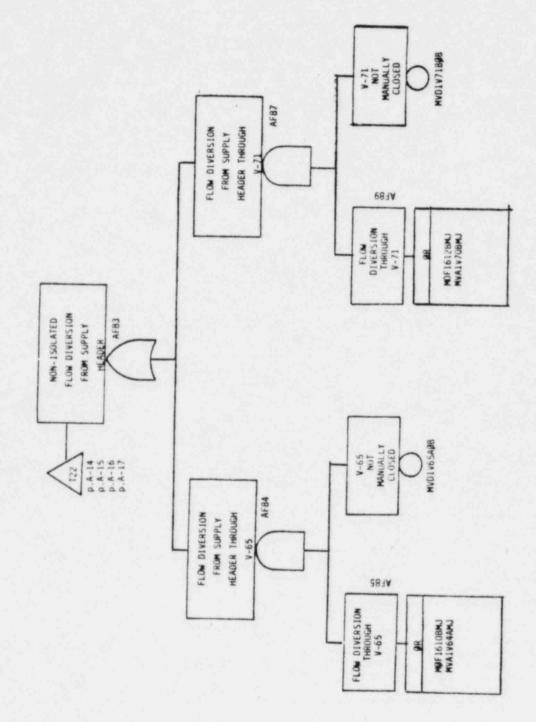


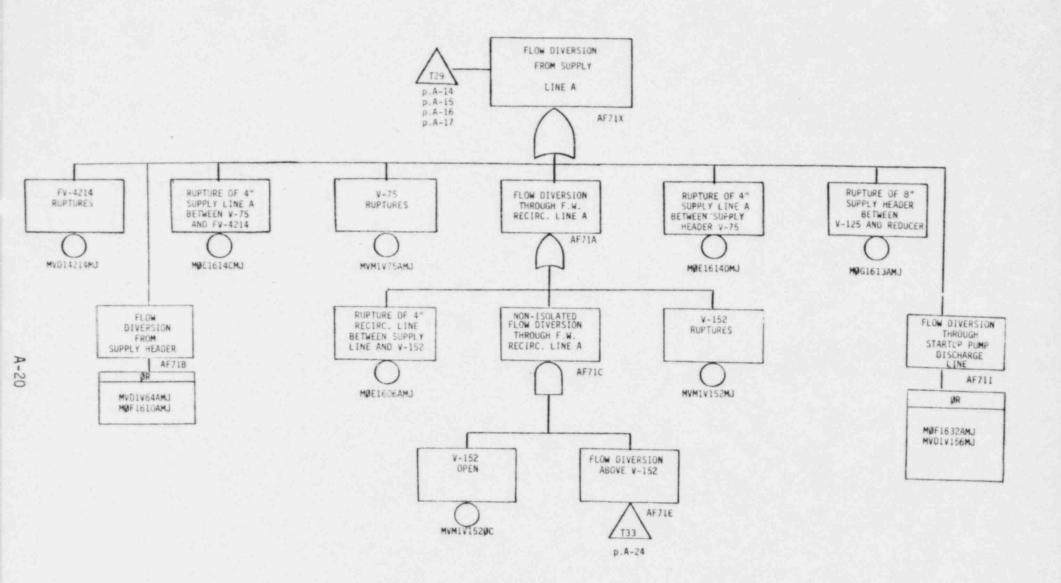


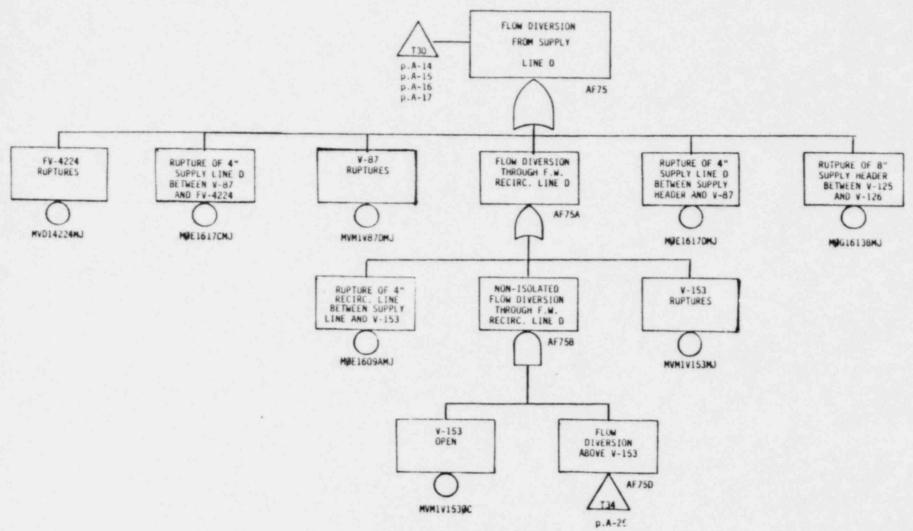


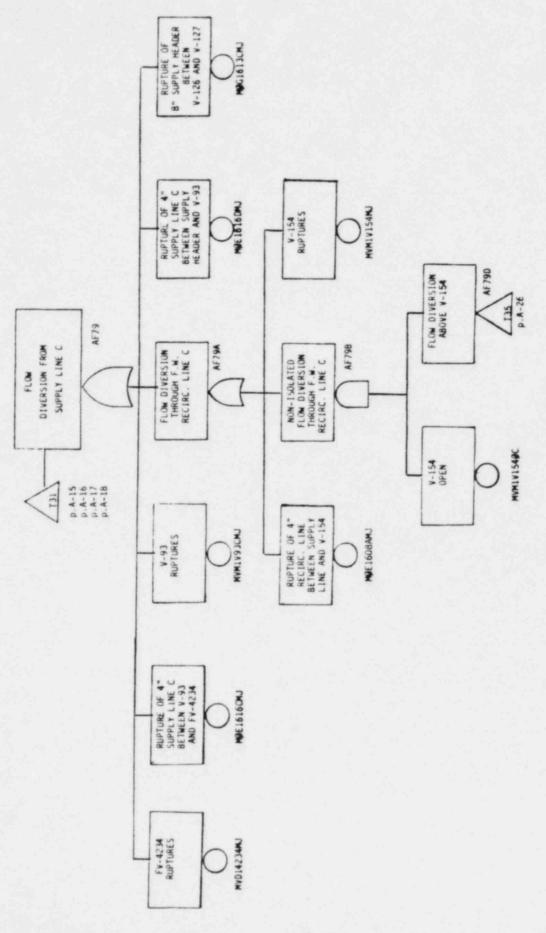


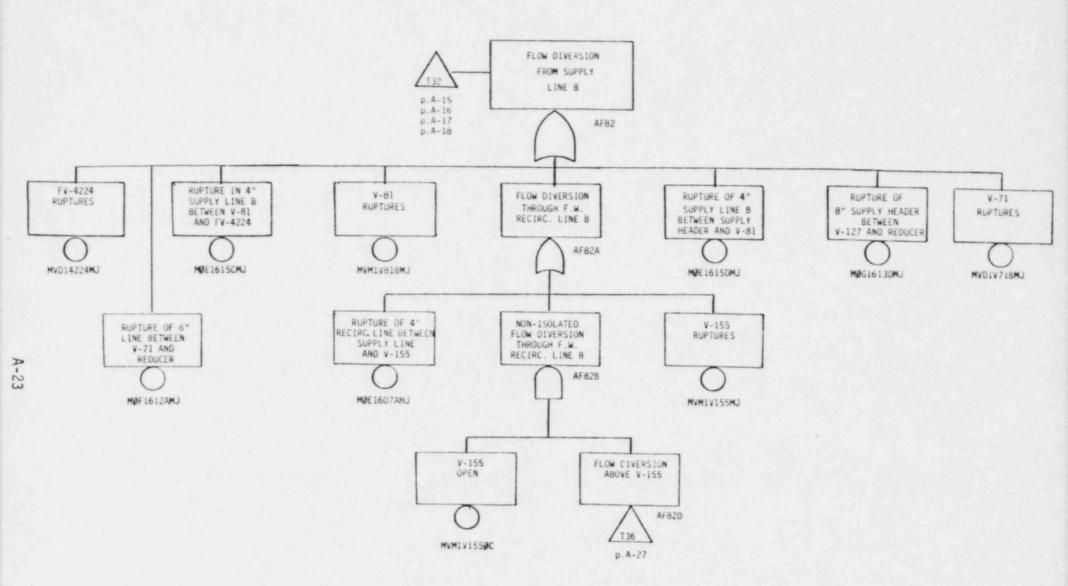


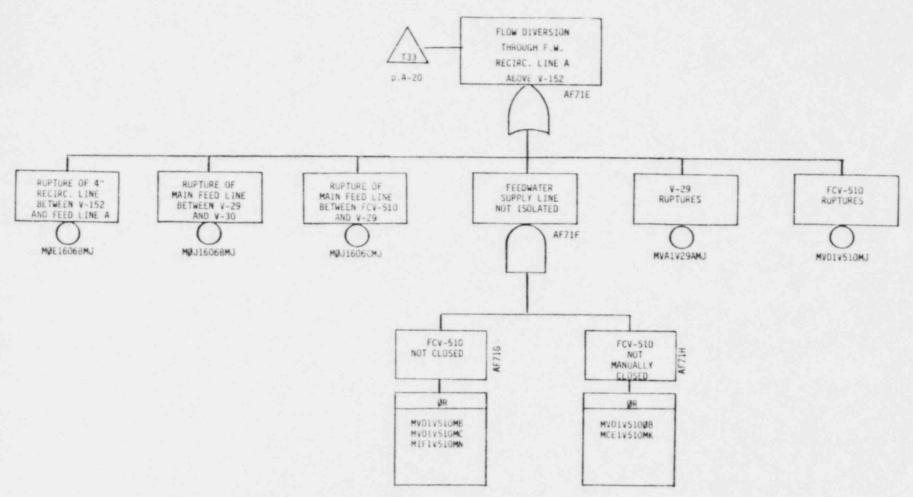

4

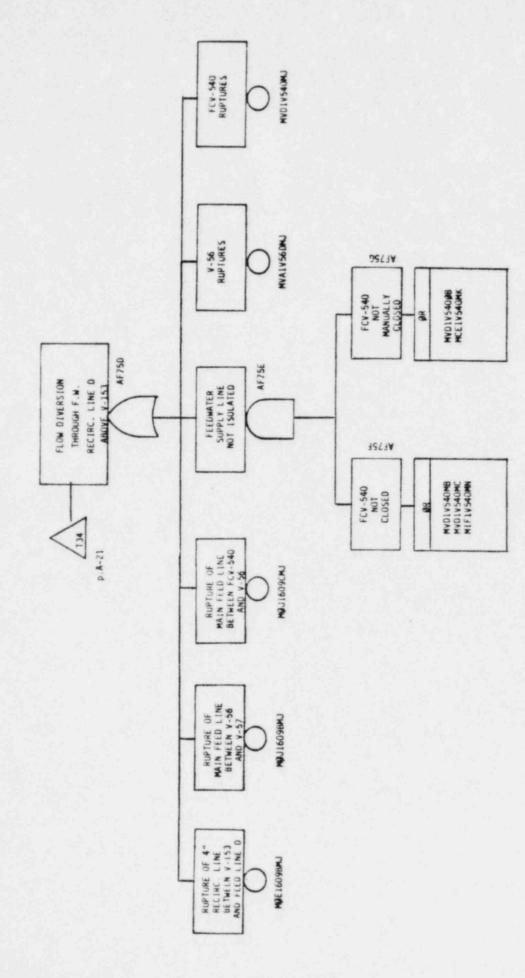


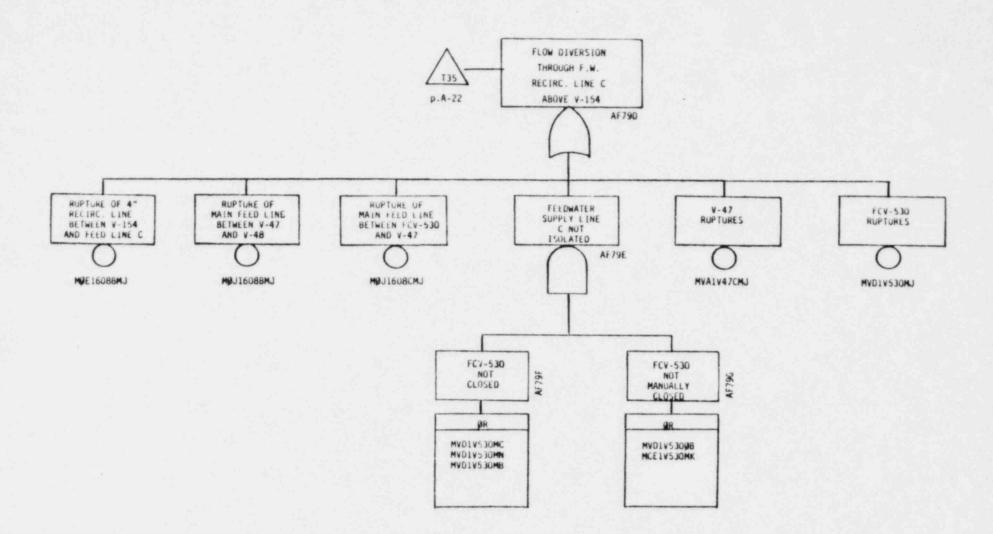


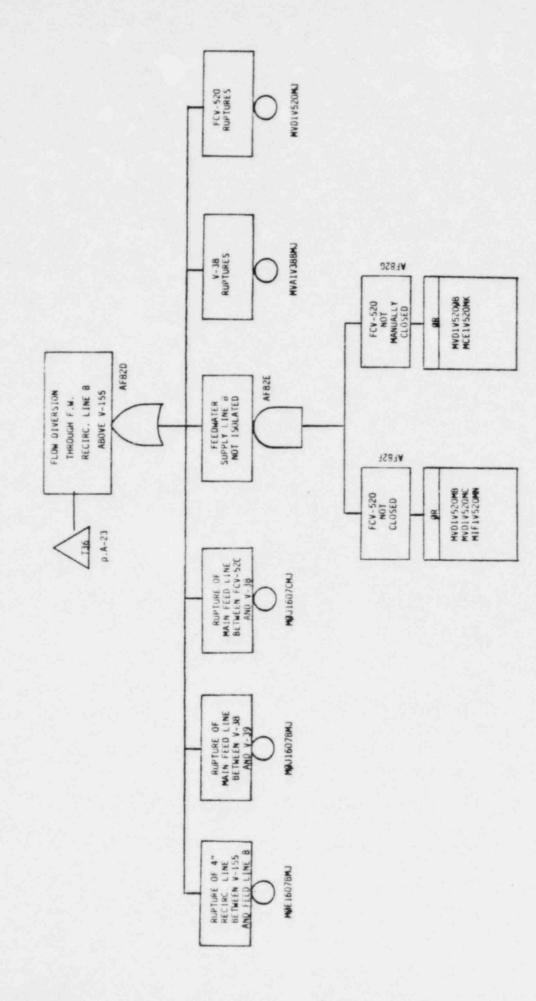


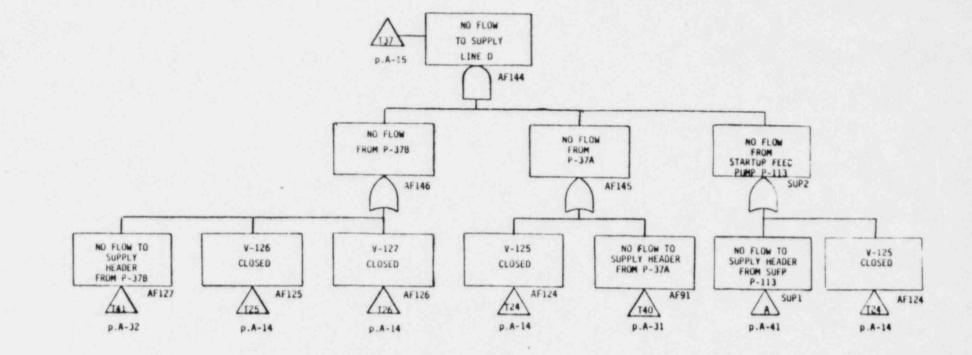


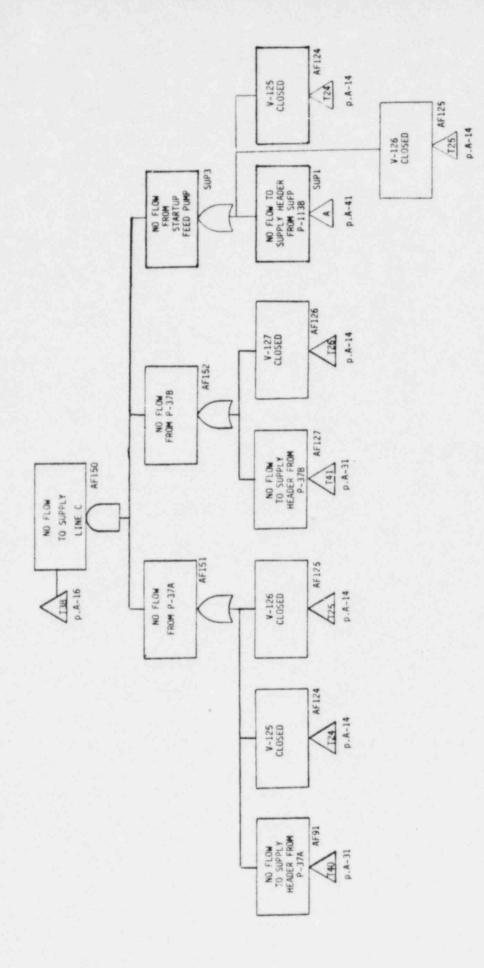


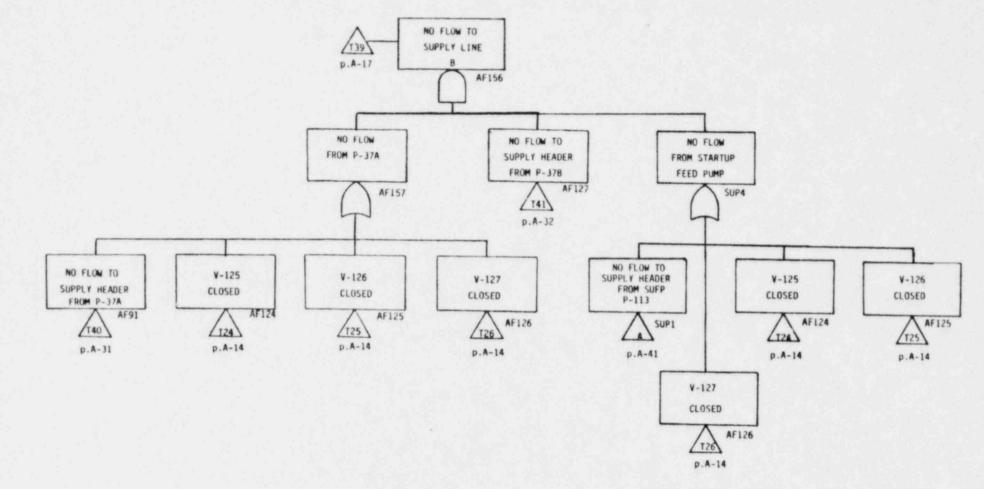


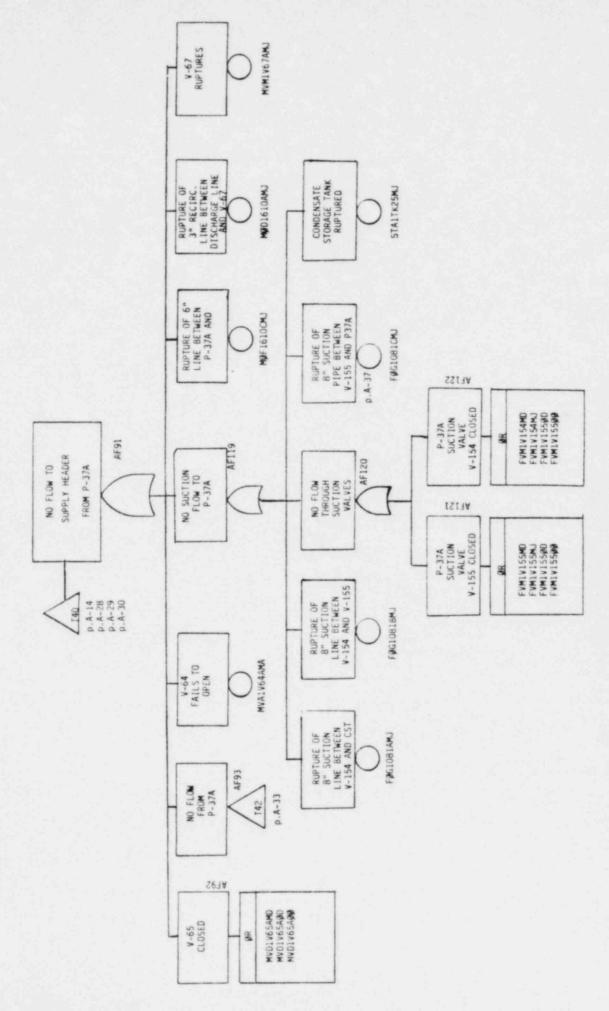


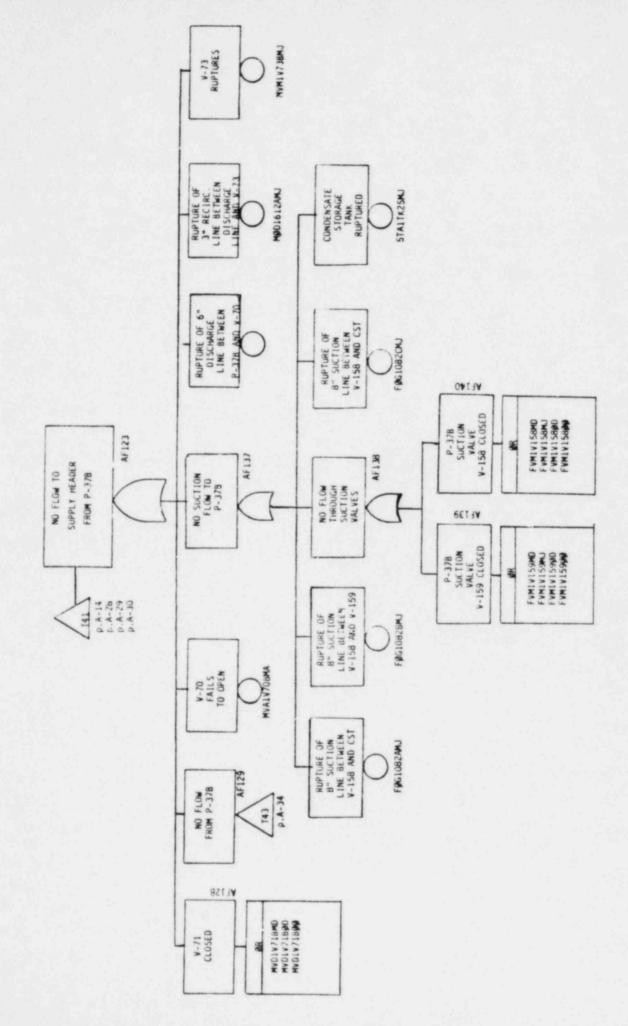


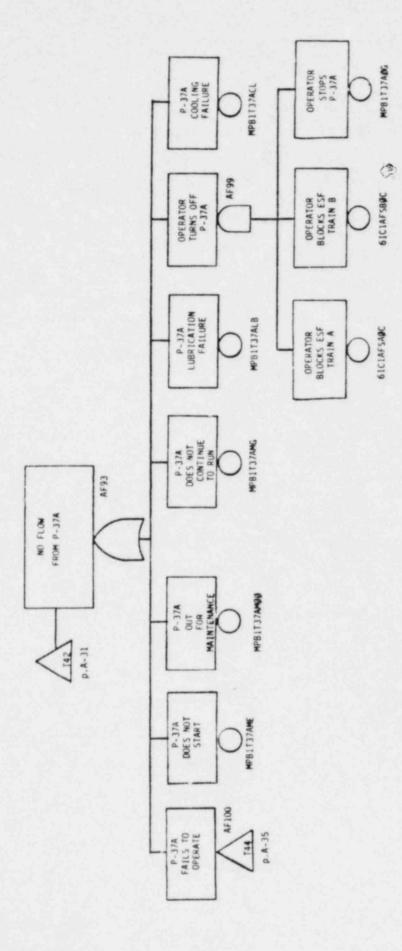


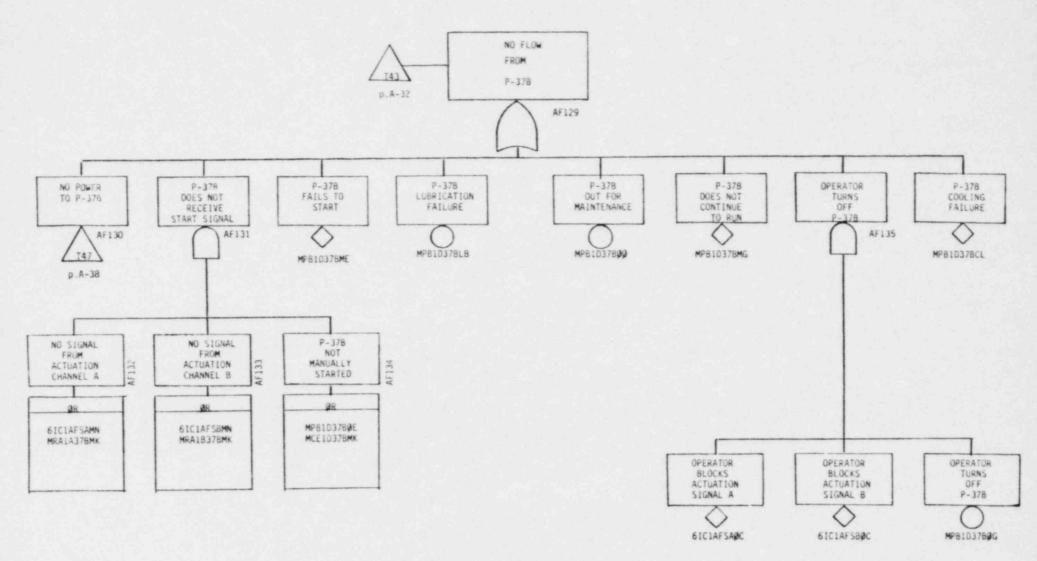


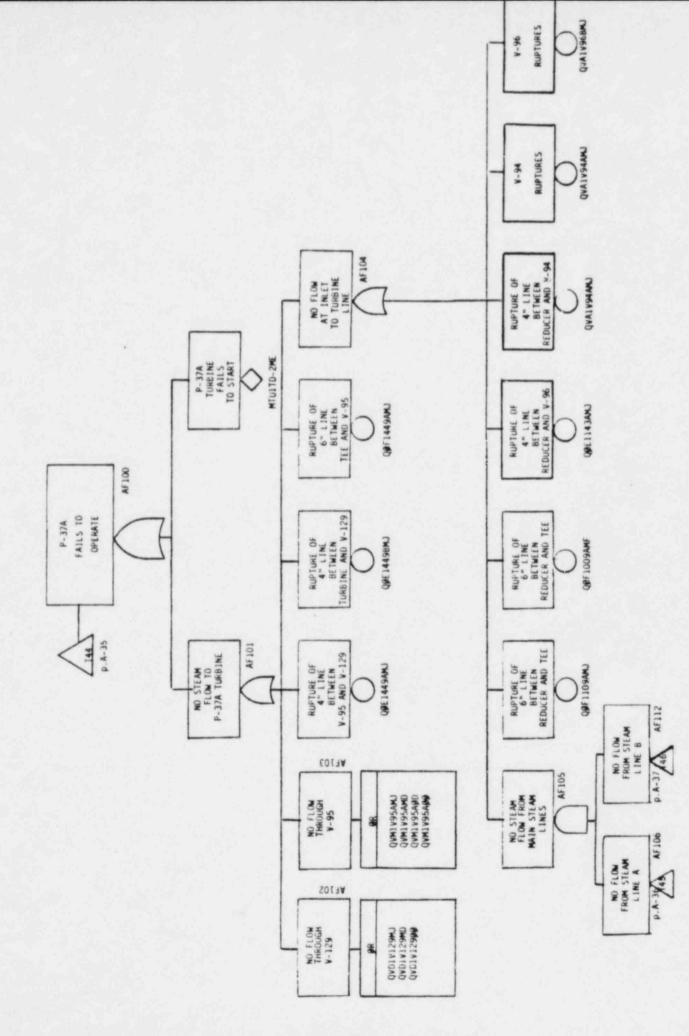


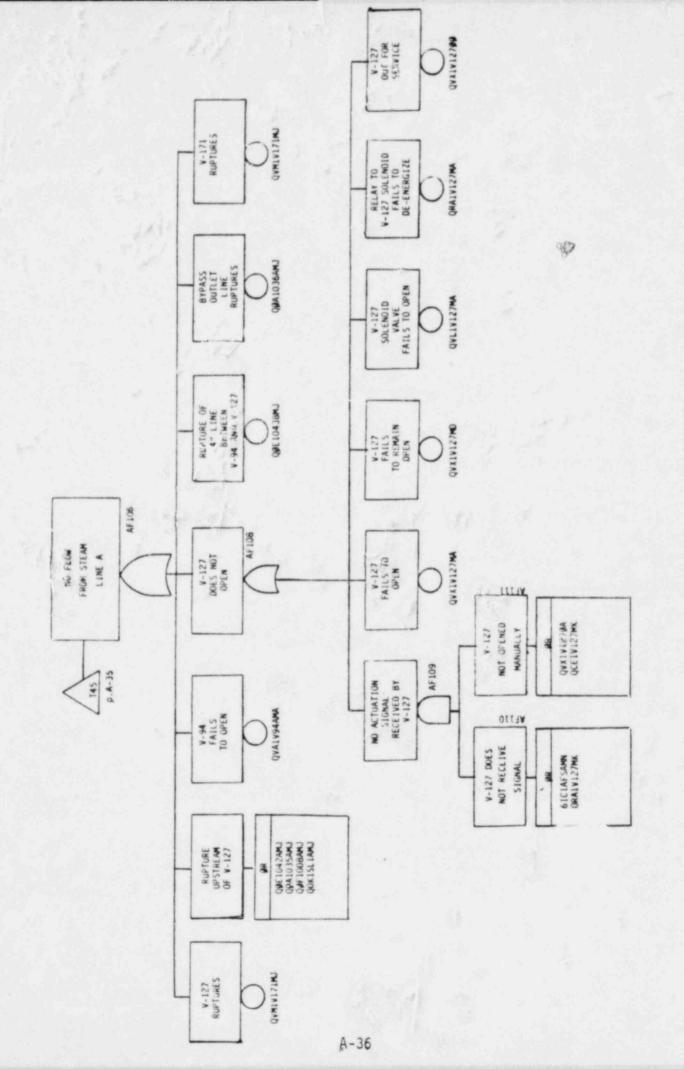


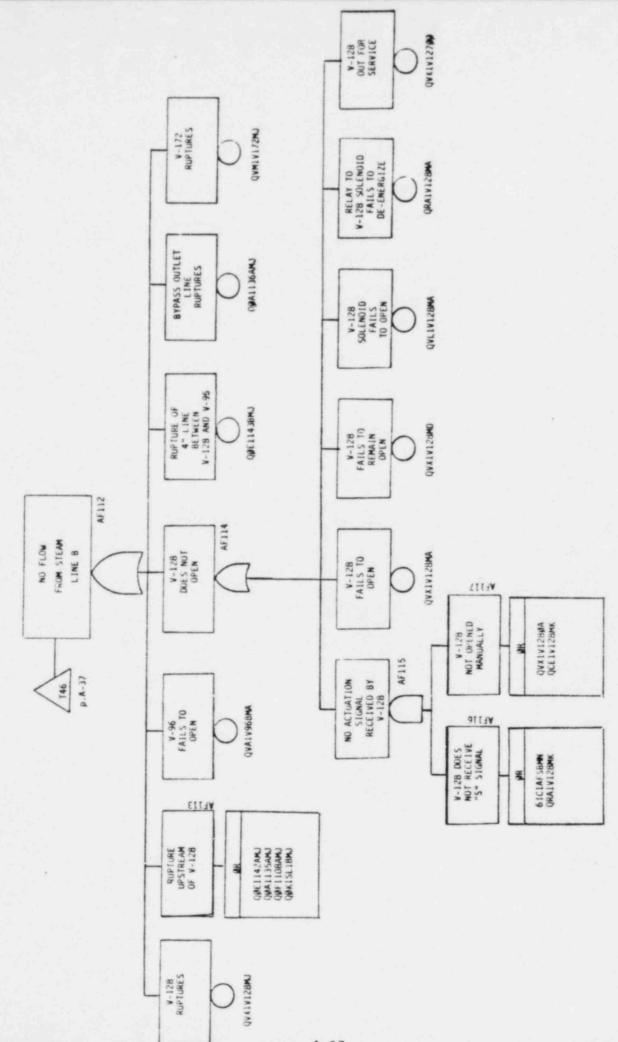


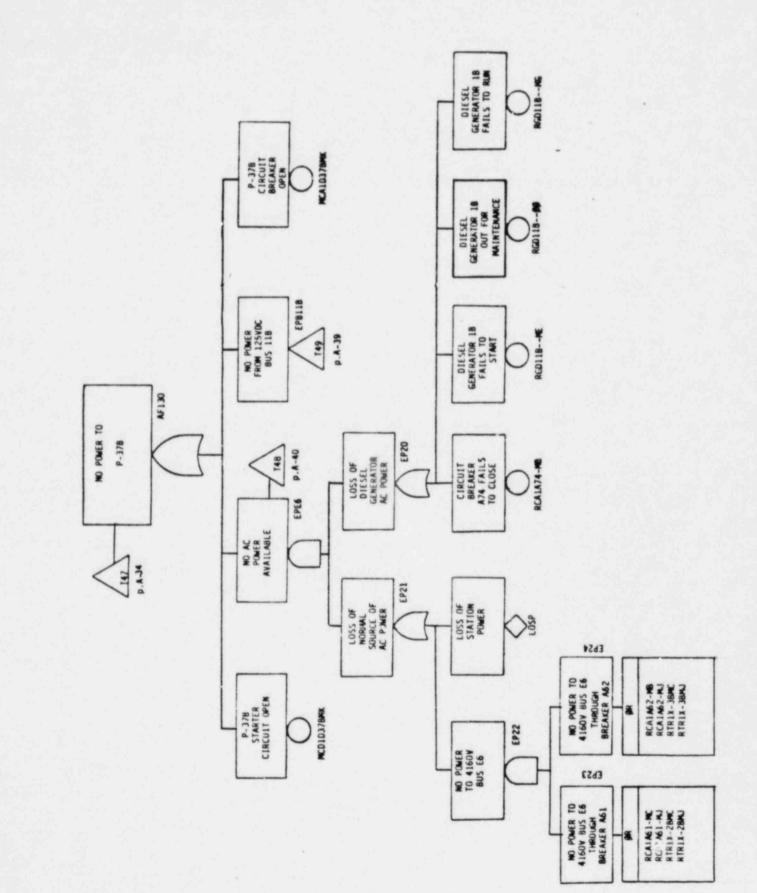


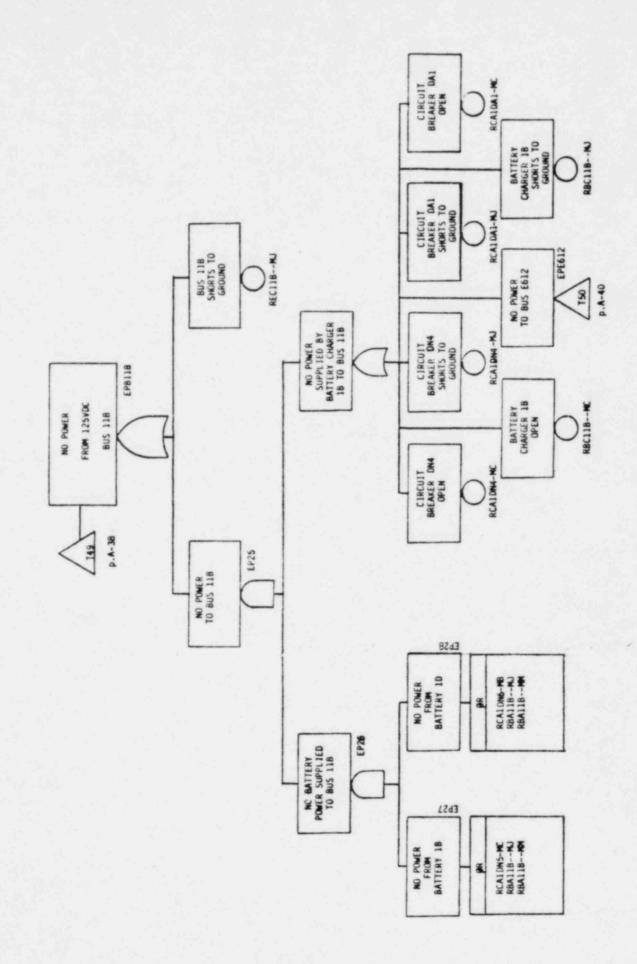




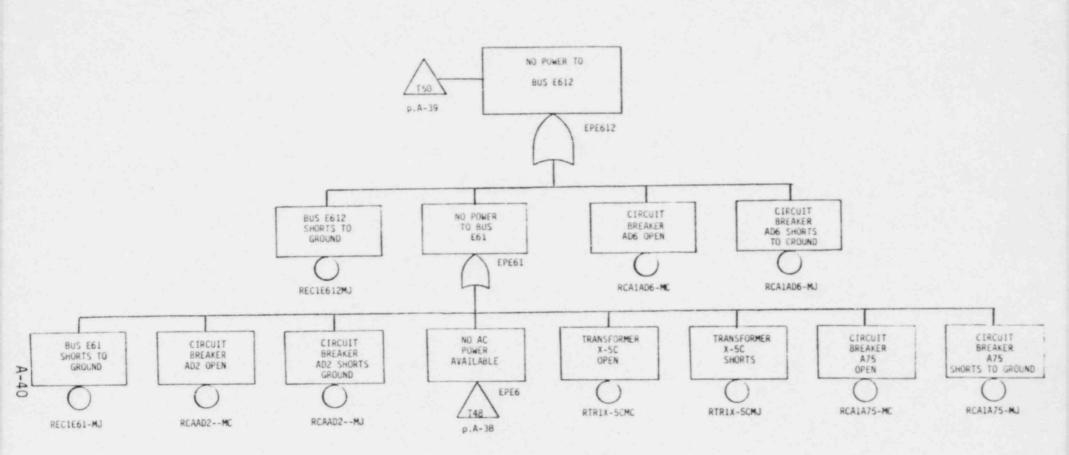




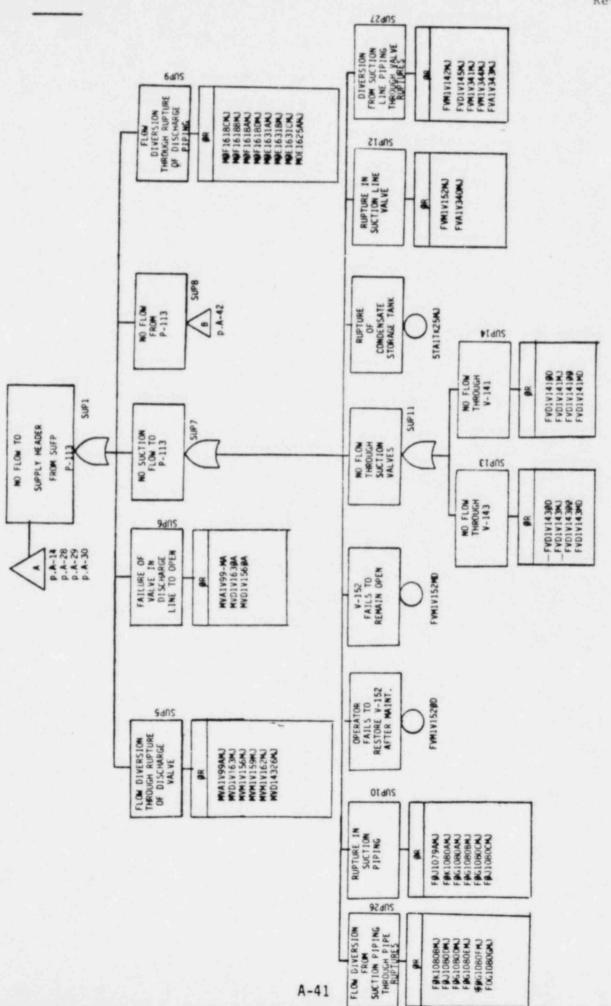




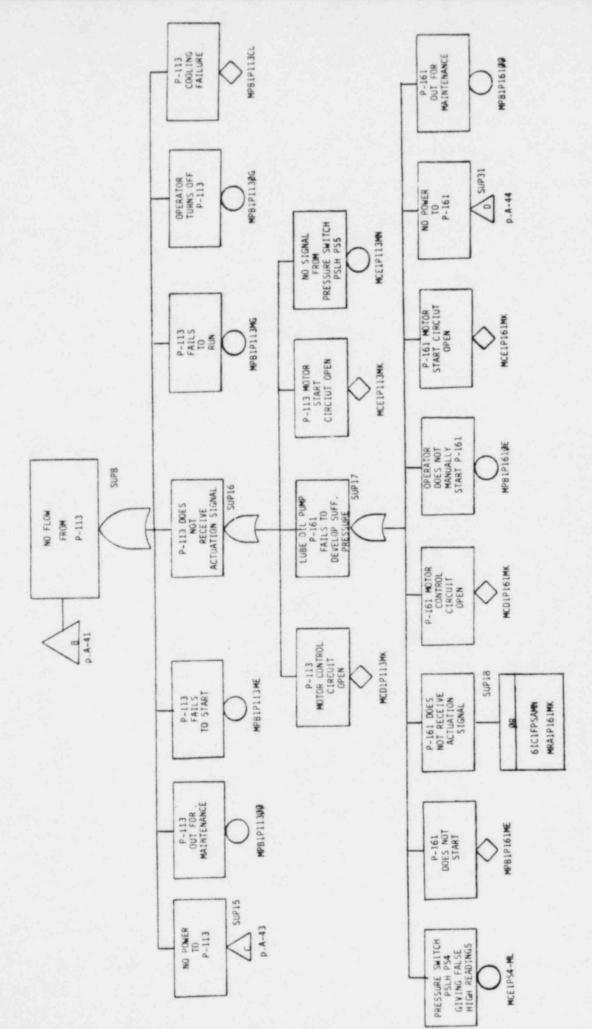
.

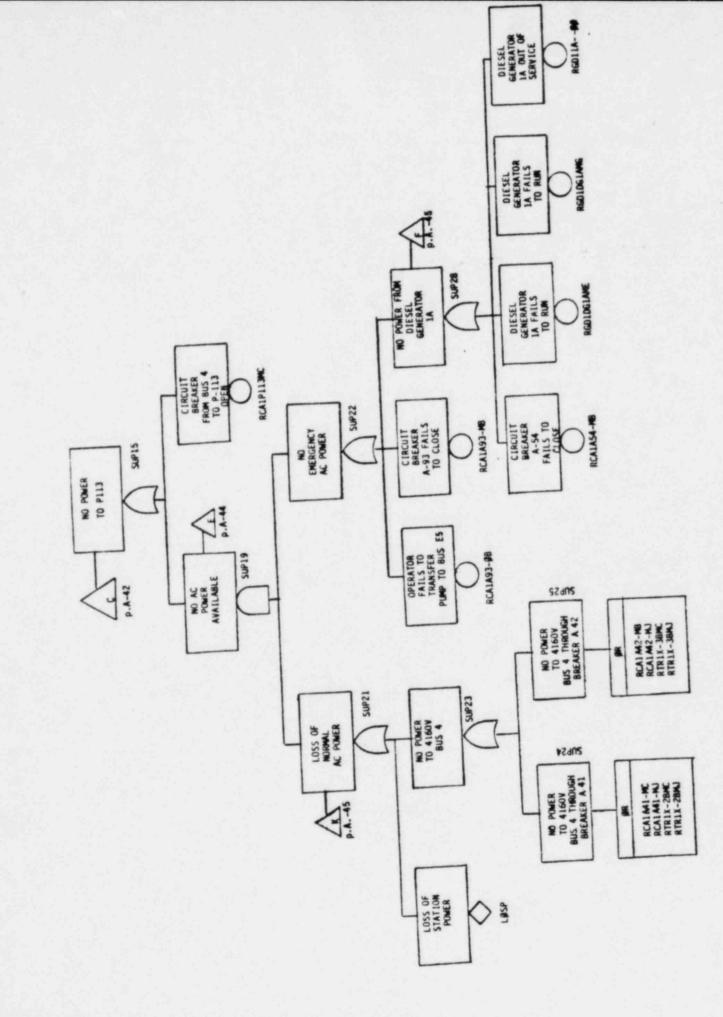

A-38

Rev. 1

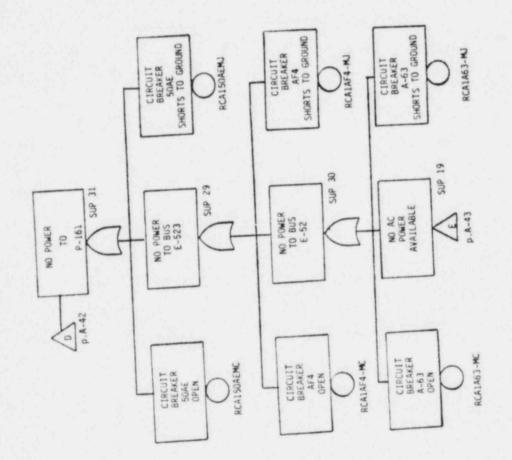


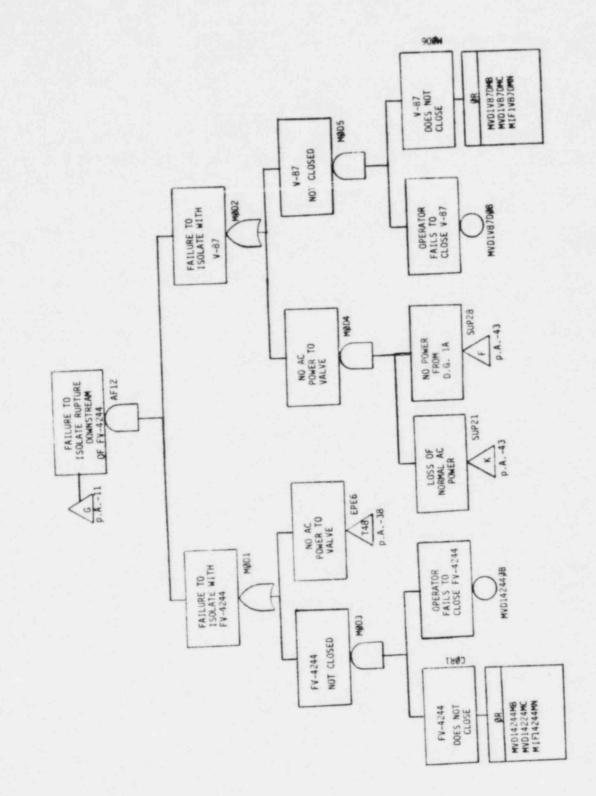
.

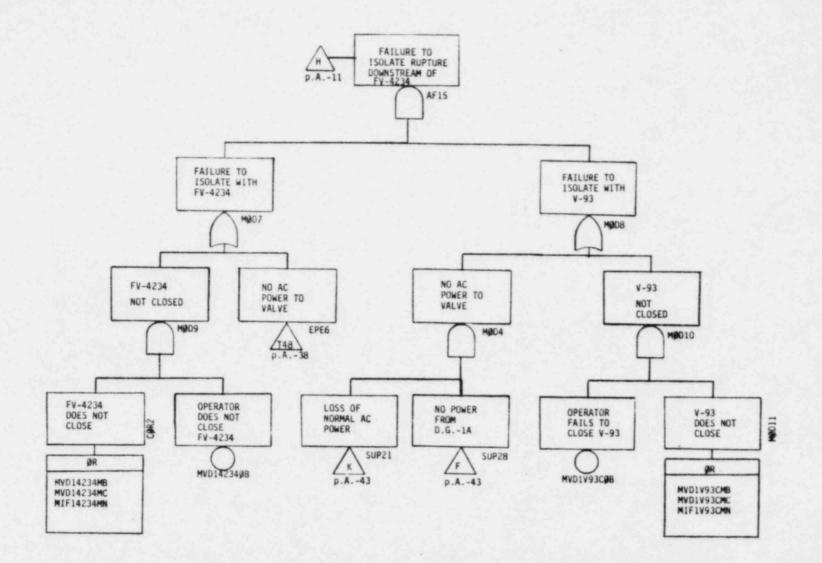

1

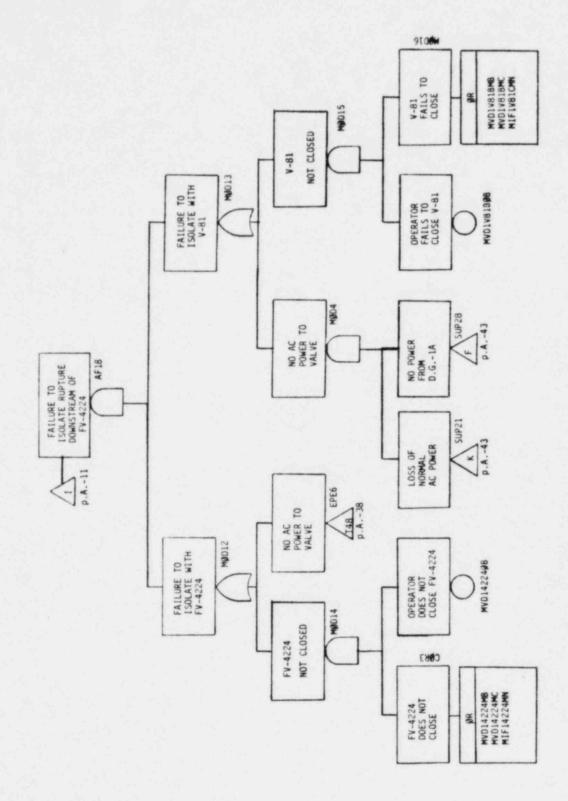


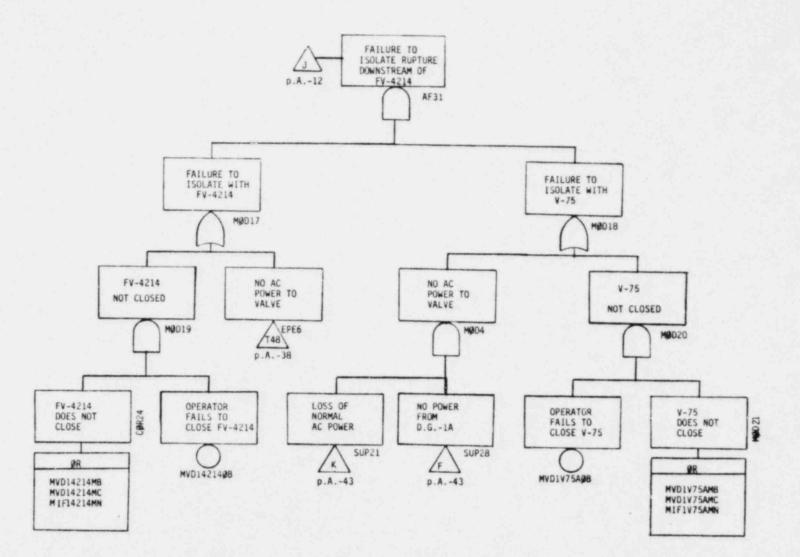
Rev. 1




Rev. 1






. 3

APPENDIX B

FAULT TREE DATA

- 1	26	εr.	S	- 12	- 2	
	me.	п.,	÷.,		.1	

MECHANICAL AND ELECTRICAL COMPONENT FAILURE RATES

						FAILURE	RATE		
				WASH-1400	GE		NRC	ILLE-500	RECOMMENDED
Ī	CATEGORY	COMPONENT	FAILURE			BWR	PWR		
	Pumps	Pump (Motor Driven)	Fails to start Fails to run	$1 \times 10^{-3}/d$ 3 x 10 ⁻⁵ /hr.	7.9 x $10^{-6}/hr$.	$3.7 \times 10^{-4}/d$ 8.4 x 10^{-6}/hr	5.3 x $10^{-4}/d$ (2.4 x $10^{-3}/d$)* 3 x $10^{-6}/hr$. (3.4 x $10^{-3}/d$)*		$2.4 \times 10^{-3}/d$ 3.4 x $10^{-3}/d$
		Pumps (Turbine Driven)	Fails to start Fails to run	$3 \times 10^{-3}/d$ $3 \times 10^{-5}/hr$.	7.9 x 10 ⁻⁶ /hr.	$5.5 \times 10^{-4}/d$ 8.4 × 10 ⁻⁶ /hr	$\begin{array}{c} 4 \times 10^{-3}/d_{3} \\ (8.4 \times 10^{-3}/d) * \\ 3 \times 10^{-6}/hr. \\ (5.7 \times 10^{-3}/d) * \end{array}$		$8.4 \times 10^{-3}/d$ 5.7 x 10 ⁻³ /d
	Motors	Motor	Fails to start Fails to run	$3 \times 10^{-4}/d$ 1 x 10 ⁻⁵ /hr.	1 x 10 ⁻⁶ /hr.				$3 \times 10^{-4}/d$ 1 x 10 ⁻⁵ /hr
	Diesel	Diesels	Fails to start Fails to run	$3 \times 10^{-2}/d$ $3 \times 10^{-3}/hr$.			$\begin{array}{c} 4.0 \times 10^{-2}/d \\ (monthly) \\ 3.0 \times 10^{-2}/hr \\ (monthly) \end{array}$		$4.0 \times 10^{-2}/d$ $3.0 \times 10^{-2}/hr$.
	Pipe	P1pe ≤ 3" P1pe > 3"	Rupture Rupture	$1 \times 10^{-9}/hr.$ $1 \times 10^{-10}/hr.$					$1 \times 10^{-9}/hr$ $1 \times 10^{-10}/hr$
	Valves	Motor Operated	NO FO NC FC NO FC NC FO Rupture	$1 \times 10^{-3}/d$ $1 \times 10^{-3}/d$ $1 \times 10^{-4}/d$ $1 \times 10^{-4}/d$ $1 \times 10^{-4}/d$ $1 \times 10^{-6}/hr.$	$\frac{1.6 \times 10^{-6}/hr}{1.5 \times 10^{-6}/hr}$ $0.15 \times 10^{-6}/hr$ $0.16 \times 10^{-6}/hr$	$3 \times 10^{-3}/d$ 1 × 10 ⁻³ /d	$2 \times 10^{-3}/d$ 5 × 10 ⁻⁴ /d		$2 \times 10^{-3}/d$ $1 \times 10^{-3}/d$ $5 \times 10^{-4}/d$ $1 \times 10^{-4}/d$ $1 \times 10^{-8}/hr$
		Check Valve	Fails to open Internal Leak Rupture	$1 \times 10^{-4/d}$ $3 \times 10^{-7}/hr.**$ $1 \times 10^{-8}/hr$	$0.15 \times 10^{-6}/d$ 1.6 x 10^{-6}/hr	$1 \times 10^{-4}/d$ 1.2 x $10^{-6}/hr$	$2 \times 10^{-4}/d^{-4}$ 4.7 x 10 ⁻⁷ /hr		$2 \times 10^{-4}/d$ 4.7 x $10^{-7}/hr$ 1 x $10^{-8}/hr$
		Manual Valve	FTRO (plug) Rupture Fail to operate	$1 \times 10^{-4}/d$ $1 \times 10^{-8}/hr$.		$1 \times 10^{-7}/hr$ $1 \times 10^{-4}/d$	$2 \times 10^{-8}/hr$ $8 \times 10^{-5}/d$		$1 \times 10^{-2}/d$ 2 x 10 ⁻⁸ /hr 3 x 10 ⁻⁵ /d
		motor Driven Operators	Spurious Opening Spurious Closing Fail to Open Fail to Close					$1.2 \times 10^{-7}/hr$ $1.2 \times 10^{-7}/hr$ $2.5 \times 10^{-6}/d$ $2.5 \times 10^{-6}/d$	$\frac{1.2 \times 10^{-7}/hr}{1.2 \times 10^{-7}/hr}$ 2.5 x 10 ⁻⁶ /d 2.5 x 10 ⁻⁶ /d

* Specific to Aux. Feed Pumps

** 95 percent corfidence bound

*** Value for Westinghouse

TABLE 8.1

100	
148	
12	
RAJ	
2	
-	
148	
CILL.	
3	
-	
sud.	
- 12	
hile.	
-	
Z.	
141	
Z	
0	
COMP	
*	
25	
-	
-	
#	
CAL	
ICAL (
RICAL	
RICAL	
CTRICAL (
RICAL	
RICAL	
RICAL	
ELECTRICAL	
ELECTRICAL	
ELECTRICAL	
RICAL	
ELECTRICAL	
CHANICAL AND ELECTRICAL	
CHANICAL AND ELECTRICAL	
ELECTRICAL	

					LAILUNE MAIL			
			WASH-1400	GE		NRC	IEEE-500	RECOMMENDED
CATECORY	COMPONENT	FAILURE			BMR	M		
Valves (cont'd)	Solenoid Operated	Fail to operate FTRO (plug)	1 x 10 ⁻³ /d 1 x 10 ⁻⁴ /d 1 x 10 ⁻⁴ /d					$1 \times 10^{-3}/d$ $1 \times 10^{-1}/d$ $1 \times 10^{-8}/hr$
	Air Operated	Fail to operate FTRO (plug) Rupture	$3 \times 10^{-4}/d$ $1 \times 10^{-4}/d$ $1 \times 10^{-8}/d$		$3 \times 10^{-3}/d$ $4 \times 10^{-7}/hr$	9 x 10 ⁻⁴ /d 1 x 10 ⁻⁷ /hr 1 x 10 ⁻⁷ /hr		$9 \times 10^{-4}/d$ $1 \times 10^{-6}/d$ $1 \times 10^{-7}/hr$
	Relief Valves	Fail to open Premature open Fail to close	$1 \times 10^{-5/d}$ $1 \times 10^{-5/hr}$		8 × 10 ⁻³ /d 4 × 10 ⁻³ /d 5 × 10 ⁻³ /d	1.0 × 10 ⁻⁵ /hr		8 × 10 ⁻³ /d 1.0 × 19 ⁻⁵ /hr 5 × 10 ⁻⁵ /d
	Safety Valves (PWR)	Fail to open Premature open Fail to close	$3 \times 10^{-3/d}$ $3 \times 10^{-6/hr}$ $1 \times 10^{-2/d}$			$6.2 \times 10^{-3}/d$ 1 × 10^{-5}/hr		6.2 × 10 ⁻³ /d 1 × 10 ⁻⁵ /hr 1 × 10 ⁻⁷ /d
Valve Actuators	Solenoid: Normally open	Spurious energization Spurious de-ener- gization Fail to energize Fail to de-energize					3.4 × 10 ⁻⁸ /hr 7.1 × 10 ⁻⁷ /hr 1.6 × 10 ⁻⁶ /d 1.4 × 10 ⁻⁶ /d	$\begin{array}{c} 3.4 \times 10^{-6}/hr \\ 7.1 \times 10^{-7}/hr \\ 1.5 \times 10^{-6}/d \\ 1.4 \times 10^{-6}/d \end{array}$
	Solenoid: Normally closed	Spurious energiz- ation Spurious de-ener- gization Fail to energize Fail to de-energize					$4.4 \times 10^{-8}/hr$ 9.0 × 10 ⁻⁷ /hr 2.0 × 10 ⁻⁶ /d 1.5 × 10 ⁻⁶ /d	$\begin{array}{c} 4.4 \times 10^{-8}/hr \\ 9.0 \times 10^{-7}/hr \\ 2.0 \times 10^{-6}/d \\ 1.5 \times 10^{-6}/d \end{array}$
	Piston: Double Acting	Spurious open Spurious close Fail open Fail to close	•				4.5 × 10 ⁻⁷ /hr 4.5 × 10 ⁻⁷ /hr 8.7 × 10 ⁻⁷ /d 1.1 × 10 ⁻⁶ /d	4.5 × 10 ⁻⁷ /hr 4.5 × 10 ⁻⁷ /hr 8.7 × 10 ⁻⁷ /d 1.1 × 10 ⁻⁶ /d
	Piston: Single Acting	Spurious open Spurious close Fail to open Fail to close					3.2 × 10 ⁻ /hr 3.5 × 10 ⁻ /hr 1.2 × 10 ⁻⁶ /d 1.6 × 10 ⁻⁶ /d	$3.2 \times 10^{-7}/hr$ $3.5 \times 10^{-7}/hr$ $1.2 \times 10^{-6}/d$ $1.6 \times 10^{-6}/d$

TABLE 8.1

MECHANICAL AND ELECTRICAL COMPONENT FAILURE RATES

			MASH-1400	GE	NRC		1666-500	RECOMPENDED
		FAILURE			BWR	PWR		
CATEGORY	COMPONENT	HODE					$1.7 \times 10^{-7}/hr$	$1.7 \times 10^{-7}/hr$
Valve Actuators (cont'd)	Disphragm	Spurious open Spurious close Fail to open					$\frac{1.6 \times 10^{-7}/hr}{2.5 \times 10^{-7}/d}$ 3.2 × 10^{-7}/d	$\frac{1.6 \times 10^{-7/10}}{2.5 \times 10^{-7/10}}$
		Fail to close					1.5 × 10 ⁻⁶ /hr	3 × 10 ⁻⁶ /hr
Battery	Met Cell Batteries	Fail to provide proper output	3 x 10 ⁻⁶ /hr				10-10-4 /hr	1.2 × 10 ⁻⁴ /hr
Battery Chargers	Battery charger	Fail to provide proper output						1 × 10-5/4
		11 10 0000	1 × 10 ⁻⁵ /d					
Circuit Breakers	Fuses < 1000 v	Premature open	1 x 10 ⁻⁶ /hr				$2.1 \times 10^{-8}/hr$ 1.1 × 10 ⁻⁸ /hr	$2.1 \times 10^{-8}/hr$ 1.1 × 10^{-8}/hr
	1000-3000 v	Premature open						1 × 10 ⁻³ /d
	Circuit Breakers	Fail to transfer Premature transfer	$1 \times 10^{-3/4}$ $1 \times 10^{-6/4}$				b/ ⁴ /01 × 0.1 -6/4 4.4 × 10 ⁻⁶ /d	1.9 × 10 ⁻⁴ /d 4.4 × 10 ⁻⁶ /d
	(AC) (DC)	Fail to open Fail to close Fail to open					1.8 × 10 ⁻⁶ /d	1.8 × 10 /4
	Relays (Protective) (Control and Se- quentially Programmed)	Fail to open Fail to close Fail to open Fail to close					.50 × 10 ⁻⁶ /d 2.9 × 10 ⁻⁶ /d 3.1 × 10 ⁻⁶ /d 3.9 × 10 ⁻⁶ /d	2.9 × 10 ⁻⁶ /d 2.9 × 10 ⁻⁶ /d 3.1 × 10 ⁻⁶ /d 3.9 × 10 ⁻⁶ /d

					FAILURE RA	TE	LOILAND DOILS	
			WASH-1400	GE	N	RC	IEEE-500	RECOMMENDED
CATEGORY	COMPONENT	FAILURE MODE			BWR	PwR		
Circuit Breakers (cont'd)	Relays (Motors)	Failure to energize Coil open Coil short to power	1 x 10 ⁻⁷ /hr					$1 \times 10^{-4}/d$ $1 \times 10^{-7}/hr$ $1 \times 10^{-8}/hr$
Transformers	Transformers Single Phase: 2 - 30KV Three phase: Dry 15 - 40KV 601V - 15KV Liquid 2 - 30 KV 31 - 72 KV 73 - 145KV 146 - 242KV 243 - 346KV 347 - 550KV	Open circuit: Primary or Secondary Short: Primary to Secondary Open Open Open Open Open Open Open Open					$3.2 \times 10^{-8}/hr$ $7.4 \times 10^{-8}/hr$ $3.9 \times 10^{-8}/hr$ $3.6 \times 10^{-8}/hr$ $5.2 \times 10^{-8}/hr$ $8.6 \times 10^{-9}/hr$ $1.9 \times 10^{-8}/hr$ $9.2 \times 10^{-9}/hr$ $5.4 \times 10^{-8}/hr$	$1 \times 10^{-6}/hr$ $1 \times 10^{-6}/hr$ $3.2 \times 10^{-8}/hr$ $3.2 \times 10^{-8}/hr$ $3.9 \times 10^{-8}/hr$ $3.9 \times 10^{-8}/hr$ $2 \times 10^{-8}/hr$ $3.9 \times 10^{-9}/hr$ $1.9 \times 10^{-8}/hr$ $9.2 \times 10^{-9}/hr$ $5.4 \times 10^{-8}/hr$
Electrical Distribution	Bus Wires	Open Short Open Circuit Short to Ground Short to Power	$3 \times 10^{-6}/hr$ $3 \times 10^{-7}/hr$ $1 \times 10^{-5}/hr$				4.2 x 10 ⁻⁹ /hr 7 x 10 ⁻⁸ /hr	4.2 x $10^{-9}/hr$ 7.0 x $10^{-8}/hr$ 3 x $10^{-6}/hr$ 3 x $10^{-7}/hr$ 1 x $10^{-5}/hr$
	Power Supply	No Output					1.4 x 10 ⁻⁶ /hr	1.4 x 10 ⁻⁶ /hr

MECHANICAL AND ELECTRICAL COMPONENT FAILURE RATES

TABLE 8.1

B-4

		1.1.5			FAILURE	RATE		
			WASH-1400	GE		NRC	1EEE-500	RECOMMENDED
CATEGORY	COMPONENT	FAILURE			BWR	PWR		
Electrical Distribution (Cont'd)	Cable Power: Copper	Open circuit Short to ground Short to power					9.1 x $10^{-7}/hr$ 1.7 x $10^{-6}/hr$ 1.0 x $10^{-6}/hr$	9.1 x $10^{-7}/hr$ 1.7 x $10^{-6}/hr$ 1.0 x $10^{-6}/hr$
	Aluminum	Open circuit Short to ground Short to power					$1.1 \times 10^{-6}/hr$ $3.9 \times 10^{-6}/hr$ $1.5 \times 10^{-6}/hr$	$1.1 \times 10^{-6}/hr$ $3.9 \times 10^{-6}/hr$ $1.5 \times 10^{-6}/hr$
	Control: Copper	Open circuit Short to ground Short to power					9.1 x $10^{-7}/hr$ 2.4 x $10^{-6}/hr$ 1.0 x $10^{-6}/hr$	9.1 \times 10 ⁻⁷ /hr 2.4 \times 10 ⁻⁶ /hr 1.0 \times 10 ⁻⁶ /hr
	Terminal Boards	Open Short	$1 \times 10^{-7}/hr$ $1 \times 10^{-8}/hr$				$3.3 \times 10^{-6}/hr$ $1.4 \times 10^{-6}/hr$	3.3. x $10^{-6}/hr$ 1.4 x $10^{-6}/hr$
Instrumentation and Controls	Relay	Coil fails to operate Coil fails to open	$1 \times 10^{-4}/d$ $3 \times 10^{-7}/hr$	$.4 \times 10^{-6}/hr$.08 x 10 ⁻⁶ /hr				$1 \times 10^{-4}/d$ $3 \times 10^{-7}/hr$
	Temperature Sensing Device [3] Temperature Element Temperature Transmitter	Fails to operate Degraded operation Fail to operate Degraded operation Fails to operate Degraded operation				1.4 x 10 ⁻⁶ /hr 6.6 x 10 ⁻⁷ /hr	$1.8 \times 10^{-6}/hr$ $1.2 \times 10^{-6}/hr$ $3.8 \times 10^{-7}/hr$ $3.6 \times 10^{-7}/hr$	$1.4 \times 10^{-6}/hr$ $6.6 \times 10^{-7}/hr$ $1.8 \times 10^{-6}/hr$ $1.2 \times 10^{-6}/hr$ $3.8 \times 10^{-7}/hr$ $3.6 \times 10^{-7}/hr$

MECHANICAL AND ELECTRICAL COMPONENT FAILURE RATES

[3] Sensing Device includes switch, monitor, sensor, and transmitter

B-5

TABLE 8.1

166 (T	

					FALLUKE KAIE	AIE		
			MASH-1400	99		NRC	1666-500	RECOMMENDED
	COMPONENT	FAILURE			BWR	PwR		
CALEGART Instrumentation and Control (Cont'd)	Temperature Switches	Failed to operate Spurious operation Degraded operation		2.3 x 10 ⁻⁶ /hr			$\frac{1.2 \times 10^{-7}/d}{1.4 \times 10^{-7}/d}$ 4.8 × 10^{-7}/d	$1.2 \times 10^{-7/d}$ $1.4 \times 10^{-7/d}$ $4.8 \times 10^{-7/d}$ $4.8 \times 10^{-6/hr}$
	Pressure Sensing	Fails closed Fails to operate		.33 × 10 7/hr	7.1 × 10 ⁻⁷ /hr	6 × 10 ⁻⁷ /hr		6 × 10 ⁻⁷ /hr 3.7 × 10 ⁻⁶ /hr
	Device	Degraded operation			8.3 × 10 /hr	3.7 × 10 -/hr		
	Pressure Element	Fails to operate		1.1 × 10 ⁻⁶ /hr			a 2 - 10-7 hr	a 2 × 10-7 /hr
	Pressure Transmit-	Fails to operate					6.3 × 10 ⁻⁷ /hr	6.3 × 10 ⁻⁷ /hr
		Degraded operation					L	1
	Pressure Switch	Fails to operate Spurious operation	1 × 10 ⁻⁴ /d				2.0 × 10 ^{-7/d} 4.8 × 10 ^{-8/d} 5.7 × 10 ^{-8/d}	2.0 × 10 '/d 4.8 × 10 ⁻⁸ /d 5.7 × 10-8/d
	Flow Sensing Device	regraded operation			$5.9 \times 10^{-7}/hr$ 2.9 × 10 ⁻⁶ /hr	4.8 x 10 ⁻⁶ /hr 2.5 x 10 ⁻⁵ /hr		4.8 × 10 ⁻⁶ /hr 2.5 × 10 ⁻⁶ /hr
	Flow Element	Fail to operate Degraded operation					$3.1 \times 10^{-7}/hr$ 1.8 × 10^{-7}/hr	$3.1 \times 10^{-7}/hr$ $1.8 \times 10^{-7}/hr$
	Flow Controller	Fail to operate		4.2 × 10 ⁻⁶ /hr				4.2 × 10 /1
	Flow Transmitters	Fail to operate Degraded operation					$1.4 \times 10^{-6}/hr$ 1.4 × 10^{-6}hr	1.4 × 10 ⁻⁶ /1 1.4 × 10 ⁻⁶ /1
	Flow Switches	Fail to operate Spurious operation Degraded operation		4.2 × 10 ⁻⁶ /hr			1.3 × 10 ⁻⁰ /d 1.2 × 10 ⁻⁸ /d 1.7 × 10 ⁻⁸ /d	1.3 × 10 ^{-/d} 1.2 × 10 ^{-8/d} 1.7 × 10 ^{-3/d}
	Limit Switch	Fail to operate	3.4 × 10 ⁻⁴ /d 1 × 10 ⁻⁵ /d					3.4 × 10 ⁻⁴ /d 1 × 10 ⁻⁵ /d
	Manual Switch							-

Concession of the local division of the loca	Constant and the second	No. of Concession, Name	-	State of the local division of the local div
a de contra				

B-7

					FAILURE R	NRC	IEEE-500	RECOMMENDED
			WASH-1400	GE	BWR	PWR		
ATEGORY	COMPONENT	FAILURE			$3.1 \times 10^{-6}/hr$ 5.7 x 10 ⁻⁶ /hr	$2.6 \times 10^{-6}/hr$ 5.2 x 10 ⁻⁶ /hr		$2.6 \times 10^{-6}/hr$ $5.2 \times 10^{-6}/hr$ $3.9 \times 10^{-6}/hr$
rumentation	Level Sensing Device	Fail to operate Degraded operation		3.9 x 10 ⁻⁶ /hr	5.7 x 10 7m		$1.4 \times 10^{-6}/hr$ $1.1 \times 10^{-6}/hr$	$\frac{1.4 \times 10^{-6}/hr}{1.1 \times 10^{-6}/hr}$ $3 \times 10^{-7}/d$
Cont'd)	Level Element Level Transmitter	Fail to operate Degraded operation					$3 \times 10^{-7}/d$ $3.4 \times 10^{-8}/d$ $4.5 \times 10^{-7}/d$	$3.4 \times 10^{-8}/d$ $4.5 \times 10^{-7}/d$ $1 \times 10^{-6}/hr$
	Level Switch	Fail to operate Spurious operations Degraded operations					$1 \times 10^{-6}/hr$ $1 \times 10^{-6}/hr$ $2 \times 10^{-6}/hr$	$1 \times 10^{-6}/hr$ $2 \times 10^{-6}/hr$
	Level Controller	Fail to operate Spurious operations Degraded operation		4.2 x 10 ⁻⁶ /hr				4.2 × 10 ⁻⁶ /1 4.2 × 10 ⁻⁶ /
	E/S Converter	Fail to operate		4.2 x 10 ⁻⁶ /hr			2.8 x 10 ⁻⁶ /hr	2.8 × 10 ⁻⁶ 1.9 × 10 ⁻⁶
	Square Root Con-		4.2	4.2 x 10 ⁻⁶ /hr			1.9 x 10 ⁻⁶ /hr	1 × 10 ⁻⁶ /
	Power Supply	Fail to operate Degraded operation Fails to Function	$1 \times 10^{-6}/hr$ $1 \times 10^{-7}/hr$					1×10^{-6} 3×10^{-6} 1×10^{-6}
	Low Power High Power	Fails Shorted	$3 \times 10^{-6}/hr$ 1 x 10 ⁻⁶ /hr					1 × 10 ⁻⁴
	Torque Switch	- to operate	1 x 10 ⁻⁴ /d					3 × 10
	Switch Contac	114 0000	$1 \times 10^{-7}/hr$ $3 \times 10^{-8}/hr$ $1 \times 10^{-8}/hr$					1 × 10

TABLE B.2

FAULT ENTIFIERDESCRIPTION1.2 × 10 ⁻⁶ /hrVBISGARØHS.G.A. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ VBISGARØHS.G.D. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCRØHS.G.C. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCRØHS.G.B. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGRØHS.G.B. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGRRØHS.G.A. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVBISGRRØHS.G.D. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVBISGRRØHS.G.D. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVXISGDRMMS.G.C. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGDRMMS.G.C. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGRRMMS.G.B. Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGRRMMS.G.B. Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGRRMMS.G.B. Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGRRMMS.G.B. Relief Valve Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGRRMMS.G.D. Reversed 5.7×10^{-3} $5.7 \times 10^{-3}/d$ MPB1737AMGTurbine Driven Pump P-37B $3.4 \times 10^{-3}/hr$ $1 \times 10^{-7}/hr$ MVD1V30AMJSupply Line to S.G.A. Ruptures 5×10	FAULT	DENT	TABLE B.2 IFIERS FOR THE SEABROOK EMER	LINAV	AILABILITY	FAILUR	E RATE
S. G. A. Relief Valve 5.0×10^{-7} QVBISGARØH S. G. D. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCRØH S. G. C. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCRØH S. G. C. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCRØH S. G. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCRØH S. G. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVBISGCRØM S. G. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVBISGCRØM S. G. D. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGDRMM S. G. C. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMM S. G. B. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMM S. G. B. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMM S. G. B. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMM S. G. B. Relief Valve Control Valve F	FAULT	-	DESCRIPTION	UNAV	AICADIC		-6
QVBISGDR0HS.G.D. Relief Valve Calibration6.0 × 10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGCR0HShift6.0 × 10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGRR0HS.G.R. Relief Valve Calibration 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGRR0HS.G.A. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVBISGRR0HS.G.A. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QVBISGRR0HS.G.A. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGDR0MS.G.C. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGDR0MS.G.C. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBR0MS.G.B. Relief Valve Control Wiring 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBR0MS.G.B. Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBR0MWiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBR0MWiring Reversed 4.2×10^{-8} $8.4 \times 10^{-3}/dr$ QIXISGBR0MS.G.B. Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBR0MWiring Reversed 5.7×10^{-3} $5.7 \times 10^{-3}/dr$ QIXISGBR0MS.G.B. Relief Valve Control 4.2×10^{-8} $1.4 \times 10^{-8}/hr$ QIXISGBR0MWotor Driven Pump P-37A 5.7×10^{-3} $5.7 \times 10^{-3}/dr$ MPBID37EMGTurbine Driven Pump P-37B $3.4 \times 10^{-3}/dr$ $1 \times 10^{-7}/hr$ MVD1V30AMJIsolation Valve V-30 In Feedwater 5×10^{-9} $1 \times 10^$		Val	VP				
QVBISGCRØHS.G.C. Relief Valve Calibration Shift6.0 × 101.2 × 10^{-6}/hrQVBISGRRØHS.G.B. Relief Valve Calibration Shift 6.0×10^{-7} $1.2 \times 10^{-6}/hr$ QVBISGRRØHS.G.A Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGDRMMS.G.D Relief Valve Control Wiring 		S.G	.D. Relief Valve Calibration			+	
QVB1SGRRØHS.G.B. Relief Valve Control Wiring Reversed 6.0×10^{-8} $8.4 \times 10^{-8}/hr$ QVB1SGARMMS.G.A Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGDRMMS.G.D Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGCRMMS.G.C Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGCRMMS.G.C Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGBRMMS.G.B Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGBRMMS.G.B Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGBRMMS.G.B Relief Valve Control 4.2×10^{-3} $8.4 \times 10^{-8}/hr$ QIX1SGBRMMMiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIX1SGBRMMS.G.B Relief Valve Control 4.2×10^{-3} $8.4 \times 10^{-8}/hr$ QIX1SGBRMMMotor Driven Pump P-37A 5.7×10^{-3} $5.7 \times 10^{-3}/d$ MPB1D37EMGTurbine Driven Pump P-37B $3.4 \times 10^{-3}/d$ $1 \times 10^{-7}/hr$ MVD1V30AMJSupply Line to S.G.A Ruptures 5×10^{-8} $1 \times 10^{-7}/hr$ MV01V30AMJStop Check Valve V-29 In Feedwater Supply Line To S.G.A Ruptures 5×10^{-9} $1 \times 10^{-8}/hr$ MVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures 5×10^{-9} $1 \times 10^{-7}/h$ MVD14214MJAux. Feed. Supply Line A Ruptures 5×10^{-9} $1 \times 10^{-8}/hr$ MVA1V94DMJStop Check Valve V-94 In Aux.<		I Ch	1++			1	
QVBISGARMMS.G.A Relief Valve Control4.2 x 10QIXISGDRMMS.G.D Relief Valve Control Wiring Reversed4.2 x 10^{-8}8.4 x 10^{-8}/hrQIXISGDRMMS.G.C Relief Valve Control Wiring Reversed4.2 x 10^{-8}8.4 x 10^{-8}/hrQIXISGCRMMS.G.C Relief Valve ControlWiring Reversed4.2 x 10^{-8}8.4 x 10^{-8}/hrQIXISGBRMMS.G.B Relief Valve Control4.2 x 10^{-8}8.4 x 10^{-8}/hrQIXISGBRMMS.G.B Relief Valve Control4.2 x 10^{-8}8.4 x 10^{-7}/mQIXISGBRMMS.G.B Relief Valve Control4.2 x 10^{-8}8.4 x 10^{-7}/mQIXISGBRMMS.G.B Relief Valve Voltor Pump P-37A5.7 x 10^{-3}5.7 x 10^{-3}/dMPBIT37AMGTurbine Driven Pump P-37B3.4 x 10^{-3}3.4 x 10^{-3}/dMPBID37BMGMotor Driven Pump P-37B3.4 x 10^{-3}3.4 x 10^{-7}/mMVDIV30AMJIsolation Valve V-30 In Feedwater Supply Line to S.G.A Ruptures5 x 10^{-8}1 x 10^{-7}/mMVA1V29AMJCheck Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10^{-9}1 x 10^{-8}/mMVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures5 x 10^{-9}1 x 10^{-8}/mMVA1V29AMJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 x 10^{-9}1 x 10^{-8}/mMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Ruptures5 x 10^{-9}1 x 10^{-8}/mMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Ruptures5 x 10^{-8}1 x 10^{-7}/m		S.	G.B. Relief Valve Calibrati				
QIXISGDRMMS.G.D Relief Valve Control4.2 x 10QIXISGDRMMS.G.C Relief Valve Control Wiring Reversed4.2 x 10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGCRMMS.G.B Relief Valve Control 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMMS.G.B Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMMS.G.B Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ QIXISGBRMMS.G.B Relief Valve Control Wiring Reversed 4.2×10^{-8} $8.4 \times 10^{-8}/hr$ MPBIT37AMGTurbine Driven Pump P-37A Fails to Run 5.7×10^{-3} $5.7 \times 10^{-3}/d$ MPB1D37BMGMotor Driven Pump P-37B Fails to Run 3.4×10^{-3} $3.4 \times 10^{-3}/d$ MVD1V30AMJSupply Line to S.G.A Ruptures 5×10^{-8} $1 \times 10^{-7}/hr$ MVA1V29AMJStop Check Valve V-29 In Feedwater Supply Line To S.G.A Ruptures 5×10^{-9} $1 \times 10^{-8}/hr$ MVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures 5×10^{-9} $1 \times 10^{-7}/hr$ MVD14214MJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures 5×10^{-9} $1 \times 10^{-7}/hr$ MVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture 5×10^{-9} $1 \times 10^{-7}/hr$		1 s	.G.A Relief Valve Control Wi	ring 4	4.2 × 10 ⁻⁸		
QIX1SGDRMMReversed4.2 x 10^{-8}8.4 x 10^{-5}/hrQIX1SGCRMMS.G.C Relief Valve Control Wiring Reversed4.2 x 10^{-8}8.4 x 10^{-8}/hrQIX1SGBRMMS.G.B Relief Valve Control Wiring Reversed4.2 x 10^{-8}8.4 x 10^{-8}/hrQIX1SGBRMMS.G.B Relief Valve Control Wiring Reversed4.2 x 10^{-8}8.4 x 10^{-3}/dMPBIT37AMGTurbine Driven Pump P-37A Fails to Run5.7 x 10^{-3}5.7 x 10^{-3}/dMPB1D37BMGMotor Driven Pump P-37B Fails to Run3.4 x 10^{-3}3.4 x 10^{-3}/dMVD1V30AMJIsolation Valve V-30 In Feedwater Supply Line to S.G.A Ruptures5 x 10^{-8}1 x 10^{-7}/hrMVA1V29AMJCheck Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10^{-9}1 x 10^{-8}/hrMVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures5 x 10^{-9}1 x 10^{-7}/hrMVD14214MJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 x 10^{-9}1 x 10^{-7}/hrMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 x 10^{-9}1 x 10^{-7}/hrMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Ruptures5 x 10^{-8}1 x 10^{-7}/hr		+	G.D. Relief Valve Control W	iring	4.2 × 10 ⁻⁸		
QIXISGCRMMReversedS.G.B Relief Valve Control Wiring Reversed4.2 × 10^{-8}8.4 × 10^{-9}/hrQIXISGBRMMS.G.B Relief Valve Control Wiring Reversed4.2 × 10^{-8}8.4 × 10^{-9}/hrMPBIT37AMGTurbine Driven Pump P-37A Fails to Run5.7 × 10^{-3}5.7 × 10^{-3}/dMPB1D37BMGMotor Driven Pump P-37B Fails to Run3.4 × 10^{-3}3.4 × 10^{-3}/dMPB1D37BMGIsolation Valve V-30 In Feedwater Supply Line to S.G.A Ruptures5 × 10^{-8}1 × 10^{-7}/hrMVD1V30AMJStop Check Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 × 10^{-9}1 × 10^{-8}/hrMVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures5 × 10^{-9}1 × 10^{-8}/hrMVD14214MJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 × 10^{-8}1 × 10^{-7}/hMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 × 10^{-8}1 × 10^{-7}/hMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 × 10^{-8}1 × 10^{-7}/h	QIX1SGDRM	M	Reversed S.G.C Relief Valve Control V		4.2×10^{-8}		
QIX1SGBRMMWiring ReversedWIRINGTurbine Driven Pump P-37A5.7 x 10^{-3}MPB1T37AMGTurbine Driven Pump P-37A5.7 x 10^{-3}MPB1D37BMGFails to Run3.4 x 10^{-3}MPB1D37BMGSolation Valve V-30 In Feedwater3.4 x 10^{-3}/dMVD1V30AMJIsolation Valve V-30 In Feedwater5 x 10^{-8}MVD1V30AMJCheck Valve V-29 In Feedwater5 x 10^{-9}MVA1V29AMJCheck Valve V-29 In Feedwater5 x 10^{-9}MVA1V29AMJStop Check Valve V-76 In Aux.5 x 10^{-9}MVD14214MJFlow Control Valve FV-4214 In1 x 10^{-7/hrMVA1V94DMJStop Check Valve V-94 In Aux.5 x 10^{-9}MVA1V94DMJStop Check Valve V-94 In Aux.5 x 10^{-9}MVA1V94DMJFeed. Supply Line D Ruptures5 x 10^{-8}MVA1V94DMJStop Check Valve V-94 In Aux.5 x 10^{-8}MVA1V94DMJFeed. Supply Line D Ruptures5 x 10^{-8}	QIX1SGCR	MM	Reversed		4.2 × 10 ⁻⁸	8	.4 x 10 ⁻⁸ /hr
MPB1T37AMGTuro Rails to Run Fails to RunMotor Driven Pump P-37B Fails to Run3.4 × 10^{-3}3.4 × 10^{-3}/dMPB1D37BMGFails to RunIsolation Valve V-30 In Feedwater Supply Line to S.G.A Ruptures5 × 10^{-8}1 × 10^{-7}/hrMVD1V30AMJSupply Line to S.G.A Ruptures5 × 10^{-9}1 × 10^{-8}/hrMVA1V29AMJCheck Valve V-29 In Feedwater 	QIX1SGBR	MM	Wiring Reversed	-			$5.7 \times 10^{-3}/d$
Motor Driven Pump P-37B3.4 x 10MPB1D37BMGFails to Run3.4 x 10Fails to RunIsolation Valve V-30 In Feedwater Supply Line to S.G.A Ruptures5 x 10^{-8}MVD1V30AMJCheck Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10^{-9}MVA1V29AMJCheck Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10^{-9}MVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures5 x 10^{-9}MVA1V29AMJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 x 10^{-8}MVD14214MJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 x 10^{-9}MVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 x 10^{-8}MVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 x 10^{-8}	MPB1T37	AMG	Fails to Run				$3.4 \times 10^{-3}/d$
MVD1V30AMJIsolation Valve V-30 IN House Supply Line to S.G.A Ruptures5 x 10MVD1V30AMJCheck Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10^{-9}MVA1V29AMJCheck Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10^{-9}MVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures5 x 10^{-9}MVA1V29AMJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 x 10^{-8}MVD14214MJFlow Control Valve FV-4214 In Aux. Feed. Supply Line D Rupture5 x 10^{-9}MVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 x 10^{-9}MVA1V94DMJFlow Control Valve FV-4244 In Feed. Supply Line D Ruptures5 x 10^{-8}	MDB 1037	BMG		oodwate	1	T	
MV01V00Check Valve V-29 In Feedwater Supply Line To S.G.A Ruptures5 x 10 ° 1 × 10 ° / hrMVA1V29AMJStop Check Valve V-76 In Aux. Feed. Supply Line A Ruptures5 x 10 ° 1 × 10 ° / hrMVA1V29AMJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 x 10 ° 1 × 10 ° / hrMVD14214MJFlow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures5 x 10 ° 1 × 10 ° / hrMVA1V94DMJFlow Control Valve FV-4214 In Feed. Supply Line D Rupture5 x 10 ° 9 1 × 10 ° / hrMVA1V94DMJStop Check Valve V-94 In Aux. Feed. Supply Line D Rupture5 x 10 ° 9 1 × 10 ° / hrMVA1V94DMJFlow Control Valve FV-4244 In Feed. Supply Line D Ruptures5 x 10 ° 8 1 × 10 ° / hr			Cupply Line of			-+	
MVAILON Stop Check Valve V-76 In Aux. 5 x 10 ⁻⁹ 1 x 10 ⁻⁷ /h MVA1V29AMJ Feed. Supply Line A Ruptures 5 x 10 ⁻⁹ 1 x 10 ⁻⁷ /h MVD14214MJ Flow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures 5 x 10 ⁻⁹ 1 x 10 ⁻⁷ /h MVD14214MJ Stop Check Valve V-94 In Aux. Feed. Supply Line D Rupture 5 x 10 ⁻⁹ 1 x 10 ⁻⁷ /h MVA1V94DMJ Stop Check Valve V-94 In Aux. Feed. Supply Line D Rupture 5 x 10 ⁻⁹ 1 x 10 ⁻⁷ /h MVA1V94DMJ Flow Control Valve FV-4244 In Feed. Supply Line D Ruptures 5 x 10 ⁻⁸ 1 x 10 ⁻⁷ /h	T		Check Valve V-29 In Feedy Supply Line To S.G.A Rupt	tures			
MVD14214MJ Flow Control Valve FV-4214 In Aux. Feed. Supply Line A Ruptures 5 x 10 °° 1 x 10 ⁻⁸ /t MVD14214MJ Stop Check Valve V-94 In Aux. Feed. Supply Line D Rupture 5 x 10 ⁻⁹ 1 x 10 ⁻⁸ /t MVA1V94DMJ Stop Check Valve FV-4244 In Feed. Supply Line D Ruptures 5 x 10 ⁻⁸ 1 x 10 ⁻⁷ /t			Stop Check Valve V-76 In Feed, Supply Line A Rupt	aux.			
MVD1109Stop Check Valve V-94 In Aux.5 x 10 -MVA1V94DMJFeed. Supply Line D Rupture5 x 10 -Feed. Supply Line D Ruptures5 x 10 -8Flow Control Valve FV-4244 In5 x 10 -8Flow Control Valve FV-4244 In5 x 10 -8	F		Flow Control Valve FV-42 Aux Feed. Supply Line	A Ruptur			
Flow Control Valve FV-4244 In 5 x 10 1 1 1	F		Stop Check Valve V-94 I	n AUX.	5 x 10		+
MVD14244MJ Aux. Feed. Safet V-88 In Aux. 5 x 10 ⁻⁹ 1 x 10 ⁻⁰	F	-	Flow Control Valve FV-				1×10^{-7} 1×10^{-8}

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD14234MJ	Flow Control Valve FV-4234 In Aux Feed Supply Line C Ruptures	5 × 10 ⁻⁸	$1 \times 10^{-7}/hr$
MVA1V82BMJ	Stop Check Valve V-82 In Aux. Feed. Supply Line B Ruptures	5 x 10 ⁻⁹	$1 \times 10^{-8}/hr$
MVD14224MJ	Flow Control Valve FV-4244 In Aux. Feed. Supply Line B Ruptures	5 × 10 ⁻⁸	$1 \times 10^{-7}/hr$
MVD1V57DMJ	Isolation Valve V-57 In Feedwater Supply Line D Ruptures	5 × 10 ⁻⁸	$1 \times 10^{-7}/hr$
MVA1V56DMJ	Check Valve V-56 In Feedwater Supply Line D Ruptures	5 × 10 ⁻⁹	1 x 10 ⁻⁸ /hr
MVD1V48CMJ	Isolation Valve V-48 In Feedwater Supply Line C Ruptures	5 × 10 ⁻⁸	1 x 10 ⁻⁷ /hr
MVA1V47CMJ	Check Valve V-47 In Feedwater Supply Line C Ruptures	5×10^{-9}	1 x 10 ⁻⁸ /hr
MVD1V39BMJ	Isolation Valve V-39 In Feedwater Supply Line B Ruptures	5 × 10 ⁻⁸	1 x 10 ⁻⁷ /hr
MVA1B38BMJ	Check Valve V-38 In Feedwater Supply Line B Ruptures	5 × 10 ⁻⁹	1 x 10 ⁻⁸ /hr
MVM1V75AMJ	Manual Valve V-75 In Aux. Feed. Supply Line A Ruptures	1 × 10 ⁻⁸	2 x 10 ⁻⁸ /hr
VMD1V65AMJ	Gear Driven Valve V-65 In P-37A Discharge Line Ruptures	5 × 10 ⁻⁹	1 × 10 ⁻⁸ /jr
MVM1V152MJ	Manual Valve V-152 In Feedwater Recirc. Line A Ruptures	1 × 10 ⁻⁸	2 x 10 ⁻⁸ /hr
MVD1V156MJ	Gear Driven Valve V-156 In Start- up Feed Pump Discharge Line Rup.	5 x 10 ⁻⁹	1 x 10 ⁻⁸ /hr
MVD1V510MJ	Flow Control Valve FCV-510 In Feed. Supply Line A Ruptures	5 x 10 ⁻⁸	$1 \times 10^{-7}/hr$
MVM1V87DMJ	Manual Valve V-87 In Aux. Feed. Supply Line D Ruptures	1 × 10 ⁻⁸	2 x 10 ⁻⁸ /hr
MVM1V153MJ	Manual Valve V-153 In Feedwater Recirc. Line D Ruptures	1 × 10 ⁻⁸	$2 \times 10^{-8}/hr$
MVD1V540MJ	Flow Control Valve FCV-540 In Feed. Supply Line D Ruptures	5 × 10 ⁻⁸	$1 \times 10^{-7}/hr$

BROOK EMERGENCY FEED STATION

FAULT I	DENTIFIE	RS FOR THE SEABROOK EMERGE	UNAVAILABILIT	Y FAILURE	RATE
FAULT		DESCRIPTION Feed.	1 × 10 ⁻⁸		0 ⁻⁸ /hr
MVM1V93CMJ	Manual Supply	Valve V-93 In Aux. Feed. Line C Ruptures	1×10^{-8}	2 x 1	10 ⁻⁸ /hr
MVM1V154MJ	Recirc	Valve V-154 In Feedwater Line C Ruptures	5 x 10 ⁻⁸	1 ×	10 ⁻⁷ /hr
MDV1V530MJ	Flow C Feed.	Control Valve FCV-530 In Supply Line C Ruptures		2 X	10 ⁻⁸ /hr
MVM1V81BMJ	Line	Valve V-81 In Aux. Feed. B Ruptures Driven Valve V-71 In P-375		1,	k 10 ⁻⁸ /hr
MVD1V71BMJ	Disc	narge the sedwate			x 10 ⁻⁸ /hr
MVM1V155MJ	Reci	Irc. Line 520 In	10-8	1	x 10 ⁻⁷ /hr
MVD1V520M	J Fee	d. Suppro	s- 5 x 10-9	1	1 x 10 ⁻⁸ /hr
MVA1V64AM	MJ ch	arge Line		.9	1 x 10 ⁻⁸ /hr
MVA1V70B	SMJ Ch	harge Line	e 5 x 10	-9	$1 \times 10^{-8}/hr$
QVD1V12	9MJ S	steam Inter	Tur-	0 ⁻⁸	$2 \times 10^{-8}/hr$
QVM1V9	5AMJ	bine Steam to Steim			1 x 10 ⁻⁸ /hr
QVA1V9		Line A co.	Supply	10 ⁻⁹	$1 \times 10^{-8}/hr$
QVA1V	1968MJ	Line A cont	rol Valve 5 x	10 ⁻⁸	1 × 10 ⁻⁷ /h
QVX1	V127MJ	V-127 Nor	ual Bypass 1	× 10 ⁻⁸	2 × 10 ⁻⁸ /h
QVM	1V171MJ	Valve Valve B Cor	itrol 5	× 10 ⁻⁸	1 × 10 ⁻⁷ /
QVX	(1V128MJ	Valve V	nual By-	× 10 ⁻⁸	2 × 10 ⁻⁸
QM	N1V172M	Steam Supply Line B Ma pass Valve V-172 Ruptu	B-10		

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
FVM1V155MJ	Manual Valve V-155 In P-37A Suction Line Ruptures	1 × 10 ⁻⁸	$2 \times 10^{-8}/hr$
FVM1V154MJ	Manual Valve V-154 In P-37A Suction Line Ruptures	1 × 10 ⁻⁸	$2 \times 10^{-8}/hr$
FVM1V159MJ	Manual Valve V-159 In P-27A Suction Line Ruptures	1 × 10 ⁻⁸	$2 \times 10^{-8}/hr$
FVM1V158MJ	Manual Valve V-158 In P-37A Suction Line Ruptures	1 × 10 ⁻⁸	$2 \times 10^{-8}/hr$
MVD1V3ØAMB	Isolation Valve V-30 In Feedwater Supply Line A Fails To Close	9 × 10 ⁻⁴	9×10^{-4} /d
MVD14244MB	Flow Control Valve FV-4244 In Aux. Feed Supply Line D Fails To Close	2×10^{-3}	$2 \times 10^{-3}/d$
MVD14234MB	Flow Control Valve FV-4234 In Aux. Feed. Supply Line D Fails To Close	9 × 10 ⁻⁴	9 x 10 ⁻⁴ /d
MVD14224MB	Flow Control Valve FV-4224 In Aux. Feed. Supply Line D Fails To Close	9 x 10 ⁻⁴	9×10^{-4} /d
MVD1V57DMB	Isolation Valve V-57 In Feedwater Supply Line D Fails To Close	9 × 10 ⁻⁴	9×10^{-4} /d
MVD14214MB	Flow Control Valve FV-4214 In Aux. Feed. Supply Line A Fails To Close	9 × 10 ⁻⁴	$2 \times 10^{-3}/d$
MVD1V48CMB	Isolation Valve V-48 In Feedwater Supply Line C Fails To Close	9 × 10 ⁻⁴	9×10^{-4} /d
MVD1V39BMB	Isolation Valve V-39 In Feedwater Supply Line C Fails To Close	9 × 10 ⁻⁴	9×10^{-4} /d
MVD1V510MB	Flow Control Valve FCV-510 In Feed. Supply Line A Fails To Close	9 × 10 ⁻⁴	9×10^{-4} /d
MVD1V540MB	Flow Control Valve FCV-540 In Feed. Supply Line D Fails to Close	9 × 10 ⁻⁴	9 x 10 ⁻⁴ /d
MVD1V530MB	Flow Control Valve FCV-530 In Feed. Supply Line C Fails To Close	9 x 10 ⁻⁴	9 x 10 ⁻⁴ /d
MVD1V520MB	Flow Control Valve FCV-520 In Feed. Supply Line B Fails To Close	9 × 10 ⁻⁴	$9 \times 10^{-4}/d$
MVD1V30AMC	Isolation Valve V-30 In Feedwater Supply Line A Fails To Remain Cl.	2.3 × 10 ⁻⁷	4.5×10^{-7}

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD14244MC	Flow Control Valve FV-4244 In Aux. Feed. Supply Line D Fails To Remain Closed	6.0 × 10 ⁻⁸	1.2 x 10 ⁻⁷ /hr
MVD14234MC	Flow Control Valve FV-4234 In Aux. Feed. Supply Line C Fails To Remain Closed	6.0 × 10 ⁻⁸	$1.2 \times 10^{-7}/hr$
MVD14224MC	Flow Control Valve FV-4224 In Aux. Feed. Supply Line B Fails To Remain Closed	6.0×10^{-8}	1.2 x 10 ⁻⁷ /hr
MVD1V57DMC	Isolation Valve V-57 In Feedwater Supply Line D Fails To Remain Closed	2.3 × 10 ⁻⁷	4.5 x 10 ⁻⁷ /hr
MVD14214MC	Flow Control Valve FV-4214 In Aux. Feed. Supply Line A Fails To Remain Closed	6.0 × 10 ⁻⁸	$1.2 \times 10^{-7}/hr$
MVD1V48CMC	Isolation Valve V-48 In Feedwater Supply Line C Fails To Remain Closed	2.3×10^{-7}	$4.5 \times 10^{-7}/hr$
MVD1V39BMC	Isolation Valve V-39 In Feedwater Supply Line B Fails To Remain Closed	2.3 × 10 ⁻⁷	$4.5 \times 10^{-7}/hr$
MVD1V510MC	Flow Control Valve FCV-150 In Feed. Supply Line A Fails To Remain Closed	8.5 x 10 ⁻⁸	$1.7 \times 10^{-7}/hr$
MVD1V540MC	Flow Control Valve FCV-540 In Feed. Supply Line D Fails To Remain Closed	8.5 × 10 ⁻⁸	1.7 x 10 ⁻⁷ /hr
MVD1V530MC	Flow Control Valve FCV-530 In Feed. Supply Line C Fails To Remain Closed	8.5 × 10 ⁻⁸	1.7 x 10 ⁻⁷ /hr
MVD1V520MC	Flow Control Valve FCV-520 In Feed. Supply Line B Fails To Remain Closed	8.5 x 10 ⁻⁸	1.7 x 10 ⁻⁷ /hr
MVD14214 MD	Flow Control Valve FV-4214 Fails To Remain Open	8 × 10 ⁻⁸	$1.6 \times 10^{-7}/hr$
MVD14244MD	Flow Control Valve FV-4244 Fails To Remain Open	8 × 10 ⁻⁸	$1.6 \times 10^{-7}/hr$
MVD14234MD	Flow Control Valve FV-4234 Fails To Remain Open	8 x 10 ⁻⁸	$1.6 \times 10^{-7}/hr$
MVD14224MD	Flow Control Valve FV-4224 Fails To Remain Open	8 × 10 ⁻⁸	$1.6 \times 10^{-7}/hr$
MVD1V65AMD	Isolation Valve V-65 Fails To Remain Open (Plugged)	1 × 10 ⁻⁴	1×10^{-4} /d
QVD1V129MD	Steam Supply Inlet Valve V-129 Fails To Remain Open	2.3 × 10 ⁻⁷	$4.5 \times 10^{-7}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1V125MD	Isolation Valve V-125 Fails To Remain Open (Plugged)	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVD1V126MD	Isolation Valve V-126 Fails To Remain Open (Plugged)	1 × 10 ⁻⁶	$1 \times 10^{-4}/d$
MVD1V127MD	Isolation Valve V-127 Fails To Remain Open (Plugged)	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVD1V71BMD	Isolation Valve V-71 Fails To Remain Open (Plugged)	1 × 10 ⁻⁴	1×10^{-4} /d
QVX1V127MA	Steam Supply Line A Flow Valve V-127 Fails To Open	9 × 10 ⁻⁴	9×10^{-4} /d
QVX1V128MA	Steam Supply Line B Flow Valve V-128 Fails To Open	9 × 10 ⁻⁴	$9 \times 10^{-4}/d$
QVX1V127MD	Steam Supply Line A Flow Valve V-127 Fails To Remain Open	2.3 × 10 ⁻⁷	4.5 x 10 ⁻⁷ /hr
QVX1V128MD	Steam Supply Line B Fails To Remain Open	2.3 × 10 ⁻⁷	4.5 x 10 ⁻⁷ /hr
MVA1V76AMA	Stop Check Valve V-76 Fails To Open	2 × 10 ⁻⁴	2×10^{-4} /d
MVA1V94DMA	Stop Check Valve V-94 Fails To Open	2 × 10 ⁻⁴	2×10^{-4} /d
MVA1V88CMA	Stop Check Valve V-88 Fails To Open	2 × 10 ⁻⁴	$2 \times 10^{-4}/d$
MVA1V82BMA	Stop Check Valve V-82 Fails To Open	2 × 10 ⁻⁴	2×10^{-4} /d
MVA1V64AMA	Check Valve V-64 Fails To Open	2 × 10 ⁻⁴	$2 \times 10^{-4}/d$
QVA1V94AMA	Steam Supply Line A Check Valve V-94 Fails To Open	2 × 10 ⁻⁴	2×10^{-4} /d
QVA1V96BMA	Steam Supply Line B Check Valve V-96 Fails To Open	2 × 10 ⁻⁴	$2 \times 10^{-4}/d$
MVA1V70BMA	Check Valve V-70 Fails To Open	2 × 10 ⁻⁴	2×10^{-4} /d
MVD1V75AMD	Valve V-75 In Aux. Feed Supply Line A Plugged	1 × 10 ⁻⁴	1×10^{-4} /d

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1V87DMD	Valve V-87 In Aux. Feed Supply Line D Plugged	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVD1V93CMD	Valve V-93 In Aux. Feed Supply Line C Plugged	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVD1V81BMD	Valve V-81 In Aux. Feed Supply Line B Plugged	1 × 10 ⁻⁴	1×10^{-4} /d
QVM1V95AMD	Manual Valve V-95 In Turbine Steam Supply Line Plugged	1 × 10 ⁻⁴	1×10^{-4} /d
FVM1V155MD	Manual Valve V-155 In P-37A Suction Line Plugged	1 × 10 ⁻⁴	1×10^{-4} /d
FVM1V154MD	Manual Valve V-154 In P-37A Suction Line Plugged	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
FVM1V159MD	Manual Valve V-159 In P-37B Suction Line Plugged	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
FVM1V158MD	Manual Valve V-158 In P-37B Suction Line Plugged	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MØJ1606BMJ	Feedwater Supply Line Ruptures Between V-20 and V-30	5 × 10 ⁻¹¹	1 x 10 ⁻¹⁰ /h
MØJ1606AMJ	Feedwater Supply Line Ruptures Between V-30 and S.G.A	5 x 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
MØE1614AMJ	Aux. Feed. Supply Line A Ruptures Between V-76 and Main Supply Line	5 × 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
MØE1614BMJ	Aux. Feed. Supply Line A Ruptures Between FV-4214 and V-76	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØJ1609AMJ	Feedwater Supply Line D Ruptures Between V-57 and S.G.D	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1617AMJ	Aux. Feed Supply Line D Ruptures Between V-94 and Main Feed. Supply Line D	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
1ØJ1608AMJ	Feedwater Supply Line C Ruptures Between V-48 and S.G.C	5 × 10 ⁻¹¹	1×10^{-10} /hr
1ØE1616AMJ	Aux. Feed. Supply Line C Ruptures Between V-88 and Main Feed. Supply Line C	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
1ØE1616BMJ	Aux. Feed Supply Line C Ruptures Between FV-4234 and V-88	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MØJ160/AMJ	Feedwater Supply Line B Ruptures Between V-39 and S.G.B	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1615AMJ	Aux. Feed. Supply Line B Ruptures Between V-82 and Main Feed. Supply Line B	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1615BMJ	Aux. Feed. Supply Line B Ruptures Between V-4224 and V-82	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1609BMJ	Feedwater Supply Line D Ruptures Between V-56 and V-57	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØJ1608BMJ	Feedwater Supply Line C Ruptures Between V-47 and V-48	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØJ1607BMJ	Feedwater Supply Line B Ruptures Between V-38 and V-39	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1614CMJ	Aux. Feed Supply Line A Ruptures Between V-75 and FV-4214	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1614DMJ	Aux. Feed. Supply Line A Ruptures Between V-75 and Aux. Feed Supply Header	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØG1613AMJ	Aux. Feed Supply Header Ruptures Between V-125 and Reducer	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØF1610AMJ	Aux. Feed Pump P-3/A Discharge Piping Ruptures Between V-65 and Supply Header	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØF1606AMJ	Feedwater Recirc. Line A Ruptures Between Aux. Feed. Supply A and V-152	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØF1632AMJ	Startup Feed Pump Discharge Line Ruptures Between V-156 and Aux. Feed. Samply Header	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1606BMJ	Feedwater Recirc. Line A Ruptures Between V-152 and Main Feed Sup- ply Line A	5 x 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
MØJ1606CMJ	Feedwater Supply Line A Ruptures Between FCV-510 and V-29	5 × 10 ⁻¹¹	1 × 10 ⁻¹⁰ /hr
MØE1617CMJ	Aux. Feed Supply Line D Ruptures Between V-87 and FV-4224	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
1ØE1617DMJ	Aux. Feed Supply Line D Ruptures Between V-87 and Aux. Feed Supply Header	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
1ØG1613BMJ	Aux. Feed. Supply Header Ruptures Between V-87 and V-126	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$

FAULT IDENTIFIERS FOR THE SEABROOK EMERGENCY FEED STATION

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MØE1609AMJ	Feedwater Recirc. Line D Ruptures Between Aux. Feed. Supply Line D and V-153	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MÐ1609BMJ	Feedwater Recirc. Line D Ruptures Between V-153 and Main Feedwater Supply Line D	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØJ1609CMJ	Feedwater Supply Line D Ruptures Between FCV-540 and V-56	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1616CMJ	Aux. Feed. Supply Line C Ruptures Between V-93 and FV-5234	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1616DMJ	Aux. Feed Supply Line C Ruptures Between V-93 and Aux. Feed. Supply Header	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØG1613CMJ	Aux. Feed Supply Header Ruptures Between V-126 and V-127	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1608AMJ	Feedwater Recirc. Line C Ruptures Between Aux. Feed. Supply Line C and V-154	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
10/21608BMJ	Feedwater Recir. Line C Ruptures Between V-154 and Main Feedwater Supply Line C	5 x 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
10J1608CMJ	Feedwater Supply Line C Ruptures Between FCV-530 and V-47	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØE1615CMJ	Aux. Feed Supply Line B Ruptures Between V-81 and FV-4224	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØE1615DMJ	Aux. Feed Supply Line B Ruptures Between V-81 and Aux. Feed Supply Header	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØG1613DMJ	Aux. Feed Supply Header Ruptures Between V-127 and Reducer	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØF1612AMJ	Feed. Pump P-37B Discharge Line Ruptures Between V-71 & Reducer	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØE1607AMJ	Feedwater Recirc. Line B Ruptures Between Aux. Feed Supply Line B and V-155	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØE1607BMJ	Feedwater Recirc. Line B Ruptures Between V-155 and Main Feedwater Supply Line B	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
0J1607CMJ	Feedwater Supply Line B Ruptures Between FCV-520 and V-38	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
JF1610BMJ	Feed. Pump P-37A Discharge Line Ruptures Between V-64 and V-65	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MØF1612BMJ	Feed Pump P-37B Discharge Line Ruptures Between V-70 and V-71	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØF1612CMJ	Feed Pump P-37A Discharge Line Ruptures Between P-37A and V-64	5×10^{-11}	$1 \times 10^{-10}/hr$
MØD1610AMJ	Feed Pump P37A Recirc. Line Rup- tures Between V-67 and Pump Discharge Line	5×10^{-10}	1 x 10 ⁻⁹ /hr
QØE1449AMJ	Turbine Steam Supply Line Ruptures Between V-95 and V-129	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØE1449BMJ	Turbine Steam Supply Line Ruptures Between V-129 and Turbine	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØF1449AMJ	Turbine Steam Supply Line Ruptures Between Tee and V95	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØF1109AMJ	Steam Supply Line B Ruptures Between Reducer and Turbine Inlet Line Tee	5 x 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
QØF1009AMJ	Steam Supply Line A Ruptures Between Reducer and Turbine Inlet Line Tee	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØE1143AMJ	Steam Supply Line B Ruptures Between V-128 and V-96	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØE1043AMJ	Steam Supply Line A Ruptures Between V-127 and V-94	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØE1043BMJ	Steam Supply Line A Ruptures Between V-94 and Reducer	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØA1036AMJ	Steam Bypass Exit Line Ruptures Between V-171 and Steam Supply Line A	5 × 10 ⁻¹⁰	$1 \times 10^{-9}/hr$
QØE1042AMJ	Steam Supply Line A Ruptures Between Reducer and V-127	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØA1035AMJ	Steam Bypass Inlet Line Ruptures Between Steam Supply Line A and V-171	5 × 10 ⁻¹⁰	$1 \times 10^{-9}/hr$
QØF1008AMJ	Steam Supply Line A Ruptures Between Main Steam Line A and Reducer	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØK1SL1AMJ	Main Steam Line A Ruptures	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØF1143BMJ	Steam Supply Line B Ruptures Between V-96 and Reducer	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
QØA1136AMJ	Steam Bypass Exit Line Ruptures Between V-172 and Steam Supply Line B	5 x 10 ⁻¹⁰	$1 \times 10^{-9}/hr$
QØE1142AMJ	Steam Supply Line B Ruptures Be- tween Reducer and V-128	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
QØA1135AMJ	Steam Bypass Inlet Line Ruptures Between V-172 and Steam Supply Line B	5 x 10 ⁻¹⁰	1 x 10 ⁻⁹ /hr
QØF1108AMJ	Steam Supply Line B Ruptures Between Main Steam Line B and Reducer	5 x 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
QØK1SL1BMJ	Main Steam Line B Ruptures	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
FØG1 0 81AMJ	Feed Pump P-37A Suction Line Ruptures Between V-15 and Pump Inlet	5×10^{-11}	$1 \times 10^{-10}/hr$
FØG1081BMJ	Feed Pump P-37A Suction Line Ruptures Between V-154 and V-155	5×10^{-11}	$1 \times 10^{-10}/hr$
FØG1081CMJ	Feed Pump P-37A Suction Line Ruptures Between Condensate Tank and V-154	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØE1612CMJ	Feed PumpP-37B Discharge Line Ruptures Between P-37B and V-70	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØD1612AMJ	Feed Pump P-37B Recirc. Line Ruptures Between V-73 and Pump Discharge Line	5 × 10 ⁻¹¹	1 x 10 ⁻⁹ /hr
FØG1082AMJ	Feed Pump P-37B Suction Line Ruptures Between V-159 and Pump Inlet	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
FØG1082BMJ	Feed Pump P-37B Suction Line Ruptures Between V-158 and V-159	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
FØG1082CMJ	Feed Pump P-37B Suction Line Ruptures Between Condensate Tank and V-158	5 x 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
MPB1T37AME	Turbine Driven Feed Pump-37A Fails To Start	8.4×10^{-3}	$8.4 \times 10^{-3}/d$
IPB1D37BME	Motor Driven Feed Pump P-37B Fails To Start	2.4×10^{-3}	$2.4 \times 10^{-3}/d$
IPB1T37AØØ	Turbine Driven Feed P-37A Out of Service	4.2 × 10 ⁻⁴	
IPB1D378ØØ	Motor Driven Feed Pump P-37B Out Of Service	9.4 × 10 ⁻⁴	

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1421400	Flow Control Valve FV-4214 Out of Service	8.5 × 10 ⁻⁴	
MVD1V75AØØ	Valve Out of Service	8.5 × 10 ⁻⁴	
MVD14224ØØ	Flow Control Valve FV-4244 Out of Service	8.5×10^{-4}	
MVD1V87DØØ	Valve V-87 Out of Service	8.5 x 10 ⁻⁴	
MVD14234ØØ	Flow Control Valve FV-4234 Out of Service	8.5 × 10 ⁻⁴	
MVD1V93CØØ	Valve V-93 Out of Service	8.5 × 10 ⁻⁴	
MVD1422400	Flow Control Valve FV-4224 Out of Service	8.5 × 10 ⁻⁴	
MVD1V818ØØ	Valve V-81 Out of Service	8.5 x 10 ⁻⁴	
MVD1V65AØØ	Isolation Valve V-65 Out of Service	2.0×10^{-3}	
QVD1V129ØØ	Steam Supply Valve V-129 Out of Service	1.0×10^{-4}	
QMV1V95AØØ	Manual Valve V-95 Out of Service	0.0	
QVX1V127ØØ	Steam Supply Valve V-127 Out of Service	8.7 × 10 ⁻⁴	
QVX1V128ØØ	Steam Supply Valve V-128 Out of Service	8.7 × 10 ⁻⁴	
VM1V155ØØ	P-37A Suction Valve V-155 Out of Service	0.0	
VM1V154ØØ	P-37A Suction Valve V-154 Out of Service	0.0	
VD1V126ØØ	Isolation Valve V-125 Out of Service	0.0	
VD1V126ØØ	Isolation Valve V-126 Out of Service	0.0	

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1V127ØØ	Isolation Valve V-127 Out of Service	0.0	
MVD1V71BØØ	Isolation Valve V-71 Out of Service	2.0 × 10 ⁻³	
FVM1V159ØØ	P-37B Suction Valve V-159 Out of Service	0.0	
FVM1V158ØØ	P-37B Suction Valve V-158 Out of Service	0.0	
QVX1V127ØA	Operator Fails to Open Steam Supply Valve V-127	5 x 10 ⁻³	5 x 10 ⁻³ /d
QVX1V128ØA	Operator Fails to Open Steam Supply Valve V-128	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD1V3ØAØB	Operator Fails to Close Feedwater Supply Line A Isolation Valve V-30	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD14224ØB	Operator Fails to Close Flow Control Valve FV-4224	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD14224ØB	Operator Fails to Close Flow Control Valve FV-4234	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD14244ØB	Operator Fails to Close Flow Control Valve FV-4244	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD1V57DØB	Operator Fails to Close Feedwater Supply Line D isolation Valve V-57	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD14214ØB	Operator Fails to Close Flow Control Valve FV-4214	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MDV1V48CØB	Operator Fails to Close Feedwater Supply Line C Isolation Valve V-48	5 x 10 ⁻³	$5 \times 10^{-3}/d$
NVD1B39BØB	Operator Fails to Close Feedwater Supply Line B Isolation Valve V-39	5 x 10 ⁻³	$5 \times 10^{-3}/d$
ND1V5I0ØB	Operator Fails to Close Feedwater Flow Control Valve FCV-510	5 × 10 ⁻³	$5 \times 10^{-3}/d$
VD1V125ØB	Operator Fails to Close Supply Header Isolation Valve V-125	.9	.9
VD1V540ØB	Operator Fails to Close Feedwater Flow Control Valve FCV-540	5 x 10 ⁻³	$5 \times 10^{-3}/d$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1V126ØB	Operator Fails to Close Supply Header Isolation Valve V-126	.9	.9
MVD1V530ØB	Operator Fails to Close Feedwater Flow Control Valve FCV-530	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MDV1V127ØB	Operator Fails to Close Supply Header Isolation Valve V-127	.9	.9
MVD1V520ØB	Operator Fails to Close Feedwater Flow Control Valve FCV-520	5 x 10 ⁻³	$5 \times 10^{-3}/d$
MVD1V65AØB	Operator Fails to Close P-37B Discharge Isolation Valve V-65	.9	.9
MVD1V71BØB	Operator Fails to Close P-37B Discharge Isolation Valve V-71	.9	.9
MVM1V152ØC	Operator Fails to Restore Manual Valve V-152	1 × 10 ⁻³	$1 \times 10^{-3}/d$
MVM1V153ØC	Operator Fails to Restore Manual Valve V-153	1 × 10 ⁻³	$1 \times 10^{-3}/d$
MVM1V154ØC	Operator Fails to Restore Manual Valve V-154	1 × 10 ⁻³	$2 \times 10^{-3}/d$
MVM1V155ØC	Operator Fails to Restore Manual Valve V-155	1 × 10 ⁻³	$1 \times 10^{-3}/d$
6IC1AFSAØC	Operator Defeats Train A"S" Signal	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
5IC1AFSBØC	Operator Defeats Train B"S" Signal	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
ND14214ØD	Operator Inadvertently Closes Flow Control Valve FV-4214	1 × 10 ⁻⁴	1×10^{-4} /d
WD1V75AØD	Operator Inadvertently Closes Valve V-75	1 × 10 ⁻⁴	1×10^{-4} /d
IVM14244ØD	Operator Inadvertently Closes Flow Control Valve FV-4244	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
VD1V87DØD	Operator Inadvertently Closes Valve V-87	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
VD14234ØD	Operator Inadvertently Closes Flow Control Valve FV-4234	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1V93CØD	Operator Inadvertently Closes Valve V-93	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVD14224ØD	Operator Inadvertently Closes Flow Control Valve FV-4224	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVD1V81BØD	Operator Inadvertently Closes Valve V-81	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
MVM1V65AØD	Operator Fails to Restore P-37A Isolation Valve V-65	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
QVD1V95AØD	Operator Fails to Restore Manual Valve V-95	1 × 10 ⁻³	$1 \times 10^{-3}/d$
FMV1V155ØD	Operator Fails to Restore P-37A Suction Valve V-155	1×10^{-3}	$1 \times 10^{-3}/d$
FVM1V154ØD	Operator Fails to Restore P-27A Suction Valve V-154	1×10^{-3}	$1 \times 10^{-3}/d$
4VD1V125ØD	Operator Fails to Restore Supply Header Valve V-125	1 × 10 ⁻³	$1 \times 10^{-3}/d$
NVD1V125ØD	Operator Fails to Restore Supply Header Valve V-126	1 × 10 ⁻³	$1 \times 10^{-3}/d$
ND1V127ØD	Operator Fails to Restore Supply Header Valve V-127	1 × 10 ⁻³	$1 \times 10^{-3}/d$
NVD1V71BØD	Operator Fails to Restore P-37B Discharge Isolation Valve V-71	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
FVM1V159ØD	Operator Fails to Restore P-37B Suction Valve V-159	1 × 10 ⁻³	$1 \times 10^{-3}/d$
VM1V158ØD	Operator Fails to Restore P-37B Suction Valve V-158	1 × 10 ⁻³	$1 \times 10^{-3}/d$
IPB1D37BØE	Operator Fails to Start Motor Driven Pump P-37B	1 × 10 ⁻³	1 x 10 ⁻³ /d
PB1T37AØG	Operator Turns Off Turbine Driven Pump P-37A	1 × 10 ⁻⁴	1×10^{-4} /d
PB1D37BØG	Operator Turns Off Motor Driven Pump P-37B	1 × 10 ⁻⁴	$1 \times 10^{-4}/d$
CA2D37BMK	Circuit Breaker to Motor Driven Pump P-37B Open	1.5 × 10 ⁻⁶	$4.2 \times 10^{-9}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
QRA2V127MK	Control Circuit to Steam Supply Valve V-127 Open	6.5×10^{-4}	9.1 x 10 ⁻⁷ /h
QRA1V128MK	Control Circuit to Steam Supply Valve V-128 Open	6.5×10^{-4}	9.1 x 10 ⁻⁷ /h
MRA1A37BMK	Train A Control Circuit to Motor Pump P-37B Open	5.9×10^{-3}	9.1 x 10 ⁻⁷ /
MRA1B37BMK	Train B Control Circuit to Motor Pump P-37B Open	5.9 x 10 ⁻³	9.1 × 10 ⁻⁷ /ł
MCE1V510MK	Flow Control Valve FCV-510 Flow Control Switch Open	1.5 × 10 ⁻⁸	$3 \times 10^{-8}/hr$
MCE1V540MK	Flow Control Valve FCV-540 Flow Control Seitch Open	1.5 × 10 ⁻⁸	$3 \times 10^{-8}/hr$
MCE1V530MK	Flow Control Valve FCV-530 Flow Control Switch Open	1.5 x 10 ⁻⁸	$3 \times 10^{-8}/hr$
MCE1V520MK	Flow Control Valve FCV-520 Flow Control Switch Open	1.5 × 10 ⁻⁸	$3 \times 10^{-8}/hr$
QCE1V127MK	Steam Supply Valve V-127 Switch Open	2.2×10^{-5}	$3 \times 10^{-8}/hr$
MCE1D37BMK	P-37B Motor Controller Circuit Open	3.3 × 10 ⁻⁴	9.1 × 10 ⁻⁷ /
MCK1D37BMK	P-37B Motor Starter Circuit Open	1.2×10^{-3}	1.2 × 10 ⁻³ /
MPB1T37ALB	Turbine Driven Feed Pump P-37A Lubrication Failure	0.0	
MPB1D37BLB	Motor Driven Feed Pump P-37B Luabrication Failure	0.0	
LOSP	Loss of Station Power	7 x 10 ⁻⁶	1.4 x 10 ⁻⁵ /
5TA1TK25MJ	Condensate Storage Tank Ruptured	5 × 10 ⁻¹¹	1 x 10 ⁻¹⁰ /h
6IC1FWIAMN	No Train A Feedwater Isolation Signal	5.8×10^{-3}	5.8×10^{-3}
MIF14224MN	No Signal From FE-4224 to Flow Control Valve FV-4224	2.0×10^{-3}	3.1 × 10 ⁻⁷ /

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MIF14234MN	No Signal From FE-4234 to Flow Control Valve FV-4234	2.0×10^{-3}	$3.1 \times 10^{-7}/hr$
MIF14244MN	No Signal From FE-4224 to Flow Control Valve FV-4244	2.0×10^{-3}	$3.1 \times 10^{-7}/hr$
MIF14214MN	No Signal From FE-4214 to Flow Control Valve FV-4214	2.0×10^{-3}	$3.1 \times 10^{-7}/hr$
6IC1FWSBMN	No Train B Feedwater Isolation Signal	5.8×10^{-3}	$5.8 \times 10^{-3}/d$
MIF1V510MN	No Signal From FE-510 to Flow Control Valve FCV-510	1.5×10^{-7}	$3.1 \times 10^{-7}/hr$
MIF1V540MN	No Signal From FE-540 to Flow Control Valve FCV-540	1.5 × 10 ⁻⁷	$3.1 \times 10^{-7}/hr$
MIF1V530MN	No Signal From FE-530 to Flow Control Valve FCV-530	1.5 × 10 ⁻⁷	$3.1 \times 10^{-7}/hr$
MIF1V520MN	No Signal From FE-520 to Flow Control Valve FCV-520	1.5×10^{-7}	$3.1 \times 10^{-7}/hr$
6IC1AFSAMN	No Signal From Safety Injection Signal Train A	5.8 × 10 ⁻³	$5.8 \times 10^{-3}/d$
6IC1AFSBNM	No Signal From Safety Injection Signal Train B	5.8 × 10 ⁻³	$5.8 \times 10^{-3}/d$
MVD14214MØ	Spurious Signal to Flow Control Valve FV-4214	1.2 × 10 ⁻⁸	$1.2 \times 10^{-8}/d$
MVD14244MØ	Spurious Signal to Flow Control Valve FV-4244	1.2 × 10 ⁻⁸	1.2 × 10 ⁻⁸ /d
MVD14234MØ	Spurious Signal to Flow Control Valve FV-4234	1.2 × 10 ⁻⁸	1.2 × 10 ⁻⁸ /d
MVD14224MØ	Spurious Signal to Flow Control Valve FV-4224	1.2 × 10 ⁻⁸	$1.2 \times 10^{-8}/d$
REC11BMJ	125 DC Bus 11B Shorts to Ground	3.5 x 10 ⁻⁸	7 x 10 ⁻⁸ /hr
REC1E612MJ	460 V AC Bus E612 Shorts to Ground	3.5 × 10 ⁻⁸	$7 \times 19^{-8}/hr$
REC1E61-MJ	480 V AC Bus E61 Shorts to Ground	3.5×10^{-8}	$7 \times 10^{-8}/hr$

TABLE B.2

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
RCA1A74-MB	Diesel Generator DG-18 Circuit Breaker A74 Fails to Close	1 × 10 ⁻³	$1 \times 10^{-3}/d$
RCA1DN6-MB	Crossover Circuit Breaker DN6 Fails to Close	1 × 10 ⁻³	$1 \times 10^{-3}/d$
RCA2A61-MC	Circuit Breaker A61 Open	2.1 x 10 ⁻⁹	4.2 x10 ⁻⁹ /hr
RCA1A62-MF	Circuit Breaker A62 Fails to Close	1 × 10 ⁻³	$1 \times 10^{-3}/d$
RCA1DN4-MC	Circuit Breaker DN4 Open	2.1 x 10 ⁻⁹	4.2 x 10 ⁻⁹ /hr
RCA1DN5-MC	Circuit Breaker DN5 Open	2.1 x 10 ⁻⁹	4.2 x 10 ⁻⁹ /hr
RCA1DA1-MC	Circuit Breaker DA1 Open	2.1 × 10 ⁻⁹	4.2 x 10 ⁻⁹ /hr
RCA1AD6-MC	Circuit Breaker AD6 Open	2.1 × 10 ⁻⁹	4.2 x 10 ⁻⁹ /hr
RCA1AD2-MC	Circuit Breaker AD2 Open	2.1 × 10 ⁻⁹	$4.2 \times 10^{-9}/hr$
RCA1A41-MC	Circuit Breaker A41 Open	2.1×10^{-9}	$4.2 \times 10^{-9}/hr$
RCA1A41-MJ	Circuit Breaker A41 Shorts to Ground	3.5 × 10 ⁻⁸	7 x 10 ⁻⁸ /hr
RCA1A42-MB	Circuit Breaker A42 Fails to Close	1×10^{-3}	$1 \times 10^{-3}/d$
RCA1A42-MJ	Circuit Breaker A42 Shorts to Ground	3.5×10^{-8}	$7 \times 10^{-8}/hr$
RCA1A61-MJ	Circuit Breaker A61 Shorts to Ground	3.5×10^{-8}	7 x 10 ⁻⁸ /hr
RCA1A62-MJ	Circuit Breaker A62 Shorts to Ground	3.5×10^{-8}	7 x 10 ⁻⁸ /hr
RCA1DN5-MJ	Circuit Breaker DN5 Shorts to Ground	3.5×10^{-8}	7 x 19 ⁻⁸ /hr
RCA1DA1-MJ	Circuit Breaker DA1 Shorts to Ground	3.5×10^{-8}	7 x 10 ⁻⁸ /hr

FAULT	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
RCA1AD6-MJ	Circuit Breaker AD6 Shorts to Ground	3.5×10^{-8}	7 x 10 ⁻⁸ /hr
RCA1AD2-MJ	Circuit Breaker AS2 Shorts to Ground	3.5×10^{-8}	$7 \times 10^{-8}/hr$
RCA1A75-MJ	Circuit Breaker A75 Shorts to Ground	3.5×10^{-8}	$7 \times 10^{-8}/hr$
RBC11BMC	Battery Charger 1B Opens	2.1 × 10 ⁻⁹	4.2 x 10 ⁻⁹ /hr
RBC11BMJ	Battery Charger 1B Shorts to Ground	3.5×10^{-8}	7 x 10 ⁻⁸ /hr
RBA11BMJ	Battery 1B Shorts to Ground	3.5×10^{-8}	$7 \times 10^{-8}/hr$
RBA11DMJ	Battery 1D Shorts to Ground	3.6×10^{-8}	7 x 10 ⁻⁸ /hr
RBA11BMM	Battery 1B Undercharged	1.3 × 10 ⁻⁶	$3 \times 10^{-6}/hr$
RBA11DMM	Battery 1D Undercharged	1.5×10^{-6}	$3 \times 10^{-6}/hr$
RTR1X-5CMC	Transformer X-5c Open	5 x 10 ⁻⁷	1 x 10 ⁻⁶ /hr
RTR1X-28MJ	Transformer S-2B Shorts	5 x 10 ⁻⁷	$1 \times 10^{-6}/hr$
RTR1X-2BMC	Transformer S-2B Opens	5 × 10 ⁻⁷	$1 \times 10^{-6}/hr$
RTR1X-5CMJ	Transformer X-5C Shorts	5 x 10 ⁻⁷	$1 \times 10^{-6}/hr$
RTR1X-3BMC	Transformer X-3B Opens	5 × 10 ⁻⁷	$1 \times 10^{-6}/hr$
RTR1X-3BMJ	Transformer X-3B Shorts	5 x 10 ⁻⁷	$1 \times 10^{-6}/hr$
RGD11BME	Diesel Generator DG-18 Fails to Start	1.0 × 10 ⁻²	$1.0 \times 10^{-2}/d$
RGD11BMG	Diesel Generator DG-18 Fails to Run	3.0×10^{-3}	$6.0 \times 10^{-3}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
RGD11BØØ	Diesel Generator DG-1B Out of Service	7 x 10 ⁻⁴	
RGD11AØØ	Diesel Generator DG-1A Out of Service	7 × 10 ⁻⁴	
MHX1TBRAMJ	S.G.A Steam Line Rupture	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MHX1SHRAMJ	S.G.A Shell Rupture	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MHX1TBRDMJ	S.G.D Steam Line Rupture	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MHX1SHRDMJ	S.G.D Shell Rupture	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MHX1TBRCMJ	S.G.C Steam Line Rupture	5×10^{-11}	$1 \times 10^{-10}/hr$
MHX1SHRCMJ	S.G.C Shell Rupture	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MHX1TBRBMJ	S.G.B Steam Line Rupture	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MHX1SHRBMJ	S.G.B Shell Rupture	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MPB1T37ACL	Turbine Driven Feed Pump P-37A Cooling Loss	0.0	
MPB1D37BCL	Motor Driven Feed Pump P-37B Cooling Loss	0.0	
MTU1TD-2ME	Turbine Fails to Start	0.0	
QRA1C127MA	Control Relay on Solenoid Valve to Steam Supply Valve V-127 Fails to Open	3.1×10^{-6}	3.1 x 10 ⁻⁶ /d
QRA1V128MA	Control Relay on Solenoid Valve to Steam Supply Valve V-128 Fails to Open	3.1×10^{-6}	$3.1 \times 10^{-6}/d$
QVL1V127MA	Solenoid Valve on Steam Valve to Steam Supply Valve V-128 Fails to Open	1.4×10^{-6}	$1.4 \times 10^{-6}/d$
QLV1V128MA	Solenoid Valve on Steam Supply Valve V-128 Fails to Open	1.4 × 10 ⁻⁶	1,4 × 10 ⁻⁶ /d

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
QVB1V06AMC	Safety Valve V-6 on Steam Line A Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V07AMC	Safety Valve V-7 on Steam Line A Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V10AMC	Safety Valve V-10 on Steam Line A Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V08AMC	Safety Valve V-8 on Steam Line A Opens	5 x 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V09AMC	Safety Valve V-9 on Steam Line A Opens	5 x 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1SGARMC	Relief Valve on Main Steam Line A Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
QVB1V50DMC	Safety Valve V-50 on Steam Line D Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V51DMC	Safety Valve V-51 on Steam Line D Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
QVB1V52DMC	Safety Valve V-52 on Steam Line D Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V53DMC	Safety Valve V-53 on Steam Line D Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
QVB1V54DMC	Safety Valve V-54 on Steam Line D Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1SGDRMC	Relief Valve on Main Steam Line D Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$
QVB1V36CMC	Safety Valve V-36 on Steam Line C Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
QVB1V37CMC	Safety Valve V-37 on Steam Line C Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
QVB1V38CMC	Safety Valve V-38 on Steam Line C Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
QVB1V39CMC	Safety Valve V-39 on Steam Line C Opens	5 × 10 ⁻⁶	1 x 10 ⁻⁵ /hr
VB1V4ØCMC	Safety Valve V-40 on Steam Line C Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE	
QVB1SGCRMC	Relief Valve on Main Steam Line C Opens	5 x 10 ⁻⁶	$1 \times 10^{-5}/hr$	
QVB1V22BMC	Safety Valve V-22 on Steam Line B Opens	5 x 10 ⁻⁶	$1 \times 10^{-5}/hr$	
QVB1V23BMC	Safety Valve V-23 on Steam Line B Opens	5 × 10 ⁻⁶	$1 \times 10^{-5}/hr$	
QVB1V24BMC	Safety Valve V-24 on Steam Line B Opens	5 x 10 ⁻⁶	$1 \times 10^{-5}/hr$	
QVB1V25BMC B Opens		5 x 10 ⁻⁶	$1 \times 10^{-6}/hr$	
QVB1V26BMC	Safety Valve V-26 on Steam Line B Opens	5 x 10 ⁻⁶	$1 \times 10^{-6}/hr$	
QVB1SGBRMC	Relief Valve on Main Steam Line B Opens	5 x 10 ⁻⁶	$1 \times 10^{-5}/hr$	
ØEC1SGARMM	Loss of Voltage on S.G.A Relief Valve Controller	7 x 17 ⁻⁷	$1.4 \times 10^{-6}/hr$	
ØEC1SGBRMM	Loss of Voltage onS.G.B Relief Valve Controller	7 x 10 ⁻⁷	$1.4 \times 10^{-6}/hr$	
ØEC1SGCRMM	Loss of Voltage on S.G.A Relief Valve Controller	7 × 10 ⁻⁷	$1.4 \times 10^{-6}/hr$	
ØEC1SGDRMM	Loss of Voltage of S.G.D Relief Valve Controller	7 × 10 ⁻⁷	$1.4 \times 10^{-6}/hr$	
MVD1V870ØB	Operator Fails to Close V-87	5×10^{-3}	$5 \times 10^{-3}/d$	
MVD1V93CØB	Operator Fails to Close V-93	5×10^{-3}	$5 \times 10^{-3}/d$	
MVD1V81BØB	Operator Fails to Close V-81	5×10^{-3}	$5 \times 10^{-3}/d$	
MVD1V75AØB	Operator Fails to Close V-75	5×10^{-3}	$5 \times 10^{-3}/d$	
MVD1V87DMB	Valve V-87 Does Not Close	2×10^{-3}	$2 \times 10^{-3}/d$	
MVD1V93CMB	Valve V-93 Does Not Close	2×10^{-3}	$2 \times 10^{-3}/d$	

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE
MVD1V81BMB	Valve V-81 Does Not Close	2×10^{-3}	$2 \times 10^{-3}/d$
MVD1V75AMB	Valve V-75 Does Not Close	2 × 10 ⁻³	2 x 10 ⁻³ /d
MVD1V87DMC	Valve V-87 Fails to Remain Closed	6 x 10 ⁻⁸	$1.2 \times 10^{-7}/hr$
MVD1V93CMC	Valve V-93 Fails to Remain Closed	6 x 10 ⁻⁸	$1.2 \times 10^{-7}/hr$
MVD1V81BMC	Valve V-81 Fails to Remain Closed	6 × 10 ⁻⁸	$1.2 \times 10^{-7}/hr$
MVD1V75AMC	Valve V-75 Fails to Remain Closed	6 x 10 ⁻⁸	$1.2 \times 10^{-7}/hr$
MIF1V87DMN	Valve V-87 Fails to Receive Signal	2 × 10 ⁻³	$2 \times 10^{-3}/d$
MIF1V93CMN	Valve V-93 Fails to Receive Signal	2 × 10 ⁻³	$2 \times 10^{-3}/d$
MIF1V81BMN	Valve V-81 Fails to Receive Signal	2×10^{-3}	$2 \times 10^{-3}/d$
MIF1V75AMN	Valve V-75 Fails to Receive Signal	2×10^{-3}	$2 \times 10^{-3}/d$
MØF1618CMJ	Rupture of 6" Line Between V-99 and Tee	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØF1618BMJ	Rupture of 6" Line Between V-163 and Tee	5 × 10 ⁻¹¹	1 x 10 ⁻¹⁰ /hr
MØF1618AMJ	Rupture of 6" Line Between V-163 and V-156	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
MØF1618DMJ	Rupture of 6" Line Between P-113 and V-99	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
1ØE1631AMJ	Rupture of 4" Line Between Dis- charge Pipe and FW V-156	5 x 10 ⁻¹¹	$1 \times 10^{-10}/hr$
1ØE1631BMJ	Rupture of 4" Line Between Dis- charge Pipe and FW V-159	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$
ØE1631CMJ	Rupture of 4" Line Between Dis- charge Pipe and FW V-162	5 × 10 ⁻¹¹	$1 \times 10^{-10}/hr$

	UEIT	IFIERS FOR THE SEABROOK EN	UNA	VAILABILITY	FAILU	RE RATE
FAULT				-11	1 1 1 1	0 ⁻¹⁰ /hr
	char	ure of 6" Line Between Dis ge Pipe and PCV-4326		× 10 ⁻¹¹	+	10 ⁻¹⁰ /hr
	Rupture of 16" Condensate Line			× 10 ⁻¹¹	+	
FØT1079AMJ		ture of 24" Condensate Lin ween V-143 and V-141	ne ș	5 x 10 ⁻¹¹		10 ⁻¹⁰ /hr
FØK1080AMJ	+	c 24" Line Between		5 x 10 ⁻¹¹		10 ⁻¹⁰ /hr
FØK1080BMJ	Su	ction Line and suction Line		5 x 10 ⁻¹¹	1 >	(10 ⁻¹⁰ /hr
FØJ1080CMJ	Be	tween V-145 und		5 × 10 ⁻¹¹	1	x 10 ⁻¹⁰ /hr
FØJ1080DMJ	IR	etween Tee and V-145 Rupture of 8" Line Between		5 x 10 ⁻¹¹	1	x 10 ⁻¹⁰ /hr
FØG1080AM		Rupture of 8" Line Between		5 x 10 ⁻¹¹	1	x 10 ⁻¹⁰ /hr
FØF1080BM		Rupture of 8" Line Between		5 x 10 ⁻¹¹	1	1 x 10 ⁻¹⁰ /hr
FØG1080C		and P-113		5 x 10 ⁻⁹	+	$1 \times 10^{-8}/hr$
MVA1V99/	LMJ	Rupture of V-99		5 × 10 ⁻⁹	-+	$1 \times 10^{-8}/hr$
MVP1V16	3MJ	Rupture of V-163				$2 \times 10^{-8}/hr$
MVM1V1		Rupture of FWV-156		1 × 10 ⁻⁸		2 x 10 ⁻⁸ /hr
MVMIVI		Rupture of FWV-159		1 × 10 ⁻⁸		$1 \times 10^{-10}/1$
		Rupture of Bypass Inlet	t Line	5 x 10	10	
FØF1090		- F V-152		1 × 10	-8	2 × 10 ⁻⁸ /t
FVMIV	152M			5 x 10	-9	1 × 10 ⁻⁸ /
FVA1	V340N	MJ Rupture of V-340 MJ Rupture of V-142	T.T.	1 × 10	-8	2×10^{-8}

B-31

THE SEABROOK EMERGENCY FEED STATION

			DESCRIPTION	UNAV	AILABILITY	FAILU	RE RATE
FAULT			DESCRIPTION	+	× 10 ⁻⁸	2 x 1	10 ⁻⁸ /hr
FVM1V341MJ	Rupti	ure o	f V-341		x 10 ⁻⁸	1 ×	10 ⁻⁷ /hr
MVD14326MJ	Rupt	ture	of PCV-4326			T _{1x}	10 ⁻⁸ /hr
FVD1V145MJ	+		of V-145		5 x 10 ⁻⁹	+	x 10 ⁻⁸ /hr
FVA1V343MJ	1	ature	of V-343	-+-	5 x 10 ⁻⁹	1	x 10 ⁻¹⁰ /hr
-	Ru	iptur	e of Bypass Outlet Line n V-341 and Tee		5 x 10 ⁻¹⁰	-	x 10 ⁻¹⁰ /hr
FØG1080EM	R	uptur	e of Bypass Outlet Line		5 x 10 ⁻¹⁰		$1 \times 10^{-10}/hr$
FØG1090FM FØF1080G	TF	Runtu	re of 8" Line Between V -343	-344	5 x 10 ⁻¹⁰	1	$2 \times 10^{-8}/hr$
FMJ1V344	-	Rupt	ure of V-344		1×10^{-8} 1×10^{-8}	-+	$2 \times 10^{-8}/hr$
MVM1V16	2MJ		ture of FWV-162 ture of P-113 Suction In Value V-143	50-	5 x 10 ⁻⁹		1 x 10 ⁻⁸ /hr
FVD1V1	43MJ	lat	ion valve	-	5 × 10		$1 \times 10^{-8}/hr$
FVD1V1	141MJ	Is	olation turn	Open	1 10		$2 \times 10^{-4}/d$
MVA1V	99-MA		neck Valve V-99 Fails to anual Isolation Valve V	-152 F			$1 \times 10^{-4}/d$
FVM1	V152M		anual Isolation Values) to Remain Open (Plugs) Isolation Valve V-143 Fa				$1 \times 10^{-4}/d$
FVD	11143	ND	Remain Open		1 × 1		1 × 10 ⁻⁴ /
FVD	111141	MD	to Remain open			10-2	1×10^{-2}
MV	D1V16	3ØA	Operator Fails to Open			10-2	1 × 10 ⁻²
M	VD1V15	56ØA	Operator Fails to Oper		3-32		

FAULT IDENTIFIER	DESCRIPTION	UNAVAILABILITY	FAILURE RATE	
FVM1V152ØD	Operator Fails to Restore V-152	1×10^{-3}	$1 \times 10^{-3}/d$	
FVD1V143ØD Operator Fails to Restore V-143		1×10^{-3}	$1 \times 10^{-3}/d$	
FVD1V141ØD Operator Fails to Restore V-141		1 × 10 ⁻³	$1 \times 10^{-3}/d$	
MPB1P11300 P-113 Out of Service		7.0×10^{-4}		
MPB1P16100	P-161 Out of Service	5×10^{-4}		
MPB1P113ME	P-113 Fails to Start	4×10^{-3}	$4 \times 10^{-3}/d$	
MPB1P161ME	P-161 Fails to Start	4 × 10 ⁻³	$4 \times 10^{-3}/d$	
RCA1E42-MJ	Circuit Breaker 1E42 Shorts to Ground	3.5 x 10 ⁻⁸	7 x, 10 ⁻⁸ /hr	
RCA1A93-ØB	Operator Fails to Close Circuit Breaker A-93	1 × 10 ⁻²	$1 \times 10^{-2}/d$	
RCA1A93-MB	Circuit Breaker A-93 Fails to Close	1 × 10 ⁻³	$1 \times 10^{-3}/d$	
RCA1A54-MB	Diesel Generator 1A Circuit Breaker A-54 Fails to Close	1 × 10 ⁻³	$1 \times 10^{-3}/d$	
RGD1DG1AME	Diesel Generator a A Fails to Start	1.0×10^{-2}	$1.0 \times 10^{-2}/d$	
RGD1DG1AMG	Diesel Generator 1 A Fails to Run	3.0×10^{-3}	$6.0 \times 10^{-3}/hr$	
6IC1FPSAMN	No Actuation Signal Generated	5.8×10^{-3}	$5.8 \times 10^{-3}/d$	
FVD1V14300	Startup Feedpump Suction Isolation Valve V-143 Out of Service	1.2×10^{-4}		
FVD1V141ØØ	Startup Feedpump Suction Isola- tion Valve V-141 Out of Service	0.0		

APPENDIX C

Engineering Drawing List For the Seabrook

Nuclear Station Emergency and Startup

Feedwater Systems

Drawing Title

Number

	Mechanical System P&I Diagrams:	
1.	Main Steam System (Sheet 1)	9763-F-202074
2.	Emergency Feedwater System	9763-F-202076
3.	Condensate System	9763-F-202077
4.	Feedwater System	9763-F-202079
5.	Compressed Air System, Key Plan	9763-F-202105
6.	Compressed Air System	9763-F-202106
7.	Turbine Building Compressed Air Headers	9763-F-202107
8.	Miscellaneous Buildings Compressed Air Headers	9763-F-202108
	Electrical System One Line Diagrams:	
1.	Unit Electrical Distribution	9763-F-310002
2.	4160V Switchgear Bus 1-E5	9763-F-310007
3.	480V Unit Substation Buses 1-E51 and 1-E52	9763-F-310013
4.	125VDC and 120VAC Instrument Buses	9763-F-310041
5.	Turbine Building 480V Motor Control Center 1-E523	9763-F-310046
	Logic Diagrams:	
1.	Symbols	9763-M-503100
2.	FW-Start-up Feed P-113	9763-M-503580
3.	FW-Prelube P-161 For Start-up Feed P-113 Sht 1	9763-M-503581
4.	FW Emerg Fd P-37A Steam Supply Vlv (MS-V128) Train B	9763-M-503584
5.	FW Emerg Fd P-37A Stm Supply Vlv (MS-V127) Train A	9763-M-503585
6.	FW-Emerg Feed P-37B	9763-M-503586

7.	FW-Emerg FW Bypass/Inop 9763-M-503599 Status Alarm		
8.	MS-Trip & Throttle Valve V-129	9763-M-503672	
9.	FW-Emergency Valves 9763-M-50415		
10.	FW-Emergency Valves	9763-M-504155	
11.	FW-Valve-V148	9763-M-504156	
12.	2. FW-Prelube P-161 For 9763-M-50 Start-up Fd P-113 Sht 2		
	Control Loop Diagrams:		
1.	FW-Start-up Feed P-113 & Prelube Pmp P-161	9763-M-506480	
2.	FW-Feed Pump P-32B Speed Control & Disch	9763-M-506481	
3.	FW-Emerg Feed Pump P-37A (Turbine Driven)		
4.	FW-Emerg Feed Pump P-37B Discharge Flow	9763-M-506498	
5.	FW-Emerg Feed Pump P-378 9763-M-506499 TE-4271 & TE-4347		
6.	MS Supply To Emerg Fd Pmp 9763-M-50655 Turbine Isol Vlv		
7.	FW-Energ Feed Pump P-37A Discharge Flow	9763-M-507043	
8.	FW-Emerg Feed Pump P-37B	9763-M-507044	
9.	FW-Emerg FW Valve FV-4214	9763-M-507056	
10.	FW-Emerg FW Valve FV-4224	9763-M-507057	
11.	FW-Emerg FW Valve FV-4234	9763-M-507058	
12.	FW-Emerg FW Valve FV-4244	9763-M-507059	
13.	Start-up Feed Pump 1-P-113 Prelube Pump 1-P-161	9763-M-310844 SI	HCN1a
14.	Prelube Pump 1-P-161 Legend & Switch	9763-M-310844 S	НСМ1Ь

15. Prelube Pump 1-P-161 Cable Schematic

FSAR Drawings:

1.	Functional	Diagrams-Reactor Trip Signals	Figure	7.2-1	Sheet	2
2.	Functional Signals	Diagrams-Pressurizer Trip	Figure	7.2-1	Sheet	6
3.	Functional Signals	Diagrams-Steam Generator Trip	Figure	7.2-1	Sheet	7
4.	Functional Signals	Diagrams-Safeguards Actuation	Figure	7.2-1	Sheet	8
5.	Functional Pumps Start	Diagrams-Auxiliary Feedwater	Figure	7.2-1	Sheet	15
6.	Separation Sources	of Instrument and Control Power	Figure	8.3-3		

APPENDIX D

WAM CODE RESULTS

WAM Results for Loss of Main Feedwater

System Unavailability Calculated by WAMBAM:

1028	AFW	2.06786E-05

Important Cut-sets as Caculated by WAMCUT:

CUT SE	TS FOR GATE	AFW	ONDERED BY PROP	BABILITY
1.	3.40E-06	MPB11037BMG	MVD1V1250D	
2.	2.40E-06	MFB1D37BME	MVD1V1250D	
3.	2.00E-06	MVD1V71BOO	MVD1V1250D	
4.	1.20E-06	MVD1V12500	MCD1D37BMK	
5.	1.00E-06	MVD1V1250D	FVM1V158CD	
6.	1.00E-06	MVD1V12500	FVM1V15900	
7.	9.40E-07	MPB1137B00	MUD1V1250D	
8.	3.40E-07	MFB1D37EMG	MVD1V125MD	
9.	3.14E-07	MPB1137BMG	MPB1T37AME	MUD1V1630A
10.	2.86E-07	MPB1D37BMG	MPB1T37AME	MVD1V1560A
11.	2.40E-07	MVD1V125MD	MPB1137BME	
12.	2.22E-07	MPB1T37AME	MPB1D37BME	MUD111630A
13.	2.13E-07	MPB1T37AMG	MPB1D37BMG	MVD1V1630A
14.	2.02E-07	MPB1T37AME	MPB1D37BME	MVD1V1560A
15.	2.00E-07	MVA1V70BMA	MVD1V1250D	
16.	2.00E-07	MVD1V125MD	MVD1V71800	
17.	1.94E-07	MPB1T37AMG	MFB1D378MG	MVD1V1560A
18.	1.85E-07	MFB1T37AME	MVD1V71B00	MUTH1V1630A
19.	1.68E-07	MPB1T37AME	MVD1V71B00	MUD1V1560A
20.	1.66E-07	MFB1D37BMG	MPB1T37AME	SIC1FFSAMN
21.	1.50E-07	MF'B1T37AMG	M-B1037BM	MUD1V1630A
22.	1.37E-07	MFB1T37AMG	MPB1D37BME	MUD1V1560A
23.	1.25E-07	MPB1T37AMG	MVD1V71B00	MVD1V1630A
24.	1.20E-07	MVD1V125MD	MCD1D37BMK	
25.	1.17E-07	MPB1T37AME	MPB11037BME	6IC1FFSAMN
26.	1.14E-07	MPB1D37BMG	MPB1T37AME	MFB1F113ME
27.	1.14E-07	MPB1037BMG	MPB1T37AME	MPB1P161ME
28.	1.14E-07	MPB1T37AMG	MV01V71800	MVI111560A
29.	1.12E-07	MPB1T37AMG	MPB1D37BMG	6IC1FFSAMN
30.	1.11E-07	MPB1D37BMG	MPB1T37AME	MRA1F161MK
31.	1.11E-07	MPB1T37AME	MCD1D37BMK	MUD1V1630A
32.	1.01E-07	MPB1T37AME	MCD1D37BMK	MVD1V1560A

WAM Results for Loss of Offsite Power

System Unavailability Calculated by WAMBAM:

4 45 05 05	A P*** 1
1 ()	AFW
1028	1-11 VM

5.63720E-05

Important Cut-sets as Calculated by WAMCUT:

CUT SETS FOR GATE AFW ORDELED BY PROBABILITY

1.	1.00E-05	MVD1V1250D	RGD11B-ME	
2.	3.40E-06	MFB1D37BMG	MVD1V12500	
3.	3.00E-06	MVD1V1250D	RGD11B-MG	
4.	2.40E-06	MPB1D37BME	MUD1V1250D	
5.	2.00E-03	MUD1V71E00	MV01V12500	
5.	1.20E-06	NVD1V12500	MCTI1D37BMK	
7.	1.00E-06	MV01V125MD	RGD118-ME	
8.	1.00E-05	MUD1V12500	FVM1V1580D	
9.	1.00E-06	MUD1V1250D	FVM1V15900	
10.	1.00E-06	MUD1V1250D	RCA1A74-MB	
11.	9.40E-07	MF81037800	MVD1V12500	
12.	9.24E-07	MPB1T37AME	RGD11BME	MVD1V1630A
13.	8.40E-07	MPB1T37AME	RGD11B-ME	RCA1A93-0B
14.	8.40E-07	MFB1T37AME	RGD11BME	RGD10G1AME
15.	8.40E-07	MPB1T37AME	FGD11B-ME	MVD1V1560A
16.	7.00E-07	MUD1V12500	RGD11B00	
17.	6.27E-07	MPELT37AMG	RGD11B-ME	MV01V1630A
18.	5.70E-07	MPB1T37AMG	RG011BME	RCA1A93-OB
19.	5.70E-07	MPBI T37AMG	RODIIB-ME	RGD1DG1AME
20.	5.70E-07	MPB1T37AMG	RG0118ME	MVD1V1560A
21.	4.87E-07	MPB1T37AME	RGD11B-ME	SIC1FPSAMN
22.	3.40E-07	MPB1D37BMG	MVD1V125MD	
23.	3.36E-07	MPB1T37AME	RGD11B-ME	MPB1P113ME
24.	3.36E-07	MPB1T37AME	RGI11BME	MPB1P161ME
25.	3.31E-07	MPB1T37AMG	RGD11B-ME	SIC1FPSAMN
26.	3.28E-07	MPB1T37AME	RGU11BME	MRA1P161MK
27.	3.14E-07	MPB1D37BMG	MPB1T37AME	MVD1V1630A
28.	3.00E-07	MVD1V125MD	RGD11BMG	
29.	2.86E-07	MPB1D37BMG	MPB1T37AME	ECALA93-OB
30.	2.86E-07	MPB1D37BMG	MPB1T37AME	RGD1DG1AME
31.	2.86E-07	MPB1D37BMG	MPB1T37AME	MVD1V1560A
32.	2.77E-07	MPB1T37AME	RGD11BMG	MVD1V1530A
33.	2.52E-07	MPB1T37AME	RGD11B-MG	RCA1A93-OB
34.	2.52E-07	MPB1T37AME	RGD11BMG	RGD1DG1AME
35.	2.52E-07	MPB1T37AME	RGD11B-MG	MVD1.V1560A
36.	2.52E-07	MPB1T37AME	RGD11BME	RGD1DG1AMG
	2.40E-07	MVD1V125MD	MPB1D37BME	
37.	2.28E-07	MPB1T37AMG	RGD11BME	MPB1P113ME
39.	2.28E-07	MPB1T37AMG	RGD11B-ME	MPB1P161ME
40.	2.22E-07	MPB1T37AMG	RGD11BME	MRA1P161MK
41.	2.226-07	MPB1T37AME	MPB1D37BME	MUD1V1630A
42.	2.20E-07	MV10V65A00	RGD11BME	MVD1V1630A
	2.13E-07	MPB1T37AMG	MPBILLS7BMG	MVD1V1630A
43.	xial Chi V/	THE ACT OF A DECK		

WAM Results for Loss of Offsite Power - cont'd

Important Cut-sets as Calculated by WAMCUT:

44.	2.02E-07	MPB1T37AME	MPB1D37BME	RCA1A93-OB	
45.	2.02E-07	MPB1T37AME	MPB1D37BME	RGD10G1AME	
46.	2.02E-07	MPB1T37AME	MPB1D37BME	MVD1V1560A	
47.	2.00E-07	MUA1U70BMA	MV01V12500		
48.	2.00E-07	MVD1V125MD	MVD1V71B00		
49.	2.00E-07	MVD1V65A00	RG0118ME	RCA1A93-OB	
50.	2.00E-07	MVD1V65A00	RGD11B-ME	RGD1DG1AME	
51.	2.00E-07	MVD1V65A00	RGD11BME	MV01V1560A	
52.	1.94E-07	MPB1T37AMG	MPB1037BMG	ECA1A93-08	
53.	1.94E-07	MPB1T37AMG	MPB1D37BMG	RGD1DG1AME	
54.	1.94E-07	MEBIT32AMG	MPB1D37BMG	MVD1V1560A	
35.	1.882-07	MPB1T37AMG	RGD11BMG	MUD1U1630A	
56.	1.85E-07	MPB1T37AME	MVD1V71B00	MVD1V1630A	
57.	1.71E-07	MPB1T37AMG	RGD11BMG	RCA1A93-08	
58.	1.71E-07	MPB1T37AMG	RGD11B-MG		
				RGD1001AME	
57.	1.71E-07	MPB1T37AMG	RGD11BMG	MVD1V1560A	
60.	1.71E-07	M-91T37AMG	RGD11B-ME	RGD1DG1AMG	
61.	1.68E-07	IT37AME	MVD1V71E00	RCALA93-OB	
62.	1.68E-07	MPB1T37AME	MVD1V71B00	RGD1DG1AME	
63.	1.68E-07	MPB1T37AME	MVD1V71200	MV01V1560A	
64.	1.66E-07	MPB1D37BMG	MPB1137AME	SIC1FPSAMN	
65.	1.50E-07	MPB1T37AMG	MPB1D37BME	MVD . V1630A	
66.	1.46E-07	MPB1 T37AME	RGD11B-MG	6TU1FPSAMA	
67.	1.37E-07	MPB1T37AMG	MPB1D37BME	1°041A93-08	
68.	1.372-07	MPB1T37AMG	MPB1D37BME	RGD1DG1AME	
69.	1.37E-07	MPB1T37AMG	MPB1D37BME	MV01V1560A	
70.	1.25E-07	MFB1T37AMG	MVD1V71B00	MVD1V1630A	
71.	1.20E-07	MVD1V125MD	MCD1037BMK		
72.	1.17E-07	MFB1T37AME	MPB1D371 ME	6IC1FPSAMN	
73.	1.13E-07	MVD1V65A00	RGE118ME	6 IC1FFSAMN	
74.	1.14E-07	MPB1D37BMG	MPB1T37AME	MPB1P113ME	
75	1.14E-07	MPB1D37BMG	MPE1T37AME	MFB1P161ME	
76.	1.14E-07	MPB1T37AMG	MVD1V71BOO	RCA1A93-OB	
77.	1.14E-07	MPB1T37AMG	MVD1V71B00	RGD1DG1AME	
78.	1.14E-07	MPB1T37AMG	MV01V71B00	MVD1V1560A	
29.	1.12E-07	MPB1T37AMG	MPB1D37BMG	6IC1FPSAMN	
80.	1.11E-07	MPB1D37BMG	MPB1T37AME	MRA1P161MK	
81.	1.11E-07	MPB1T37AME	MCD1D37BMK	MVD1V1630A	
82.	1.10E-07	FVM1V15400	RGD11BME	MVII111630A	
83.	1.10E-07	FVM1V15500	FGD118ME	MUD1V1630A	
84.	1.10E-07	QVD1.V95A0D	EGD118ME	MV1V1630A	
85.	1.01E-07	MPB1T37AME	RGD118-MG	MPB1P113ME	
83.	1.01E-07	MPB1T37AME	RGD11B-MG	MPB1P161ME	
87.	1.01E-07	MP81T37AME	MCD1D378MK	RCA1A93-08	
88.	1.01E-07	MPB1T37AME	MCD1D37BMK	REDILIGIAME	
89.	1.01E-07	MEETT37AME	MCD1D37BMK	MUT1V1560A	
90.	1.01E-07	MPB1T37AME	RGD11BME	MCD1P113MK	
21.	1.01E-07	MPB1T37AME	RGD118-ME	MCD1P131MK	
	and the second				

D-3

WAM Results for Total Loss of AC Power

System Unavailability Calculated by WAMBAM:

702	AFW

2.13190E-02

Important Cut-sets as Calculated by WAMCUT:

CUT SETS FOR GATE AFW ORDERED BY FROBABILITY

1.	8.40E-03	MF BITS AME	
2.	5.70E-03	MFB1T374MG	
3.	2.00E-03	MVD1V65A00	
4.	1.00E-03	MVI(1V12501)	
5.	1.00E-03	FVM1V1540D	
6.	1.00E-03	FUM1V1550D	
7.	1.00E-03	QUD1V95A0D	
8.	4.20E-04	MFB1T37400	
9.	2.00E-04	MUA1U64AMA	
10.	1.00E-04	MUD11125MD	
11.	1.00E-04	FVM1V154MD	
12.	1.00E-04	FVM1V155MD	
13.	1.00E-04	QVM1V95AMI	
14.	1.00E-04	QVII1V12900	
15.	1.00E-04	MUD1065400	
16.	1.00E-04	MULIIV65AMI	
17.	8.50E-05	MVII1421400	MVD1V1260D

D-4