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SUMMARY




gate methods for distinguishing failure data that came from different
failure disributions.

In the first chapter of this report, the question of how close to-
gether two gamma prior distributions for the failure rate parameter can
be before they cannot be distinguished from one another is considered.
Failure rate data were generated from two gamma-Poisson marginal distri-
butions with known gamma parameters. From each set of simulated failure
data, the gamma parameters were estimated by each of the three estima-
tion techniques (PMMM, MMMM, and MMLM), and likelihood ratio tests were
performed to detemine whether the two data sets came from the same dis-
tribution. From these results on simulated data, power curves for the
likelihood ratio test were empirically determined. These power curves
give the fraction of time tlat data s2ts from different failure rate
distributions were correctly identified as coming from different distri-
butions versus a measure (one of the gamma parameters) of the actual
difference in the distributions. It was found from these power curves
that for small sample size (10) and for failure rate distributions typi-
cal of nuclear power plant components, that the PMMM and MMLM gave prior
parameter estimates that were more readily distinguished as being dif-
ferent than the MMMM estimates, However, the marginal based estimation
methods failed to give valid parameter estimates for an appreciable num-
ber of data sets, while the PMMM almost always yielded parameter esti=-
mates,

In “he seccond chapter of this report, the study of outlier detection
methods is summarized. Methods were compared for detecting outliers in
three types of failure data: (1) data distributed according to a gamma
distributicn (i.e., failure rates), (2) data giving the number of fail=-
ures F in operation time T for each component in the set, and (3) time-
to-failure data which were distributed according to an exponential dis-
tribution. For data of type (1) three outlier detection methods were
compared: Fisher's method, a normal conversion method, and an integra-
tion method. A novel way for semi-analytically obtaining power curves
for each method was developed, and from the resulting power curves for
each method, properties of the methods were determined. In all cases,
the normal conversion method was the most powerful method for detecting
upper outliers in data from a gamma distribution. For failure data of
type (2), the cumulative marginal method and a binomial method were used
to detect outliers. The power curves for these two methods were deter-
mined empirically from simulated failure data from known distributions.
For data with an average failure rate smaller than 0.00005 per hour and
all component test times equal, the binomial method is superior, while
for data with greater average failure rates, the marginal cumulative
method is more powerful in correctly identifying outliers. The detec-
tion of outliers in time-tc-failure data were examined using a Fisher's
test and a test originated by Dixon. Again power curves for the two
outlier tests were generated from simulated time-to-failure data. In ev-
ery case, Fisher's method was found to be superior to Dixon's method.

In the third chapter, several studies of the importance of the prior

family selection in compound failure models are summarized. Simulated
failure data of the (F,T) type were generated from conjugate gamma-Pois-
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son and non-conjugate compound models. In particular, the prior
distribution was taken as belonging to (1) the gamma family, (2) the
Weibull family, (3) the lognormal family, or (4) the logbeta family. In
an earlier study, methods were developed for estimating the two parame-
ters of these prior families from failure date using the PMMM, MMMM, or
the MMLM. The simulated failure data were analyzed by these three esti-
mation methods assuming both conjugate and non-conjugate prior distribu-
tions, Many comparisons are presented in this report which use both
conjugate and non-conjugate models to fit data from both conjugate and
non-conjugate distributions. The main conclusion derived from all these
studies is that the simpler conjugate compound model can be used to de-
scribe failure data even when the data come from non-conjugate distribu-
tions. There is no need to expend the large computational effort needed
to use the non-conjugate compound models. The effect of the choice of
the prior family 1s almost negligible. Of far greater importance, is
the method used to estimate the parameters of the chosen prior family
from the failure data.

- iv -



CONTENTS

m e & ¢ & 9 I L I I I D D I L O R

$ B 8 B

1. THE DISTINCTION OF FAILURE DATA BY THE LIKELIHOOD RATIO TEST

INLroduction » ¢ ¢« ¢« ¢ 2.5 & 5 o 5 & s & B & 6 s ®
The Homogeneous and Compound Failure Model . . . .
The Gamma-Poisson Failure Rate Model . . . . .
Likelihood Discrimination Procedure . . . . . . .
Power of the Likelihood Ratio Test . . . . . .
Discussion of Results . . . « « s « o ¢« s s s o

2. DETECTION OF OUTLIERS IN FAILURE DATA . . . . . . . .
Introduction - . . - - . - . - - . . . - - . - - -

OQutlier Detection for Failure Rate Data . . . . .
Fisher's Method for Qutlier Detection . . . . .

The Normal Conversion Method for Outlier Detection . .

The Integration Method For Outlier Detection .
Estimation of the Gamma Parameters . . . . . .
Determination of the Number of Outliers . . . .
Power Curves and Their Generation . . . . . . .

Power Curve Calculation for Tests of a Single Outlier

Properties and Comparison of Methods . . . . .
Qutlier Detection in Component Failure-Time Data .
Models for the (F,T) Data « « « ¢« « « o« o « + &
The Homoxeneous Model . . ¢ o« ¢ o ¢ o« « o+ &
The Compound Model . . . . +« + o « ¢ & o o« o«
The Cumulative Marginal Method . . . . « .+ « &
Binomial Method . « <« « ¢ « s o 5 s o o & o s »
Properties and Comparison of Tests . . . . .
Qutliers in Time-to-Failure Data . . . « + + + .+ .
Fisher's Method of Outlier Detection . . . . .
Dixon's Method of Qutlier Detection . . . . .
Determination of the Number of Outliers . . .
Properties and Comparison of the OQutlier Tests
Summary of Conclusions . . « + ¢« ¢ « « o o s & s @

3. PROPERTIES OF PRIOR ESTIMATION TECHNIQUES IN BAYESIAN
Introduction . « « ¢ o o o ¢ o & > & 5
Properties of the Parameter Estimators « B 8w

Gamma-Poisson Analysis of Gamma-Poisson Data: Set 1 . .
Ability of Estimation Methods to Yield Estimators .

- Y -

. 36

WU &EW N -

1"

1
12
12
13
14
15
18
19
19
21
27

« 27

27

. 27

28
30
30

37
38

. 39

47
48

. 48
. 49
. 49
. 50



Distribution of Prior Parameter Estimators . . . . . . . 50
Mean and Standard Deviation of the Estimators . . . . . 54
- DI oF BOCABBLORE o« o a-v- % m 0. o« nw won's w & 5. e BN
Mean Squared Error of Estimators . . . « + « ¢« ¢« « « « . 55
Median of Estimators . . « « « ¢« v ¢ o s« s s s » s » s « 59
Mean and Ctandard Deviation of the Estimated Gamma Prior
DESEPIDUEION o « o 4.5 S 4 m % & 5% 8% & o 4 & 050
Estimated Percentiles of the Gamma Prior Distribution . 65
Gamma-Poisson Analysis of Gamma-Poisson Data: Set 2 . . . . 67
Gamma-Poisson Analysis of Gamma-Poisson Data: Set 3 . . . . 73
Conjugate Analysis of Non-Conjugate Failure Data . . . . . . . 78
Non-Conjugate Compound Failure Models ., . . . +. « . + « . . 18
Non-Conjugate Prior Families . . . . « ¢« ¢ ¢« ¢« ¢« « o« +» « 78
Parameter Estimation of Non-Conjugate Compound Failure |
MOUBLD i 5 ¢ 5 % o 5 & % 4 H-*#h wHE B v e w19
Results of Using a Conjugate Model to Analyze Data from |
Non-Conjugate Models . . « « ¢ ¢ ¢ s « « s« s s« s « « 19
Non-Con jugate Analysis of Data From Non-Conjugate Models ., . . 84
Comparison of Using Four Different Prior Distributions with
the Same Failure Data . . ¢ « « & « s s o s s o s s =« « 89

R“mc”co-oooooocncooo.co--|ou'-0c0099

- Vi -




1.1.

3.1,

LIST OF TABLES

RHWHM for Generated Power Curves. Gamma shape parameter

ﬁ=0 000005 # =% 4 B ¥ - & KN N B N Wi Iy

Ability of Estimators to Yield Valid Estimates: Data Set

10

51

3.2. Mean, standard deviation and square root of the mean square
error of the alpha estimator for data set 1 . . . . . . .

3.3. Mean, atandard deviation and square root of the mean square
error of the tau estimator for data set 1 . . . . . . . .

3.8, Mean, standard deviation and square root of the MSE of the
estimated prior mean for data set 1 . . . + ¢ « &« ¢ o « &

FeDe Mean, standard deviation and square root of the MSE for

3.6, Percentage of successful estimates for data set 2 . , . . .
L % Results of a gamma-Poisson analysis of data from a Weibull-
Polsson distribution . « « o« o ¢ 5 o % ¢« 5 o o & o » %
38 Results of a gamma-Poisson analysis of data from a lognormal=-
Poisson distribution . ¢ « + s o ¢ o o o ¢ o o« » o s & »
3.9. Results of a gamma-Poisson analysis of data from a logbeta-
Polsson distributionn . ¢« ¢« o ¢ & ¢ o o 5 & ¢ o o s = & @
3.10. Results of a Weibull-Poisson analysis of data from a Weibull=-
Poisson distribution . « + ¢« s s s & ¢« ¢« o o 5 s & » s +»
3: 1 Results of a lognormal-Poisson analysis of data from a
lognormal-Poisson distribution . . « « « &« ¢« ¢ o ¢ & & &
3.12. Results of a logbeta-Poisson analysis of data from a logbeta-
Poisson distribution . « « « ¢ o ¢ 4 4 o ® 5 5 o 3 » o ¥
3.13. Alpha and tau estimates for four failure models obtained by
three estimation techniques for GOOD and BAD data . . . .
3.14, Percentiles of four prior distributions obtained from three

estimated prior standard deviation for set 1

estimation methods with GOOD DATA . . . . .

- vii -

.

63
68

81

82

83

85

86

87

90

94



3.15. Percentiles of four estimated prior distributions obtained
with the three estimation methods and the BAD DATA . . . . 98

- viii -



1.1,

1.2.

2.3.

2.4,

2.5.

2.6.

2.7.

2.9.

2.10.

2.11.

2.12.

LIST OF FIGURES

Empirical power curves with @ = 1.5 for the three prior

parameter estimation techniques . . .+ « « « « « & o« o ¢ + &« 7
Empirical power curves with « =2.0 for the three prior

parameter estimation techniques . . .« « + « « +« « & &+ o 8
Variation in the power of Fisher's method for detecting a

single outlier as the prior gamma parameters change. . . . 23
Relation between the powers of the normal conversion method

and Fisher's method as the parameter alpha changes. . . . . 24
Power curves for the normal conversion method, the two

Fisher's methods, and the integration method. . . . « .« .« & 25
Variation in the power of the integration method as the prior

gamma parameters change. . . « « + « &+ « o & ¢ s o o o o 26
The power of the cumulative marginal method for single outlier

detection for differnt tau values with alpha = 1.25. . . . 32
Power of single outlier detection tests with alpha = 1.25 and

tau = 12’500 - - - - .- . - - . - - - - . - . . - . - - - 33
Power of single outlier detection tests with alpha = 1.25 and

tau = 125 '000. - . - - - - - - - - - - - . - . - - . - . - 3u
Power of single outlier detection tests with alpha = 1.25 and

tau = 1 .250 .0000 - . . . . . . . . . . . . . . . . . . . . 35
Lack of variation in  he power of Fisher's method for a single

lower outlier as the failure rate changes. . . . « + « « « ¥
Lack of variation in the power of Fisher's method for

detecting a single upper outlier as the failure rate

chaMQSo . - . . - - . - - - . . - . . - - . . . - . - . - uz
Lack of variation with Fisher's method for a single upper

outlier as the sample size n varies. . . « « « « + « « « « 43
Variation with sample size of the power of Fisher's test for a

single lower outlier (failure rate = 0.000001 per hr) . . . 44

- ixX =



3.3.

3.4.

3-55
3-6.

3.7-

3.8.

3-9.

3.10.

3.15.
3.16.
3.17.

3.18.

Comparison of Fisher's and Dixon's methods for detecting a
single upper outlier (failure rate = 0.000001 per hr). . .

Comparison of Fisher's and Dixon's methods for a single lower
outlier (failure rate = 0.000001 per hr). « « « + « « « « &

Distribution of the alpha estimator for samples of size 5 for
data set 1. True value of alpha 18 1.2. « « « o ¢ o s o o

Distribution of the tazu estimator for samples of size 5 for
data set 1. True value of tau is 100,000, . « « « ¢« « « o &

Bias of the alpha and tau estimators for data set 1 . . . . .

Square root of MSE of prior parameter estimators for data set

1 _ T R . . . . . . . o« W & ¢ ¥ ® & N . s s >y @ 6 . .

Medians of prior parameter estimators for data set 1 . . . . .

Mean of the estimated means of the prior distribution for data

Set 1 - . . . o« = s 0w B =@ 5 § @ - & & .8 & & & & 8 * . . .

Mean of the estimated standard deviation of the prior
distribution for data set 1 . . « ¢« « ¢« o o o« ¢ o o o o o« &

Mean of the 95-th percentiles of the estimated gamma
distributions for data set 1 . . « ¢« ¢ o ¢ o ¢ & ¢ o s o

Bias of the alpha and tau estimators for data set 2 . . . . .

Square root of the MSE of the alpha and tau estimators for
data “t 2 - - - - - - - . . - - - - - . - - . . . . - - .

Mean of the 95-th percentiles of the estimated gamma
distributions for data set 2 . « « « « ¢ ¢« o s & & ¢ o o

Bias of the alpha and tau estimators for data set 3. . . . . .

Square root of the MSE of the alpha and tau estimators for
data ”t 3 - - . . - - - - - - - . - . . - - - . - - - - - .

Mean of the 95-th percentiles of estimated gamma prior
distributions for data set 3. « « + ¢« ¢ ¢ « o o ¢ o ¢ o e 0

Four estimated prior distributions from PMMM with GOOD DATA .
Four estimated prior distributions from MMMM with GOOD DATA .

Four estimated prior distributions from MMLM with GOOD DATA

Four estimated prior distributions obtained by the PMMM with
the BAD DATA - . - - . . . . - - - - . . - . - - . . - . .

46

52

53
57

58
60

61

64

66
69

71

T2

75

76

77
91
92

. 93

95




3.19. Four estimated prior distributions obtained by the MMMM with
th‘ BAD DAT‘ - - . - . - . . - - - . - - - . - - - - - . - 96

3.20. Four estimated prior ditributions obtained by the MMLM with
th‘ Bw DAT‘ . . - - - . . . - - - - - - - - - - . . . - - 91

- Xi -



Chapter 1

THE DISTINCTION OF FAILURE DATA BY THE LIKELIHOOD RATIO
TEST

1.1 INTRODUCTION

when a group of similar components is viewed in a classical sense,
all of the components are assumed to be completely identical. Because
they are assumed identical, all of the components have the same failure
rate or probability of failure per unit time. If the same group of com-
ponents is viewed in a Bayesian sense, the components no longer are as-
sumed identical but may exhibit variaticns in the failure rate, although
each component still has its own distinct failure rate. The distribu-
tion of failure rates among the components in a given population is of-
ten referred to as the prior distribution and is a key feature of a
Bayesian model. This prior distribution may represent the actual dis=-
tribution of failure rates among similar components, or simply an esti-
mate of the analyst's uncertainty about the true value of the failure
rate. In either case, this use of a prior distribution leads to a much
more flexible description of component failures.

Many models have been used to describe the failure rate distribution
in a class of components. One of the dJdesirable characteristics of a
model for a prior distribution is that it should be able to assume many
different shapes for different values of its parameters. Such flexibil=-
ity in shape is beneficial when modeling actual failure rate distribu-
tions. Moreover, the choice of a particular prior family is often made
on the basis of the ease with which it is incorporated into the analyti-
cal formulation of the failure model.

An important use of the Bayesian cr compound failure model to de-
seribe the failure of components is its ability to distinguish between
groups of components. For two sets of components, say from two differ-
ent manufacturers, one is interested in determining whether or not the
components have failure rates which come from the same prior distribu-
tion., To investigate this question, sets of failure data were simulated
from an assumed failure rate distribution with known parameters. The
simulated data were used to estimate parameters of the failure rate pri-
or distribution. Several methods, including matching moments and maxi-
mum likelihood techniques, were used to estimate the parameters of the
prior distribution from the simulated failure data. The likelihood ra-
tio test was then used to compare the results for different simuiated
data sets obtained using different known prior distributions. From the
results of these likelihood ratio tests, power curves were generated.
With these empirical power curves it is then possible to draw conclu-



sions about how dissimiliar the prior distributions must be in order to
state confidently that the failure rate distributicns are in fact dif-
ferent,

1.2 THE HOMOGENEQUS AND COMPOUND FAILURE MODEL

Two different statistical models were used to describe component
failures. The first of these models, the homogeneous model, is the sim-
plest of the two. In this model the failure rate ), 1is assumed to be
some unknown constant, which is equal for all components in a particular
population.

It is often assumed that a component which fails is immediately re-
paired and brought back into operation without changing its failure rate
probability, * . With this assumption, the probability of obhserving F
failures in T comporent-hours of test time for a particular component is
given by the Poisson distribution,

F
T} = —SAD)  _=AT (1-1
(R T(F+l) © y

where '(F+1) is the gamma function.

If all the components in a class are then assumed to have the same
failure rate ' , the above result becomes the homogeneous failure model
in which T now represents the total number of component-hours of test
time accumulated by all the components in operation. Of major practical
interest with this model is the estimation of the failure rate for menm-
bers of the population, It can be shown that the maximum likelihood es~
timator is given by

. n n
Ae )} F /] T (1=2)
fe] 1 gm 1

i.e., the total number of failures divided by the total test time. For
components which are designed to have very low failure probabilities,
the homogeneous model is often inadequate since there are usually zero
observed failures and the maximum likelihood estimate of the failure pa-
rameter thus has the unrealistic value of zero,

The second and more complex faiiure model, known as the gompound
model, is often better for modeling the failure rates of components,
especially when the failure probabilities are inherently low. In this
model the failure rate is assumed to vary from component-to-component
within the class although it remains constant in time for any given com-
ponent. The failure rate is further assumed to be distributed among the
components of the population according to some function g( ). This dis-
tribution is called the failure rate prior distribution since it is usu-
ally determined from previous information about the components in a



given class. with g(:) known, the probability of experiencing F
failures in T component-hours of operation is given by the garginal dis-
Ltribution

h(F;T,g) = [ £(F|3;T) g(}) dA, F=0,1,... (1-3)
0

where f(F|) ;1) is called the likelihood or gonditional distributioun.
For the failure rate case, f is the Poisson distribution of Eq. (1-1).

1.2.1 The Gamma-Poisson Failure Rate Model

The testing for the distinction of differences in the prior distribu-
tions was restricted in this study to the above failure rate problem.
Further, the prior distribution was assumed to belong to the gamma fami-
ly. This family is the natural conjugate to the Poisson distribution
and allows the integration of Eq. (1-3) to be performed analytically.
Using this conjugate f.ilure model, the marginal distribution becomes

P (F+a) ¥ +°

h(F;Tpayr) = r(u)r(F+l) (T*’T)FM

(1=4)

where « and © are 'he parameters of the prior gamma distribution

(\ia,t) = 10" 2% "2 r(a) , 0,120, 0<)h<= (1=5)

The prior parameters can be estimated from previously observed compo-
nent failure data by several methods. Let T; and F; denote the compo=-
nent test time and observed number of failures, respectively, for the
i-th component in a given population of N components. The xethods used
in this study for estimaling the parameters of the prior gamma distribu-
tion are summarized below.

1) PMMM - Matching data moments to those of the prior distribution.
The parameter estimators are given by [1]

-~

=2,.2 - o
a= 1\"/§ and B8 = 1/t = 8%/}




F
2 y B -2 3 B1% -
S 5_:.2 (A,=1) .___.z_.-x . (1-8)
n=-1 (=1 i n=-1 a1 T1

2) MMMM - Matching data moments to those of the marginal distribu-
tion. The parameter estimators are given by [2]

. 2 3 ¢ 1
se st -2 1 1 (1-9)
1=1
and
- bl b o - —
s=ts? -2 1 ThiA . (1-10)
1=1

3) MMLM - Marginal maximum likelihood method. The parameter esti-
mators are solutions to the set of equations [2]

S RN R

E_ / z (1=11)
8 =1 1+371} i=1 1+.8'I'1
and
2 (Fz-l 1 .
1|1 == in(1481,)| = 0 (1-12)
1=114=0 &+l

where these two equations must be solved numerically.

1.3 LIKELIHOOD DISCRIMINATION PROCEDURE

In this study a gamma-Poisson compound failure model was assumed with
specified values of parameters : and 3 and component test time T. With
the marginal distribution of Eq. (1.2), simulated failure data were gen-
erated as follows., A random number between 0 and 1 was taken as the
value of the cumulative marginal distribution. A value of F was then
determined that yielded this value for the cumulative distribution cof
Eq. (1.2). By using a series of random numbers, a series of component
failures F; were generated which were distributed according to the spe=-
cified marginal distribution.

Different sets of simulated failure data were thus generated from a
gamma~-Poisson marginal distribution with T = 10,000 hours and wich val=-
ues of the shape parameter  ranging between 1.0 and 2.5. The scale pa~-
rameter © was chosen as the variable parameter for testing the ability
of the likelihood ratio test to discriminate between different & values.



A standard value of ¢ was selected as 0.00005 and then various other
values were used to generate simulated failure data from marginal dis-
tributions that differed by various amounts from the stardard one. The
simulated failure data were grouped into sets of size 10, and each group
was then used to estimate the gamma parameters by the three methods sum-
marized in Section 1.,2.1. These parameter estimates for each group can
then be used to calculate the probability of observing the given data of

each group, i.e., the sample likelihood

n
L(a,8) = I h(F,;T,,x,8) (1=-13)
j=1 e {

The null hypothesis (testing only for variations in g) is that all
the failure data came from a gamma-Poisson distribution with £=0.00005.
The alternative hypothesis is that the failure data came from a distri-
bution with a differeant value of the scale parameter. In both cases the
shape paramter has the same known value (the value used to generate
the simulated data). To test the null hypothesis, the likelihood ratio
test was used. This test is based on the test statistic

T = -2an{L(a_,8 )/ [L(a;,8;) L(a,,8,)] (1=14)

which, asymptotically, has a chi-square sampling distribution with the
number of degrees of freedom selected in accordance with the number of
parameters estimated [3]. The quantity L(x,,5,) is the value of the
likelihood function under the null hypothesis where the estimators o,
and ‘o are determined from the combined data sets while the quantities
L(%{,7;) 1=1,2 are evaluated using the parameter estimators .; and&;
obtained from each set separately. The selection of the number of de-
grees of freedom is discussed below. Thus, the decision rule is to re-
ject the null hypothesis for a particular data set if T > x2(df,v),
where df is the appropriate number of degrees of freedom and y is the
significance level.

1.3.1 Power of the Likelihood Ratio Test

The power of the above likelihood ratio test is defined to be the
fraction of the time the null hypothesis is correctly rejected for all
data sets (of size 10) for which prior parameter estimators were ob-
tained by the estimation technique under scrutiny. In many applications
to data sets of such small size, the marginal matching moments (MMMM) or
the maximum li<elihood method (MMLM) may yield no parameter estimates.
If estimates cannot be found for a particular set of data, this set is
not used in calculating the power of the likelihood ratio test.

For example, say that the marginal matching moments method was able
to find prior parameter estimates for only 151 sets of simulated failure

- 5 -



data out of a total of 250 generated sets. For these 151 pairs of
estimators, it was found that the null hypothesis (all data came from a
distribution with ¢ =0.00005) was rejected 31 times. Thus the power of
the likelihood ratio test based on the MMMM equals 31/151 not 31/250.

The statistic of Eq. (1-14) was used tc test the null hypothesis that
1 ® a, and By 89 » The data were simulated from distributions with
equal alpha parameters and different beta parameters to test the sensi-
tivity of the test statistic. Thus, the simulated data was used to exa-
mine the power of the test only in the beta direction and not in the al-
pha direction. To generate the power of the test, the value of the
likelihood function with a common alpha and different beta estimates
should be obtained. However, available parameter estimation codes pre-
cluded a common alpha estimator for both data sets; rather separate al-
pha as well as beta estimators were used. The simulation reported here
is based on using two degrees of freedom which yields too large a criti-
cal point so that the null hypothesis was rejected less often than it
should have been. It can be shown that this procedure generates a lower
bound for the power of the actual likelihood ratio test (i.e., one in
which a common alpha estimate is used). An upper bound for the power of
the test could be obtained by using one degree of freedom, although up-

per bounds are not reported here,

Lower bounds of the power curves, as a function of the scale parame-
ter used to generate the simulated failure data, were obtained in the
above manner for several different values of the shape parameter after
using the three different estimation techniques (PMMM, MMMM, and MMLM)
to find values of the gamma parameters from the simulated data sets.
Typical results are shown in Figs. 1.1 and 1.2 As an approximation,
these lower bounds can be used as power curves for the test of the null
hypothesis. To obtain each empirical point on these power curves, 250
simulated failure data sets were used, and the significance level of the
likelihood ratio test was taken as 0.05.
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1.4 DISCUSSION OF .LASULIS

With the MMMM and MMLM, many sets of simulated failure data were ex-
cluded from t  calculation of the power curves. For example with ¢=1.5
and £ =0.00002, the MMLM yielded parameter estimates in only 41 out of
the 250 data sets analyzed. With the same data sets, the MMMM yielded
estimators in .nly 62 cases. By contrast, the simpler PMMM (prior
matching moments method) gave estimators for 239 of the data sets. For
the entire range of parameters used in this study (typizal of pump fail=-
ure rates in nuclear power plants), the two estimation techniques based
on the marginal distribution tended to fail to yield estimators a signi-
ficant fraction of the time. The MMMM failed when negative estimators
were obtained (not allowed from the definition of the gamma distribu-
tion), while the MMLM failed when it was unable to find estimators with=-
in a specified region about the true values (taken as 100 times the true
value). On the other hand, the PMMM failed only when all the observed
failures in a data set were zero.

Despite the above difficulties, this work has shown that power curves
can be generated from simulated failure data. The following observations
about these power curves are of interest:

1. The power curves are not symmetrical about the standard value of
the scale parameter, i.e., #=0.00005, since the allowed beta pa-
rameter space is zero to infinity. Perhaps a logarithmic scale
for beta would yield more symmetric distributions.

2. All power curves exhibit a stochastic rather than a smooth behav-
ior, as a result of the stochastic manner in which they were gen-
erated. Larger sample sizes would reduce these spurious stochas-
tic fluctuations.

3. All power curves appear to approach unity asymptotically for
large values of beta, indicating the null hypothesis is always
rejected if the beta value used for the simulated data is suffi-
ciently different from the standard value.

4. Each power curve has the shape of a negative pulse near the stan-
dard beta value. At ¢=0.00005 these curves indicate the power
of the test is well below 0.05, although the exact minimum value
cannot be determined exactly because of the stochastic nature of

these empirical power curves.

The power curve negative pulse behavior near the standard beta value
of 0.00005 can be characterized by its full width at half minimum (FWHM)
or, since the power curves are assymetric about £  , by the right or left
half width at half minimum (RHWHM or LHWHM, respectively), i.e., the
difference between the beta values at which the power is 0.5 and the
value .. For beta values at which the power of the likelihood test
equals 0.5 (endpoints of the FWHM), the null hypothesis is correctly re-
jected only 50 percent of the time. Ideally a power curve for a two
sided test should dip to zero at the true parameter value (here beta =
0.00005) and should equal unity for all other parameter values. Thus



for the ideal case the FWHM equals zero. The smaller the value of FWHM,
or the steener the sides of the negative pulse of the power curve, the
better is the test at distinguishing between marginal distributions,

In Tatle 1.1 the RHWHM for the power curves generated in this study
are listed. From these results, it is seen that for a given « value the
MMLM yields the smallest value for the RHWHM, The values obtained by
the PMMM and MMMM are equal and are about 30 to 40 percent larger than
the RHWHM from the MMLM, As the shape parameter of the gamma~Poisson
distribution increases, it is seen that the RHWHM decreases, i.e. the
likelihood ratio test becomes more discriminating.

TABLE 1.1

RHWHM for Generated Power Curves. Gamma shape parameter : =0.00005

Alpha Est. Technique RHWHM/ &
1.5 PMMM 2.84
1.5 MMMM 3.25
15 MMLM 1.70
2.0 PMMM 2.32
2.0 MMMM 2.32
2.0 MMLM 1.45
1.0 PMMM 4.25
1.5 PMMM 2.80
2.0 PMMM 2.32
2.5 PMMM 1.95
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Chapter 2

DETECTION OF OUTLIERS IN FAILURE DATA

2.1 INTRODUCTION

Frequently, failure rates are estimated from available failure data
found in the literature. Unfortunately, the available failure data for
nuclear power plant components are usually sparse, and there are often
large variations in the data for similar components. Thus, the estimat-
ed values for failure rates have large uncertainties.

One method which can be used to reduce this uncertainty is to label
data points that deviate greatly from the main body of the data as gut-
liers. Once data points have been labeled as outliers, steps can be
taken to reduce the effect which they have on the statistical interpre-
tation of the remaining data. These steps can range from simply noting
that outliers are present in order to reduce the confidence placed in
the results, weighting the data in order to reduce the effect of the
outliers, or rejecting the outliers before the data are interpreted.

The problem of outliers or discordant data has been recognized for
decades. It is one of the most perplexing problems which occurs in the
interpretation of data, because all elements of subjectivity must be re-
moved and because the question of what to do with discordant data, once
they are found, has no universally accepted answer. Ferguson [4) stated
the problem as follows:

"In a sample of moderate size taken from a certain population,
it appears that one or two observations are surprisingly far
away from the main group. The experimenter is tempted to
throw away the apparently erroneous values, and not because he
is certain that the values are spurious. On the contrary, he
will undoubtedly admit that even if the population has a nor-
mal distribution there is a positive although extremely small
probability that such values will occur in an experiment. It
is rather because he feels that other explanations are more
plausible, and that the loss in the accuracy of the experiment
caused by throwing away good values is small compared to the
loss caused by keeping even one bad value. The problem, then,
is to introduce some degree of subjectivity into the rejection
of outlying observations."

In this chapter, the specific problem of discordant datz in failure

rate data, with small failure rates, is addressed. The detection of
outliers in three types of failure data were investigated, and the re-
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sults are summarized in this chapter. Additional details on this phase
of the investigation and many examples can be found in Ref. [5]. The
following section deals with the idealized case in which the failure
rates themselves are known and are assumed to be distributed according
to a gamma distribution. Several methods of outlier detection for the
gamma distribution are presented, some properties and comparisons among
the methods are given.

Section 2.3 deals with the more practical case in which the data are
in the form (F;,T;), where F, is the number of component failures ob-
served in test time T;. For a particular component, the number of fail=-
ures is assumed Lo be distributed according to the Poisson distribution,
and the failure rates of similar components are assumed to be distrib-
uted according to a gamma distribution. Two tests for detecting outli-
ers in data distributed according to the gamma-Puisson compound model
are presented, and some properties and a comparison between the two
methods are then given.

In Section 2.4, the problem of discordant values in time-to-failure
data, i.e., data which are distributed according to the exponential dis-
tribution, is discussed. Two methods of detecting ocutliers in this type
of data are presented, and some properties and a comparison between the
two methods are given.

In the final section of this chapter, an overview of the problem of
outliers in failure rate data is discussed, and the "best" methods for
outlier detection are recommended.

2.2 QUILLER DETECTION FOR FAILURE RATE DATA

In this section, methods for outlier detection in failure rate data,
for which the failure rate gamma distribution is known, are discussed.

2.2.1 Fisher's Method for OQutlier Detection

Fisher [6] developed a method for detecting a single outlier in a
gamma distribution, g(x;u:,3), with known parameter n . His method has
since been expanded upon, notably by Fieller [7] who generalized the
method to include the case of multiple outliers., Fisher's method of de-
tecting outliers is a hypothesis test. The null hypothesis, HO, is that
all data come from a single gamma distribution with a known fixed value
of a«. The alternative hypothesis, H1, is that a certain number of data
points, k<n, come from a distribution(s) different from that associated
with the main body of data.

The appliation of Fisher's method for detecting outliers consists of
calculating a test statistic, TF, and comparing this statistic with the
tabulated critical values, tF, of the statistic. If TF is greater that
tF, then the null hypothesis is rejected, and the data points under
scrutiny are declared to be discordant.

- 12 =



The test statistic for upper outliers is

f\} n

IF = / z

L X Xi» -
i=n-k+1 : i=1 i (2-1)

where X > Xj.j 2 ... > x, are the data and k is the number of outliers
being tested for. The critical value of this test statistic is found
from the equation [8]

\

P(TF < tF) < (:J P (n=k) tF

[FZRG,Z(n-k)a < X(1I-thH) ’ (2=-2)

where P(TF<tF) is the probability that the calculated value of Fisher's
test statistic TF is le-: that its critical value tF, n is the number of
data points, k is the number of outliers being tested for, and
Foka,2(n-k)a 18 the F-distribution with 2ku and 2(n-k). degrees of free-
dom. here is no "right" or "wrong" way to select the value cf P(TF<t*®)
which is used in determining tF. However, it is standard practice to
use either 0.01 or 0.05. In doing =0, the—values of tF at either the
99% or the 95% confidence level, respectively, are obtained.

2.2.2 The Normal Conversion Method for Qutlier Detection

The method of normal conversion consists of transforming a sample
from a gamma distribution into a sample from a normal distribution, and
then testing the normal sample for outliers. If the random variable X
is distributed according to the gamma distribution g(X;«,2), o > 1, it
can be transformed into a random variable W which is approximately dis-
tributed according to the normal distribution

N{(ae]ln (1 - ?i') _i (62/)1/3

by taking the cube root of X [9]., Thus if wi = xi/B are data, where the
X; are distributed according to a gamma distribution with the parameter
a greater than unity, then w; are approximately distributed according to

a ncermal distribution.

Once the data have been transformed to normally distributed data,
there are a number of methods available for detecting outliers., One of
the more common methods, both because of its ease of application and its
intuitive appropriateness, is the use of Grubbs-type statistics. These
statistics, like the Fisher statistics, are based upon a hypothesis
test. The null hypothesis HO in this case is that all the transformed
data come from a single normal distribution. The alternative hypothesis
H1 is that a certain number of the data, k<n, come from a distribu-
tion(s) distinet from the normal distribution that describes the main
body of data.

- 13 =



The Grubbs test statistic used to test the null hypothesis is
calculated as follows [10]:

~0
£
'
P
t

m-i{ -
S{itn-k+l e

where w; < ... < w_ are ordered values of the normalized data, k is the
number of suspected outliers, and S is the standard deviation of the
transformed data. The critical value of the test statistic, tN, is
found from the equation [8]

2l ofe > L a(a-2) ex’ ]“21
|k L _n
kj | 'o=2 ok (a1} - oee] J - W

P(ITN > tN) <

where P(TN>tN) is the probability that the Grubbs test statistic TN is
greater than or equal to its critical value tN, t _, is Student's t-dis-
tribution with n-2 degrees of freedom, and tN is the critical value of
TN for a given P(TN>tN). As before, the value of P(TN>tN) (selected to
determine the critical value of TN) is usually chosen either as 0.01 or
0.05, so that either the 99% or 95% confidence level, respectively, is
used.

2.2.3 The Integration Method For Qutlier Detection

A third method for locating outliers in a gamma distribution involves
the integration of the gamma distribution in question. As before, the
null hypothesis HO is that all data come from a single gamma distribu-
tion, while the alternative hypothesis H1 is that a few pocints, k<n, are
from a different distribution(s) than the main body of the data.

The integration method is developed as follows. The probability that
a data point from the gamma distribution g(x;x,%) is greater than a
given value x_. is given Dy

Py * f g(x;a,8) dx = 1 - G(xc;a.E) ’ (2=5)
e
where G is the gamma cumulative distribution. The probability that any
one of the n data points is greater than x_ (assuming independence among
the data) is given by

I P G R
=1-Pl A A,|=1- 0T (1- .
top 1) l4uy b st Py) (2-6)
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where A; is the event x; > x., A' is the complement of A;, V is the un-
ion symbol, and is the intersection symbol. And if, according to the
null hypothesis, all data come from the same distributicn, then
Py =Py = «es =P, = P, and thus, from Eq. (2-6)

n \ n
' vV A,| = 1-(1-p) 3
p&i-l i) (1-p (2-7)

r ( n \]l/n
= 1-{1-P| V ( 2=
P L Loy pijJ (2-8)
From Eq. (2-5)
[ g(x;a,8) dx = p (2-9)
X
Cc
which, solving for x , gives
x, " ¢t (1-p;a,8) (2-10)

As in the previous methods, the 95% or 99% confidence 1ev7ls are usually
of interest, and so p is either taken as the value 1-.95l n or 1-.991/“,
accordingly.

It is not necessary to solve exactly Eq. (2-9) in order to detect
outliers. Rather, the data points X ,X . _ | «.¢ where 2 . 2 aee
can be used as approximations of x. . These values are 8ubstituted into
Eq. (2-9), beginning with x,, until a value x _, ., is reached such that

/ G(x;a,8) dx < p (2-11)
*a-k+1

The upper k data points are then labeled as outliers.

2.2.4 Estimation of the Gamma Parameters

Until now, the values of the gamma parameters, = and ©, have been as-
sumed known. Often, however, values of these parameters will not be
known a priori. When the Fisher's test statistic is applied to the
failure data, the following algorithm can be used to determine the value
of the alpha parameter to be used in finding the critical level of the
test statistic. First a2 is calculated from the non-suspicious failure
data using the prior matching moments technique (PMMM) as follows [1]:
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n-k
'

1
X ® n-k z Xq (
i=1 2=-12)

2 j. Mk -y 2
s'" = 2ek=1 121 (xi -x')", (2-13)

.v '02 12
a' = x'"/s 3
(2-14)

where x; < x, € ... € X, and k are the suspected number of upper outli=-
ers, Then, the minimum outlier value, i.e., the minimum value at which
a data point is labeled as outlier, is fcund using 3i' to determine the
critical value of the test statistic,

' I'I"!(
x' = tF =
c

(2-15)
1-tF {=1

i *

where tF' is the critical value of Fisher's test statistic at 53'. This
minimum outlier value is then used to estimate a as follows:

—-—1- E ' -
X “iél xi+nxc 3 (2-16)
n-k
2 1 Y =2 3 ' _—2 2=1
" mave ) Ry 2 = A, x) (2-17)
i=1
~ _2 -
a=x /8 . (2-18)

The above value of a is then used to find the critical value of the test
statistic. Fisher's method of Section 2.2.1 is then used to determine
whether or not the upper k data points are discordant.

when the integration method is being applied to locate outliers, the
algorithm used to estimate values of the gamma parameters is very simi-
lar to that outlined above. First the data points that are not suspect-
ed as being discordant are used to estimate the gamma parameters as fol-
lows:

_ 1 n=-k
! BB — -
x — Ly (2=19)

i=]1
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n=-k

2 i -
ety 1 fx - %, (2-20)
i=]
a' -';’2/3'2 ’ (2=21)
A' - |2
g8' = x'/s . (2-22)

These values of the gamma parameters, ' and 4', are then used to deter=-
mine the minimum outlier value for the n-k data points from the equa-
tions

x!

P = fc g(x;a',B%) dx = G(xé;a'.e'), (2-23)
0

which can be solved to give
x' =¢ 1(P-a' g") w38
c ’ , ’ (2 2 )

where P is taken as either 0.951/" or 0.99”n depending on whether the
95% or 99% confidence level, respectively, is to be used for hypothesis
testing.

Then, using the n-k non-suspicious data points and x', the gamma pa-
rameters, » and ¢, which are used to test the upper k data points for
discordancy, are estimated as follows:

n-k

v 3T ueba -
a=%/e, (2-27)
é .<;/52 " (2-28)
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Once the estimators o and ¢ have been computed, the integration method,
described in Section 2.2.3, is used to determine if the upper k data
points are, in fact, discordant.

2.2.5 Determipation of the Number of Qutliers

One method for determining the number of outliers in a set of data is
to test repetitively the data, assuming for each test that one outlier
may be present. That is, the data are tested first assuming the most
extreme value may be discordant, If that value is not found to be dis-
cordant, then there are no outliers present, and the testing is com=-
plete, However, if the most extreme value is found to be an outlier, it
is removed from the data, and the test is repeated assuming that the
second most extreme value may be an outlier., If this value is found to
beiong to the distribution being tested, then the testing is complete,
and there 1s only one outlier in the data. However, if this value is
found to be discordant, it is removed from the data, and the third most
extreme value is tested. This process is continued until a ron-discor-
dant value is found. If ke repetitions are necessary t¢c find a non-
discordant value, then there are k outliers in the data.

The repetition method for determining the number of outliers in a set
of data seems, at first glance, to be quite reasonable. However, there
is a major pitfall in its application arising from the phenomenon called
masking. Suppose a set of data with two upper outliers is to be tested.
And further suppose that the outlier detection technique to be applied
is of the form D/S where D is a measure of separation of the most ex-
treme value from the mean, and S is a measure of the spread of the data.
The greater the value of the test statistic D/S, the more likely it is
that the data pcint under scrutiny will be detected as an outlier. 1In
this case, however, the second extreme value is also an outlier, and
thus will cause the value of S to be larger and the value of D/S to be
smaller than anticipated, As a result, the most extreme value may not
be deizcted as being an outlier, and thus the two outliers would go un-
detected.

Another pitfall, known as swamping, arises in determining the number
of outliers to be tested for when a non-discordant value is tested along
#ith a discordant value. Suppose that a data set with only one outlier
is to be tested for two outliers., And futher suppose that, as in the
previous case, a test statistic of the form D/S is to be used, In this
case, both D and S would be smaller than anticipated, and, depending on
the discrepancy between the two tested values and the mean, both values
would be labeled as either discordant or non-discordant.

The above considerations show that the zimplistic testing of the data
one-by-cone for outliers is not the correct way to proceed. The correct
way is as fcllows, The data are first examined to locate the largest
gap between t40 onsecutive data points, the data being ordered such
that x;< X5 < ... - X oo If this gap occurs between the two points x _.

and X,-k+], and if‘;n:k*l > X, the k data points X, _ 41+ X, (409 sver X,
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are considered to be potential upper outliers. These points are then
tested to determine if they are, in fact, outliers or not. If they are
not found to be discordant, then there are no outliers, and the testing
is complete. If they are found to be discordant then they are removed
from the data, and the test is repeated to determine whether or not
there is another "cluster" of outliers present.

2.2.6 Power Curves and Their Ceneration

The propercies and comparisons of the various tests which are de-
scribed in the previous sections are determined by the use of 'power
curves'. For our purposes, the y-axis of a power curve is the probabil-
ity that a single outlier is detected, and the x-axis is a measure of
the variation between the mean of the parent distribution and the mean
of the distriution from which the outlier comes. In particular, the x
variable is taken as K = | , where bp is the mean of the parent dis-
tribution and ., is the nean 5} the distribution generating the outlier.
For the results presented in this chapter, the variances of the two dis-
tributions are set equal to each other. Note that K = 1 means that all
data points come from the same distribution. Thus at K = 1, the prob-
ability of an outlier being detected will be less than or equal to 0.05
for the 95% confidence level.

Power curves have often been determined by generating sets of data
from a parent distribution and then generating outliers from a second
distribution (simulation of data). The simulated outliers were then
tested for discordancy against the data sets from the parent distribu-
tion to obtain a point on the power curve, This procedure is then re-
peated for different outlier distributions until the entire power curve
is obtained. Such an empirical approach for determining power curves
results in apparent stochastic fluctuations in the curves because of the
finite number of data sets used to constuct each point on the curves.

In this study, a modified approach for constructing power curves was
taken. In this technique, it is necessary to generate simulated failure
data sets from only the parent distribution., A semi-analytical treat-
ment can then be used to obtain the probability that an outlier will be
detected. This novel technique for generating power curves mitigates
the stochastic nature of the empirical curves which is inherent in the
conventional procedure. This new method is described below.

2.2.6.1 Power Curve Calculation for Tests of a Single Outlier

The modified approach for obtaining power curves for a hypothesis
test for detecting a single upper outlier in a data set is developed as
follows. The null hypothesis HO is that all the data x; < x; <...<x,
come from the same distribution, i.e., the suspected outlier x,6 comes
from the same distribution as the rest of the data. Suppose the hy-

pothesis test is based on a statistic
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T = f(xl, Xos eeen X 1o x“) (2-29)

whose critical value t(a) is known at some @ significance level. The
null hypothesis is rejected if T > t(a). An equivalen. test of the null
hypothesis is to calculate a critical value x, for X, that yields t(a)
as the test statistiec T, i.e.,

t{a) = f(xl, Xpv cens X 0o xc) (2-30)

so that T>t(a) if and only if x >X,. For a given data set consisting of
n values, a random variable x_ can be calculated from the n-1 smallest
values using the above equatign, and the null hypothesis is rejected at
the a-significance level if X, > X,.

The new technique for obtainiug a power curve for the above hypothe-
518 test 1is based on finding the density distribution of the random va-
riable x , f (x_ ). For a specified sample size n and a specified parent
distribugion g(x;a,8) where a and B are the distribution parameters, the
distribution of X, can be determined empirically by generating multiple
data sets from g and solving Eq. (2-30) for x, from each data set.

Once f (x ) has been determined, the joint distribution of X, and X
is calculiited as f (x )g(x ;a, ,8.) where g(x 3a,,8.) is the distfibution

of X From thiskjognt d?stributjon, the p?ob%bi*ity that the null hy-
potheésis is rejected, i.e. P{xnhxc}, can be calculated as
(HO is re] BETS - d (2-31)
PLHO is rejected’ = | j XC g(xn,:l,nl) dxc Xn 2=31
:)’.“‘X‘

n C

[ [%n
U

: fc(xc) dxC g(xn;x

J ol 1.51) dxn (2=32)

or, in terms of the cumulative distribution of X Fc(xc),
3§ ) 1 piecte } = 4§ . 8 . -
P{HO is rejected) fokc(xn) g(xn,sl. 1) dxn (2-33)

In practice, the cumulative distribution Fc(xc) will be determined em-
pirically and hence will be in the form of an empirical distribution so
that Eq. (2-33) will ve replaced by its discrete analogue with the in-
tegral replaced by a sum of integrals over each class of the empirical
distribution.

The advantage of this method for constructing a point on the power

curve for a particular hypothesis test over the more conventional simu-
iation procedure is considerable. In this new technique, only the dis-
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tribution of critical x-values, f or F_, must be obtained from multiple
sets of simulated failure data (§ ,,_,fx 1) generated from the parent
distribution. In the more convenf\onal JFbceduro, additional simulated
failure data must be obtained from g(x ;a1,B ) and then each x_ tested
against a large number of data sets fion tﬂo parent diatribueion for
many different values of x . The new technique, by using Eq. (2-33) or
its discrete analogue, avdids the random sampling from g(x ;“1'8 ) as
well as the repetitive testing of each x_with a large nunger or‘data
sets, The computatirnal effort is thus é}eatly reduced while the sto-
chastic errors in such power calculations are also reduced.

2.2.7 Properties and Comparison of Methods

There are two properties which all of the outlier tests have in com-
mon. First, as the value of the gamma parameter a increases, the power
of the tests increases, i.e., saturation occurs at lower values of K.
And second, except for the integration method, there is little variation
in the power of the tests as the value of the parameter § changes [see
Fig. (2.1)].

An interesting property of the normal conversion method is that as
the value of the alpha parameter increases, the power of the normal con=-
version method seems to approach the power of Fisher's method. This
type of behavior is expected, since the conversion of the data, which
are distributed according to a gamma distribution, to approximately nor-
mally distributed data gives a better approximation as alpha increases
(9]. A typical result is shown in Fig. (2.2).

The power of Fisher's method when the value of the alpha parameter is
unknown is always less than the power of Fisher's method when alpha is
known [see Fig. (2.3)]. Thus, when the alpha parameter is unknown,
Fisher's method is conservative in that suspicious data are less likely
to be labeled as outliers.

The integration method of detecting discordant data is not very pow-
erful compared to the other methods as can be seen from Fig. (2.3).
However, its power increases as the parameter alpha increases and the
parameter tau decreases [see Fig. (2.%)].

The :<cond most powerful method for all values of the gamma parameter
alpha ai¢ tau which were tested is Fisher's method. However, it is not
always possible to apply Fisher's method while staying within its theor-
etical limitations because the value of alpha is not always known.

The most powerful of the three outlier detection methods for all val=-
ues of the gamma parameters is the normal conversion method. Not only
i= the normal conversion method the most powerful technique, but it can
always be applied to failure data since it is not necessary to know the
values of the gamma parameters., Also, this method is easy to use with a
hand calculator., Thus, the normal conversion method is the "best" meth-
od for detecting a single outlier in failure data from a gamma disribu-
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tion, This superiority was verified for gamma parameters with values
1 < alpha < 4, and 100 < tau < 10 .

Although all of the power curves were generated at the 953 confidence
level, the probability of outlier detection at K=1 is in every instance
well below 0.0! [see Figs. (2.1) to (2.4)]. Thus, although the theoret-
ical confidence level is 95%, type II errors, i.e., acceptance of the
null hypothesis when it should be rejected, cause the actual conridenc?
level to be well above 99%. Alsc, since the actual confidence levels
of the various tests are not equal, it may not be completely "fair" to
compare their powers in the above manner.

L The probability of accepting HO (all data are from the same distribu-

tion) is less than the critical level of significance, chosen 2a
priori. For example, when a level of significance was chosen as 0.05
(a 5% chance of incorrectly rejecting HO), there was actually a much
smaller chance than 5% of incorrectly rejecting HO.
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2.3 QUILIER DETECTION IN COMPONENT FAILURE-TIME DATA

In the previous sections, the problem of detecting outliers in a gam-
ma distribution was discussed in connection with failure rate data for
which the failure rates themselves, i.e., the ’'s, were observed. Nor-
mally, component failure data will consist of the number of failures F
in a test time Ti for the i-th component.

2.3.1 Models for the (E,I) Data
2.3.1.1 The Homogeneous Model

In the classical description of a component, the failure rate of a
component, » , is regarded as an unknown constant which deces not change
even if the component fails and is subsequently repaired. Thus the num-
ber of failures F in operation time T is modeled by the Poisson distri-
bution (sometimes called the likelihood distribution) of Eq. (1=1). A
further asssumption is that similar components have the same failure
rate . Thus, the failure rate can be estimated by pooling all the
failure data for a given set of similar components. For example, the
maximum likelihood estimator (MLE) of the failure rate based upon the
homogeneous model is given by Eg. (1-2).

There are two major deficiencies with this model. First, the assump-
tion that similar components have identical failure rates is usually not
valid. Second, if a group of components has an extremely small faiiure
rate, as is typical of components in nuclear power plants, and if the
test time is not sufficiently long, it is possible that no failures
would be observed. In this case, the estimated failure rate using the
homogeneous model would be zero which is an unrealistic value.

2.3.1.2 The Compound Model

The compound model for the failure data generalizes the homogeneous
model by allowing the failure rate to vary among the similar components.
It is assumed that the failure rates are distributed according to a
prior distribution, g()). Thus the probability of obtaining F failures
in a test time T from a component selected randomly from the component
class described by g is given by Eq. (1-3) -- the marginal distribution.

For this phase i the study, it is assumed that the prior distribu-
tion is given by the gamma distribution of Eq. (1-5). This distribution
is the natural conjugate to the Poisson likelihood distribution and al-
lows the explicit evaluation of the marginal distribution (see
Eq. (1-4)). In the next chapter the effect of using a non-conjugate
prior family is addressed.

The use of a compound model requires values of the gaamma distribution
to be chosen so as to describe adequately the variation of failure rates
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among the s.mi. ar comporents. In Section 1.2.1, three methods for
obtaining such jp2rameter estimatss from covglnent failure data are sum-
marized. :

2.3.2 The “umulative Marzinal Method

For a set of failure data from n comporents which are assumed %o be
desciribed by the sam® g.ama orior distributicn, one often encounters the
pretler of trying to dec s If the number pf failures for ode component
is abnormally high or ‘ov., e may reasonahly decide that (F® ,T®) is ar
outlier in a sample 9 size 1 if the pro7eldility of observing F® fail-
ures in test time 1% for at lecst one component is less than some prese-
lected value v, i.e.,

r
) . 4
PLER/T 2\t <y (2-34)

=z )

The value of v should be selected as either 2.0 <= 0.05 for the 99% or
953% confidence level, ra.npectively.

If the data are independent (983 is usu:ily assumed), this »quation
may be rewritten as

n 5
I—P{ A ¥ A7, < F*/T*} LY » (2-35)
1ot g -
n
n P{F,/T, < F*/T*} > 1 - y (2=36)
i "1 -
i=1
a ‘
I P{Fi < F*TX/T*} > 1= ¥ (2=37)
1=] '
Expressed in terms of the mrginal distribution, this last equation de-
comes
n '[F*Ti/r*}' ‘
n ) h(ES,,0.8) | 21 -7, (2-38)
i=1 | F=0

where [F#T,/T%]' is the largest inveger strictly less than FT,/T®. 1In
terms of the amulative marg/nal &istribution, Eq. (2-38) be expressed
as




n
131 HC[F*T, /T*]"3T,,0,8) 2 1 - v , (2-39)

where the cumulative marginal distribution is

F
H(F;T,2,8) = | h(i;T,a,8) . (2-40)
=0

To apply the above procedure to decide whether or not certain data
points are outliers, values of the prior parameters must first be ob-
tained. In this study, the gamma parameters alpha and tau were estimat-
ed from the entire set of failure data using one of the three estimation
methods summarized in Section 1.2.1 (the PMMM, MMMM, or MMLM). A varia-
tion of this method is to exclude the data which are suspected of being
outliers when estimating the gamma parameters. However, by making this
rhange, the number of type I errors will increase, and the number of
type II errors will decrease, i.e., HO will be rejected more often when
it should be accepted, and HO will be accepted less often when it should
be rejected.

This method can also be applied to failure/time data to determine
whether or not the smallest number of observed failures in a data set
are disproportionally small [2]. However, the testing for such lower
outliers is usually not of interest for failure data from components in
nuclear power plants.
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2.3.3 Binomial Method

If all the test times for a set of components are equal, an alterna-
tive method can be used to test for upper outliers. Assume there are k
suspected outliers in the data F, < F, < ... < A The probability of
having Fn Kk or fewer failures is 51ven by

F
p = Z“‘k h(1;T,2,8) = H(F _ ;T,a,8) , (2-41)
i=0

where h and H are the density and cumulati.e marginal distributions, re-
spectively. The probability of having n-k or more data points with F K
or fewer failures is thus given by

n
-1
P = L Dot aw™ . (2-42)
BT fen-k

Thus if P < 0.05 or 0.01 for the 95% or 99% confidence level, respec=-
tively, thekk upper failure values are labeled as outliers.

The above binomial method can also be used in conjunction with the
homogeneous model. In this case, the provbability of having F =k cr few=-
er failures is given by

Fn-k

where f is the Poisson distribution given by Eq. (1-1). The probability
obtained from this result is then substituted into Eq. (2-43) to deter-
mine whether or not discordant data are present,

2.3.4 Properties and Comparison of Tests

The properties and comparisons of the various tests are determined by
the use of power curves, However, the determination of the power curves
for both of the methods described in this section are complicated by the
need to use discrete failure/time data. Because of the need to deter=-
mine the power curves by a complete simulation (see Section 2.2.6), the
power curves presented in this =section have more uncertainty than those
derived for tests on the failure rates.

The one property that all of the power curves have in common is that
as the value of the prior gamma parameter tau increases, the powei' of
the tests decreases, i.,e., the power curve saturates at larger values of
K (see Fig. (2.5)). The reason for this behavior is that for n = 20,
T = 10,000 hr, and an average failure rate significantly less than
0.0001 per hour, data sets in which no failures are present appeared
frequently in the simulated failure data.
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Neither the cumulative marginal method nor the binomial method using
the compound model, with the outlier included in the gamma parameter
calculations, appear in any of the empirical power curves because, in no
instance, did either of these methods detect an outlier. The reason for
this lack of detection is that in data sets of size 20, an outlier will
distort the estimated values of the parameters of the prior distribution
to such an extent that it is not possible to detect the outlier.

The best method for detecting an outlier for 1 < alpha < 4 and
10 < tau < 4,000,000 (values for alpha and tau outside these ranges were
not studied in this work) is the cumulative marginal method with the
values of the prior parameters known (see Figs. (2.6) to (2.8)). Howev-
er, in general, the values of the prior parameters are not known and
thus, this method is not very practical.

The cumulative marginal method with the gamma parameters calculated
by the marginal matching moments method (MMMM) is a very poor method,
and should be used with caution for two reasons, First, for small values
of the gamma parameter tau, the actual confidence level is less than the
theoretical confidence level, e.g., at K=1 a good data point is labeled
an outlier more often than it should be (see Fig. (2.6)). And secondly,
for larger values of tau, the power of this method is lower than even
the simple homogeneous model (see Figs. (2.7) and (2.8)).

For smaller failure rates, i.e., » < 0.00005 per hour, and all test
times equal, the most powerful practical method of outlier detection is
the bincmial method used in conjuction with the homogeneous model (see
Fig. (2.8)). 1If all the test times are not equal, the most powerful
practical method is the cumulative marginal method with the gamma param-
eters estimated using the prior matching moments method (PMMM) without
using the potential outlier.

For larger failure rates, i.e. A > 0.00005 per hour, the most power-
ful practical method is the cumulative marginal method with the gamma
parameters calculated with the PMMM and without using the potential out-
lier.

Although the theoretical confidence level used in all calculations
was 95%, except for the cumulative marginal method with alpha and tau
calculated via the MMMM (without using the suspected outlier), the actu-
al confidence level was always greater than 95%. This can be seen by
noting that for K=1, the powers of the various methods are always below
0.05 (3ee Figs. (2.5) to (2.8)). However, since the actual confidence
levels® of the various tests are not equal, it may not be completely
fair to compare their powers in the above manner.

2 The probability of accepting HO (outlier and other data are from the
same distribution) is less than the critical level of significance

chosen @ priori.
- 31 =




-zs-

Single Qutlier

=
-

5

.~

=

t Detecting a
o

Protabmta (o)

Figure 2.5:

A‘r-ﬂ" "’z
%] —
/ e g ,/”"r—
tﬂij e _- —
e e
"y' -
P
/"’)
////’
. *1.25 x 10*
/,/ s 395 x 10
K o 1.25 x 10°

x 395 x 10°
® 125 x 10°

e
n=20
| | | N | | 1 B
100 150 200 250 300 350 400
K

The power of the cumulative marginal method for single
outlier detection for different tau values with alpha = 1.25



- £ -

v

5

(@]

_31.00 Cum. Marg. Meth. /,/,l—/"‘"

g . ((I&ﬁknuwn) e o
x (MMMM) o B /’:’},‘_

o / ’/Vﬁ

o0.75 O (PMMM) // A

2 / e )

O Binomial Meth. ',/V :, -

s & (Homogeneous Model) / ¥l e

@ O

00.50 / / //

- 7,/ ’

o ///* /

> ’ )

E »,,// (/ n =3 20

5()25 .,/'/ //

- :

L

8 X = x /,,/’:‘/ ﬂ’//

& - o

0 A iy ) Ll ~[“" ‘ | 1' A % > . A»t—ﬁl—“‘"”‘“f’— K
0 2 4 6 8 1 12 14 16

Ratio of the Mean of the OQutlier Dist. to the Mean of the Parent Dist.

Figure 2.6: Power of single outlier detection tests with alpha = 1.25
and tau = 12,500



-"E-

o
E
® bk Cum. Marg. Meth. ) ; A
o (X & Bknown) :
= x (MMMM) =
O -
w0.75| = (PMMM) P 5
g‘ Binomial Meth. Vs 0 0
P s (Homogeneous o AT
bt Model) iV d G-
®0.50 o P
(&) p, o
I ~ n=20
5 / A
o;: rd ,,/A/
’.:.025 '/‘ ‘1“
£ ‘ . A B
|\; " z ¥ el o
g . ’ [y Y - : ! ) g — "
. ‘) e "M m*’-.’;{ " . . I‘ 7 - l . l l jK
0 10 20 30 40 50 60 70 80

Ratio of the Mean of the Outher Dist. to the Mean of the Parent Dist.

Figure 2.7: Power of single cutlier detection tests with alpha = 1.25

and tau

= 125,000.



'SE'

®

SR Cum. Marg. Meth. |l W

o « XB& known) -

= x (MMMM) L

& O r

£0.75] " (PMMM) y

) Binomial Meth. /” e

o s (Homogeneous , ' A

= Model) I

=0 50 //// ///y/

o F

o ' n =20

D - —
/

% e

»0.25 H‘///i

= ,,/'/ Y 6 M

0 /‘/’ o &~

_g /,—5// [S U . g

o ol b oa o 4 o o) —fu——i——]

o 0 100 200 300 400 500 600 700

Ratio of the Mean of the OQutlier Dist. to the Mean of the Parent Dist.

Figure 2.8: Power of single outlier detection tests with alpha = 1.25

and tau = 1,250,000.



2.4 QUILIERS IN TIME-TO-FAILUFE DAIA

Often a basic premise of failure rate analyses is that the time-to-
failure data will be distributed according to an exponential distribu-
tion. Since an exponenetial distribution is a special case of the gamma
distribution, the methods for detecting outliers in an exponential dis-
tribution are similar to those used for the detection of outliers from a
gamma distribution.

For outlier detection, there is one major difference between time-to-
failure data and failure rate data (which are often assumed to be dis-
tributed according to a gamma distribution). Failure rate data for nu-
clear power plant components are usually assumed to contain no lower
outliers because the inherent failure rates are so low and the test
times are relatively short. That 1is, typical failure data reported in
the literature consist of only a few observed failures F (often zero
failures are reported) in the available test time T. Thus, it is impos-
sible to detect lower outliers which might be present in such data, and
so the assumption is made that no lower outliers are present. Time-to-
failure data, on the other hand, may contain data in which a component
failed either abnormally early or abnormally late, and thus lower, as
well as upper, outliers are to be expected.

2.4.1 Fasher's Method of Qutlier Letection

The foundation of Fisher's method for detecting outliers was dis-
cussed in Section 2.2.1. However, in that section it was applied to up-
per outliers only. For the case of lower outliers, the Fisher test sta-
tistic is defined by

k
Do Z %y (2-44)
i=1

where x; € X, € «os £ x are the observed time-to-failures, and k is the
number of outliers being tested for.

Tre critical values of the test statistic are found from the follow=-
ing equation:

PITF < tF} < PPy 500 iyq < el (2-45)

where n is the number of data points, k is the suspected number of out-
liers, and F,, 2 (n= k) is the F distribution with 2k« and 2(n-k)x de-
grees of freedod. before, P(TF<tF) is given the value 0.01 or 0.05
in order to obtain elther the 99% or 9%% confidence level, respectively.
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2.4.2 pixon's Method of Qutlier Detection

pixon [11] developed a method for detecting outliers in normal sam-
ples, and Likes [12] extended this method to exponential distributions.
Dixon's method, like Fisher's, is a hypothesis test. The null hypothe-
sis, HO, is that all data come from the same exponenetial distribution.
The alternative hypothesis, H1, is that a certain number of data points
k < n, come from a distribution different from the distribution describ-
ing the main body of the data.

The application of Dixon's method is similar to that of Fisher's, A
test statistic TD is evaluated from the data, and then the probability
of it being as large as it is is determined. The Dixon test statistic
is

D = (xg = xr)/(xq - xp) (2-46)

where X, < x; € ... < x, are the failure data, 1 {p<r<s<q<n,
and q=p > s-r. For the upper ocutlier case, the Dixon test statistic be-
comes

™= (x, = x )/ (x, =% ) (2-47)

where k is the number of upper outliers being tested for, and a is the
suspected number of lower outliers. For the lower outiier test, Dixon's
test statistic becomes

TD = (x4 = X0/ (% _p = %y) (2-48)

where k is the number of lower outliers being tested for and b is the
number of suspected upper outliers. The use of a and b will be dis-

cussed below.

The equation used to determine whether or not TD is too large is [8]

(n-p) .

1 - F(tD) = i3

(1 - tD)

‘{Q'S scr (-1)1+k(q-r-1)![(n-s+k)tD+(n:gf1)(l-tD)]-l

151 by DT T(a-s-1) T (s=r=1) ! (q=p=1) ! (m-s+k) (2-49)

rEp s-r (_I)Q‘5+J*k(s-rf171):[(n-s+k)tD+(n-r:j)(l-tD)]-l

s=1 kﬁl (3=-1) 7 (k=1) ! (r=-p=3) . (s-r-k) . (q=r+j-1) . (n=s+k) | °’

+

-3 =



where F(tD) is the probability that TD is less than tD, P(TD<tD). The
quantity TD is substituted for tD on the right hand side of Eq. (2-49),
and the value obtained for F(TD) is the percentage confidence which can
be used in labeling the suspicious data as outliers, Thus the critical
value of F(TD) is taken zas 0.95 if a 95% confidence level is desired.
Note that in the above result, if q=s, the first double sum is zero,
while if r=p the second double sum vanishes.

2.4.3 Determination of the Number of Qutliers

It is much more difficult in the exponential case than in the gamms
distribution case tc determine the number of outliers because both upper
and lower outliers are of concern., However, due to the simplicity of
the outlier tests themselves, this difficulty is not a major obstacle.

When the Fisher test statistic is used, the number of data points be-
ing tested as outliers is determined in a different manner than that
used in the gamma distribution case. The largest gap between consecu-
tive data points relative to the upper gap is located. Then, depending
upon whether this gap occurs above or below the wean value of the data,
either upper or lower outliers, respectively, are tested for.

A difference between the gamma and exponential cases also exists in
the criteria which are used to determine when the testing is complete.
The first criterion, which must be met before testing is complete, is
that both ends >f the data spectrum must have negative tests for outli-
ers, Even though taere might be a larger relactive gap between data in
the upper region of the data than in the lower region, and no upper out-
lier is found, a lower outlier could still be present. This is because
different distributions are uszed for the upper and lower regions to det-
ermine the critical values of TF. The second criterion which must be
satisfed, therefore, is that lowsr outliers do no!t swamp upper outliers,
and vice versa. Say, for example, that the upper region of a set of
data is tested for outliers, and that some are found. Then the lower
region is tested, and outliers are also found. In this case, the upper
region must be retested, because outliers there might have been swamped
by the lower outliers during the first test,

When the Dixon test statistic is used, the nuaxber of data points to
be tested as being outliers is also determined by using the method of
finding the largest relative gap in the data. However, due to its
greater flexibility, there are some extra steps in the test for outli-
ers. The greater flexibility of Dixon's method comes from the fact that
when the testing is being applied to find the upper outliers, it can be
taken into account that there might alsoc be lower outliers present and
vice versa, Thus, the effects of masking and swamping by outliers from
the opposite end of the data spectrum can be reduced.

The method used to take into account that outliers might be present

on the opposite end of the data spectrum is as fcllows, Suppose that
suspicious data on the upper end of the spectrum are being tested., The
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test is first applied assuming that no lower outliers are present, i.e.,
the value of a in Eq. (2-47) is givea the value of zero. If these data
are found to be discordant, they are labeled as outliers. However, if
they are not discordant, the testing on them continues. First, using
the gap method, the number of possible outliers is determined and be-
comes the value of a. This value of a is inserted into Eq. (2-47) and
the vest repeated. If the upper data are not found to be discordant
this time, then they are not outliers, and the testing on them is com-
plete, for the time being at least. If the upper data are found to be
discordant when potential lower outliers are present, then the potential
lower outliers must be tested for discordancy. This is done by using
Eq. (2-48) and assuming that there are no upper outliers, i.e., b 1is
given the value of zero. If the lower data are found to be discordant
by this method, hen both Lhe upper and the lower data are outliers. If
the lower dat: are not found to be discordant, then it is tested again
assuming that the upper data might be outliers, i.e., b is given the
value of the number of suspected upper outliers, If by this method, the
1ower data are found to be non-discordant, then pneither the upper nor
the lower data are discordant, and the testing is complete. If, on the
other hand, the lower data are found to be non-discordant by this meth-
od, then it is not known whether the upper and the lower data are dis-
cordant or both are non-discordant. 7Thus, to be conservetive, Lhey must
be assumed to be non-discordant and not labeled as outliers. The testing
is then complete.

when Dixon's method is used, masking from the opposite end of the
data is taken into account, and only one criterion need be met before
the testing ic complete. It is that both ends of the data must have un-
dergone testing for outliers with the resu) tos being negative,

2.4.4 Properties and Comparison of the Qutlier Tests

The power of the two tests for both upper and lower outliers show
very little variation as the value of the failure rate varies. In fact,
as the failure rate goes from 0.001 per hour to 10-7 per hour, the vari-
ation in the Fisher test is negligible (see Figs. (2.9) and (2.10)).

When upper outliers are being tested for, there is very little varia-
tion in the power of the tests as the number of data points in the data
set varies. From Fig. (2.11) it is seen that as the number of data
points varies from 10 to 30 there is insignificant variation in the pow-
er curves. However, when lower outliers are of interest, there is a
distinet variation in the power of the tests as the number of data
points changes. From Fig. (2.12) it 1is seen that as the size of the
data set increases, the power of the tests decrease, i.e., saturation
occurs at larger values of K.

From the studies performed during this study, it was found that Fish-
er's method of outlier detection is better than Dixon's method in every
case., For detecting upper outliers, the power of Fisher's method is, in
general, about 5% more powerful (see Fig. (2.13)). For detecting lower
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outliers, Fisher's method is substantially more powerful than Dixon's
method, although neither method is very powerful (see Fig. (2.14)).

As was the case for outlier detection in gamma distributions, the ac-
tual confidence level of detecting outliers was greater than 99% alt-
hough the level of the tests used was at the G5% level. This is shown
in Figs. (2.9) to (2.14) in which the power curves at K=1 or lnkK=0 are
below 0.01. However, since the actual confidence levels” of the various
tests are not equal, it may not be completely fair to compare the power
of the Fisher and Dixon tests in the above manner.

3 The probability of accepting HO (outlier and data are from the same
distribution) is less than the critical level of significance chosen g
priori. For example, a critical level of significance chosen as 0.05
(5% chance of incorrectly rejecting HO) led to power curves that indi-
cated that there was a much smaller chance than 5% of incorrectly re-
Jecting HO.
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2.5 SUMMARY OF CONCLUSIONS

For the detection of a single outlier in a gamma distribution, the
least desirable method is the integration method for two reasons.
First, the power of the integration method compared to the other availa-
ble methods is low. Second, the computations which are necessary to ap-
ply the integration method are extremely cumbersome. Fisher'S method of
outlier detection is much better than the integration method. Fowever,
when the value of the gamma alpha parameter is unknown (a situation of-
ten encountered in the analysis of failure data), the power of the Fish-
er method is substantially reduced. Surprisingly, the best method for
detecting outliers in a gamma distribution is the conversion-to-normal
method. In every case investigated, the normal conversion method was
the most powerful method for detecting a single outlier. The normal
conversion method is also attractive because of its simplicity, requir-
ing only the use of a hand calculator and a table of critical values of
the Grubbs test statistic.

For the detecticn of a single outlier in (F,T) data, the methods in
which the gamma parameters are estimated using the suspected outlier
fail completely. When there are only 20 data points per data set, an
outlier will distort the gamma parameter estimates to such an extent
that the outlier will not be detected. The cumulative marginal metnod,
with the gamma parameters estimated by the MMMM is a poor method, and
caution should be exercised in its use. This caution is necessary be-
cause for large failure rates, its actual confidence level is less than
its theoretical confidence level, while for smzller failure rates, Its
power is extremely low. For small failure rates, i.e., ) < 0.00005 per
hour, with T = 10,000 hr, and n=20, the most powerful practical method
of single outlier detection is the binomial method used in conjuction
with the homogeneous failure model. For larger failure rates, i.e.,

> 0.00005 per hour, the most powerful practical method is the cumul 3=
tive marginal method with the gamma parameters estimated by the PMMM
without using the suspected outlier. This method is also the best meth-
od for detecting outliers when A < 0,00005 per hour and all the test
times are not equal.

For the detection of a single outlier in the exponential distribu-
tion, Fisher'S method is the best. It is approximately 5% more powerful
than Dixon's method for detecting an upper outlier, and much more power=-
ful for detecting a single lower outlier.

One property of all the recommended methods of outlier detection in
the above cases is that when the tests are peformed for a theoretical
confidence level of 95%, the actual confidence level is well above 99%.
Thus the theoretical confidence level is seen to be conservative.
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Chapter 3

PROPERTIES OF PRIOR ESTIMATION TECHNIQUES IN BAYESIAN
ANALYSES

3.1 INTRODUCTION

To use the compound failure model in the analysis of failure rate
data, the prior distribution describing the variation of the failure
ratea for a given set of components must be completely known, i.e., both
the function family and its parameter values must be specified. Several
procedures can be used to determine the prior distribution. One of the
most widely used techniques is to assume the prior distribution belongs
to a particular family of distributions and then %o estimate appropriate
values for the distribution parameters. In most applications of the
compound model for analyzing failure rate data, a gamma distribution is
choser to represent the prior distribution, mainly because of the ana-
lytical simplicity of the subscquent analysis.

After the functional form of the prior distribution has been select-
ed, values for the prior parameters must be determined. Although many
techniques have heen used for parameter estimation in Bayesian aralyces,
the methods investigated in this study are based on analyses of chs2~vea
failure data for the components under consideration. In particular, tre
prior parameters are estimated by the following three methods [2]: (1)
matching data moments to those of the prior distribution (PMMM), (2)
matching data moments to those of the marginal distribution (MMMM), and
(3) the maximum likelihood method applied to the marginal distribution
(MMLM) .

Once the prior distribution is determined, the compound or Bayesian
failure model can be used to make predictions about failures of the com=-
ponents under investigation. However, the above procedure for determin-
ing the prior distribution for a given group of components inveolves two
major assumptions which may affect the subsequent analyses. First, the
effect of choosing the conjugate family to represent the prior distribu-~
tion is generally unknown, and secondly the properties of the estimators
for the prior parameters are generally unknown. The principal emphasis
of this phase of the project was to investigate both of these questions
for the failure rate problem.

Besides the gamma distribution, several other families of distribu-
tions are reasonable alternatives for representing the prior distribu-
tion. In this study, four families of distribution, namely, gamma, Wei-
bull, lognormal and logbeta, were used as possible prior distributions.
For each distribution family, the prior parameters are estimated from
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given component failure data by three methods (PMMM, MMMM and MMLM).
From this study, it was then possible to determine the effect of the
prior family selection and the parameter estimation techniques on the
compound failure model.

3.2 PROPERTIES OF THE PARAMETER ESTIMATORS

Because the gamma-Poisson failure model is widely used to describe
the failure rate problem, the first part of this study was directed at
determining the properties of various parameter estimation schemes. To
investigate the properties of the parameter estimators, simulated fail-
ure data were generated from a marginal distribution whose functional
form and parameter values are known. These simulated failure data were
then grouped into samples of various sizes, and estimates of the prior
parameters were obtained by each of the three estimation methods for
each sample. With these estimates, the distributions of the estimators
were obtained empirically. From these eapirical distributions, the
properties of the estimators for each of the three estimation methods
were determined.

The generation of simulated fallure data from a known marginal dis-
tribution anc the subsequent data analysis can be performed in many ways
by using different functiona for the marginal and prior distributions.
In this section, the results obtained for simulated failure data from a
known conjugate gamma-Poisson mcdel are described, Further, a gamma~
Poisson model was then fitted %o these simulatea data by the three pa-
rameter estimation techniques (PMMM, MMM and MMLM). Results for data
from non-conjugate models and/or subsequent analysis by non-conjugate
models are presented in later secticns of this chapter.

The technique used to generate failure data which are distributed ac-
cording to a given marginal distributicn is described in Section 1.3 of
this report. In the generation of simulated failure data from a known
marginal distribution, the component test time T was always held cons-
tant at a specified value. The simulated data thus consisted of the
number of failures of a component which has been operated for a time T
and which belongs to a class described by the marginal distribution.

3.2.1 Gamma-Poisson Analysis of Gamma-Poisson Data: Jet 1

Since this study was concerned primarily with components character-
ized by low failure rates, the gamma-Poisson marginal distribution used
to generate the first set of simulated failure data (Set 1) was that of
Eq. (1.3) with parameter values selected as alpha=1.2 and tau=100,000.
With these parameter values, the mean, standard deviation and 95-th per-
centile of the assumed gamma prior distribution are 0.12(-4),” 0.109(-4)

4 read 0.12(-4) as 0.12 times 10 to the -4 power, i.e., 0.000012.

- 49 -



and 0.337(-4) per hour, respectively. The component operation time T
was taken as 50,000 hours (almost 6 years). The simulated failure data
generated in this manner are characteristic of components whose failure
rate distribution is a gamma distribution and which can be expected to
fail , on the average, approximately 1 time in 9 years of operation.

With this gamma-Poisson marginal distribution, simulated failure data
were generated by the method discussed in Section 1.3. A total of
10,000 values of component failures F; were generated, and these failure
data were then grouped into sets with four sample sizes, namely, 5, 10,
20 and 50 components. In all, there were 2,000, 1,000, 500 and 200 data
sets of sample sizes 5, 10, 20 and 50, respectively. For these simu~-
lated failure data, estimates of the parameters alpha and tau of the
gamma prior distribution were calculated by each or the three estimation
methods summarized in Section 1.2.1 and discussed in detail in Ref. [1].

3.2.1.1 Ability of Estimation Methods to Yield Estimators

The three prior parameter estimation techniques, (MMMM, PMMM and
MMLM) each failed for some of the failure data sets. The MMMM would uec-
casionally yield unrealistic negative estimators for the prior param-
ters, while the MMLM would sometimes fail to find estimators, and at
sther times produce values that were more than 100 times the true val-
ues., The PMMM failed only when all failures in a sample were zero -- a
not infrequent possibility for the particular gamma-Poisson model used
to generate the data for this cave. 1In fact, when the sample consisted
of only zerc failures. none of the methods yielded parameter estimates.
In Table 3.1 a summary is presented which shows the frequency with which
the three estimaticn methods yielded valid parameter estimators, Am.ng

e three estimaticn techniques, the PMMM a ways had the highest percen-
tage success, ranging from 913 to 100%. For sample size greater than
20, this simple estimation method always worked. The two marginal-based
methods had almost identical percentages of success ranging from 39% Lo
91% for samples of size 5 to 50. It is not completely clear why these
marginal methods failed for certain samples (besides the case of all
zero failures), although from Eq. (1-9) the MMMM fuils whenever the term
in square brackets is less than or equal to zero.

3.2.1.2 Distribution of Prior Parameter Estimators

The empirical frequency distributions of the estimators were con-
structed from the successful results for 2all three estimation methods.
Typical results are shown in Fig. 3.1 and Fig. 3.2. The distribution of
estimators for data set 1 is seen to be quite "spikey"™ although it is
concentrated around the true parameter values. The reason for the
spiked nature of these distributions is that for the narticular gamma-
Poisson distribution used to generate the failure data, only a few dif-
ferent samples (i.e., with different values of F) are likely and hence
only a few different values for the prior parameter estimates are found.
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TABLE 3.1

Abilily of Estimators to Yield Valid Estimates: Data Set 1

Sample No. of $ of Unreasonable
Method Size  Successful Success Large
Solutions(a) Solutions(b)
PMMM 5 1814 (2000) 90.7 -
PMMM 10 991 (1000) 99.1 -
PMMM 20 500 (500) 100.0 -
PMMM 50 200 (200) 100.0 -
MMMM 5 786 (2000) 39.3 61
MMMM 10 597 (1000) 59.7 75
MMMM 20 396 (500) 79.2 -
MMMM 50 183 (200) 91.5 -
MMLM 5 777 (2000) 38.8 -
MMLM 10 547 (1000) 54.7 -
MMLM 20 363 (500) 72.6 -
MMLM 50 180 (200) 90.0 -

(a) Numbers in the parentheses are total number of samples.
(b) Estimates were greater than 100 times true values.

More interesting is the appearance of inordinately large estimates
produced by the marginal-based methods. For the MMMM estimators, these
large estimators arise from samples for which the term in square brack-
ets in Eq. (1-9) is very small. Upon examination of the results for
samples of size 5, these inordinately large estimates were found to be
generated from only two types of data sets -- (2,2,1,0,0) and
(3,1,1,1,0) == but with the failures occurring in different ordiers. For
samples of size 10, the marginal matching moments method yields 75 ex-
trodinarily large estimators all of which came from the same data set
(2,1,1,1,0,0,0,0,0,0). The MMMM alpha estimators for these three data
sets are 3.87(15), 2.23(15) and 1.55(16) respectively, while the tau es-
timates are 1.93(20), 9.28(19) and 1.55(21), respectively. These values
are obviously too large to be reasonable estimates of the prior parame-
ters alpha and tau whose actual values are 1.2 and 100,000. However,
these estimates of alpha and tau still give estimates of the mean of the
gamma prior distribution as 0.20(-4), 0.24(~4) and 0.10(-4) each of
which is very close to the actual value, 0.12(-4).

These estimates of alpha and tau are so large that, if included in
the subsequent analyses, any values of statistics calculated from these
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estimates would be unduly influenced by them. For example, the mean of
the alpha estimates for samples of size 5 reduces from 9.0(14) to 1.4
when the 61 very large estimates are removed from the analysis. In this
study, estimates which are 100 times greater than the true values are
considered invalid solutions and are not included in the computation of
any statistics exceot when indicated otherwise, Since 100 times the
true parameter value was used as the boundary of the numerical solution
space for the MMLM, all successful MMLM solutions are within the speci-
fied boundary and inordinately large parameter estimates were thus clas-
sified as "no solution”.

The distributions of estimators for the PMMM also show a slight addi-
tional peak at the high parameter end of the distributions, but only for
sample size 5. Most estimates center around the lower side of the true
parameter values for all sample sizes., In other words, the mean of the
distributions of the alpha and tau estimators are smaller than the true
values.

3.2.1.3 Mean and Standard Deviation of the Estimators

The means of the parameter estimates are presented in Tables 3.2 and
3.3, The means of the PMMM parameter estimators are always smaliler
than the true values for this set of failure data. On the other hand,
those from the two marginal-bassd estimation methods are almost always
greater than the true values.

While the mean is an important parameter of a distribution because it
indicates where the central part of a distribution is located, it alone
usually does not give enough informaticn to provide an adequate descrip-
tion of the distribution. Another measure is needed to indicate how
spread out or dispersed the distribution is. One commonly used measure
of dispersion is the standard deviation. The standard deviations of the
distributions of alpha and tau estimators are also shown in Tables 3.2
and 3.,3. For a given sample =ize, the minimum standard deviation was
always obtained for the PMMM estimators.

3.2.1.4 Bias of Estimators

One criterion for a good estimator is how close the average value of
the estimator comes to the parameter being estimated, It is desirable
to have the mean of the estimator distribution equal the true parameter
value. If this is the case, the estimator is called an unbjased estima-
tor. When the estimator mean does not equal the true value, the estima-
tor is said to contain a pbjas, and the estimator is said to be a biased
estimator. The magnitude of bias is defined to be the difference bet-
ween the true value and the mean value of the estimate.

The variation of the bias of alpha and tau estimates with sample size
is shown in Fig. 3.3. All estimates of alpha and tau from the three
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TABLE 3.2

Mean, st-ndard deviation and square root of the mean square error of the
alpha estimator for data set 1

Method Sample Mean Standardc Sq. Root
Size Deviation of MSE
PMMM 5 6us 616 .828
PMMM 10 .509 311 .758
PMMM 20 A5¢& .186 165
PMMM 50 429 122 781
MMMM 5 1.40 1.42 1.43
MMMM 10 2.19 3.57 3.70
MMMM 20 3.06 6.02 6.29
MMMM 50 2.24 3.36 3.5
MMLM - 2.55 2.66 2.98
MMLM 10 1.62 2.14 2.18
MMLM 20 2.19 k.42 4.53
MMLM £0 2.16 3.89 §.00

estimation methods are found to be biased for all sample sizes used in
this study. Tne PMMM estimates of alpha and tau for sample size 5 have
the least bias of all estimates, However, all ostimates from the PMMM
have regative bias and the magnitude of the bias increases slightly as
the sawple size increases. In contrast, the marginal-based estimators
almost always have positive bias. However, the bias shows no specific
pattern of variation with sample size. This lack of a trend in the bias
with sample size arises from the peculiarities of the data set used.
For data set 1 the components have a very low failure rate, and for the
test time chosen (T=50,000) most simulated failures were zero or unity.
This limitation on the number of different failures results in only a
few different parameter estimates being obtained. For such spikey esti-
mator distributions (see Figures 3.1 and 3.2), no trends with sample
size are apparent.

3.2.1.5 Mean Squared Error of Estimators

Betweea two unbiased estimitors, the estimator witi a smaller stan-
dard deviation (or smaller variance) is the better estimator. However
for biased estimators, the mean squared error is normally used in such a
compariscr rathar than the standard deviation . The magnitudes of both

- 55 =



TABLE 3.3

Mean, standard deviation and square root of the mean square error of the
tau estimator for data set )

Method Sample Standard 3q. Root
Deviation of MSE
PMIMM 5 0.507(+5) 0.300(+%; 0.576(+5)
PMAM 10 0.443(+5) 0.202(+5) 0.592(+5)
PMMM 20 0.396(+5) 0.144(+5) 0.21(+5)
MMM 50 0.360(+5) 0.050(+5) 0.646(+5)
MMMM 5 0.847(+5) 0.561(+5) 0.581(+5)
MMMM 10 1.48 (+5) 1.80 (+5) 1.87 (+5)
MMM 20 2.53 (+5) 4.59 (+5) 4.34 (+5)
MMMM 50 1.93 (+56) 3.02 (+5) 3.15 {+5)
MMLM 5 1.68 (+5) 1.73 (+5) 1.5¢ (+5)
MMLM 10 1.28 (+5) 1.32 (+5) 1.35 (+5)
L_ MMLM 50 1.87 (+5) 3.56 (45) 3.66 (+5)

the bpias and the variance of an estimate are included in the mean
squared error (MSE) which is defined as

MSE'-];
n

t~13
~~
D
i
D
S

. v (3-1)
gy 1
where © i35 the paraneter being estimated.

Very often the standard deviavion is used in place of the variance
because the standard deviation has the came units as the mean of the
distribution. For the same reason, the square root of asean squared er-
ror is »sed instead of mean squaired error itself.

Presented in Fig. 3.4 are the variaftion of square root of the mean
square error of alpha and tau estimators as a function of the sample
size. As with the bias, there appears to be a smooth variation of the
MSE with sample size only for the PMMM estimators., The wild variation
of the MSE for the marginal-based estimators is i« peculiarity of the
data set (see the discussion in Sesction 2.2.1.4 above)., T7ae MSE of the
PMMM esiimators changes very slightly as the sample siz: chinges. More-
over, for all sample sizes, the F¥4MM ~stimators have the suallest MSE.
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3.2.1.6 Median of Estimators

The median is another widely used measure of a distribution's central
location and is less sensitive to the tail of the distribution than is
the mean. The very large estimates obtained from the MMMM method have
less effect on the value of the median than that of the mean. The vari-
ation of the median of the alpha and tau estimates with sample size are
shown in Fig. 3.5. Medians of the PMMM estimators show a similar varia-
tion with sample size to that of the bias shown in Fig. 3.3. However,
for all sample sizes, the medians of the marginal-based estimators come
closer to the true parameter values than those from the PMMM.

3.2.1.7 Mean and Standard Deviation of the Estimated Gamma Prior
Distribution

“rom each pair of alpha and tau estimates, the mean and standard de~
viation of the resulting prior gamma distribution were computed. If all
three estimation methods yield valid parameter estimates, the means of
the estimated gamma prior distribution should be the same. But in prac-
tice, not all data samples give valid parameter estimates by all three
methods for the same failure data. Shown in Table 3.4 are the mean,
standard deviation, and square root of the MSE for the mean of the gamma
distribution obtained from the parameter estimators. The variation with
sample size of the average of the means of the estimated gamma prior
distributions are shown in Fig. 3.6. A3 would be expected, the average
of the means approach the true value as the sample size increases for
all three estimation methods. However, the PMMM estimates are the clo-
sest to the true value for all sample sizes.

Table 3.5 and Fig. 3.7 show the averages of the standard deviation of
the estimated gamma distributions. The results from the MMMM and MMLM
analyses approach the true value as the sample size increases, but the

PMMM results diverge.
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Mean, standard deviation and square root of the MSE of the estimated

TABLE 3.4

prior mean for data set 1

Method Sample Mean Standard 5q. Root
Size Deviation of MSE
PMMM 5 1.34(=5) 0.818(=5) 0.829(=5)
PMMM 10 1.22(=5) 0.601(=5) 0.601(=5)
PMMM 20 1.21(=5) 0.423(=5) 0.422(-5)
PMMM 50 1.21(=5) 0.287(=5) 0.287(=5)
MMMM 5 1.71(=5) 0.813(=5) 0.960(=5)
MMMM 10 1.41(=5) 0.602(-5) 0.637(=5)
MMMM 20 1.27(=5) 0.422(-5) 0.428(=5)
MMMM 50 1.23(=5) 0.288(-5) 0.288(-5)
MMLM 5 1.69(=5) 0.785(=5) 0.925(=5)
MMLM 10 1.36(=5) 0.604(=5) 0.626(=5)
MMLM 20 1.28(=5) 0.431(-5) 0.438(-5)
MMLM 50 1.23(=5) 0.288(-5) 0.289(-5)
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TABLE 3.5

Mean, standard deviation and square root of the MSE for estimated prior
standard deviation for set 1

Method Sample Mean Standard Sq. Root
Size Deviation of MSE
PMMM 5 1.77(=5) 0.915(=5) 1.14 (=5)
PMMM 10 1.77(=5) 0.734(=5) 0.998(=5)
PMMM 20 1.83(=5) 0.556(=5) 0.920(=5)
PMMM 50 1.87(=5) 0.373(=5) 0.860(-5)
MMMM 5 1.70(=5) 0.890(-5) 1.08 (=5)
MMMM 10 1.33(=5) 0.716(=5) 0.754(=5)
MMMM 20 1.14(=5) 0.594(=5) 0.594(-5)
MMMM 50 1.08(=5) 0.432(=5) 0.432(=5)
MMLM 5 1.7T4(=5) 1.26 (=5) 1.42 (=5)
MMLM 10 1.48(-5) 0.839(=5) 0.920(=5)
MMLM 20 1.25(=5) 0.616(=5) 0.635(=5)
MMLM 50 1.11(=5) 0.451(=5) 0.451(=5)
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3,2.1.8 Estimated Percentiles of the Gamma Prior Distribution

Of considerable interest in safety analysis is the failure rate dis-
tribution for high failure rates. One widely used measure of the high
probability tail is the 95-th percentile, i.e.,, the failure rate above
which there is only a 5 3% chance that the true failure rate of a compo-
nent lies, From each pair of alpha and tau estimates, the 95-th percen-
tile of the estimated gamma prior distribution was computed.

In Fig. 3.8, the variation of the mean of these 95-th percentile es-
timates is shown as a function of sample size., The results of Fig. 3.8
show characteristics similar to the variation with sample size of the
mean of the standard deviation of the estimated gamma distribution (see
Fig. 3.7). The means of the MMMM and MMLM percentiles seem to be very
similar, and both tend to approach the true value as the sample size in-
creases. For sample size 50, the percentile estimates are almost exact.
By contrast, the mean of the PMMM percentile estimator shows little var-
iation with sample size -- a property earlier observed for the PMMM bias
and MSE.
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Figure 3.8: Mean of the 95-th percentiles of the estimated gamma
distributions for data set 1
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3.2.2 Gamma-Poisson Analysis of Gamma-Polsson Data: Jet 2

The results shown in the previous section for the simulated date set
1 were obtained from simulated failure data based on a prior gamma dis-
tribution which has a mode. To determine whether or not the shape of
the prior distribution has any effect on the parameter estimators, the
same analysis was repeated with another set of simulated failure data.
For the results presented in this section, failure data were simulated
from a gamma~-Poisson marginal distribution with alpha=0.3, tau=25000 and
T=50000 hours. The prior gamma distribution of this data set has the
same mean, but has twice as large a standard deviation as that of the
previous data set. Specifically, the mean and the standard deviation of
the prior gamma distribution are 0.12(-4) and 0.219(-4), respectively.
The shape of this gamma prior distribution resembles a negative exponen=-
tial. The failure data simulated in this section represents those which
would be observed during approximately six years of operation from com=-
ponents whose failure rate distribution is a gamma distribution, and
whose expected number of failure is the same as that for cata set no. 1
(i,e., 1 failure in nine operating years).

Although this set of failure data were simulated based on the prior
distribution whose shape is different from that of data set no. 1, the
characteristics of this failure data set are very similar to those of
the previous data set, namely, the majority of failures is still zero or
unity. However, since the standard deviation of the prior distribution
of this data set is twice as large as that of previous data set, more
failures greater than one (e.g., as large as seven) were obtained.

It was found that (see Table 3.6) the percentage of successful param-
eter estimation by the PMMM was reduced compared to results for the
first data set. This reduction is a direct effect of a higher probabil-
ity of observing zero failures in data set no. 2 (0.719) compared to
0.615 in data set no. 1 so that more samples with all zero failures were
obtained. On the other hand, the degree of success of the other two es-
timation methods improved significantly by about 20% to 10§ from samples
of size 5 to 50 as a result of the greater variation of the failure data
in a sample.

As with the first data set, inordinately large estimates of the prior
parameters from the MMMM still appeared in this data set, but now only
18 such estimates were observed for samples of size 5. Sixteen out of
these 18 estimates were found to be generated from the same sample as
that which caused the inordinately large estimates for data set no. 1
(namely, 2,2,1,0,0). The other three large estimates were obtained from
(2,2,2,0,0) and (4,3,2,2,0). For samples of size 10, all 16 MMMM ex-
traodinarily large estimates were computed from the set
(2,1,1,1,0,0,0,0,0,0) which is also the only sample that yielded ex-
traordinarily large prior parameter estimates in data set no. 1.
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TABLE 3.6

Percentage of successful estimates for data set 2

Sample No. of % of Unreasonably
Method Size  Successful Success Large
Solutions(a) Solutions(b)

5 1615 (2000) 80
10 965 (1000) 96
20 499 (500) 99
50 200 (200) 100

- 980 (2000) 49.0 18
10 756 (1000) 75.0 16
20 463 (500) 92.6 1
50 199 (200) 99.5

5 975 (2000) 4
10 743 (1000) Th.
20 461 (500) 9
50 199 (200) 9

GRER ERER EEES

n

.
VTRNwWw -3

]

9.

(a) Numbers in the parentheses are total number of samples.
(b) Estimates were greater than 100 times true values.

The spikey nature of the distributions of prior parameter estimators
previously obtaired from the estimation methods based on the marginal
distribution are also evident for this data set. Surprisingly, for sam-
ples of size 5, the spikes of both marginal-based estimation methods oc~
curred at the same locations as those of data set no. 1 although with a
smaller amplitude. Since the values of the prior parameters of this
data set are smaller, the estimator distributions for all three estima-
tion methods shifted slightly to the left towards the smaller side of
the distribution.

The bias of aipha and tau estimators is shown in Fig. 3.9. The vari-
ations with sample size of the bias for the MMM and MML methods are
again irregular, although both methods give positively biased estimates.
Only the bias of the alpha and tau estimators for the PMM method changes
from positive bias tc negative bias in a smooth manner as the sample
size increases. The unbiased estimates of both alpha and tau are ob-
served from PMM method at sample size between 20 and 50.
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The same results, as were obtained with the first simulated data set,
are obtained for the square root of MSE of the alpha and tau estimates
as 1s shown in Fig. 3.10. The PMM method yields the smallest MSE of the
alpha and tau estimates for all sample sizes. The MSE of alpha and tau
estimates obtained from the twe marginal-based estimation methods still
changes irregularly as the sample size changes.

Figure 3.11 shows the variation with sample size of the means of the
95-th percentiles of the estimated gamma distribution. This figure pre-
sents only slightly different results from those for data set 1 (see
Fig. 3.8), i.e., the variation of the percentile estimates with sample
size has the same trend although the magnitude of the estimates are re-
duced somewhat., The estimates from the MMMM and MMLM are smaller than
the true percentile value for sample sizes 20 and 50 but larger for the
two smaller sample sizes.

- 10 »



Inverse Sample Size

Figure 3.4:

3.0f . , i -
« PMMM
° MMMM ?,
o MMLM
1. 2.0l
(@)
w
® >
] 2 £
e~ 0 4 0
i - y
5 1.0 ;;' o
1 /
d f
s | J
© *
% %
o.oL> N . L L
0.0 0.05 0.15 0.20

Sq. Root Of MSE Of T (x10°)

T T T T
_PMMM
o MMMM |
2 MMLM P
1.5 r
\\\ y
1.0 ¥
.
0.5
»
~
»
0.0l .

0.0 0.05 0.10

0.15 0.20

Inverse Sample Size

Square root of the MSE of the alpha and tau estimators for data set Z

2




80 T Y o | \ e
. PMMM
o MMMM /
7.5 A MMLM
7.0 : r 4
T
% 6.5
v.n /,
[+)) ,’ X
< 6.0} = I -
‘\*‘ .
- Y/'/
E
5.5 A 7
[ o S
5.0 s : > .
0.00 0.05 0.10 0.15 0.20

Inverse Sample Size

Mean of the 95-th percentiles of the estimated gamma

)

distributions for data set 2.

Figure 3.11:

~
ro
|



3.2.3 Gamma-Poisson Analysis of Gamma-Polsson Data: Jet 3

In an earlier study on the failure-on-demand problem [13], it was
found that the prior matching moments method was better than the margin-
al matching moments and marginal maximum likelihood methods for data
samples of size 5 to 50 in terms of the least biasedness, the least mean
squared error of prior parameter estimates, and the most conservative
estimates of the 95-th percentile of the estimated prior distributions,

In order to compare the results obtained in this study to those of
the earlier failure-on-demand study, a third set of failure data was
simulated from a gamma-Poisson marg.nal distribution with the same prior
parameters as were used in the first analysis (Set 1) but with the ob-
served time T increased to 1,000,000 hours so as to raise the mean num-
ber of observed failures from 0.6 to 12 . 1In this manner the majority
of simulated failure data no longer consisted of zero or one failures,
and a far greater variation in the failures in the samples was achieved.
As a consequence, the distributions of prior parameter estimators ob-
tained from these data were smooth with none of the spikes obtained with
the previous two data sets.

The results obtained from this set of failure data (data set no. 3)
match rather closely those obtained for the failure-on-demand case [13],
even in terms of percentage of successful estimation of the prioi param-
eters. The parameter estimators from the PMMM for all sample sizes and
those r'rom the MMMM and the MMLM for samples of size 20 and 50 have .00%
success. Both marginal-based estimation methods yield 99.9% success for
samples of size 10 and about 97% for samples of size 5 . The success of
all three methods is dramatically improved by using data samples with
more than just zero or one failure for each component.

The bias of the alpha and tau estimators as a function of sample size
is shown in Fig. 3.12. All estimates from the three estimation methods
have positive bias (except for the parameter estimates obtained from the
PMMM for samples of size 50 which are only slightly underestimated). As
the sample size increases, the bias for all estimation method decreases
and approaches zero. Although the PMMM estimates change from positive
bias to negative at about sample size 50, this method gives the least
biased estimates for all sample sizes considered.

Presented in Fig. 3.13 are variations with sample size of the square
root of the MSE of the alpha and tau estimators. The square root of the
MSE of the parameter estimates for all methods decreases, as expected,
with increasing sample size. The MMLM estimates have a larger MSE than
those from the MMMM for samples of size 5 and 10, but have smaller val-
ues for samples of size 20 and 50. The PMM method also has the smallest
MSE for all sample sizes, although for samples of size 50, all three
methods give almost the same results.

The mean of the 95-th percentiles of the estimated prior distributons
as a function of sample size are presented in Fig. 3.14. The MMMM and
MMLM percentile estimates are underestimated for all sample sizes. Es~
timates from the PMMM are also underestimated for samples of size 5 and
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10, but overestimated for samp’es of siz2 20 and 50 . For all sample
sizes, except size 50, the PMMM yields percentile estimates closest to
the true value, It should be noticed that even though at sample size
50, the MMLM estimate is closest to the true value, it is not a conser-
vative estimate from the point of view of safety analyses for which
failure rates should ideilly be overestimated.
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3.3 CONJUGATE ANALXSLS OF NON-CONJUGATE FAILURE DATA

Many different distribution families can be used to describe the pri-
or distribution of failure rates for a given set of components. Howev-
er, using any distri‘bution other than the conjugate gamma distribution
presents major difficiicies in obtaining numerical results from the com-
pound failure model. Almost all computational steps in an analysis with
a non-conjugate prior distribution require numerical methods which are
time-consuming and often complicated to program [2]. Therefore, it is
of interest to determine how well the conjugate gamma distribution can
be used tc approximate non-conjugate distributions in a compound failure
model .

In this section, failure data were generated from Weibull-Poisson,
lognormal-Poisson and logbeta-Poisson marginal distributions with known
parameters, These failure data were then analyzed by the conjugate gam-
ma-Poisson failure model and the results of the estimated gamma prior
distribution were then compared to the actual non-conjugate prior dis-
tributions.

3.3.1 Non-Conjugate Compound Fallure Models

A compound failure model is called non-conjugate if a distribution
besides a gamma distribution is used to describe the prior distributicn
of the components' failure rates., Three families of distributions (the
Weibull, lognormal and logbeta) were selected as non-conjugate prior
distributions for this study. The Weibull and lognormal distributions
have two shape parameters and one range (or shift) parameter, while the
logbeta distribution has two shape parameters and two range parameters.
In this study, the range parameters of these distributions were assumed
to be known to simplify the parameter estimation process. Therefore
only the two shape parameters of each distribution had to be estimated
from the samples of simulated failure data.

3.3.1.1 Non-Conjugate Prior Families

Explicit expressions for the three non-conjugate prior distributions
are presented in this section.

(a) Weibull Distribution:
f )

.y B-1 )
X-v] exp[-[—a—'] ] , a,8 >0 , 8 _>.0 (3=2)

a
g(1;a,B8,0) = 'E[T

where =« and £ are the "scale" and "shape" parameters, respectively,
and ¢ is a "shift"™ parameter (assumed known -- usually set to zero).
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(b) Lognormal Distribution:

g(3;a,8,8) = [(A-8) vZ78]™' exp(-(In(1-8)-a)%/28%], i

-mcgew , 8>0, 8>0

where 1 and ¢ are the shape parameters, and ¢ is a "shift" parameter
(assumed to be known -- usually set to zero).

(c) Logbeta Distribution:

I'(a+R)

g();a,B,a,b) = NORO] (b-a)l-a-6

(Tma-a)*"h (o-1nn) 1
(3-4)

a,8 >0 ,ea<)\<eb

where © and ¢ are the "shape" parameters, and a and b are the "range"
parameters which are assumed known in this study.

The non-conjugate prior distributions can be combined with the Pois-
son likelihood distribution to obtain the non-conjugate marginal distri-
bution as shown by Eq. (1-3). However, numerical techniques, often
quite elaborate, must be used to evaluate the integral in Eq. (1-3), and
thus such compound non-conjugate failure models are rather cumbersome
for routine analyses.,

3.3.1.2 Parameter Estimation of Non-Conjugate Compound Failure Models

The prior parameter estimation techniques, employed in the conjugate
compound failure model (i.e., PMMM, MMMM, and MMLM), can also be used
for the non-conjugate models. The details of the parameter estimation
methods for individual non-conjugate compound failure models can be
found in Ref=. [2] and [14].

3.3.2 Results of Using a Conjugate Model to Analyze Data from Non-
Conjugate Models

A total of 500 failure data were simulated from each of the three
non-conjugate distributions, and these data were then grouped into 25
sets of samples of size 20. Parameter values for the three non-conju-
gate prior distributions were chosen so that the prior means and stan-
dard deviations were the same as those of the gamma distribution used in
Section 3.2.1 . Specifically, the parameters alpha and beta for the
wWeibull distribution are 0.12(-4) and 1.096; for the lognormal distribu-
tion they are -11.634 and 0.778 and for the logbeta distribution they
are 281.6 and 140.4. The observed component test time was taken as
50,000 hours.

From the gamma parameters estimated by the PMMM, MMMM and MMLM from
the simulated non-conjugate failure data, various characteristics of the
resulting gamma distributions (i.e., those defined by the estimated pri-
or parameters) were compared to the same characteristics of the known
non-conjugate prior distributions. These comparisons are summarized in
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Tables 3.7, 3.8 and 3.9 for failure data obtained from the known
Weibull-Poisson, lognormal-Poisson and logbeta-Poisson marginal distri-
butions, respectively.

The results obtained from using the ganma-Poisson model to analyze
failure data simulated from ron-conjugate failure models often matched
reasonably well with the actual values. As will be seen in the next
section, even when the correct models are used to analyze these same
sets of simulated failure data, perfect agreement is still not obtained.
Furthermore, in some cases, the approximate model (i.e., the gamma-Pois-
son model) even yielded parameter estimators closer to the actual values
than did the correct models. Thus, for practical purposes, the gamma-
Poisson model should be regarded as a very good model for analyzing
failure data even though the data are believed to come from another
failure distributon.



TABLE 3.7

Results of a gamma-Poisson analysis of data from a Weibull-Poisson

distribution
Parameter Method Mean Standard Sq. Root Bias
& True Value Deviation of MSE
mean PMMM 1.20(=5) .397(-5) .389(=5) .004(=-5)
1.20(=5) MMMM 1.25(-5) .395(-5) .388(=5) .053(~5)
atandard M 1.81(-5) .396(‘5) 086)‘(-5) 071“(-5)
deviation MMMM 1.10(=5) .568(=5) .553(=5) .004(=5)
1.10("5) m 1039(-5) 0568(-5) 0623(-5) 1029(-5)
S5=th PMMM .009(=5) .015(=5) .075(=5) =.0T4(=5)
percentile  MMMM .235(=5) .352(-5) .375(=5) .152(-5)
.083(=5) MMLM L096(=5) .145(=5) .141(=5) .013(=5)
25=th PMMM .120(=5) .106(=5) .297(=5) =-.278(=5)
percentile  MMMM L490(=-5) .379(-5) .380(-5) .092(=5)
.399(=5) MMLM .329(=5) .295(=5) .294(-5) =-.070(=5)
so‘th m 050“(-5) 0287(-5) o“??(-s) --385(-5)
percentile  MMMM .910(=5) .390(-5) .380(-5) .021(=5)
.889(-5) MMLM LT70(=5)  LU415(=5) .419(=5) =.119(=5)
75'”! m 1.53(-5) 0602(-5) u608("5) -01“7(-5)
percentile  MMMM 1.65(=5) .555(=5) .541(-5) =.021(=5)
1067(-5) W 1.65(-5) .607(-5) -588(-5) -0020(-5)
95-th PMMM 4,78(-5) 1.38(=5) 1.95(=5) 1.41(=5)
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TABLE 3.8

Results of a gamma-Poisson analysis of data from a lognormal-Poisson

distribution
Parameter Method Mean Standard Sq. Root Bias
& True Value Deviation of MSE
mean PMMM 1.20(=5) .418(=5) .409(=5) =.004(~5)
1.20(=5) MMMM 1.25(=5) .819(=5) .411(=5) LOUT7(=5)
l MMLM 1.24(=5) .459(=5) .446(-5) .038(-5)
! standard PMMM 1.79(=5) .524(=5) .863(=5) 694(-5)
deviation MMMM 1.07(=5) .598(=5) .582(=5) =.023(=5)
1.10(=5) MMLM 1.32(=5) .604(-5) .625(=~5) 221(=5)
§=th PMMM L010(=5) .015(=5) .221(=5) =.221(=5)
.230(=5) MMM A21(=5)  L167(=5) .195(=5) =.109(=5)
25=th PMMM 123(=5) .110(=5) .403(=5) =.389(=5)
percentile  MMMM 505(=5) .387(=5) .377(=5) =.006(=5)
.512(=5) MMLM LIET(=5)  L324(=5) .346(=5) =.145(=5)
50~-th PMMM S06(=5) ,299(=5) .478(-5) =.377(=5)
percentile  MMMM L917(=5)  L406(-5) .397(=5) .034(-5)
L8B4 (=5) MMLM J199(=5)  J442(=5) 437(=5) =-.084(-5)
l 75=th PMMM 1.52(=5) .628(-5) .616(-5) .006(=-5)
percentile  MMMM 1.64(~5) .582(~5) .580(=5) .127(=5)
1.51(=5) MMLM 1.64(=5) .637(=5) .630(=5) J128(=5)
95=th PMMM 4,78(=5) 1.46(-5) 2.08(=5) 1.51(=5)
percentile MMMM 3.37(=5) 1.47(=5) 1.44(-5) JLB(-5)
3.22(=5) MMLM 3.848(-5) 1.55(-5) 1.62(=5) 622(=5) J




TABLE 3.9

Results of a gamma-Poisscn analysis of data from a logbeta-Poisson

distribution
Parameter Method Mean Standard Sq. Root Bias
& True Value Deviation of MSE

mean m 1.20('5) -u18(-5) ouog("S) --00“(-5)
1.20(‘5) m 1025("5) 0“19(-5) -"11(-5) aO”?(-5)
MMLM 1.24(=5) .459(-5) .446(-5) .038(-5)
standard PMMM 1,73(-5) .524(-5) .B63(-5) L94(=5)
deviation MMMM 1.07{=5) .598(-5) .582(-5) =.023(=5)
1.10(=5) MMLM 1.32(=5) .604(=5) .625(-5) .221(=5)
5=th PMMM ,009(~5) .015(=5) .237(-5) =.237(=5)
percentile  MMMM L247(-5)  .351(-5) .342(-5) .001(=5)
246(-5) MMLM A21(=5)  L167(=5) .204(-5) =.125(-5)
25=th PMMM L123(=5) .110(=5) .415(=5) =.401(=5)
percentile  MMMM .505(=5) .387(=5) .377(-5) =.019(=5)
524(=5) MMLM .367(=5) .324(-5) .351(=5) =.158(=5)
50-th PMMM .506(=5) .299(=5) .480(-5) =.380(=5)
percentile  MMMM .917(=5) .406(=5) .396(-5) .031(=5)
.886(=5) MMLM L799(=5) .u42(~5) .437(=5) =-.087(=5)
75=th PMMM 1.52(=5) .626(-5) .616(-5) .020(=5)
percentile  MMMM 1.64(-5) .582(-5) .583(-5) .141(-5)
1.50(=5) MMLM 1.64(=5) .627(-5) .632(-5) L142(=5)
95-th PMMM 4,74(=5) 1.46(=5) 2.10(=5) 1.54(=5)
3.19(=5) MMLM 3.84(=5) 1.55(=5) 1.63(-5) 654(=5)
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3.4 NON- CONJUGATE ANALXSLS OF DATA FROM XON-CONJUGATE MODELS

The results of the previous section showed that for fai’ure data
arising from non-conjugate marginal distributions, the gamua-Poisson
sonjugate model can be succeasfully used to analyze those data and to
yleld reasonably good estimates of the properties of the prior distribv-
tion,

To confirm these results, failure data generated from the three non-
conjugate models were analyzed by the same marginal models (i.e., the
Weibull-Poisson, lognormal-Poisson and logbeta-Poisson compound mcdels)
from which the data were generated. :

Tables 3.10, 3.11 and 3.12 present the results of using the cereeet
non-conjugate models to analyze the simulated failure data frca b - Wei-
bull-Poisscn, lognormal-Poisson erd logbeta-Poisson marginal di:iribu-
tions, respectively. Only ths .wo matching itwments estimation 3=thods
(PMMM and MMMM) were used in this phase of the Jtudy. The marginal max-
imum likelinood estimation method applied to non-conjugale failure
models requires an inordinate wwount of computational effort for the
aialysis of a large number of da.la samples, and therefore this method
was omitted in this phase of the study.

0Of the four prior models iiwestigated in this study, the logbeta-
Posisson model presents the most Jirf;culties in calculating parameter
estimaies even for the simple prior matching moments method. An elabo-
rate numerical algorithm is stili requir+d to obtain estimates of alpha
and beta from both the PMMM and MMMM [ sameter estimation methods [Zz].
On the other hand, estimates of alpha and tau can be obtained easily
with a handheld calculator by PMMM and MMMM methocs for the gamma-Fols-
son model.

The use of a Weibull-Poisson =ade! <o analyze failure data from a
Weibull-Poisson marginal distrituti.n (as is seen from Table 3.10) gave
betcer estimators of alpha, but poorer estimators of beta from the MMMM
than those from the PMMM, a2 weens of the estimated prior distribu-
tions from two matching moments methods revealed only slighc disagree-
ment, which is basically due t¢ the different number of successful esti-
mates. The mean of the standard deviations of the estimated prior
distributions obtained by the MMMM have less bias and =maller A4SF than
those from the PMMM. Only the 5-th percentile estimators of the PMMM
gave better results than those of the MMMM., For the other iJur percen-
tiles (25-th, 50-th, 75-th and 95-th), the MMMM yielded more desirable
estimators than the PMMM, both in teras of bias and MSE. 1In all, the
MMMM showed better results than the PMMM,

In comparison with results in Table 3.7, which were obtained by using
a gamma-Poisson model to analyze failure data from a Weibull-Poisson
marginal distribution, the estimators of t%e we@ns and the standard de-
viation of the estimated prior distribution Jrom two matching moments
methods are the same for both failure moceiz The correctly assumed
model gave better estimators of the 5-ld szd 95-th percentiles, but
poorer eatimators of the 75-th percentiles, uilh both estimation methods
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TABLE 3.10

Results of a Weibull-Poisson analysis of data from a Weibull-Poisson

distribution
Parameter Method Mean Standard Sq. Root Bias
& True Value Deviation of MSE
alpha PMMM .938(=5) .399(=5) .495(=5) =.304(=5)
1.24(=5) MMMM 1.25(=5) .445(-5) .433(=5) .004(=5)
1.10 MMMM 2.04 2.44 2.56 .94y
1.20(=5) MMMM 1.25(=5) .395(-5) .388(-5) .053(=5)
stan, dev.. PMMM 1.81(=5) .496(=5) .B64(=5) .T14(=5)
1.10(=5) MMMM 1.10(-5) .568(=5) .553(=5) .005(=5)
5-th petl, PMMM 017(=5) .016(=5) .068(=5) =.066(=5)
25-th petl. PMMM L168(=5) .105(=5) .253(=5) =.231(=5)
.399(=5) MMMM .500(=5) .371(=5) .375(=5) .101(=5)
50-th pctl. PMMM 561(=5) .260(=5) .421(-5) =.328(=5)
.890(=5) MMMM .926(=5) .393(=5) .384(-5) .037(=5)
75-th pctl. PMMM 1.49(=5) .569(=5) .586(=5) =.182(=5)
1.67(=5) MMMM 1.65(=5) .563(=5) .548(-5) =.022(=5)
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TABLE 3.1

Results of a lognormal-Poisson analysis of data from a lognormal-Poisson

distribution
Parameter Method Mean Standard Sq. Root Bias
& True Value Deviation of MSE

-11063 W "11.67 0526 951“ -0.0&

beta PMMM 1.105 148 «357 .326

7178 MMMM 0.734 .303 .299 - 044
mean PMMM 1.20(~5) .418(=-5) .409(~5) =.0CH4(=5)
1.20(=5) MMMM 1.25(=5) .429(=5) .411(=5) .047(-5)
stan. dev. PMMM 1.79(~5) .524(=5) .863(=5) 694(=5)
1.10(=5) MMMM 1.07(~5) .598(=5) .582(=5) =.023(=5)
5-th pctl. PMMM L085(=5) .053(=5) .053(=5) =~.162(-5)
L246(=5) MMMM L222(=5) .212(=5) .252(=5) =.024(-5)
25=th petl., PMMM 260(=5) .138(=5) .135(-5) =.264(=5)
H24(=5) MMMM LHUG(-5) ,268(-5) .326(=5) =~.075(-5)
50-th petl. PMMM BS73(=5) .272(=5) .266(=5) =.314(-5)
0886(-5) m -780(-5) .33“(-5) .38“('5) -o107(-5)
75-th petl. PMMM 1.27(=5) .555(=5) .545(-5) =.226(=5)
1.50(=5) MMMM 1.82(=5) .541(=5) .5481(=5) =.079(=5)
95-th petl. PMMM 4,06{=5) 1.68(=5) 1.66(=5) B870(=5)
3.19(=5) MMMM 3.59(=5) 1.73(=5) 1.81(=5) A00(=5)
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TABLE 3.12

Results of a logbeta-Poisson analysis of data from a logbeta-Poisscon

distribution
Parameter Method Mean Standard Sq.Root Bias
& True Value Deviation of MSE

alpha PMMM 136. 39.3 150. -145,
282 MMMM 136.( 1) 259.( 1) 274.( 1) 108.( 1)

beta PMMM 70.9 17.0 T1.5 -69.5

140 MMMM 653 . 122.( 1) 130.( 1) 512.
mean PMMM 1.20(=5) .418(-5) .409(-5) =-.004(=5)
1.20(=5) MMMM 1.25(=5) .420(~5) .411(=5) .047(=5)
stan, dev. PMMM 1.79(-5) .524(=-5) .863(=5) H94(=-5)
1.10(=5) MMMM 1.07(=5) .599(=5) .583(=5) =.023(=5)
5-th petl. PMMM L100(=5) .061(=5) .143(=5) =.130(=5)
.230(=5) MMMM .351(=5) .319(=5) .333(=5) L120(=5)
25-th petl. PMMM .303(=5) .152(=5) .257(=5) =.209(=5)
512(=5) MMMM 606(=5) .342(=5) .346(-~5) .095(=5)
50-th petli. PMMM L649(=5) .284(=5) .364(=5) =-.234(=5)
884(=5) MMMM L940(=5) .379(=5) .373(=5) .056(=5)
75-th pctlo M 1-38(-5) 0531(-5) 5536(’5) -.129(-5)
1.51(=5) MMMM 1..1(=5) .531(=5) .517(=5) .002(=5)
95-th petl. PMMM §.,04(=5) 1.31(=5) 1.52(=5) .B14(=5)
3.22(=5) MMMM 3.16(=5) 1.33(=5) 1.30(=5) -.065(=5)
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than did the gamma-Poisson model. For the estimates of the 50-~th
percentile, the Weibull-Poisson model yielded less biased and smaller
MSE estimators from the PMMM, but yielded the oppcsite results with the
MMMM, CGenerally, both models showed comparable results from each esti-
maticn method consid2red in this section.

The lognormal-Poisson model also yielded results that favored the
marginal matching moments estimation method. All estimates from the
MMMM are less biased than those obtained from the PMMM, and almost all
estimates from the MMMM have less MSE than those from the PMMM with the
exception of the mean, and the 5-th and 25-th percentiles of the eati-
mated prior distribution. A comparison of these lognormal-Poisson re-
sults to those obtained with a gamma-Poisson analysis (Table 3.8) shows
the mean and standard deviation of the estimated prior distribution for
both models are the same, However, the MMMM method gave better esti-
mates of the S5-th, 25~th, 50-th and 95-th percentiles in terms of bias
and MSE using a gamma-Poisson model than those from a lognormal-Poisson
model which is the correct mcieli On the oth:» hand the PMMM method did
a better job with a lognormal-Poisson than with a gamma-Poisson model,

As is shown in Table 3.12, the PMMM gave better estimates for the pa-
rameters of (lhe logbeta prior distribution than did the MMMM in terms
having smaller bias and smaller of MSE. The mean of the PMMM estimated
prior distribution has a siight advantage over that obtained from the
MMMM, mainly because the MMMM failed to give successful estimates for
six data sets. However, the MMMM showed better results for estimates of
the prior standard deviation. The first three percentiles, i.e., the
5-th, 25-th and 50-th percentiles, favor the PMMM in terms of a smaller
MSE, but estimates from the MMMM have smaller bias. For the 95-th per-
centile, an important characteristic in safety studies, estimates from
the MMMM are better than those from the PMMM. A similar conclusion also
holds for *he 75-th percentile.

A comparison of the abcve results to those from the gamma-Poisson
model in Table 3.9 shows that almost the same values are cbtained for
the mean and standard deviation of the estimated prior distribution.
Estimates of the first three percentiles (i.e., 5-th, 25-th and 50~th
percentiles) from the PMMM with a logbeta-Poisson model have smaller
bias and smaller MSE, but estimates from the MMMM seem to give compara=-
ble values of MSE. For 75-th percentile, both the conjugate and non-
cenjugate models yielded values close to the true prior parameters for
both parameter estimation methods., Finally, estimates from a logbeta-
Poisson model have smaller bias and smaller MSE for both parameter esti-
mation methods., However, both parameter estimation methods applied to
the gamma-Poisson model yielded conservative estimates of the 95-th per-
centile while the least-biased estimate (which is obtained from the MMM
method with a logbeta-Poisson model) is underestimated.
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3.5 COMPARLSON OF USING FOUR DIFFERENT PRIOR DISTRISUTIONS WITH THE SAME
FAILURE DATA

In another effort to show the effect of using different prior distri-
butions in the failure rate analysis, two failure data sets of sample
size 5 were selected from the simulated failure data used in Sec-
tion “3.2.3" (data set 3). These data sets were then analyzed with the
three non-conjugate failure models, i.e., Weibull-Poisson, lognormal-
Poisson, and logbeta-Poisson. For each failure model, estimates of the
prior parameters were calculated by all three estimation methods, and
for each pair of prior parameter estimates, the estimated prior distri-
butions were plotted. Five prior percentiles, i.e., 5-th, 25-th, 50-th,
75-th and 95-th percentiles, of each estimated prior distribution were
also computed.

The two failure data sets chosen for this phase of the study were
(2,3,10,11,28) and (4,8,10,12,13). The first data sample, called good
data, was selected because it yielded prior gamma parameter estimates
with small bias for all three parameter estimation methods. The other
sample, called bad data, was used because it gave very poor prior param-
eter estimates. The parameter estimates for each prior distribution ob=-
tained with these data sets and each estimation method are given in Ta-
ble 3.13.

Figures 3.15, 3.16 and 3.17 show the estimated prior distributions
belonging to the four prior families with parameters estimated by the
PMMM, MMMM and MMLM, respectively, for the good data sample. All three
figures show the same characteristic, i.e., close similarity between the
estimated gamma and Weibull distributions and between the lognormal and
logbeta distributions, Even though the low failure rate tails of these
distributions are somewhat different, the more important part, i.e., the
high failure rate tails of the distributions, are very close to one
another. This characteristic is confirmed by the results in Table 3.14
which gives the 5-th, 25-th, 50-th, 75-th and 95-th percentiles of the
estimated prior distributions -f Figures 3.14, 3.15 and 3.16.

Figures 3.18, 3.19, and 3.20 and Table 3.15 represent similar results
obtained from the bad data sample. Close similarity between the lognor-
mal and logbeta distributions are still evident for this bad data set.
The estimated prior distributions from the gamma and Weibull distribu-
tions show some minor differences, except those obtained from the MMMM
estimation method. However, the results in Table 3.15 reveals very
close estimates of all five percentiles for the different estimated dis~-
tributions. Thus it is concluded that any difficulty with estimating
the prior distribution from the failure data is inherent in the data
sample and not in the parameter estimation technique used.
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TABLE 3.13

Parameter estimates for four prior models obtained by three estimation
techniques for GOOD and BAD data

Data Set Prior? Method Alpha Beta®
PMMM 1.073 9.936(4)

Gamma MMMM 1.191 1.103(5)

MMLM 1.543 1.429(5)

PMMM 1.096(=3) 1.036

Weibull PMMM 1.096(=3) 1.036

MMLM 1.167(=3) 1.267

"GOOoD"

PMMM -11.76 0.811

Lognormal  MMMM -11.74 0.781

MMLM -11.78 0.860

PMMM 257.7 130.7

Logbeta MMMM 262.0 133.5

| MMLM 242.7 123.1

f— PMMM 6.903 7.348(5)
Gamma MMMM 25.99 2.765(6)

MMLM 82.94 8.823(6)

PMMM 1.055(=3) 2.849

Weibull MMMM 1.014(=3) 5.921

MMLM 9.996(-4) 7.786

"BAD" |

' PMMM -11.64 3.678(-1)
| Lognormal  MMMM -11.59  1.943(-1)
MMLM -11.58 0.988(=1)

PMMM 1.323(3) 6.595(2)

Logbeta MMMM 4.788(3) 2.371(3)

| MMLM 1.626(4) 8.038(3)

a

2 The range or shift parameters are selected so that the
support of the prior distribution is (0, ;.

b For the gamma distribution, these are the tau parameter.
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TABLE 3.14

Percentiles of four prior distributions obtained from three estimation
methods with GOOD DATA

Method Prior Percentiles
Dist.

5=th 25~-th 50~-th 75-th 95-th

gamma .066(=5) .333(=5) .770(=5) 1.50(=5) 3.16(-5)
Weibull .062(~-5) .329(-5) .769(=5) 1.50(=5) 3.16(=5)
lognormal .205(=5) .449(=5) .777(=5) 1.34(=5) 2.95(-5)
logbeta .190(=5) .437(=5) .773(=5) 1.36(=5) 2.99(=5)

1H

-49(-5) 3.04(-5)
.50(=5) 3.05(-5)
.35(=5) 2.87(=5)
.30(=5) 2.85(-5)

MMMM  Weibull .074(-5) .357(=5) .798(-5)
MMMM lognormal .220(=5) .470(=5) .796(=5)
MMMM logbeta .185(=5) .423(-5) .T45(-5)

— ol -

A8(~5) 2.79(=5)
51(=5) 2.78(=5)
«37(=5) 3.15(-5)
.38(=5) 3.11(-5)

MMLM gamma .133(=5) .445(-5) .858(-5)
MMLM Weibull .112(-5) .436(-5) .874(-5)
MMLM lognormal .186(=5) .429(=5) .766(=5)
MMLM logbeta .181(=5) .429(=5) .773(=5)

— - b
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TABLE 3.15

Percentiles of four estimated prior distributions obtained with the
three estimation methods and the BAD DATA

Method Prior Percentiles
Dist.

5-th 25-th 50-th 75-th 95-th

PMMM gamma .438(-5) .681(=5) .895(=5) 1.15(=5) 1.59(=5)
PMMM  Weibull .372(-5) .681(=5) .928(-5) 1.18(=5) 1.55(=5)
PMMM lognormal .480(-5) .685(-5) .878(-5) 1.13(=5) 1.61(=5)
PMMM  logbeta .476(-5) .684(-5) .879(-5) 1.13(=5) 1.61(=5)

gamma .659(-5) .810(-5) .928(-5) 1.06(=-5) 1.26(=-5)
Weibull .614(=5) .822(-5) .953(=5) 1.07(=5) 1.22(=5)
lognormal .670(-=5) .809(=5) .922(-5) 1.05(-=5) 1.27(-5)
logbeta .669(-5) .809(=5) .923(=5) 1.05(=5) 1.27(=5)

MMM gamma J77(=5) .868(=5) .936(=5) 1.01(=5) 1.12(=5)
MMLM Weibull .683(-5) .852(-5) .954(=5) 1.04(=5) 1.15(=5)
MMLM lognormal .795(-5) .875(=5) .935(=5) 1.00(=5) 1.10(=5)
MMLM logbeta .785(=5) .870(=5) .934(=5) 1.00(=5) 1.11(=5)
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