NUREG/CR-2707 **ORNL/TM-8329**

÷.8

ORNL Small-Break LOCA Heat Transfer Test Series I: **Comparisons of Experimental Data** with Vendor Models for Low-Flow Steam Heat Transfer

T. M. Anklam

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75

8208260080 820731 PDR NUREG CR-2707 R PD

PDR

OPERATED BY UNION CARBIDE CORPORATION FOR THE UNITED STATES \$ **DEPARTMENT OF**

om

NATIONAL

UNION

CARBIDE

LABORATORY

OÅK

RIDGE

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161

Available from

GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NUREG/CR-2707 ORNL/TM-8329 Dist. Category AN

Contract No. W-7405-eng-26

Engineering Technology Division

ORNL SMALL-BREAK LOCA HEAT TRANSFER TEST SERIES I: COMPARISONS OF EXPERIMENTAL DATA WITH VENDOR MODELS FOR LOW-FLOW STEAM HEAT TRANSFER

T. M. Anklam

Manuscript Completed - May 28, 1982 Date Published - June 1982

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75

NRC Fin No. B0125

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

CONTENTS

Page

ACKNOWLEDGMENTS	v
ABSTRACT	1
1. INTRODUCTION	1
2. COMPARISONS BETWEEN EXPERIMENTALLY DETERMINED TOTAL HEAT TRANSFER COEFFICIENTS AND VENDOR MODEL PREDICTIONS	2
2.1 Parametric Plots	4
2.2 Statistical Summaries	4
3. CONCLUSIONS	15
REFERENCE	16
APPENDIX A. HEAT TRANSFER RESULTS	17

ACKNOWLEDGMENTS

In the conduct of a large experimental and analytical program, a great many individuals make contributions that should be recognized. The dedicated efforts of the entire Blowdown Heat Transfer Program staff are reflected in this report. The author wishes to express sincere appreciation to the following personnel:

Μ.	с.	Adair	A. F.	. Johnson	D.	Reed	
J.	L.	Bartley	D. G.	. Madewell	J.	J. Robinson	
R.	E.	Bohanan	G. S.	. Mailen	R.	D. Stulting	
D.	Н.	Cook	R. W.	. McCulloch	J.	W. Teague, Jr.	
W.	G.	Craddick	D. G.	. Morris	R.	E. Textor	
R.	D.	Dabbs	C. B	. Mullins	М.	S. Thompson	
R.	L.	Dural1	R. W.	. Murphy	н.	E. Trammell	
D.	K.	Felde	F. R	. Mynatt	в.	J. Veazie	
D.	Ј.	Fraysier	L. J.	. Ott	J.	D. White	
s.	s.	Gould	H. R	. Payne	Μ.	D. White	
Н.	W.	Hoffman	W. R	agan, Jr.	J.	E. Wolfe	
c.	R.	Hyman	N. R.	. Raulston	G.	L. Yoder	

Special thanks are extended to D. F. Hunt for her tireless work on data reduction and management.

ORNL SMALL-BREAK LOCA HEAT TRANSFER TEST SERIES I: COMPARISONS OF EXPERIMENTAL DATA WITH VENDOR MODELS FOR LOW-FLOW STEAM HEAT TRANSFER

T. M. Anklam

ABSTRACT

Comparisons are presented of data generated during the first Oak Ridge National Laboratory Small-Break Loss-of-Coolant Accident Heat Transfer Test Series with predictions of reactor vendor heat transfer correlations. Vendor correlations were found to predict experimental heat transfer coefficients relatively well. Standard errors of fit ranged from 12 to 18% for turbulent flow and were ~24% for transition-toturbulent flow. Despite reasonable overall agreement, several of the correlations do not predict temperature ratio trends in the data.

INTRODUCTION

Under sponsorship of the U.S. Nuclear Regulatory Commission (NRC), Oak Ridge National Laboratory (ORNL) has experimentally investigated lowflow steam heat transfer under conditions similar to those expected in a small-break loss-of-coolant accident (LOCA). This report contains comparisons of experimentally derived heat transfer coefficients with those predicted by reactor vendor heat transfer models. For a discussion of experimental procedures, methodology, and results, refer to a companion report, ORNL Small-Break LOCA Heat Transfer Test Series I: Rod Bundle Heat Transfer Analysis.¹

2. COMPARISONS BETWEEN EXPERIMENTALLY DETERMINED TOTAL HEAT TRANSFER COEFFICIENTS AND VENDOR MODEL PREDICTIONS

At the request of the NRC, heat transfer coefficients computed by reactor vendor small-break LOCA heat transfer models have been compared with experimental data. The subject models are used by reactor vendors to compute total heat transfer coefficients (convection plus radiation) under conditions typical of small-break LOCAs and were supplied to ORNL by the NRC. The specific correlations for which comparisons are performed follow:

1. Westinghouse Electric Corporation (W). All W correlations are of the form

$$h_{TOTAL} = h_{RAD} + h_{CONV}$$

where h_{RAD} is computed using a proprietary thermal radiation model and h_{CONV} is the convective heat transfer coefficient computed from the following correlations. For laminar flow (Re. < 3000),

 $h_{CONV} = \frac{3.66 \ k_{v}}{D_{\mu}} \left(\frac{T_{v}}{T_{v}}\right)^{0.25}$, (2)

where k is the thermal conductivity of the steam evaluated at the vapor temperature, D_{μ} is the hydraulic diameter, T_{ν} is the vapor temperature, T_w is the rod surface temperature, and Re is the vapor Reynolds number. For turbulent flow (Re > 5000),

$$h_{CONV} = \frac{0.021 \ k_v}{D_H} \ Re_v^0.^8 \ Pr_v^0.^4 \left(\frac{T_v}{T_w}\right)^0.^5 , \qquad (3)$$

where Pr is the vapor Prandtl number. For transition-to-turbulent flow $(3000 \le \text{Re}, \le 5000)$,

$$h_{CONV} = h_{LAM} + (h_{TUR} - h_{LAM}) \left(\frac{Re_v - 3000}{5000 - 3000}\right),$$
 (4)

where h_{LAM} is computed from Eq. (2) and h_{TUR} is computed from Eq. (3) with Re_ = 5000.

(1)

2. Combustion Engineering Corporation (CE). The \underline{CE} model does not account for thermal radiation to steam, thus

$$h_{\text{TOTAL}} = h_{\text{CONV}}$$
 (5)

For laminar flow,

$$h_{CONV} = \frac{1.86 \ k_{v}}{D_{H}} \left(\frac{Re_{v} \ Pr_{v} \ D_{H}}{L - Z_{L}} \right)^{1/3} \left(\frac{\mu_{v}}{\mu_{w}} \right)^{0.14} , \qquad (6)$$

where L is the bundle length, Z_L is the two-phase mixture level, and μ is the viscosity of the steam. For turbulent flow,

$$h_{CONV} = \frac{0.023 \ k_{v}}{D_{H}} \ Re_{v}^{0.4} \ Pr_{v}^{0.4} \ .$$
(7)

For transition to turbulence, h_{CONV} is computed from a proprietary extrapolation between Eqs. (6) and (7).

3. <u>Babcock & Wilson Corporation (B&W)</u>. The <u>B&W</u> model uses the Dittus-Boelter correlation for all Reynolds numbers. Radiation to steam is not accounted for

$$h_{\text{TOTAL}} = h_{\text{CONV}} = \frac{0.023 \text{ k}_{\text{v}}}{D_{\text{H}}} \text{ Re}_{\text{v}}^{\circ} \cdot Pr_{\text{v}}^{\circ} \cdot 4 \qquad (8)$$

The heat transfer coefficient comparisons are presented in three ways. First, the ratios of the model computed heat transfer coefficients to the experimentally determined heat transfer coefficients are plotted vs different parameters. These plots are useful in identifying trends in the data that are not predicted by the models. Second, Tables 1-5 present statistical summaries of how well each correlation compares with the data. Finally, Appendix A contains a comprehensive listing of test conditions, experimental heat transfer coefficients, and those heat transfer coefficients predicted by vendor models.

2.1 Parametric Plots*

Parametric plots aid in the identification of trends in the data not predicted by the vendor models (Figs. 1-12). The ratios of the predicted heat transfer coefficients to the experimental heat transfer coefficients are plotted against three different test parameters: system pressure (Figs. 1-4), ratio of the fuel rod simulator (FRS) surface temperature to the steam temperature (Figs. 5-8), and the vapor Reynolds number based on subchannel hydraulic diameter (Figs. 9-12). The ratio of the FRS to steam temperature is useful in that it is a measure of the importance of fluid property variations on convective heat transfer. The larger the temperature ratio the greater the effect of property variations on heat transfer.

Figures 1-4 do not indicate any well-defined trends with respect to system pressure for any of the correlations. However, note that the operating envelope of the Thermal-Hydraulic Test Facility did not allow truly parametric tests. Test parameters other than pressure were changed from test to test. Therefore, Figs. 1-4 do not imply a complete lack of a pressure trend; rather, there was no dominant pressure trend.

Figures 5-8 do indicate a temperature ratio trend, and Figs. 9-12 indicate a Reynolds number trend for all of the correlations examined. However, as discussed in Ref. 1, the actual trend in the comparison is felt to be one concerning temperature ratio, and the Reynolds number trend is considered an artifact of the manner in which the experiment was performed.

Total heat transfer under the subject test conditions was dominated by forced convection to steam with fluid property variations and thermal radiation. Of the dominant effects, the <u>CE</u> and <u>B&W</u> models account only for constant property forced convection. Thus, the fact that these models do not match the observed trends in the data is not surprising. What is somewhat surprising is the overprediction of the data at large temperature ratios. Thermal radiation accounted for 22-37% of the total heat transfer. Despite the fact that the <u>CE</u> and <u>B&W</u> models do not "take credit" for radiation, they still overpredict the total heat transfer coefficients by as much as 38% at large temperature ratios. This further serves to emphasize the importance of fluid property variations on heat transfer. As expected, the <u>W</u> model, which accounts for property variations and thermal radiation, matches data trends better than do the <u>CE</u> and <u>B&W</u> models.

2.2 Statistical Summaries

Tables 1-5 are statistical summaries for each correlation in each model. The items following are in a statistical summary:

1. Total number of points — the number of experimental data points for which the correlation is applicable.

*Data from small-break LOCA Test Series I fell into the fully developed turbulent and transition-to-turbulent regimes. As such, vendor models for laminar steam flow could not be assessed.

Fig. 1. Comparison between experimental heat transfer coefficients and those predicted by the <u>W</u> correlation for turbulent flow; comparison presented as a function of pressure.

Fig. 2. Comparison between experimental heat transfer coefficients and those predicited by the <u>W</u> correlation for transition-to-turbulent flow; comparison presented as a function of pressure.

Fig. 3. Comparison between experimental heat transfer coefficients and those predicted by the <u>CE</u> correlations for laminar, transition, and turbulent flow; comparison presented as a function of pressure.

Fig. 4. Comparison between experimental heat transfer coefficients and those predicted by the <u>B&W</u> correlation for laminar, transition, and turbulent flow; comparison presented as a function of pressure.

Fig. 5. Comparison between experimental heat transfer coefficients and those predicted by the <u>W</u> correlation for turbulent flow; comparison presented as a function of temperature ratio.

Fig. 6. Comparison between experimental heat transfer coefficients and those predicted by the <u>W</u> correlation for transition-to-turbulent flow; comparison presented as a function of temperature ratio.

Fig. 7. Comparison between experimental heat transfer coefficients and those predicted by the <u>CE</u> correlations for laminar, transition, and turbulent flow; comparison presented as a function of temperature ratio.

Fig. 8. Comparison between experimental heat transfer coefficients and those predicted by the <u>B&W</u> correlation for laminar, transition, and turbulent flow; comparison presented as a function of temperature ratio.

Fig. 9. Comparison between experimental heat transfer coefficients and those predicted by the <u>W</u> correlation for turbulent flow; comparison presented as a function of Reynolds number.

Fig. 10. Comparison between experimental heat transfer coefficients and those predicted by the <u>W</u> correlation for transition-to-turbulent flow; comparison presented as a function of Reynolds number.

Fig. 11. Comparison between experimental heat transfer coefficients and those predicted by the <u>CE</u> correlations for luminar, transition, and turbulent flow; comparison presented as a function of Reynolds number.

Fig. 12. Comparison between experimental heat transfer coefficients and those predicted by the <u>B&W</u> correlation for laminar, transition, and turbulent flow; comparison presented as a function of Reynolds number.

Table 1. Statistical summary for the W correlation for fully developed turbulent flow

Item	Value	
Total number of points	25	
Standard error	0.126	
Points too high, %	72	
Maximum overprediction, %	30	
Standard error of high points	0.145	
Points too low, %	28	
Maximum underprediction, %	8.8	
Standard error of low points	0.051	
Slope of data (bulk Reynolds sumber x 10 ⁵)	5.03	
Slope of data (T_w/T_v)	0.665	
Slope of data (system pres- sure), 1.0/MPa (1.0/psia)	-0.016 (-0.00011)	

Table 2. Statistical summary for the C-E correlation for fully developed turbulent flow

Item	Value		
Total number of points ^a	4		
Standard error	0.341		
Points too high, %	100		
Maximum overprediction, %	38.5		
Standard error of high points	0.341		
Points too low, %	0.0		
Maximum underprediction	N.A. ^b		
Standard error of low points	N. A.		
Slope of data (bulk Reynolds number)	Not statistically significant		
Slope of data (T_w/T_v)	Not statistically significant		
Slope of data (system pressure)	Not statistically significant		

^{α}Total number of points is only 4 because C-E assumes that most of the data are transition to turbulence.

^bN.A. = not applicable.

Table 3	. Stat	tistica	summary	for the
Baw co	rrelati	ion for	fully dev	eloped
tur	bulent	and tr	ansition-1	to-
	tus	rbulent	flow	

Item	Value
Total number of points	30
Standard error	0.181
Points too high, %	50
Maximum overprediction, %	38.6
Standard error of high points	0.216
Points too low, %	50
Maximum underprediction, %	30.8
Standard error of low points	0.139
Slops of data (bulk Reynolds number x 10 ⁵)	7.98
Slope of data (T_v/T_v)	1.24
Slope of data (system pres- sure), 1.0/MPa (1.0/psia)	-0.03 (-0.00021)

Table 4. Statistical summary for the W correlation for transition-to-turbulent flow

Item	Value
Total number of points	5
Standard error	0.233
Points too high, %	20.0
Maximum overprediction, %	3.7
Standard error of high p ints	0.037
Points too low, %	80
Maximum underprediction, %	38
Standard error of low points	0,260
Slope of data (bulk Reynolds number)	Not statistically significant
Slope of data (T_v/T_v)	Not statistically significant
Slope of data (system pressure)	Not statistically significant

if at

À

Sec.

-

-

9 · ·

.

ì

-

12

Table 5. Statistical summary for <u>CE</u> correlation for transitionto-turbulent flow

Item	Value
Total number of points	26
Standard error	0.242
Points too high, %	26.9
Maximum overprediction, %	22.3
Standard error of high points	0.151
Points too low, %	73.1
Maximum underprediction, %	52.8
Standard error of low points	0.268
Slope of data (bulk Reynolds number x 10 ⁵)	10.6
Slope of data (T_w/T_v)	1.48
Slope of data (system pres- sure), 1.0/MPa (1.0/psia)	-0.05 (-0.00034)

2. Standard error - a relative standard error defined as

$$SE = \sqrt{\frac{\sum_{i=1}^{N} \frac{h_{COR} - h_{EX}^{2}}{h_{EX}}}{N}},$$

where h_{COR} is the correlation-predicted total heat transfer coefficient and h_{EX} is the experimentally determined heat transfer ccefficient.

- Percentage of points too high the percentage of data points overpredicted by the correlation.
- 4. Maximum overprediction.
- 5. Standard error of high points.
- Percentage of points too low the percentage of data points underpredicted by the correlation.
- 7. Maximum underprediction.
- 8. Standard error of low points.
- 9. Slope with respect to vapor Reynolds number the slope of a line that represents the least squares fit of the points in the Reynolds number parametric plots (Figs. 9-12). Test 3.02.10F data are not included in the statistical summary because of heat loss problems (see Ref. 1, Appendix D). If the slope is 0.0 then no discernible trend for bulk Reynolds number has been observed. If this quantity

is not shown, then the statistical sample has been deemed too small for a meaningful least squares fit.

- Slope with respect to temperature ratio same as item 9 except that temperature ratio is the parameter of interest.
- 11. Slope with respect to system pressure same as item 9 except that system pressure is the parameter of interest.

3. CONCLUSIONS

Vendor heat transfer models predict experimental heat transfer coefficients relatively well. The standard error for transition region correlations is ~24%. Standard errors for turbulent region correlations vary between 12.6 and 18.1%. The statistical sample for the <u>CE</u> correlation was too small to draw conclusions.

Despite good overall agreement, however, these models have several shortcomings. The models have substantial maximum deviations from data: maximum overpredictions for turbulent flow correlations varied between 30.0 and 38.6%, and maximum underpredictions varied between 38.0 and 52.8%. The <u>CE</u> and <u>B&W</u> correlations do not match trends in data with respect to temperature ratio. These shortcomings can be mitigated, however, by properly accounting for fluid property variations and thermal radiation.¹

Although the models were quite successful at predicting data, further verification is needed. The vapor Reynolds number range should be extended, and the correlations should be compared with other independent data.

REFERENCE

 T. M. Anklam, ORNL Small-Break LOCA Heat Transfer Test Series I: Rod Bundle Heat Transfer Analysis, NUREG/CR-2052 (ORNL/NUREG/TM-445) (August 1981).

Appendix A

HEAT TRANSFER RESULTS

This appendix contains the results of the heat transfer and local fluid condition calculations. Rod and subchannel types are specified in Ref. 1 in the section on treatment of experimental data.¹ Note that although some heat transfer calculations have been done for rod types 5 and 6, these calculations do not account for radiation to the bundle shroud. Eecause rod types 5 and 6 are directly adjacent to the bundle shroud, radiation to the shroud may be significant. Therefore, the user is advised to follow the convention used in Ref. 1 and only use results that pertain to rod types 1-4, which are not adjacent to the shroud.

A.1 Key for Appendix A

Appendix A results are grouped by test and thermocouple level. Results for a test are first presented for thermocouple G = 3.62 m (11.9 ft)above the beginning of the heated length — and then for level F = 3.02 m(9.9 ft) above the beginning of the heated length. Uncertainties in a calculated or measured quantity appear adjacent to the quantity and are denoted by the symbol +OR— or the word DELTA. An example of the latter would be a column of numbers under the heading DELTA STEAM TEMPERATURE; the column represents the uncertainty in the steam temperature. Definitions for abbreviations and terms not commonly understood are

ANN MASS INV	Mass of water and steam present in the test section
	annulus during the data scan,
н ехр	Experimentally determined total heat transfer coeffi- cient.
MODIFIED WALL RE	Reynolds number based on subchannel hydraulic diameter
	with all vapor properties evaluated at the heated sur-
	face temperature.
PR BULK TEMP	Prandtl number based on vapor temperature.
PR FILM	Prandtl number based on film temperature.
RE BULK/BUDI	Reynolds number based on bundle hydraulic diameter
	with all vapor properties evaluated at vapor tempera-
	ture.
RE BULK/SCDI	Reynolds number based on subchannel hydraulic diameter
and the state of the	with all vapor properties evaluated at vapor tempera-
	ture.
RE FILM/BUDI	Reynolds number based on bundle hydraulic diameter
	with all vapor properties evaluated at the film tem-
	perature.
RE FILM/SCDI	Reynolds number based on subchannel hydraulic diameter
	with all vapor properties evaluated at film tempera-
	ture.
TS MASS INV	Mass of water and steam in test section proper during
	data scan.
TSURF/TSHE	Fuel rod surface temperature based on FRS sheath ther-
	mocouple reading.

A.2 Key for Vendor Model Results

Total heat transfer coefficient calculated from B&W
heat transfer model.
Total heat transfer coefficient calculated from CE
heat transfer model.
Total heat transfer coefficient calculated from the M
heat transfer model for laminar forced convection.
Total heat transfer coefficient calculated from W heat
transfer model for transition-to-turbulent forced con-
Total heat transfer coefficient calculated from V heat
transfer model for fully developed turbulent forced
convection.

Note that a heat transfer coefficient of 0.0 implies that the local fluid conditions are out of the range for which the correlation is applicable.

COTPUT RESULTS FOR TEST 3,02.10C

SYSTEM PARAMETER SUMBARY

.

STATES PRESSORE	0.419253185+03	+ 08 -	0.815058258+01	PSIA
INLET PLCN	0.168984132+01 0.740296852+03	+08-	0.800000002-01 0.350477078+02	GP# L3#/HR
OUTLET FLOR	0.15411243E+03 0.72065945E+03	+08- +08-	0.350000008+01 0.219051248+02	GPH LB#/HR
BUBDIE MASS FLOR	0.108369842+05	+OR-	0.329 003 78+03	LBS/HR*FT**2
INLET TEMPERATURE	0.381002938+03	+ 0R -	0.432857458+00	DEG P
OUTLET TEMPESATURE	0.793825208+03	+ CR -	0.133374792+01	DEG P
COLLAPSED 11	0.522075212+01	+ 0R -	0.335523578+00	FRET
TS MASS INV.	0.223022292+02	DRLTA	-0.574521702-01	LBS OVER SCAR
AFR MASS INT.	0.338554792+02	DELTA	-0. 326510358-01	LBB OVER SCAN

SUBCHANNEL TEMPERATURES FOR LEVEL G (DEG P)

INTERFAL COBCEASHEL TERP	0.980614882+03	+ CR-	0.186943328+02
COID ROD SUBCHANNEL TEMP	0.808936542+03	+ CR-	0. 140 13849 2+02
COBNER SUBCHANNEL TERP	0.685553882+03	+CR-	0.172742148+02
WALL SUBCHANNEL TEMP	0.808276762+03	+08-	0.251767388+02

SUBCRANNEL TEMPERATURES FOR LEVEL P (DEG P)

INTERNAL SUBCHANNEL TERP	0.526484832+03	+ 08-	0,116074378+02	
COLD BOD SUBCHANNEL TEAP	0.513642032+03	+CR-	0.960304098+01	
CORNER SUBCRANNEL TERP	0. 491505978+03	+CR-	0.683 194895+01	
WALL SUBCHANEEL TEMP	0.513512968+03	+ CR-	0.102928628+02	

RADIATION FLOI SUMMARY - LEVEL & (STO/ER FT**2)

RCD	1192	BADIATION HEAT PLOT	+08-
	1	0.27585638+04	0.12509228+04
	3	0.38130272+64	0.12834742+04

RADIATION FLOI SUMMART - LEVEL F (8TU/MR FT**2)

800	-	RADIATION HEAT FLUI	+08-
	1	0.23100108+0*	0.76408368+03
	2	0.2898812+04	0.88164568+03
	3	0.29870372+04	0.01611038+03
		0.29910828+04	0.79346318+03

RADIATION FLOI SURMARY - LEVEL G (DEG F)

ROT BOD TERPS 0.1339942E+04 COLD BOD TERPS 0.1000218E+04 +08- 0.6085161E+02

RADIATION FLOI SUMMARY - LEVEL F (DEG P)

BOT BOD TERPS 0.11469342+04 COLD BOD TERPS 0.69992322+03 +08- 0.66536212+02

RADIATION TO COLD BODS - LEVEL G (870/89 77**2)

 ROD TYPE
 RADIATION SEAT FLOI
 +08

 3
 0.85355478+03
 0.27242618+03

RADIATION TO COLD RODS - LEVEL F (STU/HR FT**2)

800	TYPE	RADIATION NEAT FLOI	+08-
	2	0.36036182+03	0.10289928+03
	3	0.63440128+03	0.18104642+03
	4	0.74283598+03	0.21589248+03

RESOLTS OF HEAT TRANSFER COMPOTATIONS FOR LEVEL G

BOD TTPE	STEAR TERP. DEG P	DELTA STEAS TEMP.	TSOBF/TSBE DEG F	DELTA TSOBP/TSHE	SUBFACE Q" BTO/88 PT2	DELTA SUBFACE Q"
	0.880618+03	0. 186948+02	0.133802+04	0.595478+01	0. 11558E+05	0.216572+03
3	0.844812+03	0. 1635+2+02	0.133992+04	0.160412+02	0. 123228+05	0. 466878+03
5	0	0.219168+02	0. 136872+04	0.227188+02	0. 124 188+05	0.350482+03
6	0.795682+03	0. 2158 18+02	0.127802+04	0.589632+01	0. 115872+05	0.202742+03

RESOLTS OF MEAT TRANSFER COMPOTATIONS FOR LEVEL G

ROD TYPE	N EXP BTO/NR PT2 P	DELTA H EXP	FILM TENS. DEG P	DELTA FILS TESP.
1	0.252711+02	0. 118318+01	0.110932+04	0.123302+02
3	0.248878+02	0.148828+01	0. 109242+04	0.161978+02
5	0.234888+02	0.157578+01	0.110662+04	0.223278+02
6	0.24025#+02	0. 122288+01	0.103682+04	0.137382+02

DIMENSIONLESS PARAMETERS FOR LEVEL G.

ROD TTPS	RE BULK/SCDI	DELTA RE BOLE/SCDI	BS BOLK/BODI	DELTA BE POLY/BOOI	PP BOLK TEMP	DELTA PE BOLK TEMP.
1	0.650702+08	0.296548+03	0.566112+04	0.257992+03	0.92406E+00	0.381202-02
3	0.655098+04	0. 2886 28+0 3	0.583052+04	0.25688 2+03	0.932428+00	0.400882-02
5	0.569812+04	0. 277668+03	0.583222+04	0.284192+03	0.932518+00	0.531158-02
. 6	0.518888+04	0.255148+03	0.507982+04	0.29896 2+03	0.946842+00	0.682148-02

DIREBSIONLESS P. CARETERS FOR INVEL G

COD TYPE	SE FILM/SCDI	DELTA RE FILM/SCDI	AR FILK/BODI	CHLTA BE FILM/BODI	PR FILM TENP	DELTA PR FILM TEMP
1	0.548668+04	0.213248+03	0.477332+04	0.185528+03	0.892762+00	0.105698-02
3	0. 54 26 28+04	0. 2260 1E+0 3	0. 482952+00	0.201152+03	0.894282+00	0. 145898-02
5	0.467248+04	0.213818+03	0.478232+04	0.21884 2+03	0.893002+00	0. 190008-02
6	0. 126718+04	0.172858+03	0.502332+04	0.202532+03	0.899942+00	0. 15006E-02

SEAT TRANSFER COPRELATION CALCULATION FOR LEVEL G (BTO/NR FT2 F)

.

80	TIPE	RTRAS/W	DELTA BTRAB/W	RLAR/W	DELTA RLAR/W	STUR/S	DELTA RTOR/W
	1	0.000008+00	0.000008+00	0.00000E+00	0.000002+00	0.258258+02	0. 167362+01
	3	0.000008+00	0.000008+00	0.000002+00	0.000008+00	0.254628+02	0. 162448+01
	5	0.000008+00	0.00008+00	0.000002+00	0.000002+00	0. 260858+02	0.202482+01
	6	c.000002+00	0.00000**00	0.00000E+00	0.00000 2+00	0.256878+02	0. 1889 12+01

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (BTU/HE FT2 F)

SOD TIPE	HTRAS/CE	DELTA HTRAK/CE	HLAR/CE	ELTA BLAR/CZ	RTOR/CE	DELTA HTOR/CE
	0.203028+02	0. 184562+01	D. 000002+00	0.030002+00	0.000008+00	0.000002+00
3	0.201638+02	0. 17567E+0 1	0.000002+00	0.000002+00	0.00000E+00	0.000002+00
5	0.192898+02	0.204398+01	6.000002+00	0.00002+00	0.000008+00	0.000008+00
6	0.18453E+02	0.206818+01	0.000002+00	0.00000E+00	0.000002+00	0.000002+00

HEAT TRANSPER CORRELATION CALCULATION FOR LEVEL G (STU/MR PT 2 F)

BOD TYPE	H/BCW	DELTA H/BS¥
	0.239892+02	0.138632+01
3	0.238408+02	0.130062+01
5	0.245138+02	0.159072+01
6	0.248458+02	0.164258+01

RESOLTS OF HEAT TRANSFER COMPUTATIONS FOR LEVEL F

STRAN TRAP. DEG P	DRLTA STEAM TEMP.	TSURF/TSHE DEG P	DELTA TSURF/TSHE	SURFACE Q" BTU/BR FT2	DELTA SORFACE Q*	
0. 5264 88+03	0.116078+02	0. 112568+04	0.512708+01	0.115758+05	0.216812+03	
0. 52 32 72+03	U. 111068+02	0. 116292+04	0.309478+02	0. 126 128+05	0.481818+03	
0.520062+03	0. 106058+02	0. 113102+04	0.21699E+02	0. 124938+05	0.473338+03	
0.516858+03	0. 10 10 48+02	0. 111218+04	0.208428+02	0. 118948+05	0. 367128+03	
0.520002+03	0. 109508+02	0. 114162+04	0.231902+02	0.124278+05	0. 390098+03	
0.511258+03	0.975638+01	0. 109378+04	0.617758+01	0.117478+05	0. 246102+03	
	STEAB TERP. DEG F 0.526482+03 0.523272+03 0.520062+03 0.516652×03 0.520002×03 0.511252+03	STEAR TERP. DRLTA STEAR TERP. 0.526462+03 0.116072+02 0.523272+03 0.111062+02 0.520062+03 0.106052+02 0.516652×03 0.101042+02 0.520002+03 0.109502+02 0.511252+03 0.75632+01	STEAR TERP. DRLTA STEAR TERP. TSUEF/TSRE DEG F 0.526482+03 0.116072+02 0.112562+04 0.523272+03 0.111062+02 0.116292+04 0.520062+03 0.106052+02 0.113102+04 0.516052×03 0.101042+02 0.111212+04 0.520002+03 0.109502 0.1111212+04 0.520002+03 0.109502 0.114162+04	STEAR TERP. DRLTA STEAR TERP. TSUEF/TSRE DEG F DELTA TSUEF/TSRE 0.526482+03 0.116072+02 0.112562+04 0.512702+01 0.523272+03 0.111062+02 0.116292+04 0.309472+02 0.520062+03 0.106052+02 0.1131022+04 0.216992+02 0.516652×03 0.101042+02 0.111212+04 0.208422+02 0.520002-03 0.109502 0.11416224 0.231902+02 0.5112528+03 0.975632*01 0.109372*04 0.617758*01	STEAR TERP. DRLTA STEAR TERP. TSUEF/TSRE DEG P DELTA TSUEF/TSRE SUEFA BTU/BE PT2 0.526482+03 0.116072+02 0.112562+04 0.512702+01 0.115752+05 0.523272+03 0.111062+02 0.116292+04 0.309472+02 0.126122+05 0.520062+03 0.106052+02 0.111212+04 0.208422+02 0.124932+05 0.520002-03 0.109502+02 0.111212+04 0.208422+02 0.1124272+05 0.5112525+03 0.975632+01 0.109372+04 0.6177528+01 0.117472+05	STEAR TERP. DEG F DRLTA STEAR TERP. TSUEF/TSRE DEG F DELTA TSUEF/TSRE SUEFACE Q* BTU/RE FT2 DELTA SUEFACE Q* 0.526462+03 0.116072+02 0.112562+04 0.512702+01 0.115752+05 0.216812+03 0.523272+03 0.111062+02 0.116292+04 0.309472+02 0.126122+05 0.481818+03 0.520062+03 0.106052+02 0.113102+04 0.216992+02 0.124932+05 0.473332+03 0.516652×03 0.101042+02 0.111212+04 0.208422+02 0.118948+05 0.367122+03 0.520002x-03 0.109502 0.114162+04 0.231902+02 0.124272+05 0.390092+03 0.511252+03 0.975632+01 0.109372+04 0.617752+01 0.117472+05 0.246102+03

63

.

RESULTS OF HEAT TRANSFER COMPUTATIONS FOR LEVEL F

100	TTPE	R BIT BTO/RR FT2 F	DELTA H EXP	PILS TERP. DEG P	DELTA FILS TESP.
	1	0.193218+02	0.546298+00	0.826032+03	0.836722+01
	2	0.197188+02	0.126288+01	0-843090+03	0.210278+02
	3	0.204506+02	0.111998+01	0.825528+03	0. 1615 28+02
	4	0.199828+02	0.992498+00	0.814468+03	0.154732+02
	5	0.199918+02	0. 103632+01	0.830618+03	0. 170708+02
	6	0.201675+02	0. 58 1678+00	0.802502+03	0.796698+01

DISENSIONLESS PARAMETERS FOR LEVEL P

BOD TYPE	BE BOLK/SCDI	DELTA RE BULK/SCDI	RE BOLK/BODI	DELTA BE BOLK/BODI	PP BOLK TERP	DELTA PR BOLK TERP.
1	0.945978+04	0	0.822992+04	0.386938+03	0.114858+01	0. 167142-01
2	0.940868+04	0.436722+03	3. 826522+04	0.383782+03	0.115338+01	0. 162462-01
3	0.933332+04	0.427578+03	0.830692+04	0.380552+03	0.115818+01	0. 157478-01
	0.925752+04	0.418428+03	0.834612+04	0.377238+03	0.116308+01	0. 152178-01
5	0.811678+04	0. 375918+03	6. 838778+04	0.384758+03	0. 115828+01	0. 1825 12-01
6	0.718238+04	0. 3224 28+0 3	0. 84 1572+04	0.37778E+03	0. 117 178+01	0. 150148-01

DIRENSICHLESS PARAMETERS FOR LEVEL P

BOD TYPE	PI FILM/SCDI	DELTA RE FILE/SC DI	BE FILS/BODI	DELTA BE FILM/BUDI	PR FILM TEMP	DELTA PR FILM TEMP
	0.680842+04	0.255278+03	0. 592332+04	0.22208 2+03	0.937478+00	0.231442-02
2	0.664428+04	0.318848+03	0.583882+04	0.28019 2+03	0.932862+00	0.513918-02
3	0.665812+04	0.293658+03	0.592592+04	0.261358+03	0.937628+00	0.438802-02
	0.663522+04	0. 2896 18+03	0.598202+04	0.26110 8+03	0.940852+00	0. 447438-02
5	0.575388:24	0.258338+03	0.589942+04	0.264412+03	0.936148+00	0.449638-02
6	0.515822+04	0. 1923 38+03	0.604 792+04	0.22536 8+03	0.944592+00	0. 251638-02

-

14

R

06k 33

HEAT TRANSFER CORBELATION CALCULATION FOR LEVEL F (BTU/HB FT2 F)

.

.

ROD TYPE	STRAN/P	DELTA RTEAM/W	HLAR/W	DELTA HLAN/W	ETUR/W	BTUR/W
1	0.000002+00	0.000002+00	0.000002+00	0.000008+00	0.226208+02	0.123462+01
2	0.00000E+00	0.000008+00	0.000008+00	0.000008+0	0.227458+02	0. 140782+01
3	0.00000E+00	0.00000E+00	0.000002+00	0.00000E+00	0.227558+02	6. 130578+01
	0.000008+00	0.000002+00	0.00000E+00	0.00000 2+00	0.227998+02	0. 127148+01
5	0.00002+00	0.000002+00	0.000002+00	0.00008+00	0.232678+02	0. 136558+01
6	0.000008+00	0.00008+00	0.000002+00	6.000008+00	0.237892+02	0. 118118+01

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL P (BTU/HE FT2 P)

ROD TYPE	HTRAN/CE	DELTA STRAB/CE	BLAR/CE	EELTA BLAN/CB	BTO 8 / 2	DELTA HIUR/CE
	0.235742+02	0.175642+01	0.00002+00	0.00000E+00	0.000008+00	0.000002+00
2	0.236312+02	0.173288+01	0.000008+00	0.000002+00	0.000008+00	0.00000E+00
3	0.236812+02	0. 170652+01	0.000002+00	0.00000E+00	0.000002+00	0.00000E+00
	0.23731E+02	0.168108+01	0.00002+00	0.000002+00	0.000008+00	0.000008+00
5	0.228132+02	0.181252+01	0.000005+00	0.00000E+00	0.000008+00	0.000002+00
6	0.221792+02	0.179708+01	0.000002+00	0.00000 2+00	0.00000E+00	0.000008+00

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (BTU/HE FT 2 F)

ROD TIPE	8/868	DELTA R/BST
1	0.241308+02	0.127592+01
2	0.242492+02	0.124962+01
3	0.243862+02	0.122388+01
4	0.245278+02	0.11976 2+01
5	0.250788+02	0.127982+01
6	0.259998+02	0.124108+01

OUTPUT RESULTS FOR TEST 3.02.10D

STSTER PLESSORE	0.614210458+03	+08-	0.843939422+01	PSIA
INLET FLOW	0.12607574#+01	+ 08 -	0.80000002-01	GPR
	0.548595458+03	+ OR -	0.348124382+02	LBS/HR
OUTLET FLOW	0.610829322+02	+ 08-	0. 350000008+01	GPH
	0.449285672+03	+ OR-	0.266675822+02	LBR/HR
BUNDLE MASS PLOT	0.675617552+04	+08-	0.401016278+03	LBR/BR*FT**2
INLET TEMPERATORS	0.391729742+03	+ 08 -	0,883536702+00	DEG F
OUTLET TERPERATURE	0.740534188+03	+08-	0.468519782+01	DEG P
COLLAPSED LL	0.631126738+01	+08-	0. 34878787878.00	P 88 7
TS BASS INV.	0.246291878+02	DELTA	0. 182628482+00	LBM OVER SCAR
AWN MASS INV.	0.105836258+03	DELTA	-0.326613778-01	LBB OVER SCAN

SUBCHANNEL TERPERATORES FOR LEVEL G (DEG F)

INTERNAL SOBCHANNEL TEMP	0. 10 0599078+04	+ 08-	0.498899528+02
COID BOD SUBCHANNEL TERP	0.995847778+03	+CR-	0.321125508+02
CORNER SUBCRANNEL TRAP	0.594694822+03	+CB-	0.857964578+02
WALL SUBCHANNEL TERP	0.782946212+03	+08-	0.761037158+02

SUBCHANNEL TERPERATORES FOR LEVEL F (DEG F)

INTERNAL SUBCHANNEL TEMP	0.648523052+03	+08-	0.174266638+02
COID ROD SUBCHANNEL TEMP	0.645389298+03	+08-	0.127266048+02
CORNER SUBCHANNEL TERP	0.521449002+03	+CR-	0.265599828+02
WALL SUBCRANNEL TEMP	0.579580282+03	+08-	0.239631718+02

.

RADIATION FLOI SUBBART - LEVEL G (BTU/88 FT**2)

BOD TIPE	RADIATION HEAT FLUX	+08-
1	0.25446162+04	0.15163202+0
3	0. 30949222+04	0.15349548+04

RADIATION FLOT SUMMARY - LEVEL F (BTU/HE FT**2)

800	TTPE	RADIATION HEAT FLOI	+OR-
	1	0.23751718+04	0.89646532+03
	2	0.27316492+04	0.91483568+03
	3	0.26864768+04	0.87136692+03
	4	0.28198512+04	0.86430412+03

RADIATION FLOI SUMMARY - LEVEL G (DEG P)

BOT ROD TEMPS 0.13301872+04 COLD ROD TEMPS 0.11297152+04 +08- 0.53751322+02

RADIATION PLON SUBMARY - LEVEL P (DEG P)

HOT BOD TERPS 0.11169268+04 CCLD BOD TERPS 0.80070798+03 +08- 0.55017928+02

RADIATION TO COLD RODS - LEVEL G (STO/HE PT**2)

 BOD TYPE
 BADIATION HEAT FLUE
 +OE

 3
 0.58419388+03
 0.30297128+03

RADIATION TO COLD RODS - LEVEL F (BT0/HP FT**2)

ROD	-	PADIATION HEAT FLOI	+08-
	2	0,34065998+03	0.11801392+03
	3	0.49213822+03	0.18017682+03
	4	0.75736608+03	0.28959048+03

RESULTS OF HEAT TRANSFER COMPUTATIONS FOR LEVEL G

BOD TYPE	STEAS TERP. DEG F	DELTA STEAM TERP.	TSURF/TSRE DEG F	DELTA TSUBF/TSHE	SURFACE Q* BT0/RR FT2	DELTA SURFACE Q"
1	0.100602+04	0.498902+02	0. 133662+04	0.640818+01	0.815708+04	0.968822+02
3	C. 100092+04	0.410018+02	0. 133028+04	0.201138+02	0.829128+04	0.158308+03
5	0.894422+03	0.629978+02	0. 129512+04	0.146072+02	0.834662+08	0. 166572+03
6	0.791592+03	0.719738+02	0. 122028+04	0.591358-01	0.815708+04	0.925988+02

BESOLTS OF REAT TRABSPER COMPUTATIONS FOR LEVEL G

ROD TYPE	B EIP DTO/HR FT2 P	DELTA H EXP	FILM TEMP. DEG F	DELTA FILA TEMP.
1	0.246698+02	0.376412+01	0,117132+04	0.281492+02
3	0.251818+02	0. 352558+01	0.116568+04	0.305578+02
5	0.208318+02	0.33877E+01	0.109482+04	0.388022+02
6	0.190338+02	0.321442+01	0.100598+04	0.389442+02

DIMENSIONLESS PARAMETERS FOR INVEL G

R	OD TIPE	BE BULK/SCDI	DELTA RE BULK/SCDI	RE BULK/BUDI	CELTA BE BULK/BUDI	PR BULK TEMP	DELTA PR BULK TEMP.
	1	0.366502+04	0.351318+03	0.318867+04	0.305642+03	0.908962+00	0.704028-02
	3	0.359592+04	0.321682+03	0. 320048+04	0.286308+03	0.909772+00	0.601222-02
	5	0.339158+04	0.370975=03	0.347132+04	0.379702+03	0.931882+00	0. 144428-01
	6	0.322512+04	0.391328+03	0.377692+04	0.458512+03	0.970042+00	0.2907.8-01

DIRENSIONLESS PARAMETERS FOR LEVEL G

BOD TYPE	BE FILR/SCOI	DELTA RE FILE/SCDI	RE FILM/BODI	CELTA BE FILM/BODI	PB FILM TEMP	DELTA PR FILM TEMP
1	0.326912+04	0.254278+03	0.284422+04	0.221222+03	0.889922+00	0.226678-02
3	0.320778+04	0.254792+03	0.285492+04	0.226778+03	0.890422+00	0. 249898-02
5	0.292522+04	0.251748+03	0.299418+04	0.25766 E+03	0.897328+00	0.399198-02
6	0.272158+04	0.239078+03	0.318882+04	0.280122+03	0.908988+00	0.561728-02

REAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (STU/NE FT2 F)

R	OD TIPE	HTRAS/9	DELTA HTRAS/V	HLAS/W	DELTA RLAR/W	STOR/N	DELTA ETOR/S
	1	0.160402+02	0. 324438+01	0.000002+00	0.000008+00	0.00000E+00	0.000008+00
	3	0.156098+02	0. 297582+01	0.00000E+00	0.0000E+00	0.000008+00	0.000002+00
	5	0.138208+02	0. 349548+01	0. 00000E+00	0.000008+00	0.000008+00	0.000008+00
	6	0.12010E+02	0. 3654 38+0 1	0.000008+00	0.00000 2+00	0.00000E+00	0.000008+00

HEAT TRANSFED CORRELATION CALCULATION FOR LEVEL G (BTU/HE FT 2 F)

ROD TYPE	RTEAN/CE	DELTA HTRAN/CZ	HLAN/CE	EELTA HLAR/CE	HTOR/CE	DELTA HTUR/CE
1	0.115732+02	0.234862+01	0.000005+00	0.000002+00	0.000002+00	0.000002+00
3	0.114658+02	0.214388+01	0.00000E+00	0.000002+00	0.000002+00	0.000002+00
5	0.107632+02	0.266138+01	0.000002+00	0.00000 2+00	0.000002+00	0.000002+00
6	0.10197E+02	0. 292858+01	0.00000E+00	0.00002+00	0.000008+00	0.000002+00

REAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (BTG/NR FT2 F)

.

BOD TYPE	8/868	DELTA H/BSW
1	0.173708+02	0.22104 2+01
3	0.174238+02	0.197412+01
5	0.173978+02	0.27490 2+01
6	0.174908+02	0.32580 8+01

RESULTS OF HEAT TRANSFER COMPUTATIONS FOR LEVEL F

BOD TTPE	STEAR TERP. DEG P	DELTA STRAS TESP.	TSORF/TSHE DEG F	DELTA 150 BF/TSHE	SURPACE Q* BT0/HR FT2	DELTA SUBPACE Q"
1	0.648528+03	0. 174278+02	0. 112952+04	0.38854 2+01	0.794952+04	0. 142528+03
2	0.647748+03	0. 162528+02	0. 113158+04	0.123448+02	0.827188+04	0.158098+03
3	0.646962+03	0.150778+02	0. 110242+04	0.101628+02	0.820928+04	0.156785+03
	0.646178+03	0. 13902#+02	0. 108202+04	0.639278+01	0. 790 30 #+04	0.676288+02
5	0.614058+03	0.206958+02	0. 108742+04	0.749948+01	0.824382+04	0.142568+03
6	0.582282+03	0.229788+02	0. 104552+04	0.624128+01	0.807648+04	0.916822+02

,

RESOLTS OF REAT TRANSFER CORPUTATIONS FOF LEVEL P

OD TYPE	N BEP BTU/HR PT2 P	DELTA H EXP	PILM TEMP. DEG P	DELTA FILS TEMP.
1	0.165268+02	0.681238+00	0.889032+03	0.106562+02
2	0.171008+02	0.792028+00	0.889612+03	0.142982+02
3	0.180258+02	0.797672+00	0.878672+03	0.126192+02
	0.181358+02	0.65540.+00	0.864062+03	0.101478+02
5	0.174158+02	0.863948+00	0.850742+03	0.140978+02
6	0.174378+02	0.917982+00	0.813872+03	0.146102+02

DIREBSIONLESS PARAMETERS FOR LEVEL P

ROD TYPE	BE BOLK/SCDI	DELTA RE BOLK/SCDI	BE BOLK/BODI	CELTA BE BULK/BODI	PR BOLK TEMP	DELTA PE BULK TEMP.
1	0.501122+04	0.413858+03	0.435972+04	0.36005E+03	0.107882+01	0.152998-01
2	0.496622+04	0.402238+03	0.436428+04	0.353982+03	0.107962+01	0.144732-01
3	0.490862+04	0.389788+03	0.436872+04	0.346928+03	0.108042+01	0.13617E-01
	0.485082+04	0. 377538+03	0.437322+04	0.34036 2+03	0.108115+01	0. 127318-01
5	0.445892+04	0.389338+03	0.456382+04	0.398492+03	0.111748+01	0.244578-01
6	0.405872+04	0. 372748+03	0.476732+08	0.436742+03	0.116298+01	0.338732-01

DIMENSIONLESS PARAMETERS FOR LEVEL P

BOD TIPE	PE FIL8/SCDI	DELTA RE FILM/SCDI	RE FILE/BODI	CELTA RE FILS/BODI	PR FILM TEMP	DELTA PR FILM TEMP
1	C.400712+04	0.271862+03	0.348622+04	0.236522+03	0.933358+00	0.287358-02
2	0.396522+04	0.280518+03	0.348868+08	0.246512+03	0.933198-00	0.380578-02
3	0.396238+04	0.275468+03	0.352652+04	0.245172+03	0.937518+00	0.366812-02
	0.394538+04	0.266698+03	0.355698+04	0.240432+03	0.940808+00	0.315698-02
5	0.351312+04	0.249168+03	0.359582+04	0.255028+03	0.945245+00	0.468898-02
6	0.316492+04	0.226888+03	0.370782+04	0.26584 E+03	0.959602+00	0.608298-02

.

HEAT TRANSPER CONNECTIVITION CALCULATION FOR LEVEL F (STG/HP FT2 F)

.

.

BOD TYPI	E RTRAN/N	DELTA HTRAS/W	HLAR/B	DELTA HLAR/W	HTOR/#	DELTA HTUR/B
1	0.000008+00	0.000002+00	0.000002+00	0.00000E+00	0.181772+02	0.167138+01
2	0.177292+02	0.230258+01	0.00000E+00	0.00008+00	0.000002+00	0.000002+00
3	0.174902+02	0.225378+01	0.000002+00	0.00000 8+00	0.000008+00	0.000002+00
	0.172782+02	C 21914E+01	0.000002+06	0.000008+00	0.000008+00	0.00000E+00
5	0.161882+02	0.248182+01	0.000002+00	0.0000E+00	0.000708+00	0.000008+00
6	0.147802+02	0.258682+01	0.000008+00	0.00000 8+00	0.000008+00	0.000008+00

REAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (STU/NE FT2 F)

ROD TYPE	HTRAS/CP	DELTA RTRAK/CE	HLAR/CZ	TELTA RIAR/CE	HTOR/CB	DELTA HTUB/CE
,	0.124028+02	0.183962+01	0.000008+00	0.00000E+00	0.000008+00	0.000002+00
2	0.123648+02	0.179568+01	0.000002+00	0.00002+00	0.000008+00	0.00000E+00
3	0.123298+02	0.17531E+01	0.000008+00	0.000008+00	0.000008+00	0.000002+00
	0.122892+02	0.171062+31	0.000002+00	G.00000 E+00	0.00008+00	0.00000E+00
5	0.120788+02	0.200092+01	1.00000E+00	0.00000 E+00	0.000008+00	0.0000E+00
6	0.118942+02	0.212373+01	0. 00000 E+00		0.000008+00	0.000002+00

REAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (BTO/MR PT2 F)

	8/868	DELTA N/B6W
1	0.166642+02	0.147522+01
2	0. 167048+02	0.143242+01
3	0. 167528+02	0.139022+01
4	0.168028+02	0.134772+01
5	0.175668+02	0.169612+01
6	0. 185528+02	0.188002+01

OUTPOT PESULTS FOR TEST 3.02.10E

STATES PARASETER SWRALFT

.

SYSTEM PRESSORE	0.618424938+03	+08-	0.815810322+01	PSIA
INLET FLOW	0.20318861E+01 0.87345348E+03	• 08 - • 08 -	0.80000008-01 0.343918288+02	GPR LBR/BR
OUTLET FLOW	0.132318888.03 0.864262868+03	+ 0R- + 0R-	0.350000002+01 0.258136102+02	GPS LBE/HB
BURDLE MASS FLUE	0.129964342+05	+ OR -	0.388174582+03	LB8/88* PT**2
INLET TEMPERATORE	0.407517822+03	+08-	0.530243102+00	DEG F
OUTLET TEMPERATURE	0.872383798+03	+08-	0.192730905+01	D86 F
COLLAPSED LL	0.549885152+01	+08-	0.349060378+00	PRET
TS MASS INT.	0.220838652+02	DELTA	0.172779778-01	LAM OVER SCAR
ANN MASS INV.	0.927399132+02	DELTA	-0. 2775923 18+00	LBR OVER SCAP

SUBCHANNEL TEMPERATORES FOR LEVEL G (DEG F)

INTERNAL SUBCHANNEL TERP	0.942754538+03	+08	0.244102858+02
COLD ROD SUBCHANNEL TESP	0.901543528+03	+08-	0.175823418+02
CORNER SUBCRANNEL TERP	0.765547188+03	+ CB-	0.202022358+02
WALL SUBCHANNEL TEMP	0.870223158+03	+08-	0.235410878+02

SUBCHANNEL TEMPERATURES FOR LEVEL F (DEG P)

INTERNAL SUBCHANNEL TERP	0.594971182+03	+08-	0.114812258+02
COLD ROD SUBCHANNEL TEMP	0.585376842+03	+08-	0.995014858+01
CORNER SUBCHANNEL TENP	0.553715502+03	+ CR	0.768393828+01
WALL SUBCHANNEL TERP	0.578085142+03	+08-	0.100129958+02

PADIATION FLOX SUBMARY - LEVEL G (BT0/HR FT**2)

ROD	TTPE	RADIATION HEAT PLOY	+08-
	1	0.37235682+04	0.16490232+04
	3	0.43967168+04	0.15835592+04

RADIATION FLOX SURMARY - LEVEL F (BTU/HR FT**2)

ROD	TTPE	RADIATION MEAT PLOI	+08-
	1	0.36781392+04	0.11910452+04
	2	0.43063202+04	0.12081932+04
	3	0.40858328+04	0.11389128+04
		0.48535358+94	0.11794128+04

RADIATION FLUE SUMMARY - LEVEL C (DEG P)

HOT BOD TERPS 0.13785558+04 COLD ROD TERPS 0.10528678+04 +08- 0.54946588+02

BADIATION FLUI SUMMARY - LEVEL F (DEG F)

HOT BOD TERPS 0.12454212+04 CCLD BOD TERPS 0.76725598+03 +08- 0.66942532+02

BADIATION TO COLD BODS - LEVEL G (BT0/BF FT**2)

802	TTPE	BADIATION HEAT PLUX	+0.8-
	3	0.93892192+03	0.33455188+0

RADIATION TO COLD BODS - LEVEL F (BTO/HR FT**2)

ROD	-	BADIATION HEAT FLOX	+CB
	z	0.64368288+03	0.18355598+03
	3	0.83195082+03	0.25524048+03
		0. 16331722+04	0.48489028+03

RESULTS OF REAT TRANSFER CORPUTATIONS FOR LEVEL G

BOD TIPE	STEAR TERP. DEG P	DELTA STEAN TENP.	TSURF/TSER DEG F	DELTA TSORF/TSHE	SURFACE Q" BTO/ER PT2	DELTA SUBPACE Q#
1	0.942752+03	0.244108+02	0. 14 146 2+04	0.60136 8+01	0. 136092+05	0.000002+00
3	0.922158+03	0.209968+02	0.137862+04	0.111872+02	0.137732+05	0. 130208+03
5	0.906492+03	0.239768+02	0. 141132+04	0.166768+02	0.139908+05	0. 122538+03
6	0.862198+03	0.229248+02	0.136232+04	0.590478+01	0.136058+05	0.34277E+02

RESOLTS OF HEAT TRANSPER CONPUTATIONS FOR LEVEL S

ROD TYPE	H EXP BTO/HR PT2 F	DELTA H EXP	FILM TEMP. DEG F	DELTA FILS TESP.
1	0.288408+02	0.153652+01	0.117878+04	0. 152128+02
3	0.301788+02	0. 15 9872+01	0.115042+08	0.160928+02
5	0.277158+02	0.162182+01	0.115892+04	0.203262+02
6	0.272108+02	0.128968+01	0.111232+04	0.144142+02

DIRENSIONLESS PARAMETERS FOR LEVEL G

POD TYPE	RE BULK/SCDI	DELTA RE BOLK/SCDI	RE BOLK/BODI	DELTA RE BULK/BUDI	PR BULK TEMP	DELTA PR BULK TEAP.
1	0.739082+04	0.358822+03	0.643002+04	0.312178+03	0.920578+00	0.484012-02
3	0,734028+04	0.338998+03	0.653308+04	0.301712+03	0.92514E+00	0.465002-02
5	0.646148+04	0.314782+03	0.661348+04	0.322192+03	0.928968+00	0.571528-02
	0.584762+04	0.283678+03	0.685178+04	0.332388+03	0.941718+00	0.699802-02

DIMENSIONLESS PARAMETERS FOR INVEL G

200	TIPE	BE FILM/SCOI	DELTA RE FILM/SCDI	BE FILM/BODI	CSLTA BE FILR/BUDI	PR FILM TEMP	DELTA PR FILM TEMP
	1	0.625802+04	0.248912+03	0.548842+04	0.216558+03	0.889358+00	0.122508-02
	з	0.623212+04	0.252652+03	0.554682+04	0.22487 2+03	0,891818+00	0.142392-02
	5	0.538882+04	0.233202+03	0.551562+04	0.238695+03	0.891058+00	0.173502-02
	6	0.485652+04	0.192658+03	0.569042+04	0.225738+03	0.895512+00	0. 145932-02

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (BTU/WE FT2 F)

ROD TYP	Z HTRAN/W	DELTA RTEAN/W	ELLE/W	DELTA HLAR/W	RTOR/N	DELTA RTUR/*
	0.000002+00	0.000008+00	0.00000E+00	0.0000Z+00	0.305928+02	0.223942+01
3	0.000008+00	0.000008+00	0. 000002+00	0.000002+00	0. 30286E+02	0.207678+01
5	0.000008+00	0.000008+00	0.00000±+00	0.00000E+00	0.308028+02	0. 235518+01
	C.00000E+00	0.000002+00	0.000002+00	0.000002+00	0.306482+02	0.222682+01

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (BTU/HR FT2 P)

ROD TYPE	STRAB/CE	DELTA HTRAN/CE	HLAN/CR	IRLTA RIAM/CE	HTUE/CE	DELTA BTOR/CE
1	0.255842+02	0.241352+01	0.000002+00	0.00000 8+00	0.000002+00	0.000002+00
3	0.254538+02	0.225698+01	0.000002+00	0.000002+00	0.000002+00	0.00000E+00
5	0.244432+02	0.247592+01	0.00000E+00	0.00000 E+00	0.000008+00	0.000002+90
6	0.234358+02	0.24788E+01	0.000002+00	0.00000E+00	0.000002+00	0.00000E+00

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (STU/MB FT2 F)

BOD TYPE	8/862	02174 H/86W
1	0.288022+02	0.187158+01
3	0.287728+02	0.172228+01
5	0.294652+02	0.19306 E+01
6	0. 2994 32+0 2	0.195582+01

BESULTS OF HEAT TRANSFER CONPUTATIONS FOR LEVEL F

BOD TYPE	STEAR TERP. DEG P	DELTA STEAM TEMP.	TSURF/TSHE DEG F	DELTA TSURP/TSHE	SURFACE Q" STG/HR FT2	DELTA SURFACE Q"
1	0.594978+03	0.114818+02	0.127282+04	0.396712+01	0.182768+05	0.646138+02
2	0.59257E+03	0.110982+02	0.127062+04	0.119802+02	0. 146018+05	0. 144292+03
3	0.59017E-03	0.107168+02	0. 122028+04	0.236928+02	0. 145 148+05	0. 137202+03
	0.58778Z+03	0.103338+02	0.122042+04	0.484822+01	0. 14 1008+05	0.301288+02
5	0.586532+03	0. 107472+02	0. 122642+04	0.129112+02	0.147362+05	0.165882+03
6	0.576218+03	0.979788+03	0. 117372+04	0.588578+01	0.183418+05	0.361208+02

RESULTS OF HEAT TRANSFER CONPUTATIONS FOR LEVEL F

OD TTPE	H ETP BTO/HR FT2 P	DELTA H EXP	PILM TEMP. DEG P	DELTA FILM TEMP.
1	0.210612+02	0.389262+00	0.933902+03	0.7724 28+01
2	015342+02	0.560618+00	0.931598+03	0.115398+02
3	0.210368+02	0,975312+00	0.905202+03	0.172048+02
	0.222868+02	0.404882+00	0.904102+03	0.759052+01
5	0.230298+02	0.655272+00	0.906472+03	0.117798+02
6	0.240028+92	0.463132+00	0.874952+03	0.784182+01

DIMENSIONLESS PARAMETERS FOR LEVEL F

ROD TYPE	RE BOLK/SCDI	DELTA RE BULK/SCDI	SE BOLK/BODI	DELTA RE BOLK/HODI	PR BULK TEMP	DELTA PR BULK TEMP.
1	0.103572+05	0.473508+03	0.901048+04	0.41195 8+03	0.119538+01	0. 162682-01
2	0.102878+05	0.465422+03	0.904032+04	0.409018+03	0.114898+01	0. 160058-01
3	0.101912+05	0.456208+03	0.907052+04	0.406038+03	0.115258+01	0.157238-01
· •	0,100958+05	0.447042+03	0.910092+04	0.403038+03	0.115628+01	0. 1542 18-01
5	0.89072E+04	0.399858+03	0.911682+04	0.409268+03	0.115818+01	0. 161982-01
6	0.78948 2 +04	0.34582#+03	0.925052+04	0.005218+03	0.117468+01	0. 157478-01

DIMENSIONLESS PARAMETERS FOR LEVEL F

BOD TYPE	BE FILM/SCOI	DELTA RE FILM/SCDI	RE FILE/BUDI	ATLES ICCEVELITE SE	PR FILM TEMP	DELTA PR FILM TEMP
1	0.748122+04	0.266528+03	0.647382+04	0.231872+03	0.922482+00	0.166598-02
2	0.737998+04	0.286128+03	0.648548+04	0.25184 2+03	0.922998+00	0.24941E-02
3	0.743818+04	0.322858+03	0.662012+04	0.287358+03	0,929288+00	0.420168-02
	0.734938+04	0.263432+03	0.662583+04	0.237508+03	0.929578+00	0.191258-02
5	0.646158+04	0.252828+03	0.661352+04	0.258768+03	0.928962+00	0.289818-02
6	0.578762+04	0. 209408+03	0.678142+04	0.245358+03	0.93770E+00	0.232118-02

				14	244	48/0101		
2	TRAST	804	SCILTTO	378	3 8	COMBETTIO	ISYN 2558	2421

8/8518 91180	A/BDIR	8/8978 91720		N/#1818 91120	A/STELS	
10+8691#1 .0	0.273888+02	0.00008+00	0.000008+00	0.000008+00	0*000008+00	· · ·
10+\$385e1 *0	0.274875+02	0.000008+00	0.000002+00	0.0+200000.0	00+200000.0	2
10+869ESL *0	0-274268+02	0.00008+00	0.000008+00	0.04800000.0	00+200000*0	£
0. 134878+01	0-275098+02	0*100000*00	00+200000 *0	00+800000-0	00+800000*0	
0. 147128+01	0. 280808+02	00+800000 *0	0* 000000 *0	0.000008+00	0.000008+00	5
0" 139858+01	0.287705+02	0*200000*0	00+2000000 *0	0.04300000.0	00+200000*0	9

(BIG/HE & LS &) HEVE INVERSE CONSERVICE CUTCHING AND FRANK &

HIGH/CH DEFLY	SD/HDIH	ED/WVIH ISTER	23/8178	HIBYN/CB DEFIT	23/5781H	800 1158
10+3768#1 .0	\$0+886162*0	0*00000*00	0* 000008+00	0.000-18+00	0.000008+00	k
0" 10+355+01	0* 54 3258+05	0.00008+00	0.000001+00	0.00000.0	00+800000*0	Z
10+#E1##1 *0	0.294638+02	00+200000 *0	00+800000 *0	00+\$00000.0	00+200000*0	£
0" 1#5038+01	0* 58 60 88 + 0 5	00+800000 *0	00+200000 *0	00+800000 *0	00+200000-0	
0. 000002+00	0*800000*0	0.000002+00	00+300000 *0	0-211258+01	0* 588#28+05	s
00+200000 *0	00+2000000*0	00+800000.0	0.000008+00	10+355212 01	20+358182*02	9

(BIGVAR LAF LAS L) (BIGVAR LAS L) HEFE INVESTED LON STRATT L

898/8 91180		
10+375841.0	20+286162*0	
0'146228+01	0.293228+02	z
10+351991.0	0* 53#6 38+0 5	£
0*1#5038+01	0* 386085+05	
10+3678#1.0	0* 30 #018+05	5
10+147461.0	CO.STRAIS 0	

1.00

.....

OUTPOT RESULTS FOR TEST 3.02.10F

SYSTEM PARAMETER SUMMART

STSTER PRESSURE	0.101787512+04	+ OR -	0.850 1645 32+01	PSIA	
INTEL ATCA	0.112509358+01 0.461422328+03	+08- +08-	0.80000008-01 0.328095388+02	GPH LBM/HS	
COTLET FLOW	0.396168062+02 0.494142622+03	+08- +08-	0.350000002+01 0.439357862+02	GPA LBM/HR	
BUNDLE MASS FLOX	0.743071618+04	+08-	0.660688518+03	LBS/HR*FT**2	
INLET TEMPERATURE	0.464482182+03	+ OE -	0.612676268-01	DEG P	
OUTLET TERPERATURE	0.760924078+03	+08-	0.302905562+01	DEG P	
COLLAPSED LL	0.704719442+01	+0E-	0.374183918+00	PERT	
TS MASS INV.	0.251749942+02	DELTA	-0.132184972+00	LBR OVER SCAN	
ANN MASS INV.	C. 103484798+03	DELTA	-0.277607618+00	LER OVER SCAN	

SUBCHANNEL TERPERATORES FOR LEVEL G (525 P)

INTERNAL SUBCHANNEL TEMP	0.105001152+04	+ 68-	0.156786408+02
COID BCD SUBCHANNEL TENP	0. 104257202+04	+ 02-	0.126889358+02
CORNER SOBCHANNEL TERP	0.666133962+03	+CR-	0.443799818+02
WALL SUBCHANNEL TEMP	0.859560622+03	+08-	0.270999762+02

SUBCHANNEL TEMPERATURES FOR LEVEL F (DEG F)

INTERNAL SUBCHANNEL TEAP	0.689428212+03	+08-	0.702719632+01
COID BOD SUBCRANNEL TEMP	0.687317542+03	+CR-	0.645651718+01
CORRER SUBCHANNEL TERP	0.580517638+03	+ OR-	0.126572068+02
WALL SUBCHANNEL TEMP	0.635395068+03	+09-	0.839953098+01

RADIATION FLOX SURMARY - LEVEL G (BTO/HE FT**2)

ROD	TTPE	RADIATION HEAT FLUX	+08-
	1	0.24233068+04	0.17180328+00
	3	0.33820222+04	0.19102338+04

RADIATION FLOT SCAMARY - LEVEL F (BTU/HR FT**2)

3

IOD	TYPE	RADIATION HEAT PLOX	+08-
	1	0.22256532+04	0.94775122+03
	2	0.25009542+04	0.95064588+03
	3	0.25942372+04	0.95624712+03
	4	0.27332148+04	0.94490572+03

PADIATION PLOI SUMMARY - LEVEL G (DEG P)

HOT ROD TEMPS 0.13608152+04 CCLD ROD TEMPS 0.1161248E+04 +08- 0.5161988E+02

RADIATION FLUE SUBRARY - LEVEL F (DEG P)

HOT ROD TEMPS 0.10899802+04 COLD ROD TEMPS 0.79889982+03 +08- 0.46249362+02

FADIATION TO COLD RODS - LEVEL G (BTO/HR FT**2)

BOD TYPE RADIATION HEAT FLUX +OR-3 0.60123062+03 0.36265282+03

PADIATION TO COLD RODS - LEVEL P (BTD/HR PT**2)

ROD	-	DIATION HEAT FLOX	+08-
	2	0.30249668+03	0.12350402+03
	3	0.43975542+03	0.18362682+03
	4	0.78900458+03	0.35539942+03

REFULTS OF REAT TRANSFER CONFIPTATIONS FOF LEVEL G

BOD TIPE	STEAR TIR . DEG P	DELTA STEAN TENP.	TSORF/TSRE DEG F	DELTA TSUBF/TSBE	SUBPACE Q" BTO/BE FT2	DELTA SURFACE Q"
1	0.105008+04	0.156798+02	0.133032+04	0.589122+01	0.912548+04	0.000008+00
3	0.104638+04	0.141842+02	0.136082+04	0.358828+02	0.949678+04	0.906432+02
5	0.954792+03	0.213898+02	0.125682+04	0.124478+02	0.957592+04	0. 175178+03
6	0.658822+03	0.285658+02	0.120802+04	0.58996 2+01	0.912542+04	0.000002+00

RESULTS OF HEAT TRANSFER COMPUTATIONS FOR LEVEL G

NOD TTPE	R SIP BTU/RR PT2 P	DELTA H EXP	FILM TEMP. DEG P	DELTA FILS TEMP.
1	0.325548+02	0. 194518+01	0.119022+04	0.107852+02
3	0.301942+02	0.371528+01	0,120362+04	0.250332+02
5	0.31703E+02	0.266142+01	0.110582+04	0.169188+02
6	0.261338+02	0.218288+01	0.103348+04	0.172322+02

DIRENSIONLESS PARAMETERS FOR LEVEL G

ROD TYPE	SE BOLK/SCDI	DELTA RE BOLK/SCDI	BE BOLK/BODI	DELTA RE EULK/BUDI	PR BOLK TERP	DELTA PR BULK TEMP.
1	0.386992+04	0.386248+03	0.336682+04	0.336032+03	0.912132+00	0.284488-02
3	0.379262+04	0.374682+03	0.337558+04	0.333462+03	0.912842+00	0.262818-02
5	0.35218E+04	0.368892+03	0.360462+04	0.377572+03	0.935268+00	0.627882-02
6	0.331052+04	0.369122+03	0.387902+04	0.432508+03	0.97613E+00	0. 148708-01

DIRESSIONLESS PARAMETERS FOR LEVEL G

ROD TYPE	PE FILR/SCDI	DELTA RE FILM/SCDI	RE FILM/BODI	DELTA BE FILM/BUDI	PR FILM TEMP	DELTA PR FILM TEMP
3	0.35256E+04	0.337678+03	0.306732+04	0.293782+03	0.892352+00	0.111878-02
3	C.34172E+04	0.357852+03	0.304142+04	0,318492+03	0.890978+00	0,241548-02
5	0.31665 8 +04	0.317478+03	0.324108+04	0.324948+03	0.902862+00	0.239602-02
	0.290692+04	0.293658+03	0. 3906 12+04	0.344078+03	0.915392+00	0.337198-02

SEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (BTU/HR FT2 F)

800	TIPE	HTBAS/N	DELTA HTRAS/W	ELLS/#	DELTA BLAR/W	HTOR/W	DELTA STOR/R
	1	0.188702+02	0.345758+01	0.00008+00	0.00000 2+00	0.000002+00	0.00000E+00
	3	0.186198+02	0.345228+01	0.000002+00	0.000002+00	0.000008+00	0.000002+00
	5	0.159248+02	0.355418+01	0.00000E+00	6.00000 E+00	0.000008+00	0.000008+00
	6	0.138782+02	0.364142+01	3. 10000E+00	6.000002+00	0.000008+00	0.000008+00

HEAT TRANSFES CORRELATION CALCULATION FOR LEVEL G (STU/HE FT2 F)

ROD TIPE	RTBAR, CZ	DELTA HTRAS/CE	HLAN/CE	LELTA HIAN/CB	RTUR/CE	DELTA HTOR/CE
1	0.123328+02	0.201462+01	0.000002+00	0.00000 8+00	0.00000E+00	0.0000E+00
3	0.121808+02	0.196918+01	0.000002+00	0.000008+00	0.000008+00	0.000002+00
5	0.11479E+02	0.210148+01	0.000002+00	0.00008+00	0.00008+00	0.000002+00
6	0.108768+02	0.225848+01	0.000002+00	0.000002+00	0.000008+00	0.00000E+00

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL 6 (BTD/MR PT2 F)

ROD TYPE	8/868	DELTA H/BSW
1	0. 195662+02	0.185522+01
3	0. 19638E+02	0.181892+01
5	0. 19807E+02	0.209982+01
6	0,201092+02	0.244882+01

.

RESULTS OF HEAT TRANSFER COMPOTATIONS FOR LEVEL F

BOD TYPE	STEAM TEMP. DEG P	DELTA STEAN TEMP.	TSOBF/TSRS DEG P	DELTA TSUBF/TSHE	SURFACE Q" BTO/HR FT2	DELTA SURPACE Qª
1	0.689432+03	0. 702728+01	0. 109722+04	0.353472+01	0.935498+04	0.527048+02
2	0.689902+03	0.688452+01	0. 109322+04	0.72515 E+01	0.982642+04	0. 909142+02
3	0.658372+03	0.674198+01	0.108682+04	0.135132+02	0.979042+04	0.934462+02
	0,687852+03	0.659922+01	0. 105638+04	0. 47594 8+01	0.935492+04	0. 546928+02
5	0.6624 12+03	0.771342+01	0.104842+04	0.667482+01	0.989762+08	0. 137938+03
6	0.635182+03	0.912092+01	0. 10 1508+04	0.58934E+01	0.938572+04	0.000008+00

RESULTS OF MEAT TRANSFER COMPUTATIONS FOR LEVEL F

BOD TTPP	H EXP BTO/HB FT2 F	DELTA R EXP	FILE TERF. DEG P	DELTA FILN TERP.
1	0.229438+02	0.461082+00	0.893312+03	0.528098+01
2	0.243068+02	0.641872+00	0.89104E+03	0. 7068 0E+0 1
3	0.245748+02	0.960492+00	0.887582+03	0.101278+02
а	0.253902+02	0.579998+00	0.872072+03	0.567938+01
5	0.255428+02	0.766078+00	0.855412+03	0.7194 18+01
6	0.247148+02	0.706682+00	0.825078+03	0.750718+01

DIRENSIONLESS PARAMETERS FOR LEVEL F

ROD TYPE	RE BOLK/SCOI	DELTA RE BULK/SCDI	RE BOLK/BUDI	CELTA BE BOLK/BODI	PR BOLK TERP	DELTA PR BOLK TEMP.
э.	0.514272+04	0.497618+03	0.447412+04	0.432928+03	0.115868+01	0. 108812-01
2	0.509442+04	0.492502+03	0.447698+04	0.43280 2+03	0.115942+01	0. 106318-01
3	0.503322+04	0.486128+03	0.447972+04	0.432668+03	0.116022+01	0.103852-01
	0.497208+04	0.479732+03	0.448258+04	0.432508+03	0.116108+01	0.101408-01
5	0.453848+04	0.459728+03	0.464112+04	0.470542+03	0.119912+01	0. 103278-01
6	0.413572+04	0.428262+03	0.484712+04	0.50179 2+03	0.128362+01	0. 163938-01

DIMENSIONLESS PARAMETERS FOR LEVEL P

ROD TYPE	BE FILM/SCDI	DELTA RE FILA/SCDI	RE FILE/BODI	DELTA BE FILM/BODI	PR PILM TEMP	DELTA PR FILM TEMP
1	0.434022+04	0.40358E+03	0.377602+04	0.351118+03	0.958518+00	0.236578-02
2	0.430432+04	0.406218+03	0.378262+04	0.35698 2+03	0.959552+00	0.319458-02
3	0.426138+04	0.412318+03	0.379278+04	0.366978+03	0.961172+00	0.463488-02
	0.425792+04	0.397512+03	0.383872+04	0.358382+03	0.968882+00	0.291678-02
5	0.380002+04	0.359518+03	0.388942+04	0.367972+03	0.978102+00	0.410538-02
	0.340092+04	0.323032+03	0.398492+04	0.37850 E+03	0.997782+00	0.525248-02

HEAT THANSPER CONNELLATION CALCULATION FOR LEVEL F (STU/NE FT2 F)

10000

ROD TT	PE STRAN/W	DELTA STRAN/S	BLAR/B	DELTA RLAN/W	8708/8	DELTA HTOR/W
1	0.00000E+00	0.000008+00	0.00000E+00	0.00000 E+00	0.210868+02	0.180998+01
2	0.000008+00	0.00000E+00	0.000008+00	0.000008+00	0.211138+02	0. 183308+01
3	0.000008+00	0.000008+00	0.000008+00	0.0000E+00	0.211438+02	0. 187528+01
	0.201148+02	0. 298832+01	0.000002+00	6.00000E+00	0.00000E+00	0.000008+00
5	0.188172+02	0.316782+01	0.000002+00	0.00002+00	0.000002+00	0.000002+00
6	0.174428+02	0. 331438+01	0. 000003+00	0.000008+00	0.000002+00	0.000002+00

.

đ

HEAT TRANSFER CORRELATION CALCOLATION FOR LEVEL F (BTO/HP PT2 P)

ROD TYPE	HTRAN/CE	DELTA HTRAN/CE	HLAR/CE	ERLTA HLAM/CB	HTUR/CE	DELTA HTOR/CE
1.	0.141312+02	0.209478+01	0.000002+00	0.000005+00	0.000008+00	0.000008+00
2	0.140908+02	0.208812+01	0.000002+00	0.00000#+00	0.000008+00	0.000008+00
3	C. 14013E+02	0.208048+01	0.000002+00	0.000002+00	0.000002+00	0.000008+00
	0.139598 02	0.207278+01	0.00000E+00	0.000002+00	0.000008+00	0.00000E+00
5	0.137202+02	0.218882+01	0.000002+00	0.00000 5+00	0.000008+00	0.000008+00
6	0.136098+02	0.228148+01	0.000008+00	0.000002+00	0.00000E+00	0.00000E+00

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (BTG/MR PT2 P)

.

.

*

BOD TTPS	1/864	DELTA H/85 W
1	0.198135+02	0.169182+01
2	0.198622+02	0.169078+01
3	0.199228+02	0.169042+01
	0.199832+02	0.169028+01
5	0.210832+02	0.185232+01
6	0. 22 59 28+0 2	0.202562+01

COTPOT RESULTS FOR TEST 3.02.100

SYSTEM PARAMETER SUMMARY

STSTER PRESSURE 0.100999212+04 +OR- 0.822472692+01 PSIA INLET FLOW 0.187461282+01 +OR- 0.80000002-01 GPS OUTLET FLOW 0.69217758492+03 +OR- 0.327561093+02 LBR/HR OUTLET FLOW 0.692177582+02 +OR- 0.350000002+01 GPS DUTLET FLOW 0.692177582+02 +OR- 0.350000002+01 GPA DUTLET FLOW 0.4929101222+05 +OR- 0.580000002+03 LBR/HR BUNDLE MASS FLOI 0.1129101222+05 +OR- 0.299635172+00 DEG F OUTLET TERPERATURE 0.48631224762+03 +OR- 0.323448942+01 DEG F OUTLET TERPERATURE 0.617308912+01 +OR- 0.373640652+00 FEET	
INLET FLOW 0.187461282+01 0.767544492+03 +OR- 0.327561093+02 CRM CRM OUTLET FLOW 0.692177588+02 0.750952282+03 +OR- 0.350000002+01 0.365997978+02 GPR LBR/HR BUNDLE MASS FLOI 0.112910128+05 +OR- 0.365997978+02 LBR/HR LBR/HR FT* INLET TEMPERATURE 0.466092048+03 +OR- 0.323448948+01 DSG F OUTLET TEMPERATURE 0.683122768+03 +OR- 0.323448948+01 DSG F COLLAPSED LL 0.617308918+01 +OR- 0.373640658+00 FEET TS BASS TAY 0.223441378+02 DRLTA 0.804479768-01 LBR VRE 5	
OUTLET FLOW 0.592177588+02 0.750852282+03 +OR- +OR- 0.385997978+02 0.350000028-01 LBE/HB GPA LBE/HB BUBDLE MASS FLOI 0.112910128+05 +OR- 0.580848078+03 LBE/HB BUBLET TEMPERATURE 0.466092048+03 +OR- 0.2399635172+00 DEG F OUTLET TEMPERATURE 0.466124762+03 +OR- 0.3234489482+01 DEG F COLLAPSED LL 0.617308918+01 +OR- 0.373640658+00 FEET TS MASS TAT 0.223441378+02 DELTA 0.804879768-01 LBE OVER 5	
BUNDLE MASS FLOI 0.112910128+05 +OB- 0.580848078+03 LBM/HR*FT* INLET TEMPERATURE 0.466092048+03 +OR- 0.299635178+00 DEG F OUTLET TEMPERATURE 0.863128768+03 +OR- 0.323468948+01 DEG F COLLAPSED LL 0.617308918+01 +OR- 0.373640658+00 FEET TS MASS TAY. 0.223941378+02 DELTA 0.804879768-01 LEM OVER 5	
INLET TEMPERATURE 0.466092048+03 +OR- 0.299635178+00 DRG F OUTLET TEMPERATURE 0.883128768+03 +OE- 0.323448948+01 DRG F COLLARSED LL 0.617308918+01 +OE- 0.373640658+00 FEET TS MASS TAY. 0.223941378+02 DRLTA 0.804879768-01 LER OVER 5	•2
OUTLET TERPERATURE 0.883124768+03 +OF- 0.323448948+01 DEG P COLLARSED LL 0.617308918+01 +OE- 0.373640658+00 FEET TS MASS THY. 0.223441378+02 DELTA 0.804879768-01 LEN OVER 5	
COLLARSED LL 0.617308912+01 +08- 0.373640652+00 FEET	
TS MASS THE. 0.223941378+02 DELTA 0.804479768-01 LBR OVER 5	
the same same second same second seco	CAN
ANN MASS INV. 0.995493652+02 DELTA -0.816561658-01 LBM OVE. 5	

SUBCHANNEL TEMPERATURES FOR LEVEL G (DEG P)

INTERNAL SUBCHANNEL TEMP	0.104699482+04	+ 0.8	0.154672298+02
COLD BOD SUBCHANNEL TEMP	0. 10 286 394 2+04	+ CR	0.123588898+02
COBNER SUBCHANNEL TEMP	0.796781432+03	+ CR-	0.176359138+02
WALL SUBCHANNEL TEMP	0.921405102+03	+CR-	0.186657488+02

SUBCHANNEL TEMPERATURES FOR LEVEL P (DEG P)

.

INTERNAL SUBCHANNEL TEMP	0.750956518+03	+C8-	0.871590078+01
COLD ROD SUBCHARNEL TEMP	0.743438712+03	+ 08-	0.767347668+01
CORNER SUBCHANNEL TERP	0.648477052+03	+CR-	0.782092688+01
WALL SOBCHANNEL TEMP	0.699518942+03	+CR-	0.886433278+01

RADIATION FLOI SUBRARY - LEVEL G (BTU/88 PT**2)

800	TTPE	BADIATION HEAT FLOI	+08-
	1	0.36579798+04	0.19978762+04
	3	0.42343218+04	0.19917752+08

RADIATION FLOX SUMMARY - LEVEL F (BTO/BB FT**2)

ROD	TTPE	BADIATION HEAT FLOI	+OR-
	1	0.33611178+04	0.13244478+04
	2	0.36139178+04	0.12780158+04
	3	0.34227612+04	0.12087728+04
	4	0.39387992+04	0.12433818+04

RADIATION FLOI SCHMART - LEVEL & (DEG F)

 HOT BOD TEMPS
 0.1412280E+04

 COLD BOD TEMPS
 0.1155145E+04
 +0R 0.5117240E+02

RADIATION FLOX SUMMART - LEVEL F (DEG ?)

ROT BOD TERPS 0.12164468+04 COLD BOD TERPS 0.86899582+03 +08- 0.50015708+02

PADIATION TO COLD RODS - LEVEL G (BTU/BE FT+*2)

 ROD TTPP
 PADIATION HEAT FLOI
 +OR

 3
 0.809735482+03
 0.38436542+03

RADIATION TO COLD BODS - LEVEL F (STO/BR FT**2)

800	-	BADIATION MEAT PLOT	+OR-
	2	0.48884592+03	0.17417552+03
	3	0.62521318+03	0.23867002+03
		0.12652548+04	0.49499212+03

RESOLTS OF HEAT TRANSPER COMPUTATIONS FOR LEVEL G

ROD TYPE	STEAS TESP. DEG :	DELTA STEAN TEMP.	TSOBF/TSEE DEG F	DELTA TSOBF/TSHE	SORFACE Q* BT0/HR FT2	DELTA SORPACE Q"
,	0.104702+04	0.154678+02	0.143682+04	0.627928+01	0. 125788+05	0.29047#+02
3	0.103782+04	0.139138+02	0. 141232+04	0.228138+02	0.125398+05	0.158972+03
5	0.984208+03	0. 170662+0 2	0.138312+04	0.156382+02	0.126868+05	0.897758+02
	0.921652+03	0.176098+02	0. 132872+04	0.610592+01	0.126078+05	0.643052+02

RESULTS OF HEAT TRANSFER COMPUTATIONS FOR LEVEL G

NOD TYPE B EXP DELTA FILE TERF. DELT BTU/RE FT2 F H EXP DEG F FILE T 1 0.322675+02 0.138382+01 0.128192+04 0.10673	
1 0.322672+02 0.138382+01 0.124192+04 0.10873	A ERP.
	e+02
3 0,334868+02 0.242698+01 0.122508+04 0.18363	E+0 2
5 0.318058+02 0.185942+01 0.118368+04 0.16352	8+02
6 0.309702+02 0.142672+01 0.112522+04 0.11857	E+02

DIMENSIONLESS PARAMETERS FOR LEFEL G

ROD TYPE	PE BULK/SCDI	DELTA RE BULK/SCDI	BE BOLK/BODI	CELTA RE BULK/BUDI	PP BULK TEMP	DELTA PR BOLK TEMP.
1	0.589392+04	0.366498+03	0.512772+04	0.318852+03	0.912482+00	0.282668-02
3	0.579838+04	0. 3546 18+0 3	0.516062+04	0.315612+03	0.914262+00	0.266568-02
5	0.523852+04	0.334212+03	0.536172+04	0.34207E+03	0.926478+00	0.426528-02
6	0.479312+04	0.310338+03	0.561622+04	0.363628+03	0.946178+00	0.629798-02

DIMENSIONLESS PARAMETERS FOR LEVEL G

 TYPE	BE FILR/SCDI	DELTA RE FILM/SCDI	RE FILE/BODI	DELTA RE FILA/BODI	PR FILM TEMP	DELTA PR FILM TEMP
1	0.518728+04	0.301478+03	0.451298+04	0.26228 2+03	0.887298+00	0.936028-03
3	0.512382+04	0.322068+03	0.456032+04	0.286642+03	0.888812+00	0.165388-02
5	0.457342+04	0.282918+03	0.468102+04	0.289578+03	0.892962+00	0.170942-02
6	0.41#992+04	0.245942+03	0.486252+04	0.288172+03	0.899992+00	0. 1558 18-02

NEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (BTO/BR PT2 P)

......

*

ROD TTPE	NTRAB/W	DELTA BTRAN/S	HLAN/W	DELTA BLAS/W	RTUR/W	DELTA HTOR/N
	0.000008+00	0.000002+00	0.00000E+00	0.000002+00	0.306382+02	0.214898+01
3	0.000002+00	0.000008+00	0.000002+00	0.000002+00	0.305308+02	0.220692+01
5	0.000008+00	0.00000E+00	0.000002+00	0.00000B+00	0.303828+02	0. 233238()1
6	0.294112+02	0.349528+01	0.000002+00	0.000008+00	0.000002+00	0.000008+00

HEAT TRANSFEE CORRELATION CALCULATION FOR LEVEL G (BTU/BR FT2 F)

ROD TYPE	STRAB/CE	DELTA HTRAN/CE	HLAR/CE	EELTA BLAR/CE	HTOR/CB	DELTA HTOR/CE
	0.214682+02	0.224758+01	0.000002+00	0.000005+00	0.000002+00	0.000002+00
3	0.213128+02	0.218658+01	0.0000018+00	0.00008+00	0.000002+00	0.000002+00
5	0.202618+02	0.231208+01	0.000002+00	0.00005 E+00	0.000008+00	0.00008+00
6	0.192768+02	0.233032+01	0.000002+00	0.000008+00	0.00000E+00	0.000008+00

STAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (STU/ER FT2 F)

BOD TYPE	8/569	DELTA H/B6B
1	0.273078+02	0.176292+01
3	0.273722+02	0.170692+01
5	0.278182+02	0.190018+01
6	0.282578+02	0.199762+01

RESOLTS OF REAT TRANSFER COMPUTATIONS FOR LEVEL F

BOD TYPE	STEAR TERP. DEG P	DRLTA STRAN TEMP.	TSURF/TSHE DEG F	DELTA TSUBF/TSBE	SURPACE Q* BTU/HE PT2	DELTA SURPACE Q"
3	0. 750962+03	0.87159E+01	0. 126082+04	0.54046 2+01	0. 127078+05	0.827518+02
2	0.749088+03	0.845538+01	0. 1235 12+04	0. 97276 8+01	0.127422+05	0. 128158+03
3	0.747208+03	0.819472+01	0.119782+04	0.13074 8+02	0. 127438+05	0. 161558+03
•	0.745328+03	0.793418+01	0.118232+04	0.519018+01	0. 125 158+05	0.965598+02
5	0.725242+03	0.879012+01	0.117252+04	0.12000 8+02	0.128818+05	0. 147092+03
6	0.699628+03	0.856648+01	0.112692+04	0.61269E+01	0.128128+05	0.653482+02

RESULTS OF BRAT TRANSFER COMPUTATIONS FOR LEVEL F

ROD TYPE	H RIP BTC/RR FT2 F	DELTA H EXP	FILH TERF. DEG P	DELTA FILM TEMP.
1	0.249248+02	0.526952+00	0.100592+04	0.7060 3E+0 1
2	0.262202+02	0.743702+00	0.992072+03	0.909142+01
3	0.282778+02	0.103252+01	0.972528+03	0.106352+02
4	0.286362+02	0.659348+00	0.963838+03	0.6562 18+0 1
5	0.288002+02	0.101288+01	0.948862+03	0.103958+02
6	0.299888+02	0. 754902+00	0.913232+03	0.734662+01

DIRENSIONLESS PARAMETERS FOR LEVEL P

ROD TTPE	RE BULK/SCDI	DEL"A RE BULK/.CDI	RE BOLK/BODI	DELTA BE RULK/BODI	PR BULK TEMP	DELTA PR BOLK TEMP.
1	0.740352+04	0.435492+03	0.644102+04	0.378872+03	0.106552+01	0. 100468-01
2	0.734122+04	0.430268+03	0.645132+04	0.378112+03	0.106772+01	0.988408-02
э	0.726012+04	0.423962+03	0.646162+04	0.377338+03	0.107002+01	0.971568-02
	0.71787E+04	0. 417672+03	0.647202+04	0.376558+03	0. 107232+01	0.954052-02
5	0.643322+04	0.379622+03	0.658458+04	0.388552+03	0.10990E+01	0. 121458-01
6	0.574108+04	0.339152+03	0.672688+04	0.397382+03	0.114012+01	0. 140808-01

DIMENSIONLESS PARAMETERS FOR LEVEL P

ROD TYPE	RE FILR/SCDI	DELTA BE FILM/SCDI	BE FILE/BUDI	DELTA BE FILM/BODI	PR FILM TEMP	DELTA PR FILM TEMP
1	0.606742+04	0.342562+03	0.527868+04	0.298038+03	0.921128+00	0. 161438-02
2	0.606662+04	0.351708+03	0.533138+04	0.309072+03	0.924468+00	0.222448-02
3	0.607578+04	0.359612+03	0.540762+04	0.32006 2+03	0.929638+00	0.288348-02
4	0.603642+04	0.339468+03	0.584212+04	0.306048+03	0.932112+00	0.188982-02
5	0.537625+04	0.317928+03	0.550272+04	0.325402+03	0.936702+00	0. 322828-02
6	0.482388+04	0.274978+03	0.565212+04	0.322192+03	0.949428+00	0.285458-02

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (STU/RP FT2 F)

ROI	TYPE	HTEAS/8	DELTA HTRAN/W	BLAR/W	DELTA BLAS/W	HTOR/#	DELTA HTOR/B
	s	0.000002+00	0.00000E+00	0.000002+00	0.000002+00	0.272982+02	0. 162208+01
	2	C.00000E+00	0.000008+00	0.000002+00	0.00000E+00	0.27277E+02	0. 164338+01
	3	0.00000E+00	0.000008+00	0.000002+00	0.00000 B+00	0.272588+02	0. 165842+01
	4	0.000008+00	0.000008+00	0-000002+00	0.00000 E+00	0.272862+02	0. 157872+01
	5	0.000002+00	0.000002+00	0.000002+00	0.00000 2+00	0.278122+02	0. 1706 3E+01
	6	0.000008+00	0.000008+00	0.000002+00	0.00000 8+00	0.284492+02	0. 1667 12+01

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (STU, MP FT2 F)

ROD TYPE	HTRAN/CE	DELTA HTRAN/CE	BLAR/CE	EBLTA BLAR/CE	HTUR/CE	DELTA HTOR/CE
,	0.232042+02	0.214298+01	0.000002+00	0.000002+00	0.000002+00	0.000008+00
2	0.231668+02	0.213118+01	0.000002+00	Q.00000E+00	0.000008+00	0.000008+00
3	0.231112+02	0.211908+01	0.000008+00	0.00008+00	0.000002+00	0.00000E+00
	0.230472+02	0.21077E+01	0.000002+00	0.00000 E+00	0.000002+00	0.000008+00
5	0.223422+02	0.218182+01	0.000002+00	0.00000E+00	0.000002+00	0.000008+00
6	0.216348+02	0.219438+01	0.000002+00	0.000008+00	0.000008+00	0.000008+00

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (STO/ER FT2 F)

.

ROD TTPE	8/868	DELTA H/85W
1	0.267868+02	0.155122+01
2	0.268168+02	0.154222+01
3	0.269018+02	0.153392+01
	0.269882+02	0.152552+01
5	0.279072+02	0.162692+01
6	0.290758+02	0.168332+01

OUTPUT RESULTS FOR TEST 3.02.10H

STSTES PARASTER SO BRART

STSTER PRESSURE	0.387461192+03	+OR-	0.782403788+01	PSIA
INTEL ALCA	0.173365592+01 0.762822048+03	+ 08 - + 08 -	0.80000008-01 0.352026842+02	GPM 188/EB
OUTLET PLON	0.192306112+03 0.813339872+03	+ 08 - + 08 -	0.350000002+01 0.226455382+02	GPR LBR/RR
BUNDLE MASS FLOX	0.122306752+05	+ 08 -	0.340538412+03	LB#/HR*PT**2
INLET TEMPERATURE	0.374678478+03	+08-	0.699607132+00	DEG P
OUTLET TERPERATURE	0.815005138+03	+08-	0.356265542+01	080 P
COLLAPSED LL	0.427022368+01	+08-	0.333209728+00	FEET
TS MASS INV.	0.192570622+02	DELTA	-0.183871652+00	LRS OVER SCAN
ANN MASS INT.	0.295988972+01	DELTA	-0.555233628+00	LBS OVER SCAR

SUBCHANNEL TERPERATURES FOR LEVEL G (DEG P)

INTERNAL SUBCHANNEL TEMP	0. 10 1643132+04	+ CR-	0.602441692+02
COLD BOD SUBCHANNEL TEMP	0.940122235+03	+OR-	0.391 1777 38+02
COBNER SUBCHANNEL TEMP	0.695733692+03	+ CR-	0.450674268:02
WALL SUBCRANNEL TERP	0.837379292+03	+OR-	0.519931248+02

SUBCHANNEL TEMPERATORES FOR LEVEL F (DEG F)

+02
+02
+02
+02
*0

RADIATION FLOI SURMARY - LEVEL & (BTO/RE FT**2)

ġ

eop	TTPE	DADIATION REAT FLOI	+08-
	1	0. 30 31 394 2+04	0.15599092+04
	3	0. 37766028+04	0.14712192+04

PADIATION FLOX SURMARY - LEVEL F (BTO/HE FT**2)

800	TTPE	RADIATION HEAT FLOI	+08-
	1	0.26178218+04	0.93280952+03
	2	0.32959572+04	0.96356918+03
	3	0.28047658+04	0.95188842+03
	4	0.41845012+04	0.99223758+03

RADIATION PLOI SUMMARY - LEVEL G (DEG P)

HOT BOD	TEMPS	0. 14043118+04		
COLD ROI	TEMPS	0.11085402+04	+08-	0.60527042+02

RADIATION FLOR SUMMARY - LEVEL F (DEG PL

ROT ROD TEMPS 0.11868372+04 COLD ROD TEMPS 0.78472478+03 +08- 0.60208942+02

MADIATION TO COLD BODS - LEVEL & (BT0/88 PT**2)

800	TTPE	RADIATION REAT FLOX	*OE-
	3	0.90908762+03	0.31056152+0

PADIATION TO COLD BODS - LEVEL F (BT0/BR FT**2)

ROD	TTPE	RADIATION HEAT PLUX	+08-
	2	0.61660588+03	0.1577398 8+03
	3	0.62338358+03	0.21644342+03
	4	0, 17443038+04	0.48695512+03

RESOLTS OF MEAT TRAMSPER CONPUTATIONS FOR LEVEL G

BOD TYPE	STEAS TEMP. DEG P	DELTA STEAN TEMP.	TSURF/TSHE DEG P	DELTA TSURF/TSBE	STRPACE Q" BTC/ER FT2	DELTA SUBFACE Q*
1	0. 10 16 42+04	0.602842+02	0. 144328+04	0.848138+01	0.129918+05	0.00000E+00
3	0.978288+03	0.496818+02	0. 140438+04	0.100538+02	0.133428+05	0. 137132+03
5	0.926918+03	0.561192+02	0. 181572+08	0.97695 2+01	0. 134312+05	0. 229772+03
6	0.846732+03	0.523242+02	0.134822+04	0.710888+01	0. 130788+05	0. 483318+02

RESOLTS OF REAT TRANSPER COMPUTATIONS FOR LEVEL G

ROD TYPE	H BIP BTO/HR FT2 F	DELTA 8 EIP	PILS TEMP. DEG P	DELTA FILA TEAP.
1	0.304458+02	0.434058+01	0. 122988+04	0.343632+02
3	0.313178+02	0. 373988+01	0.119138+04	0.298678+02
5	0.274782+02	0.323678+01	0.117138+04	0.329442+02
6	0.260798+02	0.274762+01	0.109758+04	0.297178+02

DIMENSIONLESS PARAMETERS FOR IEVEL G

BOD TYPE	RE BOLK/SCOI	DELTA RE BULK/SCDI	RE BOLK/BODI	DELTA RE EULE/BODI	PR BOLK TEMP	DELTA PR BOLK TEMP.
1	0.661858+04	0.476982+03	0.57581E+04	0.414978+03	0.901508+00	0.630548-02
	0.665598+04	0.434912+03	0.592398+04	0.387082+03	0.906258+00	0.605738-02
5	0,602112+04	0.432782+03	0.616278+08	0.442962+03	0.913858+00	0. 822898-02
6	0.561228+04	0.401788+03	0.657592+04	0.470772+03	0,929708+00	0. 109968-01

DIMENSIONLESS PARAMETERS FOR 18VEL G

ROD TEPE	RE FILE/SCOI	DELTA RE FILM/SCDI	RE FILS/BODI	DE FILS/BODI	PR FILS TESP	DELTA PR FILM TEMP
1	0.572162+04	0.284322+03	0.497782+04	0. 24736 2+03	0.883828+00	0. 185292-02
3	0.573322+04	0.271208+03	0.510272+04	0.241382+03	0.886178+00	0. 184822-02
5	0,505128+04	0.250482+03	0.517012+04	0.256382+03	0.887512+00	0.216662-02
6	0.463838+04	0.224718+03	0.543472+04	0.263302+03	0.893302+00	0.249568-02

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL G (STU/RE FT2 F)

.

ROD TYPE	RTBAN/W	DELTA HTRAN/H	BLAS/W	DEL TA HLAM/W	HTOR/#	DELTA HTUR/W
	0.000008+00	0.90002:00	0.000002+00	0.000002+00	0.299572+02	0. 415732+01
3	0.00000E+00	0.000002+00	0.000002+00	0.0000E+00	0.293608+02	0. 357448+01
5	0.000008+00	0.00002+00	0.000002+00	0.00000 E+00	0.292472+02	0. 404592+01
6	0.000002+00	0.000002+00	0.00000E+00	0.00000 #+00	0.284298+02	0. 387362+01

HEAT TRANSFER CORRELS. IN CALCULATION FOR LEVEL G (STU/n. FT2 F)

ROD TYPE	HTRA #/CE	DELTA HTRAN/CE	HLAR/CZ	TELTA BLAR/CE	HTOR/CE	DELTA HTGR/CE
,	0.230812+02	0. 373108+01	0.000002+00	0.000002+00	0.000002+00	0.000008+00
1	0.229048+02	0.330362+01	0.000008+00	0.00000 E+00	0.000008+00	0.00008+00
5	0.218132+02	0.364698+01	0.000002+00	0.000002+00	0.000002+00	0.00000E+00
6	0.207768+02	0.355522+01	0.000002+00	0.00002+00	0.00000E+00	0. 00000E+00

SEAT TRANSFER CONRELATION CALCULATION FOR LEVEL G (BTU/RE FT2 P)

BOD TYPB	8/358	DBLTA H/B6W
1	0.275238+02	0.32730 8+01
3	0.27308E+02	0.285132+01
5	0.276172+02	0.328822+01
6	0.276632+02	0.32914 8+01

RESULTS OF HEAT TRANSPER COMPUTATIONS FOR LEVEL P

np	TTPE	STRAN TEMP. DEG P	DELTA S"BAR TERP.	TSORF/TSHE DEG F	DELTA TSOEF/TSEE	SURFACE Q" BTU/BR FT2	DELTA SURFACE Q"
	1	0.646662+03	0.243058+02	0. 122212+04	0.100452+02	0.132602+05	0.721318+01
	2	0.639852+03	0.224978+02	0. 122872+04	0.141188+02	0.136778+05	0. 149312+03
	3	0.633042+03	0.206892+02	0.114902+04	0.505042+02	0.134698+05	0.283848+03
	•	0.626232+03	0.188802+02	0. 118878+04	0. 54656 8+01	0.129808+05	0. 782682+02
	5	0.61470*+03	0.222198+02	0.120842+04	0.862072+01	0.137342+05	0. 203022+83
	6	0.586082+03	0.203558+02	0.115878+04	0. 70106 E+01	0.133488+05	0. 493288+02

RESOLTS OF REAT TRANSFER COMPOTATIONS FOR LEVEL P

.

DD TIPE	H BEP BTO/HR FT2 F	DELTA B EXP	PILE TESP. DEG P	DELTA FILS TESP.
1	0.230418+02	0.105318+01	0.934398+03	0.171758+02
2	0.232298+02	0.107812+01	0.934258+03	0.183072+02
3	0.261048+02	0.281542+01	0.891032+03	0.355962+02
4	0.230788+02	0.818442+00	0.907452+03	0. 1217 38+02
5	0.231328+02	0.989542+00	0.911552+03	0.154208+02
6	0.233118+02	0.880658+00	0.872398+03	0.136832+02

DIARBSIGALESS PARAMETERS FOR LEVEL P

BOD TIPE	RE BULK/SCOI	DELTA RF BULK/SCDI	RE BULK/BUDI	DELTA RE 2018/BODI	PP BULK TEMP	DELTA PR BULK TEMP.
1	0.914132+04	0.526148+03	0.79530E+04	0.457742+03	0.101262+01	0. 1266 28-01
2	0.912438+04	0.504178+03	0.801832+04	0.44306 E+03	0, 10 168 8+0 1	0. 127868-01
3	0.908338+04	0.481742+03	0.808442+04	0. 42876 2+03		0. 127228-01
	0.904142+04	0.459932+03	0.815132+04	0.4 1466 * .3	0-102608+01	0. 1248 12-01
5	0.807662+04	0.445608+03	0.826668+04	0.4' .92+03	0. 10 3478+01	0. 160008-01
6	0.731138+04	0. 392348+0 3	0.856672+04	0.459718+03	0.105988+01	0. 183922-01

DINESSIOBLESS PARAMETERS FOR LEVEL P

ROD TYPE	WE FILM/SCDI	DELTA RE FILM/SCDI	RE FILM/BUDI	CBLTA RE FILM/BODI	PR FILM TEMP	DELTA PR FILM TERP
1	0.704228+04	0.290418+03	0.612672+04	0,25266 2+03	0.912642+00	0.263598-02
2	0.697262+04	0.293712+03	0.612742+04	0.258118+03	0.912668+00	0.280488-02
3	0.712462+04	0.402978+03	0.634112+04	0.35866E+03	0.920228+00	0.632478-02
4	0.69%16 E+ 04	0.260568+03	0.625828+04	0.234918+03	0.91718E+00	0.211578-02
5	0.609442+04	0.244288+03	0.623782+04	0.250032+03	0.916452+00	0. 261448-02
6	0.549442+04	0.214528+03	0.643792+04	0.25136 8+03	0.923962+00	0.277978-02

HEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (BTO/MR PT2 F)

BOD TIPE	RT BAR/W	DELTA STRAS/T	HLAN/W	DELTA BLAN/W	HTOR/W	DELTA RTOR/W
,	0.000008+00	0.00008+00	0.000002+00	0.00008+00	0.244782+02	0.216528+01
2	0.000002+00	0.000008+00	0.000002+00	0.0000CE+00	0.244802+02	0. 207922+01
3	0.000008+00	0.000008+00	0.000002+00	0.0000E+ 0	0.243332+02	0. 225878+01
	C.000008+00	0.000008+00	0.000002+00	0.00000 2+00	0.243988+02	0. 177842+01
. 5	0.000002+00	0.000038+00	0.00000±+00	0.000008+00	0.248432+32	0. 2054 28+01
6	0.000002+00	0.000008+00	0.000002+00	0.0000E+00	0.251508+02	0. 195118+01

HEAT THANSPES CONSELATION CALCULATION FOR LEVEL F (BTO/WE FT2 F)

ROD TYPE	RTRAN/CE	DELTA STEAN/CE	HLAR/CE	TELTA BLAN/CE	HT08/CE	DELTA RTOR/CE
1.1	0.240712+02	0.259218+01	0.000008+00	0.000008+00	0.000008+00	0.000002+00
2	0.241028+02	0.247958+01	0.000002+00	0.000002+00	0.000008+00	0.000008+90
3	0.24129E+02	0.236262+01	0. 00000E+00	0.00000 #+00	0.000002+00	0.000008+00
	0.241432+02	0. 225278+0 1	0.000002+00	0.0000E+00	0.00000E+00	0.00002+00
5	0.234148+02	0.253988+01	0.000002+00	0.00008+00	0.00000±+00	0.000008+00
6	0.228612+02	0.248358+01	0.000002+00	0.00000 2+00	0.000308+00	0.000008+00

SEAT TRANSFER CORRELATION CALCULATION FOR LEVEL F (STO/WE FT2 F)

OD TTPE	8/869	DELTS H/BSW
1	0.250602+02	0.199062+01
2	0.251212+02	0.189512+01
3	0.251988+02	0.179982+01
A	0.252802+02	0.170352+01
5	0.259702+02	0.197138+01
6	0.268528+02	0.194947+01

NUREG/CR-2707 ORNL/TM-8329 Dist. Category AN

Internal Distribution

1-5.	Т.	Μ.	Anklam	14.	H. E. Trammell
6.	W.	G.	Craddick	15.	D. B. Trauger
7.	D.	K.	Felde	16.	G. L. Yoder
8.	H.	W.	Hoffman	17.	ORNL Patent Office
9.	Α.	L.	Lotts	18.	Central Research Library
10.	D.	G.	Morris	19.	Document Reference Section
11.	c.	Β.	Mullins	20-21.	Laboratory Records Department
12.	L.	J.	Ott	22.	Laboratory Records (RC)
13.	Т.	W.	Robinson, Jr.		

External Distribution

- 23-24. Director, Division of Accident Evaluation, Nuclear Regulatory Commission, Washington, DC 20555
 - 25. Office of Assistant Manager for Energy Research and Development, DOE, ORO, Oak Ridge, TN 37830
- 26-30. Director, Division of Accident Evaluation Coordination Office, Department of Energy, Washington, DC 20555
- 31-32. Technical Information Center, DOE, Oak Ridge, TN 37830

33-132. Given distribution as shown in category AN (NTIS-10)

120555078877 1 AN US NRC ADM DIV OF TIDC POLICY & PUBLICATIONS MGT BR PDR NUREG COPY LA 212 WASHINGTON DC 20555 .

÷