Purchase Order No. 349991 Release No. YY-9

ZION STEAM GENERATOR GIRTH WELD FLAW EVALUATION

Prepared for

COMMONWEALTH EDISON COMPANY ZION STATION ZION, ILLINOIS

November 24, 1993 - FINAL

Prepared By/Date

126/97 Prepared By/Date

Verified By/Date

Tobet HMall AT Wate.

Verified By/Date

Joby Da Wusemanne 11/26/93 Quality Assurance/Date

"/20/93

Approved By/Date

Engineering Applied Sciences, Inc. 505 Pleasant Valley Road Trafford, PA 15085-9763

2032-0001-00 Document No.

> 04 Rev. 02 03 01 2/15/94 2 8 94 3/3/44 1/27/44 Date AS Appr ANG ali Ru TOU QA

9403250217 940316 PDR ADDCK 0500029 DR PDR

TABLE OF CONTENTS

Secti	on	Title	P	age
	EXE	CUTIVE SUMMARY AND CONCLUSIONS		. ix
1.0	INTR	RODUCTION	i da de la calega	. 1
2.0	TEC	HNICAL APPROACH		. 3
	2.1	ZION STATION STEAM GENERATORS	deres de	3
	2.2	STEAM GENERATOR GEOMETRY		. 3
	2.3	MATERIAL PROPERTIES		43
3.0	FLAV	W EVALUATION	*****	20
	3.1	APPLICABLE CODES AND PRESCRIBED METHODS	diada	20
	3.2	DESCRIPTION OF PAST FLAW OBSERVATIONS		20
	3.3	COMPARISON OF UT AND MT/GRINDOUT SURFACE		
		FLAW DEPTHS	A REPORT	35
	3.4	SELECTION OF FLAWS FOR EVALUATION BY		
		FRACTURE MECHANICS		36
4.0	ANA	LYSIS VERIFICATION		37
	4.1	INTRODUCTION		37
	4.2	SIMPLIFIED MODEL		37
		4.2.1 Pressure Load		38
		4.2.2 Thermal Transient Load		38
5.0	STE	AM GENERATOR MODEL		45
	5.1	INTRODUCTION		45
	5.2	GEOMETRY		45
	5.3	APPLIED LOADING		47
6.0	STEA	AM GENERATOR STRESS ANALYSIS		57
	6.1	INTRODUCTION		57
	6.2	HEATUP @ 100°F/HOUR	Sec. S	57
	6.3	COOLDOWN @ 100°F/HOUR		58
	6.4	LARGE STEP LOAD DECREASE	Sec.	59

TABLE OF CONTENTS

(Continued)

Section		Title	Page
6	5.5	REACTOR TRIP	60
(6.6	AUXILIARY FEEDWATER CYCLING	61
€	5.7	BOUNDING FAULTED EVENT	62
7.0 F	LAW	EVALUATION BY FRACTURE MECHANICS	. 125
7	7.1	GENERAL APPROACH	. 125
1.1.1.1	7.2	FLAW ACCEPTANCE BY ANALYSIS CRITERIA	. 125
7	7.3	COMPUTATION OF APPLIED STRESS INTENSITY	
		FACTORS	. 127
7	7.4	SELECTED FLAW GEOMETRIES	. 129
7	7.5	LOADING CONDITIONS	. 129
7	7.6	FATIGUE CRACK GROWTH ANALYSIS	. 131
7	7.7	CRACK GROWTH CONSIDERATIONS	. 135
7	7.8	APPLICATION OF FRACTURE EVALUATION	
		ACCEPTANCE CRITERIA	. 137
8.0 F	REFE	RENCES	. 145
APPEN	DIX A		
1	NPUT	DATA LISTINGS	A-1
APPENI	DIX B		
1	NPUT	DATA LISTINGS	B-1
APPENI	DIX C		
1.1.1	NPUT	DATA LISTINGS	C-1
APPENI	DIX D		
24	NPUT	DATA LISTINGS	D-1

2032-0001-04

Page ii of ix

LIST OF TABLES

Number

Title

Page

2-1	Coefficients of Thermal Conductivity and Diffusivity	6
2-2	Moduli of Elasticity of Ferrous Materials	7
2-3	Coefficients of Thermal Expansion	8
3-1	Zion Unit 1 Steam Generator A UT Inspection Results, 1989	21
3-2	Zion Unit 1 Steam Generator B UT Inspection Results, 1989	22
3-3	Zion Unit 1 Steam Generator C UT Inspection Results, 1989	22
3-4	Zion Unit 1 Steam Generator D UT Inspection Results, 1989	23
3-5	Zion Unit 2 Steam Generator A UT Inspection Results, 1990	24
3-6	Zion Unit 2 Steam Generator B UT Inspection Results, 1990	24
3-7	Zion Unit 2 Steam Generator C UT Inspection Results, 1990	25
3-8	Zion Unit 2 Steam Generator D UT Inspection Results, 1990	25
3-9	Zion Unit 1 Steam Generator MT/Grindout Inspection Results, 1989	26
3-10	Zion Unit 1 Steam Generator MT/Grindout Inspection Results, 1992	27
3-11	Zion Unit 2 Steam Generator MT/Grindout Inspection Results, 1990	30
3-12	Allowable Planar Flaw Sizes for 3.62 inch Thick Wall	36
4-1	Verification of Pressure Loading	40
4-2	Verification for Thermal Transient Loading	40
5-1	Transients for Stress Analysis	49
5-2	Feedwater Cycling and Reactor Trip Pressure Transients	50
5-3	Thermal Boundary Conditions, Reactor Trip Transients	51
5-4	Thermal Boundary Conditions, Feedwater Cycling Transient	52
6-1	Girth Weld Axial Stress Contributions, Heatup @ 100°F/Hour	63
6-2	Girth Weld Axial Stress Detail, Heatup @ 100°F/Hour,	64
6-3	Girth Weld Axial Stress Contributions, Cooldown @ 100°F/Hour	65
6-4	Girth Weld Axial Stress Detail, Cooldown @ 100°F/Hour	66

Page iii of Ix

LIST OF TABLES - continued

Number	Title	Page
6-5 Girth Weld	Axial Stress Contributions, Large Step Load Decrease	67
6-6 Girth Weld	Axial Stress Detail, Large Step Load Decrease	68
6-7 Girth Weld	Axial Stress Contributions, Reactor Trip	. 69
6-8 Girth Weld	Axial Stress Detail, Reactor Trip	. 70
6-9 Girth Weld	Temperature Detail, Reactor Trip	
6-10 Girth Weld	Axial Stress Contributions, Auxiliary Feedwater Cycling	72
6-11 Girth Weld	Axial Stress Detail, Auxiliary Feedwater Cycling	. 73
6-12 Girth Weld	Axial Stress Contributions, Bounding Faulted Event	. 74
6-13 Girth Weld	Axial Stress Detail, Bounding Faulted Event	. 75
7-1 Fatigue De	sign Allow-bles	. 131
7-2 Subsurface	Flaw Case	. 132
7-3 Surface Fla	w Case	. 132
7-4 Subsurface	Flaw Case	. 133
7-5 Surface Fla	w Case	133

2032-0001-03

Page iv of ix

LIST OF FIGURES

Number

Title

Page

2	-1	Steam Generator Cross Section
2	-2	Steam Generator Support Locations
2	-3	Upper Girth Weld Detail
2	-4	Schematic of Axisymmetric Finite Element Model
2	-5	SA533 Grade A Class 1 Heat Capacity
2	-6	SA533 Grade A Class 1 Thermal Conductivity
2	-7	SA533 Grade B Class 1 Elastic Modulus
2	-8	SA533 Grade A Class 1 Thermal Expansion Coefficient
2	-9	Reference Fracture Toughness Curves
2	-10	Reference Fatigue Crack Growth Curves
2	-11	Reference Fatigue Crack Growth Curves for Carbon and Low Alloy
		Ferritic Steels Exposed to Water Environments
3	-1	Estimated Cumulative Probability Versus UT Flaw Depth for Surface
		Flaws in Zion Unit 1, 1989 and Unit 2, 1990 31
3	-2	Estimated Cumulative Distribution Versus MT/Grindout Depth for
		Surface Flaws in Zion Unit 1, 1989 and Unit 2, 1990 32
3	-3	Comparison of UT and MT/Grindout Surface Flaw Depth Distribution
		for Zion Unit 1, 1989 and Unit 2, 1990 33
3	-4	Comparison of MT/Grindout Surface Flaw Depth Distributions for
		Zion Unit 1, 1989 and 1992
4	-1	Cylinder for Simplified Model 41
4	-2	Pressure Load Verification
4	-3	Thermal Stress Transient Verification, Temperature
4.	-4	Thermal Stress Transient Verification, Stresses
5	1	Steam Generator Shell Finite Element Model 53

Page v of ix

LIST OF FIGURES - continued

Number

Title

Page

5-2	Steam Generator Girth Weld, Finite Element Model	54
5-3	Region Definition Reactor Trip Transient	55
5-4	Region Definition Feedwater Cycling Transient	56
6-1	Heatup @ 100°F/Hour, Temperature Transient	76
6-2	Heatup @ 100°F/Hour, Temperature Profiles, t = 18,000 sec	77
6-3	Heatup @ 100°F/Hour, Stress Intensity, t = 18,000 sec	78
6-4	Heatup @ 100°F/Hour, Axial Stress Contributions, t = 18,000 sec	79
6-5	Cooldown @ 100°F/Hour, Temperature Transient	80
6-6	Cooldown @ 100°F/Hour, Temperature Profiles, t = 18,000 sec	81
6-7	Cooldown @ 100°F/Hour, Stress Intensity, t = 0 sec	82
6-8	Cooldown @ 100°F/Hour, Axial Stress Contributions, t = 0 sec	83
6-9	Large Step Load Decrease, Temperature Transient	84
6-10	Large Step Load Decrease, Temperature Profiles, t = 60 sec	85
6-11	Large Step Load Decrease, Stress Intensity, t = 0 sec	86
6-12	Large Step Load Decrease, Axial Stress Contributions, t = 0 sec	87
6-13	Large Step Load Decrease, Stress Intensity, t = 60 sec	88
6-14	Large Step Load Decrease, Axial Stress Contributions, t = 60 sec	89
6-15	Large Step Load Decrease, Stress Intensity, t = 180 sec	90
6-16	Large Step Load Decrease, Axial Stress Contributions, t = 180 sec	91
6-17	Large Step Load Decrease, Stress Intensity, t = 1200 sec	92
6-18	Large Step Load Decrease, Axial Stress Contributions, t = 1200 sec	93
6-19	Reactor Trip, Temperature Transient at Girth Weld	94
6-20	Reactor Trip, Temperature Profile through Wall at Girth Weld, t = 560 sec	95
6-21	Reactor Trip, Temperature Profile Up Inside Surface, t = 560 sec	96
6-22	Reactor Trip, Stress History at Girth Weld	97

Page vi of ix

LIST OF FIGURES - continued

Number

Title

Page

6-23	Reactor Trip, Stress Profile Up Inside Surface, T = 547°F	98
6-24	Reactor Trip, Stress Profile Up Inside Surface, t = 685 sec	99
6-25	Reactor Trip, Stress Profile Up Inside Surface, t - 685 sec	100
6-26	Reactor Trip, Stress Intensity Contours, T = 547°F, p = 1020 psi	101
6-27	Reactor Trip, Stress Intensity Contours, t = 685 sec	102
6-28	Reactor Trip, Axial Stress Contributions, T = 547°F, p = 1020 psi	103
6-29	Reactor Trip, Stress Intensity Contours, t = 685 sec	104
6-30	Auxiliary Feedwater Cycling, Temperature Transient at Girth Weld	105
6-31	Auxiliary Feedwater Cycling, Temperature Profile Up Inside Surface, t = 560 sec .	106
6-32	Auxiliary Feedwater Cycling, Temperature Profile Through Wall at Girth Weld,	
	t = 560 sec	107
6-33	Auxiliary Feedwater Cycling, Stress History at Girth Weld	108
6-34	Auxiliary Feedwater Cycling, Stress Profile Up Inside Surface, t = 560 sec	109
6-35	Auxiliary Feedwater Cycling, Stress Intensity Contours, t = 560 sec	110
6-36	Auxiliary Feedwater Cycling, Axial Stress Contributions, t = 275 sec	111
6-37	Auxiliary Feedwater Cycling, Axial Stress Contributions, t = 560 sec	112
6-38	Bounding Faulted Event, Temperature Transient	113
6-39	Bounding Faulted Event, Temperature Profile, t = 60 sec	114
6-40	Bounding Faulted Event, Temperature Profile, t = 197 sec	115
6-41	Bounding Faulted Event, Temperature Profile, t =347 sec	116
6-42	Bounding Faulted Event, Stress Intensity, Steady State, t = 0 sec	117
6-43	Bounding Faulted Event, Axial Stress Contributions, Steady State, t = 0 sec	118
6-44	Bounding Faulted Event, Stress Intensity, t = 60 sec	119
6-45	Bounding Faulted Event, Axial Stress Contributions, t = 60 sec	120
6-46	Bounding Faulted Event, Stress Intensity, t = 197 sec	121

2032-0001-04

Page vil of ix

LIST OF FIGURES - continued

Number

Title

Page

6-47	Bounding Faulted Event, Axial Stress Contributions, t = 197 sec	122
6-48	Bounding Faulted Event, Stress Intensity, t = 347 sec	123
6-49	Bounding Faulted Event, Axial Stress Contributions, t = 347 sec	124
7-1	Linearized Representation of Stresses	139
7-2	Schematic Stress Time Plot to Identify Fatigue Cycles	140
7-3	Axial Stress Distribution Across Wall Thickness	141
7-4	Crack Growth of Low Alloy Steels in High Temperature Oxygenated Water	142
7-5	Crack Growth of Low Alloy Steels in High Temperature Oxygenated Water	143
7-6	Stress Intensity Factor Versus Surface Crack Depth During	
	Maximum Normal/Upset Condition Loading	144

EXECUTIVE SUMMARY AND CONCLUSIONS

Engineering considerations and analytical methods used to determine acceptability of flaws detected in the upper shell to transition cone girth weld in the steam generators at Zion Nuclear Station Units 1 and 2 are presented and discussed. The calculations regarding flaw acceptability by fracture mechanics analysis are described and results are presented for surface and subsurface flaws. Final allowable flaw sizes and shapes are specifically illustrated for surface flaws, where flaw growth in service is complicated by environmentally enhanced crack growth considerations.

A maximum surface crack growth of 0.32 inches in depth for the next one cycle of operation is a reasonable conservative choice for a bounding growth rate. As described in this report, this conclusion is based upon the history of inspection results at Zion Units 1 and 2, the observed cracking response of similar steam generators, data in the literature on environmentally enhanced crack growth of pressure vessel steels in high temperature water, and ASME Code corrosion fatigue crack growth analyses.

Flaws found by inspection can be left in service if the present size plus the expected crack growth is less than the allowable flaw size. As an example, a surface crack with a present depth of 0.35 inches would not be expected to grow deeper than 0.67 inches after one cycle of operation. This size would be acceptable. Acceptability of this flaw for continued service beyond one cycle would depend on the actual measured end of cycle crack depth and reevaluated crack growth rates.

2032-0001-03

Page ix of ix

ZION STEAM GENERATOR GIRTH WELD FLAW EVALUATION

1.0 INTRODUCTION

This report presents engineering considerations and analytical methods used 'o determine acceptability of flaws detected in the upper shell to transition glitth weld in the steam generators at Zion Nuclear Station Units 1 and 2. The steam generator shells are Class 2 Components which are under the jurisdiction of Section III, Division 1, Subsection NC of the ASME Boiler and Pressure Vessel Code. The analyses were done to ASME 1989 Edition no addenda and the working edition of the code for Zion is 1980 through the Winter 1981 Addenda. However, additional guidance was sought from the 1992 Edition which is believed to be adopted by the NRC in the Federal Register, first quarter 1994. The reason for the reference to the 1992 Edition is the improvement in fatigue and fracture curve calculations. Flaws found during inservice inspections of Class 2 components are considered to be acceptable if they satisfy the requirements of Section XI Article IWC-3000 of the Code. Acceptability is demonstrated if one of the following two options is satisfied.

- Flaw sizes satisfy the requirements of IWC-3500.
- Analytical evaluation of flaw stress intensities satisfies the requirements of IWC-3600. Article IWC-3600 specifies that the analytical methods used to satisfy IWC requirements are those described in article IWB-3600 of the Code. Flaws satisfying these requirements are then subject to IWC requirements for subsequent inspections.

It is customary to conduct such evaluations of pressure vessels using the edition of the Code which was used for the construction of the vessels. However, it is

2032-0001-03

Page 1 of 146

permissible to use the current edition of the Code provided such usage is sufficiently broad to ensure a consistent set of rules for the evaluation conducted. This approach is particularly appropriate when the current Code edition provides coverage which was not contained in the Code edition of construction. This is the case for the flaw evaluation for the steam generators of Zion Units 1 and 2. Therefore, all applicable rules and data for this evaluation are taken from the 1992 Edition of the ASME B&PV Code with the 1992 Addenda (Reference 1).

Section 2 presents basic data on geometry and material properties. The flaws which were detected in the 1989, 1990 and 1992 inspections are recorded in Section 3. The results of UT and MT/grindout inspections are compared. The finite element analysis method is verified in Section 4. Section 5 describes the steam generator girth weld model and the applied loadings. Results of the stress analysis are presented in Section 6. Then, in Section 7, example fracture mechanics analyses of selected flaws are performed using the stress results of Section 6. Crack growth projections are made using several approaches. For subsurface flaws, only fatigue in the absence of environmental effects needs to be considered. For surface flaws, environmentally enhanced crack growth is a key consideration. A standard ASME Code corrosion fatigue crack growth analysis is presented and compared to previous inspection results. Data in the literature and stress corrosion cracking considerations are discussed. General growth projection for surface flaws for one cycle of operation is presented together with end-of-cycle allowable crack sizes and shapes.

2032-0001-03

Page 2 of 146

2.0 TECHNICAL APPROACH

2.1 ZION STATION STEAM GENERATORS

Units 1 and 2 of Zion Nuclear Station are four loop pressurized water reactors. Each unit has four Westinghouse Model 51D feedring steam generators. Ultrasonic examinations of the upper shell to transition cone girth weld were performed for Zion Unit 1 during the fall 1989 refueling outage and for Zion Unit 2 during the spring 1990 refueling outage. The girth weld of Unit 1 was reinspected during the spring 1992 refueling outage. Numerous defects were recorded, associated with the girth weld, for each of the generators during each inspection. Many of the defects were shallow and surface connected, and were removed by grinding and blending. Subsurface indications were sized using ultrasonic data and were dispositioned according to the acceptability criteria in IWB-3511-1 per CECo, and <u>W</u> WCAP 12489. Flaws exceeding these criteria are evaluated using fracture mechanics methods for disposition according to the provisions of the Code. Use of fracture mechanics methods to disposition observed flaws requires a knowledge of the detailed stress state in the girth weld region. The detailed stress state is determined using finite element analysis.

2.2 STEAM GENERATOR GEOMETRY

A steam generator cross section is shown in Figure 2-1. Support locations are shown in Figure 2-2. The closest support to the girth weld is the upper lateral support which contacts the lower cylinder. As shown in Section 5 of this report, this support is sufficiently far from the girth weld that its influence on local stresses in the girth weld region may be neglected. This allows us to restrict the stress analysis to a limited region of the steam generator as shown in Figure 2-1. Figure 2-3 shows a detail of the upper girth weld. Figure 2-4 is a schematic of the finite element model used in this analysis.

2032-0001-04

Page 3 of 146

2.3 MATERIAL PROPERTIES

The steam generator shell is fabricated from SA533 Grade A Class 1 material which is nearly identical in composition to SA302 Grade B and has similar properties. Material properties are given in the ASME Code Section II pages included as Tables 2-1, 2-2 and 2-3. These properties are temperature dependent as shown in the plots of Figures 2-5 to 2-8.

Additional material properties which are not temperature dependent are taken from Reference 2 for use in the finite element stress analysis.

Density = 490 lb/ft^a Poisson Ratio = 0.3

To perform the analytical evaluation of the flaw stress intensities we must know the material fracture toughness and the fatigue crack growth rates. The fracture toughness of the material is determined by two properties K_{ia} and K_{ic}, which represent critical values of the stress intensity factor K_i. K_{ia} is based on the lower bound of crack arrest critical K_i values measured as a function of temperature. K_{ic} is based on the lower bound of static initial critical K_i values measured as a function of temperature. Values of K_{ia} and K_{ic} are given by the reference curve shown in Figure 2-9. The reference toughness curve represents a conservative estimate of measured lower bounding values for pressure vessel steels of the type used in the NSSS island. It is published in Section XI of the ASME Boiler and Pressure Vessel Code and is indexed to a Reference Temperature (RT). RT is determined by mechanical testing of each piece of material used in construction (including welding consumable). The two tests applied are the Drop Weight Nil Ductility Temperature (DWNDT) and the Charpy Vee Notch tests. The Reference Temperature is either the DWNDT plus 60°F or the

2032-0001-03

Page 4 of 146

temperature at which the C_v values 35 mills lateral expansion and 50 ft-lbs absorbed energy are achieved. By knowing these values, the reference toughness curve is entered and critical fracture toughness properties estimated. A comparison of the calculated stress intensity associated with a given flaw size and location to the appropriately scaled fracture toughness criterion determines the flaw acceptability.

During service loading, a flaw may extend or grow to a larger size over a given duration in time. It must be assumed that this possible extension will not exceed a critical flaw size determined from the fracture toughness. Crack extension is estimated typically by a fatigue crack growth analysis. The fatigue crack growth rate of the material is given in the ASME Code as:

$$da/dN = C_{o} (\Delta K)'$$

where

 $C_o = \text{scaling constant}$ $\Delta K = \text{range of applied stress intensity}$ $n = \text{slope of the log (da/dN) versus log (}\Delta K) \text{ curve}$

Fatigue crack growth rate curves reflecting values of C_o and n are shown in Figure 2-10 for an air environment. Surface flaws on the inner diameter are exposed to a high temperature water environment which can accelerate fatigue crack growth rates. For this circumstance, the appropriate fatigue crack growth rates as given in the ASME Code are presented in Figure 2-11. A complete discussion of crack growth rates including historical performance at Zion Units 1 and 2 and data in the literature is presented in Section 3.

2032-0001-03

Page 5 of 146

(Egn 1)

Table 2-1. Coefficients of Thermal Conductivity and Diffusivity

	Carbon and Low Alloy Steels (Cont'd)													
	3	/ ₂ NI	31, 41	-1 ³ / ₄ Cr- (o-V	5N)	- ¹ / ₄ Mp	1	INI	9	INI	Mn	-V ₂ Me	Mo-1/J	Me-1/4N
етр., Ч	TC	τp	TC	TD	τc	TD	τć	TD	TC	TD	TC	TD	TC	TD
70	22.8	0.436	21.9	0.418	19.4	0.347	17.6	0.126	17.4	0.174		0.455		
100	23.2	0.432	27 1	0.415	19.7	0.366	37.8	0.376	17.6	0.326	33.6	0.455	22.7	0.43
150	23.6	0.426	1.0	0.411	26.2	0.364	18.1	0.372	16.3	0.325	24.5	0.444	53.5	0.43
200	23.8	0.418	.3.0	0.406	25.7	0.361	18.5	0.310	10.0	0.324	24.4	0.437	25.8	0.42
250	24.0	0.411	23.3	0.401	21.0	0.357	18.6	0.314	19.1	0.322	24.6	0.429	24.1	0.42
300	24.1	0.407	23.4	0.394	21.2	0.353	14.0	0.310	19.4	0.319	24.7	0.420	24.2	0.41
350	24.0	0.3' 4	23.4	0.386	23.4	0.348	19.2	0.306	19.6	0.315	24.7	0.409	24.2	0.40
400	23.9	0.184	23.3	0.377	21.6	0.341	19.6	0.302	19.7 .	0.309	28.6	0.396	24.1	0.39
450	23.7	0 373	23.1	0.367	21.4	0.334	19.5	0.297	19.8	0.303	24.4	0.385	24.0	0.38
500	23.4	1.363	22.9	0.357	\$1.3	0.326	29.6	0.292	19.8	0.297	24.2	0.377	23.8	0.37
550	23.2	0.351	22.7	0.346	21.2	0.318	19.6	0.286	19.8	0.291	23.9	0.364	23.5	0.25
600	22.9	0.340	22.4	0.335	21.1	0.310	19.7	0.280	19.8	0.284	23.5	0.353	23.2	0.34
650	22.6	0.327	22.1	0.323	20.9	0.301	19.6	0.273	19.8	0.277	23.2	0.340	22.9	0.33
200	22.3	0.316	21.8	0.332	30.6	0.292	19.6	0.267	19.7	0.270	22.8	0.328	22.5	0.52
750	21.9	1.306	21.5	0.302	20.6	0.263	39.6	0.259	19.6	0.263	22.4	0.314	22.2	0.31
800	21.6	0.255	21.2	0.291	20.4	0.274	19.5	0.251	19.5	0.255	22.0	0.300	21.8	0.291
850	23.2	0.284	20.8	0.260	20.1	0.265	19.3	0.242	29.4	0.247	21.6	0.286	21.4	0.28
900	20.9	0.272	20.5	0.269	19.9	0.255	19.2	0.272	19.2	0.237	21.2	0.274	21.0	0.27
950	20.5	0.260	.70.1	1.257	19.6	0.243	18.9	0.220	18.9	0.225	20.8	0.252	20.6	0.25
3000	20.1	0.245	19.6	0.243	19.2	0.231	16.5	0.205	18.6	0.212	20.4	0.249	20.2	0.24)
1050	19.7	0.232	39.4	0.230	18.8	0.218	18.1	0.142	18.3	0.297	19.9	0.237	19.8	0.230
1100	19.2	0.237	18.9	0.215	18,4	0.203	17.7	0.176	17.9	0.181	19.5	0.223	19.4	0.235
1150	18.7	0.201	18.4	0.199	18.0	0.187	17.2	0.158	17.4	0.164	19.0	0.209	18.9	0.204
3500	18.2	0.163	\$7.9	0.182	17.5	0.170	16.8	0.140	27.0	0.344	18.6	0.193	18.5	0.16
1250	17.6	0.164	17,4	0.163	17.0	0.152	26.3	0.108	16.4	0.111	18.1	0.178	18.0	0.171
1300	36.8	0.141	16.7	0.141	16.4	0.129	15.9	0.169	15.6	0,170	17.6	0.161	17.6	0.155
1350	15.0	0.137	15.7	0.137	15.5	0.155	15.5	0.186	15.1	0.165	17:0	0.142	17.0	0.134
1400	15.5	0.174	15.3	0.174	15.2	0.178	15.3	0.198	15.0	0.199	16.1	0.303	36.0	0.103
1450	15.4	0.194	15.2	0.194	15.2	0.195	15.2	0.208	15.1	0.711	25.3	0.137	15.3	0.144
1200	15.3	0.208	15.2	0.206	15.2	0.208	15.4	0.218	15.2	0.221	25.5	0.164	25.4	D.164

TABLE TCD (CONT'D) NOMINAL COEFFICIENTS OF THERMAL CONDUCTIVITY (TC) AND THERMAL DIFFUSIVITY (TD)

K= Blu/hoft = de ft=/h=

Source : Reference 1

20

Page 6 of 146

2032-0001-03

Table 2-2 Moduli of Elasticity of Ferrous Materials

Table TM-1

1992 SECTION II

TABLE TM-1 MODULI OF ELASTICITY E OF FERROUS MATERIALS FOR GIVEN TEMPERATURES

	Modulus of Elasticity E = Value Given x 10" psi, for Temp. "F. of											
Materials	-325	~ 200	-100	70	200	300	400	500	600	700	800	900
Carbon strets with C 😒 0.30%	31.4	30.8	30.2	29.5	28.8	28.3	27.7	27.3	26.7	25.5	24.2	22.4
Carbon steels with $C > 0.30\%$	31.2	30.6	30.0	29.3	28.4	28.1	27.5	27.1	26.5	25.3	24.0	22.3
Material Group A"	31.1	30.5	29.9	29.2	26.5	28.0	27.4	27.0	26.4	25.3	23.9	22.2
Material Group B*	29.6	29.1	28.5	27.6	27.1	26.7	26.1	25.7	25.2	24.6	23.0	
Material Group C*	51.6	33.0	30.4	29.7	29.0	28.5	27.9	27.5	26.9	26.3	25.5	24.8
Material Group D'	3.2.6	32.0	31.4	30.6	29.8	29.4	28.8	28.3	27.7	27.3	26.3	25.6
Material Group E*	32.9	32.3	31.7	30.9	30.1	29.7	29.0	28.6	28.0	27.3	26.2	24.7
Material Group F*	31.2	30.7	30.1	29.2	28.5	27.9	27.3	26.7	26.3	25.6	24.7	23.2
Material Group G*	30.3	29.7	29.1	28.3	27.6	27.0	26.5	25.8	25.3	24.8	24.1	23.5

NOTES:

NOTES: (2) Material Group A consists of the following carbon-molybdenum steels: $C = V_{c}Mo$ Mn= $V_{c}Mo$ Mn= $V_{c}Mo$ Mn= $V_{c}Mo$ (2) Material Group B consists of the following Ni steels: $V_{c}Mi=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Mo=Vr-V$ $V_{c}Ni=V_{c}Or-Vr$ $V_{c}Ni=V_{c}Or-Vr$ $V_{c}Ni=V_{c}Or-Vr$ $V_{c}Ni=V_{c}Or-Vr$ $V_{c}Ni=V_{c}Or-Vr$ $V_{c}Ni=V_{c}Or-Ni=Co$ $V_{c}Ni=Vr$ $V_{c}Ni=V_{c}Or-Ni=Or-Vr$ $V_{c}Ni=Vr-Vr$ $V_{c}Ni=Vr$ $V_{c}Or-Vr$, Ni=Co $V_{c}Or-Vr$ $V_{c}Or-Vr$ (3) Material Group C consists of the following $V_{2}=2Cr$ steris: $V_{1}Cr=V_{2}Mo$ $3Cr=V_{2}Mo$ $1V_{2}Cr=V_{2}Mo=5i$ $1V_{2}Cr=V_{2}Mo$ (4) Material Group D consists of the following $2V_{2}=3Cr$ steris: $2V_{2}Cr=3Mo$ (5) Material Group D consists of the following $2V_{2}=3Cr$ steris: $2V_{2}Cr=3Mo$ (5) Material Group E consists of the following 5-90: steels: 50r-1/, Map 50r-1/, Map 50r-1/, Map-51 50r-1/, Map-Ti 70r-1/, Map 90r-Map (k) Material Group F consists of the following chromium steels: 12Cr—Al 13Cr 1751 (7) Material Group & consists of the following automitic meets:

18Cr-8Ni 18Cr-8Ni=N 16Cr-12Ni 18Cr-13Ni+3Me 16Cr-12Ni-2Me=N 18Cr-3Ni+13Mn	18Cr-10Ni-Cb 18Cr-18Ni-25i 20Cr-6Ni-7Man 22Cr-13Ni-5Mn 23Cr-12Ni 23Cr-20Ni	
18C/-10NI-Ti	23C/-20N1	

2032-0001-03

Page 7 of 146

Source : Reference 1

Page 8 of 146

cients of Thermal Expansion

cu			
-			
Ξ.			
heat.			
ine .			
<u><u></u></u>			
Q.			
2			
3			
÷.			
N4			
G3			
~			
tend -			
Ω,			
-			
	01	3	
	2	ŝ.	
	100	£ .	
	-		
	in		
	1.00	2	
	C	2	
	C	5	
	1		
	3	1	
	Cr	5	
	m	5	
	2	1	
	13	4	

Math Math <th< th=""><th>Materiali</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Materiali																	
fund init i </th <th>Materials</th> <th>Party.</th> <th></th> <th></th> <th></th> <th>Temperature,</th> <th>+</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>temperature, "F</th> <th></th> <th></th> <th></th> <th></th>	Materials	Party.				Temperature,	+							temperature, "F				
Mathematical matrixMathematical matr		ficient	70	100	150	200	250	300	330	609	459	200	550	600	959	200		130
were were were were were were were were were were were werewere were were were were were were were were were were were were were werewere <b< td=""><td>riose and Low Alley Steels</td><td></td><td></td><td></td><td>ŀ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Carbon and Le</td></b<>	riose and Low Alley Steels				ŀ													Carbon and Le
Image: bit is a sector of the secto	stortal Sreep A	×	6.42	123	6.73	4.73	27.2	130	7.4%	7.84	2.84	8.63	6.73	6.35	15.8	1.6.5		6.78
weaking be forii <th< td=""><td>[Wete 131]</td><td></td><td>. •</td><td>5.9023</td><td>5.006.5</td><td>6.610×</td><td>8.77 0.914%</td><td>0.0190</td><td>\$620.2</td><td>0970'0</td><td>9210.0</td><td>2.037*</td><td>0.0423</td><td>9.0432</td><td>0.0523</td><td>0.0574</td><td></td><td>0.0427</td></th<>	[Wete 131]		. •	5.9023	5.006.5	6.610×	8.77 0.914%	0.0190	\$620.2	0970'0	9210.0	2.037*	0.0423	9.0432	0.0523	0.0574		0.0427
Matrix I """" """" """" """" """" """" """" """" """"" """"" """"" """""" """""" """""" """"""" """"""" """"""" """"""""" """"""""""""""" """"""""""""""""""""""""""""""""""""	And disease of		1.20					1 14	2.47	62.5	2.47	8.18	6.76	8.35	8.70	18.8		1944
i i	Mate (25)			5.75	14.5	40.9	8.27	6.43	6.54	6.74	6.8.9	7.04	7.36	2.26	7.60	15.1		7.41
Method 1 10			0	0.0021	0.0057	6400.0	0.0135	0.5127	0.0231	0.0247	0.0314	0.0344	0,0434	0.0+4.3	0.0515	0.0568		1290.0
Hertion E · · · · · · · · · · · · · · · · · · ·	devial Group C		5.42	5.45	4.03	10.9	6.73	7.04	133	7.40	7.45	10.8	87.8	0.44	8.62	8.75		5.87
1 1	Netr (31]			5.53	5.72	5.8%	6.04	626	6.43	4.41	4.77	15-9	4074 .	1.24	7.30	7.41		3.50
Underford 1 11 11 12 12 13 <		u		0.0028	0.0055	0.0072	0,0132	0.0173	0.0216	0.0762	0.0309	9.0357	0.0407	0.9456	0.050.0	0.0560	0	2190
Metall I <td>tertal Greep 2</td> <td>×</td> <td>1.8.1</td> <td>7.23</td> <td>2.25</td> <td>2.45</td> <td>2,40</td> <td>1,24</td> <td>2.88</td> <td>8.01</td> <td>8.13</td> <td>8.25</td> <td>82.6</td> <td>2.46</td> <td>8.55</td> <td>6978</td> <td></td> <td>8.73</td>	tertal Greep 2	×	1.8.1	7.23	2.25	2.45	2,40	1,24	2.88	8.01	8.13	8.25	82.6	2.46	8.55	6978		8.73
No. No. <td>THINK SHIT</td> <td></td> <td>14.4</td> <td>7.06</td> <td>2.16</td> <td>7.25</td> <td>134</td> <td>7.43</td> <td>1.50</td> <td>0.0300</td> <td>0.0148</td> <td>5.0147</td> <td>7.77</td> <td>7.83</td> <td>7.90</td> <td>2.94</td> <td></td> <td>8.00</td>	THINK SHIT		14.4	7.06	2.16	7.25	134	7.43	1.50	0.0300	0.0148	5.0147	7.77	7.83	7.90	2.94		8.00
Immuted i · · · · · · · · · · · · · · · · · · ·			0	6.200.0	4400"0	0.0113	95130	602075	7670'6		Ċ,			-	ACCO.		5	2
Mu 01 7 0.0 <td>sterial Group E</td> <td>*</td> <td>6.20</td> <td>4.37</td> <td>4.52</td> <td>4.85</td> <td>7.05</td> <td>2.25</td> <td>7.43</td> <td>1.34</td> <td>1.75</td> <td>7.94</td> <td>8.04</td> <td>8.14</td> <td>8.28</td> <td>101</td> <td></td> <td>8.4.8</td>	sterial Group E	*	6.20	4.37	4.52	4.85	7.05	2.25	7.43	1.34	1.75	7.94	8.04	8.14	8.28	101		8.4.8
I I	Newtor (352)		100	6.27	14.4	8.34	24.5	878	188	0.011	10/2	7,16	1.24	1.32	T.41	197	-	1.55
Open-like i · · · · · · · · · · · · · · · · · · ·			0	0.0025	0.0062	0.0107	0.0244	2.0187	0.0751		******	1.000	11.00	00100	41000	696010	3	10
1 1	Se-1440	×	8.45	6.4.5	6.80	96.9	1.36.	1.35	7.45	7.65	1.76	2.90	1412	9.30	8.87	\$2.8		25.8
With the second secon				6.50	6.60	6.70 A D L D	6.80 A 0.141	06.9	0.0710	0.0280	0.0326	0.0373	12000	69900	8150 B	1.50		1.56
Works, for i vs. vs				A COUNTY	- CA.	CA.88.6												
Current, Mar. C Mar.	c-'1,Mc.	4	6.52	1.54	6.72	6.83	4.94	7.04	7.15	1.25	135	7.44	7,50	7.42	122	2.39		182
Matrix 1 <td>50-"7, Ma-51, and 10-"2.88-11</td> <td></td> <td></td> <td>4.50 0.0024</td> <td>6.85</td> <td>10100 -</td> <td>6.80</td> <td>0.0140</td> <td>0.0233</td> <td>0.0274</td> <td>0160.0</td> <td>a.0364</td> <td>\$0x04</td> <td>0.0455</td> <td>0.0500</td> <td>0.0547</td> <td>0.0</td> <td>294</td>	50-"7, Ma-51, and 10-"2.88-11			4.50 0.0024	6.85	10100 -	6.80	0.0140	0.0233	0.0274	0160.0	a.0364	\$0x04	0.0455	0.0500	0.0547	0.0	294
Co-Market A Size <										1								
Po-rile C - 0.10 0.	r-"/, Ma and	4	3.82	2.90	10.4	\$1.6	57.5	19.43	6.33	99.9	6.75	18.4	16-9	2.07	2.1.7	7.27		2
Hort 1	PCr-1Mp	e		5.85	5,43	6.00%e	6.10	6.15	0.0204	0.0249	0.0285	0.0330	0.0372	0.0414	0.0457	0.0500	0.0	See
Mark A Visio Visio <thvisio< th=""> <thvisio< th=""> Visio<</thvisio<></thvisio<>		1																
0 0.00 0.	-4		5.60	8.79	2,00	7.20	2.40	1.58	27.5	7.90	80.8	8.27	190 H	8.40	8.50	8.60		120
Sile-Use 4 12 4.20 4.21 4.21 4.20 4.21			10	0.0024	0.0045	0.0108	2,7,5	161010	27.23	042010	1620.0	89(3/8	10.0457	982019	0.0339	0.0590	0.0	13
Math A D Lo Lo <thlo< th=""> Lo Lo <thlo< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlo<></thlo<>																		
No. 0 0.001 0.011	1-12,Mis		*20	1.11	6.35	1.1	6.40	3.04	1171	 100	14.4	1.43	4/27	214	8.00	8.12		123
Not were X S<			. 0	0.0023	0.0062	0.0101	2110.0	0.0164	0.0227	C.0273	0.0315	0.0341	0.0407	0.0454	1050'0	9.0349	0.0	64.9
1000 1010 <th< td=""><td>100 000</td><td></td><td>× 50</td><td>1.74</td><td>1.10</td><td>2.74</td><td>1111</td><td>4.40</td><td>\$75</td><td>4.30</td><td>7.04</td><td>7.14</td><td>7.27</td><td>1.37</td><td>2.45</td><td>1.52</td><td></td><td>131</td></th<>	100 000		× 50	1.74	1.10	2.74	1111	4.40	\$75	4.30	7.04	7.14	7.27	1.37	2.45	1.52		131
C 0 0.005 0.005 0.011 0.013 0.023 0.012 0.044 0.013 0.013 0.012 0.044 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 </td <td></td> <td>-</td> <td></td> <td>5.43</td> <td>5.80</td> <td>14.5</td> <td>104</td> <td>4.17</td> <td>6.28</td> <td>8.39</td> <td>6.47</td> <td>0.34</td> <td>6.63</td> <td>4.75</td> <td>22.4</td> <td>8.78</td> <td></td> <td>4.84</td>		-		5.43	5.80	14.5	104	4.17	6.28	8.39	6.47	0.34	6.63	4.75	22.4	8.78		4.84
High Cheme Sterit A 5x1 6x0 6x1 6x0 6x1 6x1 6x1 6x1 6x1 6x0		2		0:0020	0.0056	6-0043	0.0131	0.0170	0.0211	0.0253	0.0295	0.0336	0.0382	5.042h	0.0468	\$150.5	0.0	1358
310, 13C-14, A 542 6.0 6.19 6.30 6.19 6.30 6.39 6.39 6.39 6.46 6.72 6.77 6.80 6.48 6.39 6.49 6.49 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40	A Cheme Steels																	Righ
JJCr. and IJCNi E X.M & 20	Cr. 11Cr-1AI,	*	5.92	6.03	6.76	6.30	18-4	50	4.54	0.64	4.72	4.77	(8.8)	12.1	14.9	1.40		2.05
C 0 0.0012 0.0038 0.00% 0.0133 0.01% 0.0133 0.01% 0.013 0.01% 0.013 0.01%	13Cr, and 13Cr-4NI	** •	-	5.78	9.26	6.13	4.23	679	579	0.40	0.0294	0.0114	8.51 A A 174	4.53	4.57	0.40	1	12.4
15Cr ## 113 3.41 5.54 3.54 3.17 5.88 5.99 6.09 6.09 6.19 6.28 6.27 6.45 6.56 6.42 1 8 5.17 5.45 5.45 5.45 5.45 5.45 7.70 5.45 5.45 5.45 6.42 1 C 5 6.0019 0.0032 0.0046 9.0121 0.0156 0.0132 0.0140 0.0228 0.0224 0.0202 0.0240 0.02138 0.0418 0.0413 0.0413				220010	8500.0	0.0096	6610-0	0.9174	612000						10.000		2	ŝ
8 5.17 5.45 5.15 5.15 5.15 5.45 7.10	Cr and 17Cr	*	5.33	3.42	5.54	3.64	\$.77	5.88	5.43	8.04	91.8	6.28	1.17	50.7	4.54	5.62	-	2
				5.0014	5.45	3.52	1610.0	0.0144	2010.0	0.0228	0.0264	2060.0	0.0340	8/20/D	0.0418	C4-5	0.0	26.8
					T-COMPT													

ENGINEERING APPLIED SCIENCES, INC.

4

2032-0001-03

Page 9 of 146

Figure 2-2. Steam Generator Support Locations Source: Reference 2

2032-0001-03

Page 10 of 148

0

2032-0001-04

Page 11 of 146

Source: Reference 2

Figure 2-4. Schematic of Axisymmetric Finite Element Model

2032-0001-03

Page 12 of 146

Figure 2-5. SA533 Grade A Class 1 Heat Capacity

2032-0001-03

Page 13 of 146

Figure 2-6. SA533 Grade A Class 1 Thermal Conductivity

2032-0001-03

Page 14 of 146

2032-0001-03

Page 15 of 146

Figure 2-8. SA533 Grade A Class 1 Thermal Expansion Coefficient

2032-0001-03

Page 16 of 146

FIG. A-4200-1 LOWER BOUND K,, AND ${\rm K}_R$ TEST DATA FOR SA-533 GRADE B CLASS 1, SA-508 CLASS 2, AND SA-300 CLASS 3 STEELS

Figure 2-9. Reference Fracture Toughness Curves

2032-0001-03

Page 17 of 14E

A90 FIG. A-4300-1 REFERENCE FATIGUE CRACK GROWTH CURVES FOR CARBON AND LOW ALLOY FERRITIC STEELS EXPOSED TO AIR ENVIRONMENTS (SUBSURFACE FLAWS)

Figure 2-10. Reference Fatigue Crack Growth Curves

2032-0001-03

Page 18 of 146

Figure 2-11. Reference Fatigue Crack Growth Curves for Carbon and Low Alloy Ferritic Steels Exposed to Water Environments

2032-0001-03

Page 19 of 146

3.0 FLAW EVALUATION

3.1 APPLICABLE CODES AND PRESCRIBED METHODS

The steam generator shells are Class 2 nuclear components. Rules and requirements for in-service inspection, repair and replacement of Class 2 pressure retaining components and their integral attachments in light water cooled power plants are specified in Subsection IWC Section XI Division 1 of the ASME Boiler and Pressure Vessel Code.Flaws identified during in-service inspection are considered to be acceptable for continued operation if they do not exceed the standards of Table IWC-3510-1. For the steam generator upper girth weld, this table specifies that the acceptance standards described in article IWC-3500 apply. Basically, this article specifies allowable flaw sizes as a percentage of the vessel wall thickness. Flaws which do not satisfy the simple size criteria of IWC-3500 may still be acceptable if the analytical evaluation criteria of article IWC-3600 are satisfied. The prescribed analysis is based on fracture mechanics methods and considers critical flaw size, flaw stress intensity and flaw growth rate.

3.2 DESCRIPTION OF PAST FLAW OBSERVATIONS

The description or characterization of flaws is governed by article IWA-3300 of the Code. Characterization rules are provided for both surface and subsurface flaws. For purposes of description and dimensioning, the flaw is sized by a bounding rectangle. The length, "I", of the rectangle is drawn parallel to the inside surface of the pressure retaining part. The height of the rectangle is drawn normal to the inside pressure retaining surface of the component and is denoted as "a" for surface flaws and "2a" for subsurface flaws. The aspect ratio of the flaw is defined as "a/I". The flaw depth "S" is the distance from the flaw to the nearest surface. For subsurface flaws a flaw to surface proximity factor "Y" is defined as "S/a". This factor has been developed and is

2032-0001-03

Page 20 of 146

used to estimate the influence of the proximity of the surface on the behavior of a subsurface flaw.

Upper girth weld ultrasonic inspection data are available from examinations performed during the Zion Unit 1 1989 fall refueling outage and during the Zion Unit 2 spring 1990 refueling outage. UT indications which exceeded 20 percent of the distance amplitude curve are described in Tables 3-1 through 3-4 for the Zion Unit 1 steam generators. Similar data for the Zion Unit 2 steam generators are described in Tables 3-5 through 3-8.

Table 3-1. Zion Unit 1 Steam Generator A UT Inspection Results, 1989

Dim.	Dim.	Dim.	Value		Ampl.
(2a)	(1)	(S)	(Y)	Surf./Sub.	(% DAC)
0.18"	0.85"	0.08"	0.89	Sub.	25
0.25"	2.70"	0.06"	0.48	Sub.	126
0.35"	0.75"	0.02"	0.00	Surf.	178
0.24"	1.00"	0.02"	0.00	Surf.	56
0.52"	0.50"	0.35"	1.00	Sub.	35
0.24"	1.60"	0.02"	0.00	Surf.	35
0.35"	0.80"	0.27"	1.00	Sub.	100
0.53"	0.60"	0.09"	0.00	Surf.	40
0.29"	1.38"	0.08"	0.55	Sub.	316
0.54"	0.90"	0.08"	0.00	Surf.	85
9.81"	0.90"	0.04"	0.00	Surf.	80
0.36"	2.30"	0.20"	1.00	Sub.	60
0.60"	0.80"	0.58"	1.00	Sub.	60
1.68"	0.60"	0.31"	0.00	Surf.	60
1.33"	0.05"	0.00"	0.00	Surf.	50
0.34"	2.10"	0.09"	0.53	Sub.	25
1.02	0.90	0.01"	0.00	Surf.	75

2032-0001-03

Dim.	Dim.	Dim.	Value		Ampl.	
<u>(2a)</u>	(1)	(S)	(Y)	Surf./Sub.	(% DAC)	
0.31"	0.60"	0.08"	0.52	Sub.	32	
0.37"	1.70"	0.52"	1.00	Sub.	50	
0.61"	2.20"	0.23"	0.75	Sub.	25	
0.31"	0.70"	0.08"	0.52	Sub.	36	
0.23"	1.00"	0.03"	0.00	Surf.	32	
0.35"	0.90"	0.68"	1.00	Sub.	25	
0.12"	0.40"	2.59"	1.00	Sub.	25	
0.29"	0.40"	0.73"	1.00	Sub.	28	
0.23"	1.60"	0.03"	0.00	Surf.	32	
0.59"	1.20"	0.31"	1.00	Sub.	25	
0.23"	0.90"	0.03"	0.00	Surf.	36	
0.41"	0.80"	0.43"	1.00	Sub.	32	
0.23"	0.90"	0.09"	0.78	Sub.	100	
0.23"	0.70"	2.65"	1.00	Sub.	50	
0.70"	0.60"	0.31"	0.89	Sub.	50	
1.05"	0.50"	1.95	1.00	Sub.	30	
0.20"	1.40"	0.58"	1.00	Sub.	25	
0.59"	3.70"	0.78"	1.00	Sub.	25	
0.87"	1.30"	0.58"	1.00	Sub.	50	
0.36"	0.80"	0.14"	0.78	Sub.	45	
0.71"	1.20"	1.20"	1.00	Sub.	25	

Table 3-2. Zion Unit 1 Steam Generator B UT Inspection Results, 1989

Table 3-3. Zion Unit 1 Steam Generator C UT Inspection Results, 1989

Dim.	Dim.	Dim.	Value		Ampl.
<u>(2a)</u>	(1)	(S)	(Y)	Surf./Sub.	(% DAC)
0.35"	2.80"	0.26"	1.00	Sub.	28
0.29"	0.50"	0.96"	1.00	Sub.	28
0.23"	1.00"	0.03"	0.00	Surf.	158
0.12"	0.40"	1.48"	1.00	Sub.	63
0.08"	0.30"	2.10"	1.00	Sub.	63
0.34"	0.80"	0.29"	1.00	Sub.	50
0.24"	0.80"	2.18"	1.00	Sub.	28
0.44"	0.90"	0.03"	0.00	Surf.	112
0.35"	0.50"	1.48"	1.00	Sub.	79

2032-0001-03

Table 3-4. Zion Unit 1 Steam Generator D UT Inspection Results, 1989

Dim.	Dim.	Dim.	Value		Ampl.
(2a)	(1)	(S)	(Y)	Surf./Sub.	(% DAC)
0.23"	0.30"	0.62"	1.00	Sub.	32
0.31"	1.70"	0.57"	1.00	Sub,	36
0.38"	0.60"	0.57"	1.00	Sub.	28
0.21"	0.60"	1.36"	1.00	Sub.	28
0.19"	1.00"	0.02"	0.00	Surf.	45
0.19"	0.90"	0.02"	0.00	Surf.	100
0.06"	0.10"	0.02"	0.67	Sub.	55
0.34"	1.50"	0.96"	1.00	Sub.	100
0.12"	1.10"	0.61"	1.00	Sub.	28
0.18"	0.90"	0.09"	1.00	Sub.	32
0.19"	1.40"	0.08"	0.84	Sub.	126
0.15"	0.80"	0.03"	0.00	Surf.	28
0.19"	1.20"	0.02"	0.00	Surf.	63
0.18"	1.00"	0.08"	0.89	Sub.	141
0.29"	0.80"	0.21"	1.00	Sub.	32
0.24"	1,60"	0.03"	0.00	Surf.	32
0.42"	0.40"	0.03"	0.00	Surf.	50
0.23"	0.50"	0.03"	0.00	Surf.	40
0.31"	1.10"	0.02"	0.00	Surf.	178
0.19"	0.60"	0.08"	0.84	Sub.	105
0.24"	2.20"	0.03"	0.00	Surf.	40
0.09"	0.20"	0.16"	1.00	Sub.	55
0.19"	0.80"	1.36"	1.00	Sub.	25
0.17"	0.50"	1.32"	1.00	Sub.	32
0.24"	1.10"	0.03"	0.00	Surf.	60
0.30"	0.60"	0.67"	1.00	Sub.	50
10 1 1 10 10	Spot			au au - au au	25
0.12"	0.20"	1.49"	1.00	Sub.	63
0.65"	0.50"	0.51"	1.00	Sub.	40
0.67"	4.88"	0.09"	0.00	Surf.	100
0.46"	0.75"	1.05"	1.00	Sub.	25
0.47"	0.63"	0.45"	1.00	Sub.	100
0.66"	0.50"	0.02"	0.00	Surf.	140
0.29"	0.63"	0.44"	1.00	Sub.	50

2032-0001-03

Page 23 of 146

Dim.	Dim.	Dim.	Value		Ampl.
(2a)	_(1)_	(S)	(Y)	Surf./Sub.	(% DAC)
0.34"	0.70"	0.73"	1.00	Sub.	36
0.17"	0.80"	0.09"	1.00	Sub.	50
0.04"	0.40"	0.05"	1.00	Sub.	56
0.32"	1.90"	0.00"	0.00	Surf.	28
0.10"	0.90"	0.38"	1.00	Sub.	28
0.41"	1.00"	0.26"	1.00	Sub.	45

Table 3-5. Zion Unit 2 Steam Generator A UT Inspection Results, 1990

Table 3-6. Zion Unit 2 Steam Generator B UT Inspection Results, 1990

Dim.	Dim.	Dim.	Value		Ampl.
<u>(2a)</u>	_(1)	(S)	(Y)	Surf./Sub.	(% DAC)
0.40"	0.40"	0.28"	1.00	Sub.	25
0.51"	1.00"	0.13"	0.51	Sub.	45
0.25"	0.60"	0.02"	0.16	Surf.	32
0.23"	0.80"	0.04"	0.35	Surf.	45
0.36"	0.60"	0.03"	0.17	Surf.	32
0.36"	2.70"	0.03"	0.17	Surf.	71
0.36"	2.70"	0.03"	0.17	Surf.	63
0.19"	0.80"	0.02"	0.21	Surf.	71
0.27"	3.80"	0.06"	0.44	Sub.	40
0.25"	3.80"	0.18"	1.00	Sub.	32
1,88"	1.20"	0.06"	0.06	Surf.	32
1.88"	1.20"	0.06"	0.06	Surf.	40
0.32"	1.10"	0.09"	0.56	Sub.	79
0.32"	1.10"	0.09"	0.56	Sub	71
1.21"	2.50"	0.18"	0.30	Surf.	63
1.21"	2.50"	0.18"	0.30	Surf.	100
0.92"	1.50"	0.06"	0.13	Surf.	50
0.69"	3.10"	0.04"	0.12	Surf.	100
0.69"	3.10"	0.04"	0.12	Surf.	36
0.87"	2.80"	0.13"	0.30	Surf.	40
0.40"	1.40"	0.14"	0.70	Sub.	36

2032-0001-03

Dim.	Dim.	Dim.	Value		Ampl.
(2a)	(1)	<u>(S)</u>	(Y)	Surf./Sub.	(% DAC)
0.53"	1.38"	0.01"	0.04	Surf.	63
0.17"	1.00"	0.04"	0.47	Sub.	79
0.51"	0.90"	0.02"	0.08	Surf.	32
0.41"	1.70"	0.47"	1.00	Sub.	36
0.44"	0.90"	0.05	0.23	Surf.	25
0.26"	1.00"	0.01"	0.08	Surf.	32
0.24"	1.00"	0.09"	0.75	Sub.	32
0.32"	0.40"	0.10"	0.63	Sub.	25

Table 3-7. Zion Unit 2 Steam Generator C UT Inspection Results, 1990

Table 3-8. Zion Unit 2 Steam Generator D UT Inspection Results, 1990

Dim.	Dim.	Dim.	Value		Ampl.
(2a)	(1)	(S)	(Y)	Surf./Sub.	(% DAC)
0.21"	1.10"	0.17"	1.00	Sub.	25
0.12"	0.80"	0.07"	1.00	Sub.	40
0.12"	1.30"	0.07"	1.00	Sub.	25
0.15"	1.30"	0.04"	0.53	Sub.	36
0.27"	0.90"	0.08"	0.59	Sub.	79
0.12"	0.70"	0.13"	1.00	Sub.	56
0.23"	0.90"	0.02"	0.17	Surf.	32
0.40"	0.70"	0.43"	1.00	Sub.	63
0.47"	0.60"	0.49"	1.00	Sub.	50
0.12"	1.00"	0.06"	1.00	Sub.	36
0.34"	0.70"	0.78"	1.00	Sub.	25
0.29"	2.20"	0.02"	0.14	Surf.	100
1.27"	1.00"	0.03"	0.05	Surf.	79
0.85"	1.05"	0.55"	1.00	Sub.	32
2.10"	1.20"	0.12"	0.11	Surf.	36
0.41"	1.30"	0.19"	0.93	Sub.	32
0.42"	0.70"	0.21"	1.00	Sub.	79
0.35"	3.60"	0.02"	0.11	Surf.	56
1.02"	0.90"	0.31"	0.61	Sub.	56
1.01"	3.20"	0.27"	0.53	Sub.	40
1.01"	3.20"	0.27"	0.53	Sub.	71
0.61"	1.00"	0.68"	1.00	Sub.	36

2032-0001-03

Page 25 of 146

Surface flaw depth observations near upper girth welds as revealed by successive MT inspections following surface grinding are listed in Tables 3-9, 3-10 and 3-11. Such inspections were performed at Zion, Unit 1 in 1989 and 1992 and at Zion, Unit 2 in 1990.

		MT/Grindout Depth
Steam Generator	Indication	(inches)
A	1	0.22
A	2	0.35
A	3	0.30
A	4	0.00
B	1	0.25
C		0.25
C	2	0.15
D	1	0.25
D	2	0.20
D	3	0.20
D	4	0.38
D	5	0.35
D	6	0.50
D	7	0.50

Table 3-9. Zion Unit 1 Steam Generator MT/Grindout Inspection Results, 1989

		MT/Grindout Depth
Steam Generator	Indication	(inches)
A	1	0.04
A	2	0.04
A	3	0.04
A	4	0.04
A	5	0.04
A	6	0.04
A	7	0.04
A	8	0.247
A	9	0.025
A	10	0.06
А	11	0.01
A	12	0.06
A	13	0.06
A	14	0.02
A	15	0.02
А	16	0.02
A	17	0.04
A	18	0.04
A	19	0.04
A	20	0.025
A	21	0.025
A	22	0.025
A	23	0.025
A	24	0.025
А	25	0.025
A	26	0.06
A	27	0.00
A	28	0.06
A	29	0.06
A	30	0.00
A	31	0.06
A	32	0.06
A	33	0.06
A	34	0.06
С	1	0.06
C	2	0.00

Table 3-10. Zion Unit 1 Steam Generator MT/Grindout Inspection Results, 1992

2032-0001-03

Page 27 of 146

		MT/Grindout Depth
Steam Generator	Indication	(inches)
C	3	0.06
С	4	0.06
С	5	0.00
С	6	0.06
С	7	0.06
С	8	0.06
C	9	0.06
С	10	0.06
С	11	0.06
C	12	0.06
С	13	0.06
С	14	0.06
C	15	0.06
C	16	0.00
С	17	0.00
C	18	0.00
C	19	0.00
C	20	0.00
С	21	0.00
C	22	0.00
C	23	0.00
С	24	0.00
С	25	0.00
C	26	0.00
C	27	0.00
C	28	0.00
C	29	0.00
С	30	0.00
C	31	0.00
C	32	0.00
C	33	0.00
C	34	0.00
C	35	0.00
C	36	0.00
C	37	0.00

Table 3-10. Zion Unit 1 Steam Generator MT/Grindout Inspection Results, 1992 (Continued)

2032-0001-03

Page 28 of 146

11.144

- 640

		MT/Grindout Depth
Steam Generator	Indication	(inches)
C	38	0.00
C	39	0.00
D	1	0.16
D	2	0.07
D	3	0.076
D	4	0.03
D	5	0.072
D	6	0.02
D	7	0.035
D	8	0.08
D	9	0.103
D	10	0.06
D	11	0.06
D	12	0.04
D	13	0.04
D	14	0.04
D	15	0.037
D	16	0.04
D	17	0.038
D	18	0.20
D	19	0.11
D	20	0.125
D	21	0.173
D	22	0.105
D	23	0.33
D	24	0.21
D	25	0.325
D	26	0.19

Table 3-10. Zion Unit 1 Steam Generator MT/Grindout Inspection Results, 1992 (Continued)

2032-0001-03

		MT/Grindout Depth
Steam Generator	Indication	(inches)
A	1	0.044
A	2	0.31
B	1	0.37
В	2	0.25
B	3	0.25
В	4	0.31
B	5	0.56
B	6	0.25
R	7	0.37
B	8	0.37
C	1.	0.37
Č	2	0.25
č	3	0.44
č	4	0.25
Č.	5A	0.12
č	5B	0.12
C	6A	0.50
Č.	6B	0.19
č	6C	0.25
č	6D	0.31
č	6E	0.12
Ď	1A	0.12
Ď	1B	0.06
D	10	0.12
D	2A	0.12
D	2B	0.12
D	ЗA	0.19
D	38	0.44
D	4	0.37
D	5	0.50
D	6	0.06

Table 3-11. Zion Unit 2 Steam Generator MT/Grindout Inspection Results, 1990

2032-0001-03

Figure 3-1. Estimated Cumulative Probability Versus UT Flaw Depth for Surface Flaws in Zion Unit 1, 1989 and Unit 2, 1990.

2032-0001-03

Page 31 of 146

2032-0001-03

Page 32 of 146

2032-0001-03

Page 33 of 146

ENGINEERING APPLIED SCIENCES, INC.

2032-0001-03

Page 34 of 146

3.3 COMPARISON OF UT AND MT/GRINDOUT SURFACE FLAW DEPTHS

The term cumulative distribution or cumulative probability as applied to crack depths is an estimate of the percentage of a population of crack depths less than a given stated value. For example, a glance at Figure 3-1 shows that 90% of UT cracks depths for surface flaw indications in Unit 2 in 1989 are less than 1.0 inches. Or conversely, there is a 10% chance that a crack depth selected at random will be greater than 1.0 inches. In this plot, as in other probability plots in this report, the cumulative probability ordinate is scaled according to a Weibull distribution. Hence, if the plotted data is a reasonable match to a Weibull distribution, a straight line plot will be observed. Other probability scales could be selected. The Weibull scale is a typical choice for physical phenomena where the observed result is dictated by the weakest link in a set of links. The cumulative distributions of surface flaw depths as found by the first ultrasonic inspections of Zion Unit 1 and Unit 2 are shown in Figure 3-1. These UT inspection results for the two units are essentially equivalent. A similar circumstance is found for MT inspection results, where flaw depth is found by repeating the process of grinding and o indications are evident. The cumulative distributions for MT/(,rindout MT examination v flaws depths for U..., 1 in 1989 and Unit 2 in 1990 are presented in Figure 3-2. The plotted points are virtually coincident, illustrating that the surface flaw cracking experience of both units after several years of operation is the same.

A comparison of surface flaw depth distributions as revealed by UT and MT/grindout procedures is illustrated in Figure 3-3. Ultrasonic testing indicates substantially larger surface flaw depths than revealed by the MT/grindout technique. UT sizing techniques are sensitive to examination parameters such as transducer size and frequency. In general, UT inspection tends to oversize flaw depths due to beam spreading of the ultrasonic signal in a long metal path.

Surface flaws found in Unit 1 in 1989 were removed from service. Surface flaws were again found in Unit 1 in 1992 but since the interval of operation was substantially shorter prior to inspection, surface flaw depths were reduced compared to the 1989 inspection. Figure 3-4 compares the estimated cumulative distribution of MT/grindout depths for the 1989 and 1992 inspections. The maximum observed depth is reduced from 0.5 inches to 0.33 inches.

2032-0001-03

Page 35 of 146

Differences in slopes of the two plots show a broader distribution of flaw depths for the shorter interval of operation. This would be consistent with a decreasing flaw growth rate with depth. At longer times, recently initiated cracks begin to approach the depths of cracks which form early in the interval of operation. Data of this type together with data in the literature and operating experience of other plants is used to develop crack growth projections in Section 7.

3.4 SELECTION OF FLAWS FOR EVALUATION BY FRACTURE MECHANICS

Table 3-12 shows allowable planar flaw sizes expressed as a percentage of wall thickness for a 3.62 inch wall thickness. These values are interpolated from Table IWC-3510-1 of Section XI Division 1 of the ASME B-PV Code. Flaws which exceed these limits must either be removed from service or found to be acceptable by fracture mechanics analyses. Examples of the appropriate fracture mechanics analyses are presented in Section 7.

Aspect Ratio, a/I	Surfa	ice Flaws,	a/t %	Subsu	Irface Flaws	s, a/t %
a/l	t=2.5 in.	t=3.62 in	t=4.0 in	t=2.5 in	t=3.62 in	t=4.0 in
0.00	3.10	2.2	1.90	3.40Y	2.35Y	2.00Y
0.05	3.30	2.32	2.00	3.80Y	2.61Y	2.20Y
0.10	3.60	2.55	2.20	4.30Y	2.96Y	2.50Y
0.15	4.10	2.90	2.50	4.90Y	3.41Y	2.90Y
0.20	4.70	3.28	2.80	5.70Y	3.91Y	3.30Y
0.25	5.50	3.85	3.30	6.60Y	4.51Y	3.60Y
0.30	6.40	4.45	3.80	7.80Y	5.26Y	4.40Y
0.35	7.40	5.15	4.40	9.00Y	6.09Y	5.10Y
0.40	8.30	5.82	5.00	10.50Y	6.99Y	5.80Y
0.45	8.50	5.95	5.10	12.30Y	8.12Y	6.70Y
0.50	8.70	6.10	5.20	14.30Y	9.30Y	7.60Y

Table 3-12. Allowable Planar Flaw Sizes for 3.62 inch Thick Wall

Source: Reference 1

2032-0001-03

Page 36 of 146

4.0 ANALYSIS VERIFICATION

4.1 INTRODUCTION

The upper girth weld region of the steam generator is analyzed using the ANSYS 4.4A Structural Analysis Code (Reference 3). An axisymmetric finite element model is applied. Verification of the computer program is carried out using pressure loading and transient thermal loading for a thick-walled cylinder for which the solution is known. Then, the upper girth weld region of the steam generator is analyzed.

4.2 SIMPLIFIED MODEL

For the simplified model a long cylindrical shell with closed ends is considered having the same radial dimensions as the steam generator upper cylinder (Figure 4-1). A unit length of this long cylinder is modeled explicitly. Generalized plane strain boundary conditions are applied. Material properties similar to those of the steam generator material are specified:

> Elastic Modulus (E) Poisson Ratio (v) Thermal Expansion Coefficient (α) Density (ρ) Thermal Conductivity (k) Specific Heat (c)

30 * 10⁶ psi 0.3 6 * 10⁻⁶ in/in °F 430 lb/ft³ 25 Btu/hr ft °F 0.11 Btu/lb °F

2032-0001-03

Page 37 of 146

4.2.1 Pressure Load

The first verification case considers isothermal conditions at 70°F and internal pressure of 1065 psig. The known solution for the case is given in Reference 4 as:

Radial Stress

Hoop Stress

 $\sigma = \frac{b^2}{r^2} \frac{(a^2 + r^2)}{(a^2 - b^2)}$

 $\sigma_r = \frac{-qb^2(a^2 - r^2)}{r^2(a^2 - b^2)}$

Axial Stress

 $\sigma_a = \frac{qb^2}{a^2 - b^2}$

where

r = radius value a = outside radius b = inside radius q = pressure

The computer program input data listing ver1.5 in Appendix A is used to calculate the finite element results and the handbook results. The results are illustrated in the stress contour plots of Figure 4-2 and summarized in Table 4-1. Based upon the results in Table 4-1 it is concluded that the ANSYS computer program is verified for the pressure loading condition.

4.2.2 Thermal Transient Load

Verification of the thermal transient stress analysis is based upon a known thermal transient solution for stresses in Reference 3. This is a case of a constant temperature ramp rate applied to the external surface of the cylinder. The thermal stress state becomes constant even though the temperature of the cylinder continues to rise. The

2032-0001-03

Page 38 of 146

handbook solution for the hoop and axial stresses are the same at both the inside and outside surface of the cylinder and are given by

Inner Surface:

$$\sigma_{s} = \sigma_{h} = \frac{E\alpha m}{8d(1-v)} \left(b^{2} + c^{2} - \frac{4b^{2}c^{2}}{c^{2} - b^{2}} \log_{\theta} \frac{c}{b} \right)$$

Outer Surface:

$$\sigma_{a} = \sigma_{b} = \frac{E\alpha m}{8d(1-v)} \left(3b^{2} - c^{2} - \frac{4b^{4}}{c^{2} - b^{2}}\log_{\theta}\frac{c}{b}\right)$$

where

c = outside radius m = camp rate d = diffusivity

b = inside radius

The ANSYS finite element thermal solution for a ramp rate of 0.5°F/sec is illustrated in Figure 4-3. The curve T1 is the temperature transient for a point on the inside surface. The curve T2 is the temperature transient for a point on the outside surface. The temperature difference curve becomes constant in Figure 4-3 indicating that the thermal stress distribution has become constant even though the temperature of the cylinder continues to increase.

Figure 4-4 presents the axial and hoop thermal stress contours after the temperature difference curve of Figure 4-3 is stabilized. The stabilized stress values for the inside and outside surfaces which were obtained using ANSYS are shown in Table 4-2 alongside the values obtained using the formulas listed above from the handbook of References 3. The computer program input data listing ver2.5 in Appendix A is used

2032-0001-03

Page 39 of 146

to calculate the finite element results and the handbook results. Based upon the correlation of results in Table 4-2, it is concluded that the ANSYS computer program is verified for analysis of the thermal stress transients of the steam generator upper girth weld region.

Location	ANSYS	Handbook (3)	Difference
Inside Surface			
Radial Stress	-1,065 psi	-1,065 psi	0
Hoop Stress	26,396	26,396	0
Axial Stress	12,665	12,665	0
Outside Surface			
Radial Stress	0	0	0
Hoop Stress	25,331	25,331	0
Axial Stress	12,665	12,665	0

Table 4-1. Verification for Pressure Loading

ANSYS, ver1.5

Table 4-2 Verification for Thermal Transient Loading

Location	ANSYS	Handbook (3)	Difference
Inside Surface			
Hoop Stress	13,282	13,369	1%
Axial Stress	13,282	13,369	1%
Outside Surface			
Hoop Stress	-25,801	-26,206	1.5%
Axial Stress	-25,792	-26,206	1.6%

ANSYS, ver2.5

2032-0001-03

Page 40 of 146

Source: Reference 2

Figure 4-1. Cylinder for Simplified Model

2032-0001-03

Page #1 of 146

Figure 4-2. Pressure Load Verification

2032-0001-03

Page 42 of 146

2032-0001-03

Page 43 of 146

Figure 4-4. Thermal Stress Translent Verification, Stresses

2032-0001-03

Page 44 of 146

5.0 STEAM GENERATOR MODEL

5.1 INTRODUCTION

An analysis problem is defined by its oeometry, material properties and applied loading. The material properties for the steam generator and analysis model are as described in Section 2.3. The geometry and applied loading are described in the following subsections.

5.2 GEOMETRY

The geometry of the upper girth weld region is illustrated in Figure 5-1. The primary area of interest is the upper girth weld region as shown in Figure 5-1. However, the model is extended on both sides of the transition to eliminate the influence of end effects on the girth weld stresses. In order to assure that the boundaries of the finite element model are remote from the girth welds, a shell wave length is calculated. The shell wave length is given by, Reference 2.

$$\lambda = \sqrt{r}$$

where

r = inner radius and t = shell wall thickness

Above the transition region

$$\lambda = 4 \sqrt{(87.875)(3.62)}$$

= 71 in

Below the transition region

$$\lambda = 4 \sqrt{(67.50)(3.62)}$$

= 63 in

Therefore, the finite element model is extended 71 inches above and 63 inches below the transition.

2032-0001-03

Page 45 of 146

The thermal boundary conditions of finite element model specify no heat flow through the insulated external surface because heat flow through this surface is negligible compared to the inside surface. Furthermore, heat flow through the remote ends of the shell sections is negligible and a no-flow boundary condition is specified.

Heat exchange between the fluid and the inside surface of the shell takes place through a film coefficient which mitigates the fluid thermal transient. The metal temperature of the inside surface of the shell is conservatively specified to follow the thermal transient of the fluid for most of the events analyzed. Film coefficient data from Reference 7 is used in analysis of the reactor trip and feedwater cycling transients.

The structural boundary conditions take the form of pressure on the inside surface and displacement restraints on the upper and lower boundaries of the girth weld region model. The upper and lower boundaries of the girth weld region model are remote from the girth weld as described above. Therefore, it is appropriate to specify rotational restraint on these boundaries. Axial displacement constraints are applied at the lower end of the model.

End forces are applied to the upper end of the finite element model to represent the forces which arise from the restraint of the ends of the steam generator shell. These forces are automatically applied in the course of the ANSYS finite element analysis.

The initial transient time step size is defined in accord with the instructions of Reference 3. The applicable formula is;

 $\Delta t \leq (\Delta x)^2 / 10d$

where

- ∆t = Initial step size
- $\Delta x =$ Radial thickness of smallest finite element
- d = Thermal diffusivity of the material

This step size is calculated as part of the analysis process. The automatic step size controls of the ANSYS computer program are invoked to set the step size during the course of the 'ransient.

Quadratic finite elements are used to represent the upper girth weld section. The ANSYS designation for these elements is Type 77 for thermal analysis and Type 82 for the thermal stress analysis.

The geometry of the finite element model is shown in Figure 5-2. The nodes and boundary conditions are shown on the left. The finite elements are shown on the right. Complete and precise details of the geometry and boundary conditions are contained in the input data listings in Appendix A.

5.3 APPLIED LOADING

A subset of the transients in the design specification for the steam generator is specified in Reference 5 for use in this stress analysis for evaluation of flaws in the upper girth weld region. The specified transients are given in Table 5-1.

2032-0001-03

Transients 1, 2, 3 and 6 are represented as linear transitions between the states in Table 5-1. The temperatures are specified directly as metal surface temperatures.

Transients 4 and 5 in Table 5-1 use a modified model in which the fluid temperature and film coefficients are specified in detail according to the data tables referenced in Table 5-1. The pressure is uniform over the internal surface as given in Table 5-2. The fluid temperature and film coefficient histories are specified by region in Tables 5-3 and 5-4. The regions are defined in Figure 5-3 and 5-4.

Complete and precise specifications of the finite element models and applied loadings are given in the input data listings in Appendix A, B and C.

Results from these transient thermal and thermal stress analyses are used to calculate the maximum size to which detected flaws are expected to grow in a specified time period, which can be the next scheduled inspection of the component, or until the end of vessel design lifetime. Knowing the maximum flaw size and expected loads, we can compare flaw size and stress intensity with the critical values to demonstrate acceptability under the requirements of Article IWC-3600.

2032-0001-03

Transient	Total Occurrences	Time Interval, sec	Pressure-psia	Temperature _°F	Reference
Heatup @	200		0	70	index a subdivision and subdivision of the second second
100°F/hour		5*3600		dan amanan manan da	5
			1020	547	
2. Cooldown	200		1020	547	
@ 100°F/hour		5*3600		and the second se	5
	an a		0	70	*************
3 Large Sten	200		720	506	
Load	200		120		******
Decrease		60			
			1091	546	
		after @ 180			5
		********	802	510	
		after @ 200*60		4 - 2019 - 1997 - 19	
ala sa sing constants di seri d		lasinanomininanomi	938	537	****
4. Reactor	400		1020	546.99	
Trip		11.5*60	See Tables	5-1 and 5-3	7
and the second		and the second	220	389.86	
5. Auxiliary Feedwater	1		1020	547	
Cycling at Hot Standby		60		4	5
			0	70	
6. Bounding	18300		1020	547	*****
Faulted Event		60	See Tables	5-1 and 5-4	7
			0	70	**********
statements of the local division in the local division of the loca	to work of a weak interpret over the same of the life of the state of the	and with the state of the state	The processing of the process of the second state of the second st	the outprovide and an entering of pression of a mark prove and the set of the	other second state and in some of the design of the local data and the second sec

Table 5-1. Transients for Stress Analysis

Source: Reference 5

Page 49 of 146

Table 5-2. Feedwater Cycling and Reactor Trip Pressure Transients

Source: Reference 7

Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991. (Table 3.3.-3)

Table 5-3. Thermal Boundary Conditions, Reactor Trip Transients

Source: Reference 7

Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991. (Table 3.3-6)

Table 5-4. Thermal Boundary Conditions, Feedwater Cycling Transient

Source: Reference 7

Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991. (Table 3.3-7)

Source: Reference 2

Figure 5-1. Steam Generator Shell Finite Element Model

2032-0001-03

Page 53 of 146

PREPT ELEMENTS TYPE NUM =79.498. =116.062 669 20 DIST=127 -1 ANSYS ī Ō Ó LOT PREP7 8:5 015 2 22 77 XF E. 5 N4.4.9 V2V K ANSIENT NO. 1, HEATUP'S 10049F/ht A 4 2032-0001-03 Page 54 of 146

家間

10

ENGINEERING APPLIED SCIENCES, INC.

23 A S MARY "即位于公司 14 22 SIENT NO. 1, HEATUP 4.100 1. 1.1.1.1.1.1.1.1.1.1.1 122 MAN PARAM Dilili MILLI I I I 1 21 2032-0001-03 Page 54 of 146

2.4

Figure 5-3. Region Definition Reactor Trip Transient

Source: Reference 7

Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991. (Figure 3.3-2)

Figure 5-4. Region Definition Feedwater Cycling Transient

Source: Reference 7

Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991. (Figure 3.3-3)

6.0 STEAM GENERATOR STRESS ANALYSIS

6.1 INTRODUCTION

The analysis model of Section 5 is used to obtain the results in this section. These results are needed for the fracture mechanics analyses of Section 7.

6.2 HEATUP @ 100°F/HOUR

The heatup transient begins at an isothermal condition of 70°F and rises to 547°F over a period of 5 hours. The internal pressure is zero at the initial state and rises to 1020 psi at the 547°F end state.

Figure 6-1 presents the temperature history for the inside and outside surfaces at the girth weld in the finite element model. The figure contains three curves. One curve is for a point on the inside surface. One curve is for a point on the outside surface. The lower curve is the difference of the other two curves. The thermal stress level is dependent upon the temperature difference curve. The temperature difference curve is used to determine the time at which thermal stresses are greatest.

The maximum temperature difference for the curve of the heatup transient is very small at all times.

Figure 6-2 shows the temperature profile through the wall at 5 hours when the pressure is greatest. The temperature gradient through the wall is less than 14°F and is essentially constant throughout the heatup.

Figure 6-3 illustrates the stress intensity distribution in the girth weld region at 5 hours when the pressure is 1020 psi. The figure on the left is drawn to scale. The figure on the right is exaggerated to show the thickness variation more clearly.

Figure 6-4 shows the key results of the structural analysis of the heatup transient. The figure has three curves; membrane, membrane-plus-bending and total axial stress. These axial stress results are the data needed for fracture mechanics analysis of circumferential flaws. The results in the figure for the upper girth weld are listed in Table 6-1. A detailed tabulation of the total axial stress at the girth weld section is given in Table 6-2.

6.3 COOLDOWN @ 100°F/HOUR

The cooldown transient begins at a steady state temperature distribution at 547°F and a pressure of 1020 psi. The cooldown occurs over a period of 5 hours to near isothermal conditions at 70°F and zero pressure.

The cooldown is just the reverse of the heatup transient. Figure 6-5 corresponds to Figure 6-1. The temperature through the wall during this transient is the reverse of that shown in Figure 6-2. Figure 6-6 shows the through-wall temperatures upon reaching the 70°F level during the cooldown.

The worst-case stress condition during the cooldown occurs at the outset when the pressure level is 1020 psi. The stress intensity at this condition is shown in Figure 6-7. The axial stress contributions needed for the fracture mechanics analyses are shown in Figure 6-8. The key stress values are summarized in Table 6-3. The detailed tabulation of axial stress for use in the fracture mechanics analysis is given in Table 6-4.

Page 58 of 146

6.4 LARGE STEP LOAD DECREASE

The large step load decrease transient is defined as follows:

Time(sec)	Temperature (°F)	Pressure(psi)
0	506	720
60	548	1091
180	510	802
1200	537	938

Figure 6-9 presents the temperature history at the girth weld during the large step load decrease transient. The maximum through-wall temperature difference occurs at 60 seconds into the transient. At this time, the through-wall temperature distributions are as shown in Figure 6-10.

The stress intensity distributions and the axial stress contributions are given as follows:

	Stress Intensity	Axial Stress	
Time	Contours(psi)	Contributions	
0	Figure 6-11	Figure 6-12	
60	Figure 6-13	Figure 6-14	
180	Figure 6-15	Figure 6-16	
1200	Figure 6-17	Figure 6-18	

Stress contributions are given in Table 6-5. Detailed axial stress profile data are given in Table 6-6 for use in the fracture mechanics analysis.

The worst stress conditions during the transient occur at 60 seconds into the transient. The maximum stress intensity is 35,422 psi as shown in Figure 6-13. The maximum axial stress at this time is 25,711 psi for use in the fracture mechanics analysis.

6.5 REACTOR TRIP

2032-0001-03

The reactor trip transient begins at 547°F and 1020 psi as specified in Table 5-1. Figure 6-19 presents the temperature history of the shell wall at the upper girth weld during this reactor trip transient.

The maximum temperature difference through this wall at the upper girth weld is about 95°F at 530 seconds into the transient. The temperature profile through the wall at this time is illustrated in Figure 6-20. The temperature along the inside surface from the bottom of the model to top of the model at 560 seconds is shown in Figure 6-21. The temperature at the upper girth weld is at 400°F.

The stress time history at the upper girth weld during the reactor trip transient is presented in Figure 6-22. The highest stress at the girth weld occurs at the initial conditions when the pressure is 1020 psi. The stress profile up the inside surface of the model at the initial conditions is shown in Figure 6-23. The highest stress occurs at the upper girth weld.

Figure 6-24 shows the stress profile up the inside surface at 685 seconds into the transient. At this time, the stresses in the region of the upper girth weld are reduced. It is useful to compare the results of Figure 6-24 with results reported previously in Reference 7. The results are similar. Slightly more severe stresses are obtained herein because the film coefficients are not smoothed between regions as in Reference 7.

Figures 6-26 and 6-27 illustrate the distributions of stress in the shell wall at the initial condition and at 685 seconds. The maximum stress is initially at the upper girth weld and then moves down onto the interior region of the conical section.

The distribution of axial stress through the wall is shown in Figure 6-28 for the initial 547°F and 1020 psi condition. The same distribution is shown at 685 seconds in

Figure 6-29. These through-wall axial stress distributions are summarized in Table 6-7 and listed in detail in Table 6-8 for use in fracture mechanics analyses.

6.6 AUXILIARY FEEDWATER CYCLING

The auxiliary feedwater cycling event begins at 547°F and 1020 psi and ends at 512°F and 812 psi over a period of 10 minutes. These states are given in Table 5.1. Five temperature subcycles occur within this period although the pressure is reduced monotonically. These details are given in Table 5-2 and 5-4.

The temperature history in the shell wall at the upper girth weld during the auxiliary feedwater cycling transient is shown in Figure 6-30. The maximum temperature difference through the wall occurs at 560 seconds. The temperature profile up the inside surface of the wall at this time is plotted in Figure 6-31 and the temperature distribution through the wall is given in Figure 6-32. The through-wall temperature data are listed in Table 6-9.

The stress time history at the upper girth weld during the auxiliary feedwater recycling event is presented in Figure 6-33. The maximum stress occurs at 275 seconds. The stress at 560 seconds reaches almost the same level at lower pressure and temperature conditions.

Figure 6-34 shows the distribution of stress up the inside surface at 560 seconds. The maximum stress occurs at the upper girth weld. The distribution of stress intensity in the shell wall is illustrated in Figure 6-35.
The key stress results for the upper girth weld for the auxiliary feedwater cycling event are plotted in Figures 6-36 and 6-37. These plots give the axial stress distributions through the wall at 275 seconds and 560 seconds. The detailed data are listed in Table 6-10 and 6-11 for use in the fracture mechanics evaluation of flow indications in the upper girth weld.

6.7 BOUNDING FAULTED EVENT

The bounding faulted event begins at the steady state conditions of 547°F and 1020 psi and ramps to 70°F and 0 psi over 60 seconds as shown in Figure 6-38.

Figures 6-39, 6-40 and 6-41 present the through-wall temperature distributions at t=60, 196 and 347 seconds.

The stress intensity distributions and the axial stress contributions are given as follows:

Time	Stress Intensity Contours (psi)	Axial Stress Contributions (psi)
0	Figure 6-42	Figure 6-43
60	Figure 6-44	Figure 6-45
180	Figure 6-46	Figure 6-47
300	Figure 6-48	Figure 6-49

Stress contributions ar given in Table 6-12. Detailed axial stress profile data are given in Table 6-13 for use in the fracture mechanics analysis.

Location		Axial Stress (psi)	
	Membrane	Membrane + Bending	Total
Inside	12,130	26,620	27,920
Midsurface	12,130	12,230	11,920
Outside	12,130	-2,172	-1,971

Table 6-1. Girth Weld Axial Stress, Heatup @ 100 °F/hour

nsgen1.5 state 2

Distance (in) Inside to Outside	Axial Stress (psi)
and the second	27921
0.75417E-01	27090
0.15083	22224
0.22625	00004.
0.20107	25474.
0.37107	24684.
0.37708	23935.
0.45250	231\$3.
0.52792	22459.
0.60333	21767.
0.67875	21074.
0.75417	20382.
0.82958	10734
0.90500	10.080
0.98042	10444
1 050	10444.
1 1212	17602.
1.1515	1/138.
1.2007	16594.
1.2821	15989.
1.3575	15385.
1.4329	14794.
1,5083	14219.
1.5838	13644.
1.6592	13068
1.7346	12493
1.8100	11918
1 8854	11956
1 9608	11330.
2 0262	10/95.
2 1117	10234.
6.1117	9672.6
6.18/1	9111.5
2.2625	8550.3
2.3379	7987.9
2.4133	7423.0
2.4888	6858.1
2.5642	6293.1
2.6396	5728.2
2.7150	5163.3
2,7904	4598 3
2.8658	4033 4
2 9413	4000.4
3 0167	3432.9
2 4001	2043.3
3.0921	2245.7
3.10/3	1644.1
3.2429	1041.5
3.3183	438.93
3.3938	-163.68
3.4692	-766.28
3.5446	-1368.9
3.6200	-1971.5
5*3600 sec	Scient 5
0 0000 000	ogenno
	state 2

Table 6-2. Girth Weld Axial Stress, Heatup @ 100°F/hour

Page 64 of 146

		Axial Stress (psi)		
Location	Membrane	Membrane + Bending	Total	
Inside	12,100	28,260	28,620	
Midsurface	12,100	12,200	11,830	
Outside	12,100	-3,852	-3,414	

Table 6-3. Girth Weld Axial Stress, Cooldown @ 100°F/hour

sgen2.5 state 1

Distance (in)	Axial Stress
inside to outside	(1951)
0.	30529.
0.75417E-01	29522.
0.15083	28521
0.22625	27560
0 30167	6/ 000 -
0.37700	20293.
0.27700	20031.
0.45250	24792.
0.52/92	23903.
0.50333	23069.
0.67875	22235.
0.75417	21401.
0.82958	26628.
0.90500	19860.
0.98042	19091
1.0558	18307
1 1313	17619
1 2057	1/010.
1 2821	10010.
1 3696	16202.
1,0070	15483,
1.4329	14808.
1,5083	14151
1.5838	13494.
1.6592	12837.
1.7346	12179.
1.8100	11522.
1.8854	10901.
1.9608	10282.
2.0363	2663 2
2.1117	9644.6
2,1871	8425 9
2.2625	7807 2
2.3379	7106 4
2 4133	2001 E
2 4888	0001.5 6006 7
0 5549	5005.7
0.5205	5411.6
6.0390	4816.9
2.7150	4222.1
2.7904	3627.2
2.8658	3032.4
2.9413	2434.8
3.0167	1833.6
3.0921	1232.5
3.1575	631.38
3.2429	30,248
3,3183	-570 RB
3.3938	-1172 0
3.4692	-1773 1
3 5446	-2174 3
3 6200	075 4
0.000	00003 E
0.500	syenz.5
	state 1

Table 6-4. Girth Weld Axial Stress, Cooldown @ 100°F/hour

	Axial Stress (psi)	
Membrane	Membrane + Bending	Total
8,562	20,030	21,550
	8,640	8,133
	-2,756	-2,100
12,970	25,710	22,100
	13,060	14,070
	401	-1,123
9,538	21,740	25,490
	9,619	8,626
	-2,502	-1,512
11,150	24,410	25,570
	11,240	10,970
	-1,923	-1,760
	Membrane 8,562 12,970 9,538 11,150	Membrane Membrane + Bending 8,562 20,030 8,640 -2,756 12,970 25,710 13,060 401 9,538 21,740 9,619 -2,502 11,150 24,410 11,240 -1,923

Table 6-5. Girth Weld Axial Stress, Large Step Load Decrease

Page 67 of 146

Distance (in)		Axial St	ress (psi)	
Inside to Outside	t-0 sec	t=60 sec	t=180 sec	t=1200 sec
DISTANCE	SY	SY	SY	SY.
Ö.	21550	22098.	25492.	25570.
0.754175-01	20839	22176.	24350.	24813
0 15083	20133	22244	23219.	23051
A 22525	10454	22234	22174	23341
0.20167	19776	22226	21130	2251
0.37708	10170.	22100	20197	21040
0 45350	10135.	21055	10284	21360
0.40200	1/500.	21703	19201	20504
0.52/92	15872.	61/30.	10001-	10052
0.60333	16284.	21013.	1/010.	10303.
0.678/5	15695.	21245.	10034.	19332.
0.75417	15107.	20971.	16056.	18/01.
0.82958	14551.	27586.	15399.	10109.
0.90500	14019,	20193.	14752.	1/561.
0.98042	13475.	19799.	14105,	16933.
1.0558	12936.	19399.	13465.	16347.
1.1313	12435.	18905.	12934.	15795.
1.2067	11937.	18412.	12402.	15244.
1.2821	11437.	17918.	11871.	14692.
1.3575	10237.	17424.	11340.	14140.
1.4329	10453.	16899.	10847.	13600.
1.5083	9989.0	16334.	10403.	13075.
1.5838	9525.0	15769.	9958.8	12549.
1.6592	9061.1	15204.	9514.5	12023.
1.7346	8597.2	14639.	9070.2	11498.
1.8100	8133.2	14074.	8625.9	10972.
1.8854	7694.6	13470.	8224.2	10458.
1.9608	7257.9	12853.	7825.7	9944.2
2.0363	6821.2	12256.	7421.2	9430.7
2.1117	6384.4	11649.	7028.7	8917.2
2.1871	5947.7	11042.	6630.2	8403.7
2.2625	5511.0	10435.	6231.7	7890.2
2.3379	5079.8	9821.3	5832.6	7375.4
2.4133	4659.9	9194.0	5432.3	6857.8
2.4888	4240.0	8566.6	5032.0	6340.2
2.5642	3820.1	7939.2	4631.8	5822.6
2.6396	3400.2	7311.9	4231.5	5305.1
2,7150	2980 3	6684.5	2831 2	4787.5
2.7904	2560 4	6057.1	3430 9	4269.9
2.8658	2140.5	5429 8	3030 7	3752.3
2,9413	1718.7	4789.4	2605 3	3219.1
3.0157	1294.3	4132.5	2147 B	2665.9
3.0921	870.00	3475.5	1690.2	2112.7
3,1675	445 68	2818 6	1222 7	1553.4
3.2429	21 352	2161 6	775 20	1006.2
3 3183	-402.97	1504 7	317 67	452,98
3 3038	-857 30	847.75	-130 95	-100.25
3 4692	-1951 6	190.80	-607 27	-653.48
3 5445	-1675.0	-466.14	-1054 0	-1206.7
3 6200	-2100 3	-1123 1	-1610 4	-1759.9

Table 6-6. Girth Weld Axial Stress Detail, Large Step Load Decrease

2032-0001-03

Page 68 of 146

Table 6-7. Girth Weld Axial Stress Contributions, Reactor Tr	able 6-7.	Veld Axial Stress	Contributions,	Reactor 7	rip
--	-----------	-------------------	----------------	-----------	-----

Location		Axial Stress (psi)			
	Membrane	Membrane + Bending	Total		
t = 0 Inside	11,620	25,900	27,580		
Midsurface	11,620	11,700	11,150		
Outside	11,620	-2,468	-1,803		
t = 685 Inside	2,514	6,378	10,130		
Midsurface	2,514	2,541	571		
Outside	2,514	-1,295	2,437		

rtrp 1.5

Distance (in)		Axial St	ress (psi)	
Listde Lo Outside	t-0 sec	t=50 sec	t=560 sec	t=685sec
0.75417E-01 0.15083 0.22625 0.30167 0.37708 0.45250 0.52792 0.60333 0.67875 0.75417 0.82958 0.90500 0.98042 1.0558 1.1313 1.2067 1.2821 1.3575 1.4329 1.5083 1.5838 1.6592 1.7346 1.8100 1.8854 1.9608 2.0363 2.1117 2.1871 2.2625 2.3379 2.4133 2.4888 2.5642 2.6396 2.7150 2.7904 2.8658 2.9413 3.0167 3.0921 3.1675 3.2429 3.3183 3.938 3.4692 3.5446 3.6200	27583. 26731. 25883. 25078. 24272. 234960. 212360. 20512. 19113. 18442. 17771. 16484. 152455. 146025. 13874. 128298. 117104. 15864. 152455. 146025. 12874. 128298. 117104. 15864. 128298. 12772. 106056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 4070. 100056. 20512. 100056. 20515.	26832. 25898. 24922. 24006. 23091. 22235. 21389. 20557. 19796. 19036. 18275. 16922. 16248. 15580. 14987. 14394. 13208. 12644. 12116. 11589. 10061. 10533. 10006. 9520.3 9037.88 8555.3 8072.99 7590.4 7108.00 6633.16 5714.2 5254.7 4795.2 3416.7 2951.00 2477.4 2003.7 1530.1 1056.4 582.78 109.14 -364.51 -331.1.8	$\begin{array}{c} 14977.\\ 14020.\\ 13070.\\ 12168.\\ 10435.\\ 9616.8\\ 8096.1\\ 2435.9\\ 8096.1\\ 27378.2\\ 66044.1\\ 9814.0\\ 8096.1\\ 2427.9\\ 8096.1\\ 22867.9\\ 4227.9\\ 8277.5\\ 22867.9\\ 4227.9\\ 8277.5\\ 22867.9\\ 11965.9\\ 3747.5\\ 11965.9\\ 3747.5\\ 11965.9\\ 374.5\\ 11965.9\\ 375.6\\ 81010.2\\ 9885.6\\ 11965.9\\ 375.6\\ 81010.2\\ 9885.6\\ 11965.9\\ 375.6\\ 81010.2\\ 9885.6\\ 11965.9\\ 375.6\\ 81010.2\\ 9885.6\\ 11965.9\\ 375.6\\ 8101.2\\ 9984.5\\ 1053.8\\ 1055.8\\ 10000.8\\ 100000.8\\ 10000.8\\ 10000.8\\ 10000.8\\ 10000$	$\begin{array}{c} 10132.\\ 9538.1\\ 8947.2\\ 8377.9\\ 7808.5\\ 7283.0\\ 67655.2\\ 5790.2\\ 5325.9\\ 4454.4\\ 40544.4\\ 36259.0\\ 2958.2\\ 44554.9\\ 40544.4\\ 36259.0\\ 29798.2\\ 22979.5\\ 14747.9\\ 796.492\\ 22979.6\\ 4454.4\\ 12247.9\\ 9796.49\\ 2436.49\\ 14247.3\\ 1096.49\\ 2436.49\\ 1446.5\\ 146.59\\ 30.1406\\ -1186.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\ 30.1406\\ -126.59\\$

Table 6-8. Girth Weld Axial Stress Detail, Reactor Trip

2032-0001-03

Page 70 of 146

Distance (in)	Axial Stro	ess (psi)
Inside to Outside	t = 275 sec	t = 560 sec
0, 0.75417E-01 0.15083 0.22625 0.30167 0.37708 0.45250 0.52792 0.60333 0.67875 0.75417 0.62958 0.90500 0.98042 1.0558 1.1313 1.2067 1.2821 1.3575 1.4329 1.5838 1.6592 1.7346 1.8100 1.8854 1.9608 2.0363 2.1117 2.1871 2.2625 2.3379 2.4133 2.4838 2.5642 2.6326 2.7150 2.7904 2.8658 2.9413 3.0167 2.0921 3.1675 3.2429 3.3183 3.938 3.4692 3.5446 3.5200	478.65 482.46 485.23 489.60 492.97 495.94 498.84 501.66 504.07 505.48 508.89 510.84 512.76 514.66 514.66 512.76 512.34 522.34 522.34 522.34 522.34 522.64 5225.64 5225.64 5225.62 530.02 530.02 530.02 530.02 531.33 531.33 531.99 532.65 535.43 535.43 535.43 535.43 535.43 536.54 536.90 537.02 5	$\begin{array}{c} 454.50\\ 458.75\\ 462.95\\ 466.70\\ 470.46\\ 473.75\\ 476.97\\ 480.10\\ 482.75\\ 485.41\\ 488.06\\ 490.18\\ 492.26\\ 494.34\\ 496.38\\ 497.91\\ 499.44\\ 500.98\\ 502.51\\ 503.82\\ 504.86\\ 505.90\\ 506.95\\ 507.99\\ 509.03\\ 509.70\\ 510.34\\ 510.98\\ 511.63\\ 512.27\\ 512.91\\ 513.45\\ 513.78\\ 514.12\\ 514.46\\ 514.79\\ 515.13\\ 515.46\\ 515.80\\ 516.34\\ 516.54\\ 516.54\\ 516.54\\ 516.54\\ 516.54\\ 516.74\\ 516.74\\ 516.95\\$

Table 6-9. Girth Weld Temperature Detail, Reactor Trip

2032-0001-03

Location		Axial Stress (psi)	
	Membrane	Membrane + Bending	Total
t = 60 Inside	11,370	28,350	33,720
Midsurface	11,370	11,490	9,732
Outside	11,370	-5,372	-3,086
t = 75 Inside	11,280	27,870	30,020
Midsurface	11,280	11,390	9,921
Outside	11,280	-5,087	-3,193
t = 150 Inside	10,990	30,940	38,730
Midsurface	10,990	11,120	8,581
Outside	10,990	~8,690	-5,096
t = 175 Inside	10,880	29,490	29,150
Midsurface	10,880	11,010	9,372
Outside	10,880	-7,474	-5,117
t = 275 Inside	10,490	31,890	39,660
Midsurface	10,490	10,630	7,808
Outside	10,490	-10,620	-6,491
t = 300 Inside	10,300	29,370	27,730
Midsurface	10,300	10,430	8,921
Outside	10,300	-8,502	-6,151
t = 385 Inside	10,070	30,130	36,380
Midsurface	10,070	10,210	7,856
Outside	10,070	-9,704	-6,232
t = 450 Inside	9,820	26,030	24,750
Midsurface	9,820	9,933	9,513
Outside	9,820	-6,169	-5,176
t = 560 Inside	9,415	30,680	39,140
Midsurface	9,415	9,563	6,512
Outside	9,415	-11,550	-7,410
t = 600 Inside	9,251	26,860	23,690
Midsurface	9,251	9,374	8,561
Outside	9,251	-8,111	-6,543

Table 6.10. Girth Weld Axial Stress Contributions, Auxiliary Feedwater Cycling

Table 6-11. Girth Weld Axial Stress Detail, Auxiliary Feedwater Cycling

Distance (in) Inside to Outside	Axial Stress (psi)									
	t = 60	t = 75	t = 150	t = 175	t = 275	t = 300	t = 385	t = 450	t = 560	t = 600
0.	33720.	30019.	38734	29147.	39661.	27735.	36376.	24745.	39137.	23693
0.754172-01	32240	29310.	36674.	29061.	37619.	27905	34699.	24484.	36993.	24004.
0,15083	30765.	28585.	34635	28932.	35594.	28025	33028.	24211.	34867.	24278.
0.22625	29335.	27733.	32760.	28464	33705	27751	31404.	23840.	32889.	24252.
0.30167	27905	26881.	30884	27995	31815.	27477	29779.	23470.	30911.	24227.
0.37708	26579.	25934.	2-203.	27249.	30088.	26865	28250	22973.	29112.	23872.
0.45250	25271.	24970	27555.	26455.	28388.	26197.	26736	22454.	27344.	23462.
0.52792	23990.	29004	25945.	25632.	26721.	25488.	25249.	21917.	25613.	23009.
0.60333	22855	23021	24543	24648	25236	24562	23904	21279.	24083.	22327.
0.67875	21721	22037	23141.	23665.	23751	23637	22558.	20640.	22553.	21645.
0.75417	20586	21054	21738	22681	72265	22711	21212	20002.	21023.	20963.
0.82958	19625	20127	20559	21635	20988	21669	20046	19285	19720	20123.
0.90500	18677	19204	19397	20585	19727	20618	18594	18561	18435	19270.
0.98042	17730	18281	18234	19534	18466	19567	17742	17838	17150	18417
1.0558	16794	17365	17087	18488	17219	18518	16602	17112	15881	17559
1 1313	16015	16554	15140	17504	16174	17494	15639	16347	14831	16635
1 2067	15737	15742	15194	16510	15129	16471	14677	15582	13781	15710
1 2821	1.4.459	14031	14748	15515	14084	15467	13714	14818	12731	14785
1.3575	13681	14120	13301	14550	13030	14423	12751	14053	11681	13861
4 4 2 2 0	12063	17364	12434	13626	12080	13453	11861	13293	10725	12957
4 6083	12203.	12675	11663	12775	11225	125.86	11050	12537	9882 1	12078
1,0003	14074	14086	10003.	34034	10374	11040.	10250	11781	0030.6	11100
1.0000	1107	*1209	10050.	11024.	0515.4	40734	9357.0	11025	8197.0	10320
1.0392	11024.	10000	00144	40523	8553 D	0827.5	8656 7	50260	7354.5	9440.6
1,7.340	0723.4	0020.7	8580.6	6374.7	7807.6	5021.3	7255 5	0512.7	6512.0	R561.4
1.000 4.000 1	0165.0	0374.0	7020 3	865.4 d	7035.2	8152.8	7170.5	8806.9	5873.9	7788.4
1,0004	8605.5	8735.8	7286.7	70.45 7	6305.2	7304 4	0 5053	8104 7	5147.1	7023.2
2,000	6045.5	8142 5	6644.2	7230 4	5604.2	6636.0	58174	7402.6	4470.2	6258.0
2 3 3 3 5 7	7484 7	7557 7	5001.5	6531.4	4003.1	5877.6	5140.8	6700.4	3793.4	5492.7
0.4074	6024.2	6068 7	5350.0	5833.8	4205 1	5110 1	da64.7	5008 3	3116.6	4727.5
2.1071	6364.0	6179.6	A715.4	5116 1	3601.5	2360 7	3787.6	5296 1	2439.7	3962.2
2 2376	5917 4	5800 8	4101.4	4446.0	2027.2	3646.5	3141.6	4521.4	1801.8	3240.9
2,0070	5208.5	5278.8	3541.0	3851.4	2338 1	3071.5	2557.3	4001 7	1747.3	2608 1
7 4200	4770 7	4747 0	2082.5	3256.0	1740.0	2306.4	1973.0	3387.1	582.80	1975.2
2,5642	4760.8	4215.0	2423.0	2662.3	1150.0	1771 3	1388.6	2762.5	123.29	1342.4
2,6306	3742.0	3685.0	1863.6	2067.8	570.87	1146.2	804.30	2142.9	-436.22	709 58
2,7150	3223.1	3154.0	1304.1	1473.2	18 216	521.15	219.97	1523.3	-995.73	76.749
2 7904	2704 3	2622.0	744.70	878 67	-607.30	103.92	-364.37	903.71	-1555.2	-556 04
2 8658	2185 4	2023.0	185.25	284 12	-1196.4	-778.99	-948.70	284 10	-2114.7	-1128.9
2.0030	1662.7	1503.1	-359.65	285.14	1757 8	-1315.6	-1507.0	-301.31	-2647.8	-1776 5
2.0413	1135.1	1034 6	.885.02	.822.01	.7283.7	-1852.0	-2031.9	-842.94	-3147.0	-2306.1
3,0101	807.56	506.11	1412.2	1359.0	.7800 6	,2390.2	-2556.0	-1384 6	-3646.1	-2835.7
3.0321	70 077	22.368	1038.5	1805.7	.3335.5	-2027.6	-3081.9	-1925.2	-4145.3	-3365.3
3,1073	447 54	-550 85	7464 7	-1033.1	3861 5	3464.0	3636.8	-7467.8	-4544.5	.3894.9
3,2423	075 10	-330.63	2001.0	2060 6	4387.4	.4002.2	-4121.8	-3000 5	-5143.6	-6474 5
3,3103	-310.13	10/3.3	-2001.0	3506.3	4013.3	4530.5	4656 7	3551 1	-5642.8	1954 1
3,3936	-1002.0	-1007.0	-0011.0	4042.2		5076.0	5121 7	4002 7	-6142.0	5482.7
3,4092	-2030.4	-2130.3	-4043.0	4043.2	-3438.2 EDGE 3	-3070,0	5700 5	4634.4	6841.3	6012.2
3,5440	-2558.0	-2004.8	-4003.8	-4580.1	-3303.2	-0014.2	6324.6	5176.0	.7142.2	6542.0

Page 73 of 146

Table 6-12. Girth Weld Axiai Stress Contributions, Bounding Faulted Event

		Axial Stress (psi)				
	Location	Membrane	Membrane + Bending	Total		
t=0	Inside	12,130	28,380	30,530		
	Midsurface	12,130	12,240	11,520		
	Outside	12,130	-3,904	-2,975		
t=60	Inside	44	56,010	122,400		
	Midsurface	44	418	-20,870		
	Outside	44	-55,170	-25,250		
t=196	Inside	40	60,810	83,340		
	Midsurface	40	446	-11,790		
	Outside	40	-59,920	-37,180		
t=347	Inside	25	42,060	56,800		
	Midsurface	25	306	-7.828		
	Outside	25	-41,450	-25,660		

nsgen5.5

Distance (in)	Axial Stress (psi)						
Outside	t≈0 sec	t=60	t=196	t=347 sec			
1			and the second				
0.	30529.	0.122398+06	83342.	56795.			
0.75417E-01	29522.	0.10949E+06	78340.	53441.			
0.15083	28521.	96760.	73345.	50093.			
0.22625	27560.	85410.	68417.	46802.			
0,3016/	26599,	74061.	63488.	43512.			
0.37708	25691.	64459,	58775.	40350.			
0.45250	24792.	55153.	54097.	37210.			
0.52792	23903.	46170.	49467.	34100			
0.60333	23069	38939.	45090.	31153			
0.67875	22235.	31709.	40713.	28206			
0.75417	21401.	24479,	36337.	25250			
82958	20528.	19181.	32299.	22528			
0.90500	19860.	14033.	28287.	10812			
0.98042	19091.	8885.6	24275.	17000			
1.0558	18327.	3863.5	20296	13464			
1.1313	17618.	572 52	16759	11070			
1.2067	16910.	-2718 4	13221.	110/0.			
1.2821	16202.	-8009 4	9683 9	7100 0			
1.3575	15493.	-9300 3	ELAE E	1201.0			
1.4329	14808.	-11014	2881 6	4/01.2			
1.5083	14151	-12706	-E2 QEA	2443.3			
1.5838	13494	-15/08	2087 5	389.10			
1.6592	12837	-17201	-5022 1	-1665.1			
1.7346	12179	-10/02	- 2226. 7	-3/19.4			
1.8100	11522	-12903.	-11761	-57/3.6			
1 8854	10001	-CV0/0.	11000	-7827.8			
1.9508	10282	-610/0.	-14000.	-9413.8			
2 0363	0622.3	-66383.	-101/0,	-10966.			
2 1117	0000.0	-23110.	-10046.	-12517,			
0 1071	01400	-63639.	-20508.	-14069.			
5 5262	7607 0	-24562	-220/4.	-15621.			
6.6060	1007.2	-25285.	-24840.	-17173.			
2.22/3	/120;4	-25809.	-25697.	-18507.			
0.4100	5501.5	-25932.	-2/933.	-19402.			
614000	5005.7	-26055.	-29170.	-20297.			
2.3042	0411.8	~26178.	-30406.	-21192.			
2.5395	4816.9	-26301.	-31642.	-72.08.			
2.7150	9222.1	-26424	-32878.	-22983.			
2.7904	3627.2	-26547,	-34114,	-23878.			
2.8558	3032.4	-26670.	-35350.	-24773.			
2.3413	2434.8	-26670.	-36097,	-25294.			
3.0167	1833.6	-26513.	+36217.	-25335.			
3.0921	1232.5	-26355.	-36337.	-25376.			
3.1675	631.38	-26198.	-36457.	-25417.			
3.2429	30.248	-26040.	-36578.	-25458.			
3.3183	-570.88	-25883.	-36698.	-25499			
3.3938	-1172.0	-25725.	-36818.	-25540			
3.4692	-1773.1	-25568.	-36938.	-25581			
3.5446	-2374,3	-25410.	-37058.	+25622			
3.6200	-2975.4	-25253.	-37178.	-25664			

Table 6-13. Girth Weld Axial Stress Detail, Bounding Faulted Event

nsgen5.5

Figure 6-1. Heatup @ 100°F/hour, Temperature Transient

Figure 6-2. Heatup @ 100°F/hour, Temperature Profiles, t=18,000 sec.

Page 77 of 146

Figure 6-4. Heatup @ 100°F/hour, Axial Stress Contributions, t-18,000 sec.

Figure 6-5. Cooldown @ 100°F/hour, Temperature Transient

2032-0001-03

Page 80 of 146

Figure 6-6. Cooldown @ 100°F/hour, Temperature Profiles, t=18,000 sec.

2032-0001-03

Page 81 of 146

ENGINEERING APPLIED SCIENCES, INC FOST1 STRESS STEP=1 ITER=1 SI AVC) STRESS 5 00 10 27050 29729 32409 C J σ_{i} 089 00 σ_{i} **6** 65 21 Series. 0 5F SN 100 60 10 m cl 9 m Qi U) 67 = I I 10 16 BMX =35 SMXB=35 STEP=1 ITER=1 SI TSTO XF **TTSO4** LOI SMINE= EDGE NINS AND AND A 22 181 1 ntan Stres @ 100°F/Hour. -1 COOLDOWN & 100deg/hour, STATE Cooldown r-1¢ joure -NO. SIENT TFA

2032-0001-03

10

1

2032-0001-03

Page 83 of 146

Figure 6-9. Large Step Load Decrease, Temperature Transient

2032-0001-03

Page 84 of 146

Figure 6-10. Large Step Load Decrease, Temperature Profiles, t=60 sec.

2032-0001-03

Page 85 of 146

l

Figure 6-12. Large Step Load Decrease, Axial Stress Contributions, t=0 sec.

2032-0001-03

Page 87 of 146

Figure 6-14. Large Step Load Decrease, Axial Stress Contributions, t=60 sec.

2032-0001-03

Page 89 of 146

...

,)

INC 1 200 ないな 事業に

2032-0001-03

Pana an of the

Figure 6-16. Large Step Load Decrease, Axial Stress Contributions, t=180 sec.

2032-0001-03

Page 91 of 146

Figure 6-18. Large Step Load Decrease, Axial Stress Contributions, t= 1200 sec.

2032-0001-03

Page 93 of 146

OCT 2 21:30 PLOT FOST	XF = XF = XF = ZF = XV = XF = XF = XF = XF = XF = XF = X	e Cir			
				800	
		6561K20	K28TK24		
		\mathbb{R}		640	
		10°0	- 0.0-	480	
				400	LET TOP
			+	320	OP FILI
				150	CORY, T
					HIST

ENGINEERING APPLIED SCIENCES, INC.

2032-0001-03

Page 94 of 146

Page 95 of 146

Figure 6-20 Reactor Trip, Temperature Profiles Through Wall at Girth Weld, t=560 sec

ENGINEERING APPLIED SCIENCES, INC

18

Page 96 of 146

Figure 6-22 Reactor Trip, Stress History at Girth Weld

ENGINEERING APPLIED SCIENCES, INC

Page 98 of 146

ENGINEERING APPLIED SCIENCES, INC.

Page 99 of 146

ENGINEERING APPLIED SCIENCES, INC

Figure 6-25. Reactor Trip, Stress Profile Up Inside Surface, t=685 sec.

Source: Reference 7

Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991. (Figure 3.3-11)

ENGINEERING APPLIED SCIENCES, INC

Figure 6-26 Reactor Trip, Stress Intensity Contours, T=547'F, p=1020psi

ENGINEERING APPLIED SCIENCES, INC.

Figure 6-27 Reactor Trip, Stress Intensity Contours, t=685 sec

Page 103 of 146

Figure 6-28 Reactor Trip, Axial Stress Contributions , T=547°F, p=1020psi

ENGINEERING APPLIED SCIENCES, INC

Figure 6-29 Reactor Trip, Axial Stress Contributions, t=685 sec

Page 104 of 146

Page 105 of 146

ENGINEERING APPLIED SCIENCES, INC

6

ENGINEERING APPLIED SCIENCES, INC

Figure 6-32. Auxiliary Feedwater Cycling, Temperature Profile Through Wall at Girth Weld, t = 560 sec.

Page 108 of 146

Figure 6-34. Auxiliary Feedwater Cycling, Stress Profile Up Inside Surface, t = 560 sec.

Page 109 of 146

ENGINEERING

APPLIED SCIENCES, INC

Figure 6-35. Auxiliary Feedwater Cycling, Stress Intensity Contours, t = 560 sec.

Page 110 of 146

ENGINEERING APPLIED SCIENCES, INC

2032-0001-03

Page 111 of 146

IED

SCIENCES, INC

Page 112 of 146

Figure 6-38. Bounding Faulted Event, Temperature Transient

Page 113 of 146

Figure 6-39. Bounding Faulted Event, Temperature Profile, t = 60 sec.

2032-0001-03

Page 114 of 146

ENGINEERING APPLIED SCIENCES, INC.

Figure 6-40. Bounding Faulted Event, Temperature Profile, t = 197 sec.

Page 115 of 146

Figure 6-41. Bounding Faulted Event, Temperature Profile, t = 347 sec.

2032-0001-03

1

Page 116 of 146

- Cart

ENGINEERING APPLIED SCIENCES, INC.

Figure 6-43. Bounding Faulted Event, Axial Stress Contributions, Steady State, t = 0 sec.

2032-0001-03

Page 118 of 146

ENGINEERING APPLIED SCIENCES, INC.

Figure 6-45. Bounding Faulted Event, Axial Stress Contributions, t = 60 sec.

2032-0001-03

Page 120 of 146

T D PP m So IENCES

NC

Figure 6-47. Bounding Faulted Event, Axial Stress Contributions, t = 197 sec.

2032-0001-03

Page 122 of 146

Figure 6-49. Bounding Faulted Event, Axial Stress Contributions, t = 347 sec.

2032-0001-03

Page 124 of 146

7.0 FLAW EVALUATION BY FRACTURE MECHANICS

7.1 GENERAL APPROACH

The general approach for flaw evaluation has been described in Section 3. Flaws whose dimensions exceed the acceptance by examination standards of IWC-3510-1 may be accepted if they meet the analytical evaluation criteria of article IWC-3600. In the following parts of this section, the fracture mechanics flaw evaluation criteria are described and then applied to two cases of (1) a subsurface girth weld flaw and (2) a surface girth weld flaw. Stress analysis results of Section 6 are used in the evaluation. A range of normal and upset conditions are considered and a bounding analysis is used for the limiting emergency/faulted condition.

7.2 FLAW ACCEPTANCE BY ANALYSIS CRITERIA

Flaw acceptance by analysis criteria are taken from Section XI, article IWC-3600 of the ASME B&PV Code, 1992 Edition. Analysis procedures and material property data follow Appendix A. Flaw acceptance criteria and analysis procedures are as follows.

For the purposes of these conservative analyses, a bounding case has been assumed that all flaws lie in a plane perpendicular to the hoop stress component. Fracture evaluation acceptance criteria may be based on allowable flaw size or applied stress intensity factor. In the former case, flaws are considered acceptable by Code if:

a, < 0.1 a.

where a,

the maximum size to which the detected flaw is calculated to grow in a specified time period, which can be the next scheduled inspection of the component or until the end of vessel design lifetime.

2032-0001-03

Page 125 of 146

- a_o = the minimum critical flaw size of the flaw under normal operating conditions.
- a, = the minimum critical flaw size of the flaw for initiation of nonarresting growth under postulated emergency and faulted conditions.

These criteria interject a safety factor of ten (10) on critical crack length for instability (normal/upset) and a factor of two (2) on the critical crack length for initiation (emergency/faulted). Another way of evaluating these same criteria is through critical stress intensity factors for initiation and for arrest. Flaws may be shown to be acceptable on the basis of applied stress intensity factor if the applied stress intensity factor and/or the flaw size "a", satisfy the following criteria.

(a) For normal conditions:

$$K_l < \frac{K_{la}}{\sqrt{10}}$$

where K₁ = the maximum applied stress intensity factor for normal (including upset and test) conditions for the flaw size a_r (defined in IWB-3611)

K_{ta} = the available fracture toughness based on crack arrest for the corresponding crack tip temperature.

(b) For emergency and faulted conditions:

$$K_1 < \frac{K_k}{\sqrt{2}}$$

Page 126 of 146

where

- the maximum applied stress intensity factor for the flaw size a, under emergency and faulted condition
- Kic

K

 the available fracture toughness based on fracture initiation for the corresponding crack tip temperature.

Demonstration of flaw acceptability by analysis is perhaps simplest using the stress intensity factor approach. The applied stress intensity factor need only be compared to acceptable levels based on initiation or arrest toughness values. If the flaw size is such that a more refined approach is needed, then advantage can be taken of the fact that for emergency or faulted conditions, a crack which initiates growth but arrests before penetrating 75% of the vessel wall is acceptable. The allowable flaw size approach allows for this circumstance.

The stress intensity factor criteria simply prevents the onset of fracture and thus crack arrest is not evaluated. The stress intensity factor criteria will be used in general. The flaw size criteria will be used in the event of a flaw which fails the emergency/faulted stress intensity factor criteria.

7.3 COMPUTATION OF APPLIED STRESS INTENSITY FACTORS

The applied stress intensity factor can be determined by the K formula given in Article A-3000, Section XI, ASME B&PV Code, 1992 Edition.

$$K_{i} = \sigma_{m} M_{m} \sqrt{\pi} \frac{\sqrt{a}}{Q} + \sigma_{b} M_{b} \sqrt{\pi} \sqrt{\frac{a}{Q}}$$

2032-0001-03

Page 127 of 146

- where σ_m = Linearized bending stress distribution through the vessel wall thickness
 - minor half diameter, inches, of subsurface flaw or depth of a surface flaw
 - Q = flaw shape parameter to be determined from Figure A-3300-1 using $(\sigma_m + \sigma_b)/\sigma_{vs}$ and the flaw geometry.

M_m = correction factor for membrane stress from Figure A-3300-2

M_b = correction factor for bending stress from Figure A-3300-5

The linearization of actual stress profiles across the wall thickness is accomplished by the procedure depicted in Figure 7-1.

In some cases, more sophisticated formulations for stress intensity factors can make the difference between flaw acceptance or rejection. In cases where conservative bounding calculations are not appropriate then more sophisticated approaches will be utilized. For example, the stress distribution across the wall thickness can be modeled as a third order polynomial rather than by a straight line. It is sometimes convenient to select a bounding case crack length as a continuous 360° surface flaw. When this is not appropriate, the finite length of the actual indication will be considered. Also possible crack shape changes during fatigue crack growth are typically not considered.

2032-0001-03

a

Page 128 of 146

7.4 SELECTED FLAW GEOMETRIES

The subsurface flaw geometry selected for analysis is one which was indicated to be in the upper shell to transition cone girth weld of steam generator D, Zion Unit 2, during the 1990 spring refueling outage. The subsurface flaw is in a circumferential orientation with a total length, I, of 3.20 inches and a total depth, 2a, of 1.01 inches. An elliptical shape is assumed. The distance of closest approach to the shell ID is 0.27 inches. The depth and length of the flaw leads to an aspect ratio, *a*/I, of 0.158.

The surface flaw geometry selected for analysis is a flaw open to the ID of the steam generator shell with a depth of 0.30 inches and a length of 1.90 inches. This leads to the same aspect ratio, a/I, as the surface flaw. As in the subsurface flaw case, a circumferential orientation and elliptical flaw shape is assumed.

7.5 LOADING CONDITIONS

Finite element stress analysis results are presented in Section 6 for a number of specified transients and conditions. Normal and upset transients are heat up, cool down, large step load decrease, auxiliary feedwater cycling at hot standby and reactor trip. Specific conditions of interest during these transients are the initial condition for the cool down transient which is 547°F at 1020 psi, termed here hot standby, and the initial condition for the large step load decrease, 506°F at 720 psi, which is the steady state 100% power condition.

The above transients and conditions combine together to create cyclic loading conditions. For example, the heat up and cool down transients produce a heat up/cool down cycle and the transition from hot standby to 100% power produces the loading and unloading to 100% power fatigue cycle.

2032-0001-03

Page 129 of 146

At hot standby, auxiliary feedwater cycling maintains a reasonably constant secondary side water level. This auxiliary feedwater cycling occurs about 10 minutes every two hours leading to cyclic thermal stresses. Using the thermal hydraulic boundary conditions from Reference 7, stresses developed during this transient condition were analyzed, with the results presented in Section 6. At hot standby, five cycles of thermal stresses occur about every two hours. For fatigue crack growth calculations the cyclic stress range for all five cycles was conservatively set equal to the maximum range.

Fatigue cycles considered in this analysis are tabulated in Table 7-1. The design allowable occurrences are taken from Reference 5. Present conservative estimates of occurrences per fuel cycle are also listed. The total of 540 cycles for loading and unloading to 100% power is an occurrence rate of about once a day for 18 months. The total of 1250 cycles for auxiliary feedwater cycling is based on a conservative estimate of 500 hours of hot standby per fuel cycle with an average of 2.5 cycles per hour. The total of 1250 cycles is considered to umbrella other less severe transients involving auxiliary feedwater cycling. Figure 7-2 is a schematic illustration of fatigue cycles included in the present analysis.

A bounding faulted event had to be assumed since previous documentation regarding the limiting faulted event was unavailable. Reference 6 refers to a transient involving water ingress to a hot, dry steam generator shell. This thermal shock event was selected as the bounding faulted transient. For convenience in analysis, the ID metal temperature of the shell was ramped from 547°F to 70°F in one minute. This is more severe than can occur in practice but serves as a bounding event. No internal pressure was applied during the thermal shock.

2032-0001-03

Page 130 of 146

Fatigue Cycle	Total Design Allowable <u>Occurrences</u>	Estimated Occurrence Per Fuel Cycle
Heat up & cool down	200	20
Loading & unloading to 100% power	18,300	540
Large step load decrease	200	20
Reactor (turbine) trip	400	40
Auxiliary feedwater cycling during not standby	18,300	1250

Table 7-1. Tatigue Design Allowables

7.6 FATIGUE CRACK GROWTH ANALYSIS

From the finite element stress analyses of Section 6 and the fatigue cycle list of Table 7-1, six loading conditions are of interest. These are hot standby, which is 547°F at 120 psi, steady state 100% power, which is 506°F at 720 psi, large step load decrease, auxiliary feedwater cycling reactor trip. From consideration of fatigue cycling, the time of interest for the large step load decrease transient is 1200 seconds and for the reactor trip transient, 685 seconds. During auxiliary feedwater cycling the largest stress range occurs between 450 seconds and 560 seconds into the 600 second total duration of the transient. Axial stress distributions across the wall thickness for these conditions are shown in Figure 7-2. Linearized membrane and bending stresses according to Figure 7-1 are listed in Table 7-2 for the subsurface flow case and in Table 7-3 for the surface flaw case.

2032-0001-03

Page 131 of 146

Table 7-2. Subsurface Flaw Case

	Linearized Membrane	Linearized Bending	Stress Intensity
Condition	<u>Stress</u> (ksi)	<u>Stress</u> (ksi)	<u>Factor</u> (ksi√in)
Hot Standby	10.56	19.32	29.84
100% Power	7.46	13.64	21.06
Large Step Load De	crease		
(t = 1200 seconds)	10.39	14.72	25.16
Reactor Trip			
(t = 685 seconds)	-0.71	10.29	7.72
Auxiliary Feedwater	Cycling		
(t = 450 seconds)	10.23	15.75	26.43
(t = 560 seconds)	7.80	34.02	32.19

Table 7-3. Surface Flaw Case

	Linearized Membrane	Linearized Bending	Stress Intensity
Condition	<u>Stress</u> (ksi)	<u>Stress</u> (ksi)	<u>Factor</u> (ksi√in)
Hot Standby	6.98	23.55	28.98
100% Power	4.92	16.63	20.46
Large Step Load De	crease		
(t = 1200 seconds)	7.90	17.67	24.57
Reactor Trip			
(t = 685 seconds)	-3.80	13.93	8.73
Auxiliary Feedwater	Cycling		
(t = 450 seconds)	17.10	7.64	25.15
(t = 560 seconds)	-10.17	49.30	34.39

Fatigue cycling between the conditions listed in Tables 7-2 and 7-3 is illustrated schematically in Figure 7-2. The estimated number of transients per fuel cycle is also shown. The initial stress intensity factor ranges associated with these fatigue cycles are summarized in Tables 7-4 and 7-5 along with the R ratio, that is the ratio of minimum to maximum stress intensity factor during the fatigue cycle.

Table 7-4. Subsurface Flaw Case

Fatigue Cycle	Stress Intensity Factor Range	R Ratio	
Large step load decrease	4.10	0.84	
Standby to 100% power	8.78	0.71	
Reactor trip	22.12	0.26	
Heat up & cool down	29.84	0.00	
Auxiliary feedwater cycling	5.76	0.82	

Table 7-5. Subsurface Flaw Case

Fatigue Cycle	Initial Stress Intensity <u>Factor Range</u> (ΔK, ksi√in)	<u>R Ratio</u>
Large step load decrease	4.11	0.83
Hot standby to 100% power	8.52	0.71
Reactor trip	20.25	0.30
Heat up & cool down	28.98	0.00
Auxiliary feedwater cycling	9.24	0.73

Page 133 of 146

Fatigue crack growth is computed via the equation:

$$da(dN = C_0 \Delta K^n$$

where ΔK is the stress intensity factor range. The parameters C₀ and n are found in Article A-4000 Section XI of the ASME B&PV Code. The air reference properties are used for the subsurface flaw since the crack is not exposed to an aqueous environment. For the surface flaw case exposure of the crack tip to the aqueous environment increases the fatigue crack growth rate and the C₀ and n parameters are adjusted accordingly. Integration of the above equation leads to the crack size, a, as a function of the number of cycles, N. In general, the stress intensity factor range varies with location along the crack front and crack shape changes can occur during fatigue crack growth. For the present, the common assumption of self similar growth is applied. With this assumption and the further assumption that variations in M_m and M_b with crack size, a, are small, fatigue crack growth was computed for one fuel cycle.

For the subsurface flaw, the crack size, a, increased from 0.505 to 0.5055 inches over one fuel cycle. In this case fatigue crack growth is virtually non existent. For the surface crack case, where the starting crack depth was 0.302 inches, increased fatigue crack growth rates to account for the effect of exposure to a water environment led to a small amount of predicted crack growth. After one fuel cycle, an ASME Code analysis predicts an increase in crack depth from 0.302 to 0.343 inches. This amount of growth is small and is consistent with the computational assumptions. The computed crack growth is somewhat of an overestimate since upper bound growth rates were used rather than changing the "C₀" and "n" parameters for low Δ K levels. In some cases, girth weld cracks in steam generators have grown faster than ASME Code analyses would predict. Historical observations of cracking at Zion Units 1 and 2 are discussed in the next section along with additional crack growth considerations.

2032-0001-03

Page 134 of 146

7.7 CRACK GROWTH CONSIDERATIONS

Environmentally enhanced crack growth has been observed in low alloy steels tested in high temperature water. This is reflected in the fact that the ASME Code fatigue crack growth rate curve for aqueous environments lies above the line for air environments. Factors which promote environmentally enhanced crack growth rates are low flow past the crack mouth, high crack tip strain rates, buildup of sulfur anions near the crack tip and oxidizing conditions. With sufficiently high levels of loading, water with high oxygen levels can lead to crack growth under constant rather than cyclic loading.

Crack depth observations at Zion Units 1 and 2 were discussed in Section 3. Crack depths as measured by ultrasonic testing were compared to crack depths revealed by repeated grinding and MT testing. Ultrasonic testing indicated the presence of much deeper surface crc. ks than the more reliable MT/grindout process. See Figure 3-3. Part of the disparity in results may be due to the surface proximity rules used to judge if a UT indication must be treated as surface connected. Using the MT/grindout process as the most accurate indicator of crack depth, the maximum crack depth observed after about 10 cycles of operation was 0.58 inches. After removal of all indications, subsequent operation for one additional cycle led to a maximum observed MT/grindout depth of 0.32 inches. This historical performance sets the scale for expected observations of crack depth after several cycles of operation. Crack growth predictions of the previous section from an ASME Code corrosion fatigue perspective essentially underestimate expected crack depths.

Based on the above information and the service performance of similar steam generator units, Reference 8-17, it is argued that periodic exposure to water with elevated oxygen levels has led to environmentally enhanced crack growth under the

2032-0001-03

Page 135 of 146

combined action of static and cyclic loads. The extent of crack growth appears to be greater than a pure corrosion fatigue process would predict. Auxiliary feedwater cycling provides periodic injections of water with elevated oxygen levels. These elevated oxygen levels are transient as diffusion occurs and elevated temperatures lead to more efficient oxygen scavenging by hydrazine in the auxiliary feedwater cycling. Associated cyclic thermal stressing is considered important from a corrosion fatigue standpoint but, perhaps more importantly, periodic active straining of crack tips can serve to stabilize crack growth under longer periods of static loading. With this viewpoint crack growth is principally related to periods of auxiliary feedwater cycling.

Measured crack growth rates in high temperature oxygenated water under static and slowly varying loads are shown in Figure 7-4 and 7-5, Reference 8. At very high oxygen levels the maximum observed crack growth rate is about 4x10-3 inches/hour, while at more moderate oxygen levels this rate is on the order to 10-4 inches/hour. During one fuel cycle, auxiliary feedwater cycling may occur over an estimated 500 hours total. In this time period an unrealistically high oxygen level of 8 ppm could lead to about 2 inches of crack growth. A more realistic oxygen level would lead to an estimate of about 0.05 inches of crack growth. These growth estimates bound the historical observations of crack depths at Zion Units 1 and 2. The most reasonable approach to crack depth projections is to use the historical data.

A reasonable yet conservative use of historical crack depth information is to select a crack growth increment for one cycle of operation equal to the largest, new, one cycle, crack depth that has appeared in the past, 0.32 inches. For the presently selected, beginning of cycle, surface crack depth of 0.30 inches, this would lead to an end of cycle crack depth of 0.64 inches. As a check of the reasonableness of this projection recall that the maximum observed crack depth after 10 cycles is 0.58 inches. The

2032-0001-03

Page 136 of 146

cumulative probability plot of Figure 3-2 for 10 cycles of operation indicates about a 1% probability of occurrence of a crack depth of 0.64 inches or larger. The case of interest here is a projection for 2 cycles of operation, the past cycle and the next cycle. An end of cycle projected crack depth of 0.64 inches is conservative.

7.8 APPLICATION OF FRACTURE EVALUATION ACCEPTANCE CRITERIA

For normal and upset conditions the allowable stress intensity factor is $K_{i_{B}}/\sqrt{10}$. A good limiting case, RT_{NDT}, assuming cracks to be in the weld region, is 10°F. If cracks in the base metal are of interest, then a limiting RT_{NDT} of 30°F would be appropriate. In either case, temperatures at normal and upset conditions lead to the consideration of upper shelf toughness levels rather than trans. ion range values. The Kia toughness from Article A4000 is expected to be in excess of 200ksi√in at a temperature near 220°F. Measurement of upper shelf toughness would require massive specimens for a linear elastic fracture mechanics approach to the materials of interest. Upper shelf toughness levels expressed in terms of K are more typically inferred from elastic plastic tests and the trending of results from lower temperatures. A value of 200ksivin to characterize the appropriate upper shelf toughness is conservative. This value is selected as limiting. The allowable stress intensity factor is then 63.3 ksi√in. The maximum applied stress intensity factor for the specified subsurface and surface flaws is comfortably less than this value. The stress intensity factor criteria for normal and upset conditions is met. It is met at both hot standby, conditions, 547°F and 1020 psi and the design temperature and pressure of 600°F and 1085 psi.

For emergency and faulted conditions, the limiting transient is selected as a thermal shock from 547°F to 70°F without internal pressure. In this case, the stresses are taken from a transient thermal stress analysis as presented in Section 6. The stress and temperature distributions were available at 60 and 660 seconds into the transient. Over the crack lengths of interest, the stress and temperature distributions were

2032-0001-04

Page 137 of 146

essentially linear. Temperatures and stresses were interpolated for other times. The temperature at the crack tip determines the allowable stress intensity factor. As time into the transient increases, the temperature at the crack tip drops and thus the allowable stress intensity factor, $K_{ic}/\sqrt{2}$, also decreases. Howe e., as time increases, the thermal stresses decrease and this decreases the applied scress intensity. The applied and allowable stress intensity factors were plotted as a function of time during the faulted transient. The applied stress intensity factor was always substantially less than the allowable value with the worst case condition at one minute into the transient. Even with a bounding faulted transient event, the faulted transient allowable stress intensity factor criteria were easily met.

The ASME Code fatigue analysis indicated minimal crack growth over one cycle of operation for both the subsurface and surface cracks. From historical observations of girth weld cracks at Zion Units 1 and 2, the performance of similar plants and crack growth rate data is the literature, crack growth for surface cracks is expected to be larger than the standard ASME Code corrosion fatigue analysis. In the previous section a conservative growth allowance of 0.32 inches for one cycle of operation was discussed. Increase of the crack depth by this amount while assuming a constant a/l ratio is a reasonable, conservative approach to arrive at a projected end of cycle crack depth and shape. From previous analysis, the allowable end of cycle crack size is limited by the stress intensity factor criteria for normal and upset conditions. The limiting condition is auxiliary feedwater cycling at 275 seconds into this transient. Figure 7-6 shows a plot of stress intensity factor versus surface crack depth under this loading. Curves are shown for several crack shapes, as specified by the a/l ratio. The allowable stress intensity level is indicated by a dotted line. Figure 7-6 thus specifies the allowable end of cycle allowable crack shapes and sizes and may be used with the above mentioned growth allowance to evaluate the acceptability of NDE crack indications at girth welds.

2032-0001-04

Page 118 of 146

From Fig. A-3200=1 Figure 7-1. Linearized Representation of Stresses

2032-0001-03

Page 139 of 146

TIME

Figure 7-2. Schenia Stress Time Plot to Identify Fatigue Cycles

2032-0001-03

Page 140 of 146

DISTANCE ACROSS WALL, INCHES

Figure 7-3. Axial Stress Distribution Across Wall Thickness

2032-0001-03

Page 141 of 146

Summary of transgranular stress corrosion data for A533B, A508, SA333, and SA106 steels in oxygenated water at 288°C. The origin of these data will be referenced later, but essentially all those marked (**@**) were obtained in 8 ppm O₂ water, and those marked (O) were obtained in 200 ppb O₂ water. See Reference 8.

Figure 7-4. Crack Growth of Low Alloy Steels in High Temperature Oxygenated Water

2032-0001-03

Page 142 of 146

Crack propagation rate/stress intensity data obtained in 8 ppm oxygenated, flowing water at 288°C for constant load, constant load with periodic unloading and constant displacement and rising load conditions. See Reference 8.

Figure 7-5. Crack Growth of Low Alloy Steels in High Temperature Oxygenated Water

2032-0001-03

Page 143 of 146

Figure 7-6. Stress Intensity Factor Versus Surface Crack Depth During Maximum Normal/Upset Condition Loading

2032-0001-03

Page 144 of 146

8.0 REFERENCES

- "ASME Boiler and Pressure Vessel Code," 1989 Code (no addenda) and the 1992 Edition was used for additional technical guidance, American Society of Mechanical Engineers, New York, NY.
- Report, "Zion Steam Generator Girth Weld Flaw Evaluation," Engineering Applied Sciences Inc., No. 2011-024, dated February 3, 1993.
- "ANSYS Engineering Analysis System User's Manual," For ANSYS Revision 4.4A, Gabe DeSalvo and Robert Gorman, Swanson Analysis Systems Inc., Houston, PA.
- Roark, R.J., and W.C. Young, "Formulas for Stress and Strain," McGraw Hill Book Company, New York, NY, 1982.
- Letter, R. Smith (EASI) to R. Mallett (MSTI), "Steam Generator Flaw Evaluation -Job No. 2017, dated March 17, 1993. MSTI Log. No. 2017-M018.
- Bamford, W.H., et alii, "Background and Technical Basis: Handbook on Flaw Evaluation for the Zion, Byron and Braidwood Units 1 & 2 Main Coolant System and Components," Westinghouse Electric Corporation #WCAP-12446, Revision 1, dated December 1991.
- Report, "Zion Unit 1 Steam Generator Girth Weld Repair Report Fall 1989, and Zion Unit 2 Steam Generator Girth Weld Repair Report Spring 1990," Westinghouse Electric Corporation Report WCAP-12489, June 1991.
- Ford, F.P., Andresen, P.L., Weinstein, D., Ranganath, S., and Pathania, R., "Stress Corrosion Cracking of Low-allow Steels in High Temperature Water", Proceedings of the Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ANS, 1992.
- Van Der Sluys, W.A. and Pathania, R., "Studies of Stress Corrosion Cracking in Steels Used for Reactor Pressure Vessels", Proceedings of the Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ANS, 1992.

2032-0001-03

Page 145 of 146

- Lenz, E. Wieling, N. and Munster, H., "Influence of Variation of Flow Rates and Temperature on the Cyclic Crack Growth Rate under BWR Conditions", Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, TMS, 1988.
- Thomas, C., Bamford, W.H., Kurak, D. and Rao, G.V., "Steam Generator Shell Cracking: Is It Service Degradation?", 1991 ASME Pressure Vessels and Piping Conference, Service Experience in Operating Plants, ASME PVP - Vol. 240, 1992.
- Zajowski, C.J., "Evaluation of the Transgranular Cracking Phenomenon on the Indian Point Unit Three Steam Generator Vessels," <u>Int. Jrnl. Press. Vessels and</u> <u>Piping</u>, Vol. 6, No. 2, 1986.
- Bamford, W.J., Smith, L.C. and Thurman, A.L., "Integrity Issues in PWR Steam Generators and Feedwater Systems," in <u>Performance and Evaluation of light</u> <u>Water Reactor Pressure Vessels</u>, ASME publication PVP-Vol. 119, 1987.
- Rao, G.V., "Investigation and Resolution of Steam Generator Girth Weld Cracking Incidents in Pressurized Water Reactors," in Proceedings, International Symposium at Fontevraud II September 1990.
- Bamford, W.H., Rao, G.V. and Houtman, J.I., "Investigation of Service-Induced Degradation of Steam Generator Shell Materials," in Proceedings of the Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems, - Water Reactors, August 1991. American Nuclear Society, April 1992.
- Durkin, C.J. Jr., Sinka, S.K., Esselman, T.C. and Madia, J., "Characteristics of Steam Generator Girth Weld Cracking," 1991 ASME Pressure Vessels and Piping Conference, San Diego, CA, in <u>Service Experience in Operating Plants:</u> <u>1991</u>, ASME Publication PVP-Vol. 221, 1991.
- Skabowski, R.A. and Sinka, S.K., "A Statistical Model of Pitting and Cracking Phenomena in Steam Generator Girth Welds," 1991 Pressure Vessels and Piping Conference, San Diego, CA, in <u>Service Experience in Operating Plants:</u> <u>1991</u>, ASME Publication PVP-Vol. 221, 1991.

1

2032-0001-03

Page 146 of 146

APPENDIX A

INPUT DATA LISTINGS

LSKP,1 NLINE, 1 PSF, ALL, , , PP NALL !, END SURF FAX=((PB**2)*PP)/2 !, AXIAL FORCE PER RADIAN F, N1, FY, FAX KPSEL,,1 NKPOI *GET, N1, NDMX KPSEL,,2 NKPOI *GET, N2, NDMX NALL AFWRITE FINISH /INPUT,27 FINISH /POST1 SET /DSCALE,, OFF /PLOFF, , , 2 /SHOW, , , 1 /NUM, 2 /WINDOW,, TOP PLNSTR, SX !, PLNSTR, SY /NOERASE /WINDOW, , BOT PLNSTR, SZ /ERASE /WINDOW, , FULL /WINDOW,, TOP /SHOW, , , 1 /NUM, 2 PLPATH, N1, N2, SX !, PLPATH, N1, N2, SY /NOERASE /WINDOW, , BOT PLPATH, N1, N2, SZ PRPATH, N1, N2, SX PRPATH, N1, N2, SY PRPATH, N1, N2, SZ !, ROARK FORMULAS **** C1=(PA**2)-(PB**2) RX=PA C2=(PA**2)+(RX**2) C3=(RX**2)*C1 SHO=(PP*(PB**2)*C2)/C3 C4=(PA**2)-(RX**2 SRO= - (PP* (PB**2)*C4)/C3 SAO=(PP*(PB**2))/C1 RX=PB C2=(PA**2)+(RX**2) C3=(RX**2)*C1 SHI=(PP*(PB**2)*C2)/C3 C4=(PA**2)-(RX**2) SRI=-(PP*(PB**2)*C4)/C3

SAI=(PP*(PB**2))/C1

FINISH /EOF

PRESSU	JRE LOAD V	E	RIFICATION
DTUTT	NCP		OURDINALES
NTOTA D	TACE		1065 0
2	6200		-1065.0
2.	6200		0.38782
SY	IN GLOBAL	1	COORDINATES
DISTA	NCE		SY
0.			12665.
3.1	5200		12665.
SZ	IN GLOBAL		COORDINATES
DIST	ANCE		SZ
0.	1.1.1.1.1.1.1.1.1		26396.
3.	6200		25331.
1	*SET, PB	1	87.8750000
2	*SET, PA	1	91.4950000
3	*SET, PP	1	1065.00000
4	*SET, PE	1	3000000.0
5	*SET, PNU	1	0.300000000
6	*SET, PAL	,	0.60000000E-0
7	*SET, PDEN	1	0.283564815
8	*SET, PK	1	0.578703704E-0
9	*SET, PC	į.	0.110000000
10	*SET, PD	,	0.185528757E-0
11	*SET,N1	,	1.00000000
12	*SET,NJ	,	0.
13	*SET, FAX		4111973.32
14	*SET,N2	į.	2.0000000
15	*SET,C1		649.319400
16	*SET, RX	,	87.8750000
17	*SET,C2	1	16093.3506
18	*SET,C3	1	5014054.55
19	*SET, SHO	1	25330.9747
20	*SET,C4	,	649.319400
21	*SET, SRO	1	0.
22	*SET, SAO	,	12665.4873
23	*SET, SHI	1	26395.9747
24	*SET, SRI	1	-1065.00000
25	*SET, SAI	1	12665.4873

!, File = ver2.5/SHOW, file33, dat /PREP7 /TITLE, PRESSURE LOAD VERIFICATION 1, PARAMETERS PB=87.875 PA=PB+3.62 PP=1065 PE=30E6 PNU=0.3 PAL=6E-6 PDEN=490 PK=25 PC=0.11 D1=10 B1=5 PDEN=PDEN/1728 PK=PK/(3600*12) PD=PK/(PDEN*PC) !, SOLID MODEL *********** K, 1, PB K, 2, PA K, 3, PA, 1 K, 4, PB, 1 L, 1, 4, 1 L,1,2,D1,B1 L, 4, 3, D1, B1 A, 1, 2, 3, 4 !, NODES & ELEMENTS ****** KAN,-1 ET,1,77 KEYOPT, 1, 3, 1 MP, C, 1, PC MP, KXX, 1, PK MP, EX, 1, PE MP, NUXY, 1, PNU MP, ALPX, 1, PAL MP, DENS, 1, PDEN ELSIZE,,,2 AMESH,ALL !, STEP SIZE DT=((PA-PB)/(D1*B1))**2 DT=DT/(10*PD) !, BUNDARY CONDITIONS ******** ****** TREF=70 TIM=0 TIME, TIM KPSEL, , 2, 3 LSKP,1 NLINE,1 NT, ALL, TEMP, 70 ITER, -10,,10 KBC,1 NALL

PHI=(C1/C2)*(C3-((D1/D2)*D3))

FINISH

/EOF

ŝΥ	IN GL	OBAL	COORI	DINA	TES		
DISTA	NCE				SY		
0.			13	3282			
3.6	200		-25	5792			
					1		
2.7	TN CL	ORAL.	COORT	ANTO	TRA		
STOTA	TH GT	OBPLE	COOR	1 7 1 8 2 9	0.0		
JIDIM	IN C. I.I				20		
0.			13	5282	61 C		
3.6	200		~25	801	×3.1		
					1.11	284	
41	*SET,	рно,	-262	06.	325	9	
42	*SET,	PHI,	133	368.	674	9	
1	*SET,	PB,	87.	875	000	0	
2	*SET,	PA ,	91.	495	000	0	
3	*SET,	PP ,	106	5.0	000	0	
4	*SET,	PE ,	300	0000	00.	0	
5	*SET.	PNU .	0.30	0000	000	0	
6	*SET	PAT.	0.60	000	000	OF-	ne
7	+ com	DDEN	0.00	2250	101	C 10-	~~~
~	10011	E DEWA	0.60	0266	404	2.00	20
8	*SET,	PK /	0.57	870	310	4 E-	03
9	*SET,	PC ,	0.11	000	000	0	
10	*SET,	PD ,	0.18	3552	875	7E-	01
11	*SET,	N1 ,	1.0	000	000	0	
12	*SET.	NJ .			Ó		
12	* 9 10 17	FAY	411	197	2.2	0	
1.4	+opm -	unn 1	0 /	1000	000	5	
1.4	"DELL	NG 1	2:5	1000	000	2	
10	"SEL,	GL /	19.	500	000	0	
16	*SET,	RX ,	87.	875	000	0	
17	*SET,	C2 ,	0.10	389	610	4	
18	*SET.	C3 ,	160	93.	350	6	
19	*SET.	SH	253	30.	974	7	
20	*CPT	CD.	-1 6	120	san	8	
31	+0000	05 1	190	1240	407	2	
44	DEI!	SR 1	120	000,	102	3	
22	*SET,	SHO ,	253	\$30.	974	1	
23	*SET,	C4 ,	649	.31	940	0	
24	*SET,	SRO ,			0	A 11	
25	*SET,	SAO ,	126	65.	487	3	
26	*SET	SHT .	263	395	974	7	
27	*SET	SRT	-106	5 0	000	n.	
50	*057	CAT /	104	265	107	2	
2.0	+ ann	oni 1	140	100.	401	3	
24	* DEL /	PT 1	200	10.14	373	5	
30	*SET,	Bl.,	5.0	0000	000	0	
31	*SET,	DT ,	0.28	3253	086	4E-	01
32	*SET,	TREF,	70.	000	000	0	
33	*SET.	TIM .	120	0.0	000	0	
34	*SET	DTIM.	120	0.00	000	0	
2.6	+epm 1	Nemp	121	173	320	õ	
20	4 comments	NUTEL	369	1/21	600	0	
30	"SEL	191 I	4 + 6	1000	000	9	
37	*SET,	E2 ,	10.	000	000	0	
38	*SET,	J,	100	0.00	000	0	
39	*SET.	D2 .	649	1.31	940	0	
40	*SET	03	0.40	368	975	SE-	01
41	* C DM	PHO /	-260	ne	205	Q	
12	* COM	DUT /	2.02	100.	220	0	
44	and,	FRI /	133	000.	0/4	2	
74.3	- 3 B. L .	N.N.I.	1.1.	0.00	100	1.1	

!, File = nsgen5.5
/SHOW,file33,dat

<pre>/PREP7 /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD, nsgen5.5 !, PARAMETERS ************************************</pre>	
B1=5 !, BIAS THRU THICKNESS B2=1/40 !, BIAS UP BOT SHELL B3=-20 !, BIAS ON CONE B4=40 !, BIAS ON UPPER SHELL	
<pre>!, KEYPOINTS ************************************</pre>	
<pre>!, LINES ************************************</pre>	
!, AREAS ************************************	
!, TYPE, MAT, REAL ************************************	

ET,1,77 !, 2ND ORDER QUADRATIC THERMAL ELEMENT KEYOPT,1,3,1

TK=24.1 \$ TD=0.444 !, T=150 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,3,TC \$ MPDATA,KXX,1,3,TK/C1

TK=24.4 \$ TD=0.437 !, T=200 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,4,TC \$ MPDATA,KXX,1,4,TK/C1

TK=24.6 \$ TD=0.429 !, T=250 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,5,TC \$ MPDATA,KXX,1,5,TK/C1

TK=24.7 \$ TD=0.420 !, T=300 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,6,TC \$ MPDATA,KXX,1,6,TK/C1

TK=24.7 \$ TD=0.409 !, T=350 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,7,TC \$ MPDATA,KXX,1,7,TK/C1

TK=24.6 \$ TD=0.398 !, T=400 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,8,TC \$ MPDATA,KXX,1,8,TK/C1

TK=24.4 \$ TD=0.388 !, T=450 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,9,TC \$ MPDATA,KXX,1,9,TK/C1

TK=23.9 \$ TD=0.364 !, T=500 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,11,TC \$ MPDATA,KXX,1,11,TK/C1

TK=23.5 \$ TD=0.353 !, T=600 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,12,TC \$ MPDATA,KXX,1,12,TK/C1

MPTEMP MP, NUXY, 1, 0.29

!, THERMAL EXPANSION COEFICIENT MPTEMP, 1, 70, 100, 150, 200, 250, 300 MFTEMP, 7, 350, 400, 450, 500, 550, 600 MPDATA, ALPX, 1, 1, 7, 02E-6, 7.06E-6, 7.16E-6, 7.25E-6, 7.34E-6, 7.43E-6 MPDATA, ALPX, 1, 7, 7.50E-6, 7.38E-6, 7.63E-6, 7.70E-6, 7.77E-6, 7.83E-6 /SHOW, , , 1 /NUM, 2 !, /WINDOW,,LTOP
/TITLE, ZION STEAM GENERATOR SHELL, HEAT CAPACITY Btu/lb-degF MPPLOT, C, 1 !, /NOERASE !, /WINDOW,, RTOP
/TITLE, ZION STEAM GENERATOR SHELL, THERMAL CONDUCTIVITY Btu/In-sec-degF MPPLOT, KXX, 1 !, /WINDOW,, LBOT /TITLE, ZION STEAM GENERATOR SHELL, ELASTIC MODULUS 1b/in**2 MPPLOT, EX, 1 1, /WINDOW, , RBOT /TITLE, ZION STEAM GENERATOR SHELL, THERMAL EXPANSION COEFFICIENT in/in-degF MPPLOT, ALPX, 1 /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD, nsgen5.5 /ERASE /WINDOW,, FULL /SHOW /NUM R, 1 AMESH, ALL WSORT 1, 1, STEP SIZE *********** ************* DT=(TW/(D1*B1))**2 DT=DT/(10*TDR) TREF=70 1, *GO,:S2 !, *GO,:S3 !, *GO,:S4 *GO,:55 !, TRANSIENT NO. 1, HEATUP @ 100degF/hr ******** /TITLE, TRANSIENT NO. 1, HEATUP @ 100degF/hr : \$1 TIM=0 TIME, TIM LSSEL, , 1, 5 NLINE, 1 NT, ALL, TEMP, 70 ITER, -10, ,10 KBC,1 NALL LWRITE DTIM=5*3600 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM

Page A-12 of A-19

2032-0001-03

FINISH

*USE, LMAC, 5*3600, 1020 *GO,:EX2 !, TRANSIENT NO. 2, COOLDOWN @ 100deg/hour :L2 *USE, LMAC, 0, 1020 *USE, LMAC, 5*3600,0 *GO,:EX2 !, TRANSIENT NO. 3, LARGE LOAD STEP DECREASE :L3 ***** *USE, LMAC, 0, 720 *USE, LMAC, 60, 1091 *USE, IMAC, 180, 802 *USE, LMAC, 20*60, 938 *GO,:EX2 !, TRANSIENT NO. 4, REACTOR TRIP 甘油 法法法法法法法法 (:14 *USE, LMAC, 0, 1020 *USE, LMAC, 11.5*60,220 *USE, IMAC, 0, 1020 *USE, LMAC, 60, 0 *USE, LMAC, 180, 0 *USE, LMAC, 300, 0 *USE, LMAC, 600, 0 :EX2 ****** !, MAKE SOME PLOTS /SHOW, , , 1 /ERASE /WINDOW,, LEFT /PBC, ALL, 1 NPLOT /NOERASE /WINDOW,, RIGH /PBC, ALL, 0 EPLOT /ERASE /WINDOW, , FULL /SHOW AFWRITE FINISH /INPUT,27 FINISH :RES /POST1 STRESS, TMP, 82, 88 1, TEMPERATURE /DSCALE,, OFF *CREATE, CMAC /RATIO /WINDOW, , LEFT /EDGE, , 1 PLNSTR, SI /NOERASE /RATIO,,5 /WINDOW, , RIGH /EDGE PLNSTR, SI

/WINDOW,,FULL /SHOW /NUM *END,PMAC	
SET, . 1, /TITLE, TRANSIENT NO. 1 1, /TITLE, TRANSIENT NO. 2 1, /TITLE, TRANSIENT NO. 3 1, /JITLE, TRANSIENT NO. 4 /TITLE, TRANSIENT NO. 5, E *USE, CMAC 1, *USE, SMAC *USE, AMAC *USE, PMAC PRRFOR	, HEATUP @ 100deg/hour, STATE 1 2, COOLDOWN @ 100deg/hour, STATE 1 3, LARGE STEP LOAD DECREASE STATE 1 4, REACTOR TRIP STATE 1 30UNDING FAULTED EVENT, STATE 1
<pre>SET,2 1, /TITLE, TRANSIENT NO. 1 1, /TITLE, TRANSIENT NO. 2 1, /TITLE, TRANSIENT NO. 3 1, /TITLE, TRANSIENT NO. 4 /TITLE, TRANSIENT NO. 5, B *USE,CMAC 1, *USE,SMAC *USE,AMAC *USE,PMAC PRRFOR</pre>	, HEATUP @ 100deg/hour, STATE 2 2, COOLDOWN @ 100deg/hour, STATE 2 3, LARGE STEP LOAD DECREASE STATE 2 4, REACTOR TRIP STATE 2 80UNLING FAULTED EVENT, STATE 2
1, *GO,:EX3	
SET,3 !, /TITLE, TRANSIENT NO. 3 /TITLE, TRANSIENT NO. 5, E *USE,CMAC !, *USE,SM;C *USE,AMAC *USE,PMAC PRRFOR	3, LARGE STEP LOAD DECREASE STATE 3 SOUNDING FAULTED EVENT, STATE 3
SET,4 1, /TITLE, TRANSIENT NO. 3 /TITLE, TRANSIENT NO. 5, E *USE,CMAC 1, *USE,SMAC *USE,AMAC *USE,PMAC PRRFOR	9, LARGE STEP LOAD DECREASE STATE 4 BOUNDING FAULTED EVENT, STATE 4
:EX3 *STATUS FINISH	
/EOF	

APPENDIX B

INPUT DATA LISTINGS

File = fwcycle1.rpt

*** PREP7 GLOBAL STATUS *** TITLE= ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD, fwcyc^{1,5} ANALYSIS TYPE= -1 NUMBER OF ELEMENT TYPES= 1 770 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER = 770 2485 NODES CURRENTLY SELECTED. MAX NODE NUMBER = 2485 1 KEYPOINTS CURRENTLY SELECTED. MAX NODE NUMBER = 2485 10 LINE SEG CURRENTLY SELECTED. MAX KEYPOINT NUMBER = 28 10 LINE SEG CURRENTLY SELECTED. MAX LINE SEG NUMBER = 34 11 AREAS CURRENTLY SELECTED. MAX AREA NUMBER = 11 MAXIMUM LINEAR PROPERTY NUMBER= 1 MAXIMUM REAL CONSTANT SET NUMBER= 1 ACTIVE COORDINATE SYSTEM= 0 (CARTESIAN) NUMBER OF ELEMENT CONVECTIONS= 77

SUMMARY OF VARIABLES STORED THIS STEP AND EXTREME VALUES VARI TYPE IDENTIFIERS NAME MINIMUM AT TIME MAXIMUM AT TIME 2 DISP 1414 TEMF 1414TK23 453.9 562.4 547.0 0. 3 DISP 1398 TEMP 1398TK27 51±0 600.0 547.0 0. 4 DISP 1660 TEMP 1660TK24 453.9 562.4 547.0 0. 5 DISP 1654 TEMP 1654TK28 514.0 600.0 547.0 0.1441 547.0 6 DISP 1766 TEMP 1766TK9 489.1 569.1 0. 7 DISP 1750 TEMP 1750TK19 525.4 600.0 547.0 0.6052 10 OPER 10 ADD TK27TK23 -0.2046E-11 0. 62.89 562.4 11 OPER 11 ADD TK28TK24 0.1307E-10 0. 62.88 562.4 12 ADD TK19TK9 -0.9550E-11 0. 37.91 569.1 12 OPER

ANSYS POST26 VARIABLE LISTING

TIME	DISP1660	TEMP DISP1	654 TEMP OPER	11 ADD
	1660TK24	1654TK28	TK28TK24	
0.	547.000	547.000	0.130740E-10	
0.28818E-01	547.000	547.000	0.841455E-04	
0.14409	546.999	547.000	0.111900E-02	
0.60519	546.989	547.000	0.113568E-01	
2.4496	546.869	547.000	0.130580	
9.8271	545.030	547.000	1.56994	
10.000	544.962	547.000	2.03832	
10.029	544.950	547.000	2.04957	
10.144	544.907	547.000	2.09338	
10.605	544.738	547.000	2.26179	
12.450	544.079	547.000	2.92113	
19.827	541.187	547.000	5.81289	
20.000	541.114	547.000	5.88574	
20.029	541.102	547.000	5.89794	
20.144	541.053	547.000	5,94708	
20.605	540.853	547.000	6.14713	
22.447	540.018	547.000	6.98197	
29.818	536.315	547.000	10.6849	
50.000	524.114	546.979	22.8646	
50.029	524.095	546.979	22.8842	
50.144	524.014	546.979	22.9648	
50.605	523.683	546,978	23.2951	
52.448	522.478	546.974	24.4966	
59.821	521.461	546.953	25.4921	

69.153	526.875	546.903	20.0286
75.000	532.415	546.856	14.4408
75.029	532.440	546.855	14.4158
75.144	532.510	546.854	14.3445
75.605	532.628	546.850	14.2225
77.447	532.437	546.832	14.3948
82.457	530.947	546.773	15.8255
90.000	530.067	546.657	16.5902
90.029	530.066	546.657	16.5911
90.144	530.055	546.655	16.6003
90.605	529.974	546.647	16.6725
92.450	529.473	546.613	17.1394
99.827	526.567	546.458	19.8910
110.00	521.332	546.202	24.8698
110.03	521.316	546.201	24.8856
110.14	521.249	546.198	24.9492
110.60	520.982	546.185	25.2031
112.45	519.913	546.133	26.2199
119.82	515.494	545.915	30.4216
149.31	495.584	544.878	49.2941
150.00	495.078	544.851	49.7729
150.03	495.057	544.849	49.7921
150.14	494.981	544.845	49.8642
150.60	494.714	544.826	50.1121
152.45	494.117	544.752	50.6349
158.99	497.215	544.477	47.2620
166.13	507.206	544.151	36.9452
174.63	523.936	543.723	19.7864
175.00	524.773	543.703	18.9300
175.03	5.24.826	543.701	13.8749
175.14	524.990	543.695	18.7049
175.60	525.362	543.670	18.3087
177.45	525.668	543.570	17.9022
181.22	524.763	543.357	18.5936
187.50	522.832	542.978	20.1453
190.00	522.349	542.819	20.4694
190.03	522.344	542.817	20.4729
190.14	522.319	542.809	20.4898
190.60	522.203	542.779	20.5766
192.45	521.647	542.659	21.0115
199.82	518.898	542.159	23.2611
220.00	508.438	540.755	32.3169
220.03	508.420	540.753	32.3322
220.14	508.352	540.744	32.3927
220.60	508.084	540.712	32.6276
222.45	507.064	540.582	33.5182
229.82	503.178	540.076	30.8982
209.31	487.432	538.164	50.7319
275.00	4/8.651	537.143	58.4919
2/0/33	4/8.030	537.141	58,5052
2/5.14	470.081	537.134	58.5523
275.00	472.000	537.104	28.069/
277.93	976.282	536.983	58.7002
203.03	404.232	536.373	41.9640
270.44	494.210	530.081	41.0048

298.70	512.841	535.453	22.6123
300.00	516.101	535.350	19.2490
300.03	516.163	535.348	19.1855
300.14	516.355	535.339	18.9841
300.60	516.817	535.302	18.4851
302.45	517.345	535.153	17.8081
306.05	516.581	534.856	18.2744
311.89	514.018	534.354	20.3357
321.10	509.703	533.527	23.8241
330.00	507.056	532.712	25,6558
330.03	507.049	532.709	25,6600
330.14	507.019	532,699	25.6798
330.60	506.876	532 656	25,7800
332.45	506 190	532 485	26.2959
339.87	502 873	531 816	28 9434
360.85	401 363	530.071	38 7076
375.00	491.505	520 024	16 5624
375.03	482.440	522,024	46.5704
975 14	492 374	529.012	46,57.24
2775 60	402.374	525,015	46.0390
373.00	402.137	520.901	40.0942
377,40	401.420	220.000	47,4247
207.01	400.020	220.34/	44.0820
397.81	403.373	527.438	44.0000
414.83	491.799	526.237	34.4381
437.59	506.893	524.474	17.5813
450.00	516.065	523.471	7.405/5
450.03	516.082	523.469	7.38681
450.14	516.125	523,459	7.33460
450.60	516.158	523.421	7.26381
452.45	515.692	523.270	7.57825
457.77	513.075	522.836	9.76067
467.07	507.850	522.098	14.2482
480.00	502.983	521.149	18.1654
480.03	502.975	521.146	18.1719
480.14	502.938	521.138	18.2005
480.60	502.771	521.106	18.3350
482.45	501.997	520.980	18.9827
489.82	498.386	520.500	22.1142
511.85	485.708	519.283	33.5756
530.00	473.866	518.420	44.5537
530.03	473.846	518.418	44.5720
530.14	473.769	518.413	44.6446
530.60	473.461	518.393	44.9320
532.45	472.253	518.312	46.0590
539.82	467.511	517.980	50.4699
560.00	454,495	516.949	62,4540
560.03	454.478	516.947	62.4695
560.14	454.417	516.941	62.5242
560.60	454 229	516.915	62 6865
562.45	453.928	516.811	62.8825
569.10	456 565	516.410	59 8444
577.65	465.698	515.836	50 1375
588 19	482 036	515 033	32 9964
600.00	503 733	514 014	10 2800

FOR LOAD STE	= 12 ITERATION= 1910 SECTION=	1
TIME= 275.000	LOAD CASE= 1	
DISTANCE	TEMP	
0.	178.65	
0.75417E-01	482.46	
0.15083	486.23	
0.22625	489.60	
0.30167	492.97	
0.37708	495.94	
0.45250	498.84	
0.52792	501.66	
0.60333	504.07	
0.67875	506.48	
0.75417	508.89	
0.82958	510.84	
0.90500	512.76	
0.98042	514.68	
1.0558	516.56	
1.1313	518.01	
1.2067	519.45	
1 2821	520.89	
1 3575	522.34	
1.4329	523.59	
1.5083	524.61	
1.5838	525.62	
1 6592	526.64	
1 7346	527.66	
1.8100	528.67	
1.8854	529.36	
1.9608	530.02	
2.0363	530.68	
2.1117	531.33	
2.1871	531.99	
2 2625	532.65	
2 3379	533.21	
2 4133	533.58	
2 4888	533.95	
2 5642	524 32	
2 6396	524.69	
2 7150	535.06	
2 7904	535.43	
2 8658	535.80	
2 9413	536.06	
3.0167	53618	
3 0921	536.10	
3 1675	526.42	
3 3430	526 54	
3 3183	526.66	
3 3038	536.78	
3.4602	536.00	
3 5446	537 00	
3,6200	537.14	
S. Carlo	were as	
and many states a state of	the state of the s	

PLOT VALUE ALONG PATH FROM NODE 1766 TO NODE 1750 OF TEMP DSYS= 0 DISTANCE TEMP

0.	508.56
0.75417E-01	510.31
0.15083	512.06
0.22625	513.77
0.30167	515.48
0.37708	517.06
0.45250	518.62
0.52792	520.15
0.60333	521.50
0.67875	522.85
0.75417	524.20
0.82958	525.32
0.90500	526.42
0.98042	527.52
1.0558	528.60
1.1313	529.45
1.2067	530.30
1.2821	531.14
1.3575	531.99
1.4329	532.73
1.5083	533.34
1.5838	533.95
1.6592	534.55
1.7346	535.16
1.8100	535.77
1.8854	536.19
1.9608	536.59
2.0363	537.00
2.1117	537.40
2.1871	537.80
2.2625	538.21
2.3379	538.55
2.4133	538.79
2.4888	539.02
2.5642	539.25
2.6396	539.48
2.7150	539.71
2.7904	539.95
2.8658	540.18
2.9413	540.34
3.0167	540.42
3.0921	540.49
3.1675	540.57
3.2429	540.65
3.3183	540.73
3.3938	540.80
3.4692	540.88
3.5446	540.96
3.6200	541.03

FOR LOAD STEP= 19 ITERATION= 1042 SECTION= 1 TIME= 560.000 LOAD CASE= 1 PLOT VALUE ALONG PATH FROM NODE 1660 TO NODE 1654 OF TEMP DSYS= 0 DISTANCE TEMP -0. 454.50

0.75417E-01	458.75
0.15083	462.95
0.22625	466.70
0.30167	470.46
0.37708	473.75
0.45250	476.97
0.52792	480.10
0.60333	482.75
0.67875	485.41
0.75417	488.06
0.82958	490.18
0.90500	492.26
0.98742	494.34
1.0558	496.38
1.1313	497.91
1.2067	499.44
1.2821	500.98
1.3575	502.51
1.4329	503.82
1.5083	504.86
1.5838	505.90
1.6592	506.95
1.7346	507.99
1.8100	509.03
1.8854	509.70
1.9608	510.34
2.0363	510.98
2.1117	511.63
2.1871	512.27
2.2625	512.91
2.3379	513.45
2.4133	513.78
2.4888	514.12
2.5642	514.46
2.6396	514.79
2.7150	515.13
2.7904	515.46
2.8658	515.80
2.9413	516.03
3.0167	516.13
3.0921	516.23
3.1675	516.34
3.2429	516.44
3.3183	516.54
3.3938	516.64
3.4692	516.74
3.5446	516.85
3.6200	516.95

 PLOT VALUE ALONG PATH FROM NODE
 1766 TO NODE
 1750 OF TEMP
 DSYS=
 0

 DISTANCE
 TEMP
 0.
 490.78
 0.75417E-01
 492.76
 0.15083
 494.73
 0.22625
 496.68

0.30167	498.63
0.37708	500.44
0.45250	502.23
0.52792	503.98
0.60333	L.15.53
0.67875	507.07
0.75417	508.62
0.82958	509.90
0.90500	511.16
0.98042	512.42
1.0558	513.66
1.1313	514.62
1.2067	515.58
1.2821	516.54
1.3575	517.51
1.4329	518.34
1.5083	519.03
1.5838	519.71
1.6592	520.40
1.7346	521.08
1.8100	521.77
1.8854	522.23
1.9608	522.67
2.0363	523.12
2.1117	523,56
2.1871	524.01
2.2625	524.45
2.3379	524.83
2.4133	525.08
2.4888	525.32
2.5642	525.57
2.6396	525.82
2.7150	526.07
2.7904	526.31
2.8658	526.56
2.9413	526.74
3.0167	526.82
3.0921	526.89
3.1675	526.97
3.2429	527.05
3.3183	527.13
3.3938	527.21
3.4692	527.29
3.5446	527.37
3.6200	527.45

 SUMMARY OF VARIABLES STORED THIS STEP AND EXTREME VALUES

 V.*RI TY?E IDENTIFIERS NAME MINIMUM AT TIME MAXIMUM AT TIME

 2 ESTR 531 16
 531 SY24 0.2433E+05 600.0
 0.4056E+05 275.0

 3 ESTR 611 16
 611 SY9 9183.
 600.0
 0.1705E+05 560.0

 4 ESTR 531 18
 531 SZ24 0.1686E+05 600.0
 0.3290E+05 275.0

 5 ESTR 611 18
 611 SZ9 0.1707E+05 600.0
 0.2661E+05 275.0

 6 ESTR 531 51
 531 S124 0.2495E+05 600.0
 0.4118E+05 275.0

 7 ESTR 611 51
 611 SI9 0.1797E+05 600.0
 0.2710E+05 275.0

 TIME
 ESTR 531 16 ESTR 611 16 ESTR 531 18 ESTR 611 18 ESTR

531

531 51	ESTR 611 51				
	531 SY24	611 SY9	531 SZ24	611 SZ9	
SI24	611 SI9				
0.	28249.2	10244.1	19355.9	18514.8	
29062.1	19534.9				
10.000	28732.0	10501.1	19881.4	18744.4	
29537.9	19758.5				
20.000	29728.6	10918.9	20936.1	19210.2	
30523.2	20280.1				
50.000	34087.0	13347.2	25530.9	22349.9	
34839.9	23122.1				
75.000	30751.9	11665.9	22341.7	20482.4	
31511.0	21471.3				
90.000	31280.6	11967.4	22848.2	20661.2	
32037.4	21556.1				
110.00	33407.2	13154.4	25071.5	21988.8	
34140.6	22765.0				
150.00	39609.0	16306.9	31630.5	25967.1	
40279.8	26537.6				
175.00	29894.6	11314.2	21851.4	20168.5	
30622.5	21221.9				
190.00	30509.6	11765.4	22376.9	20301.5	
31232.4	21162.1				
220.00	34127.5	13731.5	26047.1	22528.0	
34816.0	23208.6				
275.00	40560.3	-16936.0	32899.0	26614.2	
41178.2	27097.1				
300.00	28461.5	10816.8	20685.5	19456.2	
29147.9	20471.0				
330.00	31174.3	12333.4	23209.7	20820.5	
31844.1	21546.0				
375.00	37021.0	15375.8	29314.4	24431.9	
37631.3	24926.3				
450.00	25374.0	9691.47	17445.0	17593.9	
26046.5	18469.1				
430.00	29047.2	11553.5	21136.0	19542.6	
29685.0	20221.9				
530.00	35888.7	15084.5	28406.6	23790.8	
36455.9	24218.0				
560.00	40014.2	17054.5	32836.4	26354.7	
40541.0	26663.4				
600.00	24328.0	9183.44	16863.9	17065.5	
24954.4	17974.0				

***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 1660 OUTSIDE NODE = 1654 LOAD STEP 12 ITERATION= 1 SECTION= 1 TIME= 275.00 LOAD CASE= 1

** AXISYMMETRIC OPTION ** RHO = 0.67980E+13 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

** MEMBRANE **

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 422.2
 0.1049E+05
 0.1425E+05
 1317.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SIGE

 0.1425E+05
 0.1066E+05
 252.6
 0.1399E+05
 0.1259E+05

 **
 BENDING **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 1
 -1252.
 0.2140E+05
 0.1230E+05
 0.
 0.
 0.

 C
 -835.0
 149.0
 0.
 0.
 0.
 0.
 0.

 C
 -417.7
 -0.2110E+05
 -0.1230E+05
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 1
 0.2140E+05
 0.1230E+05
 0.2265E+05
 0.1975E+05

 C
 149.0
 0.
 -835.0
 984.0
 918.6

 O
 -417.7
 -0.1230E+05
 -0.2110E+05
 C.2069E+05
 0.1798E+05

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE
SX SY SZ SXY SYZ SXZ
I -830.1 0.3189E+05 0.2655E+05 1317. 0. 0.
C -412.8 0.1063E+05 0.1425E+05 1317. 0. 0.
O 4.487 -0.1062E+05 1949. 1317. 0. 0.
SIG1 SIG2 SIG3 SI SIGE
I 0.3194E+05 0.2655E+05 -883.1 0.3282E+05 0.3049E+05
C 0.1425E+05 0.1079E+05 -567.7 0.1481E+05 0.1342E+05
O 1949. 165.4 -0.1078E+05 0.1273E+05 0.1194E+05

 ** PEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -0.1137E-12
 7773.
 6051.
 -1219.
 0.
 0.

 C
 1231.
 -2827.
 -2267.
 337.6
 0.
 0.

 O -0.6217E-14
 4127.
 3513.
 -1353.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I 7959.
 6051.
 -186.7
 8146.
 7379.

 C
 1258.
 -2267.
 -2855.
 4114.
 3853.

 O 4531.
 3513.
 -403.7
 4935.
 4513.

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1 -830.1 0.3966E+05 0.3260E+05 98.32 0. 0. C 817.8 7808. 0.1198E+05 1655. 0. 0. O 4.487 -6491. 5462. -35.05 0. 0. SIG1 SIG2 SIG3 SI SIGE TEMP I 0.3966E+05 0.3260E+05 -830.4 0.4049E+05 0.3746E+05 478.7 C 0.1198E+05 8180. 445.2 0.1153E+05 0.1019E+05 O 5462. 4.712 -6491. 0.1195E+05 0.1037E+05 537.1

PLOT VALUE ALONG PATH FROM NODE 1660 TO NODE 1654 OF SY DSYS= 0 SY IN GLOBAL COORDINATES

DISTANCE SY 0. 39661. 0.75417E-01 37619. 0.15083 35594. 33705. 0.22625 0.30167 31815. 0.37708 30088. 0.45250 28388. 0.52792 26721. 0.60333 25236.

2032-0001-03

Page B-9 of B-32

2032-0001-03

	** MEMBE	RANE **			
SX	SY	SZ	SXY	SYZ	SXZ
455.0	9415.	0.1326E+05	1181.	0.	0.
SIG1	SIG2	SIG3	SI	SIGE	
0.1326E+0	15 9568.	302.0	0.1296E-	+05 0.1157	E+05

** AXISYMMETRIC OPTION ** RHO = 0.67980E+13 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

LOAD STEP 19 ITERATION= 1 SECTION= 1 TIME= 560.00 LOAD CASE= 1

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1660 OUTSIDE NODE = 1654

1.9608	6395.2
2.0363	5694.2
2.1117	4993.1
2.1871	4292.1
2.2625	3591.1
2.3379	2927.2
2. 133	2338.1
2.4888	1749.0
2.5642	1159.9
2.6396	570.87
2.7150	-18.216
2.7904	-607.30
2.8658	-1196.4
2.9413	-1757.8
3.0167	-2283.7
3.0921	-2809.6
3.1675	-3335.5
3.2429	-3861.5
3.3183	-4387.4
3.3938	-4913.3
3.4692	-5439.2
3.5446	-5965.2

3.6200 -6491.1

0.98042	18466.
1.0558	17219.
1.1313	16174.
1.2067	15129.
1.2821	14084.
1.3575	13039.
1.4329	12080.
1.5083	11225.
1.5838	10371.
1.6592	9516.4
1.7346	8662.0
1.8100	7807.6
1.8854	7096.2
1.9608	6395.2
2.0363	5694.2
2.1117	4993.1
2.1871	4292.1
2.2625	3591.1
2.3379	2927.2
2.133	2338.1
2.4888	1749.0
2.5642	1159.9
2.6396	570.87
2.7150	-18.216
2.7904	-607.30
2.8658	-1196.4
2.9413	-1757.8
3.0167	-2283.7
3.0921	-2809.6
3.1675	-3335.5
3.2429	-3861.5

0.67875

0.75417

0.82958 0.90500

23751. 22265.

20988.

19727.

 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -1192.
 0.2126E+05
 0.1249E+05
 0.
 0.
 0.

 C -820.2
 148.0
 0.
 0.
 0.
 0.

 O -448.4
 -0.2096E+05
 -0.1249E+05
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I 0.2126E+05
 0.1249E+05
 -1192.
 0.2245E+05
 0.1960E+05

 C 148.0
 0.
 -820.2
 968.2
 903.4

 O -448.4
 -0.1249E+05
 -0.2096E+05
 0.2052E+05
 0.1786E+05

 MEMBRANE PLUS BENDING **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 -737.0
 0.3068E+05
 0.2575E+05
 1181.
 0.
 0.

 C
 -365.2
 9563.
 0.1326E+05
 1181.
 0.
 0.

 O
 6.614
 -0.1155E+05
 778.8
 1181.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I
 0.3072E+05
 0.2575E+05
 -781.4
 0.3150E+05
 0.2933E+05

 C
 0.1326E+05
 9702.
 -503.7
 0.1377E+05
 0.1238E+05

 O
 778.8
 126.0
 -0.1167E+05
 0.1245E+05
 0.1213E+05

	10.0	** PEAK **	I=INSIDE	C=CENTE	R O=OUT	SIDE
	SX	SY	SZ	SXY	SYZ	SXZ
1	0.	8462.	6791.	-1084.	0.	0.
C	1206.	-3051.	-2509.	281.0	0.	0.
0	0.2665H	E-14 4409.	3808.	-1224.	0.	0.
	SIG1	SIG2	SIG3	SI	SIGE	

£	8598.	6/91.	-130.7	8735.	7986.
Ç	1224.	-2509.	-3070.	4294.	4042.
0	4726.	3808.	-317.0	5043.	4652.

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -737.0 0.3914E+05 0.3254E+05 96.59 0. 0. C 840.3 6512. 0.1076E+05 1462. 0. 0. O 6.614 -7140. 4587. 43.10 0. 0. SIG1 SIG2 SIG3 SI SIGE TEMP I 0.3914E+05 0.3254E+05 -737.3 0.3987E+05 0.3702E+05 454.5 C 0.1076E+05 6867. 485.1 0.1027E+05 8986. O 4587. 6.908 -7141. 0.1173E+05 0.1024E+05 516.9

SY IN GLOBAL COORDINATES

DISTANCE	SY
0.	39137.
0.75417E-01	36993.
0.15083	34867.
0.22625	32889.
0.30167	30911.
0.37708	29112.
0.45250	27344.
0.52792	25613.
0.60333	24083.
0.67875	22553.
0.75417	21023

	** MEMBI	RANE **	**		
SX	SY	SZ	SXY	SYZ	SXZ
297.4	9251.	0.1260E+05	1107.	0.	0.
SIG1	SIG2	SIG3	SI	SIGE	

** AXISYMMETRIC OPTION ** RHO = 0.67980E+13 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

LOAD STEP 20 ITERATION= 1 SECTION= 1 TIME= 600.00 LOAD CASE= 1

***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 1660 OUTSIDE NODE = 1654

PRINT LINEARIZED STRESS THROUGH A SECTION INSIDE NODE = 1660 OUTSIDE NODE = 1654

0.90500	18435.
0.98042	17150.
1.0558	15881.
1.1313	14831.
1.2067	13781.
1.2821	12731.
1.3575	11681.
1.4329	10725.
1.5083	9882.1
1.5838	9039.6
1.6592	8197.0
1.7346	7354.5
1.8100	6512.0
1.8854	5823.9
1.9608	5147.1
2.0363	4470.2
2.1117	3793.4
2.1871	3116.6
2.2625	2439.7
2.3379	1801.8
2,4133	1242.3
2.4888	682.80
2.5642	123.29
2.6396	-436.22
2.7150	-995.73
2.7904	-1555.2
2.8658	-2114.7
2.9413	-2647.8
3.0167	-3147.0
3.0921	-3646.1
3.1675	-4145.3
3.2429	-4644.5
3.3183	-5143.6
3.3938	-5642.8
3.4692	-6142.0
3.5446	-6641.2
3.6200	-7140.3

0.82958

19720.

0.1260E+05 9386. 162.5 0.1243E+05 0.1118E+05

1.1.1.1.1.1	** BENDING	3 ** I=INS	IDE C=CE	ENTER O	=OUTSIDE	
SX	SY	SZ	SXY	SYZ	SXZ	
1 -1055.	0.1761E+	05 8593.	0.	0.	0.	
C -672.3	122.6	0.	0.	0.	0.	
O -289.6	-0.1736E-	+05 -8593.	0.	0.	0.	
SIG1	SIG2	SIG3	SI	SIGE		
I 0.1761E	+05 8593.	-1055.	0.1866H	2+05 0.16	16E+05	
C 122.6	0.	-672.3	794.8	741.2		
0 -289.6	-8593.	-0.1736E+	05 0.1707	E+05 0.1	479E+05	

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -757.5 0.2686E+05 0.2119E+05 1107. 0. 0. C -374.9 9374. 0.1260E+05 1107. 0. 0. C -374.9 9374. 0.1260E+05 1107. 0. 0. SIG1 SIG2 SIG3 SI SIGE I 0.2690E+05 0.2119E+05 -801.9 0.2770E+05 0.2534E+05 C 0.1260E+05 9498. -499.1 0.1310E+05 0.1185E+05 O 4004. 156.2 -8259. 0.1226E+05 0.1086E+05

** PEAK ** 1=INSIDE C=CENTER O=OUTSIDE

	SX	SY	SZ	SXY	SYZ	SXZ
1	0.1137E-1	2 -3165.	-4552.	-1045.	0.	0.
C	1038.	-812.2	-287.3	304.5	0.	0.
0	-0.6040E-	13 1568.	928.1	-1151.	0.	0.
	SIG1	SIG2	SIG3	SI	SIGE	
I	314.0	-3479.	-4552.	4866.	4428.	
C	1087.	-287.3	-861.0	1948.	1734.	
0	2176.	928.1	-608.4	2785.	2416.	

SY IN GLOBAL COORDINATES

DISTANCE	SY
0.	23693.
0.75417E-01	24004.
0.15083	24278.
0.22625	24252.
0.30167	24227.
0.37708	23872.
0.45250	23462.
0.52792	23009.
0.60333	22327.
0.67875	21645.
0.75417	20963.
0.82958	20123.
0,90500	19270.
0.98042	18417.
1.0558	17559.
1.1313	16635.
1.2067	15710.
1.2821	14786.
1.3575	13861.
1.4329	12957.
1 5083	10078

1.5838	11199.
1.6592	10320.
1.7346	9440.6
1.8100	8561.4
1.8854	7788.4
1.9608	7023.2
2.0363	6258.0
2.1117	5492.7
2.1871	4727.5
2.2625	3962.2
2.3379	3240.9
2.4133	2608.1
2.4888	1975.2
2.5642	1342.4
2.6396	709.58
2.7150	76.749
2.7904	-556.08
2.8658	-1188.9
2.9413	-1776.5
3.0167	-2306.1
3.0921	-2835.7
3.1675	-3365.3
3.2429	-3894.9
3.3183	-4424.5
3.3938	-4954.1
3.4692	-5483.7
3.5446	-6013.3
3.6200	-6543.0

Additional files of through-thickness profiles; all peaks and valleys.

 TIME=
 60.000
 LOAD CASE= 1

 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

 ** MEMBRANE **

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 209.4
 0.1137E+05
 0.1450E+05
 1378.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 0.1450E+05
 0.1154E+05
 41.85
 0.1446E+05
 0.1323E+05

** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -1131. 0.1698E+05 7444. 0. 0. 0. C -671.2 118.2 0. 0. 0. 0. O -211.9 -0.1674E+05 -7444. 0. 0. 0. SI SIG2 SIG3 SIGE SIG1 I 0.1698E+05 7444. -1131. 0.1811E+05 0.1569E+05 789.4 737.5 C 118.2 0. -671.2 O -211.9 -7444. -0.1674E+05 0.1653E+05 0.1435E+05

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ

I -921.1 0.2835E+05 0.2194E+05 1378. 0. 0. C -461.8 0.1149E+05 0.1450E+05 1378. 0. 0. O -2.459 -5372. 7056. 1378. 0. 0. SIG1 SIG2 SIG3 SI SIGE I 0.2841E+05 0.2194E+05 -985.9 0.2940E+05 0.2676E+05 C 0.1450E+05 0.1164E+05 -618.6 0.1512E+05 0.1391E+05 O 7056. 330.5 -5705. 0.1276E+05 0.1106E+05

** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -0.1137E-12 5372. 3834. -1294. 0. 0. C 983.6 -1756. -1264. 402.6 0. 0. O -0.1821E-13 2286. 1753. -1381. 0. 0. SIG1 SIG2 SIG3 SI SIGE 1 5667. 3834. -295.3 5962. 5290. C 1042. -1264. -1814. 2855. 2624. O 2936. 1753. -649.5 3585. 3164.

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ
I -921.1 0.3372E+05 0.2578E+05 84.18 0. 0.
C 521.8 9732. 0.1324E+05 1781. 0. 0.
O -2.459 -3086. 8809. -2.944 0. 0.
SIG1 SIG2 SIG3 SI SIGE TEMP
I 0.3372E+05 0.2578E+05 -921.4 0.3464E+05 0.3143E+05 521.5
C 0.1324E+05 0.1006E+05 189.4 0.1305E+05 0.1179E+05
O 8809. -2.422 -3086. 0.1189E+05 0.1069E+05 547.0

SY IN GLOBAL COORDINATES

DISTANCE	S
0.	33720.
0.75417E-01	32240.
0.15083	30765.
0.22625	29335.
0.30167	27905.
0.37708	26579.
0.45250	25271.
0.52792	23990.
0.60333	22855.
0.37875	21721.
0.75417	20586.
0.82958	19625.
0.90500	18677.
0.98042	17730.
1.0558	16794.
1.1313	16015.
1.2067	15237.
1.2821	14459.
1.3575	13681.
1.4329	12963.
1.5083	12317.
1.5838	11671.
1.6592	11024.
1.7346	10378.
1.8100	9732.1

1.8854	9100.5
1.9608	8605.5
2.0363	8045.1
2.1117	7484.7
2.1871	6924.3
2.2625	6364.0
2.3379	5817.4
2.4133	5298.5
2.4888	4779.7
2.5642	4260.8
2.6396	3742.0
2.7150	3223.1
2.7904	2704.3
2.8658	2185.4
2.9413	1662.7
3.0167	1135.1
3.0921	607.56
3.1675	79,977
3.2429	-447.61
3.3183	-975.19
3.3938	-1502.8
3.4692	-2030.4
3.5446	-2558.0
3.6200	-3085 5

TIME= 75.000 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES. ** MEMBRANE ** SX SY SZ SXY SYZ SXZ

 194.7
 0.1128E+05
 0.1434E+05
 1361.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 0.1434E+05
 0.1144E+05
 29.98
 0.1431E+05
 0.1311E+05

 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 1 -1116.
 0.1660E+05
 7077.
 0.
 0.
 0.

 C -656.2
 115.5
 0.
 0.
 0.
 0.

 C -656.2
 115.5
 0.
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I 0.1660E+05
 7077.
 -1116.
 0.1771E+05
 0.1535E+05

 C 115.5
 0.
 -656.2
 771.7
 720.9

 O -196.6
 -7077.
 -0.1636E+05
 0.1405E+05

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ
1 -921.1 0.2787E+05 0.2142E+05 1361. 0. 0.
C -461.6 0.1139E+05 0.1434E+05 1361. 0. 0.
O -1.956 -5087. 7266. 1361. 0. 0.
O -1.956 -5087. 7266. 1361. 0. 0.
SIG1 SIG2 SIG3 SI SIGE
1 0.2794E+05 0.2142E+05 -985.3 0.2892E+05 0.2628E+05
C 0.1434E+05 0.1155E+05 -615.8 0.1496E+05 0.1378E+05
O 7266. 339.4 -5428. 0.1269E+05 0.1101E+05

** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ

1	0.1137E-1	2 2145.	661.2	-1284.	0.	0.
C	975.7	-1473.	-977.8	397.4	0.	0.
0	0.2043E-	13 1893.	1346.	-1366.	0.	0.
	SIG1	SIG2	SIG3	SI	SIGE	
I	2746.	661.2	-600.8	3347.	2928.	
C	1039.	-977.8	-1535.	2574.	2346.	
O	2608.	1346.	-715.1	3323.	2906.	

 ** TOTAL **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -921.1
 0.3002E+05
 0.2208E+05
 76.48
 0.
 0.

 C 514.2
 9921.
 0.1337E+05
 1758.
 0.
 0.

 O -1.956
 -3193.
 8612.
 -4.733
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 TEMP

 I 0.3002E+05
 0.2208E+05
 -921.4
 0.3094E+05
 0.2784E+05
 532.4

 C 0.1337E+05
 0.1024E+05
 196.1
 0.1317E+05
 0.1192E+05
 0

 O 8612.
 -1.915
 -3193.
 0.1181E+05
 0.1058E+05
 546.9

DISTANCE	SI
0.	30019.
0.75417E-01	2°310.
0.15083	28585.
0.22625	27733.
0.30167	26881.
0.37708	25934.
0.45250	24970.
0.52792	24004.
0.60333	23021.
0.67875	22037.
0.75417	21054.
0.82958	20127.
0.90500	19204.
0.98042	18281.
1.0558	17365.
1.1313	16554.
1.2067	15742.
1.2821	14931.
1.3575	14120.
1.4329	13364.
1.5083	12675.
1.5838	11986.
1.6592	11298.
1.7346	10609.
1.8100	9920.7
1.8854	9324.9
1.9608	8735.8
2.0363	8146.8
2.1117	7557.7
2.1871	6968.7
2.2625	6379.6
2.3379	5809.8
2.4133	5278.8
2.4888	4747.9
2.5642	4216.9
2 6306	3685.0

TIME= 150.00 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

** MEMBRANE **

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 347.0
 0.1099E+05
 0.1452E+05
 1367.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 0.1452E+05
 0.1434E+05
 0.1299E+05

 **
 BENLING **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ

 1
 -1224.
 0.1995E+05
 0.1070E+05
 0.
 0.
 0.

 C
 -784.6
 138.9
 0.
 0.
 0.
 0.

 C
 -345.7
 -0.1968E+05 -0.1(70E+05
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I
 0.1995E+05
 0.1070E+05
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I
 0.1995E+05
 0.1070E+05
 224.
 0.2118E+05
 0.1839E+05

 C
 138.9
 0.
 -78 i.5
 923.5
 862.5

 O
 -345.7
 -0.1070E+05
 -0.1933E+05
 0.1675E+05

 ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ
 I -876.6 0.3094E+05 0.2522E+05 1367. 0. 0.
 C -437.7 0.1112E+05 0.1452E+05 1367. 0. 0.
 O 1.251 -8690. 3813. 1367. 0. 0.
 SIG1 SIG2 SIG3 SI SIGE
 I 0.3100E+05 0.2522E+05 -935.2 0.3193E+05 0.2947E+05
 C 0.1452E+05 0.1128E+05 -597.0 0.1511E+05 0.1378E+05
 O 3813. 211.1 -8900. 0.1271E+05 0.1135E+05

 ** PEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -0.1137E-12
 7794.
 6116.
 -1271.
 0.
 0.

 C
 1151.
 -2544.
 -2009.
 369.7
 0.
 0.

 O -0.1354E-13
 3594.
 3017.
 -1387.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 1

 I 7996.
 6116.
 -202.0
 8198.
 7438.
 2

 C
 1187.
 -2009.
 -2581.
 3768.
 3517.
 0

 O 4067.
 3017.
 -473.3
 4541.
 4117.
 4117.

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ

1	-876.6	0.3873E+()5 0.3133E+	05 95.95	0.	0.	
C	713.0	8581.	0.1251E+0	5 1736.	0.	0.	
0	1.251	-5096.	6830.	-20.64	0.	0.	
	SIG1	SIG2	SIG3	SI SIG	E TE	MP	
1	0.3873E+0	6 0.3133E	2+05 -876.9	0.3961E	+05 0.36	48E+05	495.1
C	0.1251E+	05 8947.	346.4	0.1216E+0	05 0.1083	3E+05	
0	6830.	1.368	-5096.	0.1193E+05	0.1036E	+05 54	4.9

DISTANCE	SY
0.	38734.
0.75417E-01	36674.
0.15083	34635.
0.22625	32760.
0.30167	30884.
0.37708	29203.
0.45250	27555.
0.52792	25945.
0.60333	24543.
0.67875	23141.
0.75417	21738.
0.82958	20559.
0.90500	19397.
0.98042	18234.
1.0558	17087.
1.1313	16140.
1.2067	15194.
1.2821	14248.
1.3575	13301.
1.4329	12434.
1.5083	11663.
1.5838	10893.
1.6592	10122.
1.7346	9351.3
1.8100	8580.6
1.8854	7929.3
1.9608	7286.7
2.0363	6644.2
2.1117	6001.6
2.1871	5359.0
2.2625	4716.4
2.3379	4101.4
2.4133	3541.9
2.4888	2982.5
2.5642	2423.0
2.6396	1863.6
2.7150	1304.1
2.7904	744.70
2.8658	185.25
2.9413	-359.65
3.0167	-885.92
3.0921	-1412.2
3.1675	-1938.5
3.2429	-2464.7
3.3183	-2991.0
3,3938	-3517.3

3.4692	-4043.6
3.5446	-4569.8
3.6200	-5096.1

TIME= 175.00 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

** MEMBRANE ** SX SY SZ SXY SYZ SXZ

 288.4
 0.1088E+05
 0.1422E+05
 1332.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 0.1422E+05
 0.1105E+05
 123.4
 0.1409E+05
 0.1281E+05

 **
 BENDING **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 -1176.
 0.1861E+05
 9254.
 0.
 0.
 0.

 C
 -731.1
 129.6
 0.
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I
 0.1861E+05
 9254.
 -1176.
 0.1979E+05
 0.1715E+05

 C
 129.6
 0.
 -731.1
 860.7
 803.8

 O
 -286.2
 -9254.
 -0.1835E+05
 0.1807E+05
 0.1565E+05

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE 3X SY SZ SXY SYZ SXZ
1 -887.6 0.2949E+05 0.2347E+05 1332. 0. 0.
C -442.7 0.1101E+05 0.1422E+05 1332. 0. 0.
O 2.199 -7474. 4964. 1332. 0. 0.
O 2.199 -7474. 4964. 1332. 0. 0.
SIG1 SIG2 SIG3 SI SIGE
I 0.2955E+05 0.2347E+05 -945.9 0.3050E+05 0.2796E+05
C 0.1422E+05 0.1116E+05 -595.7 0.1481E+05 0.1355E+05
O 4964. 232.6 -7704. 0.1267E+05 0.1109E+05

** PEAK ** 1=INSIDE C=CENTER O=OUTSIDE

	SX	SY	SZ	SXY	SYZ	SXZ
1.	0.2274E-	12 -346.4	-1885.	-1257.	0.	0.
C	1106.	-1638.	-1098.	368.4	0.	0.
0	0.2709E	-13 2357.	1744.	-1356.	0.	0
	SIG1	SIG2	SIG3	SI	SIGE	
1	1096.	-1442.	-1885.	2981.	2786.	
C	1155.	-1098.	-1687.	2842.	2598.	
0	2975.	1744.	-617.9	3592.	3162.	

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -887.6 0.2915E+05 0.2159E+05 75.59 0. 0. C 663.6 9372. 0.1312E+05 1701. 0. 0. O 2.199 -5117. 6708. -23.28 0. 0. SIG1 SIG2 SIG3 SI SIGE TEMP I 0.2915E+05 0.2159E+05 -887.8 0.3004E+05 0.2706E+05 524.8 C 0.1312E+05 9692. 342.9 0.1278E+05 0.1146E+05 O 6708. 2.337 -5117. 0.1183E+05 0.1027E+05 543.7

DISTANCE SY 0. 29147.

0.75417E-01	29061
0.15083	28932.
0.22625	28464.
0.30167	27995.
0.37708	27249.
0.45250	26455.
0.52792	25632.
0.60333	24648.
0.67875	23665.
0.75417	22681.
0.82958	21635.
0.90500	20585.
0.98042	19534.
1.0558	18488.
1.1313	17504.
1.2067	16519.
1.2821	15535.
1.3575	14550.
1.4329	13626.
1.5083	12775.
1.5838	11924.
1.6592	11073.
1.7346	10223.
1.8100	9371.7
1.8854	8654.4
1.9608	7946.7
2.0363	7239.1
2.1117	6531.4
2.1871	5823.8
2.2625	5116.1
2.3379	4446.0
2.4133	3851.4
2.4888	3256.9
2.5642	2662.3
2.63 36	2067.8
2.7150	1473.2
2.7904	878.67
2.8658	284.12
2.9413	-285.14
3.0167	-822.01
3.0921	-1358.9
3.1675	-1895.7
3.2429	-2432.6
3.3183	-2969.5
3.3938	-3506.3
3.4692	-4043.2
3.5446	-4580.1
3.6200	-5116.9
and the second sec	

TIME= 275.00 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

-	8.0	123.8	17.17	2 8.7	14 M	÷
	N/L	トハイ	PS FC.	A DJ	10.00	2
	14.91	S. S. Y. A.	12.1.27	(-9-2.4	direct in the	

SX	SY	SZ	SXY	SYZ	SXZ
422.2	0.1049E+05	0.1425F	+05 1317	0.	0

 SIG1
 SIG2
 SIG3
 SIGE

 0.1425E+05
 0.1066E+05
 252.6
 0.1399E+05
 0.1259E+05

 ** BENDING **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -1252.
 0.2140E+05
 0.1230E+05
 0.
 0.
 0.
 0.

 C -835.0
 149.0
 0.
 0.
 0.
 0.
 0.
 0.

 O -417.7
 -0.2110E+05 -0.1230E+05
 0.
 0.
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I 0.2140E+05
 0.1230E+05
 -1252.
 0.2265E+05
 0.1975E+05

 C
 149.0
 0.
 -835.0
 984.0
 918.6

 O -417.7
 -0.1230E+05
 -0.2110E+05
 0.2069E+05
 0.1798E+05

 ** MEMBRANE PLUS BENDING ** I=INSIDE C→CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SCZ

 I
 -830.1
 0.3189E+05
 0.2655E+05
 1317.
 0.
 0.

 C
 -412.8
 0.1063E+05
 0.1425E+05
 1317.
 0.
 0.

 O
 4.487
 -0.1062E+05
 1949.
 1317.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I
 0.3194E+05
 0.2655E+05
 -883.1
 0.3282E+05
 0.3049E+05

 C
 0.1425E+05
 0.1079E+05
 -567.7
 0.1481E+05
 0.1342E+05

 O
 1949.
 165.4
 -0.1078E+05
 0.1273E+05
 0.1194E+05

 ** PEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -0.1137E-12
 7773.
 6051.
 -1219.
 ^.
 0.

 C
 1231.
 -2827.
 -2267.
 337.6
 0.
 0.

 C
 0.6217E-14
 4127.
 3513.
 -1353.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 1
 7959.
 6051.
 -186.7
 8146.
 7379.

 C
 1258.
 -2267.
 -2855.
 4114.
 3853.
 0
 4531.
 3513.
 -403.7
 4935.
 4513.

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -830.1 0.3966E+05 0.3260E+05 98.32 0. 0. C 817.8 7808. 0.1198E+05 1655. 0. 0. O 4.487 -6491. 5462. -35.05 0. 0. SIG1 SIG2 SIG3 SI SIGE TEMP I 0.3966E+05 0.3260E+05 -830.4 0.4049E+05 0.3746E+05 478.7 C 0.1198E+05 8180. 445.2 0.1153E+05 0.1019E+05 O 5462. 4.712 -6491. 0.1195E+05 0.1037E+05 537.1

DISTANCE SY 0. 39661. 0.75417E-01 37619. 0.15083 35594. 0.22625 33705. 0.30167 31815. 0.37708 30088. 0.45250 28388. 0.52792 26721. 0.60333 25236. 0.67875 23751. 0.75417 22265.

0.82958	20988.
0.90500	19727.
0.98042	18466.
1.0558	17219.
1.1313	16174.
1.2067	15129.
1.2821	14084.
1.3575	13039.
1.4329	12080.
1.5083	11225.
1.5838	10371.
1.6592	9516.4
1.7346	8662.0
1.8100	7807.6
1.8854	7096.2
1.9608	6395.2
2.0363	5694.2
2.1117	4993.1
2.1871	4292.1
2.2625	3591.1
2.3379	2927.2
2.4133	2338.1
2.4888	1749.0
2.5642	1159.9
2.6396	570.87
2.7150	-18.216
2.7904	-607.30
2.8658	-1196.4
2.9413	-1757.8
3.0167	-2283.7
3.0921	-2809.6
3.1675	-3335.5
3.2429	-3861.5
3.3183	-4387.4
-3.3938	-4913.3
3.4692	-5439.2

TIME= 300.00 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

** MEMBRANE ** SX SY SZ SXY SYZ SXZ 324.3 0.1030E+05 0.1373E+05 1261. 0. 0. SIG1 SIG2 SIG3 SI SIGE 0.1373E+05 0.1046E+05 167.3 0.1356E+05 0.1226E+05

-5965.2 -6491.1

** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -1164. 0.1907E+05 9858. 0. 0. 0. C -741.5 132.7 0. 0. 0. 0. O -319.1 -0.1880E+05 -9858. 0. 0. 0. SIG1 SIG2 SIG3 SI SIGE I 0.1907E+05 9858. -1164. 0.2023E+05 0.1754E+05

2032-0001-03

3.5446 3.6200 C 132.7 0. -741.5 874.3 816.0 O -319.1 -9858. -0.1880E+05 0.1848E+05 0.1601E+05

 ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ
 1 -839.6 0.2937E+05 0.2359E+05 1261. 0. 0. C -417.2 0.1043E+05 0.1373E+05 1261. 0. 0. C 5.208 -8502. 3870. 1261. 0. 0. SIG1 SIG2 SIG3 SI SIGE I 0.2942E+05 0.2359E+05 -892.2 0.3031E+05 0.2786E+05 C 0.1373E+05 0.1058E+05 -561.9 0.1429E+05 0.1300E+05 O 3870. 188.3 -8685. 0.1255E+05 0.1118E+05

 ** PEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 0.
 -1633.
 -3159.
 -1189.
 0.
 0.

 C
 1132.
 -1511.
 -958.1
 341.3
 0.
 0.

 O
 -0.2665E-13
 2351.
 1706.
 -1297.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 I
 626.2
 -2259.
 -3159.
 3785.
 3425.

 C
 1175.
 -958.1
 -1555.
 2730.
 2486.
 0
 2925.
 1706.
 -574.8
 3500.
 3077.

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -839.6 0.2773E+05 0.2043E+05 72.10 0. 0. C 714.8 8921. 0.1277E+05 1603. 0. 0. O 5.208 -6151. 5575. -35.37 0. 0. SIG1 SIG2 SIG3 SI SIGE TEMP I 0.2773E+05 0.2043E+05 -839.9 0.2857E+05 0.2571E+05 516.1 C 0.1277E+05 9224. 412.5 0.1236E+05 0.1102E+05 O 5575. 5.445 -6152. 0.1173E+05 0.1016E+05 535.4

DISTANCE	SY
0.	27735.
0.75417E-01	27905.
0.15083	28025.
0.22625	27751.
0.30167	27477.
0.37708	26865.
0.45250	26197.
0.52792	25488.
0.60333	24562.
0.67875	23637.
0.75417	22711.
0.82958	21669.
0.90500	20618.
0.98042	19567.
1.0558	18518.
1.1313	17494.
1.2067	16471.
1.2821	15447.
1.3575	14423.
1 4220	12452

1.5083	12546.
1.5838	11640.
1.6592	10734.
1.7346	9827.5
1.8100	8921.3
1.8854	8152.8
1.9608	7394.4
2.0363	6636.0
2.1117	5877.6
2.1871	5119.1
2.2625	4360.7
2.3379	3646.5
2.4133	3021.5
2.4888	2396.4
2.5642	1771.3
2.6396	1146.2
2.7150	521.15
2.7904	-103.92
2.8658	-728.99
2.9413	-1315.6
3.0167	-1852.9
3.0921	-2390.2
3.1675	-2927.6
3.2429	-3464.9
3.3183	-4002.2
3.3938	-4539.5
3.4692	-5076.8
3.5446	-5614.2

3.6200

TIM	Em	385.00	LO	AD	CASE	= 1			
THE	FOL	LOWING	X,Y,Z	STR	ESSES	ARE	IN	SECTION	COORDINATES

** MEMBRANE ** SX SY SZ SXY SYZ SXZ

-6151.5

 378.7
 0.1007E+05
 0.1369E+05
 1245.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 0.1369E+05
 0.1023E+05
 221.4
 0.1347E+05
 0.1212E+05

 **
 BENDING **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 1
 -1180.
 0.2006E+05
 0.1097E+05
 0.
 0.
 0.

 C
 -776.6
 139.6
 0.
 0.
 0.
 0.

 C
 -776.6
 139.6
 0.
 0.
 0.
 0.

 C
 -373.5
 -0.1978E+05
 -0.1097E+05
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 1
 0.2006E+05
 0.1097E+05
 -0.1097E+05
 0.1846E+05

 C
 139.6
 0.
 -776.6
 916.2
 855.0
 0

 O
 -373.5
 -0.1097E+05
 -0.1978E+05
 0.1941E+05
 0.1683E+05

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE

SX	SY	SZ	SXY	SYZ	SXZ.
I -801.0	0.3013E+	05 0.2466	E+05 124	15. (). O.
C -398.0	0.1021E-	+05 0.1369	9E+05 12	45.	0. 0.
O 5.126	-9704.	2722.	1245.	0.	0.
SIG1	SIG2	SIG3	SI	SIGE	

 I
 0.3018E+05
 0.2466E+05
 -851.0
 0.3103E+05
 0.2867E+05

 C
 0.1369E+05
 0.1036E+05
 -542.0
 0.1423E+05
 0.1289E+05

 O
 2722.
 162.2
 -9861.
 0.1258E+05
 0.1152E+05

		** PEAK **	I=INSIDE	C=CENTE	R O=OU	ISIDE
	SX	SY	SZ	SXY	SYZ	SXZ
1	0.	6244.	4613.	-1154.	0.	0.
C	1147.	-2359.	-1820.	327.0	0.	0.
0	0.5862	E-13 3473.	2866.	-1280.	0.	0.
	SIG1	SIG2	SIG3	SI	SIGE	
Ĭ	6450.	4613.	-206.6	6657.	5955.	
C	1177.	-1820.	-2389.	3566.	3318.	
Ó	3894.	2866.	-421.1	4315.	3904.	

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE 5X SY SZ SXY SYZ SXZ I -801.0 0.3638E+05 0.2927E+05 90.50 0. 0. C 748.6 7856. 0.1187E+05 1572. 0. 0. C 748.6 7856. 0.1187E+05 1572. 0. 0. SIG1 SIC2 SIG3 SI SIGE TEMP I 0.3638E+05 0.2927E+05 -801.3 0.3718E+05 0.3419E+05 480.5 C 0.1187E+05 8188. 416.2 0.1145E+05 0.1013E+05 O 5588. 5.366 -6232. 0.1182E+05 0.1024E+05 528.3

DISTANCE	SY
0.	36376.
0.75417E-01	34699.
0.15083	33028.
0.22625	31404.
0.30167	29779.
0.37708	28250.
0.45250	267'36.
0.52792	25.249.
0.60333	23904.
0.67875	22558.
0.75417	21212.
0.82958	20046.
0.90500	18894.
0.98042	17742.
1.0558	16602.
1.1313	15639.
1.2067	14677.
1.2821	13714.
1.3575	12751.
1.4329	11861.
1.5083	11060.
1.5838	10259.
1.3592	9457.9
1.7346	8656.7
1.8100	7855.5
1.5854	7170.5
1.9608	64,93.9
2.0363	5817.4
2 1117	5140.8
2.1871	4464.2

TIME= 450.00 LOAD CASE= 1 .4E FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

** MEMBRANE **

SX	SY	SZ	SXY	SYZ	SXZ
220.0	9820.	0.1290E+05	1158.	0.	0.
SIG1	SIG2	SIG3	SI	SIGE	
0.1290E+08	9958.	82.19	0.1282E+05	5 0.116	3E+05

 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -1026.
 0.1621E+05
 6969.
 0.
 0.
 0.

 C -620.4
 112.9
 0.
 0.
 0.
 0.

 O -214.8
 -0.1599E+05
 -6969.
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I 0.1621E+05
 6969.
 -1026.
 0.1724E+05
 0.1494E+05

 C 112.9
 0.
 -620.4
 733.3
 683.9

 O -214.8
 -6969.
 -0.1599E+05
 0.1577E+05
 0.1371E+05

 ** MEMBRANE PLUS BENDING ** 1=INSIDE C=CENTER O=CUTSIDE SX SY SZ SXY SYZ SXZ
 1 -806.0 0.2603E+05 0.1987E+05 1158. 0. 0.
 C -400.4 9933. 0.1290E+05 1158. 0. 0.
 C 5.248 -6169. 5930. 1158. 0. 0.
 SIG1 SIG2 SIG3 SI SIGE
 I 0.2608E+05 0.1987E+05 -855.9 0.2694E+05 0.2443E+05
 C 0.1290E+05 0.1006E+05 -528.7 0.1343E+05 0.1226E+05
 O 5930. 215.5 -6379. 0.7231E+05 0.1067E+05

 ** PEAK **
 I=INSIDE C=CENTER C=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -0.1137E-12
 -1290.
 -2649.
 -1095.
 0.
 0.

 C
 947.6
 -420.3
 79.98
 346.8
 0.
 0.

 O
 0.1776E-14
 992.7
 384.1
 -1190.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 SIGE
I	626.2	-1916.	-2649.	3275.	2977.
C	1030.	79.98	-503.2	1534.	1341.
0	1785.	384.1	-792.6	2578.	2235.

 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 -806.0
 0.2475E+05
 0.1722E+05
 63.25
 0.
 0.

 C
 547.2
 9513.
 0.1298E+05
 1505.
 0.
 0.

 O
 5.248
 -5176.
 6314.
 -31.09
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 TEMP

 I
 0.2475E+05
 0.1722E+05
 -806.2
 0.2555E+05
 0.2274E+05
 516.1

 C
 0.1298E+05
 9759.
 301.1
 0.1268E+05
 0.1142E+05
 0

 O
 6314.
 5.468
 -5176.
 0.1149E+05
 9967.
 523.5

DISTANCE	S
Q.	24745.
0.75417E-01	24484.
0.15083	24211.
0.22625	23840.
0.30167	23470.
0.37708	22973.
0.45250	22454.
0.52792	21917.
0.60333	21279.
0.67875	20640.
0.75417	20002.
0.82958	19285.
0.90500	18561.
0.98042	17838.
1.0558	17112.
1.1313	16347.
1.2067	15582.
1.2821	14818.
1.3575	14053.
1.4329	13293.
1.5083	12537.
1.5838	11781.
1.6592	11025.
1.7346	10269.
1.8100	9512.7
1.8854	8806.9
1.9608	8104.7
2.0363	7402.6
2.1117	6700.4
2.1871	5998.3
2.2625	5296.1
2.3379	4621.4
2.4133	4001.7
2.4888	3382.1
2.5642	2762.5
2.6396	2142.9
2.7150	1523.3
2.7904	903.71
2.8658	284.10
2.9413	-301.31

3.0107	-842.94
3.0921	-1384.6
3.1675	-1926.2
3.2429	-2467.8
3.3183	-3009.5
3.3938	-3551.1
3.4692	-4092.7
3.5446	-4634.4
3.6200	-5176.0

TIME= 560.00 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

** MEMBRANE ** SX SY SZ SXY SYZ SXZ 455.0 9415. 0.1326E+05 1181. 0. 0. SIG1 SIG2 SIG3 SI SIGE 0.1326E+05 9568. 302.0 0.1296E+05 0.1157E+05

 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 1 -1192.
 0.2126E+05
 0.1249E+05
 0.
 0.
 0.

 C -820.2
 148.0
 0.
 0.
 0.
 0.
 0.

 C -448.4
 -0.2096E+05
 -0.1249E+05
 0.
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 S1
 SIGE

 I 0.2126E+05
 0.1249E+05
 -1192.
 0.2245E+05
 0.1960E+05

 C 148.0
 0.
 -820.2
 968.2
 903.4

 O -448.4
 -0.1249E+05
 -0.2096E+05
 0.2052E+05
 0.1786E+05

** MFMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX S SZ SXY SYZ SXZ I -737.0 0.3 05 0.2575E+05 1181. 0. 0. C -365.2 9503. 0.1326E+05 1181. 0. 0. C -365.2 9503. 0.1326E+05 1181. 0. 0. SIG1 SIG2 SIG3 SI SIGE I 0.3072E+05 0.2575E+05 -781.4 0.3150E+05 0.2933E+05 C 0.1326E+05 9702. -503.7 0.1377E+05 0.1238E+05 O 778.8 126.0 -0.1167E+05 0.1245E+05 0.1213E+05

 ** PEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 0.
 8462.
 6791.
 -1084.
 0.
 0.

 C
 1206.
 -3051.
 -2509.
 281.0
 0.
 0.

 O
 0.2665E-14
 4409.
 3808.
 -1224.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGF
 1

 I
 8598.
 6791.
 -136.7
 8735.
 7986.

 C
 1224.
 -2509.
 -3070.
 4294.
 4042.

 O
 4726.
 3808.
 -317.0
 5043.
 4652.

 ** TOTAL **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 1 -737.0
 0.3914E+05
 0.3254E+05
 96.59
 0.
 0.

 C
 840...
 6512.
 0.1076E+05
 1462.
 0.
 0.

 O
 6.614
 -7140.
 4587.
 -43.10
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE
 TEMP

2032-0001-03

Page B-29 of B-32

1	0.3914E+05	0.3254E+0	5 -737.3	0.3987E+05	0.3702E+0	5 454.5
C	0.1076E+05	6867.	485.1	0.1027E+05	8986.	
0	4587.	6.908 -3	7141.	0.1173E+05 0.	1024E+05	516.9

DISTANCE	SY
0.	39137.
0.75417E-01	36993.
0.15083	34867.
0.22625	32889.
0.30167	30911.
0.37708	29112.
0.45250	27344.
0.52792	25613.
0.60333	24083.
0.67875	22553.
0.75417	21023.
0.82958	19720.
0.90500	18435.
0.98042	17150.
1.0558	15881.
1.1313	14831.
1.2067	13781.
1.2821	12731.
1.3575	11681.
1.4329	10725.
1.5083	9882.1
1.5838	9039.6
1.6592	8197.0
1.2346	7354.5
1.8100	6512.0
1.8854	5823.9
1.9608	5147.1
2.0363	4470.2
2.1117	3793.4
2.1871	3116.6
2.2625	2439.7
2.3379	1801.8
2.4133	1242.3
2.4888	682.80
2.5642	123.29
2.6396	-436.22
2.7150	-995.73
2.7904	-1555.2
2.8658	-2114.7
2.9413	-2647.8
3.0167	-3147.0
3.0921	-3646.1
3.1675	-4145.3
3.2429	-4644.5
3.3183	-5143.6
3.3938	-5542.8
3.4692	-6142.0
3.5446	-6641.2
3.6200	-7140.3

TIME= 600.00 LOAD CASE= 1 THE FOLLOWING X,Y,Z STRESSES ARE IN SECTION COORDINATES.

 ** MEMBRANE **

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 297.4
 9251.
 0.1260E+05
 1107.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 0.1260E+05
 9386.
 162.5
 0.1243E+05
 0.1118E+05

 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I -1055.
 0.1761E+05
 8593.
 0.
 0.
 0.

 C -672.3
 122.6
 0.
 0.
 0.
 0.

 C -672.3
 122.6
 0.
 0.
 0.
 0.

 C -672.3
 122.6
 0.
 0.
 0.
 0.

 C -289.6
 -0.1736E+05
 -8593.
 0.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I 0.1761E+05
 8593.
 -1055.
 0.1866E+05
 0.1616E+05

 C 122.6
 0.
 -672.3
 794.8
 741.2

 O -289.6
 -8593.
 -0.1736E+05
 0.1707E+05
 0.1479E+05

** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ
1 -757.5 0.2686E+05 0.2119E+05 1107. 0. 0.
C -374.9 9374. 0.1260E+05 1107. 0. 0.
C 7.808 -8111. 4004. 1107. 0. 0.
O 7.808 -8111. 4004. 1107. 0. 0.
SIG1 SIG2 SIG3 SI SIGE
I 0.2690E+05 0.2119E+05 -801.9 0.2770E+05 0.2534E+05
C 0.1260E+05 9498. -499.1 0.1310E+05 0.1185E+05
O 4004. 156.2 -8259. 0.1226E+05 0.1086E+05

 ** PEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 0.1137E-12
 -3165.
 -4552.
 -1045.
 0.
 0.

 C
 1038.
 -812.2
 -287.3
 304.5
 0.
 0.

 C
 1038.
 -812.2
 -287.3
 304.5
 0.
 0.

 O
 -0.6040E-13
 1568.
 928.1
 -1151.
 0.
 0.

 SIG1
 SIG2
 SIG3
 SI
 SIGE

 I
 314.0
 -3479.
 -4552.
 4866.
 4428.

 C
 1087.
 -287.3
 -861.0
 1948.
 1734.

 O
 2176.
 928.1
 -608.4
 2785.
 2416.

** TOTAL ** 1=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -757.5 0.2369E+05 0.1664E+05 62.19 0. 0. C 663.2 8561. 0.1231E+05 1412. 0. 0. C 663.2 8561. 0.1231E+05 1412. 0. 0. SIG1 SIG2 SIG3 SI SIGE TEMP I 0.2369E+05 0.1664E+05 -757.7 0.2445E+05 0.2180E+05 503.7 C 0.1231E+05 8806. 418.2 0.1189E+05 0.1059E+05 O 4932. 8.125 -6543. 0.1148E+05 9971. 514.0

 DISTANCE
 SY

 0.
 23693.

 0.75417E-01
 24004.

 0.15083
 24278.

 0.22625
 24252.

 0.30167
 24227.

2032-0001-03

Page B-31 of B-32

0.37708	23872
0.45250	23462
0.52792	23009
0.60333	22327
0.67875	21645.
0.75417	20963.
0.82958	20123.
0.90500	19270.
0.98042	18417.
1.0558	17559.
1.1313	16635.
1.2067	15710.
1.2821	14786.
1.3575	13861.
1.4329	12957.
1.5083	12078.
1.5838	11199.
1.6592	10320.
1.7346	9440.6
1.8100	8561.4
1.8854	7788.4
1.9608	7023.2
2.0363	6258.0
2.1117	5492.7
2.1871	4727.5
2.2625	3962.2
2.3379	3240.9
2.4133	2608.1
2.4888	1975.2
2.5642	1342.4
2.6396	709,58
2.7150	76.749
2.7904	-556.08
2.8658	-1188.9
2.9413	-1776.5
3.0167	-2306.1
3.0921	-2835.7
3.1675	-3365.3
3.2429	-3894.9
3.3183	-4424.5
3.3938	-4954.1
3.4692	-5483.7
3.5446	-6013.3
3.6200	-6543.0

APPENDIX C

INPUT DATA LISTINGS

/INPUT,fileparm,dat *GO,:RES

/PREP7

Y2=15.67 !, REGION 4/5 Y3=32.00 !, LOWER WELD Y4=51.38 !, REGION 3/4 Y5=75.32 !, REGION 2/3 Y6=84.47 !, REGION 1/2 Y7=94.26 !, REGION 0/1 Y8=108.75 !, UPPER WELD Y9=121.13 !, REGION 1A/2A Y10=155.00 !, TOP

'. EXTEND MODEL LENGTH ***
Y1=Y3-63
Y10=Y8+71

ANGR=ATAN((Y8-Y3)/(R2-R1)) PI=ACOS(-1) ANGR=(PI/2)-ANGR ANGD=ANGR*(180/PI)

HU=3600*144 !, HF UNIT CONVERSION

D1=10 1. THRU THICKNESS D2=8 1, LOWER SHELL D3=6 L. CONE D4=10 1, UPPER SHELL D5=8 D6=4 D7=4 D8=8 D9=8 D10=15 DF=3 1. DIV IN FILLET

B1=5 I, BIAS THRU THICKNESS B10=4

1. KEYPOINTS ************ *************** K,1,R1,Y1 K.2.R1,Y2 K.3.R1.Y3 K.4.R1.Y4 KMOVE,4,0,999,Y4,0,11,0.0,999,999 K,5,R1,Y5 KMOVE,5,0,999,Y5,0,11,0.0,999,999 K.6.R1.Y6 KMOVE,6,0,999,Y6,0,11,0.0,999,999 K,7,R1,Y7 KMOVE,7,0,999, Y7,0,11,0.0,999,999 K.8.R2.Y8 K.9.R2.Y9 K,10,R2,Y10 K,11,(R1+TW),Y1 K,12,(R1+TW),Y2 CSYS,12 K,13,(TW/COS(ANGR/2)) CSYS,11 *GET,YC,KY,4 K,14,TW,YC *GET,YC,KY,5 K,i5,TW,YC *GET,YC,KY,5 K,16,TW,YC *GET,YC,KY,7 K,17,TW,YC CSYS.13 K,18,(TW/COS(ANGR/2))

K.,18,(TW/COS(ANG) CSYS K,19,(R2+TW),Y9 K,20,(R2+TW),Y10 SAVE

1. LINES ********* ********* L.1.11,DI,B1 L.1.2.D2 L.2.3.D3 L.3,4,D4 LFILLT, 3, 4, (RF+TW) LDVS,3,,D3 LDVS.4.,D4 LDVS,5,,DF 1.4.5.D5 L,5,6,D6 L,6,7,D7 L,7,8,D8 1.8,9,D9 1.FILLT,9,10,RF LDVS,9.,D8 LDVS,10,.D9 LDVS.11, DF 1.9,10,D10,B10

3

1. TRANSIENT NO. 1, HEATUP @ 100degF/hr ***** ****** /TITLE, TRANSIENT NO. 1, HEATUP @ 100degF/hr :\$1 TIM=0 TIME, TIM LSSEL.2.LL1 NLINE.1 NT, ALL, TEMP, 70 ITER,-10,10 KBC,1 NALL LWRITE DTIM=5*3600 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL,2,LL1 NLINE,I NT, ALL, TEMP, 547 ITER,-NSTP,1 KBC.0 NALL LWRITE DTIM=10*60 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL_2,LL1 NLINE,1 NT.ALL, TEMP, 547 ITER,-NSTP.,1 NALL LWRITE *GO.:EX1 1, TRANSIENT NO. 2, COOLDOWN @ 100degF/hr ******** /TITLE, TRANSIENT NO. 2, COO! DOWN @ 100degF/hr :\$2 TIM=0 TIME, TIM LSSEL,2,LL1 NLINE,1 NT, ALL, TEMP, 547 ITER,-10,,10 KBC,1 NALL LWRITE DTIM=5*3600 TIM=TIM+DTIM NSTP=DTIM/DT

TIME, TIM

DTIM=(20*60)-TIM TIM=TIM+DTIM TIME, TIM LSSEL,2LL1 NLINE.1 NT, ALL, TEMP, 537 ITER,-NSTP.,1 NALL LWRITE DTIM=10*60 TIM=TIM+DTIM TIME, TIM LSSEL.2.LL1 NLINE,1 NT, ALL, TEMP, 537 ITER.-NSTP.,1 NALL LWRITE *GO,:EX1 1, TRANSIENT NO. 4, REACTOR TRIP ***** /TITLE, TRANSIENT NO. 4, REACTOR TRIP :S4 TIM=0 TIME, TIM LSSEL_2 \$ NLINE,1 1, REGION 5 CVSF,ALL.,1208/HU,547 LSSEL.,3,5 \$ NLINE,1 1, REGION 4 CVSF,ALL.,1208/HU,547 LSSEL_6 \$ NLINE,1 1, REGION 3 CVSF,ALL.,1208/HU,547 LSSEL,,7 \$ NLINE,1 !, REGION 2 CVSF,ALL,,1208/HU,547 LSSEL,8 \$ NLINE,1 1, REGION 1 CVSF,ALL,,5000/HU,547 LSSEL,9,12 \$ NLINE,1 !, REGION 0 CVSF,ALL.,10000/HU,547 ITER,-10,.10 KBC.1 NALL LWRITE *CREATE,HMAC 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 LSSEL,2 \$ NLINE,1 1, REGION 5 CVSF,ALL,,ARG9/HU,ARG8 LSSEL,3,5 \$ NLINE,1 1, REGION 4 CVSF,ALL.,,ARG7/HU,ARG6 LSSEL_6 \$ NLINE,1 1, REGION 3 CVSF,ALL, "ARG5/HU, ARG4 LSSEL.,7 \$ NLINE,1 1, REGION 2 CVSF,ALL.,ARG3/HU,ARG2 LSSEL,8 \$ NLINE,1 1, REGION 1

0

CVSF,ALL,,,5000/HU,160 LSSEL,9,12 \$ NLINE,1 1, REGION 0 CVSF,ALL,,10000/HU,ARG1 KBC,0 NALL LWRITE *END.HMAC DTIM=1.0 1, 1.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 1. 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 547,1208, 547,1208, 547,1208, 547,1208 DTIM=0.1 1, 1.1 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,1 1. 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 200,1208, 547,1208, 547,1208, 547,1208 DTIM=1.0 1, 2.1 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 1. 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 200,1208, 234,1208, 547,1208, 547,1208 DTIM=1.1 !, 3.2 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 !, 1=TO 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 200,1208, 234,1208, 292,1208, 547,1208 DTIM=2.2 1, 5.4 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,546, 200,1208, 234,1208, 292,1208, 370,1208 DTIM=5.0 1, 10.4 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER, NSTP. 1 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5

*USE,HMAC,546, 200,1208, 234,1208, 292,1208, 370,1208

DTIM=0.6 1, 11.0 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,545, 226, 761, 258, 662, 402, 578, 357, 502

DTIM=114 !, 125.0 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,.1 !, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,525, 221, 761, 250, 662, 290, 578, 341, 502

DTIM=105 1, 230.0 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,500, 216, 761, 243, 662, 280, 578, 326, 502

DTIM=225 !, 455.0 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 !, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,425, 206, 761, 227, 662, 257, 578, 295, 502

DTIM=105 1, 560.0 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP.,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,400, 201, 761, 220, 662, 247, 578, 280, 502

DTIM=125 1, 685.0 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,390, 195, 761, 211, 662, 234, 578, 263, 502

*GO, EX1

TIM=0 TIME, TIM LSSEL_2,LL1 NLINE,1 NT, ALL, TEMP, 547 ITER, -10, 10 KBC,1 NALL LWRITE DTIM=60 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL,2,LL1 NLINE,1 NT, ALL, TEMP, 70 KBC,0 ITER,-NSTP.,1 NALL LWRITE DTIM=10*60 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL_2,LL1 NLINE,1 NT, ALL, TEMP, 70 KBC,0 ITER,-NSTP,1 NALL LWRITE 1, TRANSIENT NO. 6, FEEDWATER CYCLING EVENT ****** :\$6 TIM=0 TIME, TIM ITER,-10,,10 KBC.1 LSSEL_LL1 \$ NLINE, 1 1, REGION 1A CVSF,ALL.,,24/HU,547 LSSEL,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,,76/HU,547 NALL LWRITE DTIM=10 1, 10 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP_1 KBC,0 LSSEL, LL1 \$ NLINE, 1 !, REGION 1A CVSF,ALL.,270.9/HU,546.5

LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,,322.9/HU,538 NALL LWRITE

DTIM=10 !, 20 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,323.9/HU,546 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,,375.9/HU,530 NALL LWRITE

DTIM=30 1, 50 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL,,,422.4/HU,545 LSSEL,,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL,,,472.4/HU,502 NALL LWRITE

DTIM=25 !, 75 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,806.2/HU,543.6 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,,2002.2/HU,534 NALL LWRITE

DTIM=15 !, 90 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,360.6/HU,543 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,, 412.6/HU,522 NALL LWRITE

DTIM=20 1, 110 TIM=TIM+DTIM

NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL_LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,434.2/HU,542 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,, 486.2/HU,504 NALL LWRITE 1, 150 DTIM=40 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL, LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL.,532.0/HU,540.2 LSSEL,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL., 584.0/HU,468 NALL LWRITE IDTIM=25 1, 175 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL,LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL.,,792.0/HU,539.1 LSSEL,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,,1988.0/HU,531 NALL LWRITE DTIM=15 1, 190 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL, LL1 \$ NLINE, 1 !, REGION 1A CVSF,ALL,.,357.4/HU,538.4 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL., 409.4/HU,518 NALL LWRITE DTIM=30 !, 220 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL, LL1 \$ NLINE, 1 !, REGION 1A CVSF,ALL.,464.6/HU,537.1 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL., 516.6/HU,490

TIME, TIM

NAIL LWRITE DTIM=55 1, 275 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL,LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL, 553.2/HU,534.6 LSSEL, 2, (LL1-1) \$ NLINE, 1 !, REGION 2A CVSF,ALL,., 605.2/HU,453 NALL LWRITE DTIM=25 1, 300 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL, LL1 \$ NLINE, 11, REGION 1A CVSF,ALL.,805.3/HU,533.5 LSSEL,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,.2001.3/HU,524 NALL LWRITE DTIM=30 1, 330 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,1 LSSEL,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL.,423.5/HU,532.1 LSSEL,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL,, 475.5/HU,497 NALL LWRITE DTIM=45 1, 375 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER, NSTP, 1 LSSEL, LL1 \$ NLINE, 1 !, REGION 1A CVSF,ALL,,,529.4/HU,530.1 LSSEL,,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL., 581.4/HU,459 NALL LWRITE DTIM=75 1,450 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT

:EX1 1. MAKE SOME PLOTS ******** /SHOW...1 /NUM.2 /ERASE /WINDOW, LEFT /PBC,ALL,1 NPLOT /NOERASE /WINDOW,,RIGH /PBC,ALL,0 EPLOT /ERASE /WINDOW, FULL /SHOW /NUM KPSEL.,1 \$ NKPOI \$ *GET.NK1.NDMN KPSEL,21 \$ NKPOI \$ *GET,NK21,NDMN KPSEL, 22 \$ NKPOI \$ *GET, NK22, NDMN KPSEL, 23 \$ NKPOI \$ *GET, NK23, NDMN KPSEL,,24 \$ NKPOI \$ *GET,NK24,NDMN KPSEL "9 \$ NKPOI \$ *GET_NK9,NDMN KPSEL, 10 \$ NKPOI \$ *GET, NK 10, NDMN KPSEL.,27 \$ NKPOI \$ *GET,NK27,NDMN KPSEL.,28 \$ NKPOI \$ *GET,NK28,NDMN KPSEL, 19 \$ NKPOI \$ *GET, NK19, NDMN NSEL, NK24 ENODE *GET_EK24_ELMN NSEL_NK9 ENODE *GET,EK9,ELMN EALL NALL SAVE AFWRITE FINISH /INPUT.27 FINISH

DISP,7,NK19,TEMP,TK19

ADD,10,3,2,,TK27,TK23,,1.0,-1.0 ADD,11,5,4,,TK28,TK24,,1.0,-1.0 ADD,12,7,6,,TK19,TK9 ,,1.0,-1.0 EXTREME, 10, 13, 1 /GRAPH,GRID,1 /SHOW...1 /NUM.2 1, /WINDOW, LTOP !, PRVAR,2,3,10 1, PLVAR, 2, 3, 10 1, /NOERASE I, /WINDOW, RTOP 1, PRVAR, 4, 5, 11 1, PLVAR, 4, 5, 11 1, /WINDOW, LBOT 1, PRVAR, 6, 7, 12 1, PLVAR, 6, 7, 12 1. /WINDOW, RBOT 1, /TITLE, TEMPERATURE HISTORY, TOP FILLET TOP PRVAR,4,5,11 PLVAR, 4, 5, 11 1, /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD /ERASE /WINDOW, FULL /SHOW /NUM FINISH /POST1 SET 60 /RATIO.,5 PLNSTR, TEMP /RATIO /GRAPH,GRID,1 /SHOW...1 /NUM,2 1, /TITLE, TEMPERATURE THROUGH THICKNESS PLPATH,NK24,NK28,TEMP PRPATH,NK24,NK28,TEMP PLPATH,NK9,NK19,TEMP PRPATH,NK9,NK19,TEMP /ERASE /WINDOW,,FULL /SHOW /NUM /RATIO.,5 PLNSTR TEMP /RATIO /GRAPH,GRID,1

0

```
/SHOW,...1
/NUM,2
PLPATH,NK24,NK28,TEMP
PRPATH,NK24,NK28,TEMP
PLPATH,NK9,NK19,TEMP
PRPATH,NK9,NK19,TEMP
1, /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD
/ERASE
/WINDOW_FULL
/SHOW
/NUM
SET ..... 560
/RATIO,5
PLNSTR, TEMP
/RATIO
/GRAPH, GRID, 1
/SHOW...1
/NUM,2
PLPATH,NK24,NK28,TEMP
PRPATH,NK24,NK28,TEMP
PLPATH,NK9,NK19,TEMP
PRPATH,NK9,NK19,TEMP
1, /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD
/ERASE
/WINDOW,,FULL
/SHOW
NUM
SET ..... 600
/RATIO.,5
PLNSTR, TEMP
/RATIO
/GRAPH, GRID, 1
/SHOW...1
/NUM.2
PLPATH,NK24,NK28,TEMP
PRPATH,NK24,NK28,TEMP
PLPATH,NK9,NK19,TEMP
PRPATH,NK9,NK19,TEMP
1, /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD
/ERASE
/WINDOW,,FULL
/SHOW
/NUM
1, AXIAL PROFILE ***********
SET ..... 50
LPATH,NK1,NK21,NK22,NK23,NK24,NK10
PDEF, INTR, TID, TEMP
/PBC,PATH,1
NPLOT
/PBC,PATH,0
PVIEW, PLOT, TID
```


SET 560 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF.INTR,TID,TEMP /PBC,PATH,1 NPLOT /PBC,PATH,0 PVIEW, PLOT, TID FINISH ****************************** /PREP7 RESUME EALL NALL CVDELE, ALL TDELE,ALL TREF.70 TUNIF,70 ITER,1.,1 KAN,0 1, BOUNDARY CONDITIONS ************ NSEL, Y.YI D,ALL,UY,0.0 NALL 1, COUPLING AT TOP BOUNDARY ******* CPSIZE,(D1+1)*2 KPSEL, 10, 20, 10 LSKP,1 NLINE,1 *GET,N1,NDMN NJ=N1 P1 *GET,NJ,NDMN,NJ *IF,NJ,EQ,0,:P2 CP.1,UY,NI,NJ *GO, P1 :P2 NALL *CREATE,LMAC 1, *USE,LMAC,TIM,PR 1, INTERNAL PRESSURE, INSIDE SURF LSSEL"2,LL1 NLINE,1 PSF,ALL.,ARG2 NALL 1, END SURF FAR=((R2**2)*ARG2)/2 1, AXIAL FORCE PER RADIAN F.NI.FY.FAR

1. THERMAL LOAD ********* TIME, ARG1 KTEMP "ARG1 LWRITE *END,LMAC 1, *GO,:L2 1, *GO,:L3 1, *GO,:L4 1, *GO,:L5 *GO.:L6 !, TRANSIENT NO. 1, HEATUP @ 100deg/hour *USE,LMAC,0,0 *USE,LMAC,5*3600,1020 *GO, EX2 1, TRANSIENT NO. 2, COOLDOWN @ 100deg/hour 1.2 *USE,LMAC,0,1020 *USE,LMAC,5*3600,0 *GO .: EX2 1, TRANSIENT NO. 3, LARGE LOAD STEP DECREASE ******* 1.3 *USE,LMAC,0,720 *USE,LMAC,60,1091 *USE,LMAC,180,802 *USE,LMAC,20*60,938 *GO,:EX2 1, TRANSIENT NO. 4, REACTOR TRIP ********* ******** :14 *USE,LMAC,0,1020 *USE,LMAC,0.556,1020 *USELMAC.1.111.1020 *USE,LMAC,2.222,1020 *USE,LMAC,4.444,1020 *USE,LMAC,6.667,1020 *USE,LMAC,9.420,1020 *USE,LMAC,10,1003 *USE,LMAC,20,987 *USE,LMAC,50,947 *USE,LMAC,125,848 *USE,LMAC,230,681 *USE,LMAC,305,540 *USE,LMAC,385,422 *USE,LMAC,455,326 *USE,LMAC,560,247 *USE,LMAC,685,220 *GO.:EX2 1, TRANSIENT NO. 5, BOUNDING FAULTED EVENT ******** 1.5 *USE,LMAC,0,1020 *USE,LMAC,60,0

*USE,LMAC,180,0 *USE,LMAC,300,0 *USE,LMAC,600,0

!, TRANSIENT NO. 6, FEEDWATER CYCLING *****************

:1.6 *USE,LMAC,0,1020 *USE,LMAC,10,1016 *USE,LMAC,20,1012 *USE,LMAC,50,1003 *USE,LMAC,60,998 *USE,LMAC,75,990 *USE,LMAC,90,987 *USE,LMAC,110,979 *USE,LMAC,150,964 *USE,LMAC,175,955 *USE,LMAC,190,948 *USE,LMAC,220,940 *USE,LMAC,275,920 *USE,LMAC,300,904 *USE,LMAC,330,900 *USE,LMAC,375,885 *USE,LMAC,385,884 *USE,LMAC,450,862 *USELMAC.480.852 *USE,LMAC,530,834 *USELMAC,560,826 *USE,LMAC,600,812

EX2

!, MAKE SOME PLOTS ******* /SHOW,,,1 /ERASE /WINDOW,,LEFT /PBC,ALL,1 NPLOT /NOERASE /WINDOW,,RIGH /PBC,ALL,0 EPLOT /ERASE /WINDOW,,FULL /SHOW

AFWRITE

r.	LP.	11	2	d,	\$																																		
1.				*	*	*	*	 *	4		*	*	*	*	*	*	*	*	*	*	*	*	4	*	*	R.	*	*	*	ø	*	*			4	*	*		n
1.		*						*	8	*	*		*	•				+			*	+	,	•	*	*	*	*				,	*	*	,		*	*	*

/INPUT.27 FINISH

ESTR,2,EK24,16,SY24 ESTR,3,EK9,16,SY9 ESTR,4,EK24,18,SZ24 ESTR,5,EK9,18,SZ9 ESTR,6,EK24,51,SI24 ESTR,7,EK9,51,SI9 /GRAPH,GRID,1 PRVAR,2,3,4,5,6,7 PL,VAR,2,4,6 PL,VAR,3,5,7

FINISH

*CREATE,CMAC /RATIO /WINDOW,LEFT /EDGE,,1 PLNSTR,SI /NOERASE /RATIO,5 /WINDOW,RIGH /EDGE PLNSTR,SI /RATIO /WINDOW,FULL /ERASE *END,CMAC

*CREATE,SMAC /SHOW,,,1 /NUM,2 PLSECT,NK24,NK28,-1,SI PRSECT,NK24,NK28,-1 /ERASE /WINDOW,,FULL /SHOW /NUM *END,SMAC

*CREATE,AMAC /SHOW,..1 PLSECT,NK24,NK28,-1 SY PRSECT,NK24,NK28,-1 /ERASE /WINDOW,FULL /SHOW *END,AMAC

*CREATE, PMAC /SHOW...1 PLPATH,NK24,NK28,SY PRPATH,NK24,NK28,SY /ERASE /WINDOW,,FULL /SHOW *END.PMAC /TITLE, FEEDWATER CYCLING TRANSIENT SET.....60 \$ *USE,CMAC *USE,AMAC *USE.PMAC SET.....75 \$ *USE.CMAC *USE_AMAC *USE,PMAC SET.....150 \$ *USE,CMAC *USE,AMAC *USE,PMAC SET 175 \$ *USE, CMAC *USE,AMAC *USE,PMAC SET 275 \$ *USE, CMAC *USE,AMAC *USE,PMAC SET,...,300 \$ *USE,CMAC *USE,AMAC *USE,PMAC SET 385 \$ * USE, CMAC *USE,AMAC *USE_PMAC SET,...,450 \$ *USE,CMAC *USE.AMAC *USE,PMAC SET 560 \$ *USE, CMAC *USE,AMAC *USE,PMAC SET 600 \$ *USE CMAC *USE,AMAC *USE,PMAC FINISH /EOF /TITLE, FEEDWATER CYCLING TRANSIENT *USE,CMAC 1, *USE,SMAC *USE,AMAC *USE.PMAC PRRFOR SET 560

*USE,CMAC !, *USE,SMAC

*USE,AMAC *USE,PMAC PRRFOR

SET.....600 *USE,CMAC !, *USE,SMAC *USE,AMAC *USE,PMAC PRRFOR

0

SET....,275 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF,INTR,SIID,SI PDEF,INTR,SYID,SY FDEF,INTR,SZID,SZ /PBC,PATH,1 NPLOT /PBC,PATH,0 /GRAPH,GRID,1 PVIFW,PLOT,SYID,SZID,SIID

SET,....560 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF,INTR,SIID,SI FDEF INTR,SYID,SY PDEF,INTR,SZID,SZ /PBC,PATH,1 NPLOT /PBC,PATH,0 /GRAPH,GRID,1 PVIEW,PLOT,SYID,SZID,SIID

1, SET.,,,,685 SET,,,,,600 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF,INTR,SIID,SI PDEF,INTR,SYID,SY PDEF,INTR,SZID,SZ /PBC,PATH,1 NPLOT /PBC,PATH,0

/GRAPH,GRID,1 PVIEW,PLOT,SYID,SZID,SIID

:EX3 *STATUS FINISH

/EOF

-1W-11	1 rhm	1128087 Oct 30 19:50 fwcycle1.33
-1W-11	1 rhm	1204146 Nov 8 14:11 fwcycle1.33add
-1W-11	1 rhm	521235 Nov 8 10:31 fwcycle1.33rev
-TW-I-+T++	1 rhm	50066 Nov 8 12:04 fweycle1.5
-rw-rr	1 rhm	395136 Oct 30 13:02 fwcycle1.6
-TW-TT	1 rhm	397605 Oct 30 19:50 fwcycle1.6a
-TW-T+-T	1 rhm	342994 Nov 8 10:31 fwcycle1.6b
-TW-TT	1 rhm	219200 Nov 8 12:08 fwcycle1 6c
-TW-TT	1 rhm	74602 Nov 8 15:18 fwcycle1.rpt
-TW-TT	1 rhm	1069038 Oct 30 12:32 rtrp1.33
-1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	I rhm	696924 Oct 30 13:46 rtrp1.33post1
-14-1	1 rhm	52036 Oct 30 16:10 rtrp1.5
-rw-rr	1 rhm	405302 Oct 30 12:32 rtrp1.6
-TW-TTr-	1 rhm	197717 Oct 30 12:56 rtrp1 6post
-TW-TT	1 rhm	29395 Oct 30 16:16 rtrp1.rpt
-TW-TT	1 rhm	42436 Oct 24 14:43 sgenii1.5
-TW-T	1 rhm	247126 Oct 24 14:52 sgenii1.6

APPENDIX D

INPUT DATA LISTINGS

/SHOW,file33,dat

RESUME /INPUT,fileparm,dat *GO,:RES /PREP7 /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD, rtrp1.5 1, PARAMETERS ********* R1=64.69 !, INSIDE RADIUS, LOWER SHELL R2=84.255 1, INSIDE RADIUS, UPER SHELL TW=3.52 1, THICKNESS OF WALL RF=2*TW !, RADIUS OF FILLETS (EST.) Y2=15.67 1, REGION 4/5 Y3=32.00 !, LOWER WELD Y4=51.38 1, REGION 3/4 Y5=75.32 1, REGION 2/3 Y6=84.47 1, REGION 1/2 Y7=94.26 1, REGION 0/1 Y8=108.75 1, UPPER WELD Y9=121.13 1, REGION 1A/2A Y10=155.00 1, TOP 1, EXTEND MODEL LENGTH *** Y1=Y3-63 Y10=Y8+71 ANGR=ATAN((Y8-Y3)/(R2-R1)) PI=ACOS(-1) ANGR=(PI/2)-ANGR ANGD=ANGR*(180/PI) HU=3600*144 !, HF UNIT CONVERSION D1=10 1, THRU THICKNESS D2=8 1, LOWER SHELL D3=6 1. CONE D4=10 1, UPPER SHELL D5=8 D6=4 D7=4 D8=8 D9=8 D10=15 DF=3 1, DIV IN FILLET B1=5 1, BLAS THRU THICKNESS B10=4 1. COORDINATE SYSTEMS ** LOCAL, 11, 0, R1, Y3,,-ANGD LOCAL, 12, 0, R1, Y3,,-(ANGD/2) LOCAL, 13, 0, R2, Y8, -(ANGD/2)

1. File = rtrp1.5 copied from sgeniil 5, copied from nsgen5.5

CSYS

K,1,R1,Y1 K,2,R1,Y2 K.3.R1.Y3 K,4,R1,Y4 KMOVE,4,0,999, Y4,0,11,0.0,999,999 K,5,R1,Y5 KMOVE,5,0,999,Y5,0,11,0.0,999,999 K,6,R1,Y6 KMOVE,6,0,999,Y6,0,11,0.0,999,999 K,7,R1,Y7 KMOVE,7,0,999, Y7,0,11,0.0,999,999 K.8,R2,Y8 K.9.R2,Y9 K,10,R2,Y10 K,11,(R1+TW),Y! K,12,(R1+TW),Y2 CSYS,12 K,13,(TW/COS(ANGR/2)) CSYS,11 *GET,YC,KY,4 K,14,TW,YC *GET, YC, KY, 5 K,15,TW,YC *GET, YC, KY,6 K,16,TW,YC *GET, YC, KY, 7 K,17,TW,YC CSYS,13 K,18,(TW/COS(ANGR/2)) CSYS K,19,(R2+TW),Y9 K,20,(R2+TW),Y10 SAVE L,1,11,D1,B1 L.1,2,D2 L,2,3,D3 L.3,4,D4 LFILLT,3,4,(RF+TW) LDVS,3,D3 LDVS,4.,D4 LDVS,5.,DF L,4,5,D5 L.5.6,D6 L,6,7,D7 L.7.8,D8 L.8,9,D9 LFILLT,9,10,RF LDVS.9.,D8 LDV8,10,D9

0

LDVS,11,,DF L,9,10,D10,B10 *GET,LL1,LSMX

L.11.12.D2 L.12.13.D3 L.13,14,D4 LFILLT, 14, 15, RF LDVS,14,D3 LDV8,15,,D4 LDVS,16,,DF L.14,15,D5 L.15,16,D6 L.16,17,D7 L,17,18,D8 L.18,19,D9 LFILLT,20,21,(RF+TW) LDVS,20,,D8 LDVS,21,,D9 LDVS,22,DF 1.,19,20,D10,B10 L.2,12,D1,B1 L,21,25,D1,B1 1.22,26,D1,B1 L,4,14,D1,B1 L.5,15,D1,B1 L,6,16,D1,B1 L,7,17,D1,B1 L,23,27,D1,B1 L,24,28,D1,B1 L.9.19,D1,B1 L.10.20,D1,B1 SAVE 1, AREAS *** A.1.11.12.2 A,2,12,25,21 A,21,25,26,22 A,22,26,14,4 A.4.14.15,5 A,5,15,16,6 A,6,16,17,7 A,7,17,27,23 A.23,27,28,24 A,24,28,19,9 A,9,19,20,10 SAVE KAN,-1 ET,1,77 1, 2ND ORDER QUADRATIC THERMAL ELEMENT KEYOPT,1,3,1

DEN=490 1, DENSITY (lb/fi**3) MP,DENS,1,DEN/1728 1, DENSITY (lb/in**3)

TK=23.6 \$ TD=0.451 !, T=100 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,2,TC \$ MPDATA,KXX,1,2,TK/C1

TK=24.1 \$ TD=0.444 +, T=150 TC=TK/(DEN*TD) +, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,J,3,TC \$ MPDATA,KXX,1,3,TK/C1

TK=24.4 \$ TD=0.437 ', T=200 TC=TK/(DEN*TD) ', SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,4,TC \$ MPDATA,KXX,1,4,TK/C1

TK=24.6 \$ TD=0.429 !, T=250 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,5,TC \$ MPDATA,KXX,1,5,TK/C1

TK=24.7 \$ TD=0.420 1, T=300 TC=TK/(DEN*TD) 1, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,6,TC \$ MPDATA,KXX,1,6,TK/C1

TK=24.7 \$ TD=0.409 !, T=350 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,7,TC \$ MPDATA,KXX,1,7,TK/C1

TK=24.6 \$ TD=0.398 !, T=400 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,8,TC \$ MPDATA,KX3 · TK/C1

TK=24.4 \$ TD=0.388 !, T=450 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,9,TC \$ MPDATA,KXX,1,9,TK/C1

TK=24.2 \$ TD=0.377 1, T=500 TC=TK/(DEN*TD) 1, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1,10,TC \$ MPDATA,KXX,1,10,TK/C1

TK=23.9 \$ TD=0.364 !, T=550 TC=TK/(DEN*TD) !, SPECIFIC HEAT (Btu/lb-degF) MPDATA,C,1.11,TC \$ MPDATA,KXX,1,11,TK/C1

TK=23.5 \$ TD=0.353 !, T=600

2032-0001-03

Page D-4 of D-25

*GO,:S4 1, *GO,:S5 1, *00,:56 1, TRANSIENT NO. 1, HEATUP @ 100degF/hr ********* /TITLE, TRANSIENT NO. 1, HEATUP @ 100degF/hr :51 TIM=0 TIME, TIM LSSEL_2_LL1 NLINE,1 NT,ALL,TEMP,70 ITER,-10,,10 KBC,1 NALL LWRITE DTIM=5*3600 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL,2,LL1 NLINE,1 NT,ALL,TEMP,547 ITER,-NSTP.,1 KBC.0 NALL LWRITE DTIM=10*60 TIM=)TM+DTIM NSTP=,)TIM/DT TIME, TIN4 LSSEL.,2,LL1 NLINE, NT, ALL, TEMP, 547 ITER, NSTP. 1 NALL LWRITE *GO,:EX1 1, TRANSIENT NO. 2, COOLDOWN @ 100degF/br ******** /TITLE, TRANSIENT NO. 2, COOLDOWN @ 100degF/hr :82 TIM=0 TIME,TIM LSSEL.2.LLI NLINE,1 NT, ALL, TEMP, 547 ITER,-10,,10 KBC.1 NALL LWRITE DTIM=5*3600 TIM=TIM+DTIM

LSSEL,7 \$ NLINE,1 1, REGION 2 CVSF,ALL.,ARG3/HU,ARG2 LSSEL,8 \$ NLINE,1 1, REGION 1 CVSF,ALL,...5000/HU,160 LSSEL,9,12 \$ NLINE,1 1, REGION 0 CVSF,ALL,,10000/HU,ARG1 KBC.0 NALL LWRITE *END,HMAC DTIM=1.0 !, 1.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 547,1208, 547,1208, 547,1208, 547,1208 DTIM=0.1 1, 1.1 TIM=T_M+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 200,1208, 547,1208, 547,1208, 547,1208 DTIM=1.0 1, 2.1 TIM=TIM+DTIM TIME.TIM NSTP=DTIM/DT ITER,-NSTP_1 1. 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 200,1208, 234,1208, 547,1208, 547,1208 DTIM=1.1 1, 3.2 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,547, 200,1208, 234,1208, 292,1208, 547,1208 DTIM=2.2 1, 5.4 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER, NSTP.1 1. 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,546, 200,1208, 234,1208, 292,1208, 370,1208 DTIM=5.0 1, 10.4 TIM=TIM+DTIM TIME, TIM

NSTP=DTIM/I/T ITER, NSTP .) 1. 1=102=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HN AC,546, 200,1208, 234,1208, 292,1208, 370,1208 DTIM 40.6 1, 11.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,1 t, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,545, 226, 761, 258, 662, 402, 578, 357, 502 DTIM=114 !, 125.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 £. . . . 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,525, 221, 761, 250, 662, 290, 578, 341, 502 DTIM=105 !, 230.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,500, 216, 761, 243, 662, 280, 578, 326, 502 DTIM=225 1,455.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,,1 1, 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,425, 206, 761, 227, 662, 257, 578, 295, 502 DTIM=105 1, 560.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,.1 1. 1=T0 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,400, 201, 761, 220, 662, 247, 578, 280, 502 DTIM=125 1, 685.0 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP_1 1. 1=TO 2=T2 3=H2 4=T3 5=H3 6=T4 7=H4 8=T5 9=H5 *USE,HMAC,390, 195, 761, 211, 662, 234, 578, 263, 502

-

2032-0001-03

*GO, EX1

1, TRANSIENT NO. 5, BOUNDING FAULTED EVENT ****** /TITLE, TRANSIENT NO. 5, BOUNDING FAULTED EVENT, STATE 1 .85 TIM=0 TIME, TIM LSSEL,,2,LL1 NLINE,1 NT, ALL, TEMP, 547 ITER,-10,,10 KBC,1 NALL LWRITE DTIM=60 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL.2.LL1 NLINE,1 NT,ALL,TEMP,70 KBC.0 ITER,-NSTP,,1 NALL LWRITE DTIM=10*60 TIM=TIM+DTIM NSTP=DTIM/DT TIME, TIM LSSEL,2,LL1 NLINE,1 NT, ALL, TEMP, 70 KBC,0 ITER,-NSTP,,1 NALL LWRITE 1, TRANSIRNT NO. 6, FEEDWATER CYCLING EVENT ***** \$6 TIM=0 TIME, TIM ITER,-10,.10 KBC.1 LSSEL, LL1 \$ NLINE,1 |, REGION 1A CVSF,ALL.,24/HU,547 LSSEL,,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL.,.76/HU,547 NALL LWRITE DTIM=10 !, 10 TIM=TIM+DTIM TIME, TIM

2032-0001-03

NSTP=DTIM/DT ITER,-NSTP,,1

KBC,0 LSSEL, LL1 \$ NLINE, 1 !, REGION 1A CVSF,ALL.,270.9/HU,546.5 LSSEL,,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL,,,322.9/HU,538 NALL LWRITE DTIM=10 1, 20 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL_LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,323.9/HU,546 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,375.9/HU,530 NALL LWRITE DTIM=30 1, 50 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL, LL1 \$ NLINE, 11, REGION 1A CVSF,ALL.,,422.4/HU,545 LSSEL,,2,(LL1-!) \$ NLINE,1 !, REGION 2A CVSF,ALL,,,472.4/HU,502 NALL LWRITE DTIM=25 1, 75 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,1 LSSEL,LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL...806.2/HU,543.6 LSSEL,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL,,2002.2/HU,534 NALL LWRITE DTIM=15 1,90 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP_1 LSSEL_LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL...360.6/HU,543 LSSEL,,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF,ALL., 412.6/HU,522 NALL LWRITE

DTIM=20 !, 110 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,434.2/HU,542 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,, 486.2/HU,504 NALL LWRITE

DTIM=40 !, 150 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,532.0/HU,540.2 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,, 584.0/HU,468 NALL LWRITE

DTIM=25 !, 175 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,792.0/HU,539.1 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,,1988.0/HU,531 NALL LWRITE

DTIM=15 !, 190 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,357.4/HU,538.4 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,, 409.4/HU,518 NALL LWRITE

DTIM=30 1, 220 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL.,,464.6/HU,537.1

LSSEL.,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,, 516.6/HU,490 NALL LWRITE

DTIM=55 !, 275 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,553.2/HU,534.6 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,, 605.2/HU,453 NALL LWRITE

DTIM=25 !, 300 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,,805.3/HU,533.5 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,2001.3/HU,524 NALL LWRITE

DTIM=30 !, 330 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL,,423.5/HU,532.1 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,475.5/HU,497 NALL LWRITE

DTIM=45 !, 375 TIM=TIM+DTIM TIME,TIM NSTP=DTIM/DT ITER,-NSTP,,1 LSSEL,,LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL.,,529.4/HU,530.1 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,, 581.4/HU,459 NALL LWRITE

DTIM=75 1,450 TIM=TIM+DTIM

TIME, TIM NSTP=DTIM/DT ITER,-NSTP,1 LSSEL, LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL,,778.2/HU,526.8 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,1974.2/HU,520 NALL LWRITE DTIM=30 1, 480 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL,LL1 \$ NLINE, 1 !, REGION 1A CVSF,ALL.,,416.9/HU,525.4 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL,,, 468.9/HU,492 NALL LWRITE IDTIM=50 1, 530 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP.,1 LSSEL,LL1 \$ NLINE,1 1, REGION 1A CVSF,ALL,...534.3/HU,523.2 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL.,, 596.3/HU,450 NALL LWRITE DTIM=30 -1, 560 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER,-NSTP,,I LSSEL, LL1 \$ NLINE,1 !, REGION 1A CVSF,ALL.,580.7/HU,522.0 LSSEL,,2,(LL1-1) \$ NLINE,1 !, REGION 2A CVSF,ALL., 632.7/HU,427 NALL LWRITE DTIM=40 1,600 TIM=TIM+DTIM TIME, TIM NSTP=DTIM/DT ITER, NSTP.,1 LSSEL_LLI \$ NLINE,1 !, REGION 1A CVSF,ALL...791.0/HU,520.0 LSSEL.,2,(LL1-1) \$ NLINE,1 1, REGION 2A CVSF_ALL...1987.0/HU.512

NALL LWRITE

:EX1

1, MAKE SOME PLOTS ******** /SHOW,,,1 /NUM,2 /ERASE /WINDOW,,LEFT /PBC,ALL,1 NPLOT /NOERASE /WINDOW,,RIGH /PBC,ALL,0 EPLOT /ERASE /WINDOW,,FULL /SHOW /NUM

KPSEL,,1 \$ NKPOI \$ *GET,NK1,NDMN KPSEL,,21 \$ NKPOI \$ *GET,NK21,NDMN KPSEL,,22 \$ NKPOI \$ *GET,NK22,NDMN KPSEL,,23 \$ NKPOI \$ *GET,NK23,NDMN KPSEL,,24 \$ NKPOI \$ *GET,NK24,NDMN KPSEL,,10 \$ NKPOI \$ *GET,NK40,NDMN KPSEL,,10 \$ NKPOI \$ *GET,NK10,NDMN KPSEL,,27 \$ NKPOI \$ *GET,NK27,NDMN KPSEL,,28 \$ NKPOI \$ *GET,NK28,NDMN KPSEL,,19 \$ NKPOI \$ *GET,NK19,NDMN

NSEL,,NK24 ENODE *GET,EK24,ELMN NSEL,,NK9 ENODE *GET,EK9,ELMN EALL NALL

SAVE AFWRITE FINISH

/INPUT,27 FINISH

1. ******* /POST26 NUMVAR,20 DISP 2,NK23,TEMP,TK23 DISP,3,NK27,TEMP,TK27

DISP,4,NK24,TEMP,TK24 DISP,5,NK28,TEMP,TK28 DISP,6,NK9,TEMP,TK9 DISP,7,NK19,TEMP,TK19 ADD,10,3,2,,TK27,TK23,,1.0,-1.0 ADD,11,5,4,,TK28,TK24,,1.0,-1.0 AUD,12,7,6,,TK19,TK9 ,,1.0,-1.0 EXTREME, 10, 13, 1 /GRAPH, GRID, 1 /SHOW...1 /NUM.2 1. /WINDOW.,LTOP 1, PRVAR, 2, 3, 10 1, PLVAR, 2, 3, 10 1. /NOERASE 1, /WINDOW, RTOP 1, PRVAR, 4, 5, 11 1, PLVAR, 4, 5, 11 1, /WINDOW, LBOT 1, PRVAR, 6, 7, 12 1, PLVAR, 6, 7.12 1, /WINDOW, RBOT /TITLE, TEMPERATURE HISTORY, TOP FILLET TOP PRVAR,4,5,11 PLVAR,4,5,11 /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD, rtrp1.5 /ERASE /WINDOW,,FULL /SHOW /NUM FINISH /POST1 SET 50 /RATIO.5 PLNSTR, TEMP /RATIO /GRAPH,GRID,1 /SHOW...1 /NUM.2 1, /TITLE, TEMPERATURE THROUGH THICKNESS, rtrp1.5 @ 50sec PLPATH,NK24,NK28,TEMP PRPATH,NK24,NK28,TEMP PLPATH,NK9,NK19,TEMP PRPATH,NK9,NK19,TEMP /ERASE /WINDOW, FULL /SHOW /NUM SET 180 /RATIO_5 2032-0001-03

PLNSTR, TEMP /RATIO /GRAPH, GRID, 1 /SHOW...1 /NUM_2 PLPATH,NK24,NK28,TEMP PRPATH_NK24_NK28_TEMP PLPATH,NK9,NK19,TEMP PRPATH,NK9,NK19,TEMP 1, /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD /ERASE /WINDOW,,FULL /SHOW /NUM SET 300 /RATIO.,5 PLNSTR, TEMP /RATIO /GRAPH,GRID,1 /SHOW...1 NUM_2 PLPATH,NK24,NK28,TEMP PRPATH,NK24,NK28,TEMP PLPATH.NK9.NK19.TEMP PRPATH,NK9,NK19,TEMP /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD /ERASE /WINDOW,,FULL /SHOW /NUM SET 560 /RATIO_5 PLNSTR, TEMP /RATIO /GRAPH,GRID,1 /SHOW...1 NUM.2 PLPATH,NK24,NK28,TEMP PRPATH.NK24,NK28,TEMP PLPATH, NK9, NK19, TEMP PRPATH,NK9,NK19,TEMP /TITLE, ZION STEAM GENERATOR SHELL, UPPER GIRTH WELD /ERASE /WINDOW, FULL /SHOW /NUM 1. AXIAL PROFILE **************** SET 50 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF, INTR, TID, TEMP /PBC,PATH,1 NPLOT

/PBC,PATH,0 PVIEW,PLOT,TID

SET,,,,,560 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF,INTR,TID,TEMP /PBC,PATH,1 NPLOT /PBC,PATH,0 PVIEW,PLOT,TID

FINISH

TREF,70 TUNIF,70

ITER,1,,1 KAN,0

!, COUPLING AT TOP BOUNDARY ******* CPSIZE,(D1+1)*2 KPSEL,,10,20,10 LSKP,1 NLINE,1 *GET,N1,NDMN NJ=N1 *IF *GET,NJ,NDMN,NJ *IF,NJ,EQ,0,:P2 CP,1,UY,N1,NJ *GO,:P1 :P2 NALL

1, END SURF FAR=((R2**2)*ARG2)/2 1, AXIAL FORCE PER RADIAN F.NI.FY.FAR 1, THERMAL LOAD ********* TIME, ARG1 KTEMP...ARG1 LWRITE *END,LMAC 1, *GO,:L2 1, *GO,:L3 *GO,:L4 1, *GO.:L5 1, *GO. L6 1, TRANSIENT NO. 1, HEATUP @ 100deg/hour *USE,LMAC,0,0 *USE,LMAC,5*3600,1020 *GO, EX2 1, TRANSIENT NO. 2, COOLDOWN @ 100deg/hour 1.2 *USELMAC.0.1020 *USE,LMAC,5*3600,0 *GO.:EX2 1, TRANSIENT NO. 3, LARGE LOAD STEP DECREASE ******** 1.3 *USELMAC.0.720 *USELMAC.60,1091 *USELMAC.180,802 *USE,LMAC,20*60,938 *GO.:EX2 :1.4 *USE,LMAC,0,1020 *USE,LMAC,0.556,1020 *USE,LMAC,1.111,1020 *USE,LMAC,2.222,1020 *USE,LMAC,4.444,1020 *USE,LMAC,6.667,1020 *USE,LMAC,9.420,1020 *USE,LMAC,10,1003 *USE,LMAC,20,987 *USE,LMAC,45,955 1, ADDED *USE,LMAC,50,947 *USE,LMAC,125,848 *USE,LMAC,230,681 *USE,LMAC,305,540 *USE,LMAC,385,422 *USE,LMAC,455,326 *USE,LMAC,560,247 *USE,LMAC,600,235 1, ADDED *USE,LMAC,685,220 *GO, EX2

............ /POST26 ESTR,2,EK24,16,SY24 ESTR, 3, EK9, 16, SY9 ESTR,4,EK24,18,SZ24 ESTR, 5, EK9, 18, SZ9 ESTR,6,EK24,51,S124 ESTR,7,EK9,51,819 /GRAPH, GRID, 1 PRVAR,2,3,4,5,6,7 PLVAR,2,4,6 PLVAR, 3, 5, 7 FINISH RES *********** 1. ************ /POST1 STRESS, TMP, 82, 88 1, TEMPERATURE /DSCALE, OFF *CREATE,CMAC /RATIO /WINDOW, LEFT /EDGE_1 PLNSTR, SI /NOERASE /RATIO.5 /WINDOW,,RIGH /EDGE PLNSTR,SI /RATIO /WINDOW,,FULL /ERASE *END,CMAC *CREATE,SMAC /SHOW ... 1 /NUM.2 PLSECT,NK24,NK28,-1,SI PRSECT,NK24,NK28,-1 /ERASE /WINDOW,,FULL /SHOW /NUM *END,SMAC *CREATE, AMAC /SHOW...1 /NUM.2 PLSECT,NK24,NK28,-1,SY PRSECT,NK24,NK28,-1 /ERASE /WINDOW_FULL

```
/SHOW
/NUM
*END,AMAC
*CREATE.PMAC
/SHOW...1
/NUM.2
PLPATH,NK24,NK28,SY
PRPATH,NK24,NK28,SY
/ERASE
/WINDOW,,FULL
/SHOW
/NUM
*END.PMAC
SET.I
1, /TITLE, TRANSIENT NO. 1, HEATUP @ 100deg/hour, STATE 1
1, /TITLE, TRANSIENT NO. 2, COOLDOWN @ 100deg/hour, STATE 1
1, /TITLE, TRANSIENT NO. 3, LARGE STEP LOAD DECREASE STATE 1
/TITLE, TRANSIENT NO. 4, REACTOR TRIP
1, /TITLE, TRANSIENT NO. 5, BOUNDING FAULTED EVENT, STATE 1
*USE,CMAC
1, *USE.SMAC
*USE,AMAC
*USE.PMAC
PRRFOR
SET.2
1, /TITLE, TRANSIENT NO. 1, HEATUP @ 100deg/hour, STATE 2
1, /TITLE, TRANSIENT NO. 2, COOLDOWN @ 100deg/hour, STATE 2
1, /TITLE, TRANSIENT NO. 3, LARGE STEP LOAD DECREASE STATE 2
/TITLE, TRANSIENT NO. 4, REACTOR TRIP
1, /TITLE, TRANSIENT NO. 5, BOUNDING FAULTED EVENT, STATE 2
*USE.CMAC
1, *USE,SMAC
*USE,AMAC
*USE.PMAC
PRRFOR
1, *GO,:EX3
1. SET.3
SET ......
1, /TITLE, TRANSIENT NO. 3, LARGE STEP LOAD DECREASE STATE 3
/TITLE, TRANSIENT NO. 4, REACTOR TRIP
1, /TITLE, TRANSIENT NO. 5, BOUNDING FAULTED EVENT, STATE 3
*USE,CMAC
!, *USE,SMAC
*USE_AMAC
*USE_PMAC
PRRFOR
1, SET.4
SET ...... 560
1, /TITLE, TRANSIENT NO. 3, LARGE STEP LOAD DECREASE STATE 4
```

/TITLE, TRANSIENT NO. 4, REACTOR TRIP 1. /TITLE, TRANSIENT NO. 5, BOUNDING FAULTED EVENT, STATE 4 *USE,CMAC 1. *USE,SMAC *USE,AMAC *USE_PMAC PRRFOR /TITLE, ZION STEAM GENERATOR SHELL, rtrp1.5 SET 685 1, /TITLZ, TRANSIENT NO. 3, LARGE STEP LOAD DECREASE STATE 4 /TITLE, TRANSIENT NO. 4, REACTOR TRIP 1, /TITLE, TRANSIENT NO. 5, BOUNDING FAULTED EVENT, STATE 4 *USE,CMAC 1, *USE,SMAC *USE.AMAC *USE.PMAC PRRFOR /TITLE, ZION STEAM GENERATOR SHELL, rtrp1.5 1. AXIAL PROFILE *********** 1, SET 50 SET,1 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF, INTR, SIID, SI PDEF, INTR, SYID, SY PDEF, INTR, SZID, SZ /PBC,PATH,1 NPLOT /PBC_PATH_0 /GRAPH, GRID, 1 PVIEW, PLOT, SYID, SZID, SIID PVIEW_PRIN,SYID,SZID,SIID LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF, INTR, SIID, SI PDEF, INTR, SYID, SY PDEF, INTR, SZID, SZ /PBC.PATH.I NPLOT /PBC,PATH,0 /GRAPH, GRID, 1 PVIEW, PLOT, SYID, SZID, SIID SET 560 LPATH,NK1,NK21,NK22,NK23,NK24,NK10 PDEF, BJTR, SHD, SI PDEF, INTR, SYID, SY PDEF, INTR, SZID, SZ /PBC,PATH,1 NPLOT /PBC,PATH,0 /GRAPH,GRID,1 PVIEW.PLOT, SYID, SZID, SIID

SET.,,,,685 1, SET,,,,600 LPATH,NK1,NK21,5%32,NK23,NK24,NK10 PDEF,INTR,SHD,54 FDEF,INTR,SYID,87 PDEF,INTR,SZID,82 /PBC,PATH,1 NPLOT /PBC,PATH,0 /GRAPH,GRID,1 PVIEW,PLOT,SYID,SZID,SIID

EX3 *STATUS FINISH

/EOF

*GET,YC23,NY,NK23 *GET,YC9,NY,NK9 NSEL,Y,YC9,YC23 ENODE,1

